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Abstract

We establish the rate region of an extended Gray–Wyner system for 2-DMS (X,Y ) with two additional decoders having
complementary causal side information. This extension is interesting because in addition to the operationally significant extreme
points of the Gray–Wyner rate region, which include Wyner’scommon information, Gács-Körner common information and
information bottleneck, the rate region for the extended system also includes the Körner graph entropy, the privacy funnel and
excess functional information, as well as three new quantities of potential interest, as extreme points. To simplify the investigation
of the 5-dimensional rate region of the extended Gray–Wynersystem, we establish an equivalence of this region to a 3-dimensional
mutual information region that consists of the set of all triples of the form(I(X;U), I(Y ;U), I(X,Y ;U)) for somepU|X,Y .
We further show that projections of this mutual informationregion yield the rate regions for many settings involving a 2-DMS,
including lossless source coding with causal side information, distributed channel synthesis, and lossless source coding with a
helper.

Index Terms

Gray–Wyner system, side information, complementary delivery, Körner graph entropy, privacy funnel.

I. I NTRODUCTION

The lossless Gray–Wyner system [1] is a multi-terminal source coding setting for two discrete memoryless source (2-DMS)
(X,Y ) with one encoder and two decoders. This setup draws some of its significance from providing operational interpretation
for several information theoretic quantities of interest,namely Wyner’s common information [2], the Gács-Körner common
information [3], the necessary conditional entropy [4], and the information bottleneck [5].

In this paper, we consider an extension of the Gray-Wyner system (henceforth called the EGW system), which includes
two new individual descriptions and two decoders with causal side information as depicted in Figure 1. The encoder maps
sequences from a 2-DMS(X,Y ) into five indicesMi ∈ [1 : 2nRi ], i = 0, . . . , 4. Decoders 1 and 2 correspond to those of
the Gray–Wyner system, that is, decoder 1 recoversXn from (M0,M1) and decoder 2 recoversY n from (M0,M2). At time
i ∈ [1 : n], decoder 3 recoversXi causallyfrom (M0,M3, Y

i) and decoder 4 similarly recoversYi causally from(M0,M4, X
i).

Note that decoders 3 and 4 correspond to those of the complementary delivery setup studied in [6], [7] with causal (instead of
noncausal) side information and with two additional private indicesM3 andM4. This extended Gray-Wyner system setup is
lossless, that is, the decoders recover their respective source sequences with probability of error that vanishes asn approaches
infinity. The rate regionR of the EGW system is defined in the usual way as the closure of the set of achievable rate tuples
(R0, R1, R2, R3, R4).

The first contribution of this paper is to establish the rate region of the EGW system. Moreover, to simplify the study of this
rate region and its extreme points, we show that it is equivalent to the 3-dimensionalmutual information regionfor (X,Y )
defined as

IXY =
⋃

pU|XY

{(I(X ;U), I(Y ;U), I(X,Y ;U))} ⊆ R
3 (1)

in the sense that we can expressR usingI and vice versa. As a consequence and of particular interest,the extreme points
of the rate regionR (and its equivalent mutual information regionIXY ) for the EGW system include, in addition to the
aforementioned extreme points of the Gray–Wyner system, the Körner graph entropy [8], privacy funnel [9] and excess
functional information [10], as well as three new quantities with interesting operational meaning, which we refer to as
the maximal interaction information, the asymmetric private interaction information, and thesymmetric private interaction
information. These extreme points can be cast as maximizations of the interaction information [11]I(X ;Y |U) − I(X ;Y )
under various constraints. They can be considered as distances from extreme dependency, as they are equal to zero only under
certain conditions of extreme dependency. In addition to providing operational interpretations to these informationtheoretic
quantities, projections of the mutual information region yield the rate regions for many settings involving a 2-DMS, including
lossless source coding with causal side information [12], distributed channel synthesis [13], [14], and lossless source coding
with a helper [15], [16], [17].

A related extension of lossy Gray–Wyner system with two decoders with causal side information was studied by Timo and
Vellambi [18]. If we only consider decoders 3 and 4 in EGW, then it can be considered as a special case of their setting
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Figure 1. Extended Gray–Wyner system.

(where the side information does not need to be complementary). Other related source coding setups to the EGW can be found
in [19], [12], [20], [21], [22]. A related 3-dimensional region, called the region of tension, was investigated by Prabhakaran and
Prabhakaran [23], [24]. We show that this region can be obtained from the mutual information region, but the other direction
does not hold in general.

In the following section, we establish the rate region of theEGW system, relate it to the mutual information region, and
show that the region of the original Gray–Wyner system and the region of tension can be obtained from the mutual information
region. In Section III, we study the extreme points of the mutual information region. In Section IV we establish the rate region
for the same setup as the EGW system but with noncausal instead of causal side information at decoders 3 and 4. We show
that the rate region of the noncausal EGW can be expressed in terms of the Gray–Wyner region, hence it does not contain as
many interesting extreme points as the causal EGW. Moreover, we show that this region is equivalent to the closure of the
limit of the mutual information region for(Xn, Y n) asn approaches infinity.

A. Notation

Throughout this paper, we assume thatlog is base 2 and the entropyH is in bits. We use the notation:Xb
a = (Xa, . . . , Xb),

Xn = Xn
1 and [a : b] = [a, b] ∩ Z.

For discreteX , we write the probability mass function aspX . For A ⊆ R
n, we write the closure ofA as cl(A) and the

convex hull asconv(A). We write the support function as

ψA(b) = sup
{

aT b : a ∈ A
}

.

We write the one-sided directional derivative of the support function as

ψ′
A(b; c) = lim

t→0+

1

t
(ψA(b+ tc)− ψA(b)) .

Note that ifA is compact and convex, then

ψ′
A(b; c) = max

{

dT c : d ∈ argmax
a∈A

aT b

}

.

II. RATE REGION OFEGW AND THE MUTUAL INFORMATION REGION

The rate region of the EGW system is given in the following.

Theorem 1. The rate region the EGW systemR is the set of rate tuples(R0, R1, R2, R3, R4) such that

R0 ≥ I(X,Y ;U),

R1 ≥ H(X |U),

R2 ≥ H(Y |U),

R3 ≥ H(X |Y, U),

R4 ≥ H(Y |X,U)
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for somepU|XY , where|U| ≤ |X | · |Y|+ 2.

Note that if we ignore decoders 3 and 4, i.e., letR3, R4 be sufficiently large, then this region reduces to the Gray–Wyner
region.

Proof: The converse proof is quite straightforward and is given in Appendix A for completion. We now prove the
achievability.
Codebook generation.Fix pU|XY and randomly and independently generate2nR0 sequencesun(m0), m0 ∈ [1 : 2nR0 ],
each according to

∏n
i=1 pU (ui). Given un(m0), assign indicesm1 ∈ [1 : 2nR1 ], m2 ∈ [1 : 2nR2 ] to the sequences in

the conditional typical setsT (n)
ǫ (X |un(m0)) and T (n)

ǫ (Y |un(m0)), respectively. For eachy ∈ Y, u ∈ U , assign indices
m3,y,u ∈ [1 : 2nR3,y,upY U (y,u)] to the sequences inT n(1+ǫ)pY U (y,u)

ǫ (X |y, u), where
∑

y,uR3,y,upY U (y, u) ≤ R3. Define
m4,x,u similarly.

