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Abstract

Recent studies found that many channels are affected byiaddoise that is impulsive in nature and is best
explained by heavy-tailed symmetric alpha-stable distiiims. Dealing with impulsive noise environments comes
with an added complexity with respect to the standard Ganssivironment: the alpha-stable probability density
functions do not possess closed-form expressions excefawirspecial cases. Furthermore, they have an infinite
second moment and the “nice” Hilbert space structure of fheces of random variables having a finite second
moment —which represents the universe in which the Gausk&ory is applicable, is lost along with its tools and
methodologies.

This is indeed the case in estimation theory where classicdd to quantify the performance of an estimator are
tightly related to the assumption of having finite varianegiables. In alpha-stable environments, expressions such
as the mean square error and the Cramer-Rao bound are hatdenpatic.

In this work, we tackle the parameter estimation problemnipulsive noise environments and develop novel
tools that are tailored to the alpha-stable and heavyeailgise environments, tools that coincide with the standard
ones adopted in the Gaussian setup; namely a generalizagt’pmeasure and a generalized Fisher information. We
generalize known information inequalities commonly usedhie Gaussian context: the de Bruijn’s identity, the data
processing inequality, the Fisher information inequalihe isoperimetric inequality for entropies and the Cramer
Rao bound. Additionally, we derive upper bounds on the difiéial entropy of independent sums having a stable
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component. Intermediately, the new power measure is usesthéd some light on the additive alpha-stable noise
channel capacity in a setup that generalizes the linealageepower constrained AWGN channel. Our theoretical
findings are paralleled with numerical evaluations of vasiguantities and bounds using developéatiab packages.

Keywords: Impulsive noise, alpha-stable, power, estimatin, Fisher information, Fisher information
inequality, Cramer-Rao bound, differential entropy of sums, upper bounds, de Bruijn’s identity,
isoperimetric inequality.

I. INTRODUCTION

The presence of impulsive-noise such as those with al@idesstatistics, is rather frequent in communications

theory. Indeed, interference has been often found to be piilisive nature and is best explained by alpha-stable
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distributions. This is the case for telephone noise [1] amdi@noise signals [2]. Furthermore, in many works that
treated the multiuser interference in radio communicatietwvorks, a theoretical derivation, based on the assumptio
that the interferers are distributed over the entire plame lzehave statistically as a Point Poisson Process (PPP),
yielded an interference with alpha-stable statisticsttisaa with Sousa [3] who computed the self interference,
considering only the pathloss effect for three spread specschemes, direct sequence with binary phase shift
keying (DS/BPSK), frequency hopping with M-ary frequendyiftskeying (FH/MFSK), and frequency hopping
with on-off keying (FH/OOK), where a sinusoidal tone is wartted as the “on” symbol. In [4], the authors
introduced a novel approach to stable noise modeling barethe LePage series representation which permits
the extension of the results on multiple access communpitatio environments with lognormal shadowing and
Rayleigh fading. Continuous time multiuser interferenaswalso found [5] to be well represented as an impulsive
alpha-stable random process. Recently in [6], alpha-stdldtributions were found to model well the aggregate
interference in wireless networks: the authors treatedbtbblem in a general framework that accounts for all the
essential physical parameters that affect network intenfge with applications in cognitive radio, wireless paske
covert military schemes and networks where narrowband #rahwide band systems coexist. In [7], Gulati et al.
showed that the statistical-physical modeling of co-clehimterference in a field of Poisson and Poisson-Poisson
clustered interferers obeys an alpha-stable or MiddletasscA statistics depending whether the interferers are
spread in the entire plane, in a finite area or in a finite areh aiguard zone with the alpha-stable being suitable
for wireless sensor, ad-hoc and femtocells networks wheh imecell and out-of-cell interference are included. A
generalization of the previous results for radio frequeimtgrference in multiple antennas is found in [8] where
joint statistical-physical interference from uncoordethinterfering sources is derived without any assumption o
spatial independence or spatial isotropic interferenestly, the alpha-stable model arises as a suitable noiselmod
in molecular communications [9].

An important problem in the theory of non-random paramegtinetion is to find “good” estimators of some
guantity of interest based on a given observation. Genethls is done by using a quality measure of the estimator’s
(average) performance: the Mean Square Error (MSE). Theotislee MSE s tightly related to the assumption
of finite variance noise and one can even argue that it iselat a “potential Gaussian” setup. Naturally, under
this finite-variance assumption, one can restrict the qoiefihding “good” estimators to the Hilbert space of finite
second moment Random Variables (RV)s which leads to the-esédiblished “Gaussian” or “linear” estimation
theory. When the observation is contaminated with an inipeilaoise perturbation —having an infinite variance,
restricting the look-up universe for good estimators tot thiafinite variance RVs is no longer optimal neither
necessarily sensible. Additionally, tools such as the MSIEtwn out to be problematic.

In this work we consider the non-random parameter estimgtimblem whereby we want to estimate a non-
random parameter(g) € R (R?) based on a noisy observation = § + N and where the additive nois¥ is of
impulsive nature. In the case where the nalééas a finite variance, the problem is weII—understoodé(é{) be

an estimator of) based on observing’, then
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o The quality of the estimator is measured via the MSE: HG(X) — 9’ } Hence, Minimum Mean Square

Error (MMSE) estimators are optimal.
« A lower-bound on the MSE of the estimator is given by the CnaRa&o (CR) bound:

. 2 1
E UG(X) —9‘ ] > €Y
J(N)

where J(N) is the Fisher informatitg‘uof the RV V.

« Equality holds in equatioi]1) whenevat is Gaussian distributed arﬁﬂX) = X is the Maximum Likelihood

(ML) estimator.

In order to understand the parameter estimation problerhénimpulsive noise scenario, one must answer the

following:

1- Under the impulsive noise assumption, the MMSE estimitarot necessarily optimal and the linear MSE
estimator is not sensible. “Good” estimators candidateghimpossibly have an infinite second moment which
implies that a new quality measure has to be defined. Thistguaéasure is to be interpreted as the average
“strength” or power of the estimation error.

2- Since the Fisher informatiosi(-) is tightly related to Gaussian variables through de BraijdéntitH, a new
information measure has to be defined— one that is adaptedptalsive noise variables. Similarly tf(-), the
new information measure is to be related to the alpha-stibtgbution through a de Bruijn’s type of equality.

3- Establishing a new CR bound: the new quality measure ofstimator is to be lower bounded, function of

the inverse of the new information measure.
When it comes to objective 1, a survey of the literature shiasfew alternative measures of power were proposed:

« In[10], Shao and Nikias proposed the “dispersion” of a RV aseasure that plays a similar role to the variance.
However, since no analytical expression is defined for thpatsion except for alpha-stable distributions, they
propose the usage of the Fractional Lower Order Moments LB [| X|"] (r < 2) as an alternative which
yields a non-linear signal processing theory.

» Based on logarithmic moments of the forlog |X|], an alternative notion of power was introduced by

Gonzales [11] for heavy-tailed distributions which he leleas the Geometric Power (GP):

So(X) = cEllog [ X1

*The Fisher information/(Y") of a RV Y having a Probability Density Function (PDp}y) is defined as:

Hee 1 12
J(Y) =/ — 0" (y) dy,
oo P(Y)

whenever the derivative and the integral exit.
TThe de Bruijn’s identity is defined as: For amy> 0,
d o2
d—h(X+\/EZ):7J(X+\/EZ), 2
€

where Z is independent ofX, Gaussian distributed with mednand variancer2
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The author considered logarithmic moments as a “univeraaiéwork” for dealing with algebraic tail processes
that will overcome the shortcomings of the FLOM approach ovhhe summarized by the fact that no
appropriate value of- is feasible for all impulsive processes. Also the discaritinin the FLOM is yet
another unpleasant feature. In fact, for a giver: r < 2, two alpha stable distributions with characteristic
exponentso; = r + € anday = r — € (for somee > 0), will respectively have a finite and infinite-th
absolute moment, though one can agree that they would hanikaisstatistical behavior. However, all stable
distributions have a finite logarithmic moment [11].

The GP was used in formulating new impulsive signal proogstchniques with the proposition of new types
of non-linear filters referred to as “myriad filters”, whicheabasically Maximum Likelihood (ML) estimators of the
location of a Cauchy distribution with an optimality tunergmeter [12]. However, the GP suffers from a serious
drawback since for any variablE that has a mass point at ze®),(X) will be necessarily null even if say other
non-zero mass points are existent. This would yield a zewepdor a non-zero signal.

In relation to objective 2, generalizing “Gaussian” infa@tion-theoretic properties and tools to “stable” ones is
done in [13] where a new score function is defined in terms ofedesl conditional expectation and a de Bruijn’s
identity is found in terms of the new score function in a rigltmanner with respect to that of a stable variable.
Recently in [14], Toscani proposed a fractional score fiomctising fractional derivatives and defined a fractional
Fisher information that evaluates to infinity for stableightes. Using it in a relative manner —with respect to stable
variables, the relative fractional Fisher information éaifid to satisfy a Fisher information inequality and is used
to find the rate of convergence in relative entropy of scatetependent and Identically Distributed (1ID) sums to
stable variables.

Up to the authors’ knowledge, objective 3 has only been asaetin [15] where the authors derived a Cramer-
Rao type of inequality featuring the finite fractional mornehorderr > 1 of a variable and a generalized Fisher
information. The work in [15] was in the direction of extendiinformation theoretic inequalities to new ones where
generalized Gaussians are extremal distributions rattear tharacterizing the quality of estimators in impulsive
noise environments. We also note that the CR result in [1#¢ifrom the restriction of having variables with finite
fractional moments of order > 1 which is not the case in this paper where variables with omligefilogarithmic
moments are considered.

Naturally, this parameter estimation problem is also tHastimating the location parameter of an alpha-stable
variable. Previous works that treated the estimation ofudwgous parameters of alpha-stable distribution [16]—
[22] had a primary goal of finding specific estimators. They based on heuristics for which the authors either
conducted consistency or asymptotic analysis, or testegiria evaluations versus numerical computations and
Monte-Carlo simulations in order to validate and evalu&ie proposed estimators. In this context, in this work
we define and find quality measures and universal bounds taegatisfied by all location parameter estimators of
impulsive distributions. Our main contributions are foofdf.

1) A generalized power notiofThe evaluation of performance measures in multiple apptias in communica-

tions theory is generally done function of the channel sfiat@ity. A key quantity that summarizes the quality
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of the channel is the Signal-to-Noise Ratio (SNR) which ia@orbetween the power of a signal containing
the relevant information to that of the noise signal. A stdmeasure of the signal power is made through
the evaluation of the second moment. When working in alghbks noise environments, some information
bearing signals will necessarily have an infinite second er@mwhich eventually leads to having zero SNRs,
a fact that masks the possibility to quantify the channebses We propose in Definitidd 1 a new “relative”
power measure that we call tepower. a strength measure that takes into account the type of gherling
noise. This would seem reasonable whenever the goal of timencmication system is to maintain a Quality
of Service (QoS) level for some or all of its users which isslated, for example, to a threshold rate (output
entropy) or an output SNR. In both cases the QoS will be degrgnmh the output signal. Our “output-based
approach is tailored to this type of applications since @uses on the output signal and takes into account
the type of the encountered noise in the received signalderao define sensible tools to quantify the QoS
criteria. As an example, we derive in Theor€in 2 the capaditgroadditive stable noise channel under a
constraint on its output’s--power .

