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Abstract

Recent studies found that many channels are affected by additive noise that is impulsive in nature and is best

explained by heavy-tailed symmetric alpha-stable distributions. Dealing with impulsive noise environments comes

with an added complexity with respect to the standard Gaussian environment: the alpha-stable probability density

functions do not possess closed-form expressions except infew special cases. Furthermore, they have an infinite

second moment and the “nice” Hilbert space structure of the space of random variables having a finite second

moment –which represents the universe in which the Gaussiantheory is applicable, is lost along with its tools and

methodologies.

This is indeed the case in estimation theory where classicaltools to quantify the performance of an estimator are

tightly related to the assumption of having finite variance variables. In alpha-stable environments, expressions such

as the mean square error and the Cramer-Rao bound are hence problematic.

In this work, we tackle the parameter estimation problem in impulsive noise environments and develop novel

tools that are tailored to the alpha-stable and heavy-tailed noise environments, tools that coincide with the standard

ones adopted in the Gaussian setup; namely a generalized “power” measure and a generalized Fisher information. We

generalize known information inequalities commonly used in the Gaussian context: the de Bruijn’s identity, the data

processing inequality, the Fisher information inequality, the isoperimetric inequality for entropies and the Cramer-

Rao bound. Additionally, we derive upper bounds on the differential entropy of independent sums having a stable

component. Intermediately, the new power measure is used toshed some light on the additive alpha-stable noise

channel capacity in a setup that generalizes the linear average power constrained AWGN channel. Our theoretical

findings are paralleled with numerical evaluations of various quantities and bounds using developedMatlab packages.

Keywords: Impulsive noise, alpha-stable, power, estimation, Fisher information, Fisher information

inequality, Cramer-Rao bound, differential entropy of sums, upper bounds, de Bruijn’s identity,

isoperimetric inequality.

I. I NTRODUCTION

The presence of impulsive-noise such as those with alpha-stable statistics, is rather frequent in communications

theory. Indeed, interference has been often found to be of impulsive nature and is best explained by alpha-stable
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distributions. This is the case for telephone noise [1] and audio noise signals [2]. Furthermore, in many works that

treated the multiuser interference in radio communicationnetworks, a theoretical derivation, based on the assumption

that the interferers are distributed over the entire plane and behave statistically as a Point Poisson Process (PPP),

yielded an interference with alpha-stable statistics, starting with Sousa [3] who computed the self interference,

considering only the pathloss effect for three spread spectrum schemes, direct sequence with binary phase shift

keying (DS/BPSK), frequency hopping with M-ary frequency shift keying (FH/MFSK), and frequency hopping

with on-off keying (FH/OOK), where a sinusoidal tone is transmitted as the “on” symbol. In [4], the authors

introduced a novel approach to stable noise modeling based on the LePage series representation which permits

the extension of the results on multiple access communications to environments with lognormal shadowing and

Rayleigh fading. Continuous time multiuser interference was also found [5] to be well represented as an impulsive

alpha-stable random process. Recently in [6], alpha-stable distributions were found to model well the aggregate

interference in wireless networks: the authors treated theproblem in a general framework that accounts for all the

essential physical parameters that affect network interference with applications in cognitive radio, wireless packets,

covert military schemes and networks where narrowband and ultra-wide band systems coexist. In [7], Gulati et al.

showed that the statistical-physical modeling of co-channel interference in a field of Poisson and Poisson-Poisson

clustered interferers obeys an alpha-stable or Middleton class A statistics depending whether the interferers are

spread in the entire plane, in a finite area or in a finite area with a guard zone with the alpha-stable being suitable

for wireless sensor, ad-hoc and femtocells networks when both in-cell and out-of-cell interference are included. A

generalization of the previous results for radio frequencyinterference in multiple antennas is found in [8] where

joint statistical-physical interference from uncoordinated interfering sources is derived without any assumption on

spatial independence or spatial isotropic interference. Lastly, the alpha-stable model arises as a suitable noise model

in molecular communications [9].

An important problem in the theory of non-random parameter estimation is to find “good” estimators of some

quantity of interest based on a given observation. Generally, this is done by using a quality measure of the estimator’s

(average) performance: the Mean Square Error (MSE). The useof the MSE is tightly related to the assumption

of finite variance noise and one can even argue that it is related to a “potential Gaussian” setup. Naturally, under

this finite-variance assumption, one can restrict the questof finding “good” estimators to the Hilbert space of finite

second moment Random Variables (RV)s which leads to the well-established “Gaussian” or “linear” estimation

theory. When the observation is contaminated with an impulsive noise perturbation –having an infinite variance,

restricting the look-up universe for good estimators to that of finite variance RVs is no longer optimal neither

necessarily sensible. Additionally, tools such as the MSE will turn out to be problematic.

In this work we consider the non-random parameter estimation problem whereby we want to estimate a non-

random parameter(s)θ ∈ R (Rd) based on a noisy observationX = θ +N and where the additive noiseN is of

impulsive nature. In the case where the noiseN has a finite variance, the problem is well-understood: letθ̂(X) be

an estimator ofθ based on observingX , then
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• The quality of the estimator is measured via the MSE: “E
[

∣

∣

∣
θ̂(X)− θ

∣

∣

∣

2
]

”. Hence, Minimum Mean Square

Error (MMSE) estimators are optimal.

• A lower-bound on the MSE of the estimator is given by the Cramer-Rao (CR) bound:

E
[

∣

∣

∣
θ̂(X)− θ

∣

∣

∣

2
]

≥ 1

J(N)
, (1)

whereJ(N) is the Fisher information∗ of the RVN .

• Equality holds in equation (1) wheneverN is Gaussian distributed and̂θ(X) = X is the Maximum Likelihood

(ML) estimator.

In order to understand the parameter estimation problem in the impulsive noise scenario, one must answer the

following:

1- Under the impulsive noise assumption, the MMSE estimatoris not necessarily optimal and the linear MSE

estimator is not sensible. “Good” estimators candidates might possibly have an infinite second moment which

implies that a new quality measure has to be defined. This quality measure is to be interpreted as the average

“strength” or power of the estimation error.

2- Since the Fisher informationJ(·) is tightly related to Gaussian variables through de Bruijn’s identity†, a new

information measure has to be defined– one that is adapted to impulsive noise variables. Similarly toJ(·), the

new information measure is to be related to the alpha-stabledistribution through a de Bruijn’s type of equality.

3- Establishing a new CR bound: the new quality measure of an estimator is to be lower bounded, function of

the inverse of the new information measure.

When it comes to objective 1, a survey of the literature showsthat few alternative measures of power were proposed:

• In [10], Shao and Nikias proposed the “dispersion” of a RV as ameasure that plays a similar role to the variance.

However, since no analytical expression is defined for the dispersion except for alpha-stable distributions, they

propose the usage of the Fractional Lower Order Moments (FLOM) E [|X |r] (r < 2) as an alternative which

yields a non-linear signal processing theory.

• Based on logarithmic moments of the formE [log |X |], an alternative notion of power was introduced by

Gonzales [11] for heavy-tailed distributions which he labeled as the Geometric Power (GP):

S0(X) =̂ eE[log |X|].

∗The Fisher informationJ(Y ) of a RV Y having a Probability Density Function (PDF)p(y) is defined as:

J(Y ) =

∫ +∞

−∞

1

p(y)
p′2(y) dy,

whenever the derivative and the integral exit.

†The de Bruijn’s identity is defined as: For anyǫ ≥ 0,

d

dǫ
h(X +

√
ǫZ) =

σ2

2
J(X +

√
ǫZ), (2)

whereZ is independent ofX, Gaussian distributed with mean0 and varianceσ2
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The author considered logarithmic moments as a “universal framework” for dealing with algebraic tail processes

that will overcome the shortcomings of the FLOM approach which he summarized by the fact that no

appropriate value ofr is feasible for all impulsive processes. Also the discontinuity in the FLOM is yet

another unpleasant feature. In fact, for a given0 < r < 2, two alpha stable distributions with characteristic

exponentsα1 = r + ǫ and α2 = r − ǫ (for someǫ > 0), will respectively have a finite and infiniter-th

absolute moment, though one can agree that they would have similar statistical behavior. However, all stable

distributions have a finite logarithmic moment [11].

The GP was used in formulating new impulsive signal processing techniques with the proposition of new types

of non-linear filters referred to as “myriad filters”, which are basically Maximum Likelihood (ML) estimators of the

location of a Cauchy distribution with an optimality tune parameter [12]. However, the GP suffers from a serious

drawback since for any variableX that has a mass point at zero,S0(X) will be necessarily null even if say other

non-zero mass points are existent. This would yield a zero power for a non-zero signal.

In relation to objective 2, generalizing “Gaussian” information-theoretic properties and tools to “stable” ones is

done in [13] where a new score function is defined in terms of a scaled conditional expectation and a de Bruijn’s

identity is found in terms of the new score function in a relative manner with respect to that of a stable variable.

Recently in [14], Toscani proposed a fractional score function using fractional derivatives and defined a fractional

Fisher information that evaluates to infinity for stable variables. Using it in a relative manner –with respect to stable

variables, the relative fractional Fisher information is found to satisfy a Fisher information inequality and is used

to find the rate of convergence in relative entropy of scaled Independent and Identically Distributed (IID) sums to

stable variables.

Up to the authors’ knowledge, objective 3 has only been addressed in [15] where the authors derived a Cramer-

Rao type of inequality featuring the finite fractional moment of orderr ≥ 1 of a variable and a generalized Fisher

information. The work in [15] was in the direction of extending information theoretic inequalities to new ones where

generalized Gaussians are extremal distributions rather than characterizing the quality of estimators in impulsive

noise environments. We also note that the CR result in [15] suffers from the restriction of having variables with finite

fractional moments of orderr ≥ 1 which is not the case in this paper where variables with only finite logarithmic

moments are considered.

Naturally, this parameter estimation problem is also that of estimating the location parameter of an alpha-stable

variable. Previous works that treated the estimation of thevarious parameters of alpha-stable distribution [16]–

[22] had a primary goal of finding specific estimators. They are based on heuristics for which the authors either

conducted consistency or asymptotic analysis, or tested empirical evaluations versus numerical computations and

Monte-Carlo simulations in order to validate and evaluate the proposed estimators. In this context, in this work

we define and find quality measures and universal bounds that are satisfied by all location parameter estimators of

impulsive distributions. Our main contributions are four fold:

1) A generalized power notion: The evaluation of performance measures in multiple applications in communica-

tions theory is generally done function of the channel statequality. A key quantity that summarizes the quality

October 7, 2016 DRAFT
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of the channel is the Signal-to-Noise Ratio (SNR) which is a ratio between the power of a signal containing

the relevant information to that of the noise signal. A standard measure of the signal power is made through

the evaluation of the second moment. When working in alpha-stable noise environments, some information

bearing signals will necessarily have an infinite second moment which eventually leads to having zero SNRs,

a fact that masks the possibility to quantify the channel’s state. We propose in Definition 1 a new “relative”

power measure that we call theα-power: a strength measure that takes into account the type of the disturbing

noise. This would seem reasonable whenever the goal of the communication system is to maintain a Quality

of Service (QoS) level for some or all of its users which is translated, for example, to a threshold rate (output

entropy) or an output SNR. In both cases the QoS will be dependent on the output signal. Our “output”-based

approach is tailored to this type of applications since it focuses on the output signal and takes into account

the type of the encountered noise in the received signal in order to define sensible tools to quantify the QoS

criteria. As an example, we derive in Theorem 2 the capacity of an additive stable noise channel under a

constraint on its output’sα-power .

Another application is the parameter estimation problem where the observed output, affected by stable noise

is sufficient for the characterization of the estimator’s performance. The generalized power measure is chosen

in such a way that when constraining it, stable variables will be entropy maximizers, proven in Theorem 1. It

is then shown to comply with generic properties that are satisfied by the standard deviation and is numerically

evaluated for different types of probability densities.

2) A generalized information measure: We consider an alternative formulation of the Fisher information that is

more relevant thanJ(X) when dealing with RVs corrupted by additive noise of infinitesecond moment; In

essence, our starting point is one where –in a similar fashion to the Gaussian case– we enforce a generalized

de Bruijn identity to hold: motivated by the fact that the derivative of the differential entropy with respect to

small variations in the direction of a Gaussian variable is ascaledJ(·), we propose in Definition 2 a new

notion of Fisher information as a derivative of differential entropy in the direction of infinitesimal perturbations

along stable variables and we label it the “Fisher information of orderα” or the α-Fisher information.Next,

we derive in Lemma 1 an integral expression for the new quantity that is a generalization of the well-known

expression of the Fisher information. We note that the definition of theα-Fisher information in this manuscript

is an absolute measure and different from the one in [14]. It has different usages and applications and was

independently developed.

3) Generalized information-theoretic inequalities: Information inequalities have been investigated since the foun-

dation of information theory. It started with Shannon [23] with the fact that Gaussian distributions maximize

entropy under a second moment constraint. Then a lower boundon the entropy of independent sums of RVs,

commonly known as the Entropy Power Inequality (EPI) was proved. The EPI states that given two real

independent RVsX , Z such thath(X), h(Z) andh(X + Z) exist, then (Corollary 3, [24])

N(X + Z) ≥ N(X) +N(Z), (3)

October 7, 2016 DRAFT
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whereN (X) is theentropy powerof X and is equal to

N (X) =
1

2πe
e2h(X).