Encoding.To encode the sequencexn, yn, find m0 such that(un(m0), x
n, yn) ∈ T

(n)
ǫ is jointly typical, and find indices

m1,m2 of xn, yn in T (n)
ǫ (X |un(m0)) andT (n)

ǫ (Y |un(m0)) givenun(m0). For eachx, y, let xny,u be the subsequence ofxn

wherexi is included if and only ifyi = y andui(m0) = u. Note that since(un(m0), y
n) ∈ T

(n)
ǫ , the length ofxny,u is not

greater thann(1+ ǫ)pY U (y, u). We then find an indexm3,y,u of x̂n(1+ǫ)pY U (y,u)
y,u ∈ T

n(1+ǫ)pY U (y,u)
ǫ (X |y, u) such thatxny,u is

a prefix of x̂n(1+ǫ)pY U (y,u)
y,u , and outputm3 as the concatenation ofm3,y,u for all y, u. Similar form4.

Decoding.Decoder 1 outputs the sequence corresponding to the indexm1 in T (n)
ǫ (X |un(m0)). Decoder 2 performs simi-

larly using (m0,m2). Decoder 3, upon observingyi, finds the sequencêxn(1+ǫ)pY U (yi,ui(m0))
yi,ui(m0)

at the indexm3,yi,ui(m0) in

T
n(1+ǫ)pY U (yi,ui(m0))
ǫ (X |yi, ui(m0)), and output the next symbol in the sequence that is not previously used. Decoder 4

performs similarly using(m0,m4).

Analysis of the probability of error.By the covering lemma, the probability that there does not existm0 such that(un(m0), x
n, yn) ∈

T
(n)
ǫ tends to 0 ifR0 > I(X,Y ;U). Also

∣

∣T
(n)
ǫ (X |un(m0))

∣

∣ ≤ 2nR1 for large n if R1 > H(X |U) + δ(ǫ) (similar for

R2 > H(Y |U) + δ(ǫ)). Note that(un(m0), x
n, yn) ∈ T

(n)
ǫ implies

|{i : xi = x, yi = y, ui(m0) = u}|

n(1 + ǫ)pY U (y, u)
≤

(1 + ǫ)pXY U (x, y, u)

(1 + ǫ)pY U (y, u)

≤ pX|Y U (x|y, u)

for all (y, u). Hence there existŝxn(1+ǫ)pY U (y,u)
y,u ∈ T

n(1+ǫ)pY U (y,u)
ǫ (X |y, u) such thatxny,u is a prefix ofx̂n(1+ǫ)pY U (y,u)

y,u . And
∣

∣T
n(1+ǫ)pY U (y,u)
ǫ (X |y, u)

∣

∣ ≤ 2nR3,y,upY U (y,u) for largen if R3,y,u > (1+ ǫ)H(X |Y = y, U = u)+δ(ǫ). Hence we can assign
suitableR3,y,u for eachy, u if R3 > (1 + ǫ)H(X |Y, U) + δ(ǫ).

AlthoughR is 5-dimensional, the bounds on the rates can be expressed interms of three quantities:I(X ;U), I(Y ;U) and
I(X,Y ;U) together with other constant quantities that involve only the given(X,Y ). This leads to the following equivalence
of R to the mutual information regionIXY defined in (1). We denote the components of a vectorv ∈ IXY by v =
(vX , vY , vXY ).

Proposition 1. The rate region for the EGW system can be expressed as

R =
⋃

v∈IXY

{(

vXY , H(X)− vX , H(Y )− vY , H(X |Y )− vXY + vY , H(Y |X)− vXY + vX
)}

+ [0,∞)5, (2)

where the last “+” denotes the Minkowski sum. Moreover, the mutual information region for(X,Y ) can be expressed as

IXY =
{

v ∈ R
3 :

(

vXY , H(X)− vX , H(Y )− vY , H(X |Y )− vXY + vY , H(Y |X)− vXY + vX
)

∈ R
}

. (3)

Proof: Note that (2) follows from the definitions ofR andIXY . We now prove (3). The⊆ direction follows from (2).
For the⊇ direction, letv ∈ R

3 satisfy
(

vXY , H(X)− vX , H(Y )− vY , H(X |Y )− vXY + vY , H(Y |X)− vXY + vX
)

∈ R.

Then by Theorem 1, there existsU such that

vXY ≥ I(X,Y ;U), (4)

H(X)− vX ≥ H(X |U), (5)

H(Y )− vY ≥ H(Y |U), (6)

H(X |Y )− vXY + vY ≥ H(X |Y, U), (7)

H(Y |X)− vXY + vX ≥ H(Y |X,U). (8)
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Adding (4) and (8), we havevX ≥ I(X ;U). Combining this with (5), we havevX = I(X ;U). Similarly vY = I(Y ;U).
Substituting this into (7), we havevXY ≤ I(X,Y ;U). Combining this with (4), we havevXY = I(X,Y ;U). Hencev ∈ IXY .

In the following we list several properties ofIXY .

Proposition 2. The mutual information regionIXY satisfies:

1) Compactness and convexity.IXY is compact and convex.
2) Outer bound.IXY ⊆ I

o
XY , whereI

o
XY is the set ofv such that

vX , vY ≥ 0,

vX + vY − vXY ≤ I(X ;Y ),

0 ≤ vXY − vY ≤ H(X |Y ),

0 ≤ vXY − vX ≤ H(Y |X).

3) Inner bound.IXY ⊇ I
i
XY , whereI

i
XY is the convex hull of the points(0, 0, 0), (H(X), I(X ;Y ), H(X)),

(I(X ;Y ), H(Y ), H(Y )), (H(X), H(Y ), H(X,Y )), (H(X |Y ), H(Y |X), H(X |Y ) +H(Y |X)).
Moreover, there exists0 ≤ ǫ1, ǫ2 ≤ log I(X ;Y ) + 4 such that

(0, H(Y |X)− ǫ1, H(Y |X)), (H(X |Y )− ǫ2, 0, H(X |Y )) ∈ IXY .

4) Superadditivity. If(X1, Y1) is independent of(X2, Y2), then

IX1,Y1
+ IX2,Y2

⊆ I(X1,X2),(Y1,Y2),

where+ denotes the Minkowski sum. As a result, if(Xi, Yi) ∼ pXY i.i.d. for i = 1, . . . , n, IXY ⊆ (1/n)IXn,Y n .
5) Data processing. IfX2 −X1 − Y1 − Y2 forms a Markov chain, then for anyv ∈ IX1,Y1

, there existsw ∈ IX2,Y2
such

that wX ≤ vX , wY ≤ vY , wXY ≤ vXY ,

I(X2;Y2)− wX − wY + wXY ≤ I(X1;Y1)− vX − vY + vXY .