Another application is the parameter estimation problenenatihe observed output, affected by stable noise
is sufficient for the characterization of the estimator'sfpenance. The generalized power measure is chosen
in such a way that when constraining it, stable variablekhelentropy maximizers, proven in TheorEin 1. It
is then shown to comply with generic properties that aresBatl by the standard deviation and is numerically
evaluated for different types of probability densities.

2) A generalized information measuM/e consider an alternative formulation of the Fisher infation that is

more relevant tha/ (X)) when dealing with RVs corrupted by additive noise of infirsecond moment; In
essence, our starting point is one where —in a similar fastidhe Gaussian case— we enforce a generalized
de Bruijn identity to hold: motivated by the fact that the idative of the differential entropy with respect to
small variations in the direction of a Gaussian variable &caled.j(-), we propose in Definitiofil2 a new
notion of Fisher information as a derivative of differehgatropy in the direction of infinitesimal perturbations
along stable variables and we label it the “Fisher infororatf ordera” or the a-Fisher information.Next,

we derive in Lemmall an integral expression for the new qtyatitat is a generalization of the well-known
expression of the Fisher information. We note that the defimof the a-Fisher information in this manuscript

is an absolute measure and different from the one in [14]a# different usages and applications and was
independently developed.

3) Generalized information-theoretic inequalitiesformation inequalities have been investigated sinesfdlun-

dation of information theory. It started with Shannon [23thwthe fact that Gaussian distributions maximize
entropy under a second moment constraint. Then a lower bonride entropy of independent sums of RVs,
commonly known as the Entropy Power Inequality (EPI) wasvedo The EPI states that given two real

independent RVsX, Z such thath(X), h(Z) andh(X + Z) exist, then (Corollary 3, [24])

N(X+Z)>N(X)+ N(2), 3)

October 7, 2016 DRAFT



where N (X)) is theentropy powerof X and is equal to

N(X)= ie%(x)_

2Te
The EPI was a proposition of Shannon who provided a localfpt@der Stam [25] followed by Blachman [26]
presented complete proofs. These proofs of the EPI relig@d/oimformation identities: the de Bruijn’s identity
and the Fisher Information Inequality (FIl). The lattertetathat givenX and Z two independent RVs such
that the respectiv€isher informationJ(X) and J(Z) exist. Then

1 1 1
TX12) - IX) 72 @)

The remarkable similarity between equatiohk (3) ddd (4) peisted out in Stam’s paper [25] who in

addition, related the entropy power and the Fisher infoionaby an “uncertainty principle-type” relation:
N(X)J(X)>1, 5)

which is commonly known as the Isoperimetric Inequality Eartropies (IIE) [27, Theorem 16]. Interestingly,
equality holds in equatiofi{5) whenev&r is Gaussian distributed and in equatios (3)—(4) when&veind

Z are independent Gaussians. As it can be noticed, the padyioited inequalities revolve around Gaussian
variables. When it comes to the general stable family, theive fractional Fisher information defined in [14]
is found to satisfy a Fisher information inequality and isdi$o find the rate of convergence in relative entropy
of scaled IID sums to stable variables. In this paper, we gdize these information theoretic inequalities
that are based on the Gaussian setting to generic ones inathie setting which coincide with the regular
identities in the Gaussian setup. Namely, when restricigtie rangel < o < 2, the a-Fisher information is
found in Theorenl7 to satisfy a Generalized Fisher Inforamathequality (GFII). Then, we use the GFIl and
the generalized de Bruijn (proven in TheorEin 4) to derive liedren{B an upper bound on the differential
entropy of the independent sum of two RVs where one of thertatdes Finally, in Theoreml9 a Generalized
Isoperimetric Inequality for Entropies (GIIE) is proved ftold.

4) A Generalized Cramer-Rao bound/ell-known identities such as the Cramer-Rao bound whiavides a

lower bound on the mean square error of estimators in the &bthe inverse of/(X) are adequate in the
finite variance setup. If the observed noisy variable hasfinite second moment, the use of the Cramer-Rao
bound in its classical form is problematic. We derive in Tie@o[10 a generalized Cramer-Rao bound, that

relates the “relative” power of the estimation error to tlemeralized Fisher informatios, ().

The rest of this paper is organized as follows: we proposedcati@n[ll the a-power , a generalized power
parameter and we provide some of its properties and apipiisatWe define in Sectidn]ll the-Fisher information
, we list its properties and we establish a generalized dgrBsudentity. In Sectiori 1Y, information inequalities er
shown to be satisfied by the theFisher information with applications in finding upper baigron the differential
entropy of independent sums when one of the variables isestatnl establishing a generalized IIE. The generalized
CR bound is stated and proved in Secfign V and Se¢fidn VI coled the paper.
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Il. THE a-POWER, A RELATIVE POWER MEASURE

Power measures are important tools that can provide pastafundamental information about a signal. They
serve multiple purposes such as signal strength comparigaas reference units for the computation of performance
and quality indicators. We stipulate that a “strength” owpo measure PX) of a random vectoX should satisfy
the following:

R1- P(X) > 0, with equality if and only ifX = 0.
R2- P(aX) = |a|P(X), for all a € R.

These restrictions are “minimal” and do not contain for epasome of the dispensable properties satisfied by
the GP such as the multiplicativity and the triangular iredijy properties [11]. However they are deemed sufficient
to define a strength measure.

As a notion of average power, the second moment is the ansneemtidely known result in communications
theory; it is the constraint under which a Gaussian densitction is entropy maximizer. In order to come up
with a notion of average power in the presence of alphastdidtributions, one might consider adopting the
measure/constraint under which sub-Gau%isymmetric alpha-stablé(SaS ) density functions with an underlying
Gaussian vector having IID zero-mean components (referefinifion[8, Appendix]l) are entropy maximizers; an

approach that we adopt in what follows.

A. A Power Parameter in the Presence of Stable Variables
~ ES
In this manuscript we denote 1%, ~ S (a, (%) ") a referencé&Symmetric Stable (SS) vectae.,
e wheneverx # 2: a reference sub-GaussianS vector with an underlying Gaussian vector having 11D zero-

2
mean components with varianeé = 2 (1)«

e whena = 2: a reference Gaussian vector of 1ID components with mean aedovariance 1.

Definition 1 (Power Parameter)The “power of ordera” or a-power of non-zero random vectdX is the non-

negative scalar #X) such that:

—E {lnpza (%)] = h(Z,), (6)

whereh(Z,) is the differential entropy of.,. For the deterministiX = 0, we define R(X) = 0.

The existence and uniqueness of thgower will be addressed shortly. Intuitively, one may thif P, (X) as
a “relative power” with respect t&,, which is a reference variable whosepower is equal to unity. In the two

special cases where closed-form expression of the PDF ikl thea-power can be evaluated:

fIn some texts, the term sub-Gaussian refers to distribdtiontions whose tails are faster than those of a Gaussiahidwork, we do not
use the term sub-Gaussian in this sense.
§We use the term symmetric alpha-stable$S) to refer to the class of non-degenerate symmetric stagtiébations excluding the Gaussian.

Otherwise, only the term symmetric stable (SS) will be used.
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« Whena = 2, Z,is a zero-mean Gaussian vector with identity covarianceirand

) = [EIXEL

1 d+1 1
pzl(x): dlr( 2 )
T2 (

L) F
and R(X) is the solution of

< (1ol )] 2[00

As defined in[(B), the quantity,PX) is endowed with some power properties that we list hereaitelr prove

o Whena =1 (see [28]),

in AppendixIl.

Property 1. Let X andY be random vectors such that:

E[ln(1+|X]|))] < o0, when considering cases whetie< 2.
{ E[IX]?] <o when considering cases whete= 2.
The following properties hold:
(i) Thea-power R, (X) exists, is uniqgue and,RX) > 0 with equality if and only ifX = 0.
(i) For anya € R, P, (aX) = |a| P, (X).
(i) If X andY are independent an& has a rotationally symmetric PDF that is non-increasing|jip||, then
P.(X+Y)>P.(Y).
(iv) If X andY are independent an& has a rotationally symmetric PDF that is non-increasing|jim||, then
P, (¢X 4+Y) is non-decreasing ific|, ¢ € R.
(v) WheneveiX ~ 8 (a,7x), Pa(X) = (@)= yx.

Though the definition of the:-power as stated in equatidn (6) is implicit and dependertherdensity function
of the SS vectof,, which does not have closed form expression except in thdapeses of the Cauchy and the
Gaussian distributions, the computation of theower R (X) of a certain random vectd can be done efficiently
using numerical computations. In fact, the stable derssitzan be computed numerically as inverse Fourier transforms
or by usingMatlab packages that compute these densities such asStabl& package provided by Nolan [29].
We use here the latter and we developlatlab code that computes the-power for a scalar RV according to
Definition[. We plot in Figuréll, the-power of several probability laws— Gaussian, uniform,laap, Cauchy and
alpha-stable, with respect to a multitude of symmetric atptable distributions with the characteristic exponent

ranging fromo0.4 to 1.8.

- Consider for exampl€Z; ». The a-power of a Gaussian variabl§ ~ N(0,2) is equal to P2(X) = 0.7869.
Using the scalability property (ii), the-power of a Gaussian variabl& ~ N(0,0?) is equal to P2 (X) =
0.7869\% = 0.5564 0. Note that as already known, the power the Gaussian varidble N(0,02%) with
respect toZ, ~ N(0,1) is equal to P(X) = 0.
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- Another example is wheX ~ U[—a,+a], a uniform RV with zero mean and variance equalﬂ,fo With

respect toZ, 5 it has ana-power of Ry g(X) = 0.3036% = 0.1753 a, whereas with respect to the Gaussian

law the power is equal to the standard deviatiogtP = % = 0.5774 a.

10°¢

%:—;W : E

Laplaceu = 0,6°=2 1
“Gaussiany = 0,02 =2
*Uniform, u = 0,a2: 2
~-Cauchyy=1 1
—Alpha-Stableq = 0.6, = 1

10—2 7 | | | |
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Characteristic Exponeiat

Fig. 1. Evaluation of then-power of some probability laws with respect o, ~ S (a7 (a)*i) for different values ofu.

For the value of the exponent = 2, the a-power of the Cauchy and alpha-stable laws evaluate to tynfand

they are not shown in Figutd 1.

B. Applications

The new “power” measure may be used in a variety of setups.n&case in what follows two scenarios related
to two fundamental information-theoretic problems: epyronaximization and channel capacity evaluation.