The EPI was a proposition of Shannon who provided a local proof. Later Stam [25] followed by Blachman [26]

presented complete proofs. These proofs of the EPI relied ontwo information identities: the de Bruijn’s identity

and the Fisher Information Inequality (FII). The latter states that givenX andZ two independent RVs such

that the respectiveFisher informationJ(X) andJ(Z) exist. Then

1

J(X + Z)
≥ 1

J(X)
+

1

J(Z)
. (4)

The remarkable similarity between equations (3) and (4) waspointed out in Stam’s paper [25] who in

addition, related the entropy power and the Fisher information by an “uncertainty principle-type” relation:

N(X)J(X) ≥ 1, (5)

which is commonly known as the Isoperimetric Inequality forEntropies (IIE) [27, Theorem 16]. Interestingly,

equality holds in equation (5) wheneverX is Gaussian distributed and in equations (3)–(4) wheneverX and

Z are independent Gaussians. As it can be noticed, the previously cited inequalities revolve around Gaussian

variables. When it comes to the general stable family, the relative fractional Fisher information defined in [14]

is found to satisfy a Fisher information inequality and is used to find the rate of convergence in relative entropy

of scaled IID sums to stable variables. In this paper, we generalize these information theoretic inequalities

that are based on the Gaussian setting to generic ones in the stable setting which coincide with the regular

identities in the Gaussian setup. Namely, when restricted to the range1 < α ≤ 2, theα-Fisher information is

found in Theorem 7 to satisfy a Generalized Fisher Information Inequality (GFII). Then, we use the GFII and

the generalized de Bruijn (proven in Theorem 4) to derive in Theorem 8 an upper bound on the differential

entropy of the independent sum of two RVs where one of them is stable. Finally, in Theorem 9 a Generalized

Isoperimetric Inequality for Entropies (GIIE) is proved tohold.

4) A Generalized Cramer-Rao bound: Well-known identities such as the Cramer-Rao bound which provides a

lower bound on the mean square error of estimators in the fromof the inverse ofJ(X) are adequate in the

finite variance setup. If the observed noisy variable has an infinite second moment, the use of the Cramer-Rao

bound in its classical form is problematic. We derive in Theorem 10 a generalized Cramer-Rao bound, that

relates the “relative” power of the estimation error to the generalized Fisher informationJα(·).

The rest of this paper is organized as follows: we propose in Section II theα-power , a generalized power

parameter and we provide some of its properties and applications. We define in Section III theα-Fisher information

, we list its properties and we establish a generalized de Bruijn’s identity. In Section IV, information inequalities are

shown to be satisfied by the theα-Fisher information with applications in finding upper bounds on the differential

entropy of independent sums when one of the variables is stable and establishing a generalized IIE. The generalized

CR bound is stated and proved in Section V and Section VI concludes the paper.
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II. T HE α-POWER, A RELATIVE POWER MEASURE

Power measures are important tools that can provide partialyet fundamental information about a signal. They

serve multiple purposes such as signal strength comparisons or as reference units for the computation of performance

and quality indicators. We stipulate that a “strength” or power measure P(X) of a random vectorX should satisfy

the following:

R1- P(X) ≥ 0, with equality if and only ifX = 0.

R2- P(aX) = |a|P(X), for all a ∈ R.

These restrictions are “minimal” and do not contain for example some of the dispensable properties satisfied by

the GP such as the multiplicativity and the triangular inequality properties [11]. However they are deemed sufficient

to define a strength measure.

As a notion of average power, the second moment is the answer to a widely known result in communications

theory; it is the constraint under which a Gaussian density function is entropy maximizer. In order to come up

with a notion of average power in the presence of alpha-stable distributions, one might consider adopting the

measure/constraint under which sub-Gaussian‡ symmetric alpha-stable§ (SαS ) density functions with an underlying

Gaussian vector having IID zero-mean components (refer to Definition 5, Appendix I) are entropy maximizers; an

approach that we adopt in what follows.

A. A Power Parameter in the Presence of Stable Variables

In this manuscript we denote bỹZα∼ S

(

α,
(

1
α

)
1
α

)

a referenceSymmetric Stable (SS) vector, i.e.,

• wheneverα 6= 2: a reference sub-Gaussian SαS vector with an underlying Gaussian vector having IID zero-

mean components with varianceσ2 = 2
(

1
α

)
2
α .

• whenα = 2: a reference Gaussian vector of IID components with mean zeroand variance 1.

Definition 1 (Power Parameter). The “power of orderα” or α-power of non-zero random vectorX is the non-

negative scalar Pα(X) such that:

− E
[

ln p
Z̃α

(

X

Pα(X)

)]

= h(Z̃α), (6)

whereh(Z̃α) is the differential entropy of̃Zα. For the deterministicX = 0, we define Pα(X) = 0.

The existence and uniqueness of theα-power will be addressed shortly. Intuitively, one may think of Pα(X) as

a “relative power” with respect tõZα which is a reference variable whoseα-power is equal to unity. In the two

special cases where closed-form expression of the PDF is available, theα-power can be evaluated:

‡In some texts, the term sub-Gaussian refers to distributionfunctions whose tails are faster than those of a Gaussian. Inthis work, we do not

use the term sub-Gaussian in this sense.

§We use the term symmetric alpha-stable (SαS ) to refer to the class of non-degenerate symmetric stable distributions excluding the Gaussian.

Otherwise, only the term symmetric stable (SS) will be used.
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• Whenα = 2, Z̃2 is a zero-mean Gaussian vector with identity covariance matrix and

P2(X) =

√

E [‖X‖2]
d

.

• Whenα = 1 (see [28]),

p
Z̃1
(x) =

1

π
d+1
2

Γ

(

d+ 1

2

)

1

(1 + ‖x‖2)
d+1
2

,

and P1(X) is the solution of

E

[

ln

(

1 +

∥

∥

∥

∥

X

P1(X)

∥

∥

∥

∥

2
)]

= E
[

ln

(

1 +
∥

∥

∥
Z̃1

∥

∥

∥

2
)]

.

As defined in (6), the quantity Pα(X) is endowed with some power properties that we list hereafterand prove

in Appendix II.

Property 1. Let X andY be random vectors such that:






E [ln (1 + ‖X‖)] <∞, when considering cases whereα < 2.

E
[

‖X‖2
]

<∞ when considering cases whereα = 2.

The following properties hold:

(i) Theα-power Pα(X) exists, is unique and Pα(X) ≥ 0 with equality if and only ifX = 0.

(ii) For any a ∈ R,Pα(aX) = |a|Pα(X).

(iii) If X and Y are independent andY has a rotationally symmetric PDF that is non-increasing in‖y‖, then

Pα(X+Y) ≥ Pα(Y).

(iv) If X and Y are independent andY has a rotationally symmetric PDF that is non-increasing in‖y‖, then

Pα(cX+Y) is non-decreasing in|c|, c ∈ R.

(v) WheneverX ∼ S (α, γX), Pα(X) = (α)
1
α γX.

Though the definition of theα-power as stated in equation (6) is implicit and dependent onthe density function

of the SS vector̃Zα which does not have closed form expression except in the special cases of the Cauchy and the

Gaussian distributions, the computation of theα-power Pα(X) of a certain random vectorX can be done efficiently

using numerical computations. In fact, the stable densities can be computed numerically as inverse Fourier transforms

or by usingMatlab packages that compute these densities such as the “Stable” package provided by Nolan [29].

We use here the latter and we develop aMatlab code that computes theα-power for a scalar RV according to

Definition 1. We plot in Figure 1, theα-power of several probability laws– Gaussian, uniform, Laplace, Cauchy and

alpha-stable, with respect to a multitude of symmetric alpha-stable distributions with the characteristic exponentα

ranging from0.4 to 1.8.

- Consider for examplẽZ1.2. Theα-power of a Gaussian variableX ∼ N (0, 2) is equal to P1.2(X) = 0.7869.

Using the scalability property (ii), theα-power of a Gaussian variableX ∼ N (0, σ2) is equal to P1.2(X) =

0.7869 σ√
2
= 0.5564 σ. Note that as already known, the power the Gaussian variableX ∼ N (0, σ2) with

respect toZ̃2∼ N (0, 1) is equal to P2(X) = σ.

October 7, 2016 DRAFT
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- Another example is whenX ∼ U [−a,+a], a uniform RV with zero mean and variance equal toa
2

3 . With

respect toZ̃0.8, it has anα-power of P0.8(X) = 0.3036 a√
3
= 0.1753 a, whereas with respect to the Gaussian

law the power is equal to the standard deviation P2(X) = a√
3
= 0.5774 a.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Characteristic Exponent α

10-2

10-1

100

101

102

P
ow

er

Laplace, µ = 0, σ2 = 2

Gaussian, µ = 0, σ2 = 2

Uniform, µ = 0, σ2= 2
Cauchy, γ = 1
Alpha-Stable, α = 0.6, γ = 1

Fig. 1. Evaluation of theα-power of some probability laws with respect tõZα∼ S

(

α, (α)−
1
α

)

for different values ofα.

For the value of the exponentα = 2, theα-power of the Cauchy and alpha-stable laws evaluate to infinity and

they are not shown in Figure 1.

B. Applications

The new “power” measure may be used in a variety of setups. We showcase in what follows two scenarios related

to two fundamental information-theoretic problems: entropy maximization and channel capacity evaluation.

1) Stable Maximizing Entropy:Having adopted a generic power definition when considering stable noise envi-

ronments, we study the solution of the entropy maximizationproblem subject to a constraint on the newly defined

power. Namely, let P> 0 and consider the set of random variables whoseα-power is equal to P:

P =

{

distribution functionsF on R
d : −

∫

ln p
Z̃α

(x

P

)

dF (x) = h(Z̃α)

}

.

According to [30, Section 12.1], among all distribution functionsF ∈ P , the one that maximizes differential entropy

has the following PDF:

p∗(x) = eλ0+λ1 ln p
Z̃α
(x

P ) = eλ0pλ1

Z̃α

(x

P

)

,

whereλ0 andλ1 are chosen so thatp∗(x) ∈ P . Since 1
P pZ̃α

(

x
P

)

is of the sought after form,

argmax
F∈P

h(F ) = PZ̃α∼ S

(

α,

(

1

α

)
1
α

P

)

, (7)

October 7, 2016 DRAFT
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and the value of the maximum is:

h(F ∗) = h(Z̃α) + d lnP.

As a direct generalization, one can write:

Theorem 1. Let

PA =
{

distribution functionsF on R
d : 0 < Pα(F ) ≤ A, A > 0

}

. (8)

Then

AZ̃α= arg max
F∈PA

h(F ),

and the maximum entropy value ish(Z̃α) + d lnA .

2) Communicating over Stable Channels:Consider the additive linear channel:

Y = X+N, (9)

whereY is the channel output,X is the input andN ∼ S (α, γN) is the additive SS noise vector which is

independent ofX. We ask the following question: what constraint is to be imposed on the input such that a stable

input achieves the capacity of channel (9)? Under this scenario, and knowing that a stable input generates a stable

output, a sufficient condition is that the output space induced by the channel is the space where a stable variable

maximizes entropy, specifically a space of a form as in (8). This leads to the following result:

Theorem 2. Let N ∼ S (α, γN) andA be a non-negative scalar such thatA ≥ Pα(N) = (α)
1
α γN. Consider the

spaceP[Pα(N),A] of probability distributions:

P[Pα(N),A] =
{

distribution functionsF on R
d : Pα(N) ≤ Pα(F ) ≤ A

}

. (10)

Whenever the outputY of channel (9) is subjected to (10), the channel capacity evaluates to:

C = d ln

(

A

Pα(N)

)

= d ln (SNRoutput) ,

and is achieved byX∗ ∼ S

(

α,
(

1
α

)
1
α α
√

Aα − Pα(N)α
)

. Furthermore, the input cost constraint can be written

as:

∃P ∈ [Pα(N) , A] , EX

[

D
(

pPα(N)Z̃α
(v −X)

∥

∥pPZ̃α
(v)
)]

= ln
P

Pα(N)
. (11)

Proof: By Theorem 1, under condition (10) a stable outputY∗ ∼ S

(

α,
(

1
α

)
1
α A
)

maximizes the output

entropy and achieves the channel capacityC:

C = h(Y∗)− h(N) = d ln(A) + h(Z̃α)− d ln(Pα(N))− h(Z̃α)

= d ln

(

A

Pα(N)

)

,

October 7, 2016 DRAFT
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where we used the fact thath(N) = ln(Pα(N)) + h(Z̃α) sinceγN = Pα(N) γ
Z̃α

. The optimal inputX∗ which

yieldsY∗ is also distributed according to a stable variable with parameterγX∗ :

γαX∗ = γαY∗ − γαN =
1

α
(Aα − Pα(N)

α
) ,

which by property (v) yields,

Pα(X
∗)α = αγαX∗ = Aα − Pα(N)

α
.