6) Cardinality bound.
IXY =

⋃

pU|XY : |U|≤|X |·|Y|+2

{(I(X ;U), I(Y ;U), I(X,Y ;U))} .

7) Relation to Gray–Wyner region and region of tension. The Gray–Wyner region can be obtained fromIXY as

RGW =
⋃

pU|XY

{(

I(X,Y ;U), H(X |U), H(Y |U)
)}

+ [0,∞)3

=
⋃

v∈IXY

{(

vXY , H(X)− vX , H(Y )− vY
)}

+ [0,∞)3.

The region of tension can be obtained fromIXY as

T =
⋃

pU|XY

{(

I(Y ;U |X), I(X ;U |Y ), I(X ;Y |U)
)}

+ [0,∞)3

=
⋃

v∈IXY

{(

vXY − vX , vXY − vY , I(X ;Y )− vX − vY + vXY

)}

+ [0,∞)3.

The proof of this proposition is given in Appendix B.

III. E XTREME POINTS OF THEMUTUAL INFORMATION REGION

Many interesting information theoretic quantities can be expressed as optimizations overIXY (and R). SinceIXY is
convex and compact, some of these quantities can be represented in terms of the support functionψIXY

(x) and its one-sided
directional derivative, which provides a representation of those quantities using at most 6 coordinates. To avoid conflicts and
for consistency, we use different notation for some of thesequantities from the original literature . We use semicolons, e.g.,
G(X ;Y ), for symmetric quantities, and arrows, e.g.,G(X → Y ), for asymmetric quantities.

Figures 2, 3 illustrate the mutual information regionIXY and its extreme points, and Table I lists the extreme points and
their corresponding optimization problems and support function representations.

We first consider the extreme points ofIXY that correspond to previously known quantities.

Wyner’s common information [2]
J(X ;Y ) = min

X−U−Y
I(X,Y ;U)
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Figure 2. Illustration ofIXY (yellow), I i

XY
(green) andI o

XY
(grey) defined in Proposition 2. The axes areα = I(X;U |Y ) = vXY − vY ,

β = I(Y ;U |X) = vXY − vX andγ = vX + vY − vXY , i.e., the mutual informationI(X; Y ;U). Without loss of generality, we assumeH(X) ≥ H(Y ).
Note that the original Gray–Wyner region and the region of tension correspond to the upper-left corner.

can be expressed as

J(X ;Y ) = min {vXY : v ∈ IXY , vX + vY − vXY = I(X ;Y )}

= min
{

R0 : R4
0 ∈ R, R0 +R1 +R2 = H(X,Y )

}

= −ψ′
IXY

(1, 1,−1; 0, 0,−1).

Gács-Körner common information [3], [25]

K(X ;Y ) = max
U :H(U|X)=H(U|Y )=0

H(U) = max
U :X−Y−U,U−X−Y

I(X,Y ;U)

can be expressed as

K(X ;Y ) = max {vXY : v ∈ IXY , vX = vY = vXY }

= max
{

R0 : R4
0 ∈ R, R0 +R1 = H(X), R0 +R2 = H(Y )

}

= ψ′
IXY

(1, 1,−2; 0, 0, 1).

Körner graph entropy [8], [26]. Let GXY be a graph with a set of verticesX and edges between confusable symbols upon
observingY , i.e., there is an edge(x1, x2) if p(x1, y), p(x2, y) > 0 for somey. The Körner graph entropy

HK(GXY , X) = min
U :U−X−Y,H(X|Y,U)=0

I(X ;U)
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XY
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β = I(Y ;U |X) = vXY − vX andγ = vX + vY − vXY . We assumeH(X) ≥ H(Y ).

can be expressed as

HK(GXY , X) = min {vX : v ∈ IXY , vX = vXY , vXY − vY = H(X |Y )}

= min
{

R0 : R4
0 ∈ R, R0 +R1 = H(X), R3 = 0

}

= −ψ′
IXY

(1,−1, 0; −1, 0, 0).

In the Gray–Wyner system with causal complementary side information,HK(GXY , X) corresponds to the setting with only
decoders 1, 3 andM3 = ∅, and we restrict the sum rateR0+R1 = H(X). This is in line with the lossless source coding setting
with causal side information [12], where the optimal rate isalso given byHK(GXY , X). An intuitive reason of this equality
is thatR0 + R1 = H(X) and the recovery requirement of decoder 1 forcesM0 andM1 to contain negligible information
outsideXn, hence the setting is similar to the case in which the encoderhas access only toXn. This corresponds to lossless
source coding with causal side information setting.

Necessary conditional entropy[4] (also seeH(Y ց X |X) in [27], G(Y → X) in [28], private information in [29] and [30])

H(Y †X) = min
U :H(U|Y )=0, X−U−Y

H(U |X) = min
U :X−Y−U,X−U−Y

I(Y ;U)− I(X ;Y )
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can be expressed as

H(Y †X) = min {vXY : v ∈ IXY , vY = vXY , vX = I(X ;Y )} − I(X ;Y )

= min
{

R0 : R4
0 ∈ R, R0 +R2 = H(Y ), R1 = H(X |Y )

}

= −ψ′
IXY

(1, 2,−2; 1, 0,−1).

Information bottleneck [5]
GIB(t, X → Y ) = min

U :X−Y−U, I(X;U)≥t
I(Y ;U)

can be expressed as

GIB(t, X → Y ) = min {vY : v ∈ IXY , vY = vXY , vX ≥ t}

= min
{

R0 : R4
0 ∈ R, R0 +R2 = H(Y ), R1 ≤ H(X)− t

}

.

Note that the same tradeoff also appears in common randomness extraction on a 2-DMS with one-way communication [31],
lossless source coding with a helper [15], [16], [17], and a quantity studied by Witsenhausen and Wyner [32]. It is shown
in [33] that its slope is given by the chordal slope of the hypercontractivity of Markov operator [34]

s∗(Y → X) = sup
U :X−Y−U

I(X ;U)

I(Y ;U)

= sup {vX/vY : v ∈ IXY , vY = vXY } .

Privacy funnel [9] (also see the rate-privacy function defined in [29])

GPF(t, X → Y ) = min
U :X−Y−U, I(Y ;U)≥t

I(X ;U)

can be expressed as

GPF(t, X → Y ) = min {vX : v ∈ IXY , vY = vXY , vY ≥ t}

= min
{

R0 +R4 −H(Y |X) : R4
0 ∈ R, R0 +R2 = H(Y ), R0 ≥ t

}

.