1) Stable Maximizing EntropyHaving adopted a generic power definition when consideriagle noise envi-
ronments, we study the solution of the entropy maximizagiomblem subject to a constraint on the newly defined
power. Namely, let P> 0 and consider the set of random variables wheggower is equal to P:

P = {distribution functionsF on R? : —/lnpza (g) dF(x) = h(Za)} )
According to [30, Section 12.1], among all distribution &tions ' € P, the one that maximizes differential entropy
has the following PDF:

p () = Mo (8) = o (X)

where )\, and \, are chosen so that'(x) € P. Since p;_ (%) is of the sought after form,

- 1\«
arg max hF)=PZy~ S| q, (E) P) , @)
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and the value of the maximum is:

As a direct generalization, one can write:

Theorem 1. Let
P = {distribution functionst” onRR? : 0 < P,(F) < 4, A > 0}. (8)

Then
AZ, = arg fax h(F),

and the maximum entropy value/i$Z,) + dln A .

2) Communicating over Stable ChannefSonsider the additive linear channel:
Y =X +N, 9)

whereY is the channel outputX is the input andN ~ S (a,yn) is the additive SS noise vector which is
independent oX. We ask the following question: what constraint is to be isgmon the input such that a stable
input achieves the capacity of chanrdl (9)? Under this sa&rend knowing that a stable input generates a stable
output, a sufficient condition is that the output space imduby the channel is the space where a stable variable

maximizes entropy, specifically a space of a form agn (8)s Témds to the following result:

Theorem 2. Let N ~ S (o, yw) and A be a non-negative scalar such that> P, (N) = («)=~n. Consider the

spacePp, ), 4] Of probability distributions:
Pip.N), 4] = {distribution functionst” onR? : P, (N) < P,(F) < A}. (10)

Whenever the outply’ of channel[(D) is subjected tb (10), the channel capacityuatas to:

A

C=dln (W

) =dln (SNl%utput) s

Q=

o

and is achieved bX* ~ S (a, (1)« /A> — PQ(N)O‘). Furthermore, the input cost constraint can be written

as:

IP € [P.(N), A], Exp)@%mﬂxv—xﬂ@ﬂgﬂ)}:m (11)

P.(N)

Proof: By Theoremll, under conditiofi (lL0) a stable outpit ~ S (a, (é)é A) maximizes the output

entropy and achieves the channel capa€lty

C=h(Y")=h(N) = dln(A)
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where we used the fact tha{N) = In(R.(N)) + h(Z,) sinceyn = P, (N)~z_. The optimal inputX* which
yields Y* is also distributed according to a stable variable with peateryx-:

1

7% =y N = (AT Ry (N)“),

which by property (v) yields,
P, (X*)" = aygk. = AY — P, (N)“.

Finally, we determine below the input cost constraint th&lids the output spac®p n), 4j- The output con-
dition (10) is explicitly stated as the space of all randonetees Y such that there exists a P 0, such that

P,(N) <P< A and

—E [mpza (%)} =hlZ,) <+ Ex [—EN [lnpza (X;N)

where we used the iterated expectations to write the secpmation. Equation (12) can be interpreted as the input

XH = h(Zy), (12)

cost functionC(-) being

C(x,P)=—-En |:lnpza (@)} ; (13)

and the input cost constraint being:
IPe P(N), 4], Ex[C(X,P)]=h(Zd).

The cost function and the cost constraint can be written iiffardnt form:

X+n
C(x,P) = — / Do oz, (1) Inpy. (T) dn

1 v
— /pPQ(N)Za (v—x)In (r:pia (E)) dv —InP

- - /pPQ(N)ZQ(V —x) Inppz (v)dv —InP
=P (pPa<N>Za(V - X)HpPZQ(V)) +h(Py(N) Zo) — InP

)
- D (ppa(N)Za(v —x)|| pPZa(V)) + h(Zo) + In i (PN> , (14)

where D(p||q) is the Kullback-Leibler divergence between two PDFandgq. Using equation[{14), the input cost

constraint can be rewritten as:

Ex [ (2. v = Xz, ¥))] = 0 5y

[ |
Note that the capacity problem at hand of the stable cha@eir(der the input cost constrainf {11) is a gener-
alization to the well known AWGN channel under the averageqroconstraint [23] and the additive independent
Cauchy channel under a logarithmic constraint [31].
Finally, in the scalar case the generic cost functigm) presented in[(13) i®(2?) whena = 2. For all other
values ofq, using the same methodology as in [32] one can provedhat = © (In |x|) by virtue of the fact that

Inpz (z) = O(In |z]). This comes in accordance with the results presented in [32]
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C. Extensions and Insights

The a-power measure RX) defined in[6) is related to a choice &f, —or equivalently a choice df < a < 2,
and as previously mentioned (X) can be looked at as the relative poweofwith respect to that oZ.. Naturally
one would ask the following: In a specific scenario, what gadfialpha is more suitable? An answer to this question
is given when considering, for example, an additive noisenalelY = X + N. In fact, in most communications’
applications, the quantity of interest for a system engingé¢he received signal or the outpit as it generally
represents the quantity that will undergo further processn order to retrieve the useful information. In addition,
the noise variablé&N imposed by the channel represents another important Vargibce relevant quantities and
performance measures are computed function of the relptiveer between the output signal and the noise, a
guantity that is commonly referred to as the output SNR. Mueg, the outpuly is shaped by the nois, hence
it has “similar” characteristics to those ™ (for example, a vectoN having infinite variance components will
always induce a vectdY having infinite variance components). This is to say, thabt@context of an additive stable
noise channel, it would seem natural to measure the powdedifferent signals with respect to a reference stable
variable whose power evaluates to unity. Hence the choice afid thenZ, becomes straightforward depending
on the stable noise characteristic exponent

A natural extension is to generalize the adoption 9f2) for a specificZ,, to cases where the noise is not
necessarily stable but falls instead in the domain of norat@hctionD,, [33], [34] of the stable variables. For
example, in the scalar case, any noise variable having & Seitond moment belongsip and B(X) is equal to
the second moment. For noise variables whose tail beha/'@r(imﬁ), 0 < a < 2, thea-power R (X) should

be used.

Ill. a-FISHER INFORMATION : A GENERALIZED INFORMATION MEASURE

In this section, we introduce a family of new information ree@s{J.(-)},.,<, @nd its properties as a
generalization of the standard Fisher information. Thisiame through enforcing a family of identities of the

de Bruijn type and finding an analytical expressionjgf-), 0 < o < 2.

Definition 2 (a-Fisher information ) Let X be a finite differential entropy RV and, an independent reference SS
variableZ, ~ S (a, (é)é) 0 < o < 2. We define the “Fisher information of ordaf or the a-Fisher information

Jo(X) as follows:

h (X + %Za) ~ h(X)
Jo(X) = - lim , (15)

e—0t €

whenever the limit exists.
For ad-dimensional random vectd = (X1, -- , Xq4), Jo(X) is defined as in[{15) whet&,~ S (a, (é)é)

is the d-dimensional reference SS vector.

Alternatively, by the change of variable= <, if N denotes an independent SS variable~ S («, 1), the
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a-Fisher information is

h(X+ VtN)—-h(X
Jo(X) = lim (X + ViN) ( ), (16)
t—0+ t
whenever the limit exists. In the vector casg,(X) is also as in[(16) wher® ~ S («, 1).
Before proceeding to discuss the properties of the newhyndéfguantity we point out that the existence of the

limit is guaranteed in a wide range of scenarios:

Theorem 3. For all random vectorsX such thatE [In (1 + || X]||)] and h(X) are finite, J,(X) exists for all

O<a<?2.

Proof: We first note that,(X + ¥/tN) exists and is finite sinc&/t N ~ S («, /t) has a bounded PDF and
E[In (1 + || X]])] is finite [35, Proposition 1]. Also, in the scalar case it hastb proven in [36] that the differential
entropyh(X + NV;) is concave int > 0 wheneverN is an infinitely divisible RV whereV, is related toN through

their characteristic functions as follows [37, Theorem.2 {3.65]:
¢Nr (W) = et n ¢N(w)'

Since in our case the infinitely divisible RV is stable withachcteristic exponent, thenN; ~ {/tN which implies
that h(X + Ny) is concave int and therefore it is everywhere left and right differentealhd a.e differentiable.
These properties generalize in a straightforward mannéneovector case, and hentggh(X + Y/tN) exists a.e.

in t and £1(X + {/tN) exists. [ ]
+

t=0

A. Properties of thex-Fisher information
Few properties of/,(X) may be readily identified.

(1) Itisnon-negative: By definition, J,(X) represents the rate of variation bfX) under a small disturbance in
the direction of a standard SS vector. It represents the bimpositive quantities and thereforé, (X) > 0.

(2) J2(X) coincides with the usual notion of Fisher informatidNhen the stable noisl is Gaussian, i.ex = 2,
J2(X) coincides is the trace of the Fisher information matrix

(3) It's translation invariant:Let c € R4, thenJ, (X +c) = J,(X). This follows directly from the definition and
from the translation invariant property of the differehgatropy.

(4) It has a closed-form expression for symmetric stable vectér X ~ S («, ) then J,(X) = g% nats.
Indeed, ifX ~ S (a,y) thenX + {/eN ~ S (o, /7 +¢€) and

h(X + ¢/eN) — h(X)

Jo(X) = lim

e—0

€
i ™ ({/7* +eN) — h(yN)
€

e—0
- B(N) +din (/1) = h(N)

e—0 €

d 1
= —— nats
oy«
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This result comes in accordance with the fact thafX) = J(X) = % wheneverX ~ N(0; o?1) is Gaussian
with covariance matrix2l. This is true since in this case = 2 and for a Gaussian variablg = "72
(5) Scales:J,(aX) = #JQ(X) for a # 0. Indeed,

Ju(aX) = lir% h(aX + §/eN) — h(aX)
e— €
h (X—i— e ﬁN) +dln|a| — A(X) — dln|al

= lim
e—0

L (xey

WE—?O
1

= —JQ(X)a

|al*

where we used the fact th&tIN) is identically distributed a®N.

€
;QN> — h(X)
ol

(6) Independent sumsl, (X + Z) < J,(X) when Z is independent ofX. Indeed
h(X+Z+ VIN) — h(X +Z)

N

t
. I(X+Z+ {iN;N)
= lim
t—0 t
I(X+ ViIN;N
< lim I(X + VIN;N) = Jo(X),
t—0 t

where the inequality is due to the fact tiit— X + ¢/tN — X + Z + {/tN is a Markov chain.

(7) Sub-additivity: J,(-) is sub-additive for independent random vectorsLet X = (Xy,---,Xy) be a col-
lection of d independent RVs having Fisher informatidd,, (X;)}L,, then J,(X) = Jo(X1,---,Xq) <
Zle Jo(X;), becausen(Zy, -+, Z4) < Zle h(Z;) with equality wheneve{ Z;}<_, are independent. It is
known thatJ,(-) is additive and it will be later shown thak,(-) is in fact additive.