Finally, we determine below the input cost constraint that yields the output spaceP[Pα(N),A]. The output con-

dition (10) is explicitly stated as the space of all random vectors Y such that there exists a P> 0, such that

Pα(N) ≤ P≤ A and

− E
[

ln p
Z̃α

(

Y

P

)]

= h(Z̃α) ⇐⇒ EX

[

−EN

[

ln p
Z̃α

(

X+N

P

)

∣

∣

∣

∣

∣

X

]]

= h(Z̃α), (12)

where we used the iterated expectations to write the second equation. Equation (12) can be interpreted as the input

cost functionC(·) being

C (x,P) = −EN

[

ln p
Z̃α

(

x+N

P

)]

, (13)

and the input cost constraint being:

∃P∈ [Pα(N) , A] , EX [C (X,P)] = h(Z̃α).

The cost function and the cost constraint can be written in a different form:

C(x,P) = −
∫

pPα(N)Z̃α
(n) ln p

Z̃α

(

x+ n

P

)

dn

= −
∫

pPα(N)Z̃α
(v − x) ln

(

1

P
p
Z̃α

(v

P

)

)

dv − lnP

= −
∫

pPα(N)Z̃α
(v − x) ln pPZ̃α

(v) dv − lnP

= D
(

pPα(N)Z̃α
(v − x)

∥

∥pPZ̃α
(v)
)

+ h(Pα(N) Z̃α)− lnP

= D
(

pPα(N)Z̃α
(v − x)

∥

∥pPZ̃α
(v)
)

+ h(Z̃α) + ln
Pα(N)

P
, (14)

whereD(p‖q) is the Kullback-Leibler divergence between two PDFsp andq. Using equation (14), the input cost

constraint can be rewritten as:

EX

[

D
(

pPα(N)Z̃α
(v −X)

∥

∥pPZ̃α
(v)
)]

= ln
P

Pα(N)
.

Note that the capacity problem at hand of the stable channel (9) under the input cost constraint (11) is a gener-

alization to the well known AWGN channel under the average power constraint [23] and the additive independent

Cauchy channel under a logarithmic constraint [31].

Finally, in the scalar case the generic cost functionC(x) presented in (13) isΘ(x2) whenα = 2. For all other

values ofα, using the same methodology as in [32] one can prove thatC(x) = Θ (ln |x|) by virtue of the fact that

ln pZ̃α
(x) = Θ(ln |x|). This comes in accordance with the results presented in [32].
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C. Extensions and Insights

Theα-power measure Pα(X) defined in (6) is related to a choice ofZ̃α –or equivalently a choice of0 < α ≤ 2,

and as previously mentioned Pα(X) can be looked at as the relative power ofX with respect to that of̃Zα. Naturally

one would ask the following: In a specific scenario, what value of alpha is more suitable? An answer to this question

is given when considering, for example, an additive noise channelY = X+N. In fact, in most communications’

applications, the quantity of interest for a system engineer is the received signal or the outputY as it generally

represents the quantity that will undergo further processing in order to retrieve the useful information. In addition,

the noise variableN imposed by the channel represents another important variable since relevant quantities and

performance measures are computed function of the relativepower between the output signal and the noise, a

quantity that is commonly referred to as the output SNR. Moreover, the outputY is shaped by the noiseN, hence

it has “similar” characteristics to those ofN (for example, a vectorN having infinite variance components will

always induce a vectorY having infinite variance components). This is to say, that inthe context of an additive stable

noise channel, it would seem natural to measure the power of the different signals with respect to a reference stable

variable whose power evaluates to unity. Hence the choice ofα and thenZ̃α becomes straightforward depending

on the stable noise characteristic exponentα.

A natural extension is to generalize the adoption of Pα(X) for a specificZ̃α to cases where the noise is not

necessarily stable but falls instead in the domain of normalattractionDα [33], [34] of the stable variables. For

example, in the scalar case, any noise variable having a finite second moment belongs toD2 and P2(X) is equal to

the second moment. For noise variables whose tail behavior is Θ
(

1
|x|1+α

)

, 0 < α < 2, theα-power Pα(X) should

be used.

III. α-FISHER INFORMATION : A GENERALIZED INFORMATION MEASURE

In this section, we introduce a family of new information measures{Jα(·)}0<α≤2 and its properties as a

generalization of the standard Fisher information. This isdone through enforcing a family of identities of the

de Bruijn type and finding an analytical expression ofJα(·), 0 < α ≤ 2.

Definition 2 (α-Fisher information ). LetX be a finite differential entropy RV and̃Zα an independent reference SS

variableZ̃α∼ S
(

α,
(

1
α

)
1
α

)

, 0 < α ≤ 2. We define the “Fisher information of orderα” or theα-Fisher information

Jα(X) as follows:

Jα(X) = α · lim
ǫ→0+

h
(

X + α
√
ǫ Z̃α

)

− h(X)

ǫ
, (15)

whenever the limit exists.

For ad-dimensional random vectorX = (X1, · · · , Xd), Jα(X) is defined as in (15) wherẽZα∼ S

(

α,
(

1
α

)
1
α

)

is thed-dimensional reference SS vector.

Alternatively, by the change of variablet = ǫ
α

, if N denotes an independent SS variableN ∼ S (α, 1), the
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α-Fisher information is

Jα(X) = lim
t→0+

h
(

X + α
√
tN
)

− h(X)

t
, (16)

whenever the limit exists. In the vector case,Jα(X) is also as in (16) whereN ∼ S (α, 1).

Before proceeding to discuss the properties of the newly defined quantity we point out that the existence of the

limit is guaranteed in a wide range of scenarios:

Theorem 3. For all random vectorsX such thatE [ln (1 + ‖X‖)] and h(X) are finite, Jα(X) exists for all

0 < α ≤ 2.

Proof: We first note thath(X+ α
√
tN) exists and is finite sinceα

√
tN ∼ S

(

α, α
√
t
)

has a bounded PDF and

E [ln (1 + ‖X‖)] is finite [35, Proposition 1]. Also, in the scalar case it has been proven in [36] that the differential

entropyh(X +Nt) is concave int ≥ 0 wheneverN is an infinitely divisible RV whereNt is related toN through

their characteristic functions as follows [37, Theorem 2.3.9 p.65]:

φNt
(ω) = et lnφN (ω).

Since in our case the infinitely divisible RV is stable with characteristic exponentα, thenNt ∼ α
√
tN which implies

that h(X + Nt) is concave int and therefore it is everywhere left and right differentiable and a.e differentiable.

These properties generalize in a straightforward manner tothe vector case, and henced
dt
h(X + α

√
tN) exists a.e.

in t and d
dt
h(X+ α

√
tN)

∣

∣

∣

t=0+
exists.

A. Properties of theα-Fisher information

Few properties ofJα(X) may be readily identified.

(1) It is non-negative: By definition,Jα(X) represents the rate of variation ofh(X) under a small disturbance in

the direction of a standard SS vector. It represents the limit of positive quantities and therefore,Jα(X) ≥ 0.

(2) J2(X) coincides with the usual notion of Fisher information:When the stable noiseN is Gaussian, i.e.α = 2,

J2(X) coincides is the trace of the Fisher information matrix.

(3) It’s translation invariant:Let c ∈ R
d, thenJα(X+ c) = Jα(X). This follows directly from the definition and

from the translation invariant property of the differential entropy.

(4) It has a closed-form expression for symmetric stable vectors: If X ∼ S (α, γ) then Jα(X) = d
α

1
γα nats.

Indeed, ifX ∼ S (α, γ) thenX+ α
√
ǫN ∼ S (α, α

√
γα + ǫ) and

Jα(X) = lim
ǫ→0

h (X+ α
√
ǫN)− h(X)

ǫ

= lim
ǫ→0

h ( α
√
γα + ǫN)− h(γN)

ǫ

= lim
ǫ→0

h (N) + d ln
(

α

√

1 + ǫ
γα

)

− h(N)

ǫ

=
d

α

1

γα
nats.
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This result comes in accordance with the fact thatJ2(X) = J(X) = d
σ2 wheneverX ∼ N (0;σ2I) is Gaussian

with covariance matrixσ2I. This is true since in this caseα = 2 and for a Gaussian variableγ2 = σ2

2 .

(5) Scales:Jα(aX) = 1
|a|α Jα(X) for a 6= 0. Indeed,

Jα(aX) = lim
ǫ→0

h (aX+ α
√
ǫN)− h(aX)

ǫ

= lim
ǫ→0

h

(

X+ α

√

ǫ
|a|αN

)

+ d ln |a| − h(X)− d ln |a|

ǫ

=
1

|a|α lim
ǫ→0

h

(

X+ α

√

ǫ
|a|αN

)

− h(X)

ǫ
|a|α

=
1

|a|α Jα(X),

where we used the fact that(−N) is identically distributed asN.

(6) Independent sums:Jα(X+ Z) ≤ Jα(X) when Z is independent ofX. Indeed

Jα(X+ Z) = lim
t→0

h
(

X+ Z+ α
√
tN
)

− h(X+ Z)

t

= lim
t→0

I(X+ Z+ α
√
tN;N)

t

≤ lim
t→0

I(X+ α
√
tN;N)

t
= Jα(X),

where the inequality is due to the fact thatN — X+ α
√
tN — X+ Z+ α

√
tN is a Markov chain.

(7) Sub-additivity:Jα(·) is sub-additive for independent random vectors. Let X = (X1, · · · , Xd) be a col-

lection of d independent RVs having Fisher information{Jα(Xi)}di=1, then Jα(X) = Jα(X1, · · · , Xd) ≤
∑d
i=1 Jα(Xi), becauseh(Z1, · · · , Zd) ≤

∑d
i=1 h(Zi) with equality whenever{Zi}di=1 are independent. It is

known thatJ2(·) is additive and it will be later shown thatJα(·) is in fact additive.

Due to the above, one may considerJα(X), 0 < α ≤ 2 as a measure of information. A single random vectorX

might hence have different information measures which represent from an estimation theory perspective a reasonable

fact since the statistics of the additive noiseN affect the estimation ofX based on the observation ofX+N. From

this perspective, the original Fisher information would seem suitable when the adopted noise model is Gaussian or

when we are restricting the RV to have a finite second moment.

B. An expression ofJα(·)

We find in what follows an expression ofJα(X) whenever the random vector is absolutely continuous with a

positive PDF. More precisely, letX ∈ V where,

V =

{

Absolutely continuous RVsU : pU(u) > 0, h(U) is finite &

∫

ln (1 + ‖U‖) pU(u) du is finite

}

.

Lemma 1 (An Expression of theα-Fisher information ). Let N ∼ S (α, γ) be a SS vector and letX ∈ V be

independent ofN with a characteristic functionφX(ω) such that[‖ω‖αφX(−ω)] ∈ L1(Rd). If there exists an
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ǫ > 0 such that¶
{

∣

∣

∣
ln pX+α

√
tN(x)FI

[

‖ω‖αφX+α
√
tN(−ω)

]

(x)
∣

∣

∣

}

t∈[0,ǫ)

(17)

are uniformly bounded int by an integrable function ofx, then theα-Fisher information ofX is

Jα(X) =

∫

ln pX(x)FI
[

‖ω‖αφX(−ω)
]

(x) dx. (18)

Proof: Using Theorem 3Jα(X) exists. Now, lett ≥ η ≥ 0 and denoteXt = X+ α
√
tN with characteristic

function

φXt
(ω) = φX(ω) e−tγ

α‖ω‖α

= φXη
(ω) e−(t−η)γα‖ω‖α

= φXη
(ω)− (t− η)γα‖ω‖αφXη

(ω) + o(t− η).

By the linearity of the inverse Fourier transform,

pXt
(x) = pXη

(x)− (t− η)γαFI
[

‖ω‖αφXη
(−ω)

]

(x) + o(t− η), (19)

which is valid since the inverse distributional Fourier transformFI
[

‖ω‖mαφXη
(ω)
]

exists for allm ≥ 1 because

‖ω‖mαφXη
(ω) is a tempered function by virtue of the fact thatφXη

(ω) is an L1-characteristic function and hence

is in L∞(Rd). Equation (19) implies that

d pXτ
(x)

dτ

∣

∣

∣

∣

τ=η

= −γαFI
[

‖ω‖αφXη
(−ω)

]

(x),

and by the Mean Value Theorem, for some0 ≤ b(t) ≤ t,

h(Xt)− h(X)

t
= −

∫

Rd

pXt
(x) ln pXt

(x)− pX(x) ln pX(x)

t
dx

= −
∫

Rd

[

1 + ln pXb(t)
(x)
] d pXτ

(x)

dτ

∣

∣

∣

∣

τ=b(t)

dx

= γα
∫

Rd

[

1 + ln pXb(t)
(x)
]

FI
[

‖ω‖αφXb(t)
(−ω)

]

(x) dx

= γα
∫

Rd

ln pXb(t)
(x)FI

[

‖ω‖αφXb(t)
(−ω)

]

(x) dx,

which is true since[‖ω‖αφX(−ω)] ∈ L1(Rd) and
∫

FI
[

‖ω‖αφXb(t)
(−ω)

]

(x) dx =

∫

δ(ω) ‖ω‖αφXb(t)
(−ω) dω = 0.

