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We consider simultaneous blind deconvolution of r source signals from their
noisy superposition, a problem also referred to blind demixing and deconvo-
lution. This signal processing problem occurs in the context of the Internet
of Things where a massive number of sensors sporadically communicate only
short messages over unknown channels. We show that robust recovery of
message and channel vectors can be achieved via convex optimization when
random linear encoding using i.i.d. complex Gaussian matrices is used at the
devices and the number of required measurements at the receiver scales with
the degrees of freedom of the overall estimation problem. Since the scaling
is linear in r our result significantly improves over recent works.

1. Introduction

Recent progress regarding recovery problems for low-complexity structures in high-
dimensional data have shown that a substantial reduction in sampling and storage com-
plexity can be achieved in many relevant non–adaptive linear signal separation and
estimation problems, in particular in the case of randomized strategies. This includes
the recovery of sparse and compressible vectors (often referred to as compressed sensing)
[CRT06, Don06], low–rank matrices [RFP10], and higher–order tensors from subsampled
linear measurements [RSS17], as well as the compressive demixing of multiple source sig-
nals [MT14]. An important step in many of such vector and matrix recovery problems
is to establish computational tractability in the sense of complexity theory; a common
strategy to achieve this is to show that, under appropriate assumptions on the measure-
ment map, the reconstruction problem can be recast as a tractable convex program.
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In practice, however, one faces additional difficulties. Namely, the data acquisition
process has to cope with uncalibrated measurement devices depending on further un-
known parameters. In many such scenarios one can only sample the output of an un-
known or partially known linear system. In such cases the object/signal s to recover is
coupled with the unknown or partially known environment w in a multiplicative way
giving rise to a bilinear inverse problem, i.e., solve for s and w given a bilinear combina-
tion B(w, s). Relevant examples are when the effective sensing matrix might be subject
to uncertainties [BN07, HS10, CS11, GE11], or signals might have been transmitted
through individual channels whose properties are not completely known [WP98]. Our
current understanding of these blind information retrieval tasks is at the very begin-
ning and usually it forces one therefore to operate at sub-optimal sensing rates, or else
incur significant reconstruction errors due to model mismatch. The situation is all the
more unsatisfactory, as such blind sampling problems are often much closer to practical
applications than the original linear models.

1.1. Blind Deconvolution

The prototypical bilinear mapping, practically relevant in many applications, is the
convolution

w ∗ s := (
L∑
j=1

wjsk−j)
L
k=1.

For technical reasons we will consider the circular convolution, where the index difference
k − j is considered modulo L. The classical convolution can be reduced to this setup
by appropriate zero padding. Then the corresponding inverse problem, that is, the
problem of recovering s and w from their convolution up to inherent ambiguities, is
known as blind deconvolution [Hay94]. The precise role of s and w depends on the
underlying application. In imaging, for example, the signal vector s typically represents
the image and w is an unknown blurring kernel [SCI75]. In communication engineering,
w represents the channel parameters and the task is to demodulate and decode the signal
information s only having access to the channel output w∗s, and the important question
is how much overhead is required for coping with the unknown impulse response w of
the communication channel [God80].

Obviously, without further constraining s and w the convolution (s, w) → w ∗ s has
many more degrees of freedom than measurements and is hence far from injective, ex-
hibiting various kinds of ambiguities. The goal must then be to eliminate these am-
biguities as much as possible by imposing structural constraints on the signal and the
channel paramters. It should be noted that a scaling ambiguity will always remain,
as any bilinear mapping B satisfies B(s, w) = B(λs,w/λ) for any 0 6= λ ∈ C and can
hence be injective only up to a multiplicative factor. Specific scenarios can give rise
to additional ambiguities, as it has been investigated in [CM14b]. For more detailed
discussions of ambiguities in the one-dimensional case such as shifts or reflections, see
[CM14a] and [WJPH16]. In any case, additional constraints like sparsity and subspace
priors, depending on the specific application, are necessary to make blind deconvolution
feasible. It has been shown that sparsity in the canonical basis alone is not sufficient
for these purposes [CM15], and for generic bases, the subspace dimensions and sparsity
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levels that yield injectivity have been exactly classified [LLB15, LLB17, KK17].
Even when injectivity can be established, this does not directly yield a tractable re-

construction scheme. While a number of works have studied algorithms for recovery
(see, e.g.,[CW00, LWDF, AF13]), the focus has mostly been on algorithmic performance
rather than on recoverability guarantees. The search for algorithms allowing for guar-
anteed recovery has recently shown significant progress by taking a compressed sensing
viewpoint, namely aiming to choose remaining degrees of freedom to reduce the degree
of ill-posedness. The first near-optimal rigourous recovery guarantees in a randomized
setting have been established in [ARR14] with high probability under the assumption
that both the signal and the channel parameters lie in subspaces of small dimension,
and one of them is chosen at random. The main idea was to exploit that any bilinear
map B(w, s) can be represented as a linear map in the outer product wsT of the two
input vectors (this approach is often referred to as lifting) and hence analyzed using
methods from the theory of low rank matrix recovery. More precisely, exploiting the
fact that the (normalized, unitary) L × L discrete Fourier matrix F diagonalizes the
circular convolution to establish the representation

w ∗ s :=
√
L · F ∗diag(Fw)Fs, (1.1)

with diag(v) denoting the diagonal matrix with the entries of v on its diagonal.
Under the subspace model, where both the signal s and the vector of channel pa-

rameters are assumed to lie in a known low-dimensional subspace and hence can be
represented as w = F ∗Bh and s = F ∗Cx/

√
L, for given B ∈ CL×K and C ∈ CL×N , this

translates to
y := F (w ∗ s) = diag(Bh)Cx =: A(hx∗), (1.2)

where A is a linear map and M∗ denotes the adjoint of a matrix M , that is, its conjugate
transpose. This formulation yields a low rank recovery problem, as of all potential matri-
ces giving rise to measurements y, the rank one matrix hx∗ is the one of the lowest rank.
Even though recovering a low rank matrix from linear measurements is known to be, in
general, NP-hard [CG84], it has been shown that under appropriate random measure-
ment models, one can establish recovery guarantees for tractable algorithms with high
probability [CP11, Gro11]. While the results in these works require more randomness
than what is available in the convolution setup due to the structure imposed by (1.2)
and hence do not apply directly, Ahmed, Recht, and Romberg [ARR14] derived recovery
guarantees for blind deconvolution. Their result assumes that (i) C has independent
standard Gaussian entries and that (ii) B∗B = 1 and B is incoherent in two ways,
namely that µ2

max := L
K max` ‖b`‖2`2 and µ2

h = L ·max1≤`≤L |b∗`h|2 are sufficiently small
(b` are the columns of B∗). Under these assumptions, they showed that the unknown
real K×N–matrix hx∗ can be recovered with overwhelming probability by nuclear norm
minimization, that is, via the semidefinite program

min‖X‖∗ s.t. A(X) = y. (1.3)

Here, ‖X‖∗ denotes the nuclear norm of the matrix X, which is defined to be the sum
of its singular values.

Although nuclear norm minimization is computational tractable, the lifted represen-
tation drastically increases the size of the signal to be recovered. Consequently, the
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resulting algorithm will be too slow for most practical applications. The theoretical
analysis of nuclear norm minimization has, however, paved the way for more efficient
algorithms with similar guarantees. Namely, the recent work [LLSW16] demonstrates
that a gradient-based algorithm with a suitable initialization can be used without lifting
and in the regime µ2

h max(K,N) . L/ log2(L) which comes with considerably reduced
complexity.

Finally, typical channel impulse responses h exhibit further structural properties such
as sparsity, which should be used as well. However, the challenging extension of these
works to sparsity models seems to be much more involved. The difficulty with such mod-
els is that the lifted representation is both sparse and of low rank, and no straightforward
tractable convex relaxation is known. In particular, minimizing convex combinations of
nuclear and `1-norm regularizers has been shown to yield provably suboptimal recovery
performance [OJF+15]. Research regarding alternative convex surrogates as for example
in [ROV14] is only in its beginnings. For this reason, some recent approaches ignore the
rank constraint, just aiming for sparsity, as investigated for the `1–approach (sparse lift)
in [LS15b] and for the mixed `1/`2-case in [Fliar].

On the other hand, the search for non-convex alternatives to overcome this obsta-
cle is an active area of research. In particular, local convergence guarantees as well
as global convergence guarantees for peaky signals have been derived in [LLJB17] for
the sparse power factorization method, an alternating minimization approach originally
introduced in [LWB13], for the context of deconvolution. The near-optimal recovery
guarantees build on some property similar to the restricted isometry property, which
has been derived in [LJ15] (for both inputs lying in random subspaces). The search
for global recovery guarantees in the sparsity model without peakiness assumptions,
however, remains open.

1.2. Simultaneous Demixing and Blind Deconvolution

The extension of the model we shall consider here is blind deconvolution and simulta-
neously demixing multiple source signals. This setting is motivated by recent challenges
in future wireless multi–terminal communication scenarios for uncoordinated sporadic
communication [WBSJ15, JW15]. We consider the prototypical case of R transmitters
each having an individual information message encoded into the vector xi ∈ CNi for
i = 1, . . . , R using, for example, classical modulation alphabets and error–correcting
codes. In fact, such data could be independent user data payloads or even corre-
lated sensor readings on a common source. For reasons of simplicity, we focus on
the case of independent data sources. Each transmitter generates its transmit signal
si = F ∗Cixi/

√
L ∈ CL by multiplying (linearly encoding) its complex–valued (conju-

gated) message vector xi by an L×Ni matrix F ∗Ci/
√
L which is then transmitted into

the shared channel. Note that, from the perspective of communication engineering, this
procedure has been simplified to facilitate the analysis. In a more advanced setting one
could consider a directly randomized mapping from bits to sequences in CL. Now con-
sider a single receiver, for example a base station. Each transmitter i has its individual
impulse response wi describing the channel propagation conditions to this base station.
For simplicity we consider a low–mobility scenario where, for appropriate block length
L, the channel is time–invariant and can be modeled by a convolution of the transmit
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signal with a channel impulse response wi. Furthermore, with cyclic extensions and zero-
padding at the transmitter such a signal propagation can then be modeled as a circular
convolution. To incorporate further structure for the channel impulse response we write
it as wi = F ∗Bihi where Bi ∈ CL×Ki . A reasonable assumption for our application is
that the unknown coefficients hi are located on the first samples since the path delays
in the channel are usually much shorter than the frame length L. In this case F ∗Bi is a
truncated identity, i.e., B∗iBi = Id.

In practice, since the desired deployment scenario is uncoordinated and sporadic, only
a small fraction of size r of R devices are online and transmitting data. We assume for
this work that the receiver is able to detect the activity pattern correctly (which can
be achieved through a separate control channel, see for example [KJ16] for a certain
approach). One can even detect activity simultaneously with data. However, algorithms
for blind deconvolution and demixing are usually quite complex from practical and com-
putational aspects and it is desired to reduce the problem size as much as possible already
from the beginning. This means, restricted and resorting to the active set, the receiver
observes the noisy superposition

y =
r∑
i=1

F (wi ∗ si) + e =

r∑
i=1

diag(Bihi)Cixi + e =

r∑
i=1

Ai(hix∗i ) + e (1.4)

of r signal contributions where the vector e ∈ CL denotes additive noise.
The conventional approach is (i) to design the matrices Ci is such a way that resources

are used exclusively by O(R) devices which requires considerable processing, resource
planning and allocation algorithms and (ii) estimate the channel from pilot signals during
a calibration phase prior to data transmission. However, in an increasing number of new
applications the typical data traffic consists only of short messages (status updates or
sensor data) yielding a sporadic traffic type and then the overall communication in a
network is then considerable dominated by control data.

In [LS15a] it has therefore been proposed to consider the scenario of simultaneous blind
deconvolution and demixing of multiple signals from its superposition y, which we will
also study in this paper. Demixing by convex programming methods has been intensively
investigated in the fields of “sine and spikes” (and pairs of bases) decompositions, see
[DH01] and [ALMT14], and in the field of sparse and low–rank decomposition, see, e.g.,
the work [CSPW09]. More generally, as for example outlined in [MT17] and [WGMM13],
a convex approach consists of minimizing the sum of the individual regularizers over all
signal formations which are conform with the model and consistent with the observations.
To this end, assuming a priori that ‖e‖`2 ≤ τ , we consider the convex optimization
problem

min
r∑
i=1

‖Xi‖∗ s.t. ‖
r∑
i=1

Ai(Xi)− y‖`2 ≤ τ. (1.5)

According to [MT17], reliable convex demixing is possible whenever (i) the signal con-
tributions are incoherent to each other and (ii) the number of observations is sufficiently
above the sum of effective dimensions of the descent cones of the individual regulariz-
ers at the unknown ground truth. Since the rank-one matrix Xi = hix

∗
i has effective

dimension Ki + Ni this amounts to O(r(K + N)) observations, where K = maxi(Ki)
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and N = maxi(Ni). First results and guarantees, based on the incoherence between the
mappings Ai which explicitly occur in blind deconvolution (1.4) with random Ci’s are
worked out in [LS15a]. The result in this paper states that if (up to logarithmic orders)
L = O(r2 max(K,N)) the minimizer (X̂1, . . . , X̂r) of the program (1.5) satisfies with
high probability that

r∑
i=1

‖X̂i −X0
i ‖2F . r2 ·max {K;N} τ2 (1.6)

Hence, for τ = 0 the ground truth (X̂0
1 , . . . , X̂

0
r ) is recovered exactly. However, the

embedding dimension does not quite match the effective dimension, which would suggest
a linear dependence on r. Ling and Strohmer suggested that this mismatch is a proof
artifact, observing numerically that linear dependence on r. In this paper, we will
analytically justify these observations. In the special case of partial (low-frequency)
Fourier matrices Bi mentioned above, our main result, Theorem 2.5, reads as follows.

Theorem 1.1. Let ω ≥ 1 and set µ2
h = Lmaxi,l |b∗i,`hi|2. Assume ‖e‖`2 ≤ τ and that

L ≥ Cωr
(
K logK +Nµ2

h

)
log3 L, (1.7)

where Cω is a universal constant only depending on ω. Then with probability at least
1−O (L−ω) the minimizer X̂ of the recovery program (1.5) satisfies

r∑
i=1

‖X̂i −X0
i ‖2F . r ·max

{
1;
rKN

L

}
log(L) τ2. (1.8)

Shortly before completion of this manuscript Ling and Strohmer presented recovery
guarantees for (considerably more efficient) nonconvex gradient (Wirtinger) based meth-
ods [LS17], again with quadratic scaling in r. Again they conjecture linear dependence,
as observed in their numerical experiments. We also include some numerical experiments
in Section 6 at the end that illustrate the linear dependence. We expect that our paper
at hand will pave the way to an optimized parameter dependence also for more efficient
algorithms.