Due to the above, one may consider(X), 0 < « < 2 as a measure of information. A single random ve&or
might hence have different information measures whichesgmt from an estimation theory perspective a reasonable
fact since the statistics of the additive nolNeaffect the estimation oK based on the observation &+ N. From
this perspective, the original Fisher information woul@érsesuitable when the adopted noise model is Gaussian or

when we are restricting the RV to have a finite second moment.

B. An expression aof,,(-)

We find in what follows an expression of,(X) whenever the random vector is absolutely continuous with a

positive PDF. More precisely, |€&X € V where,
V= {Absolutely continuous RVYJ : py(u) > 0, A(U) is finite &/m (14 JU|]) pu(u) du is finite } .

Lemma 1 (An Expression of thex-Fisher information ) Let N ~ S (a,~) be a SS vector and I&X € V be

independent ofN with a characteristic functionsx (w) such that[||w||*¢x (—w)] € L'(R?). If there exists an
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e > 0 such thaH

{ I i GOl g =]

} 17)
te[0,¢e)

are uniformly bounded in by an integrable function of, then thea-Fisher information ofX is
Jo(X) = /lnpx(x) fz[|\w||a¢x(—w)} (x) dx. (18)

Proof: Using Theorenfi3/, (X) exists. Now, lett > > 0 and denoteX; = X + {/tN with characteristic
function

dx, (W) = ox(w) e NN = gy (w) em =M Il
= ¢x, (W) — (t = n)y*[|w|“Px, (W) + ot —n).

By the linearity of the inverse Fourier transform,

px(x) = px,(x) = (t = )y Fr[llw]“dx,(~w)] (x) + o(t — ), (19)

which is valid since the inverse distributional Fouriemsorm 7 [||w||™*¢x, (w)] exists for allm > 1 because
|w|™¢x, (w) is a tempered function by virtue of the fact tha¢, (w) is an L'-characteristic function and hence
is in £ (R4). Equation [(IP) implies that

dpx, (x)
dr

= =" Fr[llw]|*éx, (~w)] (x),

T=1
and by the Mean Value Theorem, for sofe b(t) < t,

K —hOR) __ [ ) o, ) ) )
¢ Ra ¢

dx

d X
— _ / [1 + 1anb(t) (X)] pXT( )
R4 T=b(t)

dr

= [ 1 ()] F o, (—)] 0 dx
= [, O ] " ()] ()
which is true sincé|jwl|*¢x (—w)] € L*(R%) and
[ Fllwl o, ()] x) dx = [ 3(0) [l 23, () doo = 0.

The imposed conditions insure that Lebesgue’s Dominatetv€gence Theorem (DCT) holds and the limit may
be passed inside the integral and

TolX) = [ g (07 [l (—10)) ) .
|

9Fz(-) denotes the inverse distributional Fourier transform. féfglarity condition imposed if.{17) is assumed to hold veven.J, (-) is
being evaluated using equatidn {18) throughout the paper.
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We note that, whenever = 2, equation[(IB) gives the regular expression of the Fishernmation. In fact, in

the scalar case
d2
IOX) = 2a(X) = [ px (@) F oo ()] @) do = — [Inpx(e) 1 px () da,

where the last equality is valid as long &spx (z) 4 px (z)|72 vanishes. In thel-dimensional case/>(X)
is also consistent with the regular definition of the Fish@bimation being the trace of the Fisher information
matrix. The sufficient condition listed in the statementted temma, is a technical condition involving “fractional”
derivatives of the PDpx (x). Whenevera = 2, this condition boils down to similar type of conditions ioged
by Kullback [38, pages 26-27] to prove the well-known reselating the second derivative of the divergence to
the Fisher information: a result that implies de Bruijn'edity at zero (see [35]).

Let X, = X 4 ¢/nN’ for somer > 0 whereN’ ~ S(«, ) independent olN. In Appendixll it is shown that
the regularity condition o (17) is satisfied and therefore

d N o
dat h(Xy + ViN) ot V" Ja(Xy).

Since ¢/n N’ + {/tN is distributed according to¢/n + ¢ N, this equation is equivalent to a generalized de

Bruijn’s identity stated in the following theorem.

Theorem 4 (Generalized de Bruijn’s identity).et X € V and define for > 0 the random vectoX,, = X+ ¢/7N.

For anyn > 0,

d% B(Xy) = 7" Ta(X,), (20)

where J,(X,) is given by equatior{ (18). Additionally, whenever the ragty condition [IT) is satisfied b¥X,

d (o3
| =), 1)

where J,(X) is given by equatior (18).

To computeJ,(:), we use the fast Fourier transform usiidgtlab by following a similar methodology as
in [39]. We plot in Figurd R the evaluation of,(-) for a collection of alpha-stable variablés ~ S (r, (r)—%)
parameterized by the characteristic exponenit is observed that as the value ofincreases,J, (X) increases.

Furthermore for fixed-, J,(X) decreases with.

IV. GENERALIZED INFORMATION THEORETICIDENTITIES

In addition to their theoretical relevance, informatioregualities have important implications in information
theory. For example, by the means of the FIl, one can prov&Bienhich is useful for finding bounds on capacity
regions and in proving strong versions of Central Limit Tiegns (CLT)s. In what follows, we state and prove a
list of information inequalities featuringd,, (-). Namely, we list and prove a generalized Fll, an upper bounthe

differential entropy of sums having a stable component agéreeralized IIE.
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The value of the parameterin JQ(X)

Fig. 2. Evaluation ofJo(X) for X ~ S (r, (r)*%) for different values of andr

A. A Generalized Fisher Information Inequality

The Fisher information inequality is an important identihat relates the Fisher information of the sum of
independent RVs to those of the individual variables. It firesd proven by Stam [25] and then by Blachman [26].
Both authors deduced the EPI from the FIl via de Bruijn’s titgnStam relied on a data processing inequality of
the Fisher information in the proof of the Fll, a methodoldbgt was later used by Zamir [40] in a more elaborate
fashion. Finally, Rioul [35] derived a mutual informationeiquality, an identity that implies the EPI and by the
means of de Bruijn’s identity implies the FII.

Data processing inequality foy,,, 1 < o <2: The data processing inequality asserts that gains could not

be achieved when processing information. In terms of muitfarmation, if the RVsX-Y—-Z form a Markov
chain [30, p.34 Theorem 2.8.1],
1(Z; X) < I(Y; X),

with equality if X—Z-Y is also a Markov chain. In [40], Zamir proved an equivalerdgqguality for the Fisher
information in a variablé” about a parameté. We follow similar steps and extend the data processinguiakty

to J,; an inequality which we will use next to prove the GFII.

Definition 3. Letm > 0 and let@ = [0, 05 - - - Gm]t be a fixed vector of parameters. Fok o < 2 define,
Jo(Ye;0) = —E[I]_, [Melnpy,] (Ye)] (22)

&  Ju(Ye:0|Z) = Ezl[Ja(Ye:0|Z =12)],
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where for fg(-) : R? — R that is parameterized b§ € R™

2 [fo] :RT =R

(3 —%5) / 16 — nl| =27 fy (x) d, (23)

x =I5, [fo] (x )—W -

and

0% f
Do folx
o0fo(x ;6

The operatol,_,,[] is the Riesz potential of ordé2 — «) presented in Append[X I. Note that the Riesz potential

NNJ

in equation[{2B) is that of functioyfy(-) when @ is considered the variable instead-af
Theorem 5 (Translation Property fod = m). If d =m and Y9 =Y + 6, then
Jo(Ye;0) = Jo(Y). (24)
Proof:

Tu(Y) = / Iy (v) Fz [lwl|® by (—w)] () dy

= [ 2y (fz[uww-%(—wﬂ <y>) dy (25)

/ Ay (npy(y)) Loalpy](y) dy (26)

=- / Lo [Ay (Inpy)] (y) py (¥) dy (27)
w

[ e |3 gy | pvv)dy 28)

o _ @ 1 0 d 29

—/sza Xj:dTJQ- npy, | (v +6)py(y)dy (29)

=- /Ize_a [ANeInpy,] (y +0)py,(y +0)dy
- Ja(Ye;o),

Equation [[(25) is due to basic properties of the Fourier famns since >, (py)(y) = Fz [[|w[|*2¢v (—w)] (¥)
decays ta0 at “c0”. In order to write equation(26), we use Green’s first idgnf41] in the following form: Let
v denotes the gradient operator arddenotes the dot product. 1f(-) and ®(-) are real valued functions dR<,

then

/ U(y)Ae(y)dy =~ | v¥(y) x ve(y)dy + lim U(y) v @(y) x ndS(y),
Rd Rd =+ J|yl=R

wheren is the outward pointing unit normal vector of surface elemési(y). Applying twice Green’s theorem
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justifies equation[{26) as long as:
mp 400 /” H Inpy(y) V I2-a(py)(y) X ndS(y) =
yl|=R

and

s 400 / L-o(py)(y) 7 Inpy(y) x ndS(y) =
lyll=R

As stated in Appendik |, equatiof (27) holds true wheneyey In pyv (y)| Io—o(py)(y) is integrable. It remains

to justify equation[(209) which we prove next,

d2
139, [Z Wlane)] (y+9)

:mz T / 16 — =+ “Z 1npy (y +0) dn (30)
— 22 0 — ||tz 1 0—n)d 31
LG T / 6l ZCW wpv(y +0 - m)dn (31)
=L/ 16 —n|| =4+~ “Z—lnp (y +6 —n)dn
n%92—al dy? Y
— I‘(%i/ ||y_V||7d+27aZ _1an(V) dv (32)
12207 (52) Jae — dy?

=1, [Z%lﬂp\(] (¥)-
j J
Equation [(3D) is the definition off_, [] given in equation[(23) and(B1) is due to the fact thaf = Y + 7.
Equation [(3R) is obtained by the change of variable- y + & — n and the last equation is due to the definition
of Ir_q [] (see Appendikll). [ |

Theorem 6 (Chain Rule and Data Processing Inequality for th€isher information ) If 6-Ye—Zg, i.e., the

conditional distribution ofZy givenYy is independent ofl, then
Ja(ze; 0) S Ja(Ye; 0)1

whenever/,(Yq;0|Zg) > 0.

We note that the conditioi, (Ye; 0|Zg) > 0 is needed since there are no formal guarantees of non-negess
according to Definitio13 as it is the case f@;(Y). The non-negativity of/, (Y;0) is guaranteed, for example,
wheneverf is a translation parameter. Another case when non-netyatialds is found next in the proof of
Theorent¥.

Proof: Consider
Joa(Ye,Z;0) = —Ey 7z [Io—o [No (Inpyy,z,)] (Yo, Ze)] .