The imposed conditions insure that Lebesgue’s Dominated Convergence Theorem (DCT) holds and the limit may

be passed inside the integral and

Jα(X) =

∫

Rd

ln pX(x)FI
[

‖ω‖αφX(−ω)
]

(x) dx.

¶FI(·) denotes the inverse distributional Fourier transform. Theregularity condition imposed in (17) is assumed to hold wheneverJα(·) is

being evaluated using equation (18) throughout the paper.

October 7, 2016 DRAFT



16

We note that, wheneverα = 2, equation (18) gives the regular expression of the Fisher information. In fact, in

the scalar case

J(X) = J2(X) =

∫

ln pX(x)FI
[

|ω|2φX(−ω)
]

(x) dx = −
∫

ln pX(x)
d2

dx2
pX(x) dx,

where the last equality is valid as long asln pX(x) d
dx
pX(x)|+∞

−∞ vanishes. In thed-dimensional case,J2(X)

is also consistent with the regular definition of the Fisher information being the trace of the Fisher information

matrix. The sufficient condition listed in the statement of the lemma, is a technical condition involving “fractional”

derivatives of the PDFpX(x). Wheneverα = 2, this condition boils down to similar type of conditions imposed

by Kullback [38, pages 26-27] to prove the well-known resultrelating the second derivative of the divergence to

the Fisher information: a result that implies de Bruijn’s identity at zero (see [35]).

Let Xη = X+ α
√
ηN′ for someη > 0 whereN′ ∼ S(α, γ) independent ofN. In Appendix III it is shown that

the regularity condition on (17) is satisfied and therefore

d

dt
h(Xη +

α
√
tN)

∣

∣

∣

t=0+
= γαJα(Xη).

Since α
√
ηN′ + α

√
tN is distributed according toα

√
η + tN, this equation is equivalent to a generalized de

Bruijn’s identity stated in the following theorem.

Theorem 4 (Generalized de Bruijn’s identity). LetX ∈ V and define forη > 0 the random vectorXη = X+ α
√
ηN.

For any η > 0,
d

dη
h(Xη) = γαJα(Xη), (20)

whereJα(Xη) is given by equation (18). Additionally, whenever the regularity condition (17) is satisfied byX,

d

dη
h(Xη)

∣

∣

∣

η=0+
= γαJα(X), (21)

whereJα(X) is given by equation (18).

To computeJα(·), we use the fast Fourier transform usingMatlab by following a similar methodology as

in [39]. We plot in Figure 2 the evaluation ofJα(·) for a collection of alpha-stable variablesX ∼ S
(

r, (r)−
1
r

)

parameterized by the characteristic exponentr. It is observed that as the value ofr increases,Jα(X) increases.

Furthermore for fixedr, Jα(X) decreases withα.

IV. GENERALIZED INFORMATION THEORETIC IDENTITIES

In addition to their theoretical relevance, information inequalities have important implications in information

theory. For example, by the means of the FII, one can prove theEPI which is useful for finding bounds on capacity

regions and in proving strong versions of Central Limit Theorems (CLT)s. In what follows, we state and prove a

list of information inequalities featuringJα(·). Namely, we list and prove a generalized FII, an upper bound on the

differential entropy of sums having a stable component and ageneralized IIE.
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Fig. 2. Evaluation ofJα(X) for X ∼ S

(

r, (r)−
1
r

)

for different values ofα andr

.

A. A Generalized Fisher Information Inequality

The Fisher information inequality is an important identitythat relates the Fisher information of the sum of

independent RVs to those of the individual variables. It wasfirst proven by Stam [25] and then by Blachman [26].

Both authors deduced the EPI from the FII via de Bruijn’s identity. Stam relied on a data processing inequality of

the Fisher information in the proof of the FII, a methodologythat was later used by Zamir [40] in a more elaborate

fashion. Finally, Rioul [35] derived a mutual information inequality, an identity that implies the EPI and by the

means of de Bruijn’s identity implies the FII.

Data processing inequality forJα, 1 < α ≤ 2: The data processing inequality asserts that gains could not

be achieved when processing information. In terms of mutualinformation, if the RVsX–Y –Z form a Markov

chain [30, p.34 Theorem 2.8.1],

I(Z;X) ≤ I(Y ;X),

with equality if X–Z–Y is also a Markov chain. In [40], Zamir proved an equivalent inequality for the Fisher

information in a variableY about a parameterθ. We follow similar steps and extend the data processing inequality

to Jα; an inequality which we will use next to prove the GFII.

Definition 3. Let m > 0 and letθ = [θ1 θ2 · · · θm]t be a fixed vector of parameters. For1 < α ≤ 2 define,

Jα(Yθ ; θ) =̂ − E
[

Iθ2−α [△θ ln pYθ
] (Yθ)

]

(22)

& Jα(Yθ; θ|Z) =̂ EZ [Jα (Yθ; θ|Z = z)] ,
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where forfθ(·) : Rd → R that is parameterized byθ ∈ R
m

Iθ2−α [fθ] :R
d → R

x → Iθ2−α [fθ] (x) =
Γ
(

m
2 − 2−α

2

)

π
m
2 22−αΓ

(

2−α
2

)

∫

Rm

‖θ − η‖−m+2−αfη(x) dη, (23)

and

△θfθ(x) =

m
∑

i=1

∂2fθ
∂θ2i

(x).

The operatorI2−α[·] is the Riesz potential of order(2−α) presented in Appendix I. Note that the Riesz potential

in equation (23) is that of functionfθ(·) whenθ is considered the variable instead ofx.

Theorem 5 (Translation Property ford = m). If d = m andYθ = Y + θ, then

Jα(Yθ; θ) = Jα(Y). (24)

Proof:

Jα(Y) =

∫

ln pY(y)FI
[

‖ω‖αφY(−ω)
]

(y) dy

= −
∫

ln pY(y) △y

(

FI
[

‖ω‖α−2φY(−ω)
]

(y)

)

dy (25)

= −
∫

△y (ln pY(y)) I2−α[pY](y) dy (26)

= −
∫

I2−α [△y (ln pY)] (y) pY(y) dy (27)

= −
∫

I2−α





∑

j

d2

dy2j
ln pY



 (y) pY(y) dy (28)

= −
∫

Iθ2−α





∑

j

d2

dθ2j
ln pYθ



 (y + θ) pY(y) dy (29)

= −
∫

Iθ2−α [△θ ln pYθ
] (y + θ) pYθ

(y + θ) dy

= Jα(Yθ; θ),

Equation (25) is due to basic properties of the Fourier transform sinceI2−α(pY)(y) = FI
[

‖ω‖α−2φY(−ω)
]

(y)

decays to0 at “∞”. In order to write equation (26), we use Green’s first identity [41] in the following form: Let

▽ denotes the gradient operator and× denotes the dot product. IfΨ(·) andΦ(·) are real valued functions onRd,

then
∫

Rd

Ψ(y)△ Φ(y) dy = −
∫

Rd

▽Ψ(y)×▽Φ(y) dy + lim
R→+∞

∫

‖y‖=R
Ψ(y)▽ Φ(y) × n dS(y),

wheren is the outward pointing unit normal vector of surface element dS(y). Applying twice Green’s theorem
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justifies equation (26) as long as:

limR→+∞

∫

‖y‖=R
ln pY(y)▽ I2−α(pY)(y) × n dS(y) = 0

and

limR→+∞

∫

‖y‖=R
I2−α(pY)(y) ▽ ln pY(y) × n dS(y) = 0.

As stated in Appendix I, equation (27) holds true whenever|△y ln pY(y)| I2−α(pY)(y) is integrable. It remains

to justify equation (29) which we prove next,

Iθ2−α





∑

j

d2

dθ2j
ln pYθ



 (y + θ)

=
Γ
(

d
2 − 2−α

2

)

π
d
2 22−αΓ

(

2−α
2

)

∫

Rd

‖θ − η‖−d+2−α
∑

j

d2

dη2j
ln pYη

(y + θ) dη (30)

=
Γ
(

d
2 − 2−α

2

)

π
d
2 22−αΓ

(

2−α
2

)

∫

Rd

‖θ − η‖−d+2−α
∑

j

d2

dθ2j
ln pY(y + θ − η) dη (31)

=
Γ
(

d
2 − 2−α

2

)

π
d
2 22−αΓ

(

2−α
2

)

∫

Rd

‖θ − η‖−d+2−α
∑

j

d2

dy2j
ln pY(y + θ − η) dη

=
Γ
(

d
2 − 2−α

2

)

π
d
2 22−αΓ

(

2−α
2

)

∫

Rd

‖y − v‖−d+2−α
∑

j

d2

dy2j
ln pY(v) dv (32)

= Iθ2−α





∑

j

d2

dy2j
ln pY



 (y).

Equation (30) is the definition ofIθ2−α [·] given in equation (23) and (31) is due to the fact thatYη = Y + η.

Equation (32) is obtained by the change of variablev = y + θ − η and the last equation is due to the definition

of I2−α [·] (see Appendix I).

Theorem 6 (Chain Rule and Data Processing Inequality for theα-Fisher information ). If θ–Yθ–Zθ, i.e., the

conditional distribution ofZθ givenYθ is independent ofθ, then

Jα(Zθ ; θ) ≤ Jα(Yθ; θ),

wheneverJα(Yθ ; θ|Zθ) ≥ 0.

We note that the conditionJα(Yθ; θ|Zθ) ≥ 0 is needed since there are no formal guarantees of non-negativeness

according to Definition 3 as it is the case forJα(Y). The non-negativity ofJα(Yθ; θ) is guaranteed, for example,

wheneverθ is a translation parameter. Another case when non-negativity holds is found next in the proof of

Theorem 7.

Proof: Consider

Jα(Yθ,Zθ; θ) = −EY,Z [I2−α [△θ (ln pYθ ,Zθ
)] (Yθ ,Zθ)] .

We have

ln pYθ ,Zθ
(y, z; θ) = ln pZθ

(z; θ) + ln pYθ |Zθ
(y; θ|z),

October 7, 2016 DRAFT



20

which yields

Jα(Yθ,Zθ; θ) = Jα(Zθ; θ) + Jα(Yθ; θ|Zθ) (33)

≥ Jα(Zθ; θ). (34)

Equation (33) is due to the linearity property of the Laplacian operator, the Riesz potential [42] and the expectation

operator. Equation (34) is justified by the fact thatJα(Yθ; θ|Zθ) ≥ 0 by assumption. Equality holds if and only if

Jα(Yθ; θ|Zθ) = 0 which is true ifθ–Zθ–Yθ forms a Markov chain. On the other hand, sinceZθ is conditionally

independent ofθ givenYθ, ln pZθ|Yθ
(·|y) is independent ofθ and

Jα(Yθ,Zθ; θ) = Jα(Yθ; θ),

which along with equation (34) gives the required result.

Additivity property ofJα(Y) for vectorsY having independent components: Before proceeding to state and

prove the GFII, we prove theadditivity of Jα(Y) whenY has independent components, as mentioned in property

(7). Starting from equation (28),

Jα(Y) = −
∫

pY(y) I2−α





∑

j

d2

dy2j
ln pY



 (y) dy

= −
∫

pY(y) I2−α





∑

j

d2

dy2j
ln pYj



 (y) dy (35)

= −
∑

j

∫

pY(y) I2−α

[

d2

dy2j
ln pYj

]

(yj) dy (36)

= −
∑

j

∫

pYj
(yj) I2−α

[

d2

dy2j
ln pYj

]

(yj) dyj (37)

= −
∑

j

∫

d2

dy2j
I2−α [pY(y)] ln pYj

(yj) dyj (38)

=
∑

j

Jα(Yj),

where equations (35) and (37) are due to the independence of the Yj ’s. Equation (36) is justified by the linearity

of the Riesz potential and equation (38) holds true whenever
{

ln pYj

d
dyj

I2−α[pYj
](yj)

}

j
go to 0 at “∞” and the

regularity condition (17) is satisfied by the{Yj}’s.

Generalized Fisher Information Inequality:

Theorem 7 (Generalized Fisher Information Inequality (GFII)). Let 1 < α ≤ 2 and let Y1 and Y2 be two

independentd-dimensional random vectors, then

J
1

1−α
α (Y1 +Y2) ≥ J

1
1−α
α (Y1) + J

1
1−α
α (Y2). (39)

We note that wheneverα = 2, equation (39) boils down to the well-known “classical” FII.
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Proof: For the matter of the proof, we make use of the data processinginequality established in Theorem 6.

Let ω1 andω2 ∈ R
+∗ be two positive numbers such thatω1 + ω2 = 1. Also let ǫ > 0 andN be an independent

random vector distributed according toS(α, 1). For anyθ ∈ R
d we have

θ −
(

Y1

ω1
+ θ,

Y2

ω2
+ θ

)

− (Y1 +Y2 + θ + α
√
ǫN)

forms a Markov chain. DefineYθ,1 =
Y1

ω1
+ θ, Yθ,2 = Y2

ω2
+ θ andZθ = ω1Yθ,1 + ω2Yθ,2 + α

√
ǫN, then

Jα

(

(Yθ,1,Yθ,2) ; θ
∣

∣

∣
Zθ

)

=̂ EZθ
[Jα ((Yθ,1,Yθ,2) ; θ|Zθ)] ≥ 0.