2. General Framework and Main Result

2.1. Notation

Before we describe the mathematical model we introduce some basic notation. For com-
plex numbers z ∈ C we denote its conjugate by z̄ and write Re z and Im z for the real
and imaginary part. Similarly, for a vector w = (w[1], . . . , w[n]) ∈ Cn we use the nota-
tion Re w = (Re w[1], . . . ,Re w[n]) and Im w = (Im w[1], . . . , Im w[n]). For a matrix
A ∈ Cd1×d2 we will denote its adjoint by A∗ and (for d1 = d2) its trace by Tr (A). For
matrices A,B ∈ Cd1×d2 we will define the inner product by 〈A,B〉F = Tr (AB∗). The
Frobenius norm of A is ‖A‖2F = 〈A,A〉F and ‖A‖2→2 denotes its operator norm. If B is
a linear operator mapping matrices to vectors or matrices, we will denote its operator
norm by ‖ · ‖F→2 or ‖ · ‖F→F , respectively. The nuclear norm of the matrix A, which is
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defined as the sum of its singular values, will be denoted by ‖A‖∗. Note that the nota-
tion for ‖ · ‖∗, ‖·‖F and 〈·, ·〉F will be used later in a more generalized setting, as will be
pointed out in the next section. The matrix Idd will denote the identity matrix in Cd×d.
If no confusion can arise, we will suppress d and write Id instead of Idd. For a vector
v ∈ Cd diag (v) denotes the matrix whose diagonal entries are given by v. Furthermore,
‖v‖`2 denotes the `2-norm of this vector, i.e. ‖v‖2`2 = 〈v, v〉 = Tr (vv∗).

By P (E) we will denote the probability of an event E. For any N ∈ N we will denote
the set {1, . . . , N} by [N ]. For a set S we will denote its cardinality by |S|. The notation
log (·) will refer to the logarithm of base 2. Furthermore, during the whole manuscript
C will denote positive numerical constants, which are independent of all other variables
which appear in the text and whose value may change from line to line. Similarly, Cω
will denote universal numerical constants, which only depend on ω. We will write a . b,
if a ≤ Cb and a .ω b, if a ≤ Cωb. We will write a ∼ b, if we have a . b as well as b . a.

2.2. The General Model

In this paper we will work with a more general model, as also studied in [LS15a], which
includes the demixing-deconvolution scenario given above as special case. Assume that
the vector y ∈ CL of L noisy measurements corresponding to inputs {hi}ri=1, hi ∈ CKi
and {xi}ri=1, xi ∈ CNi , is given by

y =

r∑
i=1

diag (Bihi)Cixi + e. (2.1)

where e is additive noise, the matrices Bi ∈ CL×Ki satisfy B∗iBi = IdKi for all i ∈ [r],
and all the entries of the random matrices Ci ∈ CL×Ni are independent and follow
a standard circular-symmetric complex normal distribution CN (0, 1) (see Appendix B
for more details). The vectors hi are assumed to be normalized, ‖hi‖`2 = 1, whereas
the norms of xi are arbitrary. (This is not restrictive as there is an inherent scaling
ambiguity.) Furthermore, we set

K = max
i∈[r]

Ki and N = max
i∈[r]

Ni.

Let us denote by bi,` the `th column of B∗i and by ci,` the `th column of Ci. Then, the
`th entry of y is given by

y[`] =

r∑
i=1

b∗i,`hix
∗
i ci,` + e[`].

We observe that the overall vector y only depends on the outer products hix
∗
i . Thus, we

may proceed by considering a lifted representation (see, e.g., [BCEB08]). Defining for
each i ∈ [r] the operator Ai : CKi×Ni −→ CL via

Ai (Z) :=
(
b∗i,`Zci,`

)L
`=1

we obtain that

y =

r∑
i=1

Ai (hix
∗
i ) + e.
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In the following we will use the decomposition xi = σimi where σi ≥ 0 and some
mi ∈ CNi such that ‖mi‖`2 = 1. (If xi = 0 we set σi = 0 and choose mi arbitrarily.)
Thus, the signal to be recovered may be written as

X0 = (h1x
∗
1, . . . , hrx

∗
r) = (σ1h1m

∗
1, . . . , σrhrm

∗
r) =: (X1, . . . , Xr) .

Define
M :=

{
(Z1, . . . , Zr) : Zi ∈ CKi×Ni for all i ∈ [r]

}
and note that M is naturally equipped with the algebraic structure of a vector space,
as it may be regarded as the product space of the vector spaces CKi×Ni . The linear
operator A :M→ CL is defined by

A (Z) :=
r∑
i=1

Ai (Zi)

for Z = (Z1, . . . , Zr) ∈ M. The linear space M will be endowed with a norm and an
inner product defined by

〈W,Z〉F =

r∑
i=1

〈Wi, Zi〉F and
∥∥W∥∥2

F
= 〈W,W 〉F =

r∑
i=1

‖Wi‖2F .

for all W,Z ∈ M. The operator norms ‖ · ‖F→2 and ‖ · ‖F→F of linear maps on M
are defined analogously to the matrix case. For the adjoint A∗ of A with respect to the
inner product on M it follows A∗ (y) = (A∗1 (y) , . . . ,A∗r (y)) for all y ∈ CL. Note that
the adjoint operations A∗i (y) itself are given by

A∗i (y) =

L∑
`=1

y[`]bi,`c
∗
i,` for all y ∈ CL. (2.2)

We will also use the norm defined by ‖W‖∗ =
∑r

i=1 ‖Wi‖∗. For reasons which will
become clear in Section 5.1 we set

sgn(X0
i ) :=

{
him

∗
i σi > 0

0 else

for i ∈ [r] (recall that σi ≥ 0). This allows us to define

sgn(X0) :=
(
sgn(X0

1 ), . . . , sgn(X0
r )
)
.

2.3. Partition of Measurements and Incoherence Assumptions

As those of of [ARR14, LS15a], our results are based on two notions of coherence. The
first is captured by the coherence parameter

µ2
i = max

`∈[L]

L

Ki
‖bi,`‖2`2 for i ∈ [r]. (2.3)

Note that B∗iBi = Id ∈ CKi×Ki for all i ∈ [r] implies that 1 ≤ µ2
i ≤ L

Ki
. In the

(important) case that all matrices Bi are partial (low-frequency) DFT matrices, which
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refers to the special situation described in the introduction, we have minimal coherence
µ2
i = 1. In order to simplify notation we introduce the quantities

Ki,µ := Kiµ
2
i , Kµ := max

i∈[r]
Ki,µ. (2.4)

We observe that Ki ≤ Ki,µ ≤ L. Again, in the special case that the matrices Bi are
partial (low-frequency) DFT matrices we obtain that Ki,µ = Ki.

For the proof of our results we will use the Golfing Scheme [Gro11], see Section 5.3.1.
This requires a partition {Γp}Pp=1 of the set of the measurements [L] with associated
measurement operators Ap. The second coherence parameter will also depend on this
partition. In order to guarantee that the Golfing Scheme is successful with high proba-
bility we will need that Ti,p := L

Q

∑
`∈Γp

bi,`b
∗
i,` ≈ IdKi , as it will become clear in Remark

5.12. Thus, we have to assure that the partition {Γp}Pp=1 is chosen such that for Q := L
P

and ν > 0 small enough one has

max
i∈[r], p∈[P ]

∥∥∥IdKi − Ti,p
∥∥∥

2→2
≤ ν. (2.5)

Furthermore, we require that |Γp| is large enough for all p ∈ [P ], i.e., each operator Ap
contains enough measurements, and also the partition consists of the right number of
sets, that is, P is bounded above and below. More precisely, we require that the partition
is ω-admissible in the sense of the following definition.

Definition 2.1. Let ω ≥ 1 and let {Γp}Pp=1 be a partition of [L]. The set {Γp}Pp=1 is
called ω-admissible if the following three conditions are satisfied:

1. 1
2Q ≤ |Γp| ≤

3
2Q for all p ∈ [P ], where Q = L

P .

2. (2.5) is fulfilled with ν = 1
32 .

3. It holds that log (8γ̃
√
r) ≥ P ≥ 1

2 log (8γ̃
√
r), where

γ̃ = 2

√
ωmax

{
1;
rKµN

L

}
log (L+ rKN).

Here the parameter ω is the same that appears in Theorem 1.1 and in Theorem 2.5.

This definition gives rise to the question whether such a partition exists in general and
how one can construct them. This has already been discussed in [LS15a, Section 2.3]
for several important special cases of matrices Bi ∈ CKi×Ni . In particular, it is proven
that in the special case that the Bi’s are partial (low-frequency) Fourier matrices of the
same size and if L = PQ one may find a partition such that ν = 0. In [ARR14], the
authors discussed the construction of such a partition for r = 1 and for a general matrix
B ∈ CK×N which satisfies B∗B = IdK . However, such a partition can be constructed
for all matrices Bi ∈ CKi×Ni simultanously via the following lemma.
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Lemma 2.2. Let P ∈ [L] and ν ∈ (0, 1) be fixed. Set Q = L
P . There is a universal

constant C > 0 such that if

Q ≥ CKµ

ν2
log (max {r;P ;K}) (2.6)

then there is a partition {Γp}Pp=1 of [L] such that (2.5) is satisfied and 1
2Q ≤ |Γp| ≤

3
2Q

holds for all p ∈ [P ].

A proof of this result is included in Appendix A. As P = L
Q , this lemma implies the

existence of an ω-admissible partitions provided that

L &
√
r log

(
8γ̃
√
r
) Kµ

ν2
log (max {r;P ;K}) ,

with γ̃ as in Definition 2.1, which is a somewhat milder assumption than what is required
in our main theorem.

The second incoherence parameter will depend on the choice of such an ω-admissible
partition, measuring how aligned the input hi is with the basis vectors bi,` distorted by
a family of linear maps corresponding to the different sets in the partition.

More precisely, for a fixed ω-admissible partition {Γp}Pp=1 we define

µ2
h := Lmax

{
max

`∈[L],i∈[r]
|b∗i,`hi|2, max

p∈[P ],`∈[L],i∈[r]
|b∗i,`Si,phi|2

}
, (2.7)

where we have set Si,p = T−1
i,p . The proof in Section 5 will yield the strongest result

when µ2
h is small. Thus, we will choose for our proof a partition, which minimizes the

quantity defined in (2.7). This motivates the introduction of the following quantity.

µ2
h,ω = L min

{Γp}Pp=1ω-admissible
max

{
max

`∈[L],i∈[r]
|b∗i,`hi|2, max

p∈[P ],`∈[L],i∈[r]
|b∗i,`Si,phi|2

}
. (2.8)

Lemma 2.3. Let {Γp}Pp=1 be a ω-admissible partition of [L]. Then 1 ≤ µ2
h ≤

(
32
31

)2
Kµ.

Proof. The lower bound follows immediately from the observation

L∑
`=1

‖b∗i,`hi‖2`2 =

L∑
`=1

h∗i bi,`b
∗
i,`hi = ‖hi‖2`2 = 1.

For the upper bound it is enough to observe that L|b∗i,`hi|2 ≤ L‖bi,`‖2`2‖hi‖
2
`2
≤ Kµ and

similarly L|b∗i,`Si,phi|2 ≤ L‖Si,p‖22→2‖bi,`‖2`2‖hi‖
2
`2

. The result follows from the observa-

tion ‖Si,p‖2→2 ≤ 32
31 , which is due to ‖Id− Ti,p‖2→2 ≤ 1

32 .

Remark 2.4. As already pointed out in [LS15a, Remark 2.1] the appearance of the
second term in the definition of µh is due to the modified Golfing Scheme (cf. Remark
5.12). Note, however, that our definition of µ2

h is slightly different to the definition of
µ2
h in [LS15a]. In our definition, the second term the maximum is over all ` ∈ [L],

whereas in [LS15a] the maximum is only over all ` ∈ Γp. The reason is that of a simpler
presentation and a less technical argument; it is possible to obtain our result with µ2

h as
defined in [LS15a] by a slightly more involved argument: One needs to replace the norm
‖ · ‖B, which will be introduced in Section 5.5, by norms which depend on the individual
partitions Γp.
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One may ask whether the second term in the definition of µ2
h can be removed. By

a closer look at the proof of Lemma 2.2 one infers that for fixed P , which satisfies the
third condition in Definition 2.1, a constant fraction of all partitions are µ-admissible.
Thus, one might conjecture that there is at least one partitition such that the quantity

max
p∈[P ],`∈[L],i∈[r]

|b∗i,`Si,phi|2 is small such that it can be neglected. We leave this problem

for future work.

2.4. Main Result

Our main result establishes a recovery guarantee for the general measurement model
(2.1). Reconstruction proceeds via nuclear norm minimization, the semidefinite program
formulated in (1.5).

Theorem 2.5. Let ω ≥ 1 and let y ∈ CL be given by (2.1) with ‖e‖`2 ≤ τ . Assume that

L ≥ Cωr
(

max
i∈[r]

(
Kiµ

2
i log

(
Kiµ

2
i

))
+Nµ2

h,ω

)
log3 L, (2.9)

where Cω is a universal constant only depending on ω. Then, with probability at least
1−O (L−ω) the minimizer X̂ of the recovery program (1.5) satisfies

‖X̂ −X0‖F . τ

√
rmax

{
1; max

i∈[r]

rKiµ2
iN

L

}
logL. (2.10)

In the important special case of noiseless measurements, i.e., τ = 0, Theorem 2.5 yields
exact recovery with high probability, if L satisfies condition (2.9), i.e., X0 is the unique
minimizer of the semidefinite program (1.5). As already mentioned in the introduction
our result significantly improves upon the result of [LS15a] and exhibits optimal scaling
in the degrees of freedom up to logarithmic factors. In the noisy case, the estimation
error (2.10) is improved at least by a factor of

√
r (cf. [LS15a, Theorem 3.3]).

3. Preliminaries

3.1. Concentration Inequalities

In our proof we will have to estimate the spectral norm of a random matrix several times.
Amongst others one tool we will apply is a generalized version of the matrix Bernstein
inequality, which may be seen as a corollorary from Theorem 4 in [Kol13]. It is based on
so-called Orlicz norms ‖ · ‖ψα , which may be regarded as a measure for the tail decay
of random variables.

Definition 3.1. Let X be a complex-valued random variable. For α ≥ 1 we define the
Orlicz norm ‖ · ‖ψα by

‖X‖ψα = inf

{
t > 0 : E

[
exp

(
|X|α

tα

)]
≤ 2

}
.

11



It is straightforward to check that ‖·‖ψα is a norm (on the vector space of all complex-
valued random variables X such that ‖X‖ψα < +∞). Furthermore, as shown in [KR61],
any two random variables X,Y satisfy the Hoelder inequality

‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 . (3.1)

If ‖X‖ψ1 < ∞ we will call a random variable sub-exponential. For sub-exponential
random variables we state the Bernstein inequality in the version of [Ver12, Proposition
5.16].

Theorem 3.2. Let X1, . . . , Xn be independent, mean zero sub-exponential random vari-
ables, i.e., ‖Xi‖ψ1 <∞ for all i ∈ [r]. Then with probability at least 1− 2 exp (−t)

∣∣∣ n∑
i=1

Xi

∣∣∣ . max


√√√√t

n∑
i=1

‖Xi‖2ψ1
; t

(
max
i∈[n]

‖Xi‖ψ1

) .