We have

Inpy, z,(y,2;0) = Inpz,(z;0) + Inpy,y iz, (y; 0|z),
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which yields
Jo(Yo,20;0) = Ja(Zg;0) + Ja(Yo;0|Ze) (33)
> Ja(Zg;0). (34)
Equation [(3B) is due to the linearity property of the Lapdacoperator, the Riesz potential [42] and the expectation
operator. Equatior (34) is justified by the fact that(Yy; 6|Zy) > 0 by assumption. Equality holds if and only if

Jo(Yg;0|Zg) = 0 which is true if6—Zy,—Yy forms a Markov chain. On the other hand, siri&gis conditionally

independent ob given Yy, Inpz, v, (-|y) is independent of and
Jo(Yo,Z0;0) = Jo(Ye;0),

which along with equatiorf (34) gives the required result. ]

Additivity property ofJ,(Y) for vectorsY having independent componentBefore proceeding to state and

prove the GFII, we prove thadditivity of J,(Y) whenY has independent componends mentioned in property
(7). Starting from equatiori (28),

Jo(Y) = _/pY(Y)I2—a Z IHPY} y) dy

_ / () I — 522 1an] (y) dy (35)
= Y [ Iz:a lj—yz lnpy,.] (1) dy (36)
= —Z/pyj (Y7) I2—a l%lnpyj] (y;) dy; (37)
- —Z/ Iz o Iy (y)] Inpy, (y;) dy; (38)

= > Ja(Y5)
J
where equationd (85) and (37) are due to the independende df; 5. Equation [(3b) is justified by the linearity
of the Riesz potential and equatidn{38) holds true when{\hepyj diwlg_a[pyj](yj)}j go to 0 at “c0” and the
regularity condition[(Il7) is satisfied by tH&’; }'s.

Generalized Fisher Information Inequatity

Theorem 7 (Generalized Fisher Information Inequality (GFllYlet 1 < o < 2 and let'Y; and Y, be two

independentl-dimensional random vectors, then
_1 _1 _1
Ja (Y1 +Y2) > Ja " (Y1) + Ja * (Ya2). (39)

We note that whenever = 2, equation[(3B) boils down to the well-known “classical” Fll
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Proof: For the matter of the proof, we make use of the data procegsatmality established in Theordm 6.

Let w; andw, € R™ be two positive numbers such that +w, = 1. Also lete > 0 andN be an independent
random vector distributed according &, 1). For anyd € R¢ we have

Y Y

60— (—1+0,—2+0) — (Y14 Y2+ 0+ ¢/eN)

w1 w2

forms a Markov chain. Defin& g ; = Z—f +60,Yg2= Z—j +0 andZp =w1Ye1+w2Ygo+ ¢/eN, then
Ja ((Y9,1,Y9,2) ;G‘Ze) =Ez, [Ja ((Yo,1,Y0,2):0|Zg)] > 0.
Indeed, letp(y, , v,.)z, (s |2) be the PDF 0f(Ye 1, Ye 2) givenZg = z. Then,

D(Yo1,Yo)|Ze(Y1,Y2|2) = Dvy.120(Y112) PYo.olYe 1,26 (V2|Y1,2)
= Pig, (Y1 = 012) p ¢/en|Yo 1,26 (2 — W1Y1 — W2Y2[Y1,2).

One can now write:

Jo ((Yg,l,Yg,z) ;e‘zg - z) — . (Yg,l;e‘zg — z) + (Yg,z;e‘ (Yo.1,Zo = z))

Y
T (—1‘29 = z> + Ja (Ye,z;e‘ (Yo,1,Z¢ = Z))
w1

(40)

Il
o
VR
ae:
N

(e

I

N
N———

where we used Theorelh 5 and the fact that
Ja (Y0,2;9‘ (Yo,1,Zo = Z)) = Ev,, {Ja (Y0,2;0’ (Yo,1,Z6 = Z))} =0,

since J, (Yg_g;b?’ (Yo1=y1,Z¢ = z)) = 0 for everyy; becaUS@Ys,zKye)hzs)() is independent o0b. Equa-
tion (40) is non-negative by property (1) and therefore bydren{®,

Jo (Zg;0) < Jo((Ye,1,Ye,2):0). (41)

Since Yo1 and Yy o are statistically independent and using the definition/gf-; 0) in 22), the RHS of
equation[(4ll) boils down to:

Jo ((Yo,1,Y02);0) = Jo (Yo,150) + Juo (Ye,2;0),
which implies by means of the translation invariance prop&) in (24) that equatiori(41) is equivalent to:

Y Y
Jo (Y14 Yo+ §/eN). < J, (—1> + Jo (—2)
w1 w2

Under the regularity conditioi (17), taking the limit as— 0 yields

(L) 40 (%)
w1 wo

< wlaJa(Yl)+wgJa(Y2)a (42)

IN

Ja (Yl + Y2)
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by property (5) ofJ,(-). Equation [[4R) holds true for any; andw, satisfying the conditions of the theorem, the

tightest choicev; andw; being,
wi = argogrgllngl {wiJa (Y1) + (1 —w1)*Ja(Y2)}

_1
Ja 7 (Ya)
- _1 _1
Je (Y1) +Ja " (Y2)
_1
Ja (Y1)

1 I

_1
Ja (Y1) +Ja 7 (Vo)

* *
wy =1—-wj =

for which (42) becomes

Jo (Y1 4+Y2) < Ja(Y1)Ja(Y2)

a—1"’

[ TV 4 I (Ya)

which completes the proof of the theorem. ]

B. Upper Bounds on the Differential Entropy of Sums Havingabl® Component

An important category of information inequalities consisf finding upper bounds on the entropy of independent
sums. Starting with fundamental inequalities such thatupper bound on the discrete entropy of independent
sums [30] and the upper bound on the differential entropyhef um of independent finite-variance RVs [23],
several identities involving discrete and differentialrepy of sums were subsequently shown in [43]-[49]. Regentl
in [36], an upper bound on the differential entropy of the siim- N of two independent RVs was found wheke
is a finite-variance infinitely divisible variable having assian component. We extend in this section the known

upper bound results to cases wh@&es SS stable vector using the GFIl and the generalized dgri&rudentity.

Theorem 8 (Upper bound on the Entropy of Sums having a Stable ComphneatZ ~ S («,7), 1 < a < 2,
and letX be ad-dimensional vector that is independent@fsuch thath(X) and J, (X) are finite. Then

h(X +Z) — h(X) < v*Jo(X) 2 Fy <a —lL,a—1;a;— (%Ja(x)) ‘“) ’

wheres Fy(a, b; ¢; z) is the analytic continuation of the Gauss hypergeometnictfion on the complex plane with

a cut along the real axis from 1 toob.

For more details on hypergeometric functions, the readgr nefer to Appendixll. Theorefnl 8 provides an upper
bound on the entropy of the sum of two variables when one ahtlsestable. As a special case, when= 2, it

recovers the upper bound for Gaussian noise setups [36].
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Proof: Using the extended de Bruijn’s identitly (20), we write:

MX+2Z)-h(X)= /0 Y4 Jo(X + ¢/MZ) dn

<o / 1 : J“(X)J“f%/ﬁz) —dn (43)
° <5_1(X)+J5_1(€/ﬁz)>
d
— ,Ya /1 : Ja(X) ay*n — dn (44)
" (T 0+ ()
1 ua72
— (0 - 1)y Ja(X) / du

=7"Jo(X) 2 Fy (a —lL,a—1;a;— (%Ja(x)) al) ’ (45)

where we use the GFIl in order to write equatibnl(43) and prigse(4) and (5) of/,(-) to validate equatiori (44).
|
Interestingly, Theoreril 8 gives an analytical bound on thangle in the transmission rates of the linear stable

channel function of an input scaling operation: deg 0, then

a a1
h(aX + Z) < h(aX) + o (aX) 2 F) (a ~la-lia— (%Ja(aX)> ) ,

=100 +alnfal + (1) Ja(X) 2 (a ~La-tai- (5 (ﬁ)ah(X))a]l) ,

where we used the fact thataX) = h(X) +dIn |a| and J,(aX) = = J.(X). Subtractingi(Z) from both sides

la]

of the equation gives

I(aX +Z;X) — [(X +Z;X) < In|a| + <%)QJQ(X)2F1 (a— Lo— l;a;—( (z)aJa(X));> -

e

SincexF (o — 1,0 — 1;050) = 1,

G om0 b e (§ () o00) ) -0

and for large values df:| the variation in the transmissions rates is bounded by aithgaically growing function
of |a|. This is a known behavior of the optimal transmission rates are achieved by Gaussian inputs in a Gaussian
setting.

On a final note, making use of the identity:
In(1+1¢t)=taF1(1,1;2; —¢),
equation [[4b) when evaluated f@ ~ A (0; o2l) and o = 2 boils down to the following:

Corollary 1 (Upper bound on the Entropy of Sums having a Gaussian Compon§36]
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Let Z ~ N(0,0%) and X be ad-dimensional vector that is independent@fsuch thath(X) and J(X) are
finite. The differential entropy dX + Z is upper bounded by:

WX +Z) < h(X) + gln (1 + %J(X)) : (46)

and equality holds if and only if boti and Z are Gaussian distributed.

As shown in [36, Section 4], we note that [46) implies a rewee®! when one of the vectors is Gaussian
distributed, which is equivalent to the concavity of therepy power proved by Costa [50]. This was noted by

Courtade [51] who provided a generalization of the reverBei& [52, Theorem 5].

C. A Generalized Isoperimetric Inequality for Entropies

LetZo~ S (a, (é)i) and defineN,, (X), 0 < a < 2, the entropy power of ordet as

— 1 2 h(X)
No(X) = e (47)

Theorem 9 (Generalized Isoperimetric Inequality for Entropies @)l Let X be a d-dimensional random vector
such that both(X) and J,(X) exist, for somd < « < 2. Then

1
= Na(X)Jal(X) 2 g 2 el D001, (48)

where~e is the Euler-Mascheroni constant ang-) is the digamma function.

Since(2) = —ve + 1, we note right away that the evaluatidn(48) fer= 2 yields the well known IIE [27,
Theorem 16]:

EN(X)I(X) > 1,

with equality whenX is Gaussian distributed. For general valued &f o < 2, whether equality in equatiof (48)
is achievable or not and under which conditions are still antwered.
Proof: Lett = (%JQ(X)) andZ ~ S («,v). By TheoreniB,

a—1

%(h(X +Z)—h(X) =t F (a— 1o — 1;a; —t)

t \*! t
= (1—_H> oI <a -1, 504 1—+t) ; (49)

where we used the fact that- 0 and a transformation property of the Gauss hypergeomeiniction as presented

in Appendix]. Using the series representation of the Gayggtyeometric function on the open unit disk, one can

G e )

write:
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where(A),, = F(F“(‘X;”. Equation[(4B) can hence be written as,

a—1 +oo n
a t 1 t
G0+ 2)—h00) = (@1 (1) 2 e (77) (50)
The LHS of equation{30) is lower bounded by:
(X 4 Z) - h(X)) > E((Z) — h(X)) = In o
E(( + )_ ( ))—E(()_ ( ))_DNQ(XLJQ(X)’

1

where we used equation (47), the fact that (O‘f JQ(X)) “™" and thath(Z) = dIn (»mé) + h(Z) in order to
write the equality. As for the RHS of (50),

(a=1) (ﬁ)wlfwri—l <1it>n

n=0
- (a_1)(lit>a_l [ail —ln<1—%+t) —(a—l)gn(afn—n (1—t|—t>n

¢ a—1 ¢ a—1 ) —+00 1 ¢ n+a—1
- <1+t> +(O‘_1)<1+t> In(l+t)—(a=1) Zn(a+n—1)<1+t> '
Therefore [[BD) implies for any > 0:

In [M} —(a—1)nt>— <L)a_l —(a-1) <L>a_l1n(1 +1)

d 1+1¢ 1+t
“+o0 n+a—1
1 t
—1)2
+(a );n(a—i—n—l) (1+t) ’

which by letting the scale — +oo —and thereforé — 400, gives the required result

+oo
I o (K0 (X) 2 (0= 12 Y s 1 (51)

= (a=1) (¥(a) +7e) — 1.