Indeed, letp(Yθ,1,Yθ,2)|Zθ
(·, ·|z) be the PDF of(Yθ,1,Yθ,2) givenZθ = z. Then,

p(Yθ,1,Yθ,2)|Zθ
(y1,y2|z) = pYθ,1|Zθ

(y1|z) pYθ,2|Yθ,1,Zθ
(y2|y1, z)

= pY1
ω1

|Zθ
(y1 − θ|z) p α

√
ǫN|Yθ,1,Zθ

(z− ω1y1 − ω2y2|y1, z).

One can now write:

Jα

(

(Yθ,1,Yθ,2) ; θ
∣

∣

∣
Zθ = z

)

= Jα

(

Yθ,1; θ
∣

∣

∣
Zθ = z

)

+ Jα

(

Yθ,2; θ
∣

∣

∣
(Yθ,1,Zθ = z)

)

= Jα

(

Y1

ω1

∣

∣

∣
Zθ = z

)

+ Jα

(

Yθ,2; θ
∣

∣

∣
(Yθ,1,Zθ = z)

)

= Jα

(

Y1

ω1

∣

∣

∣
Zθ = z

)

, (40)

where we used Theorem 5 and the fact that

Jα

(

Yθ,2; θ
∣

∣

∣
(Yθ,1,Zθ = z)

)

= EYθ,1

[

Jα

(

Yθ,2; θ
∣

∣

∣
(Yθ,1,Zθ = z)

)]

= 0,

sinceJα
(

Yθ,2; θ
∣

∣

∣
(Yθ,1 = y1,Zθ = z)

)

= 0 for everyy1 becausepYθ,2|(Yθ,1,Zθ)(·) is independent ofθ. Equa-

tion (40) is non-negative by property (1) and therefore by Theorem 6,

Jα (Zθ; θ) ≤ Jα ((Yθ,1,Yθ,2) ; θ) . (41)

Since Yθ,1 and Yθ,2 are statistically independent and using the definition ofJα(·; θ) in (22), the RHS of

equation (41) boils down to:

Jα ((Yθ,1,Yθ,2) ; θ) = Jα (Yθ,1; θ) + Jα (Yθ,2; θ) ,

which implies by means of the translation invariance property (2) in (24) that equation (41) is equivalent to:

Jα
(

Y1 +Y2 +
α
√
ǫN
)

. ≤ Jα

(

Y1

ω1

)

+ Jα

(

Y2

ω2

)

,

Under the regularity condition (17), taking the limit asǫ→ 0 yields

Jα (Y1 +Y2) ≤ Jα

(

Y1

ω1

)

+ Jα

(

Y2

ω2

)

≤ ωα1 Jα(Y1) + ωα2 Jα(Y2), (42)
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by property (5) ofJα(·). Equation (42) holds true for anyω1 andω2 satisfying the conditions of the theorem, the

tightest choiceω∗
1 andω∗

2 being,

ω∗
1 = arg min

0≤ω1≤1
{ωα1 Jα(Y1) + (1− ω1)

αJα(Y2)}

=
J

1
α−1
α (Y2)

J
1

α−1
α (Y1) + J

1
α−1
α (Y2)

ω∗
2 = 1− ω∗

1 =
J

1
α−1
α (Y1)

J
1

α−1
α (Y1) + J

1
α−1
α (Y2)

,

for which (42) becomes

Jα (Y1 +Y2) ≤
Jα(Y1)Jα(Y2)

[

J
1

α−1
α (Y1) + J

1
α−1
α (Y2)

]α−1 ,

which completes the proof of the theorem.

B. Upper Bounds on the Differential Entropy of Sums Having a Stable Component

An important category of information inequalities consists of finding upper bounds on the entropy of independent

sums. Starting with fundamental inequalities such that theupper bound on the discrete entropy of independent

sums [30] and the upper bound on the differential entropy of the sum of independent finite-variance RVs [23],

several identities involving discrete and differential entropy of sums were subsequently shown in [43]–[49]. Recently

in [36], an upper bound on the differential entropy of the sumX+N of two independent RVs was found whereN

is a finite-variance infinitely divisible variable having a Gaussian component. We extend in this section the known

upper bound results to cases whereN is SS stable vector using the GFII and the generalized de Bruijn’s identity.

Theorem 8 (Upper bound on the Entropy of Sums having a Stable Component). Let Z ∼ S (α, γ), 1 < α ≤ 2,

and letX be ad-dimensional vector that is independent ofZ such thath(X) andJα(X) are finite. Then

h(X+ Z)− h(X) ≤ γαJα(X) 2F1

(

α− 1, α− 1;α;−
(

αγα

d
Jα(X)

)
1

α−1

)

,

where2F1(a, b; c; z) is the analytic continuation of the Gauss hypergeometric function on the complex plane with

a cut along the real axis from 1 to +∞.

For more details on hypergeometric functions, the reader may refer to Appendix I. Theorem 8 provides an upper

bound on the entropy of the sum of two variables when one of them is stable. As a special case, whenα = 2, it

recovers the upper bound for Gaussian noise setups [36].
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Proof: Using the extended de Bruijn’s identity (20), we write:

h(X+ Z)− h(X) =

∫ 1

0

γαJα(X+ α
√
ηZ) dη

≤ γα
∫ 1

0

Jα(X)Jα( α
√
ηZ)

(

J
1

α−1
α (X) + J

1
α−1
α ( α

√
ηZ)

)α−1 dη (43)

= γα
∫ 1

0

Jα(X) d
αγαη

(

J
1

α−1
α (X) + ( d

αγαη
)

1
α−1

)α−1 dη (44)

= (α− 1)γαJα(X)

∫ 1

0

uα−2

(

(αγ
α

d
Jα(X))

1
α−1 u+ 1

)α−1 du

= γαJα(X) 2F1

(

α− 1, α− 1;α;−
(

αγα

d
Jα(X)

)
1

α−1

)

, (45)

where we use the GFII in order to write equation (43) and properties (4) and (5) ofJα(·) to validate equation (44).

Interestingly, Theorem 8 gives an analytical bound on the change in the transmission rates of the linear stable

channel function of an input scaling operation: leta 6= 0, then

h(aX+ Z) ≤ h(aX) + γαJα(aX) 2F1

(

α− 1, α− 1;α;−
(

αγα

d
Jα(aX)

)
1

α−1

)

,

= h(X) + d ln |a|+
(

γ

|a|

)α

Jα(X) 2F1

(

α− 1, α− 1;α;−
(

α

d

(

γ

|a|

)α

Jα(X)

)

1
α−1

)

,

where we used the fact thath(aX) = h(X)+d ln |a| andJα(aX) = 1
|a|αJα(X). Subtractingh(Z) from both sides

of the equation gives

I(aX+ Z;X) − I(X+ Z;X) ≤ ln |a|+
(

γ

|a|

)α

Jα(X) 2F1

(

α− 1, α− 1;α;−
(α

d

(γ

a

)α

Jα(X)
)

1
α−1

)

.

Since2F1 (α− 1, α− 1;α; 0) = 1,

lim
|a|→+∞

(γ

a

)α

Jα(X) 2F1

(

α− 1, α− 1;α;−
(α

d

(γ

a

)α

Jα(X)
)

1
α−1

)

= 0,

and for large values of|a| the variation in the transmissions rates is bounded by a logarithmically growing function

of |a|. This is a known behavior of the optimal transmission rates that are achieved by Gaussian inputs in a Gaussian

setting.

On a final note, making use of the identity:

ln(1 + t) = t2F1(1, 1; 2;−t),

equation (45) when evaluated forZ ∼ N (0;σ2I) andα = 2 boils down to the following:

Corollary 1 (Upper bound on the Entropy of Sums having a Gaussian Component). [36]
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Let Z ∼ N (0, σ2I) and X be a d-dimensional vector that is independent ofZ such thath(X) and J(X) are

finite. The differential entropy ofX+ Z is upper bounded by:

h(X+ Z) ≤ h(X) +
d

2
ln

(

1 +
σ2

d
J(X)

)

, (46)

and equality holds if and only if bothX andZ are Gaussian distributed.

As shown in [36, Section 4], we note that (46) implies a reverse EPI when one of the vectors is Gaussian

distributed, which is equivalent to the concavity of the entropy power proved by Costa [50]. This was noted by

Courtade [51] who provided a generalization of the reverse EPI in [52, Theorem 5].

C. A Generalized Isoperimetric Inequality for Entropies

Let Z̃α∼ S

(

α, ( 1
α
)

1
α

)

and defineNα(X), 0 < α ≤ 2, the entropy power of orderα as

Nα(X) =
1

e
α
d
h(Z̃α)

e
α
d
h(X). (47)

Theorem 9 (Generalized Isoperimetric Inequality for Entropies (GIIE)). Let X be a d-dimensional random vector

such that bothh(X) andJα(X) exist, for some1 < α ≤ 2. Then

1

d
Nα(X)Jα(X) ≥ κα =̂ e(α−1)(ψ(α)+γe)−1, (48)

whereγe is the Euler-Mascheroni constant andψ(·) is the digamma function.

Sinceψ(2) = −γe + 1, we note right away that the evaluation (48) forα = 2 yields the well known IIE [27,

Theorem 16]:
1

d
N(X)J(X) ≥ 1,

with equality whenX is Gaussian distributed. For general values of1 < α ≤ 2, whether equality in equation (48)

is achievable or not and under which conditions are still notanswered.

Proof: Let t =
(

αγα

d
Jα(X)

)
1

α−1

andZ ∼ S (α, γ). By Theorem 8,

α

d
(h(X+ Z) − h(X)) = tα−1

2F1 (α− 1, α− 1;α;−t)

=

(

t

1 + t

)α−1

2F1

(

α− 1, 1;α;
t

1 + t

)

, (49)

where we used the fact thatt > 0 and a transformation property of the Gauss hypergeometric function as presented

in Appendix I. Using the series representation of the Gauss hypergeometric function on the open unit disk, one can

write:

2F1

(

α− 1, 1;α;
t

1 + t

)

=
+∞
∑

n=0

(α − 1)n(1)n
(α)n

(

t

1 + t

)n

=

+∞
∑

n=0

α− 1

n+ α− 1

(

t

1 + t

)n

,
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where(A)n = Γ(A+n)
Γ(A) . Equation (49) can hence be written as,

α

d
(h(X+ Z)− h(X)) = (α− 1)

(

t

1 + t

)α−1 +∞
∑

n=0

1

n+ α− 1

(

t

1 + t

)n

. (50)

The LHS of equation (50) is lower bounded by:

α

d
(h(X+ Z)− h(X)) ≥ α

d
(h(Z) − h(X)) = ln

tα−1

Nα(X)Jα(X)
d

,

where we used equation (47), the fact thatt =
(

αγα

d
Jα(X)

)
1

α−1

and thath(Z) = d ln
(

γα
1
α

)

+ h(Z̃α) in order to

write the equality. As for the RHS of (50),

(α− 1)

(

t

1 + t

)α−1 +∞
∑

n=0

1

n+ α− 1

(

t

1 + t

)n

= (α− 1)

(

t

1 + t

)α−1
[

1

α− 1
− ln

(

1− t

1 + t

)

− (α− 1)

+∞
∑

n=1

1

n(α+ n− 1)

(

t

1 + t

)n
]

=

(

t

1 + t

)α−1

+ (α− 1)

(

t

1 + t

)α−1

ln(1 + t)− (α− 1)2
+∞
∑

n=1

1

n(α+ n− 1)

(

t

1 + t

)n+α−1

.

Therefore (50) implies for anyt > 0:

ln

[

Nα(X)Jα(X)

d

]

− (α− 1) ln t ≥ −
(

t

1 + t

)α−1

− (α− 1)

(

t

1 + t

)α−1

ln(1 + t)

+ (α− 1)2
+∞
∑

n=1

1

n(α+ n− 1)

(

t

1 + t

)n+α−1

,

which by letting the scaleγ → +∞ –and thereforet→ +∞, gives the required result

lnNα(X)Jα(X) ≥ (α− 1)2
+∞
∑

n=1

1

n(α+ n− 1)
− 1 (51)

= (α− 1) (ψ(α) + γe)− 1.

The fact that the series
∑+∞

n=1
1

n(α+n−1)

(

t
1+t

)n+α−1

is absolutely convergent permits the interchange in the

order of the limits and justifies equation (51).

We plot in Figure 3 the evaluation of the LHS of equation (48) at the values ofα = [1.2, 1.4, 1.6, 1.8] for alpha-

stable RVsS
(

r, (r)−
1
r

)

for the values ofr = [0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8]. The horizontal lines represent the

RHS of equation (48) for the considered values ofα. Note that stable variables do not achieve the lower bound ofthe

GIIE (48) except whenα = 2 where Gaussian variables achieve the lower bound. The tightness in (48) is explored

in Figure 4 where we evaluate the productN1.8(X)J1.8(X) wheneverX = X1 +X2 whereX1 ∼ S
(

r, (r)−
1
r

)

for r = 1.8 andX2 ∼ N (0, σ2) for different value ofσ. The minimum is achieved forσ = 4 and not whenX is

alpha-stable (i.e., whenσ = 0). Note that the computed minimum in Figure 4 is by no means a global minimum.