There are powerful generalizations of the Bernstein inequality for the matrix-valued
case. Those generalizations were discovered first in [AW02] and were refined in [Tro12].
We will state a this theorem for unbounded random matrices, which is reformulation of
a version of Koltchinskii [Kol13, Theorem 4].

Theorem 3.3 (Matrix Bernstein Inequality). Let α ∈ [1,+∞) and let X1, X2, . . . , Xn ∈
Cd1×d2 be independent random matrices that satisfy E [Xi] = 0 for all i ∈ [n]. Set

R = max
i∈[n]

∥∥∥‖Xi‖2→2

∥∥∥
ψα

and

σ2 = max

{∥∥∥ n∑
i=1

E [XiX
∗
i ]
∥∥∥

2→2
;
∥∥∥ n∑
i=1

E [X∗iXi]
∥∥∥

2→2

}
. (3.2)

Set Z =
∑n

i=1Xi. Then with probability at least 1− exp (−t)

∥∥Z∥∥
2→2

. max

{
σ
√
t+ log (d1 + d2); R

(
log

(
1 +

nR2

σ2

)) 1
α

(t+ log (d1 + d2))

}
.

Indeed, when d1 = d2 and the matrices X1, X2, . . . , Xn are self-adjoint, Theorem
3.3 can be deduced from [Kol13, Theorem 4] (by choosing ψα (u) = exp (uα) − 1 and,
for example, δ = 1). In order to pass from self-adjoint matrices to general matrices
Xi ∈ Cd1×d2 one may use self-adjoint dilations and argue as in [Tro15a, Section 4.6.5].

The matrix Bernstein inequality is a powerful tool, which works in many different
situations. However, for some more specific examples of random matrices there are
other tools, which yield better estimates and which are easier to apply. The following
theorem is useful, when the matrix Z is the sum of matrices of the type γiXi where
Xi is a fixed matrix and γi is a random variable which are circular-symmetric complex
normally distributed. It is an immediate corollary of [Tro15a, Theorem 4.1.1], where
matrices of this type are called Matrix Gaussian Series. For completeness, we include a
proof in the Appendix.
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Corollary 3.4 (Matrix Gaussian Series). Let X1, . . . , Xn ∈ Cd1×d2 be (fixed) matrices,
and let γ1, . . . , γn be independent, identically distributed random variables, where γi has
circular symmetric gaussian distribution CN (0, 1). Set Z =

∑n
i=1 γiXi and

σ2 = max
{∥∥∥E [ZZ∗]

∥∥∥
2→2

,
∥∥∥E [Z∗Z]

∥∥∥
2→2

}
= max

{∥∥∥ n∑
i=1

XiX
∗
i

∥∥∥
2→2

;
∥∥∥ n∑
i=1

X∗iXi

∥∥∥
2→2

}
.

Then, for all t > 0, with probability at least 1− 2 exp (−t)∥∥Z∥∥
2→2
≤ σ

√
2 (t+ log (d1 + d2)).

.

3.2. Suprema of Chaos Processes

In addition to sums of random matrices, random variables of the form sup
A∈X
‖Aξ‖, where

ξ is a random vector and X is a class of matrices, will play an important role in this
paper. To state a tail bound for such random variables, we need the γ2-functional, a
geometric quantity introduced by Talagrand (see [Tal14]).

Definition 3.5. Let (X, |||·|||) be a Banach space and suppose that S ⊂ X. We say that
a sequence (Sn)n≥0 of subsets of S is admissible, if |S0| = 1 and |Sn| ≤ 22n for all n ≥ 1.
Then we set

γ2 (S, |||·|||) = inf
(Sn)n≥0

sup
s∈S

∞∑
n=0

2n/2 inf
s∈Sn
|||s− sn|||,

where the infimum is taken over all admissible sequences (Sn)n≥0.

The γ2-functional fulfills the following inequality.

Lemma 3.6 ([LJ15], Lemma 2.1). Let (X, |||·|||) be an arbitrary Banach space. Suppose
that A,B ⊂ X. Then

γ2 (A+B, |||·|||) . γ2 (A, |||·|||) + γ2 (B, |||·|||) .

Let X be any set of matrices and define dF (S) = sup
A∈X
‖A‖F and d2→2 (S) = sup

A∈X
‖A‖2→2.

We can now state the following theorem, which will be crucial in Section 5.2.

Theorem 3.7. [KMR14, Theorem 1.4] Let X be a symmetric set of matrices, i.e.,
X = −X and let ξ be a random vector whose entries ξi are independent circular-symmetric
standard normal random variables with mean 0 and variance 1. Set

E = γ2 (X , ‖ · ‖2→2) (γ2 (X , ‖ · ‖2→2) + dF (X ))

V = d2→2 (X ) (γ2 (X , ‖ · ‖2→2) + dF (X ))

U = d2
2→2 (X )

13



Then, for t > 0,

P
(

sup
A∈X

∣∣‖Aξ‖2`2 − E‖Aξ‖2`2
∣∣ ≥ c1E + t

)
≤ 2 exp

(
−c2 min

(
t2

V 2
,
t

U

))
.

The constants c1 and c2 are universal.

Dudley’s inequality yields a relation of the γ2-functional to covering numbers. Recall
that the covering number N (S, |||·|||, ε) is the minimum number of open |||·|||-balls with
radius ε, whose midpoint is contained in S, which are needed to cover S. More precisely,
Dudley’s inequality (see [Tal14, Proposition 2.2.10], [Dud67]) states that

γ2 (S, |||·|||) .
∫ d|||·|||(S)

0

√
logN (S, |||·|||, ε)dε, (3.3)

where d|||·||| (S) = sup
x∈S
|||x|||. For this reason, we will need some bounds for covering

numbers, which are summarized in the following section.

3.3. Covering Numbers

The following lemma is a slight modification of the Maurey lemma by Carl [Car85]. (See
also [KMR14, Lemma 4.2] for a formulation of this lemma using notation which is closer
to the notation in this paper.)

Lemma 3.8. Let (X, |||·|||) be a normed space, consider a finite set U ⊂ X, and assume

that for every L ∈ N and (u1, . . . , uL) ∈ UL, Eε
∣∣∣∣∣∣∣∣∣∑L

j=1 εjuj

∣∣∣∣∣∣∣∣∣ ≤ A
√
L, where (εj)

L
j=1

denotes a Rademacher vector. Then, for every u > 0,

logN (conv (U) , |||·|||, u) .
A2

u2
log |U|,

where |U| denotes the cardinality of U .

Let V ⊂ Rn be a compact, convex, and symmetric set which is absorbing, i.e. Rn =⋃
t>0
tV . We will denote by ‖ · ‖V the norm associated with V , i.e., the unique norm whose

unit ball is given by V . Furthermore, denote by V ◦ the polar body of V , i.e.,

V ◦ = {u ∈ Rn : 〈u, v〉 ≤ 1 for all v ∈ V } .

An elementary consequence of the definition is that the dual norm of ‖ · ‖V is given by
‖ · ‖V ◦ . The following result about covering numbers of polar bodies solved a special
instance of a conjecture by Pietsch [Pie72].

Theorem 3.9 ([AMS04]). As above, assume V ⊂ Rn to be a compact, convex, symmet-
ric, and absorbing set. Then, for all ε > 0

logN (B1 (0) , ‖ · ‖V , ε) . logN (V ◦, ‖ · ‖`2 , cε) ,

where c > 0 is a universal constant and B (0, 1) := {x ∈ Rn : ‖x‖`2 ≤ 1}.
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4. Outline of the Proof

In this section we give a rough outline of our proof and highlight the main differences to
previous work ([ARR14] and [LS15a]). In particular, we want to point out those parts,
which enabled us to overcome the suboptimal scaling in r. The overall strategy of our
proof remains similar to the one in [LS15a] and in [ARR14]: First, we will prove sufficient
conditions for recovery. These conditions will rely on the existence of a so-called inexact
dual certificate. In the second step this certificate will be constructed via the Golfing
Scheme, a method which has been introduced by Gross and others (see [Gro11]).

As already mentioned, the first part of the proof consists of showing that the existence
of the inexact dual certificate is a sufficient condition for recovery. This will be proven
in Section 5.1. The underlying observation is that in certain cases, it suffices that
standard conditions defining minimizers are only approximately satisfied. In [LS15a],
these perturbed conditions are given by [LS15a, (28)]. In order for them to imply that
X0 is a minimizer, one needs that Ai acts approximately as an isometry on each

Ti =
{
hiu
∗
i + vim

∗
i : ui ∈ CKi , vi ∈ CNi

}
and that the images of these operators are almost orthogonal to each other. The latter
condition is responsible for the appearance of the quadratic scaling in r in [LS15a]. Our
approach will be different: We will show that the operator A acts as an approximate
isometry on the full subspace

T := {(X1, . . . , Xr) : Xi ∈ Ti for all i ∈ [r]} .

in the sense of the following definition.

Definition 4.1 (Local isometry property). A fulfills the δ-local isometry property on T
for some δ > 0, if

(1− δ) ‖X‖2F ≤ ‖A (X) ‖2`2 ≤ (1 + δ) ‖X‖2F (4.1)

for all X ∈ T .

The main novelty in our proof is that our global viewpoint allows us to establish the
local isometry property on T with high probability if L scales linearly with r. This
will be achieved via Theorem 3.7, which involves a γ2-functional. Thus a large part of
Section 5.2 is concerned with estimating those γ2-functionals.

The local isometry property is not only needed in the first part but also in the second
part of the proof, where the dual certificate is constructed via the Golfing Scheme. For
that we will assume that {Γp}Pp=1 is fixed ω-admissible partition (see Definition 2.1)
which minimizes (2.8). For this partition we can introduce the operators Ap defined
by Ap (X) = PΓp (A (X)), where PΓp : CL → CL denotes the (coordinate) projection
of CL onto the coordinates contained in the set Γp. Similarly, we will define Api by
Api (X) = PΓp (Ai (X)).
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We will need that each operator Ap satisfies the δ-local isometry property on a sub-
space T p, which is slightly larger than T . In order to define the space T p we need to
introduce the operators Sp :M→M. For that, recall Si,p = T−1

i,p as defined in Section
2.3.

Definition 4.2. Let p ∈ [P ]. Then the operator Sp :M→M is defined by

Sp (W ) = (S1,pW1, . . . , Sr,pWr) (4.2)

for W = (W1, . . . ,Wr) ∈M.

Then T p is defined by
T p = T + Sp (T ) . (4.3)

Observe that we may write T = Th + Tm and T p = Th + TSph + Tm, when the subspaces
Tm, Th, and TSph are given by

Tm =
{

(v1m
∗
1, . . . , vrm

∗
r) : vi ∈ CKi for all i ∈ [r]

}
,

Th =
{

(h1u
∗
1, . . . , hru

∗
r) : ui ∈ CNi for all i ∈ [r]

}
,

TSph =
{

((S1,ph1)u∗1, . . . , (Sr,phr)u
∗
r) : ui ∈ CNi for all i ∈ [r]

}
.

(4.4)

As already mentioned, the local isometry property on T , respectively T p, will be shown
in Section 5.2. In Section 5.3 the approximate dual certificate will be constructed via
the Golfing Scheme. Finally, in Section 5.4 we will prove the main result, Theorem 2.5.

5. Proof of the Main Theorem

5.1. Sufficient Conditions for Recovery

As already mentioned in the outline of the proof, in this section we will show that the
existence of an inexact dual certificate implies that the signal is approximately recovered.
Therefore, we will denote in the following by PT the orthogonal projection onto T .
Similarly, we will denote by for all i ∈ [r] the orthogonal projection onto Ti

Lemma 5.1. Suppose that A satisfies the δ-local isometry property on T (4.1) and set
γ = ‖A‖F→2, i.e., γ is the operator norm of A. Furthermore, suppose that there is
Y = (Y1, . . . , Yr) = A∗z for some z ∈ CL such that

‖PT Y − sgn
(
X0
)
‖F ≤ α (5.1)

‖PT ⊥i Yi‖2→2 ≤ β for all i ∈ [r], (5.2)

where α, β ≥ 0 are constants such that 1− β− αγ√
1−δ ≥

1
2 , α ≤ 1, and

√
1− δ ≥ 1

2 . Then

if X̂ is a minimizer of

minimize ‖X‖∗
subject to ‖A (X)− ŷ‖`2 ≤ τ

we have that
‖X̂ −X0‖F . τ (1 + γ) (1 + ‖z‖`2) . (5.3)
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Proof. Set V = (V1, . . . , Vr) = X̂ − X0 and note that we seek to estimate ‖V ‖F ≤
‖PT (V ) ‖F + ‖PT ⊥ (V ) ‖F from above. We observe that

‖A (V ) ‖`2 ≤ ‖A(X̂)− ŷ‖`2 + ‖ŷ −A
(
X0
)
‖`2 ≤ 2τ. (5.4)

Together with the δ-local isometry property (4.1), the definition of γ, and the triangle
inequality we obtain

‖PT (V ) ‖F ≤
1√

1− δ
‖A (PT (V )) ‖`2 ≤

1√
1− δ

(‖A (PT ⊥ (V )) ‖`2 + ‖A (V ) ‖`2)

≤ 1√
1− δ

(γ‖PT ⊥ (V ) ‖F + 2τ) .

Thus it remains to find an upper bound for ‖PT ⊥ (V ) ‖F . For that purpose, choose
Z = (Z1, . . . , Zr) such that for all i ∈ [r] we have that Zi ∈ T ⊥i , ‖Zi‖2→2 ≤ 1 − β, and
〈Zi, Vi〉F = (1− β) ‖PT ⊥i Vi‖∗. This is possible by duality of the norms ‖ · ‖2→2 and ‖ · ‖∗
(see [Bha96, Section 4.2]). Observe that and ‖sgn

(
X0
i

)
+ PT ⊥i Yi + Zi‖2→2 ≤ 1 as both

the row and column spaces of sgn
(
X0
i

)
and PT ⊥i Yi + Zi are orthogonal. Thus, again

using the duality between ‖ · ‖2→2 and ‖ · ‖∗, we obtain

‖X0
i + Vi‖∗ = sup

W∈CKi×Ni , ‖W‖2→2≤1

|〈W,X0
i + Vi〉F |

≥ Re
(
〈sgn

(
X0
i

)
+ PT ⊥i Yi + Zi, X

0
i + Vi〉F

)
≥ ‖X0

i ‖∗ + Re
(
〈sgn

(
X0
i

)
+ PT ⊥i Yi, Vi〉F

)
+ (1− β) ‖PTiVi‖∗

Here, in the second inequality we used that PT ⊥i Yi + Zi ∈ T ⊥i and 〈sgn
(
X0
i

)
, X0

i 〉F =

‖X0
i ‖∗. Thus, by definition of ‖X0 + V ‖∗ we obtain

‖X0 + V ‖∗ ≥
r∑
i=1

‖X0
i ‖∗ +

r∑
i=1

Re
(
〈sgn

(
X0
i

)
+ PT ⊥i Yi, Vi〉F

)
+ (1− β)

r∑
i=1

‖PTiVi‖∗

= ‖X0‖∗ + Re
(
〈sgn

(
X0
)
− PT Y, V 〉F + 〈Y, V 〉F

)
+ (1− β) ‖PT ⊥V ‖∗.