The fact that the serieg,fi‘j m (%ﬂ)nmq is absolutely convergent permits the interchange in the
order of the limits and justifies equatidn {51). ]
We plot in Figurd B the evaluation of the LHS of equatibnl (48)he values ot = [1.2,1.4,1.6,1.8] for alpha-
stable RVsS (r, (r)—%) for the values ofr = [0.4,0.6,0.8,1,1.2,1.4,1.6,1.8]. The horizontal lines represent the
RHS of equation{48) for the considered valueswoNote that stable variables do not achieve the lower bourldeof
GIIE (48) except whem = 2 where Gaussian variables achieve the lower bound. Thentghtin [[4B) is explored
in Figure[4 where we evaluate the produét s(X).J; s(X) wheneverX = X; + X, whereX; ~ S (r, (r)—%)
for r = 1.8 and X, ~ N(0, 0?) for different value ofs. The minimum is achieved far = 4 and not whenX is
alpha-stable (i.e., whesm = 0). Note that the computed minimum in Figure 4 is by no meansoaajlminimum.
Whether there exist RVs that achieve the minimum\af(X).J,(X) and whether the lower bound, is tight
or not are still to be determined.
Figure[3 shows the relative tightness of the lower boupdwhen the LHS of equatior _(48) is evaluated at

alpha-stable variables with characteristic exponentanging from0.4 to 1.8. If we consider for example on the
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1035 :

i ~a=12
i o =1.4]
L o =1.6]
e +a=18

N (X)J_(X)
g.

10—1 I I I I I I
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Characteristic Exponent of Alpha-Stable Variables

Fig. 3. Evaluation of N, (X)J(X) and comparing it tos, for X ~ S (7“7 (r)*%) for different values ofo andr.

z-axis the value of- = 0.8 which corresponds to the alpha-stable variakle~ S (r, (r)*%), the figure shows

that asa decreasesV, (X)J,(X) gets closer tos, in a relative manner.

V. PARAMETER ESTIMATION IN IMPULSIVE NOISE ENVIRONMENTS: A GENERALIZED CRAMER-RAO BOUND

Consider now the problem of estimating a non-random vedtpaameter® € R? based on a noisy observation
X where the additive nois® is of impulsive nature. Needless to say that in this case ti&& Mriterion and the

MMSE estimator are not adequate. More explicitly, let
X=60+N,

whereN is a noise variable having both(IN) and J, (N) (for somel < « < 2) exist and finite. Le(X) be an
estimator off based on the observation of the random ve®orA good indicator of the quality of the estimator

0(X) is the power of the “error’(é(X) - 0). We find next a lower bound on such metric which generalizes th

previously known Cramer-Rao bound.

Theorem 10 (Generalized Cramer-Rao Bound)et é(X) be an estimator of the paramet#& based on the

observationX = 6 + N. Then thea-power of the error is lower bounded by

Pa(e) =Py (é(X) - 0) = (le({;)) ’ . (52)

Note that whenevenr = 2 the result of Theoremh 10 is the classical Cramer-Rao bounenv¥ has 11D
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0.7 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Standard deviation of the Gaussian variable

Fig. 4. Comparison ofN; g(X)J1.8(X) to k1.8 = 0.7333 for X = X; + X, whereX; ~ S (r, (r)*%), r = 1.8 and
X5 ~ N(0,0?) for different values ob.

components. It gives a looser version for gené¥al
~ 2
E He X —oH
o ]
d ~— J(N)’

Proof: Using Theoreni]l, among all random vectors that havengrower equal to Be), the entropy

(53)

maximizing variable is distributed according &(a, (é)é Pa(e)) and
h (é(X) - 0) < h(Zo) + dInPy(e),

which implies that
N, (é(X) - 0) <P.()". (54)

On the other hand,
Jo (80X) = 0) = Jo (6(X)) = Ju (6(X):6) < Ja(X;0) = Ju(N), (55)
where the second and the last equalities are due to Thedremd $ha inequality is due to the data processing
inequality for J,(-) proven in Theorerfll6. Applying the GIIEE(48) #&(X) — 6, we obtain:

Na (é(X) - 0) Ja (é(X) - 0)
d
which along with equation$ (54) and {55) gives,

> Ka,
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Characteristic Exponent of Stable Variables

Fig. 5. Relative tightness ok, for alpha-stable variables.

Whenever the noise is a SS veclNr~ S(a,yy) for somel < a < 2, and since/,(N) =

2= by property
(4), Theoreni 10 specializes to the following bound.

Corollary 2 (Generalized Cramer-Rao Bound for Stable Noid&hen the noise is a SS vecldr ~ S(a, vn),

1 < o < 2, the a-power R (e) of the error of all estimator®) (X) is lower bounded by

Q=

P.(e) > (aka)™ YN-

As an example, consider the Maximum Likelihood (ML) eStiM£ML(X) which is given by,
O (X) = arg max Inpn(X — 09).

Since N is unimodal,fy (X) = X, and thea-power of the errofy, (X) — 8 = N is P,(e) = P,(N) =
(a)ayy = (ﬁ)z for which equation[(52) holds true.

The choice ofv:

Note that equatior (32) establishes a new metric to meabkeraverage error strength and hence the estimator
performance when the noisy measurements are affected bgditiva noise of impulsive nature. The choice of
a specific value ofx is straightforward whenever the noise belongs to dhparameterized domains of normal
attraction of stable variables. The quality of the estim#t(X) is tied to the closeness of, f) to its lower bound,
both of which are computable numerically as previously ghder several probability laws. We mention that it
is not known in general whether equatidnl(52) is tight or fdte tightness is already known when= 2 for
é(X) = X andN is a Gaussian vector. We believe that answering the tightqaestion is equivalent to a similar
guestion about the GFIL(89).

October 7, 2016 DRAFT



29

Finally, a direct implication of equation_(#8) is summadzae the following: let B(X) denote thex-power of

the random vectoX according to equatiod6). Usinfl(7),

- d
Na(X) < No(Fa(X)Zo) = T 505
because - .
No(Pu(X) Zo) o (Pu(X) Zo) _
y )
Equation [48) now yields,
() 2 (P (X) Za) = o e

which is a generalization of the known fact that for &ywith covariance matrix of tracéo?, J»(X) > J»(Z) = %

whereZ ~ N (u,0?1) is a white Gaussian vector.

VI. CONCLUSION

In a typical communication or measurement setup, the obdesignal is a noisy version of the signal of interest.
Whether the source of the noise comes from the equipmernihigeat an interferer, in many instances, the effect of
the perturbation is modeled in an additive manner. Gengthie role of a system designer is to build an efficient
system that recovers the information present in that qtyanfi interest. In this work we highlighted various
theoretical aspects of such problems when the noise is he#led, a scenario in which alpha-stable distributions
play a central role and find applications in diverse fields mdieeering and some other disciplines.

Our main focus was on the parameter estimation problem imagon theory, where the basic estimation problem
of the location parameter of an alpha-stable variable isyebtwell understood and performance measures of a
given estimator are to be further investigated. Since thgenariable has an infinite second moment, standard tools
such as the second moment, the MSE and the Fisher infornragied to be extended along with some inequalities
satisfied by these information measures. Though the workasfz&les [53] was in the direction of some of these
aspects, we believe that it is suitable for the Cauchy cadenahgeneric to the whole family of symmetric stable
distributions. Additionally, the work in [53] was with a @hal processing” spirit.

We proposed in Section 1A, an expression to evaluate theepf signals in symmetric alpha-stable noise
environments. Though the definition of thepower has unfamiliar format where the value of the power is
incorporated within a cost function, it depends on an awe@ga logarithmically tailed cost function. Besides the
logarithmic tail behavior of the averaged function, the meaigument for suggesting PX) as defined in Definitionl1,
is to find a definition that is generic for the stable space a$andistributions, including the Gaussian since stable
distributions are the most common noise models encounteyedrtue of the generalized CLT. Definitidd 1 is
chosen to become the standard deviation in the Gaussianircasder to unify the order of the power operator
in such a way if the variable is linearly scaled then the poalep scales linearly. We proved that Definitigh 1
defines a space where the alpha-stable noise is the worstiis & entropy/randomness which implies that the

alpha-stable channel model is a worst-case scenario whetieere is an impulsive noise assumption. This fact
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mimics the role of the Gaussian variable among the finiteavaé space of RVs and generalize it to an equivalent
role of stable variables among the space of RVs that havete fiower B(X).

A generalized notion of the Fisher information is introddide Section1l] and is shown to satisfy standard
information measures properties: positiveness, scéhatatditivity, etc. The newly defined quantitf, (-) is shown
to abide by fundamental identities and relationships sech ehain rule, a generalized Fisher information inequality
and a generalized isoperimetric inequality for entropidwese lead to a generalized Cramer-Rao bound proven in
SectionY which sets a novel lower bound on thgower of the estimation error for any estimator of a logatio
parameter. This bound can be used to characterize the penfice of estimators in impulsive noise environments
and naturally opens the door to the related problems of effayi and optimality of estimators.