In particular, the maximumR for perfect privacy (written asg0(X ;Y ) in [29], also see [35]) is

GR∗(X → Y ) = max {t ≥ 0 : GPF(t, X → Y ) = 0}

= max {vY : v ∈ IXY , vY = vXY , vX = 0}

= max
{

R0 : R4
0 ∈ R, R0 +R2 = H(Y ), R0 +R4 = H(Y |X)

}

= ψ′
IXY

(−1, 1,−1; 0, 1, 0).

The optimal privacy-utility coefficient [35] is

v∗(X → Y ) = inf
U :X−Y−U

I(X ;U)

I(Y ;U)

= inf {vX/vY : v ∈ IXY , vY = vXY } .

Excess functional information [10]

Ψ(X → Y ) = min
U :U⊥⊥X

H(Y |U)− I(X ;Y )

is closely related to one-shot channel simulation [36] and lossy source coding, and can be expressed as

Ψ(X → Y ) = H(Y |X)−max {vY : v ∈ IXY , vX = 0}

= min
{

R2 : R4
0 ∈ R, R0 +R4 = H(Y |X)

}

− I(X ;Y )

= min
{

R2 : R4
0 ∈ R, R4 = 0, R0 = H(Y |X)

}

− I(X ;Y )

= −ψ′
IXY

(−2, 0, 1; 0, 1,−1).

In the EGW system,Ψ(X → Y ) corresponds to the setting with only decoders 2, 4 andM4 = ∅ (since it is better to allocate
the rate toR0 instead ofR4), and we restrictR0 = H(Y |X). The value ofΨ(X → Y )+ I(X ;Y ) is the rate of the additional
informationM2 that decoder 2 needs, in order to compensate the lack of side information compared to decoder 4.
Minimum communication rate for distributed channel synthesis with common randomness ratet [13], [14]

C(t,X → Y ) = min
U :X−U−Y

max {I(X ;U), I(X,Y ;U)− t}

can be expressed as

C(t,X → Y ) = min {max{vX , vXY − t} : v ∈ IXY , vX + vY − vXY = I(X ;Y )}

= min
{

max{H(X)−R1, R0 − t} : R
4
0 ∈ R, R0 +R1 + R2 = H(X,Y )

}

.
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A. New information theoretic quantities

We now present three new quantities which arise as extreme points of IXY . These extreme points concern the case in
which decoders 3 and 4 are active in the EGW system. Note that they are all maximizations of the interaction information
I(X ;Y |U)− I(X ;Y ) under various constraints. They can be considered as distances from extreme dependency, in the sense
that they are equal to zero only under certain conditions of extreme dependency.

Maximal interaction information is defined as

GNNI(X ; Y ) = max
pU|XY

I(X ;Y |U)− I(X ;Y ).

It can be shown that

GNNI(X ; Y ) = H(X |Y ) +H(Y |X)− min
U :H(Y |X,U)=H(X|Y,U)=0

I(X,Y ;U)

= max {vXY − vX − vY : v ∈ IXY }

= H(X |Y ) +H(Y |X)−min
{

R0 +R3 +R4 : R4
0 ∈ R

}

= H(X |Y ) +H(Y |X)−min
{

R0 : R4
0 ∈ R, R3 = R4 = 0

}

= ψIXY
(−1,−1, 1).

The maximal interaction information concerns the sum-rateof the EGW system with only decoders 3,4. Note that it is always
better to allocate the ratesR3, R4 to R0 instead, hence we can assumeR3 = R4 = 0 (which corresponds toH(Y |X,U) =
H(X |Y, U) = 0). The quantityH(X |Y ) +H(Y |X)−GNNI(X ; Y ) is the maximum rate in the lossless causal version of the
complementary delivery setup [7].

Asymmetric private interaction information is defined as

GPNI(X → Y ) = max
U :U⊥⊥X

I(X ;Y |U)− I(X ;Y ).

It can be shown that

GPNI(X → Y ) = H(Y |X)− min
U :U⊥⊥X,H(Y |X,U)=0

I(Y ;U)

= H(Y |X)−min {vY : v ∈ IXY , vX = 0, vXY = H(Y |X)}

= H(X |Y )−min
{

R3 : R4
0 ∈ R, R0 +R4 = H(Y |X)

}

= H(X |Y )−min
{

R3 : R4
0 ∈ R, R4 = 0, R0 = H(Y |X)

}

= ψ′
IXY

(−1, 0, 0; 0,−1, 1).

The asymmetric private interaction information is the opposite of excess functional information defined in [10] in which
I(Y ;U) is maximized instead. Another operational meaning ofGPNI is the generation of random variables with a privacy
constraint. Suppose Alice observesX and wants to generateY ∼ pY |X(·|X). However, she does not have any private
randomness and can only access public randomnessW , which is also available to Eve. Her goal is to generateY as a function
ofX andW , while minimizing Eve’s knowledge onY measured byI(Y ;W ). The minimumI(Y ;W ) isH(Y |X)−GPNI(X →
Y ).

Symmetric private interaction information is defined as

GPPI(X ; Y ) = max
U :U⊥⊥X,U⊥⊥Y

I(X ;Y |U)− I(X ;Y ).

It can be shown that

GPPI(X ; Y ) = max
U :U⊥⊥X,U⊥⊥Y

I(X,Y ;U)

= max {vXY : v ∈ IXY , vX = vY = 0}

= max
{

R0 : R4
0 ∈ R, R0 +R3 = H(X |Y ), R0 +R4 = H(Y |X)

}

= ψ′
IXY

(−1,−1, 0; 0, 0, 1).

Intuitively, GPPI captures the maximum amount of information one can discloseabout(X,Y ), such that an eavesdropper
who only has one ofX or Y would know nothing about the disclosed information. Another operational meaning ofGPNI is
the generation of random variables with a privacy constraint (similar to that forGPNI). Suppose Alice observesX and wants
to generateY ∼ pY |X(·|X). She has access to public randomnessW , which is also available to Eve. She also has access to
private randomness. Her goal is to generateY usingX , W and her private randomness such that Eve has no knowledge on
Y (i.e., I(Y ;W ) = 0), while minimizing the amount of private randomness used measured byH(Y |X,W ) (note that if Alice
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Active

decoders

in EGW

Information quantity Objective and constraints in EGW
Support fcn. rep.