Now observe that by Cauchy-Schwarz, (5.1) and our upper bound for ‖PT (V ) ‖`2

Re
(
〈sgn

(
X0
)
− PT (Y ) , V 〉F

)
≥ −‖sgn

(
X0
)
− PT (Y ) ‖F ‖PT (V ) ‖F

≥ −α√
1− δ

(γ‖PT ⊥V ‖F + 2τ) .

Furthermore, we note that by Cauchy-Schwarz and (5.4)

Re (〈Y, V 〉F ) = Re (〈A∗z, V 〉F ) = (〈z,A (V )〉`2) ≥ −2‖z‖`2τ.

Combining the last three calculations and using that the nuclear norm is greater or equal
than the Frobenius norm we obtain

‖X̂‖∗ ≥ ‖X0‖∗ +

(
1− β − αγ√

1− δ

)
‖PT ⊥V ‖∗ − 2τ

(
‖z‖`2 +

α√
1− δ

)
.
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As X̂ is the nuclear norm minimizer and we have that ‖X0‖∗ ≥ ‖X̂‖∗ this yields(
1− β − αγ√

1− δ

)
‖PT ⊥ (V ) ‖∗ ≤ 2τ

(
‖z‖`2 +

α√
1− δ

)
.

By our assumptions on α, β, and δ this implies

‖PT ⊥ (V ) ‖F . τ (‖z‖`2 + 1) .

Thus, using again the upper bound for ‖PT (V ) ‖F , which was calculated above, and
again our assumptions on α, β, and δ we obtain

‖V ‖F ≤ ‖PT (V ) ‖F + ‖PT ⊥ (V ) ‖F . (1 + γ) ‖PT ⊥ (V ) ‖F + τ . τ (1 + γ) (1 + ‖z‖`2) ,

which finishes the proof.

As already mentioned in the introduction, the noiseless case is also of interest for us.
Note that in this situation we may set τ = 0 and Lemma 5.1 shows that the existence of
a dual certificate implies that the convex program (1.5) recovers the signal X0 exactly.

Remark 5.2. Note that we still have the freedom to choose the parameters α and β in
Lemma 5.1. In Section 5.3 we will construct a dual certificate Y for the following choice
of parameters: We set β = 1

4 and assume that δ ≤ 1
4 . In order to fulfill the condition

1− β − αγ√
1−δ ≥

1
2 it is then enough to choose α = 1

8γ .

Note that in the noisy case the error estimate in Lemma 5.1 depends linearly on the
operator norm of A as (5.3) states. Thus, we need an upper bound for the operator
norm of A which holds with high probability.

Lemma 5.3. Let ω ≥ 1. Then with probability at least 1− 2L−ω we have that

‖A‖F→2 ≤ 2

√
ωmax

{
1;
rKµN

L

}
log (L+ rKN).

Proof. The result will be proven by using Corollary 3.4. Indeed, we can represent each
operator Ai as Ai =

∑
`∈L
∑Ki

j=1 B`,j such that each operator B`,j depends linearly on
the (`, k)th entry of Ci, i.e., (Ci)`,k ∼ CN (0, 1). Thus, we need to estimate the operator
norms of E [A∗A] and E [AA∗]. Observe that

A∗A =

(
A∗1

(
r∑
i=1

Ai

)
, . . . ,A∗r

(
r∑
i=1

Ai

))
.

Note that the operators {Ai}ri=1 are independent with expectation E [Ai] = 0 for all
i ∈ [r]. Thus E [A∗A] = (E [A∗1A1] , . . . ,E [A∗rAr]). Let Z = (Z1, . . . , Zr) ∈ M. Using
(2.2) we compute

E [(A∗iAi) (Zi)] =
L∑
`=1

E
[
(Ai (Zi) (`)) bi,`c

∗
i,`

]
=

L∑
`=1

E
[
bi,`b

∗
i,`Zici,`c

∗
i,`

]
=

L∑
`=1

bi,`b
∗
i,`Zi = Zi

(5.5)
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Thus, E [A∗A (Z)] = Z for any Z ∈ M, which implies E [A∗A] = Id. To compute
E [AA∗] let y ∈ CL be arbitrary. We compute with similar arguments as before

E [(AA∗y) (`)] =

r∑
i=1

E [(AiA∗i y) (`)] =

r∑
i=1

E
[
b∗i,` (A∗i y) ci,`

]
(2.2)
=

r∑
i=1

L∑
`′=1

y
(
`′
)
E
[
b∗i,`bi,`′c

∗
i,`′ci,`

]
= y (`)

r∑
i=1

E
[
b∗i,`bi,`c

∗
i,`ci,`

]
= y (`)

r∑
i=1

‖bi,`‖2`2Ni. (5.6)

This shows thatAA∗ can be represented as a diagonal matrix with entries
∑r

i=1 ‖bi,`‖2`2Ni.

Thus, by definition of Ki,µ (2.4), ‖E [AA∗] ‖2→2 ≤
N

∑r
i=1Ki,µ
L , which implies, together

with (5.5)

σ2 = max {‖E [A∗A] ‖F→F ; ‖E [AA∗] ‖2→2} ≤ max

{
1;

N
∑r

i=1Ki,µ

L

}
.

Consequently, Corollary 3.4 with t = ω logL yields that with probability exceeding
1− 2L−ω

‖A‖F→2 ≤ max

{
1;

√
N
∑r

i=1Ki,µ

L

}√
2 (ω logL+ log (L+ rKN)),

which implies the result.

Remark 5.4. Note that in (5.6) and other places below, only a weighted sum of the
‖bi,`‖2`2 appears. If the summands vastly differ, this may be too crude, and one may
consider attempting an averaging argument similar to the one in [KW14]. This would,
however, require that the proof is completely reworked in some parts. To achieve condi-
tion (5.2), for example, we currently rely very much on bounding each Ki,µ individually.

5.2. Local isometry property

In this subsection, we establish an isometry of A, respectively of Ap, on T , respectively
T p. More precisely, we establish the following theorem.

Theorem 5.5. Fix ω ≥ 1. Suppose that

Q ≥ Cωδ−2r
(
Kµ log (L) log2 (Kµ) +Nµ2

h

)
. (5.7)

Then with probability 1−O (L−ω) the following is true: All X ∈ T fulfill

(1− δ) ‖X‖2F ≤
∥∥∥A (X)

∥∥∥2

`2
≤ (1 + δ) ‖X‖2F (5.8)

and for all p ∈ [P ] every Y ∈ T p = T + SpT satisfies

(1− δ)
r∑
i=1

‖T 1/2
i,p Yi‖

2
F ≤

L

Q

∥∥∥Ap (Y )
∥∥∥2

`2
≤ (1 + δ)

r∑
i=1

‖T 1/2
i,p Yi‖

2
F , (5.9)

where T
1/2
i,p denotes the unique positive, self-adjoint matrix whose square is equal to Ti,p.
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The proof of this theorem is divided into several steps. For the proof we need some
additional notation. Recall that the incoherence parameter µ2

h measures the alignment
between the vectors hi ∈ CKi and bi,` ∈ CKi . As the operators A and Ai are defined
on matrices, it will to be useful to generalize the notion of incoherence from vectors to
matrices. This is achieved by the following definition.

Definition 5.6. For all i ∈ [r], vectors z ∈ CKi and matrices Zi ∈ CKi×Ni define

‖z‖Bi =
√
L max

`∈[L]
|z∗bi,`| and ‖Zi‖Bi =

√
L max

`∈[L]
‖Z∗i bi,`‖`2 .

For Z = (Z1, . . . , Zr) ∈M we define

‖Z‖B =

√√√√L max
`∈[L]

(
r∑
i=1

∥∥Z∗i bi,`∥∥2

`2

)
.

All these three operations are norms as
∑L

`=1 bi,`b
∗
i,` = IdKi for all i ∈ [r]. The

following lemma provides us with some useful estimates.

Lemma 5.7. Let Z = (Z1, . . . , Zr) ∈M, i ∈ [r] and z ∈ CKi. Then

‖z‖Bi ≤
√
Ki,µ ‖z‖`2 . (5.10)

‖Zi‖Bi ≤
√
Ki,µ‖Zi‖2→2 (5.11)

‖Z‖B ≤

√√√√ r∑
i=1

‖Zi‖2Bi ≤
√
Kµ‖Z‖F (5.12)

Proof. In order to prove (5.11) note that for Zi ∈ CKi and ` ∈ [L] due to the definition
of Ki,µ

‖Z∗i bi,`‖2`2 ≤ ‖Zi‖
2
F ‖bi,`‖2`2

(2.4)

≤ Ki,µ

L
‖Zi‖22→2.

Taking the maximum over all ` ∈ [L] shows (5.11). Inequality (5.10) can be proven
analogously. (5.12) follows from

‖Z‖2B ≤ L
r∑
i=1

max
`∈[L]
‖Z∗i bi,`‖2`2 =

r∑
i=1

‖Zi‖2Bi

combined with (5.11) and the definition of ‖Z‖F .

The notion of ‖ · ‖B-norms together with Theorem 3.7 allows us to state the following
abstract isometry result, where we will use the notation dB (X ) = sup

X∈X
‖X‖B.

Proposition 5.8. Let X = −X ⊂M be a symmetric set and consider

Ê =
γ2 (X , ‖ · ‖B)√

Q

(
γ2 (X , ‖ · ‖B)√

Q
+ dF (X )

)
V̂ =

dB (X )√
Q

(
γ2 (X , ‖ · ‖B)√

Q
+ dF (X )

)
Û =

1

Q
d2
B (X ) .
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Then, for t > 0 and all p ∈ [P ],

P

(
sup
X∈X

∣∣∣L
Q
‖Ap (X) ‖2`2 −

r∑
i=1

‖T 1/2
i,p Xi‖2F

∣∣∣ ≥ c̃1Ê + t

)
≤ 2 exp

(
−c̃2 min

(
t2

V̂ 2
,
t

Û

))
(5.13)

P
(

sup
X∈X

∣∣∣‖A (X) ‖2`2 − ‖X‖
2
F

∣∣∣ ≥ c̃3Ê + t

)
≤ 2 exp

(
−c̃4 min

(
t2

Ṽ 2
,
t

Û

))
, (5.14)

provided {Γp}Pp=1 is a ω-admissible partition of [L]. The constants c̃1, c̃2, c̃3, and c̃4 are
universal.

Proof. We will start by proving (5.13). Fix p ∈ [P ]. For X = (X1, . . . , Xr) ∈ X let
HX ∈ CL×Q

∑r
i=1Ni be the block diagonal matrix, whose diagonal elements, indexed by

` ∈ Γp are given by row vectors of the form
√

L
Q

(
b∗1,`X1, . . . , b

∗
r,`Xr

)
. Furthermore, set

HX = {HX : X ∈ X}. Observe that

‖HX‖2F =
L

Q

∑
`∈Γp

r∑
i=1

‖X∗i bi,`‖2`2 =
r∑
i=1

Tr (XiX
∗
i Ti,p) =

r∑
i=1

‖T 1/2
i,p Xi‖2F , (5.15)

‖HX‖2→2 =

√
L

Q
max
`∈Γp
‖
(
b∗1,`X1, . . . , b

∗
r,`Xr

)
‖`2 ≤

1√
Q
‖X‖B. (5.16)

Let ξ(p) be the concatenation of all the random bases vectors ci,`, where i ∈ [r], ` ∈ Γp.
Then

L

Q
‖Ap (X) ‖2`2 =

L

Q

∑
`∈Γp

|Ap (X) (`) |2 =
L

Q

∑
`∈Γp

∣∣∣ r∑
i=1

b∗i,`Xici,`

∣∣∣2 = ‖HXξ
(p)‖2`2

and

r∑
i=1

‖T 1/2
i,p Xi‖2F = ‖HX‖2F = E[‖HXξ

(p)‖2`2 ].

Consequently

sup
X∈X

∣∣∣L
Q
‖Ap (X) ‖2`2 −

r∑
i=1

‖T 1/2
i,p Xi‖2F

∣∣∣ = sup
X∈X

∣∣∣‖HXξ
(p)‖2`2 − E

[
‖HXξ

(p)‖2`2
] ∣∣∣

and inequality (5.13) follows from Theorem 3.7, equation (5.15), (5.16) combined with

the fact that
∑r

i=1 ‖T
1/2
i,p Xi‖2F

(2.5)

≤ 2‖X‖2F . Inequality (5.14) follows in an analogous way
by letting HX be the block diagonal matrix, whose diagonal elements, indexed by ` ∈ [L],

are given by
(
b∗1,`X1, . . . , b

∗
r,`Xr

)
. Furthermore, one uses

∑L
`=1 bi,`b

∗
i,` = Id instead of

L
Q

∑
`∈Γp

bi,`b
∗
i,` = Ti,p.
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Our strategy to prove Theorem 5.5 will now be to apply Proposition 5.8 with appro-
priately chosen sets X . For Tm, Th, and TSph as in (4.4), define

Bm = {X ∈ Tm : ‖X‖F = 1}
Bh = {X ∈ Th : ‖X‖F = 1}

BS
ph = {X ∈ TSph : ‖X‖F = 1}

and observe that in order to prove the δ-local isometry property on T it is enough to
apply Proposition 5.8 to the set W defined by

W = Bh +Bm. (5.17)

Similarly, in order to prove the δ-local isometry property on T p for p ∈ [P ] it is enough
to apply Proposition 5.8 to the set Wp defined by

Wp = Bh +BS
ph +Bm. (5.18)

That is, it remains to estimate the γ2-functionals of W and Wp with respect to ‖ · ‖B.
By Dudley’s inequality (3.3) one can bound the γ2-functional by an integral involving
covering numbers. To estimate those, we need the following technical lemmas.

Lemma 5.9. Let Bm be the above defined set. Then

N (Bm, ‖ · ‖B, ε)

≤ N

(
B (0, 1) ⊂ Rr, ‖ · ‖`2 ,

ε

2
√
Kµ

)
r∏
i=1

N
(
B (0, 1) ⊂ CKi , ‖ · ‖Bi ,

ε

2

)
.

(By B (0, 1) we always denote the closed unit ball with respect to the ‖ · ‖`2-norm.)

This lemma is actually a slight modification of [CP11, Lemma 3.1]. For the convenience
of the reader we have included a proof in Appendix C.