The newly defined power measurg(R) establishes a novel way to approach communication thequedblems.
As an example, the classical approach to the channel cggaablem is done from a channel input perspective.
Under this perspective and for the purpose of emulating seaharios, input signals are supposed to abide by
some power constraints such as the second moment cons&ssuming that the additive noise would also have a
finite second moment, this approach quantified the diffemegtrics of the channel with respect to the input power
measure irrespective of the noise model. As an example abacity of the linear additive Gaussian channel under
an average power constraint is given by the famous formﬁla:“% In(1 + SNR)” where the “SNR” is the signal
to noise ratio between the variance of the input to that ofGlagissian noise, hence relating the input power as
defined for the input space to the noise power since the nalseviithin the input space. Naturally, this approach
breaks when the noise is not of the same “nature” as the ingades This is true for impulsive noise models such
as the alpha-stable ones having infinite second momentshvducnot belong to the input space of finite power
(second moment) RVs. Since the performance of any adoptatégy at the input is viewed by its effect at the
output end, it seems reasonable to consider the additivenehavhile imposing a “quality” constraint on the output.
By restricting the output space to satisfy certain poweuniinents, we are indirectly taking into consideration the
nature of the noise in the formulation of the constraint iahionstructs an input space of variables of the same
“nature” of the noise. This is in accordance with the fact ttiee system designer has no control over the noise
model which is dictated by the channel and can assume thébpibgof choosing from an input space similar in
nature to that of the noise, the input signal that best oveesothe noise effect. For the linear AWGN channel,
exceptionally the output approach gives exactly the sanssvanas the input approach: constraining the output
average power implies a constraint on the input average powe

Finally, we emphasize that the generalized tools and itlestpresented in this work constitutes an “extension”
of the Gaussian estimation theory to a stable estimatiooryhia general and may be viewed as complementary

to the works found in the literature by answering some “fundatal-limits” questions.
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APPENDIX |
MULTIVARIATE ALPHA-STABLE DISTRIBUTIONS, RIESZ POTENTIALS AND HYPERGEOMETRICFUNCTIONS
A. Univariate Alpha-Stable Distributions

Definition 4 (Univariate Stable Distributions)A univariate stable RVX ~ S(«, 3,7, d) is one with characteristic

function,
dx(w) =exp[idw — " (1 —ifsgn(w)P(w)) |w|]
(O<a§2 —1<p<1 >0 56R),

wheresgn(w) is the sign ofw and ®(-) is given by:
tan (E) a#1
P(w) = 2
—=In|w| a=1.
™
The constanty is called the “characteristic exponenp,is the “skewness” parametey,is the “scale” parameter

(v~ is often called the “dispersion”) andlis the “location” parameter.

We make the following specifications:

« Whenever the parametefs= 0 and = 0, the stable variable is symmetric and denoféd- S(«a, ).
« The case where: = 2 corresponds to the Gaussian RV~ S(2,0,7,6) = N(6,27?).

« Wheneverg| = 1, the alpha-stable variable is called totally-skewed. ffenore, it is one sided when< 1.

B. Multivariate Alpha-Stable Distributions

Definition 5 (Sub-Gaussian Symmetric Alpha-StableP8, p.78 Definition 2.5.1]

Let0 < a <2andletd ~S (%, 1, (cos(Z2)) B ,0) be a totally skewed one sided alpha-stable distribution. De
fineG = (G, --- ,Gq) to be a zero mean Gaussian vectorth Then the random vectd¥ = (A%Gl, . ,A%Gd)
is called a sub-Gaussian symmetric alpha-stabiS(srandom vector ifiR¢ with underlying vectoiG. In particular,
each componenA%Gl-, 1 <i < dis a®S variable with characteristic exponedt In this work we only use
sub-Gaussian & vectors such that the underlying Gaussian vector has ItB-m@an components with variance

2+2, for somey > 0. We denote such a vector &(a, ).

Proposition 1. [28, p.79 Proposition 2.5.5]
Let N = (Ny,---,N4) be a sub-Gaussiand® with an underlying Gaussian vector having IID zero-mean

components with variancgy?, for somey > 0. Then, the characteristic function & is:
on(w) = e Il

The RVsN;s, 1 < i < d, are dependent and each distributed accordingSte, ).
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Property 2 (Isotropic property) Let N = (Ny,--- , Ng) ~ S(a, ). Then, forn # 0

d
o) = £(In) = = E =4 ), (56)

whereR = ||N|| is the amplitude olN and pg(-) is its density function. Furthermore, we have:

o et ()T (25) T (252)

lim T1+apR(7’) = Of’}/aklv - T
rheo £ r(5)
Proof: Refer to [54]. ]

Note that by equatiod (565 («, ) is isotropic.
Property 3. LetN = (Ny,--- , Ng) ~ S («, 7). Then%%j Z%N (n) is bounded for alll <i <d.

Proof: Sincepn(-) is infinitely differentiable, it is enough to show boundesgsat large values of = ||n||.

We use the results of Propefty 2 to write

pn@) T () Il e (nl) _ T () S 0y kil (2)
lim o = = lim —2%r'T%pp(r) = ————2% = ks, 57
A aie ~ ML T e A S PR =T g 2 (57)

wherek; is defined in Property]2. Using I'HOpital’s rule, we write

d
ko = lim 70(1;171\1( n)
r—00 r*d @
dr
9 0 9 o
1 fim FarPN(D) X G4+ Fpn(n) x G
d+ o r—oo pd—a—1
R r (LN + o+ ()
o _d—i—arlﬂnolo p—d—a-1
1 0 1 0
o 1 I n—la—mpN(n)‘F"""n_da—pr(n) 58
o d—i—arlﬂnolo p—d—a=2 (58)

Using equation[{36)pn(n) is decreasing in- [54, Section 2.1]. Thereforeﬁli aimpN(n) is negative for all

1<i<dand—1z-pn(n) < — (m s2=pn(n) + -+ 750N (0 )). Hence, equatiorfi (58) implies

b = 1 I %aimpN(n)‘f'""i‘n%@%de(n)
2 - d—‘,—ari)r{olo pd-a=2

1.9
lim —nson PN @)
d+ qrooco p—d-a=2

)

which implies that there exists a constant such that at large values of —n%_a?”pN(n) < k;r— %22 for

1 <i < d. The fact thatlim, _, ; o 7¥*pn(n) = ke completes the proof. [ ]

C. Riesz Potentials

Definition 6 (Riesz Potentials) [42, p.117 Section 1]
Let 0 < v < 1. The Riesz potential, (f)(x) for a sufficiently smoothf : R? — R having a sufficient decay at

oo is given by:

L6 = i [ =y i)l wl) = w2 g
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Property 4. Among other properties, (f) satisfies the following:
o F(I(f)) (w) =|w|"*F(f(x))(w) in the distributional sense.

o To(f)(x) = Tim, o1, (f)(x) = [().
« Whenever[ | f|(x)l,(|g])(x) dx is finite, we have:

[ 1600 = [ 1)) dx

D. Hypergeometric Functions

Definition 7 (Gauss Hypergeometric Function$jor generic parameters b, ¢, the Gauss hypergeometric function

oF1 (a,b;¢; z) is defined as the following power series:

+oo . .
2F1 (a’ b’ G Z) = Z (C(LZL)EZ;)Z Zza

i=0

Outside of the unit circléz| < 1, the function is defined as the analytic continuation of #us with respect to

|z| < 1.

z, with the parameters, b andc held fixed. The notatiorid), is defined as:

1 1=0
- o
dd+1)...(d+i—1) i>0.

Proposition 2. The Gauss hypergeometric functieh (a, b; ¢; z) satisfies the following property:

z

oF1(a,bye;2) = (1—2);Fy (a,c— b; c; —1) ,  z¢(1,400).

APPENDIXII

PROPERTIES OFP, (X)

We consider random vectod§ andY such that:

E[ln(1+|X]|])] < oo, when considering cases whetfe< 2.
E [IX]]?] < o0 when considering cases whetie= 2.

We first start by establishing the following Lemmas:

Lemma 2. Let X # 0 and define the function a? > 0,

g(P) = —E [mpza (%)] .

The functiong (P) is continuous and decreasing @i* \ {0}.

Proof:

Continuity: Let Py > 0, then

. X . x
~h s, (5)] = - [, (5) areo
= —/ 1Lm0 Inpy (E’) dF(x)

I
—
=3
3

N
o]
7 N
| %
N———
QL
=
L
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where in order to write the last equation we used the factghgdt) is continuous orR?. The interchange in the
order between the limit and the integral signs is justifiethgiCT as follows: In a neighbourhood of fchoose

aP such that < P < P. Sincep (x) is rotationally symmetric and decreasing|r||,
X X d
5 (=] < 5 | =
‘lnpza(P)‘_ 1ana(P)” Vx € RY
which equality only atk = 0. Therefore,
s (5]
nps == s
Pz, =

= [lose. (3)] <]

which is finite becausé [In (1 + ||X||)] < co wheneverZ,, is sub-Gaussian by virtue of the fact that (x) =

© (H»«H;d”) (see Appendikl) and because it is assumed EnﬁJtXHQ] < oo whenevery = 2 andZ, is Gaussian.

Monotonicity: Let 0 < P < P. Sincepy (x) is rotationally symmetric and decreasing Hlitﬁ Pz, (x/P) >
pza(x/ls) for all x, with equality only at0. SinceX # 0, there exists a non-zero point of incre@seg, andg (P)
is decreasing in B 0. ]

We evaluate next the limit values gfP) at 0 and +oc.

Lemma 3. In the limit,

limg(P)=40c0 & lim g(P)<h (Za) :

P—0 P—+o00

Proof:

The limit at zero:SinceX # 0, there exits & > 0 such that P¢||X]| > §) > 0 and

B /llx||<6 Pz (g) b9 /ux||>5 Pz, (g) dFx (x)

0
—Pr(|[X| < 8)lnpy_(0) — Pr(| X > 6)Inps, (E) |

g(P)

Y]

because; (x) is decreasing ir|x||. Sinceps (x) — 0 as||x|| — +oo, thenéin%g(P) = +o0.
o o —>

The limit at infinity: Computing the limit at infinity,

lim ¢g(P) = lim —/Rdlnpza(

X

) dFx (x)

o

P—+o00 P—+o00

. X
[t o, (3) i

—Inpz (0) <h (Za) ,

o

where the last inequality is true becaysg (x) is decreasing ir|x||. The interchange between the limit and the

integral sign is due to DCT as shown in the proof of Lenirha 2.

n this work, we say thaff (x) = Q (g(z)) if and only if Ix > 0, ¢ > 0 such that| f(x)| > x|g(z)|, V|z| > c. Equivalently, we say that
g(z) = O (f(x)). We say thatf(z) = © (g(x)) if and only if f(z) = O (g(x)) and f(z) = Q (g(x)).
A vector x is said to be a point of increase if and only if,(fK — x| < n) > 0 for all > 0.
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Lemma 4. Let X be a random vector that has a rotationally symmetric PDF tisaton-increasing in|x||, then
—E[lnpy (X-v)] > -E[lnpz (X)], VveR:
Proof: Since px () andpz (-) are rotationally invariant, one can restrict the proof te tase where all

the {v;}1<i<q4’s are non-positive by applying an appropriate rotatiomsfarmation to the variable of integration.

Hence, for{v;}1<i<q Non-positive, taking the partial derivative of

—E [Inpy (X —v)] = - /]Rd px(x)Inpy (x —v) dx,

with respect tay; and interchanging the integral and the derivative yields

/m ) Lps x—v)— ix—E | L, (X —v) | >0
o DX 5 P2 Pz, (x—v) e I e Py, X—v)| =7

which is true by virtue of the facts thak (x) is rotationally symmetric, non-increasing|js||, that foralll <i <d

the derivative functiona%pzai(x) is an odd function that is non-positive an > 0 and that{v;}1<;<q are
non-positive. This implies thatE [Inp; (X —v)] is maximum at = 0.
The interchange between the derivative and the expectapenator is justified by Lebesgue’s DCT since the
integrand aap—ff(x)ﬁ} is bounded by Properfyl 3 in Appendix I. ]
We prove in what follows some properties of thepower set in Definitiof]1.