Whether there exist RVs that achieve the minimum ofNα(X)Jα(X) and whether the lower boundκα is tight

or not are still to be determined.

Figure 5 shows the relative tightness of the lower boundκα when the LHS of equation (48) is evaluated at

alpha-stable variables with characteristic exponentsr ranging from0.4 to 1.8. If we consider for example on the
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Fig. 3. Evaluation ofNα(X)Jα(X) and comparing it toκα for X ∼ S

(

r, (r)−
1
r

)

for different values ofα andr.

x-axis the value ofr = 0.8 which corresponds to the alpha-stable variableX ∼ S
(

r, (r)−
1
r

)

, the figure shows

that asα decreases,Nα(X)Jα(X) gets closer toκα in a relative manner.

V. PARAMETER ESTIMATION IN IMPULSIVE NOISE ENVIRONMENTS: A GENERALIZED CRAMER-RAO BOUND

Consider now the problem of estimating a non-random vector of parametersθ ∈ R
d based on a noisy observation

X where the additive noiseN is of impulsive nature. Needless to say that in this case the MSE criterion and the

MMSE estimator are not adequate. More explicitly, let

X = θ +N,

whereN is a noise variable having bothh(N) andJα(N) (for some1 < α ≤ 2) exist and finite. Let̂θ(X) be an

estimator ofθ based on the observation of the random vectorX. A good indicator of the quality of the estimator

θ̂(X) is the power of the “error”
(

θ̂(X)− θ
)

. We find next a lower bound on such metric which generalizes the

previously known Cramer-Rao bound.

Theorem 10 (Generalized Cramer-Rao Bound). Let θ̂(X) be an estimator of the parameterθ based on the

observationX = θ +N. Then theα-power of the error is lower bounded by

Pα(e) = Pα
(

θ̂(X)− θ
)

≥
(

dκα
Jα(N)

)
1
α

. (52)

Note that wheneverα = 2 the result of Theorem 10 is the classical Cramer-Rao bound when N has IID
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Fig. 4. Comparison ofN1.8(X)J1.8(X) to κ1.8 = 0.7333 for X = X1 + X2 whereX1 ∼ S

(

r, (r)−
1
r

)

, r = 1.8 and

X2 ∼ N (0, σ2) for different values ofσ.

components. It gives a looser version for generalN:

E
[

∥

∥

∥
θ̂(X) − θ

∥

∥

∥

2
]

d
≥ d

J(N)
. (53)

Proof: Using Theorem 1, among all random vectors that have anα-power equal to Pα(e), the entropy

maximizing variable is distributed according toS
(

α,
(

1
α

)
1
α Pα(e)

)

and

h
(

θ̂(X)− θ
)

≤ h(Z̃α) + d lnPα(e) ,

which implies that

Nα

(

θ̂(X) − θ
)

≤ Pα(e)
α
. (54)

On the other hand,

Jα

(

θ̂(X)− θ
)

= Jα

(

θ̂(X)
)

= Jα

(

θ̂(X); θ
)

≤ Jα(X; θ) = Jα(N), (55)

where the second and the last equalities are due to Theorem 5 and the inequality is due to the data processing

inequality forJα(·) proven in Theorem 6. Applying the GIIE (48) tôθ(X) − θ, we obtain:

Nα

(

θ̂(X)− θ
)

Jα

(

θ̂(X)− θ
)

d
≥ κα,

which along with equations (54) and (55) gives,

Jα(N)Pα(e)
α

d
≥ κα.

October 7, 2016 DRAFT



28

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Characteristic Exponent of Stable Variables

10-1

100

101

102

103

R
el

at
iv

e 
T

ig
ht

ne
ss

 o
f t

he
 L

ow
er

 b
ou

nd
 

on
 N

α
(X

) 
J α

(X
) 

α =1.2
α = 1.4
α = 1.6
α = 1.8
α = 2

Fig. 5. Relative tightness ofκα for alpha-stable variables.

Whenever the noise is a SS vectorN ∼ S(α, γN ) for some1 < α ≤ 2, and sinceJα(N) = d
αγα

N
by property

(4), Theorem 10 specializes to the following bound.

Corollary 2 (Generalized Cramer-Rao Bound for Stable Noise). When the noise is a SS vectorN ∼ S(α, γN ),

1 < α ≤ 2, theα-power Pα(e) of the error of all estimatorŝθ (X) is lower bounded by

Pα(e) ≥ (ακα)
1
α γN .

As an example, consider the Maximum Likelihood (ML) estimator θ̂ML (X) which is given by,

θ̂ML (X) = argmax
θ

ln pN(X− θ).

SinceN is unimodal,θ̂ML (X) = X, and theα-power of the errorθ̂ML (X) − θ = N is Pα(e) = Pα(N) =

(α)
1
α γN =

(

d
Jα(N)

)
1
α

for which equation (52) holds true.

The choice ofα:

Note that equation (52) establishes a new metric to measure the average error strength and hence the estimator

performance when the noisy measurements are affected by an additive noise of impulsive nature. The choice of

a specific value ofα is straightforward whenever the noise belongs to theα-parameterized domains of normal

attraction of stable variables. The quality of the estimator θ̂(X) is tied to the closeness of Pα(e) to its lower bound,

both of which are computable numerically as previously shown for several probability laws. We mention that it

is not known in general whether equation (52) is tight or not.The tightness is already known whenα = 2 for

θ̂(X) = X andN is a Gaussian vector. We believe that answering the tightness question is equivalent to a similar

question about the GFII (39).
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Finally, a direct implication of equation (48) is summarized in the following: let Pα(X) denote theα-power of

the random vectorX according to equation (6). Using (7),

Nα(X) ≤ Nα(Pα(X) Z̃α) =
d

Jα(Pα(X) Z̃α)
,

because
Nα(Pα(X) Z̃α)Jα(Pα(X) Z̃α)

d
= 1.

Equation (48) now yields,

Jα(X) ≥ καJα(Pα(X) Z̃α) = κα
d

Pα(X)
α ,

which is a generalization of the known fact that for anyX with covariance matrix of tracedσ2, J2(X) ≥ J2(Z) =
d
σ2

whereZ ∼ N (µ, σ2I) is a white Gaussian vector.

VI. CONCLUSION

In a typical communication or measurement setup, the observed signal is a noisy version of the signal of interest.

Whether the source of the noise comes from the equipment heating or an interferer, in many instances, the effect of

the perturbation is modeled in an additive manner. Generally, the role of a system designer is to build an efficient

system that recovers the information present in that quantity of interest. In this work we highlighted various

theoretical aspects of such problems when the noise is heavytailed, a scenario in which alpha-stable distributions

play a central role and find applications in diverse fields of engineering and some other disciplines.

Our main focus was on the parameter estimation problem in estimation theory, where the basic estimation problem

of the location parameter of an alpha-stable variable is notyet well understood and performance measures of a

given estimator are to be further investigated. Since the noise variable has an infinite second moment, standard tools

such as the second moment, the MSE and the Fisher informationneed to be extended along with some inequalities

satisfied by these information measures. Though the work of Gonzales [53] was in the direction of some of these

aspects, we believe that it is suitable for the Cauchy case and not generic to the whole family of symmetric stable

distributions. Additionally, the work in [53] was with a “signal processing” spirit.

We proposed in Section II-A, an expression to evaluate the power of signals in symmetric alpha-stable noise

environments. Though the definition of theα-power has unfamiliar format where the value of the power is

incorporated within a cost function, it depends on an average of a logarithmically tailed cost function. Besides the

logarithmic tail behavior of the averaged function, the main argument for suggesting Pα(X) as defined in Definition 1,

is to find a definition that is generic for the stable space of noise distributions, including the Gaussian since stable

distributions are the most common noise models encounteredby virtue of the generalized CLT. Definition 1 is

chosen to become the standard deviation in the Gaussian casein order to unify the order of the power operator

in such a way if the variable is linearly scaled then the poweralso scales linearly. We proved that Definition 1

defines a space where the alpha-stable noise is the worst in terms of entropy/randomness which implies that the

alpha-stable channel model is a worst-case scenario whenever there is an impulsive noise assumption. This fact
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mimics the role of the Gaussian variable among the finite variance space of RVs and generalize it to an equivalent

role of stable variables among the space of RVs that have a finite power Pα(X).

A generalized notion of the Fisher information is introduced in Section III and is shown to satisfy standard

information measures properties: positiveness, scalability, additivity, etc. The newly defined quantityJα(·) is shown

to abide by fundamental identities and relationships such as a chain rule, a generalized Fisher information inequality

and a generalized isoperimetric inequality for entropies.These lead to a generalized Cramer-Rao bound proven in

Section V which sets a novel lower bound on theα-power of the estimation error for any estimator of a location

parameter. This bound can be used to characterize the performance of estimators in impulsive noise environments

and naturally opens the door to the related problems of efficiency and optimality of estimators.

The newly defined power measure Pα(X) establishes a novel way to approach communication theoretic problems.

As an example, the classical approach to the channel capacity problem is done from a channel input perspective.

Under this perspective and for the purpose of emulating realscenarios, input signals are supposed to abide by

some power constraints such as the second moment constraint. Assuming that the additive noise would also have a

finite second moment, this approach quantified the differentmetrics of the channel with respect to the input power

measure irrespective of the noise model. As an example, the capacity of the linear additive Gaussian channel under

an average power constraint is given by the famous formula “C = 1
2 ln(1 + SNR)” where the “SNR” is the signal

to noise ratio between the variance of the input to that of theGaussian noise, hence relating the input power as

defined for the input space to the noise power since the noise falls within the input space. Naturally, this approach

breaks when the noise is not of the same “nature” as the input space. This is true for impulsive noise models such

as the alpha-stable ones having infinite second moments which do not belong to the input space of finite power

(second moment) RVs. Since the performance of any adopted strategy at the input is viewed by its effect at the

output end, it seems reasonable to consider the additive channel while imposing a “quality” constraint on the output.

By restricting the output space to satisfy certain power requirements, we are indirectly taking into consideration the

nature of the noise in the formulation of the constraint which constructs an input space of variables of the same

“nature” of the noise. This is in accordance with the fact that the system designer has no control over the noise

model which is dictated by the channel and can assume the possibility of choosing from an input space similar in

nature to that of the noise, the input signal that best overcomes the noise effect. For the linear AWGN channel,

exceptionally the output approach gives exactly the same answer as the input approach: constraining the output

average power implies a constraint on the input average power.

Finally, we emphasize that the generalized tools and identities presented in this work constitutes an “extension”

of the Gaussian estimation theory to a stable estimation theory in general and may be viewed as complementary

to the works found in the literature by answering some “fundamental-limits” questions.
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APPENDIX I

MULTIVARIATE ALPHA-STABLE DISTRIBUTIONS, RIESZ POTENTIALS AND HYPERGEOMETRICFUNCTIONS

A. Univariate Alpha-Stable Distributions

Definition 4 (Univariate Stable Distributions). A univariate stable RVX ∼ S(α, β, γ, δ) is one with characteristic

function,

φX(ω) = exp [iδω − γα (1− iβ sgn(ω)Φ(ω)) |ω|α]
(

0 < α ≤ 2 − 1 ≤ β ≤ 1 γ > 0 δ ∈ R

)

,

wheresgn(ω) is the sign ofω andΦ(·) is given by:

Φ(ω) =







tan
(πα

2

)

α 6= 1

− 2

π
ln |ω| α = 1.

The constantα is called the “characteristic exponent”,β is the “skewness” parameter,γ is the “scale” parameter

(γα is often called the “dispersion”) andδ is the “location” parameter.

We make the following specifications:

• Whenever the parametersβ = 0 andδ = 0, the stable variable is symmetric and denotedX ∼ S(α, γ).
• The case whereα = 2 corresponds to the Gaussian RVX ∼ S(2, 0, γ, δ) = N (δ, 2γ2).

• Whenever|β| = 1, the alpha-stable variable is called totally-skewed. Furthermore, it is one sided whenα < 1.

B. Multivariate Alpha-Stable Distributions

Definition 5 (Sub-Gaussian Symmetric Alpha-Stable). [28, p.78 Definition 2.5.1]

Let 0 < α < 2 and letA ∼ S
(

α
2 , 1,

(

cos
(

πα
4

))
2
α , 0

)

be a totally skewed one sided alpha-stable distribution. De-

fineG = (G1, · · · , Gd) to be a zero mean Gaussian vector inR
d. Then the random vectorN = (A

1
2G1, · · · , A

1
2Gd)

is called a sub-Gaussian symmetric alpha-stable (SαS ) random vector inRd with underlying vectorG. In particular,

each componentA
1
2Gi, 1 ≤ i ≤ d is a SαS variable with characteristic exponentα. In this work we only use

sub-Gaussian SαS vectors such that the underlying Gaussian vector has IID zero-mean components with variance

2γ2, for someγ > 0. We denote such a vector asS (α, γ).

Proposition 1. [28, p.79 Proposition 2.5.5]

Let N = (N1, · · · , Nd) be a sub-Gaussian SαS with an underlying Gaussian vector having IID zero-mean

components with variance2γ2, for someγ > 0. Then, the characteristic function ofN is:

φN(ω) = e−γ
α‖ω‖α

.