Lemma 5.10. For all i ∈ [r]

logN
(
B (0, 1) ⊂ CKi , ‖ · ‖Bi ,

ε

2

)
.
Ki,µ

ε2
log (L) . (5.19)

Proof. Our goal is to apply Theorem 3.9 to logN
(
B (0, 1) ⊂ CKi , ‖ · ‖Bi , ε2

)
. How-

ever, as ‖ · ‖Bi is a norm defined on a complex vector space we first need to transfer
this setting into an appropriate real vector space framework. For that goal we will
use the isometric embedding P : CKi → R2Ki given by x = (x1, . . . , xKi) ∈ CKi 7→(
(Re x)1 , (Im x)1 , . . . , (Re x)Ki , (Im x)Ki

)
. Furthermore, note that for all x ∈ CKi

‖x‖Bi =
√
L max

`∈[L]
|〈x, bi,`〉| =

√
L max

`∈[L]

√
(Re 〈x, bi,`〉)2 + (Im 〈x, bi,`〉)2 (5.20)

≤
√

2L max
`∈[L]

max
{∣∣Re 〈x, bi,`〉

∣∣; ∣∣Im 〈x, bi,`〉 ∣∣} . (5.21)
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Setting

u` =
(

(Re bi,`)1 ,− (Im bi,`)1 , (Re bi,`)2 , . . . ,− (Im bi,`)Ki−1 , (Re bi,`)Ki ,− (Im bi,`)Ki

)
yields Re (〈x, bi,`〉`2) = 〈Px, u`〉`2 for all x ∈ CKi and all ` ∈ [L]. Similarly, setting

v` =
(

(Im bi,`)1 , (Re bi,`)1 , (Im bi,`)2 , . . . , (Re bi,`)Ki−1 , (Im bi,`)Ki , (Re bi,`)Ki

)
yields Im (〈x, bi,`〉) = 〈Px, v`〉 for all x ∈ CKi and all ` ∈ [L]. We define

U =
⋃
`∈[L]

{u`; v`}

and observe

max
u∈U

‖u‖`2 = max
`∈[L]

‖bi,`‖`2 ≤
√
Ki,µ

L
. (5.22)

By (5.20, 5.21) and the definition of U we obtain

‖x‖Bi ≤
√

2L max
u∈U

〈Px, u〉 =
√

2L max
u∈conv U

〈Px, u〉 =
√

2L‖Px‖(conv U)◦ . (5.23)

(For the definition of ‖ · ‖(conv U)◦ see Section 3.3.) Inequality (5.23) together with
Theorem 3.9 yields

logN
(
B (0, 1) ⊂ CKi , ‖ · ‖Bi ,

ε

2

)
≤ logN

(
B (0, 1) ⊂ R2Ki , ‖ · ‖conv(U)◦ ,

ε

2
√

2L

)
. logN

(
conv (U) , ‖ · ‖`2 ,

c̃ε√
L

)
,

for some numerical constant c̃ > 0, due to conv (U)◦◦ = conv (U). In order to estimate
this covering number from above we will use Lemma 3.8. For that purpose let M ∈ N
and assume (u1, . . . , uM ) ∈ UM . By Jensen’s inequality

E
∥∥∥ M∑
m=1

εmum

∥∥∥
`2
≤

√√√√E
∥∥∥ M∑
m=1

εmum

∥∥∥2

`2
=

√√√√ M∑
m=1

‖um‖2`2 ≤
√
M max

u∈U
‖u‖`2 .

Thus, by Lemma 3.8 applied with A = max
u∈U
‖u‖`2 we obtain

logN

(
conv (U) , ‖ · ‖`2 ,

c̃ε√
L

)
.
L

ε2
max
u∈U
‖u‖2`2 log |U| . Ki,µ

ε2
logL,

where in the second inequality we have used (5.22). This completes the proof.

The previous two lemmas allow us to find an upper bound for the γ2-functional, which
is needed to prove Theorem 5.5.
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Lemma 5.11. Suppose that X = W or X = Wp for some p ∈ [P ]. (For the definition
of W and Wp see (5.17) and (5.18).) Then

dF (X ) ≤ 3,

dB (X ) ≤ 3
√
Kµ,

γ2 (X , ‖ · ‖B) .
√
r
(
Kµ log (L) log2 (Kµ) +Nµ2

h

)
.

Proof. The first inequality follows from the triangle inequality. For the second one note
that for X ∈ X by (5.12) one obtains the inequality

‖X‖B ≤
√
Kµ‖X‖F ≤ 3

√
Kµ.

The last line is more involved. We will present the proof only in the case of X =Wp. If
X =W the inequality can be proven analogously. By Lemma 3.6 we obtain

γ2 (Wp, ‖ · ‖B) . γ2

(
Bh, ‖ · ‖B

)
+ γ2

(
BSph, ‖ · ‖B

)
+ γ2 (Bm, ‖ · ‖B) . (5.24)

We will estimate the three γ2-functionals separately.
Step 1: To bound γ2

(
Bh, ‖ · ‖B

)
, let U = (h1u

∗
1, . . . , hru

∗
r) , V = (h1v

∗
1, . . . , hrv

∗
r ) ∈ Bh.

Observe that by definition

‖U − V ‖B = max
`∈[L]

√√√√L
r∑
i=1

∥∥∥ (hiu∗i − hiv∗i )
∗ bi,`

∥∥∥2

`2
= max

`∈[L]

√√√√L
r∑
i=1

‖ui − vi‖2`2 |h
∗
i bi,`|2

≤ µh

√√√√ r∑
i=1

‖ui − vi‖2`2 = µh‖U − V ‖F ,

where the last equality is due to ‖hi‖`2 = 1 for all i ∈ [r]. This implies

γ2

(
Bh, ‖ · ‖B

)
≤ µhγ2

(
Bh, ‖ · ‖F

)
. µh

∫ 1

0

√
logN (Bh, ‖ · ‖F , ε)dε . µh

√
rN,

(5.25)

where the second inequality follows from the Dudley inequality (3.3). The third inequal-

ity follows from the fact that
(
Bh, ‖ · ‖F

)
is isometric to

(
B (0, 1) ⊂ R2

∑r
i=1Ni , ‖ · ‖`2

)
and from a standard volumetric estimate.
Step 2: To bound γ2

(
BSph, ‖ · ‖B

)
let U = (S1,ph1u

∗
1, . . . , Sr,phru

∗
r) and
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V = (S1,ph1v
∗
1, . . . , Sr,phrv

∗
r ) ∈ Bh. Then

‖U − V ‖B = max
`∈[L]

√√√√L
r∑
i=1

∥∥∥ (Si,phiu∗i − Si,phiv∗i )
∗ bi,`

∥∥∥2

`2

= max
`∈[L]

√√√√L
r∑
i=1

‖ui − vi‖2`2 |h
∗
iSi,pbi,`|2 ≤ µh

√√√√ r∑
i=1

‖ui − vi‖2`2

= µh

√√√√ r∑
i=1

‖ui − vi‖2`2‖hi‖
2
`2

= µh

√√√√ r∑
i=1

‖ui − vi‖2`2‖Ti,pSi,phi‖
2
`2

≤ (1 + ν)µh

√√√√ r∑
i=1

‖ui − vi‖2`2‖Si,phi‖
2
`2

. µh‖U − V ‖F .

In the third line we used that ‖hi‖`2 = 1 and in the last line we used that ‖Ti,p‖2→2 ≤ 1+ν
and ν = 1

32 . An analogous reasoning as in (5.25) then yields

γ2

(
BSph, ‖ · ‖B

)
. µh

√
rN.

Step 3: To bound γ2 (Bm, ‖ · ‖B) note that inequality (3.3) and the fact that dB (Bm) ≤√
Kµ imply

γ2 (Bm, ‖ · ‖B) .
∫ √Kµ

0

√
logN (Bm, ‖ · ‖B, ε)dε.

Thus, by Lemma 5.9

γ2 (Bm, ‖ · ‖B) .
∫ √Kµ

0

√√√√logN

(
B (0, 1) ⊂ Rr, ‖ · ‖`2 ,

ε

2
√
Kµ

)
dε

+

∫ √Kµ
0

√√√√ r∑
i=1

log
(
N
(
B(0, 1) ⊂ CKi , ‖ · ‖Bi ,

ε

2

))
dε.

≤
∫ √Kµ

0

√√√√logN

(
B (0, 1) ⊂ Rr, ‖ · ‖`2 ,

ε

2
√
Kµ

)
dε

+
√
r

∫ √Kµ
0

max
i∈[r]

√
log
(
N
(
B(0, 1) ⊂ CKi , ‖ · ‖Bi ,

ε

2

))
dε.

(5.26)

The first integral can be bounded by∫ √Kµ
0

√√√√logN

(
B (0, 1) ⊂ Rr, ‖ · ‖`2 ,

ε

2
√
Kµ

)
dε

≤
√
r

∫ √Kµ
0

√√√√log

(
1 +

4
√
Kµ

ε

)
dε .

√
rKµ,

(5.27)
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where we have used a volumetric estimate and a change of variables. In order to deal
with the second term we will split the integrals into two parts: For small ε we will use
a volumetric estimate and for large ε we will apply Lemma 5.10. First we consider the
case that ε ∈ (0, 1). Therefore, note that

B (0, 1) ⊂
√
Ki,µB‖·‖Bi

(0, 1) :=
{
x ∈ CKi : ‖x‖Bi ≤

√
Ki,µ

}
by inequality (5.10). This fact combined with a volumetric estimate yields

max
i∈[r]

N
(
B (0, 1) ⊂ CKi , ‖ · ‖Bi , ε

)
≤ max

i∈[r]
N

(
B‖·‖Bi

(0, 1) , ‖ · ‖Bi ,
ε√
Ki,µ

)

≤

(
1 +

2
√
Kµ

ε

)2K

.

By a change of variables and an elementary integral inequality (see [FR13, Lemma C.9])
this implies

∫ 1

0
max
i∈[r]

√
logN

(
B (0, 1) , ‖ · ‖Bi ,

ε

2

)
dε ≤

√
2K

∫ 1

0

√√√√log

(
1 +

2
√
Kµ

ε

)
dε

≤
√

2K log
(
e
(

1 + 2
√
Kµ

))
.

Next, we are going to deal with the case that ε ∈
(
1,
√
Kµ

)
. Using Lemma 5.10 we get

∫ √Kµ
1

max
i∈[r]

√
log
(
N
(
B (0, 1) , ‖ · ‖Bi ,

ε

2

))
dε .

∫ √Kµ
1

√
Kµ logL

ε
dε

.
√
Kµ logL log (Kµ) .

Summing up the two integral inequalities yields

√
r max
i∈[r]

∫ √Kµ
0

√
log
(
N
(
B(0, 1) ⊂ CKi , ‖ · ‖Bi ,

ε

2

))
dε

.
√
rKµ log (L) log (Kµ) .

This inequality together with (5.26) and (5.27) shows that

γ2 (Bm, ‖ · ‖B) .
√
rKµ log (L) log2 (Kµ).

The result then follows from inequality (5.24).

Combining the upper bounds for the γ2-functionals in the last lemma with the abstract
isometry result Proposition 5.8 we are able to prove the main result in this section.
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Proof of Theorem 5.5. Fix p ∈ [P ]. Using Lemma 5.11 and choosing the constant Cω
in (5.7) large enough we get for the quantities arising in Proposition 5.8 that Ê ≤ δ

2c̃1
,

V̂ ≤ δ√
c̃2ω logL

, and Û ≤ δ
c̃2ω logL , where we have set X = Wp (see (5.18)) and c̃i are

the constants appearing in Proposition 5.8. Thus inequality (5.13) of Proposition 5.8 for
t = δ

2 shows that (5.9) holds with probability 1−O (L−ω) for fixed p.

In order to prove (5.8) we may argue analogously (with X = W and t = δ
2) and apply

inequality (5.14) of Proposition 5.8. Thus, (5.9) holds with probability at least 1 −
O (L−ω). Replacing ω by ω+1 in the argument above and using a union bound argument
one observes that (5.9) and (5.8) are satisfied for all p ∈ [P ] with probability at least
1− (P + 1)O

(
L−ω−1

)
= 1−O (L−ω), which finishes the proof.

5.3. Constructing the Dual Certificate

5.3.1. The Golfing Scheme

The goal of this section is to construct Y ∈ Range (A∗) such that the conditions (5.1) and
(5.2) in Lemma 5.1 are fulfilled with high probability. The construction itself will make
use of the Golfing Scheme, an iterative method which has been introduced in [Gro11]
for the first time. We set

Y0 = 0

Yp = Yp−1 +
L

Q
(Ap)∗ApSp

(
sgn

(
X0
)
− PT (Yp−1)

)
for p ∈ [P ].

We will make use of the notation

Wp = sgn
(
X0
)
− PT (Yp) for 0 ≤ p ≤ P. (5.28)

The individual components of Wp will be denoted by Wi,p for i ∈ [r], i.e., Wp =
(W1,p, . . . ,Wr,p). Then the dual certificate will be given by

Y = YP =

P∑
p=1

L

Q
(Ap)∗ApSp (Wp−1) .

Our Golfing Scheme is set up in the same way as in [LS15a]. In particular, they also use
the operator Sp as a corrector function as explained in the following remark.

Remark 5.12. The reason for the appearance of the operator Sp is the following: Ob-
serve that

E [(Ap)∗Ap (X)] =
L

Q
(Ti,pX1, . . . , Tr,pXr) .

Recall that Ti,p may only be approximately equal to the identity matrix (see (2.5)). Thus,
(Ap )∗Ap is not necessarily an unbiased estimator. However,

E
[
L

Q
(Ap)∗ApSp (X)

]
=
L

Q
(T1,pS1,pX1, . . . , Tr,pSr,pXr) = (X1, . . . , Xr) = X.
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Thus, we get that E
[
L
Q (Ap)∗ApSp

]
= Id. Note that Sp (Wp−1) is, in general, not an

element of the subspace T . However, due to definition of T p we observe that Sp (Wp−1) ∈
T p. This is the reason why we require the operator Ap to satisfy the δ-local isometry
property not only on T , but also on T p.

Let us check that Y ∈ Range (A∗): Recall that the ApSp (Wp−1) is obtained by
setting the vector ASp (Wp−1) zero in those components, which do not belong to Γp
(see Section 2.3). In particular, this implies that (Ap)∗ApSp (Wp−1) = A∗ApSp (Wp−1).
Thus, setting

z =

P∑
p=1

ApSp (Wp−1) . (5.29)

we get that Y = A∗z. The vector z will also be important when we prove an upper
bound for the estimation error in the presence of noise. In the remaining part of the
proof we will verify that Y satisfies the conditions in Lemma 5.1 with the constants
α = 1

8γ , β = 1
4 , and δ = 1

4 (cf. Remark 5.2).

5.3.2. Exponential Decay

In this section we will verify condition (5.1) in Lemma 5.1. In other words, we have to
show that the quantity

‖WP ‖F = ‖sgn
(
X0
)
− PT (Y ) ‖F

is small enough. An important observation, which we will need in the proof, is that
W0 = sgn

(
X0
)

and one has the recurrence relation

Wp = Wp−1 −
L

Q
(PT (Ap)∗ApSp) (Wp−1) for all p ∈ [P ], (5.30)

which is a direct of consequence of the definition of Wp (see equation (5.28)). In Lemma
5.14, we will prove that Wp decays exponentially fast. We will need the following rather
technical inequalities.

Lemma 5.13. Let ν = 1
32 . For all i ∈ [r] and for all p ∈ [P ] we have the inequalities∥∥∥Id− T 1/2

i,p

∥∥∥
2→2
≤ 1

32
(5.31)∥∥∥ (Id− Sp)X

∥∥∥
F
≤ 1

31
‖X‖F (5.32)∥∥∥SpX∥∥∥

F
≤ 32

31
‖X‖F . (5.33)

Proof. Inequality (5.31) follows directly from (2.5) and the observation that the square-
root shifts the eigenvalues of Ti,p closer to one. The inequalities (5.32) and (5.33) follow
from the observation that for all i ∈ [r], p ∈ [P ]

‖Id− Si,p‖2→2 = max {1− σmin (Si,p) ;σmax (Si,p)− 1}

= max
{

1− σ−1
max

(
T−1
i,p

)
;σ−1

min

(
T−1
i,p

)
− 1
}
≤ 1

31
.
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This allows us to prove the main lemma in this section.