(ψ = ψIXY
)

1, 2

Wyner’s CI [2] minR0 : R0 + R1 + R2 = H(X, Y ) −ψ′(1, 1,−1; 0, 0,−1)

Gács-Körner CI [3], [25] maxR0 : R0 +R1 = H(X), R0 +R2 = H(Y ) ψ′(1, 1,−2; 0, 0, 1)

Necessary conditional entropy [4], [27] minR0 : R0 +R2 = H(Y ), R1 = H(X|Y ) −ψ′(1, 2,−2; 1, 0,−1)

Info. bottleneck [5] minR0 : R0 +R2 = H(Y ), R1 ≤ H(X) − t none

Comm. rate for channel synthesis [13], [14]minmax{H(X)−R1, R0−t} : R0+R1+R2=H(X,Y ) none

1, 3

or 2, 4

Körner graph entropy [8] minR0 : R0 + R1 = H(X), R3 = 0 −ψ′(1,−1, 0; −1, 0, 0)

Excess functional info. [10] minR2 − I(X; Y ) : R4 = 0, R0 = H(Y |X) −ψ′(−2, 0, 1; 0, 1,−1)

Max. rate for perfect privacy [9], [29] maxR0 : R0 + R2 = H(Y ), R0 + R4 = H(Y |X) ψ′(−1, 1,−1; 0, 1, 0)

Privacy funnel [9] minR0 + R4 −H(Y |X) : R0 + R2 = H(Y ), R0 ≥ t none

3, 4

Maximal interaction info. maxH(X|Y ) +H(Y |X)−R0 : R3 = R4 = 0 ψ(−1,−1, 1)

Asymm. private interaction info. maxH(X|Y ) −R3 : R4 = 0, R0 = H(Y |X) ψ′(−1, 0, 0; 0,−1, 1)

Symm. private interaction info. maxR0 : R0 + R3 = H(X|Y ), R0 + R4 = H(Y |X) ψ′(−1,−1, 0; 0, 0, 1)

Table I
EXTREME POINTS OFIXY AND THE CORRESPONDING EXTREME POINTS IN THEEGW,AND THEIR SUPPORT FUNCTION REPRESENTATIONS.

can flip fair coins for the private randomness, then by Knuth-Yao algorithm [37] the expected number of flips is bounded by
H(Y |X,W ) + 2 ). The minimumH(Y |X,W ) is H(Y |X)−GPPI(X ;Y ).

We now list several properties ofGNNI, GPNI andGPPI.

Proposition 3. GNNI, GPNI andGPPI satisfies

1) Bounds.
0 ≤ GPPI(X ; Y ) ≤ GPNI(X → Y ) ≤ GNNI(X ; Y ) ≤ min {H(X |Y ), H(Y |X)} .

2) Conditions for zero.

• GNNI(X ; Y ) = 0 if and only if the characteristic bipartite graph ofX,Y (i.e. verticesX ∪ Y with edge(x, y) if
p(x, y) > 0) does not contain paths of length 3, or equivalently,p(x|y) = 1 or p(y|x) = 1 for all x, y such that
p(x, y) > 0.

• GPNI(X → Y ) = 0 if and only ifGNNI(X ; Y ) = 0.
• GPPI(X ; Y ) = 0 if and only if the characteristic bipartite graph ofX,Y does not contain cycles.

3) Condition for maximum. IfH(X) = H(Y ), then the following statements are equivalent:

• GNNI(X ; Y ) = H(Y |X).
• GPNI(X → Y ) = H(Y |X).
• GPPI(X ; Y ) = H(Y |X).
• p(x) = p(y) for all x, y such thatp(x, y) > 0.

4) Lower bound for independentX,Y . If X ⊥⊥ Y ,

GPPI(X ; Y ) ≥ E [− logmax{p(X), p(Y )}]− 1.

5) Superadditivity. If(X1, Y1) is independent of(X2, Y2), then

GNNI(X1, X2; Y1, Y2) ≥ GNNI(X1; Y1) +GNNI(X2; Y2).

Similar forGPNI andGPPI.

The proof of this proposition is given in Appendix C.
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IV. EXTENDED GRAY–WYNER SYSTEM WITH NONCAUSAL COMPLEMENTARY SIDE INFORMATION

In this section we establish the rate regionR′ for the EGW system with complementary noncausal side information at
decoders 3 and 4 (noncausal EGW), that is, decoder 3 recoversXn from (M0,M3, Y

n) and decoder 4 similarly recoversY n

from (M0,M4, X
n). We show thatR′ can be expressed in terms of the Gray-Wyner regionRGW, hence it contains fewer

interesting extreme points compared toR. This is the reason we emphasized the causal side information in this paper. We
further show thatR′ is related to theasymptotic mutual information regiondefined as

I
∞
XY =

∞
⋃

n=1

1

n
IXn,Y n ,

where(Xn, Y n) is i.i.d. with (X1, Y1) ∼ pXY . Note thatI ∞
XY may not be closed (unlikeIXY which is always closed).

The following gives the rate region for the noncausal EGW.

Theorem 2. The optimal rate regionR′ for the extended Gray–Wyner system with noncausal complementary side information
is the set of rate tuples(R0, R1, R2, R3, R4) such that

R0 ≥ I(X,Y ;U),

R1 ≥ H(X |U),

R2 ≥ H(Y |U),

R3 ≥ H(X |U)−H(Y ),

R4 ≥ H(Y |U)−H(X),

R0 +R3 ≥ H(X |Y ),

R0 +R4 ≥ H(Y |X),

R2 +R3 ≥ H(X |U),

R1 +R4 ≥ H(Y |U),

R0 +R2 +R3 ≥ H(X,Y ),

R0 +R1 +R4 ≥ H(X,Y )

for somepU|XY , where|U| ≤ |X | · |Y|+ 2.

The proof is given in Appendix D. Then we characterize the closure ofI ∞
XY . We show thatcl(I ∞

XY ), R′ and the the
Gray–Wyner regionRGW can be expressed in terms of each other.

Proposition 4. The closure ofI ∞
XY , the rate regionR′ for the noncausal EGW and the Gray–Wyner regionRGW satisfy:

1) Characterization ofcl(I ∞
XY ).

cl(I ∞
XY ) = (IXY + (−∞, 0]× (−∞, 0]× [0,∞)) ∩I

o
XY

= (IXY + {(t, t, t) : t ≤ 0}) ∩
(

[0,∞)× [0,∞)× R
)

.

2) Equivalence betweencl(I ∞
XY ) and R′.

R
′ =

⋃

v∈cl(I ∞
XY

)

{(

vXY , H(X)− vX , H(Y )− vY , H(X |Y )− vXY + vY , H(Y |X)− vXY + vX
)}

+ [0,∞)5,

and

cl(I ∞
XY ) =

{

v ∈ R
3 :

(

vXY , H(X)− vX , H(Y )− vY , H(X |Y )− vXY + vY , H(Y |X)− vXY + vX
)

∈ R
′
}

.

3) Equivalence betweencl(I ∞
XY ) and RGW.

RGW =
⋃

v∈cl(I ∞
XY

)

{(

vXY , H(X)− vX , H(Y )− vY
)}

+ [0,∞)3,

and
cl(I ∞

XY ) =
{

v ∈ I
o
XY :

(

vXY , H(X)− vX , H(Y )− vY
)

∈ RGW

}

.

The proof is given in Appendix E. Note that Proposition 4 doesnot characterizeI ∞
XY completely since it does not specify

which boundary points are inI ∞
XY .