() P.(X) exists, is unique and satisfies property R1, i.g(3® > 0 with equality if and only ifX = 0.
Indeed, for a non-zero random vector, using the continuity (@) and the fact that it is decreasing from
+00 to —1Inpy (0) < h(Z.) proven in Lemmag]2 arld 3, theexistsa positiveand uniqueP, (X) such that
equation[(B) is satisfied which proves property (i).

(i) P (X) satisfies property R2. In fact, for anyc R,
P, (aX) = |a| Py (X).

This directly follows from equatior {6) and the fact thgt (-) is rotationally symmetric.
(i) Let X andY be two independent random vectors and assume¥Yhhas a rotationally symmetric PDF that

is non-increasing iny||. LetZ = X +Y, then R(Z) > P,(Y). Indeed,

& oon ()] = e e o (5 ¥

S I
- oo (57
= h(Zy), (60)

where equation[{39) is an application of Lemfda 4 becakisand Y are independent an¥ /P, (Y) is
rotationally symmetric. Equatiori (50) implies that(2) > P,(Y) since the function-E [Inp; (%)] is

a

decreasing in P 0.
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(iv) Let X andY be two independent random vectorsYifhas a rotationally symmetric PDF that is non-increasing
in |ly|l, then R(¢X +Y) is non-decreasing ifr|, c € R.

We first show that-E [Inp;_(<X3)] is non-decreasing ifr|. To this end, we write

o (5] - o () ]

and it is enough to show thatEy [Inp; (=£*)] is non-decreasing ifx|, which we argue as follows:

- Ey {lnpza (CX;Y)] = —/dey(y) Inpz (Cx;y> dy. (61)

Sincepy () andpg () are rotationally invariant, one can restrict the proof te tase wher > 0 and the

{zi}1<i<a4’s are non-negative by applying an appropriate rotations@mation to the variable of integration.
Hence, forc and {z;}1<i<qa NON-negative, taking the derivative of equati¢n](61) wi#spect toc and
interchanging the limit and the derivative as done in (iBlgls

i””” /+Oop (y) 0 p (Cx+y) . dy
- D Y 9. Za X
i=1 PJ o 9z P pza( ;y)

d
T 0 x+y 1
= — —E —p~ ( ) ox ] ZO,
2.7 [8 2\"P) b (5

P

which is true by virtue of the fact thaty (y) is rotationally symmetric, non-increasing jjy||, that for all
1 < i < d the derivative functiona%pzai(x) is an odd function that is non-positive an > 0 and that
bothc and{z;}1<<a are non-negative. This implies that botfEy [Inp;_ (2t¥)] and—E (Inpy (XY
are non-decreasing if|. The fact that-E [Inp; (<%¥3)] is non-increasing in P and non-decreasingdn
yields the required result.

(v) WheneverX ~ 8 (a,vx), P (X) = 2X = (a)=~x. Indeed,X has the same distribution a%;‘;ia

-E [lnpia (PfX)ﬂ - _7; /pz‘* (Yyix) Pz, (ﬁ) dx = h{Zo),

and therefore RX) = 37"

APPENDIXIII

SUFFICIENT CONDITIONS FOR THE REGULARITY CONDITION

In his technical report [55, sec. 6], Barron proves that teeBduijn’s identity for Gaussian perturbations (2 with
e > 0) holds for for any RV having a finite variance. In this appendie follow steps similar to Barron’s to prove
that condition[(l7) is satisfied for ar()X + g/ﬁN), n > 0 for any random vectoX € £ where

L= {random vectordJ € R? : /ln(l + ||UJ|) dFy(u) is finite } ,

and wherelN ~ & (a, 1) is independent oX, 0 < o < 2.
In what follows, denotey,(y) = E [p,(y — X)] be the PDF ofY = X 4 ¢/nIN wherep,(-) is the density of
the sub-Gaussiand® vector with dispersiory. Note that sincey, (-) is bounded then so ig,(-) and sinceX € £
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then so isY. Thenh(Y) is finite and is defined as

h(Y) = —/qn(Y) Ing,(y)dy.

We list and prove next two technical lemmas.

Lemma 5 (Technical Result)
d

d
— =E|— -X)|.
dnqn(Y) { dnpn(y )]
Proof: The interchange between differentiation and integrz;ttimldﬁwheneverdif]p77 (t)| is bounded uniformly
by an integrable function in a neighbourhoodrpby virtue of the mean value theorem and the Lebesgue DCT. To

prove boundedness, we start by evaluating the derivatineeS

pn(t)=ide( ‘ )

na /n
then
d d 1 t 1 1 OpN
—pn(t)————de(a )—— ldztj< ) :
dn anita V) ettt o N )
which gives
d
dpy, d 1 t 1 1 dp
Do) < 2o () + 2 S 62)
‘dn ag 8\ g B g ony |

For the purpose of finding the uniform bound on the derivatieé b as a positive number such that< 7.
Concerning the first term of the bound [n162), we consider $eparate ranges of the variable- ||t|| to find the

uniform upper bound. On compact sets, we have

d 1 t d 1

where the maximum exists singg; is a continuous PDF and thus upper bounded. As for large saltigt||, by

virtue of equation[(57) there exists sorhe> 0 such thatpn(t) < kHt”% which gives

d 1 t d 1
N L Iy — 64
ay i ( ﬁ) = Pa e o4

an integrable upper bound function independenyofquations[(63) and _(64) insures that the first term of the

right-hand side (RHS) of equatioh {62) is uniformly uppeubded by an integrable function. When it comes to
the second term of the RHS df {62), we formally have:

(ZN (u) = (Q;Z)d /wjéf’N(w)e*iZf:lwl“l dw, 1<j<d
J
and
OpN 1 el :
W(u) SW A |wjle dw = ¢&j, 1<j<d (65)
J d

which is finite and where we used the fact that the charattefisiction of S(«; 1) is ¢n(w) = e~ 1«1”. Hence, on
compact sets, equatidn {65) gives a uniform integrable uippend on the second term of the RHS of equation (62)

of the form
OpN

d
1 1
[ |t| -/
an1+%‘i; "t on,;

11 &
< PRESEE) Zl [t;1€5, (66)
iz

_t_
N
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which is integrable and independent gf Therefore, we only consider next the second term of the RHS o

equation [(6R) at large values (f||. To this end, we make use of equatidnl(58) proven in AppeHdixhére

; d 19 _xd 1o _ 1 i
it has been shown that > %, 5 8’11: (t) =2 o 8”73‘ . © (W) and we write for somes > 0
d d
1 1 0 1|¢t)? V|0 1 &
— 2 : |t7| PN S - H |2|+d E \/ﬁ PN S . - : (67)
(6% 1+T - ’ 371] t 06771+T N |tj| an] t (&% ||tH ta
Jj=1 v Jj=1 i

which is uniformly bounded at large values [fi| by an integrable function. Equatioris {66) afd](67) implyt tha
the second term in the RHS of equatidnl(62) is uniformly udpaunded by an integrable function. This proves
Lemmalb. [ |

Lemma 6 (Existence of the Generalized Fisher Informatiofhe derivative

d%h(X + /AN) = — / d% (40(%)) Ingn(y) dy

exists and is finite. Also,
d
ToX 4+ ¢7N) = = [ 45 () Iy (y) dy.

Proof:

Th(0) = = [ 2 a(y) na, () dy (68)
=—/%gwm%WMy;/ﬁﬂw@
:_/%gwm%WMy—%/%WMy (69)
:—/%ﬁmm%@my (70)

Equation[(7D) is true sincg, (y) is a PDF and integrates fo Next, we justify equatior (69): note that by Lemfia 5,

]fl—%y)] - \E[Cﬁ%(y—mﬂ
< E[%y—X)H,

because the absolute value function is convex. Now it has bhewn in the proof of Lemm@a 5 th %(t)‘ is

uniformly upper bounded in a neighbourhoodrpby an integrable function,(t) of the form

Ab) + BO)[t]] ] < ro
A Il > 7o 7
[[£]] 4+ 7
where A(b), B(b), C andt, are some positive values chosen in accordance with eqsaié®), [63), [E4),[(66)
and [&T). Then

e H%@—X)H <Elsuly - X)) = oy,

which is integrable by Fubini’'s theorem singg(t) is bounded. This completes the justification of equatior).(69
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As for equation[(68), finding a uniform integrable upper bdua d% (qn(y) Ingy(y)) is achieved by finding

one todqg—éy) In ¢, (y) which we show next. Since,(y) is continuous and positive, then it achieves a positive

minimum on compact subsets Bf. Let y, be such that
min ¢,(y) <1
i) O

In  min (y)

max |1n dn (Y)| < qn
Iyl <llyoll

)
IylI<llyoll

then on|ly|| < [[yo| we have

‘dq”—(‘w 1nqn(y)‘

<max7ry(y)|ln min gq y‘
dn )|l it @)

yERD

< maxs In  min 72
< max s(y) ”y<y0pn(y)‘ (72)

1 Yo >
< maxs In—— —
< o) o o

which is independent of. Equation [(7R) is justified by the fact that

< 00,

min  p,(y) < min g, (y) <1,
Iyli<iyol* " Iyil<liyoll "

becausey, (y) = E [p,(y — X)]. When it comes to large values @¥||, we have by the results of Propefty 2 in

Appendix[] thatpn(t) = © (W) and hence there exist positi#e and K such thatpn(t) is greater than

KHtII++"< for some K whenever|t|| > T. Definey such that Rif|X|| < ||y||) > 3 and choosé]y,|| to be large

enough. Then, ib < n < 2b, we have forl|y|| > |lyoll

a0 (y) =i/pN (y_u) dFx (u)

e il
y—u
> — PN ) dFx(u
)l <5
1 |y||+|9||)
>
= 5 E N ( b
bK 1
- d ~\d+o
245 (vl + IFID**
bK
~ lyfldte’

‘d+a

where K is some positive constant. At large values|igfi, ¢,(y) < 1 and hencglng,(y)| < In (L) and

bK
dgy(y) [y [+
200 14, 1) < ) (10 ).

we obtain for||y|| > |lyoll
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which is a uniform integrable upper bound because

Jwas sty = [ [ iyl sty - % drx dy
— [[ @+ Iy sty —x)dy drx) (73)
< [ a4 el + 1 + D) ) dy dFe ()
_ sb/ma + Ix)dFx (x) + Lo

< 00, (74)

where

Sy = /sb(y) dy < oo & Ly = /1n(1 +lyl)se(y) dy < oo.

Note thatS, and L, are finite by [71l). Equatioi (¥3) is due to Fubini and equaidf) is justified by the fact

that X € L. In conclusion, equatioi (68) is true and Leminha 6 is proved. [ |
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