Lemma 5.14. Suppose that Ap satisfies the δ-local isometry property on T p with δ = 1
32

for all p ∈ [P ]. Then, for all p ∈ [P ],

‖Wp‖F ≤ 4−p
√
r (5.34)

and, in particular, if P ≥ 1
2 log (8γ

√
r),

‖sgn
(
X0
)
− Y ‖F ≤

1

8γ
. (5.35)

Proof. First notice that by (5.31) and the triangle inequality

(1− ν) ‖Xi‖F ≤
∥∥T 1/2

i,p Xi

∥∥
F
≤ (1 + ν) ‖Xi‖F

for all Xi ∈ CKi×Ni . Thus, by the local isometry property (5.9)

(1− ν)2 (1− δ) ‖X‖2F ≤
L

Q

∥∥∥Ap (X)
∥∥∥2

`2
≤ (1 + δ) (1 + ν)2 ‖X‖2F

for all X ∈ T p. Together with δ = ν = 1
32 this implies∣∣∣L

Q
‖Ap (X) ‖2`2 − ‖X‖

2
F

∣∣∣ ≤ 1

8
‖X‖2F

for all X ∈ T p, which in turn is equivalent to∥∥∥PT p − L

Q
PT p (Ap)∗ApPT p

∥∥∥
F→F

≤ 1

8
, (5.36)

where PT p denotes the orthogonal projection onto T p. Now note that ‖Wp−1−PT (X) ‖F ≤
‖Wp−1 − PT p (X) ‖F for all X ∈ M due to Wp−1 ∈ T and T ⊂ T p. This fact together
with (5.30) implies that

‖Wp‖F ≤
∥∥∥Wp−1 −

(
L

Q
PT p (Ap)∗ApSp

)
(Wp−1)

∥∥∥
F

=
∥∥∥Wp−1 −

(
L

Q
PT p (Ap)∗ApPT pSp

)
(Wp−1)

∥∥∥
F
,

where in the second line we use that SpWp−1 ∈ T p by the definition of T p (see (4.3))
and because of Wp−1 ∈ T . Using this computation and (5.32), (5.33), (5.36) we obtain

‖Wp‖F ≤
∥∥∥(Id− L

Q
PT p (Ap)∗ApPT p

)
(SpWp−1)

∥∥∥
F

+
∥∥∥ (Id− Sp)Wp−1

∥∥∥
F

≤ 1

8
‖SpWp−1‖F +

1

16
‖Wp−1‖F ≤

1

4
‖Wp−1‖F .

Thus, the previous estimate yields

‖Wp‖F ≤
(

1

4

)p
‖W0‖F =

(
1

4

)p√
r.

This shows (5.34) and, in particular, we obtain ‖WP ‖F ≤ 4−P
√
r. The assumption

P ≥ 1
2 log (8γ

√
r) and the definition of WP imply (5.35), which finishes the proof.
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5.3.3. Bounding the Operator Norm on T ⊥

To apply Lemma 5.1 we need in addition to controlling the share of Y in T also a bound
on T ⊥i for all i ∈ [r]. For that, recall from [LS15a] that

∥∥∥PT ⊥i (Y P
i

) ∥∥∥
2→2
≤

P∑
p=1

∥∥∥PT ⊥i
(
L

Q
((Ap)∗ApSp) (Wp−1)−Wi,p−1

)∥∥∥
2→2

≤
P∑
p=1

∥∥∥L
Q

(
(Api )

∗ApSp
)

(Wp−1)−Wi,p−1

∥∥∥
2→2

=
P∑
p=1

‖Wi,p‖2→2,

where one uses the fact thatWi,p−1 ∈ Ti. Thus to establish the bound
∥∥∥PT ⊥i (Y P

i

) ∥∥∥
2→2

<

1
4 it remains to show that∥∥∥L

Q

(
(Api )

∗ApSp
)

(Wp−1)−Wi,p−1

∥∥∥
2→2
≤ 1

4p+1
.

To proceed, set for p ∈ {0; 1; . . . ;P − 1}

µp =
√
L max
`∈Γp+1,k∈[r]

∥∥∥W ∗k,pSk,p+1bk,`

∥∥∥
2→2

. (5.37)

This allows us to state the following lemma.

Lemma 5.15. Fix i ∈ [r] and let ω ≥ 1. Assume that

µp ≤ 4−pµh and ‖Wp‖F ≤ 4−p
√
r. (5.38)

If

Q &ω r
(
Kµ +Nµ2

h

)
(logL)2 , (5.39)

then with probability 1−O (L−ω) the inequality∥∥∥L
Q

(Api )
∗ApSpWp−1 −Wi,p−1

∥∥∥
2→2
≤ 1

4p+1
(5.40)

is true for all p ∈ [P ] and for all i ∈ [r] .

Remark 5.16. The validity of assumption (5.38) is assured by Lemma 5.14 and Lemma
5.17 below.

Proof. The proof follows the same strategy as [LS15a, Lemma 5.12]. Fix p ∈ [P ] and
i ∈ [r]. First, we will decompose Wi,p as a sum of independent random matrices such
that the matrix Bernstein inequality can be applied. For that purpose, observe that for
all y ∈ CL and for all ` ∈ Γp by definition of Sp (Definition 4.2) and Ap

(ApSpWp−1) (`) =
r∑

k=1

b∗k,`Sk,pWk,p−1ck,`.
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(For ` ∈ [L]\Γp the left-hand side is equal to zero as Ap (X) = PΓp (A (X)).) Using (2.2)
one obtains (

(Api )
∗ApSp

)
Wp−1 =

∑
`∈Γp

r∑
k=1

bi,`b
∗
k,lSk,pWk,p−1ck,`c

∗
i,`.

With Si,p = T−1
i,p and the definition of Ti,p (see equation (2.5)) this implies

Wi,p−1 = Ti,pSi,pWi,p−1 =
L

Q

∑
`∈Γp

bi,`b
∗
i,`Si,pWi,p−1.

In order to simplify notation we introduce the vectors wk,` defined by

wk,` = W ∗k,p−1Sk,pbk,`. (5.41)

Using this definition we may write (as Sk,p is self-adjoint)

Wi,p =
L

Q

(
(Api )

∗ApSp
)
Wp−1 −Wi,p−1 (5.42)

=
L

Q

∑
`∈Γp

r∑
k=1

bi,`w
∗
k,`ck,`c

∗
i,` −

L

Q

∑
`∈Γp

bi,`w
∗
i,` (5.43)

=
L

Q

∑
`∈Γp

bi,`w
∗
i,`

(
ci,`c

∗
i,` − Id

)
+
L

Q

∑
`∈Γp

∑
k 6=i

bi,`w
∗
k,`ck,lc

∗
i,` =

∑
`∈Γp

Z`, (5.44)

where we have set

Z` =
L

Q

(
L∑
k=1

bi,`w
∗
k,`

(
ck,`c

∗
i,` − E

[
ck,`c

∗
i,`

]))
.

Note that until the last step of the proof i is assumed to be fixed which is why we
refrain from indicating the i-dependence in every step for reasons of notational simplicity.
Observe that each summand of Z` and hence the the cross terms in Z`Z

∗
` and Z∗`Z` have

expectation zero. Thus using basic properties of circular symmetric normal random
variables, Lemma B.1 and Lemma B.2 we compute

E [Z`Z`
∗] =

L2

Q2

r∑
k=1

Nk

∥∥wk,`∥∥2

`2
bi,`b

∗
i,`. (5.45)

E [Z∗`Z`] =
L2

Q2
‖bi,`‖2`2

r∑
k=1

∥∥wk,`∥∥2

`2
Id. (5.46)

We have to find an upper bound for the spectral norms of these quantities. First, observe
that ∥∥∥ ∑

`∈Γp

E [Z`Z
∗
` ]
∥∥∥

2→2
≤ L2N

Q2

(
max

k∈[r],`∈Γp
‖wk,`‖22

)∥∥∥ r∑
k=1

∑
`∈Γp

bi,`b
∗
i,`

∥∥∥
2→2

≤ rN

Q
µ2
p−1‖Ti,p‖2→2

(5.38)

.
16−p+1rNµ2

h

Q
.
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By a similar computation we obtain∥∥∥ ∑
`∈Γp

E [Z∗`Z`]
∥∥∥

2→2
≤ L2

Q2

(
max
`∈Γp
‖bi,`‖2`2

) r∑
k=1

∑
`∈Γp

‖wk,`‖2`2

.
LKi,µ

Q2

r∑
k=1

∑
`∈Γp

Tr
(
W ∗k,p−1Sk,pbk,`b

∗
k,`Sk,pWk,p−1

)
=
Ki,µ

Q

r∑
k=1

‖S1/2
k,pWk,p−1‖2F .

Ki,µ

Q
‖Wp−1‖2F ≤ 16−p+1 rKi,µ

Q
.

Thus, we have obtained

σ2 := max

∥∥∥∑
`∈Γp

E [Z∗`Z`]
∥∥∥

2→2
,
∥∥∥ ∑
`∈Γp

E [Z`Z
∗
` ]
∥∥∥

2→2

 . 16−p
r

Q
max

{
Ki,µ, Nµ

2
h

}
.

(5.47)
Observe that a lower bound for σ2 is given by

σ2 ≥
∥∥∥ ∑
`∈Γp

E [Z∗`Z`]
∥∥∥

2→2
=
L2

Q2

r∑
k=1

∑
`∈Γp

‖bi,`‖2`2‖wk,`‖
2
`2 . (5.48)

Next we have to estimate R = max
`∈Γp

∥∥∥‖Z`‖2→2

∥∥∥
ψ1

. By Lemma B.3 and inequality (3.1)

we have that∥∥∥‖Z`‖2→2

∥∥∥
ψ1

≤ L

Q

∑
k 6=i
‖bi,`‖`2

∥∥∥|w∗k,`ck,`|‖ci,`‖`2∥∥∥
ψ1

+ ‖bi,`‖`2
∥∥∥‖ (ci,`c∗i,` − Id

)
wi,`‖`2

∥∥∥
ψ1


.
L
√
Ni

Q
‖bi,`‖`2

r∑
k=1

‖wk,`‖`2 (5.49)

.
r
√
Ki,µNiµp−1

Q
. 4−p

r
√
Ki,µNiµh

Q
. 4−p

r
(
Ki,µ +Niµ

2
h

)
Q

and, consequently, R . 4−p
r(Ki,µ+Niµ

2
h)

Q . Moreover, combining (5.48) and (5.49) we
obtain

|Γp|R2

σ2
. QN

max
`∈Γp

(
∑r

k=1 ‖bi,`‖`2‖wk,`‖`2)2

max
`∈Γp

(∑r
k=1 ‖bi,`‖2`2‖wk,`‖

2
`2

) ≤ QNr. (5.50)

As Q ≤ L by definition (5.39) implies that log
(

1 +
|Γp|R2

σ2

)
. logL. Thus, setting

t = (ω + 2) logL we obtain from Theorem 3.3 applied with α = 1 and combined with
(5.47) that with probability 1−O

(
L−ω−2

)
∥∥∥ ∑
`∈Γp

Z`

∥∥∥
2→2

.ω 4−p max


√
r
(
Ki,µ +Nµ2

h

)
Q

logL,
r
(
Ki,µ +Nµ2

h

)
Q

(logL)2

 .
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Thus, by choosing the constant in (5.39) large enough it holds that
∥∥∥∑`∈Γp

Z`

∥∥∥
2→2
≤

4−p−1 with probability 1−O
(
L−ω−2

)
for fixed p ∈ [P ] and for fixed i ∈ [r]. By taking

the union bound over all i ∈ [r] and over all p ∈ [P ] we obtain that with probability
1− rPO

(
L−ω−2

)
= 1−O (L−ω) equation (5.40) is true for all p ∈ [P ] and for all i ∈ [r].

This finishes the proof.

5.3.4. Proof that µp ≤ 1
4µp−1

Lemma 5.15 additionaly required that µp ≤ 1
4µp−1 for all p ∈ [P − 1]. In this section we

will verify that this property holds with high probability.

Lemma 5.17. Let ω ≥ 1. If

Q &ω r
(
Kµ +Nµ2

h

)
log2 L , (5.51)

then with probability at least 1−O (L−ω) it holds that µp ≤ 1
4µp−1 for all p ∈ [P − 1].

A similar lemma was established in [LS15a]. However, it was required that L scales
quadratically with r. Thus, we need to refine the argument in order to achieve a linear
scaling in r.

Proof of Lemma 5.17. First, we will show the claim for fixed p ∈ {0; 1; . . . ;P − 1}. Ob-
serve that it is enough to show that for all ` ∈ Γp+1 and all i ∈ [r]

√
L‖wi,`‖`2 ≤

1

4
µp−1 (5.52)

with wi,` := Wi,pSi,p+1bi,` as in (5.41). Furthermore, observe that from the recurrence
relation (5.30) we obtain

Wi,p = Wi,p−1 −
L

Q

(
PTi (Api )

∗ApSp
)

(Wp−1) .

Due to the definition of Ti and ‖hi‖`2 = ‖mi‖`2 = 1 we may write for all Z ∈ CKi×Ni

PTiZ = hih
∗
iZ + (Id− hih∗i )Zmim

∗
i .

Together with (5.42, 5.44) this implies

Wi,p =
L

Q

∑
j∈Γp

[
hih
∗
i bi,jw

∗
i,j

(
Id− ci,jc∗i,j

)
+ (Id− hih∗i ) bi,jw∗i,j

(
Id− ci,jc∗i,j

)
mim

∗
i

]
−

L

Q

∑
k 6=i

∑
j∈Γp

[
h∗ihibi,jw

∗
k,jck,jc

∗
i,j + (Id− hih∗i )bi,jw∗k,jck,jc∗i,jmim

∗
i

]
.

We define for all j ∈ Γp

zi,j =
L

Q

(
Id− ci,jc∗i,j

)
wi,jb

∗
i,jhih

∗
iSi,p+1bi,`,

zi,j =
L

Q
m∗i
(
Id− ci,jc∗i,j

)
wi,jb

∗
i,j (Id− hih∗i )Si,p+1bi,`
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and for all k 6= i and for all j ∈ Γp

zk,j =
L

Q
ci,jc

∗
k,jwk,jb

∗
i,jhih

∗
iSi,p+1bi,`,

zk,j =
L

Q
m∗i ci,jc

∗
k,jwk,jb

∗
i,j(Id− hih∗i )Si,p+1bi,`.