11

APPENDIX

A. Proof of the converse of Theorem 1

To prove the converse, letUi = (M0, X
i−1, Y i−1). Consider

nR0 ≥ I(X
n, Y n;M0)

=

n
∑

i=1

I(Xi, Yi;M0 |X
i−1, Y i−1)

=

n
∑

i=1

I(Xi, Yi;M0, X
i−1, Y i−1)

=

n
∑

i=1

I(Xi, Yi;Ui),

nR1 ≥ H(M1 |M0)

≥ I(Xn;M1 |M0)

= H(Xn |M0)−H(Xn |M0,M1)

=

n
∑

i=1

H(Xi |M0, X
i−1)−H(Xn |M0,M1)

≥
n
∑

i=1

H(Xi |M0, X
i−1, Y i−1)−H(Xn |M0,M1)

≥
n
∑

i=1

H(Xi |M0, X
i−1, Y i−1)− log |X |

n
∑

i=1

P
{

Xi 6= X̂1,i

}

− 1 (9)

≥
n
∑

i=1

H(Xi |Ui)− o(n),

where the last inequality follows by Fano’s inequality. Similarly nR2 ≥
∑

iH(Yi|Ui)− o(n). Next, consider

nR3 ≥ H(M3 |M0)

≥ I(Xn, Y n;M3 |M0)

=
n
∑

i=1

I(Xi, Yi;M3 |M0, X
i−1, Y i−1)

≥
n
∑

i=1

I(Xi;M3 |M0, X
i−1, Y i)

=

n
∑

i=1

(

H(Xi |M0, X
i−1, Y i)−H(Xi |M0,M3, X

i−1, Y i)
)

=

n
∑

i=1

H(Xi |Yi, Ui)−
n
∑

i=1

H(Xi |M0,M3, X
i−1, Y i)

≥
n
∑

i=1

H(Xi |Yi, Ui)− log |X |
n
∑

i=1

P
{

Xi 6= X̂3,i

}

− 1 (10)

=

n
∑

i=1

H(Xi |Yi, Ui)− o(n),

where the last inequality follows by Fano’s inequality sinceX̂3,i is a function ofM0,M3, Y
i. SimilarlynR4 ≥

∑

iH(Yi|Xi, Ui)−
o(n). Hence the point(R0 + ǫ, . . . , R4 + ǫ) is in the convex hull ofR for any ǫ > 0. From (2),R is the increasing hull of
an affine transformation ofIXY , and thus is convex.

To prove the cardinality bound, we apply Fenchel-Eggleston-Carathéodory theorem [38], [39] on the(|X ||Y|+2)-dimensional
vectors with entriesH(X |U = u), H(Y |U = u), H(X,Y |U = u) andp(x, y|u) for u ∈ {1, . . . , |U|}, (x, y) ∈ {1, . . . , |X |}×
{1, . . . , |Y|}\(|X |, |Y|); see [16], [19].
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B. Proof of Proposition 2

1) To see thatIXY is convex, for anyU0, U1 andλ ∈ [0, 1], let Q ∼ Bern(λ) be independent ofX,Y, U0, U1, and let
U = (Q,UQ). ThenI(X ;U) = (1−λ)I(X ;U0)+λI(X ;U1) (similarly for the other two quantities). Compactness will
be proved later.

2) The outer bound follows directly from the properties of entropy and mutual information.
3) For the inner bound, the first 4 points can be obtained by substituting U = ∅, X, Y, (X,Y ) respectively. For the last

point, by the functional representation lemma [40, p. 626],let V ⊥⊥ X such thatH(Y |X,V ) = 0. Again by the functional
representation lemma, letW ⊥⊥ (Y, V ) such thatH(X |Y, V,W ) = 0. Let U = (V,W ), thenI(X,Y ;U)− I(X ;U) =
H(Y |X)−H(Y |X,U) = H(Y |X), I(X,Y ;U)− I(Y ;U) = H(X |Y )−H(X |Y, U) = H(X |Y ), and

I(X,Y ;U) = I(X,Y ;V,W )

= I(X,Y ;V ) + I(X,Y ;W |V )

= I(Y ;V |X) + I(X ;W |Y, V )

≤ H(Y |X) +H(X |Y ).

Hence there existst ≤ H(Y |X) + H(X |Y ) such that(t − H(Y |X), t − H(X |Y ), t) ∈ IXY (by substitutingt =
I(X,Y ;U)). Taking convex combination of this point and(H(X), H(Y ), H(X,Y )) ∈ IXY , we have(H(X |Y ), H(Y |X), H(X |Y )+
H(Y |X)) ∈ IXY .
The existence of0 ≤ ǫ1 ≤ log I(X ;Y )+ 4 such that(0, H(Y |X)− ǫ1, H(Y |X)) ∈ IXY can be proved by substituting
ǫ1 = Ψ(X → Y ) and invoking the strong functional representation lemma [10].

4) The superadditivity property can be obtained from consideringU = (U1, U2), where(I(Xi;Ui), I(Yi;Ui), I(Xi, Yi;Ui)) ∈
IXi,Yi

.
5) The data processing property can be obtained from considering U where(I(X1;U), I(Y1;U), I(X1, Y1;U)) ∈ IX1,Y1

.
6) The cardinality bound can be proved using Fenchel-Eggleston-Carathéodory theorem using the same arguments as in the

converse proof of Theorem 1. Compactness follows from the fact that mutual information is a continuous function, and
the set of conditional pmfspU|XY with |U| ≤ |X | · |Y|+ 2 is a compact set.

7) The relation to Gray–Wyner region and region of tension follows from the definitions of the regions.

C. Proof of Proposition 3

1) To prove the bound, note thatI(X ;Y |U) ≤ H(X), henceI(X ;Y |U)− I(X ;Y ) ≤ H(X |Y ), GNNI ≤ H(X |Y ).
2) We first prove that if there does not exist length 3 paths in the bipartite graph, thenGNNI(X ; Y ) = GPNI(X ; Y ) = 0.

Let Q achieves the Gács-Körner common information, i.e.,Q represents which connected component the edge(X,Y )
lies in. If the bipartite graph does not contain length 3 paths, every connected component is a star, i.e., for eachq,
eitherH(X |Q = q) = 0 or H(Y |Q = q) = 0. Then I(X ;Y ) = H(Q) + I(X ;Y |Q) = H(Q), and I(X ;Y |U) =
H(Q|U) + I(X ;Y |Q,U) = H(Q|U) ≤ H(Q) for anyU . HenceGNNI(X ; Y ) = GPNI(X ; Y ) = 0.
We then prove that if there exist a length 3 path in the bipartite graph, thenGNNI(X ; Y ) ≥ GPNI(X ; Y ) > 0. Assume
p(x1, y1), p(x1, y2), p(x2, y1) > 0. Let U ∈ {1, 2},

p(u|x, y) =































1/2 + ǫ/p(x1, y1) if (x, y, u) = (x1, y1, 1)

1/2− ǫ/p(x1, y1) if (x, y, u) = (x1, y1, 2)

1/2− ǫ/p(x1, y2) if (x, y, u) = (x1, y2, 1)