The RVsNis, 1 ≤ i ≤ d, are dependent and each distributed according toS(α, γ).
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Property 2 (Isotropic property). Let N = (N1, · · · , Nd) ∼ S(α, γ). Then, forn 6= 0

pN(n) = f(‖n‖) = Γ
(

d
2

)

2π
d
2

‖n‖1−dpR (‖n‖) , (56)

whereR = ‖N‖ is the amplitude ofN and pR(·) is its density function. Furthermore, we have:

lim
r→+∞

r1+αpR(r) = αγαk1, k1 = 2α
sin
(

πα
2

)

πα
2

Γ
(

2+α
2

)

Γ
(

d+α
2

)

Γ
(

d
2

) .

Proof: Refer to [54].

Note that by equation (56),S (α, γ) is isotropic.

Property 3. Let N = (N1, · · · , Nd) ∼ S (α, γ). Then ∂pN
∂ni

1
pN

(n) is bounded for all1 ≤ i ≤ d.

Proof: SincepN(·) is infinitely differentiable, it is enough to show boundedness at large values ofr = ‖n‖.

We use the results of Property 2 to write

lim
r→∞

pN(n)

‖n‖−d−α = lim
r→∞

Γ
(

d
2

)

2π
d
2

‖n‖1−dpR (‖n‖)
‖n‖−d−α = lim

r→∞

Γ
(

d
2

)

2π
d
2

r1+αpR(r) =
αγαk1Γ

(

d
2

)

2π
d
2

= k2, (57)

wherek1 is defined in Property 2. Using l’Hôpital’s rule, we write

k2 = lim
r→∞

d
dr
pN(n)

d
dr
r−d−α

= − 1

d+ α
lim
r→∞

∂
∂n1

pN(n)× ∂n1

∂r
+ · · ·+ ∂

∂nd
pN(n)× ∂nd

∂r

r−d−α−1

= − 1

d+ α
lim
r→∞

r
(

1
n1

∂
∂n1

pN(n) + · · ·+ 1
nd

∂
∂nd

pN(n)
)

r−d−α−1

= − 1

d+ α
lim
r→∞

1
n1

∂
∂n1

pN(n) + · · ·+ 1
nd

∂
∂nd

pN(n)

r−d−α−2
(58)

Using equation (56),pN(n) is decreasing inr [54, Section 2.1]. Therefore,1
ni

∂
∂ni

pN(n) is negative for all

1 ≤ i ≤ d and− 1
ni

∂
∂ni

pN(n) ≤ −
(

1
n1

∂
∂n1

pN(n) + · · ·+ 1
nd

∂
∂nd

pN(n)
)

. Hence, equation (58) implies

k2 = − 1

d+ α
lim
r→∞

1
n1

∂
∂n1

pN(n) + · · ·+ 1
nd

∂
∂nd

pN(n)

r−d−α−2

≥ 1

d+ α
lim
r→∞

− 1
ni

∂
∂ni

pN(n)

r−d−α−2
,

which implies that there exists a constantκi such that at large values ofr, − 1
ni

∂
∂ni

pN(n) ≤ κi r
−d−α−2 for

1 ≤ i ≤ d. The fact thatlimr→+∞ rd+αpN(n) = k2 completes the proof.

C. Riesz Potentials

Definition 6 (Riesz Potentials). [42, p.117 Section 1]

Let 0 < ν < 1. The Riesz potentialIν(f)(x) for a sufficiently smoothf : Rd → R having a sufficient decay at

∞ is given by:

Iν(f)(x) =
1

κ(ν)

∫

Rd

‖x− y‖−d+νf(y) dy, κ(ν) = π
d
2 2ν

Γ
(

ν
2

)

Γ
(

d
2 − ν

2

) .
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Property 4. Among other properties, Iν(f) satisfies the following:

• F (Iν(f)) (ω) = ‖ω‖−νF(f(x))(ω) in the distributional sense.

• I0(f)(x) =̂ limν→0 Iν(f)(x) = f(x).

• Whenever
∫

|f |(x)Iν(|g|)(x) dx is finite, we have:
∫

f(x)Iν(g)(x) dx =

∫

Iν(f)(x)g(x) dx.

D. Hypergeometric Functions

Definition 7 (Gauss Hypergeometric Functions). For generic parametersa, b, c, the Gauss hypergeometric function

2F1(a, b; c; z) is defined as the following power series:

2F1(a, b; c; z) =
+∞
∑

i=0

(a)i(b)i
(c)ii!

zi, |z| < 1.

Outside of the unit circle|z| < 1, the function is defined as the analytic continuation of thissum with respect to

z, with the parametersa, b andc held fixed. The notation(d)i is defined as:

(d)i =







1 i = 0

d(d + 1) . . . (d+ i− 1) i > 0.

Proposition 2. The Gauss hypergeometric function2F1(a, b; c; z) satisfies the following property:

2F1(a, b; c; z) = (1− z)−a2 F1

(

a, c− b; c;
z

z − 1

)

, z /∈ (1,+∞).

APPENDIX II

PROPERTIES OFPα(X)

We consider random vectorsX andY such that:






E [ln (1 + ‖X‖)] <∞, when considering cases whereα < 2.

E
[

‖X‖2
]

<∞ when considering cases whereα = 2.

We first start by establishing the following Lemmas:

Lemma 2. Let X 6= 0 and define the function ofP > 0,

g (P) =̂ − E
[

ln p
Z̃α

(

X

P

)]

.

The functiong (P) is continuous and decreasing onR+ \ {0}.

Proof:

Continuity: Let P0 > 0, then

− lim
P→P0

E
[

ln p
Z̃α

(

X

P

)]

= − lim
P→P0

∫

ln p
Z̃α

(x

P

)

dF (x)

= −
∫

lim
P→P0

ln p
Z̃α

(x

P

)

dF (x)

= −
∫

ln p
Z̃α

(

x

P0

)

dF (x),
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where in order to write the last equation we used the fact thatpz̃α(·) is continuous onRd. The interchange in the

order between the limit and the integral signs is justified using DCT as follows: In a neighbourhood of P0, choose

a P̃ such that0 < P̃< P. Sincep
Z̃α
(x) is rotationally symmetric and decreasing in‖x‖,
∣

∣

∣
ln p

Z̃α

(x

P

)
∣

∣

∣
≤
∣

∣

∣

∣

ln p
Z̃α

(

x

P̃

)
∣

∣

∣

∣

, ∀x ∈ R
d,

which equality only atx = 0. Therefore,

E
[
∣

∣

∣

∣

ln p
Z̃α

(

X

P

)
∣

∣

∣

∣

]

≤ E
[
∣

∣

∣

∣

ln p
Z̃α

(

X

P̃

)
∣

∣

∣

∣

]

,

which is finite becauseE [ln (1 + ‖X‖)] < ∞ wheneverZ̃α is sub-Gaussian by virtue of the fact thatp
Z̃α
(x) =

Θ
(

1
‖x‖d+α

)

‡‡ (see Appendix I) and because it is assumed thatE
[

‖X‖2
]

<∞ wheneverα = 2 andZ̃2 is Gaussian.

Monotonicity: Let 0 < P̃ < P. Sincep
Z̃α
(x) is rotationally symmetric and decreasing in‖x‖, p

Z̃α
(x/P) ≥

p
Z̃α
(x/P̃) for all x, with equality only at0. SinceX 6= 0, there exists a non-zero point of increase‡ xo, andg (P)

is decreasing in P> 0.

We evaluate next the limit values ofg(P) at 0 and+∞.

Lemma 3. In the limit,

lim
P→0

g (P) = +∞ & lim
P→+∞

g(P) < h
(

Z̃α

)

.

Proof:

The limit at zero:SinceX 6= 0, there exits aδ > 0 such that Pr(‖X‖ ≥ δ) > 0 and

g (P) = −
∫

‖x‖≤δ
ln p

Z̃α

(x

P

)

dFX(x) −
∫

‖x‖≥δ
ln p

Z̃α

(x

P

)

dFX(x)

≥ −Pr(‖X‖ ≤ δ) ln p
Z̃α
(0)− Pr(‖X‖ ≥ δ) ln p

Z̃α

(

δ

P

)

,

becausep
Z̃α
(x) is decreasing in‖x‖. Sincep

Z̃α
(x) → 0 as‖x‖ → +∞, then lim

P→0
g (P) = +∞.

The limit at infinity: Computing the limit at infinity,

lim
P→+∞

g(P) = lim
P→+∞

−
∫

Rd

ln p
Z̃α

(x

P

)

dFX(x)

= −
∫

Rd

lim
P→+∞

ln p
Z̃α

(x

P

)

dFX(x)

= − ln p
Z̃α
(0) < h

(

Z̃α

)

,

where the last inequality is true becausep
Z̃α
(x) is decreasing in‖x‖. The interchange between the limit and the

integral sign is due to DCT as shown in the proof of Lemma 2.

‡‡In this work, we say thatf(x) = Ω (g(x)) if and only if ∃κ > 0, c > 0 such that|f(x)| ≥ κ|g(x)|,∀|x| ≥ c. Equivalently, we say that

g(x) = O (f(x)). We say thatf(x) = Θ (g(x)) if and only if f(x) = O (g(x)) andf(x) = Ω (g(x)).

‡A vector x is said to be a point of increase if and only if, Pr(‖X − x‖ < η) > 0 for all η > 0.
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Lemma 4. Let X be a random vector that has a rotationally symmetric PDF thatis non-increasing in‖x‖, then

−E
[

ln pZ̃α
(X− ν)

]

≥ −E
[

ln pZ̃α
(X)

]

, ∀ν ∈ R
d.

Proof: Since pX(·) and p
Z̃α
(·) are rotationally invariant, one can restrict the proof to the case where all

the {νi}1≤i≤d’s are non-positive by applying an appropriate rotation transformation to the variable of integration.

Hence, for{νi}1≤i≤d non-positive, taking the partial derivative of

−E
[

ln pZ̃α
(X− ν)

]

= −
∫

Rd

pX(x) ln p
Z̃α

(x− ν) dx,

with respect toνi and interchanging the integral and the derivative yields
∫ +∞

−∞
pX(x)

∂

∂zi
p
Z̃α
(x − ν)

1

p
Z̃α
(x− ν)

dx = E

[

∂

∂zi
p
Z̃α
(X− ν)

1

p
Z̃α
(X− ν)

]

≥ 0,

which is true by virtue of the facts thatpX(x) is rotationally symmetric, non-increasing in‖x‖, that for all1 ≤ i ≤ d

the derivative function ∂
∂zi
p
Z̃α

1
p
Z̃α

(x) is an odd function that is non-positive onxi ≥ 0 and that{νi}1≤i≤d are

non-positive. This implies that−E
[

ln p
Z̃α
(X− ν)

]

is maximum atν = 0.

The interchange between the derivative and the expectationoperator is justified by Lebesgue’s DCT since the

integrand
[

∂p
Z̃α

∂zi
(x) 1

p
Z̃α

(x)

]

is bounded by Property 3 in Appendix I.

We prove in what follows some properties of theα-power set in Definition 1.

(i) Pα(X) exists, is unique and satisfies property R1, i.e. Pα(X) ≥ 0 with equality if and only if X = 0.

Indeed, for a non-zero random vector, using the continuity of g(P) and the fact that it is decreasing from

+∞ to − ln p
Z̃α
(0) < h(Z̃α) proven in Lemmas 2 and 3, thereexistsa positiveanduniquePα(X) such that

equation (6) is satisfied which proves property (i).

(ii) Pα(X) satisfies property R2. In fact, for anya ∈ R,

Pα(aX) = |a|Pα(X) .

This directly follows from equation (6) and the fact thatp
Z̃α
(·) is rotationally symmetric.

(iii) Let X andY be two independent random vectors and assume thatY has a rotationally symmetric PDF that

is non-increasing in‖y‖. Let Z = X+Y, then Pα(Z) ≥ Pα(Y). Indeed,

− E
[

ln p
Z̃α

(

Z

Pα(Y)

)]

= EX

[

−EY

[

ln p
Z̃α

(

x+Y

Pα(Y)

)

∣

∣

∣
X

]]

≥ EX

[

−EY

[

ln p
Z̃α

(

Y

Pα(Y)

)

∣

∣

∣
X

]]

(59)

= −EY

[

ln p
Z̃α

(

Y

Pα(Y)

)]

= h(Z̃α), (60)

where equation (59) is an application of Lemma 4 becauseX and Y are independent andY/Pα(Y) is

rotationally symmetric. Equation (60) implies that Pα(Z) ≥ Pα(Y) since the function−E
[

ln p
Z̃α

(

Z
P

)]

is

decreasing in P≥ 0.
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(iv) Let X andY be two independent random vectors. IfY has a rotationally symmetric PDF that is non-increasing

in ‖y‖, then Pα(cX+Y) is non-decreasing in|c|, c ∈ R.