Hence, to establish (5.52) by the triangle inequality it is sufficient to prove that with
high probability ∥∥∥ ∑

j∈Γp

zi,j

∥∥∥
`2
≤ 1

16
√
L
µp−1, (5.53)

∣∣∣ ∑
j∈Γp

zi,j

∣∣∣ ≤ 1

16
√
L
µp−1, (5.54)

∥∥∥∑
k 6=i

∑
j∈Γp

zk,j

∥∥∥
`2
≤ 1

16
√
L
µp−1, (5.55)

∣∣∣∑
k 6=i

∑
j∈Γp

zk,j

∣∣∣ ≤ 1

16
√
L
µp−1. (5.56)

Step 1: Proof of (5.53) In order to apply Theorem 3.3 we compute using Lemma B.2

∥∥∥E
∑
j∈Γp

zi,jz
∗
i,j

∥∥∥
2→2

=
L2

Q2
|h∗iSi,p+1bi,`|2

∑
j∈Γp

|b∗i,jhi|2‖wi,j‖2`2

≤ 1

QL
µ2
hµ

2
p−1‖T

1/2
i,p hi‖

2
`2 .

1

QL
µ2
hµ

2
p−1.

Analogously, using Lemma B.1

E

∑
j∈Γp

z∗i,jzi,j

 =
L2Ni

Q2

∑
j∈Γp

‖wi,j‖2`2 |b
∗
i,jhi|2|b∗i,`S∗i,p+1hi|2 .

Ni

QL
µ2
p−1µ

2
h.

Next, we estimate R = max
j∈Γp

∥∥∥‖zi,j‖`2∥∥∥
ψ1

. For that purpose we apply Lemma B.3 to

observe that

R = max
j∈Γp

∥∥∥‖zi,j‖`2∥∥∥
ψ1

=
L

Q
max
j∈Γp

(
|b∗i,jhi||h∗iSi,p+1bi,`|‖

(
Id− ci,jc∗i,j

)
wi,j‖ψ1

)
.
L
√
Ni

Q
max
j∈Γp

(
|h∗iSi,p+1bi,`||b∗i,jhi|‖wi,j‖`2

)
(5.57)

.

√
Niµ

2
h

Q
√
L
µp−1.

Furthermore, (5.57) yields, analogously to the derivation of (5.50), that

|Γp|R2

σ2
≤ |Γp|

max
j∈Γp
|h∗iSi,p+1bi,`|2|b∗i,jhi|2‖wi,j‖2`2∑

j∈Γp
‖wi,j‖2`2 |b

∗
i,jhi|2|b∗i,`S∗i,p+1hi|2

. Q ≤ L. (5.58)
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Applying Theorem 3.3 with t = (ω + 2) logL and α = 1 we obtain that with probability
1−O

(
L−ω−2

)
∥∥∥ ∑
j∈Γp

zi,j

∥∥∥
`2

.ω
µp−1√
L

max


√
Niµ2

h

Q
logL;

√
Niµ

2
h

Q
(logL)2

 ,

which implies (5.53), if the numerical constant in (5.51) is chosen large enough.
Step 2: Proof of (5.54) By Lemma B.3 we obtain that∥∥∥|zi,j |∥∥∥

ψ1

.
L

Q
|b∗i,j (Id− hih∗i )Si,p+1bi,`|‖wi,j‖`2

≤ L

Q
‖bi,j‖`2‖Id− hih∗i ‖2→2‖Si,p+1‖2→2‖bi,`‖`2‖wi,j‖`2

.
L

Q
‖bi,j‖`2‖bi,`‖`2‖wi,j‖`2 .

Ki,µ

Q
√
L
µp−1

and ∑
j∈Γp

∥∥∥|zi,j |∥∥∥2

ψ1

.
L2

Q2

(
max
j∈Γp

‖wi,j‖2`2

)∑
j∈Γp

|b∗i,j (Id− hih∗i )Si,p+1bi,`|2

=
L

Q

(
max
j∈Γp

‖wi,j‖2`2

)
‖T

1
2
i,p (Id− hih∗i )Si,p+1bi,`‖2`2

.
L

Q
‖bi,`‖2`2‖wi,j‖

2
`2 .

Ki,µ

QL
µ2
p−1.

Consequently, Theorem 3.2 applied with t = (ω + 2) logL yields that

∣∣∣ ∑
j∈Γp

zi,j

∣∣∣ .ω
µp−1√
L

max

{√
Ki,µ logL

Q
;
Ki,µ

Q
logL

}

with probability 1−O
(
L−ω−2

)
, which shows (5.54).

Step 3: Proof of (5.55) As for k1 6= i, k2 6= i the vectors zk1,j and zk2,j are not indepen-
dent, we will condition on the random variables {ci,j}j∈Γp

and then apply Corollary 3.4.
For that, we bound∣∣∣∑

k 6=i

∑
j∈Γp

E
[
z∗k,jzk,j

∣∣∣ {ci,j}j∈Γp

] ∣∣∣ =
L2

Q2

∑
k 6=i

∑
j∈Γp

‖wk,j‖2`2‖ci,j‖
2
`2 |h

∗
i bi,j |2|h∗iSi,p+1bi,`|2

≤ µ2
p−1

µ2
h

Q2

(
max
j∈Γp

‖ci,j‖2`2

)∑
k 6=i

∑
j∈Γp

|h∗i bi,j |2 (5.59)

≤ µ2
p−1

µ2
h

LQ

(
max
j∈Γp

‖ci,j‖2`2

)∑
k 6=i
‖T 1/2

i,p hi‖
2
`2

. µ2
p−1

rµ2
h

QL

(
max
j∈Γp

‖ci,j‖2`2

)
.
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Analogously, using the triangle inequality,∥∥∥∑
k 6=i

∑
j∈Γp

E
[
zk,jz

∗
k,j

∣∣∣ {ci,j}j∈Γp

] ∥∥∥
2→2

=
L2

Q2

∥∥∥∑
k 6=i

∑
j∈Γp

ci,jc
∗
i,jE

[
|c∗k,jwk,j |2

]
|h∗i bi,j |2|h∗iSi,p+1bi,`|2

∥∥∥
2→2

≤L
2

Q2

∑
k 6=i

∑
j∈Γp

‖ci,j‖2`2‖wk,j‖
2
`2 |h

∗
i bi,j |2|h∗iSi,p+1bi,`|2

(5.59)

. µ2
p−1

rµ2
h

QL

(
max
j∈Γp

‖ci,j‖2`2

)
.

Conditionally on {ci,j}j∈Γp
, we can now apply Corollary 3.4 with t = (ω + 2) logL.

Together with the last two estimates this yields that with probability 1−O
(
L−ω−2

)
∥∥∥∑
k 6=i

∑
j∈Γp

zk,j

∥∥∥
`2

.ω µp−1

√√√√√rµ2
h

(
max
j∈Γp
‖ci,j‖2`2

)
logL

QL
.

Then, by Lemma B.4 we obtain that inequality (5.55) holds with probability 1−O
(
L−ω−2

)
,

if the constant in (5.51) is chosen large enough.
Step 4: Proof of (5.56) Note that conditionally on {ci,j}j∈Γp

∑
k 6=i
∑

j∈Γp
zk,j is a

circular symmetric random variable with variance

E

∑
k 6=i

∑
j∈Γp

|zk,j |2
∣∣∣ {ci,j}j∈Γp

 =
L2

Q2

∑
k 6=i

∑
j∈Γp

|b∗i,`Si,p+1 (Id− hih∗i ) bi,j |2‖wk,j‖2`2 |c
∗
i,jmi|2

≤ µ2
p−1

1

Q

(
max
j∈Γp
|c∗i,jmi|2

)∑
k 6=i
‖T 1/2

i,p (Id− hih∗i )Si,p+1bi,`‖2`2

. µ2
p−1

rKi,µ

QL
.

Consequently, one obtains that with probability at least 1−O
(
L−ω−2

)
∣∣∣∑
k 6=i

∑
j∈Γp

zk,j

∣∣∣ .ω µp−1

√√√√√
(

max
j∈Γp
|c∗i,jmi|2

)
rKi,µ logL

QL
.

Thus, by Lemma B.4 inequality (5.56) holds with probability at least 1−O
(
L−ω−2

)
, if

the constant in (5.51) is chosen large enough.
Union bound: By the previous four steps we see that for fixed p ∈ [P ], ` ∈ Γp+1,
and i ∈ [r] the inequalities (5.53), (5.54), (5.55), (5.56) hold with probability 1 −
O
(
L−ω−2

)
. Thus, by (5.52) and a union bound we have µp−1 ≤ 1

4µp with probability
1−rQO

(
L−ω−2

)
for fixed p ∈ [P−1]. Thus, with probability at most 1−rPQO

(
L−ω−2

)
we obtain µp−1 ≤ 1

4µp for all p ∈ [P − 1]. We obtain the desired result as we find
r . Q ≤ L and PQ = L.
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5.3.5. An upper bound for ‖z‖`2
In the case of noise, the error bound given by Lemma 5.1 is proportional to ‖z‖`2 , where
z is the dual certificate as constructed in (5.29). Thus, one needs an upper bound for
‖z‖`2 . This will be accomplished by the following lemma.

Lemma 5.18. Let z ∈ CL be given by (5.29) and assume that ‖Wp‖F ≤ 4−p
√
r. Fur-

thermore, suppose that Ap satisfies the δ-local isometry property (5.9) with δ ≤ 1
4 on T p

for all p ∈ [P ]. Then
‖z‖`2 .

√
r.

Proof. Observe that

‖z‖`2 ≤
P∑
p=1

‖ApSp (Wp−1) ‖`2 .
P∑
p=1

‖Wp−1‖F .
P−1∑
p=0

4−p
√
r .
√
r,

where the first equality follows from the definition of z (5.29) and the triangle inequality.
The second inequality is due to the local isometry property (5.9) and (5.33). We derive
by (5.34) the desired bound.

5.4. Proof of Theorem 2.5

First of all, recall that by Lemma 5.3 with probability at least 1 − 2 exp (−t) it holds
that

γ = ‖A‖F→2 ≤ 2

√
ωmax

{
1;
rKµN

L

}
log (L+ rKN). (5.60)

In the following, let {Γp}Pp=1 be an ω-admissible partition of [L] (see Definition 2.1),
which is a minimizer of (2.8). From Definition 2.1 combined with the assumptions on L
(see (2.9)) we infer that

Q =
L

P
& r

(
Kµ log (Kµ) +Nµ2

h

)
(logL)2 (5.61)

P ≥ 1

2
log
(
8γ
√
r
)
. (5.62)

Note that due to Theorem 5.5 and our assumptions on L and Q (and also logKµ ≤ logL)
we may assume that the inequalities (5.8) and (5.9) hold with probability 1 − O (L−ω)
and constant δ = 1

32 . Thus, by Lemma 5.1 applied with α = 1
8γ , β = 1

4 , and δ = 1
4 it is

enough to construct Y ∈ Range (A∗) which satisfies (5.1) and (5.2). This is achieved by
the Golfing Scheme as explained in Section 5.3.1: Note that the assumption of Lemma
5.14 is given by (5.62) and (5.9). Thus, it holds that ‖Wp‖F ≤ 4−p

√
r for all p ≤ P

and, by (5.28), Y = YP satisfies Condition (5.1). Furthermore, observe that Lemma
5.17 implies that with probability 1 − O (L−ω) one has µp ≤ 1

4µp−1 for all p ∈ [P − 1].
Using this fact and ‖Wp‖F ≤ 4−p

√
r it follows from Lemma 5.15 that Condition (5.2)

is fulfilled. Using a union bound we conclude that with probability 1 − O (L−ω) the
approximate dual certificate Y = YP satisfies the assumptions in Lemma 5.1. Thus, if
X̂ is a minimizer of (1.5) it satisfies the estimation error (5.3) .
It remains to prove the upper bound for the estimation error in order to obtain inequality
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(2.10). Note that by Lemma 5.18 we have that ‖z‖`2 .
√
r. Thus, in combination with

(5.60) we derive

‖X̂ −X0‖F . (1 + γ) (1 + ‖z‖`2) τ

.ω τ

√
rmax

{
1;
rKµN

L

}
logL.

This finishes the proof.

6. Outlook

Although the convex formulation in (1.5) is important for theoretical investigations it
is also obvious that for many real-word applications nuclear minimization is not feasi-
ble due to its computional complexity as lifting considerably increases the number of
optimization variables. For the case r = 1 a nonconvex approach has been proposed
by [LLSW16] which has been demonstrated not only to be considerably more efficient
but also to achieve a better empirical performance. Shortly before the completion of our
work this line of research has been extended to r ≥ 1 with explicit guarantees [LS17], but
again for a number of measurements depending quadratically on r. As in [LS15a], the
dependence observed in numerical experiments is linear. We expect that the mathemat-
ical analysis conducted in this paper will also be important for establishing near-optimal
performance guarantees for more efficient algorithms. For this reason we include such a
nonconvex approach similar to the one analysed in [LS17] in our numerical experiments,
comparing it to nuclear norm minimization as analyzed in this paper.

More precisely, we consider a gradient-based (Wirtinger flow) recovery algorithm min-
imizing the residual

F (h, x) := ‖A(h1x
∗
1, . . . , hrx

∗
r)− y‖2`2 (6.1)

where h := (h1, . . . , hr) and x := (x1, . . . , xr). Observe that in the noiseless case one
has F (h, x) = 0 for the ground truth. Note that, while minimizing F has been shown
empirically in [LS17] to have good recovery properties, where guarantees only apply to
a regularized variant. As F is highly non-convex in (h, x) and possesses many local
minima, it is essential to find a good initial guess to start the minimization process
(cf. [LLSW16, LS17]). Eq. (5.5) motivates the initialization given in the following
algorithm.

Algorithm 1 Initialization

Input: Observation y.
(Z1, . . . , Zr)← A∗y.
for k = 1, . . . , r do

dk ← largest singular value of Zk.

Let v
(0)
k and u

(0)
k be the corresponding left and right singular vectors, respectively.

v
(0)
k ←

√
dkv

(0)
k and u

(0)
k ←

√
dku

(0)
k

end for
Output: Initial guesses v(0), u(0).
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To minimize F a gradient descent approach is used. Here the gradient of a function

f : Cn → C at z0 ∈ Cn is given by ∇zf(z0) =
(
∂f
∂z (z0)

)∗
∈ Cn where for z = u+ iv ∈ C

the Wirtinger derivatives are ∂
∂z = 1

2

(
∂
∂u − i

∂
∂v

)
and ∂

∂z = 1
2

(
∂
∂u + i ∂∂v

)
. Since for real-

valued complex functions f : Cn → R one has ∂f
∂z = ∂f

∂z , we do not need to consider ∂f
∂z

here. Consequently, we obtain

∇hiF (h, x) = (diag (Cixi)B)∗ (A(hx∗)− y);

∇xiF (h, x) = (diag(Bihi)Ci)
T (A(hx∗)− y)

To estimate a suitable stepsize η for each iteration we use the backtracking line search.

Algorithm 2 Wirtingers gradient descent with backtracking

Input: Initial values v(0), u(0).
for i = 1, . . . do

η ← line-search
(
v(i−1), u(i−1)

)
v(i) ← v(i−1) − η∇hF

(
v(i−1), u(i−1)

)
u(i) ← u(i−1) − η∇xF

(
v(i−1), u(i−1)

)
if ‖∇F

(
v(i), u(i)

)
‖`2 < ε then

return v(i), u(i)

end if
end for
Output: Approximate solutions v(i), u(i).