1/2 + ǫ/p(x1, y2) if (x, y, u) = (x1, y2, 2)

1/2 otherwise,

where ǫ > 0 is small enough such that the above is a valid conditional pmf. One can verify thatU ⊥⊥ X . Since
pU|XY (1|x1, y1) = 1/2 + ǫ/p(x1, y1) 6= 1/2 = pU|XY (1|x2, y1), X andU are not conditionally independent givenY .
HenceI(X ;Y |U)− I(X ;Y ) = I(X ;U |Y ) > 0.
We then prove that ifGPPI(X ; Y ) > 0, then there exists a cycle in the bipartite graph. LetU satisfiesU ⊥⊥ X , U ⊥⊥ Y
andI(X ;Y |U) > I(X ;Y ). SinceU is not independent ofX,Y , there existsx1, y1, u such thatp(x1, y1|u) > p(x1, y1).
Since

∑

y′ p(x1, y
′|u) = p(x1|u) = p(x1) =

∑

y′ p(x1, y
′), there existsy2 6= y1 such thatp(x1, y2|u) < p(x1, y2). Since

∑

x′ p(x′, y2|u) = p(y2|u) = p(y2) =
∑

x′ p(x′, y2), there existsx2 6= x1 such thatp(x2, y2|u) > p(x2, y2). Continue
this process until we return to a visitedx, y pair, i.e.,(xa, ya) = (xb, yb) for a < b. Thenya, xa, ya+1, xa+1, . . . , xb−1, yb
forms a cycle.
We then prove that if there exist a cycle in the bipartite graph, thenGPPI(X ; Y ) > 0. Lety1, x1, y2, x2, . . . , xa, ya+1 = y1
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be a cycle. LetU ∈ {1, 2},

p(u|x, y) =































1/2 + ǫ/p(xi, yi) if (x, y, u) = (xi, yi, 1)

1/2− ǫ/p(xi, yi) if (x, y, u) = (xi, yi, 2)

1/2− ǫ/p(xi, yi+1) if (x, y, u) = (xi, yi+1, 1)

1/2 + ǫ/p(xi, yi+1) if (x, y, u) = (xi, yi+1, 2)

1/2 otherwise,

whereǫ > 0 is small enough such that the above is a valid conditional pmf. One can verify thatU ⊥⊥ X andU ⊥⊥ Y .
Since pU|XY (1|x1, y1) > 1/2 > pU|XY (1|x1, y2), U is not independent ofX,Y . HenceI(X ;Y |U) − I(X ;Y ) =
I(X,Y ;U) > 0.

3) We then prove that ifH(X) = H(Y ) and p(x) = p(y) for all x, y such thatp(x, y) > 0, thenGPPI(X ; Y ) =
H(Y |X). LetQ achieves the Gács-Körner common information, and letXq = {x : p(x|q) > 0}, Yq = {y : p(y|q) > 0},
then X |{Q = q} ∼ Unif(Xq), Y |{Q = q} ∼ Unif(Yq) and |Xq| = |Yq | for all q. Applying Birkhoff-von Neu-
mann theorem on the submatrix ofp(x, y) with rows Xq and columnsYq, there existsUq such thatp(x, y|q) =
∑

u pUq
(u)pXY |UqQ(x, y|u, q), pX|UqQ(x|u, q) = pY |UqQ(y|u, q) = 1/|Xq| and pXY |UqQ(x, y|u, q) ∈ {0, 1/|Xq|} for

all x, y, u. Let U = {Uq}q∈Q, whereUq are assumed to be independent acrossq. Then for anyx andu = {uq},

p(x|{uq}) = p(x, q |{uq})

= p(q)p(x|uq, q)

= p(q)/|Xq |

= p(x),

where q = q(x) sinceH(Q|X) = 0. HenceU ⊥⊥ X . Similarly U ⊥⊥ Y . Also since there is only one non-zero in
pXY |UqQ(x, y|u, q) for differentx, we haveH(X |Y, U) = 0. SimilarlyH(Y |X,U) = 0. HenceI(X ;Y |U)−I(X ;Y ) =
I(Y ;U |X)− I(Y ;U) = H(Y |X).
We then prove that ifH(X) = H(Y ) andGNNI(X ; Y ) = H(Y |X), thenp(x) = p(y) for all x, y such thatp(x, y) > 0.
Let U satisfiesI(X ;Y |U) = I(X ;Y ) +H(Y |X) = H(Y ), then one can check thatU ⊥⊥ X , U ⊥⊥ Y , H(X |Y, U) = 0
andH(Y |X,U) = 0. For anyx, y such thatp(x, y) > 0, let u such thatp(x, y, u) > 0, then

p(x) = p(x|u)

= p(x|u)p(y |x, u)

= p(y |u)p(x|y, u)

= p(y).

4) We then prove the lower bound whenX,Y independent. AssumeX ⊥⊥ Y . AssumeX = {1, . . . , |X |}, Y = {1, . . . , |Y|},
X = F−1

X (V ), Y = F−1
Y (W ), V,W ∼ Unif[0, 1] independent. LetU = V +W mod 1, thenU ⊥⊥ X , U ⊥⊥ Y .

H(Y |U,X) =
∑

x

p(x)

ˆ 1

0

H(Y |U = u,X = x)du

=
∑

x

p(x)

ˆ 1

0

H(Y |W ∈ ([u− FX(x), u− FX(x− 1)) mod 1))du

=
∑

x

p(x)

ˆ 1

0

H(Y |W ∈ ([u, u+ p(x)] mod 1))du

=
∑

x

p(x)

ˆ 1

0

∑

y

l (P {Y = y |W ∈ ([u, u+ p(x)] mod 1)}) du

=
∑

x

p(x)

ˆ 1

0

∑

y

l
(

p(x)−1 |[FY (y − 1), FY (y)] ∩ ([u, u+ p(x)] mod 1)|
)

du

=
∑

x

p(x)
∑

y

ˆ 1

0

l
(

p(x)−1 |[0, p(y)] ∩ ([u, u+ p(x)] mod 1)|
)

du

= −H(X) +
∑

x,y

ˆ 1

0

l (|[0, p(y)] ∩ ([u, u+ p(x)] mod 1)|) du
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where we writeA mod 1 = {a mod 1 : a ∈ A} and |A| for the Lebesgue measure forA ⊆ R, l(t) = −t log t. Consider

f(a, b) =

ˆ 1

0

l (|[0, b] ∩ ([u, u+ a] mod 1)|) du.

If b ≤ a ≤ 1 anda+ b ≤ 1,

f(a, b) = (a− b)l(b) + 2

ˆ b

0

l (u) du

≤ (a− b)l(b) + 2bl (b/2)

= al(b) + b2

= ab log
1

b
+ b2

≤ ab log
1

b
+ ab.