We first show that−E
[

ln p
Z̃α

(

cX+Y
P

)]

is non-decreasing in|c|. To this end, we write

−E
[

ln p
Z̃α

(

cX+Y

P

)]

= EX

[

−EY

[

ln p
Z̃α

(

cx+Y

P

)

∣

∣

∣
X

]]

,

and it is enough to show that−EY

[

ln p
Z̃α

(

cx+Y
P

)]

is non-decreasing in|c|, which we argue as follows:

− EY

[

ln p
Z̃α

(

cx+Y

P

)]

= −
∫

Rd

pY(y) ln p
Z̃α

(

cx+ y

P

)

dy. (61)

SincepY(·) and p
Z̃α
(·) are rotationally invariant, one can restrict the proof to the case whenc ≥ 0 and the

{xi}1≤i≤d’s are non-negative by applying an appropriate rotation transformation to the variable of integration.

Hence, for c and {xi}1≤i≤d non-negative, taking the derivative of equation (61) with respect toc and

interchanging the limit and the derivative as done in (ii) yields

−
d
∑

i=1

xi
P

∫ +∞

−∞
pY (y)

∂

∂zi
p
Z̃α

(

cx+ y

P

)

1

p
Z̃α

(

cx+y

P

) dy

=−
d
∑

i=1

xi
P

E

[

∂

∂zi
p
Z̃α

(

cx+ y

P

)

1

p
Z̃α

(

cx+y

P

)

]

≥ 0,

which is true by virtue of the fact thatpY(y) is rotationally symmetric, non-increasing in‖y‖, that for all

1 ≤ i ≤ d the derivative function ∂
∂zi
p
Z̃α

1
p
Z̃α

(x) is an odd function that is non-positive onxi ≥ 0 and that

bothc and{xi}1≤i≤d are non-negative. This implies that both−EY

[

ln p
Z̃α

(

cx+Y
P

)]

and−E
[

ln p
Z̃α

(

cX+Y
P

)]

are non-decreasing in|c|. The fact that−E
[

ln p
Z̃α

(

cX+Y
P

)]

is non-increasing in P and non-decreasing in|c|
yields the required result.

(v) WheneverX ∼ S (α, γX), Pα(X) = γX
γ
Z̃α

= (α)
1
α γX. Indeed,X has the same distribution asγX

γ
Z̃α

Z̃α

−E
[

ln p
Z̃α

(

X

Pα(X)

)]

= −
γ
Z̃α

γX

∫

p
Z̃α

(

γ
Z̃α

γX
x

)

ln p
Z̃α

(

x

Pα(X)

)

dx = h(Z̃α),

and therefore Pα(X) = γX
γ
Z̃α

.

APPENDIX III

SUFFICIENT CONDITIONS FOR THE REGULARITY CONDITION

In his technical report [55, sec. 6], Barron proves that the de Bruijn’s identity for Gaussian perturbations (2 with

ǫ > 0) holds for for any RV having a finite variance. In this appendix, we follow steps similar to Barron’s to prove

that condition (17) is satisfied for any
(

X+ α
√
ηN
)

, η > 0 for any random vectorX ∈ L where

L =

{

random vectorsU ∈ R
d :

∫

ln (1 + ‖U‖) dFU(u) is finite

}

,

and whereN ∼ S (α, 1) is independent ofX, 0 < α < 2.

In what follows, denoteqη(y) = E [pη(y −X)] be the PDF ofY = X + α
√
ηN wherepη(·) is the density of

the sub-Gaussian SαS vector with dispersionη. Note that sincepη(·) is bounded then so isqη(·) and sinceX ∈ L
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then so isY. Thenh(Y) is finite and is defined as

h(Y) = −
∫

qη(y) ln qη(y) dy.

We list and prove next two technical lemmas.

Lemma 5 (Technical Result).
d

dη
qη(y) = E

[

d

dη
pη(y −X)

]

.

Proof: The interchange between differentiation and integration holds whenever| d
dη
pη(t)| is bounded uniformly

by an integrable function in a neighbourhood ofη by virtue of the mean value theorem and the Lebesgue DCT. To

prove boundedness, we start by evaluating the derivative. Since

pη(t) =
1

η
d
α

pN

(

t

α
√
η

)

,

then
d

dη
pη(t) = − d

α

1

η1+
d
α

pN

(

t

α
√
η

)

− 1

α

1

η1+
1+d
α

d
∑

j=1

tj

(

∂pN
∂nj

)

t
α√η

,

which gives
∣

∣

∣

∣

dpη
dη

(t)

∣

∣

∣

∣

≤ d

α

1

η1+
d
α

pN

(

t

α
√
η

)

+
1

α

1

η1+
1+d
α

d
∑

j=1

|tj |
∣

∣

∣

∣

∂pN
∂nj

∣

∣

∣

∣

t
α√η

. (62)

For the purpose of finding the uniform bound on the derivative, let b as a positive number such thatb < η.

Concerning the first term of the bound in (62), we consider twoseparate ranges of the variabler = ‖t‖ to find the

uniform upper bound. On compact sets, we have

d

α

1

η1+
d
α

pN

(

t

α
√
η

)

≤ d

α

1

b1+
d
α

max
u∈Rd

pN(u), (63)

where the maximum exists sincepN is a continuous PDF and thus upper bounded. As for large values of ‖t‖, by

virtue of equation (57) there exists somek > 0 such thatpN(t) ≤ k 1
‖t‖d+α which gives

d

α

1

η1+
d
α

pN

(

t

α
√
η

)

≤ k
d

α

1

‖t‖d+α , (64)

an integrable upper bound function independent ofη. Equations (63) and (64) insures that the first term of the

right-hand side (RHS) of equation (62) is uniformly upper bounded by an integrable function. When it comes to

the second term of the RHS of (62), we formally have:

∂pN
∂uj

(u) =
−i

(2π)d

∫

ωjφN(ω)e−i
∑d

l=1 ωlul dω, 1 ≤ j ≤ d

and
∣

∣

∣

∣

∂pN
∂uj

(u)

∣

∣

∣

∣

≤ 1

(2π)d

∫

Rd

|ωj |e−‖ω‖α

dω = ξj , 1 ≤ j ≤ d (65)

which is finite and where we used the fact that the characteristic function ofS(α; 1) is φN(ω) = e−‖ω‖α

. Hence, on

compact sets, equation (65) gives a uniform integrable upper bound on the second term of the RHS of equation (62)

of the form
1

α

1

η1+
1+d
α

d
∑

j=1

|tj |
∣

∣

∣

∣

∂pN
∂nj

∣

∣

∣

∣

t
α√η

≤ 1

α

1

b1+
1+d
α

d
∑

j=1

|tj |ξj , (66)
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which is integrable and independent ofη. Therefore, we only consider next the second term of the RHS of

equation (62) at large values of‖t‖. To this end, we make use of equation (58) proven in Appendix Iwhere

it has been shown that−∑d
j=1

1
tj

∂pN
∂tj

(t) =
∑d
j=1

1
|tj |

∣

∣

∣

∂pN
∂tj

∣

∣

∣

t
= Θ

(

1
‖t‖d+α+2

)

and we write for someκ > 0

1

α

1

η1+
1+d
α

d
∑

j=1

|tj |
∣

∣

∣

∣

∂pN
∂nj

∣

∣

∣

∣

t
α√η

≤ 1

α

‖t‖2
η1+

2+d
α

d
∑

j=1

α
√
η

|tj |

∣

∣

∣

∣

∂pN
∂nj

∣

∣

∣

∣

t
α√η

≤ 1

α

κ

‖t‖d+α , (67)

which is uniformly bounded at large values of‖t‖ by an integrable function. Equations (66) and (67) imply that

the second term in the RHS of equation (62) is uniformly upperbounded by an integrable function. This proves

Lemma 5.

Lemma 6 (Existence of the Generalized Fisher Information). The derivative

d

dη
h(X+ α

√
ηN) = −

∫

d

dη
(qη(y)) ln qη(y) dy

exists and is finite. Also,

Jα(X+ α
√
ηN) = −

∫

d

dη
(qη(y)) ln qη(y) dy.

Proof:

d

dη
h(Y) = −

∫

d

dη
(qη(y) ln qη(y)) dy (68)

= −
∫

dqη
dη

(y) ln qη(y) dy −
∫

dqη
dη

(y) dy

= −
∫

dqη
dη

(y) ln qη(y) dy − d

dη

∫

qη(y) dy (69)

= −
∫

dqη
dη

(y) ln qη(y) dy. (70)

Equation (70) is true sinceqη(y) is a PDF and integrates to1. Next, we justify equation (69): note that by Lemma 5,
∣

∣

∣

∣

dqη
dη

(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

E
[

dpη
dη

(y −X)

]∣

∣

∣

∣

≤ E
[∣

∣

∣

∣

dpη
dη

(y −X)

∣

∣

∣

∣

]

,

because the absolute value function is convex. Now it has been shown in the proof of Lemma 5 that
∣

∣

∣

dpη
dη

(t)
∣

∣

∣
is

uniformly upper bounded in a neighbourhood ofη by an integrable functionsb(t) of the form

sb(t) =











A(b) +B(b)‖t‖ ‖t‖ ≤ r0
C

‖t‖d+α ‖t‖ ≥ r0,
(71)

whereA(b), B(b), C and t0 are some positive values chosen in accordance with equations (62), (63), (64), (66)

and (67). Then

E
[
∣

∣

∣

∣

dpη
dη

(y −X)

∣

∣

∣

∣

]

≤ E [|sb(y −X)|] = rb(y),

which is integrable by Fubini’s theorem sincesb(t) is bounded. This completes the justification of equation (69).
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As for equation (68), finding a uniform integrable upper bound to d
dη

(qη(y) ln qη(y)) is achieved by finding

one to dqη(y)
dη

ln qη(y) which we show next. Sinceqη(y) is continuous and positive, then it achieves a positive

minimum on compact subsets ofRd. Let y0 be such that

min
‖y‖≤‖y0‖

qη(y) ≤ 1

& max
‖y‖≤‖y0‖

|ln qη(y)| ≤
∣

∣

∣

∣

ln min
‖y‖≤‖y0‖

qη(y)

∣

∣

∣

∣

,

then on‖y‖ ≤ ‖y0‖ we have
∣

∣

∣

∣

dqη(y)

dη
ln qη(y)

∣

∣

∣

∣

≤ max
y∈Rd

rb(y)

∣

∣

∣

∣

ln min
‖y‖≤‖y0‖

qη(y)

∣

∣

∣

∣

≤ max
y∈Rd

sb(y)

∣

∣

∣

∣

ln min
‖y‖≤‖y0‖

pη(y)

∣

∣

∣

∣

(72)

≤ max
y∈Rd

sb(y)

∣

∣

∣

∣

∣

ln
1

(2b)
d
α

pN

(

y0
α
√
b

)

∣

∣

∣

∣

∣

<∞,

which is independent ofη. Equation (72) is justified by the fact that

min
‖y‖≤‖y0‖

pη(y) ≤ min
‖y‖≤‖y0‖

qη(y) ≤ 1,

becauseqη(y) = E [pη(y −X)]. When it comes to large values of‖y‖, we have by the results of Property 2 in

Appendix I thatpN(t) = Θ
(

1
‖t‖d+α

)

, and hence there exist positiveT andK such thatpN(t) is greater than

K 1
‖t‖d+α for someK whenever‖t‖ ≥ T . Define ỹ such that Pr(‖X‖ ≤ ‖ỹ‖) ≥ 1

2 and choose‖y0‖ to be large

enough. Then, ifb < η < 2b, we have for‖y‖ ≥ ‖y0‖

qη(y) =
1

η
d
α

∫

pN

(

y − u

α
√
η

)

dFX(u)

≥ 1

η
d
α

∫

‖u‖≤‖ỹ‖

pN

(

y − u

α
√
η

)

dFX(u)

≥ 1

2(2b)
d
α

pN

(‖y‖+ ‖ỹ‖
α
√
b

)

≥ bK

21+
d
α

1

(‖y‖+ ‖ỹ‖)d+α

≥ bK̃

‖y‖d+α ,

whereK̃ is some positive constant. At large values of‖y‖, qη(y) ≤ 1 and hence| ln qη(y)| ≤ ln
(

‖y‖d+α

bK̃

)

and

we obtain for‖y‖ > ‖y0‖
∣

∣

∣

∣

dqη(y)

dη
ln qη(y)

∣

∣

∣

∣

≤ rb(y)

(

ln
‖y‖d+α
bK̃

)

,
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which is a uniform integrable upper bound because
∫

ln (1 + ‖y‖) rb(y) dy =

∫∫

ln (1 + ‖y‖) sb(y − x) dFX(x) dy

=

∫∫

ln (1 + ‖y‖) sb(y − x) dy dFX(x) (73)

≤
∫∫

(ln(1 + ‖x‖) + ln(1 + ‖y‖)) sb(y) dy dFX(x)

= Sb

∫

ln(1 + ‖x‖)dFX(x) + Lb

<∞, (74)

where

Sb =

∫

sb(y) dy <∞ & Lb =

∫

ln(1 + ‖y‖)sb(y) dy <∞.

Note thatSb andLb are finite by (71). Equation (73) is due to Fubini and equation(74) is justified by the fact

thatX ∈ L. In conclusion, equation (68) is true and Lemma 6 is proved.
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