Numerical Results: We have investigated both nuclear norm minimization (1.5) and
Algorithms 1 and 2 in the noiseless case for different values of r and L with equal channel
dimensions K = K1 = . . . = Kr = 8 and signal dimensions N = N1 = . . . = Nr = 8.
The success rates per device are estimated numerically and plotted as a function of
ρ = L/

∑r
i=1(Ki + Ni). The convex program (1.5) is solved using the Matlab CVX

toolbox. For each experiment the matrices Ci ∈ CL×N , the signal vectors x0
i ∈ CN , and

the channel coefficients h0
i ∈ CK are generated with i.i.d. complex normal distributed

entries. Recovery is considered successful for a device if the corresponding signal pair
(hi, xi) for i ∈ [r] fullfils ‖hix∗i − h0

ix
0∗
i ‖F /‖h0

ix
0∗
i ‖F ≤ 1%. Furthermore, the stopping

criterion for the Wirtinger approach is chosen to be ε = 10−4 and the maximal number
of iterations is limited to 1000.

Our experiments confirm the findings of [LS15a] and [LS17] that for both the convex
and the non-convex approach the scaling is linear. The results in Figure 1 show that –
almost independently of r – the phase transition for (1.5) occurs at ρ ≈ 2.75 while the
Wirtinger flow approach performs considerably better with a phase transition (for larger
r) at ρ ≈ 1.17.
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Figure 1: Phase transition of the success rates per device for (a) the convex approach
(1.5) and (b) the Wirtinger approach for K = N = 8 where ρ = L/

∑r
i=1(Ki+
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Appendices

A. Construction of the partition {Γp}p∈[P ]

A.1. Proof of Lemma 2.2

The goal of this section is to prove Lemma 2.2. Our proof will rely on the following
lemma.

Lemma A.1. Fix i ∈ [r] and let Q ∈ (0, L), δ > 0 and ν ∈ (0, 1). Assume that

Q ≥ CKi,µ

ν2
log

Ki

δ
, (A.1)

where C > 0 is an absolute constant and let δ̂1, . . . , δ̂L be independent, identically dis-
tributed random variables such that

P
(
δ̂1 = 1

)
=
Q

L
and P

(
δ̂1 = 0

)
= 1− Q

L
.

Then with probability exceeding 1− δ we have that

∥∥∥L
Q

L∑
`=1

δ̂`bi,`b
∗
i,` − Id

∥∥∥
2→2
≤ ν.

A proof of this lemma can be obtained using arguments contained in the proof of
Theorem 1.2 in [CR07]. For the sake of completeness we will give a proof below (relying
on different techniques). Our proof of Lemma 2.2 will use essentially the same ideas as
in [ARR14], but has been slightly refined.

Proof of Lemma 2.2. Let δ̂1, . . . , δ̂k be independent, uniformly distributed random vari-
ables which take values in [P ]. For p ∈ [P ] we define

Γp =
{
` ∈ [L] : δ̂` = p

}
.

Thus, {Γp}p∈[P ] is a partition of [L]. To finish the proof it is enough to show that

with positive probability the partition {Γp}p∈[P ] has the required properties, i.e., for all

p ∈ [P ], (2.5) holds and 1
2Q ≤ |Γp| ≤

3
2Q . For i ∈ [r] and p ∈ [P ] we define the event

Ai,p = {(2.5) fails} =

∥∥∥LQ ∑
`∈Γp

bi,`b
∗
i,` − Id

∥∥∥
2→2

> ν

 .
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Set δ = 1
3rP and note that log(Kδ ) = log (3rPK) . log (max {r;P ;K}). Thus, by Lemma

A.1 we get that P (Ai,p) ≤ 1
3rP , if the constant in inequality (2.6) is chosen large enough.

By a union bound over all choices of i and p, (2.5) follows with probability at least
1
3 . It remains to control the size of the sets {Γp}p∈[P ]. By the Bernstein inequality for
bounded random variables (e.g., [FR13, Corollary 7.31]) we obtain that for fixed p ∈ [P ]

one has Q
2 ≤ |Γp| ≤

3Q
2 with probability at least 1 − 2 exp

(
−Q
10

)
≥ 1 − 1

2P , where the

last inequality follows from (2.6), if the constant C is chosen large enough. Thus, by a
another union bound we observe

P
(
Q

2
≤ |Γp| ≤

3Q

2
for all p ∈ [P ]

)
>

1

2
.

Thus with positive probability the partition {Γp}p∈[P ] has the required properties. In

particular, this implies the existence of a partition {Γp}p∈[P ] with the properties stated
in Lemma 2.2.

A.2. Proof of Lemma A.1

As already mentioned before this lemma can be proven using arguments from the proof
Theorem 1.2 in [CR07]. The arguments in this article are based on Talagrand’s inequality
[Tal96] and Rudelson’s Lemma [Rud99]. Recent technical advances (see [Tro15a]) allow
us to give a simplified proof.

Proof. The goal is to use the matrix Bernstein inequality to estimate the spectral norm
of

Y =
L

Q

L∑
`=1

δ̂`bi,`b
∗
i,` − Id.

We will decompose Y into a sum of independent random matrices with mean zero. Thus,
by setting

Y` =

(
δ̂` −

Q

L

)
L

Q
bi,`b

∗
i,`

we obtain Y =
∑L

`=1 Y` and EY` = 0 for all ` ∈ [L] due to Id =
∑L

`=1 bi,`b
∗
i,`. To apply

the matrix Bernstein inequality we need first to obtain an upper bound for ‖EY 2‖2→2.
For that purpose note that

EY 2 =

L∑
`=1

EY 2
` =

L∑
`=1

E

[(
δ̂` −

Q

L

)2
]
L2

Q2
‖bi,`‖2`2bi,`b

∗
i,`

Observe that E
[(
δ̂` − Q

L

)2
]

= Q(L−Q)
L2 , which implies

EY 2 =
L−Q
L

L∑
`=1

L‖bi,`‖2`2
Q

bi,`b
∗
i,`
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Thus, by
∑L

`=1 bi,`b
∗
i,` = Id and the definition of Ki,µ we get

‖EY 2‖2→2 ≤
L−Q
L

(
max
`∈[L]

L‖bi,`‖2`2

)∥∥∥ L∑
`=1

bi,`b
∗
i,`

∥∥∥
2→2
≤ Ki,µ

Q
.

Furthermore, for all ` ∈ [L] we have

‖Y`‖2→2 ≤ max

{
Q

L
;
L−Q
L

}
L

Q
‖bi,`‖2`2 ≤

L

Q
‖bi,`‖2`2 ≤

Ki,µ

Q
almost surely.

Thus, we can apply the matrix Bernstein inequality in the version of [Tro15a, Theorem
6.6.1] to obtain

P (‖Y ‖2→2 ≥ ν) ≤ K exp

(
−ν2/2(

1 + ν
3

)
Ki,µ/Q

)
(A.1)

≤ K exp

(
−C log (K/δ)

2
(
1 + ν

3

) )
.

As we have 0 < ν < 1 this yields the claim if the constant C > 0 in (A.1) is chosen large
enough.

B. Circular-symmetric Complex Normal Random Variables

In this section we will recall some useful facts concerning random variables which have a
circular–symmetric complex normal distribution CN (0, σ2) with zero mean and variance
σ2. This means that their real and imaginary parts are uncorrelated jointly Gaussian
with zero mean and variance σ2/2 (and are therefore independent). For more details
concerning this probability distribution we refer to [TV05, Section A.1.3]. The following
two well-known lemmas are concerned with two useful identities. A proof of them can
be found for example in [ARR14, Lemma 11 and 12].

Lemma B.1. Assume that c ∈ Cn is a random vector with independent entries ci ∼
CN (0, 1). Then we have

E
[
(Id− cc∗)2

]
= nId.

Lemma B.2. Let q ∈ Cn be any deterministic vector. Furthermore, assume that c ∈ Cn
is a random vector with independent entries ci ∼ CN (0, 1). Then we have

E [(cc∗ − Id) qq∗ (cc∗ − Id)] = ‖q‖2`2Id.

The following lemma summarizes well-known facts regarding the tail decay of certain
quantities which involve circular-symmetric normal random variables. For the sake of
completeness we include a proof.
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Lemma B.3. Suppose that c ∈ CN is a random vector with independent entries ci ∼
CN (0, 1). Let p, q ∈ CN be arbitrary. Then we have the following inequalities:∥∥∥‖c‖`2∥∥∥

ψ2

.
√
N (B.1)∥∥∥|c∗q|∥∥∥

ψ2

. ‖q‖`2 (B.2)∥∥∥‖ (cc∗ − Id) q‖`2
∥∥∥
ψ1

.
√
N‖q‖`2 (B.3)∥∥∥p∗ (cc∗ − Id) q

∥∥∥
ψ1

. ‖p‖`2‖q‖`2 (B.4)

Proof. In order to prove (B.1) note that

∥∥∥‖c‖`2∥∥∥2

ψ2

.
∥∥∥‖c‖2`2∥∥∥ψ1

≤
N∑
i=1

∥∥∥|ci|2∥∥∥
ψ1

. N.

The first inequality follows from [Ver12, Lemma 5.14] and for the second one we used the
triangle inequality. In order to prove (B.2) it is enough to note that c∗q ∼ CN

(
0, ‖q‖2`2

)
.

(B.3) follows from the inequality chain∥∥∥‖ (cc∗ − Id) q‖`2
∥∥∥
ψ1

≤
∥∥∥‖c‖`2 |c∗q|+ ‖q‖`2∥∥∥

ψ1

≤
∥∥∥‖c‖`2∥∥∥

ψ2

∥∥∥|c∗q|∥∥∥
ψ2

+
∥∥∥‖q‖`2∥∥∥

ψ1

.
√
N‖q‖`2 + ‖q‖`2 .

√
N‖q‖`2 .

In the second inequality we have used the Hoelder inequality (3.1) and the second line
follows directly from (B.1) and (B.2). In a similar way one proves (B.4).

We will also need the following standard fact, which follows from a union bound.

Lemma B.4. Let ω,L ≥ 1 and Γ a finite set. For all i ∈ [r] let mi ∈ CNi such that
‖mi‖`2 = 1. Furthermore, assume that ci,j ∈ CNi, i ∈ [r], j ∈ Γ, are independent random
vectors with i.i.d. entries distributed according to CN (0, 1). Then with probability at least
1−O (L−ω) one has

max
i∈[r],j∈Γ

‖ci,j‖`2 .ω max
{√

N log (r|Γ|);
√
N logL

}
max

i∈[r],j∈Γ
|c∗i,jmi| .ω max

{√
log (r|Γ|);

√
logL

}
.

We conclude this section with a proof of Corollary 3.4.

Proof of Corollary 3.4. Observe that

∥∥Z∥∥
2→2
≤
∥∥ n∑
i=1

Re (γi)Xi

∥∥
2→2

+
∥∥ n∑
i=1

Im (γi)Xi

∥∥
2→2

.

By Theorem [Tro15b, Theorem 4.1.1] we obtain that with probability at least 1−exp (−t)

∥∥ n∑
i=1

Re (γi)Xi

∥∥
2→2
≤ 1√

2
σ
√
t+ log (d1 + d2)
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and with probability at least 1− exp (−t)∥∥ n∑
i=1

Im (γi)Xi

∥∥
2→2
≤ 1√

2
σ
√
t+ log (d1 + d2).

Combining these facts yields the result.

C. Proof of Lemma 5.9

For i ∈ [r] let Ni be an ε
2 -cover of B (0, 1) ⊂ CKi with respect to the ‖ · ‖Bi-norm.

Furthermore, let O be an ε

2
√
Kµ

-cover of B (0, 1) ⊂ Rr with respect to the ‖ · ‖`2-

norm. We will show that any Z = (u1m
∗
1, . . . , urm

∗
r) ∈ Bm can be approximated by

Y = (σ1y1m
∗
1, . . . , σryrm

∗
r), where σ = (σ1, . . . , σr) ∈ O and yi ∈ Ni. This proves the

claim, as the number of such Y ’s is bounded by the right-hand side. For that choose
σ = (σ1, . . . , σr) ∈ O such that√√√√ r∑

i=1

(‖ui‖`2 − σi)
2 ≤ ε

2
√
Kµ

(C.1)

and yi ∈ Ni such that ∥∥∥ 1

‖ui‖`2
ui − yi

∥∥∥
Bi
≤ ε

2
. (C.2)

Then one has for Ŷ = (‖u1‖`2y1m
∗
1, . . . , ‖ur‖`2yrm∗r)∥∥∥Z − Ŷ ∥∥∥2

B
≤

r∑
i=1

∥∥∥uim∗i − ‖ui‖`2yim∗i ∥∥∥2

Bi
=

r∑
i=1

∥∥∥ui − ‖ui‖`2yi∥∥∥2

Bi

≤ ε2

4

r∑
i=1

‖ui‖2`2 =
ε2

4
‖Z‖2F ≤

ε2

4
.

The first inequality follows from (5.12) and the next equality follows from

‖mi (ui − ‖ui‖`2yi)
∗ bi,`‖`2 = | (ui − ‖ui‖`2yi)

∗ bi,`|

which is due to ‖mi‖`2 = 1. The subsequent inequality is a consequence of (C.2). The
second equality again follows from ‖mi‖`2 = 1 for all i ∈ [r]. Similarly,

‖Ŷ − Y ‖B ≤

√√√√ r∑
i=1

∥∥∥ (‖ui‖`2 − σi) yim∗i
∥∥∥2

Bi
=

√√√√ r∑
i=1

(‖ui‖`2 − σi)
2 ‖yi‖2Bi

≤

√√√√Kµ

r∑
i=1

(‖ui‖`2 − σi)
2 ≤ ε

2
.

Here the second inequality follows from

‖yi‖Bi =
√
L max

`∈[L]
|y∗i bi,`| ≤

√
L‖yi‖`2max

`∈[L]
‖bi,`‖`2 ≤

√
Kµ

and the last inequality is a consequence of (C.1). Combining the two inequalities gives
‖Z − Y ‖B ≤ ε which finishes the proof.

49


	1 Introduction
	1.1 Blind Deconvolution
	1.2 Simultaneous Demixing and Blind Deconvolution

	2 General Framework and Main Result
	2.1 Notation
	2.2 The General Model
	2.3 Partition of Measurements and Incoherence Assumptions
	2.4 Main Result

	3 Preliminaries
	3.1 Concentration Inequalities
	3.2 Suprema of Chaos Processes
	3.3 Covering Numbers

	4 Outline of the Proof
	5 Proof of the Main Theorem
	5.1 Sufficient Conditions for Recovery
	5.2 Local isometry property
	5.3 Constructing the Dual Certificate
	5.3.1 The Golfing Scheme
	5.3.2 Exponential Decay
	5.3.3 Bounding the Operator Norm on  T 
	5.3.4 Proof that p 14 p-1 
	5.3.5 An upper bound for  "026B30D z "026B30D 2 

	5.4 Proof of Theorem ??

	6 Outlook
	Appendices
	A Construction of the partition  { p }p [P]
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??

	B Circular-symmetric Complex Normal Random Variables
	C Proof of Lemma ??