If b ≤ a anda+ b > 1,

f(a, b) = (a− b)l(b) + (a+ b− 1)l(a+ b− 1) + 2

ˆ b

b+a−1

l(u)du

≤ (a− b)l(b) + (a+ b− 1)l(a+ b− 1) + 2(1− a)l

(

b−
1− a

2

)

≤ (a− b)l(b) + (1 + b− a)l

(

b2

1 + b− a

)

= (a− b)l(b) + b2 log
1 + b− a

b2

≤ (a− b)l(b) + b2 log
2b

b2

= al(b) + b2

≤ ab log
1

b
+ ab.

Hence

I(X,Y ;U) = H(X,Y )−H(Y |U,X)−H(X |U)

= H(X,Y )−
∑

x,y

f(p(x), p(y))

≥ H(X,Y )−
∑

x,y

(

p(x)p(y) log
1

min{p(x), p(y)}
+ p(x)p(y)

)

= E
[

log
1

max{p(X), p(Y )}

]

− 1.

5) The superadditivity property follows from the superadditivity of mutual information region.

D. Proof of Theorem 2

We first prove the achievability. Without loss of generalityassumeH(X) ≥ H(Y ). Fix any pointv = (vX , vY , vXY ) ∈ IXY .
Consider the region

I (v) = ((−∞, vX ]× (−∞, vY ]× [vXY ,∞)) ∩I
o
XY .
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It can be seen from Figure 2 thatI (v) is a subset of the convex hull of the following 9 points:

v,

p1 = (0, 0, 0),

p2 = (H(X), I(X ;Y ), H(X)),

p3 = (I(X ;Y ), H(Y ), H(Y )),

p4 = (H(X), H(Y ), H(X,Y )),

p5 = (H(X |Y ), 0, H(X |Y )),

p6 = (0, H(Y |X), H(Y |X)),

p7 = (0, 0, H(Y |X)),

p8 = (H(X)−H(Y ), 0, H(X |Y )),

i.e., v together with the corner points ofI o
XY except (I(X ;Y ), I(X ;Y ), I(X ;Y )). We will prove that for anyw =

(wX , wY , wXY ) ∈ I (v), the rate tupleR(w) = (R0(w), . . . , R4(w)),

R0(w) = wXY + ǫ,

R1(w) = H(X)− wX + ǫ,

R2(w) = H(Y )− wY + ǫ,

R3(w) = H(X |Y )− wXY + wY + ǫ,

R4(w) = H(Y |X)− wXY + wX + ǫ

is achievable in the extended Gray–Wyner system with noncausal complementary side information forǫ > 0. It suffices to
prove the corner pointsR(v), R(p1), . . . , R(p8) are achievable.
R(v) is achievable using the causal scheme in Theorem 1. To achieve R(p1), R(p2), R(p3) andR(p4), apply the causal

scheme in Theorem 1 onU ← ∅, U ← X , U ← Y andU ← (X,Y ), respectively.
To achieveR(p5), applying the strong functional representation lemma [10], there existsVn ⊥⊥ Y n such thatH(Xn|Y n, Vn) =

0 and I(Vn;Y n|Xn) ≤ ǫn/2 for n large enough. We then apply the causal scheme onX ← Xn, Y ← Y n andU ← Vn.
Similar forR(p6).

We now prove the achievability ofR(p7). To generate the codebook, randomly partitionT (n)
ǫ′ (X,Y ) into bins B0(m0)

of size 2n(H(X,Y )+ǫ/2−R0) for m0 ∈ [1 : 2nR0 ]. Further randomly partition the binB0(m0) into B3(m0,m3) of size
2n(H(X,Y )+ǫ/2−R0−R3) for m3 ∈ [1 : 2nR3 ].

To encodexn, yn, find m0,m3 such that(xn, yn) ∈ B3(m0,m3). Directly encodexn, yn into m1 andm2 respectively.
Decoder 3 receivesm0,m3, y

n and output the uniquêxn such that(x̂n, yn) ∈ B3(m0,m3). The probability of error vanishes
if H(Y ) > H(X,Y ) + ǫ/2−R0−R3, which is guaranteed by the definition ofR(p7). Decoder 4 receivesm0, x

n and output
the uniqueŷn such that(xn, ŷn) ∈ B0(m0). The probability of error vanishes ifH(X) > H(X,Y ) + ǫ/2 − R0, which is
guaranteed by the definition ofR(p7).

The achievability ofR(p8) is similar to that ofR(p7). To generate the codebook, randomly partitionT (n)
ǫ′ (X,Y ) into bins

B0(m0) of size 2n(H(X,Y )+ǫ/2−R0) for m0 ∈ [1 : 2nR0 ]. Givenm0, assign indicesm1 to the sequences in the binB0(m0)
for m1 ∈ [1 : 2nR1 ]. This is possible ifR1 ≥ H(X,Y ) + ǫ/2− R0, which is guaranteed by the definition ofR(p8).

To encodexn, yn, find m0 such that(xn, yn) ∈ B0(m0) and find the indexm1. Directly encodeyn into m2.
Decoder 1 receivesm0,m1 and outputxn where(xn, yn) ∈ B0(m0) with indexm1. Decoder 3 receivesm0, y

n and output
the uniquex̂n such that(x̂n, yn) ∈ B0(m0). The probability of error vanishes ifH(Y ) > H(X,Y ) + ǫ/2 − R0, which is
guaranteed by the definition ofR(p8). Decoder 4 receivesm0, x

n and output the uniquêyn such that(xn, ŷn) ∈ B0(m0). The
probability of error vanishes ifH(X) > H(X,Y )+ǫ/2−R0, which follows from the definition ofR(p8) andH(X) ≥ H(Y ).

Hence we have proved that for any pointv ∈ IXY and

w ∈ I (v) = ((−∞, vX ]× (−∞, vY ]× [vXY ,∞)) ∩I
o
XY ,

the rate tupleR(w) is achievable. In other words, the region

R ((IXY + (−∞, 0]× (−∞, 0]× [0,∞)) ∩I
o
XY ) + [0,∞)5
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is achievable. The region can be written as

wXY ≥ I(X,Y ;U),

wX ≤ I(X ;U),

wY ≤ I(Y ;U),

wX ≥ 0,

wY ≥ 0,

wXY − wY ≤ H(X |Y ),

wXY − wX ≤ H(Y |X),

R0 ≥ wXY + ǫ,

R1 ≥ H(X)− wX + ǫ,

R2 ≥ H(Y )− wY + ǫ,

R3 ≥ H(X |Y )− wXY + wY + ǫ,

R4 ≥ H(Y |X)− wXY + wX + ǫ

for someU,wX , wY , wXY . The final rate region can be obtained by eliminatingwX , wY , wXY using Fourier-Motzkin elimi-
nation.

We then prove the converse. Since decoder 3 observesM0,M3, Y
n and has to recoverXn with vanishing error probability,

R0+R3 ≥ H(X |Y ). SimilarlyR0+R4 ≥ H(Y |X). Note that decoders 2 and 3 together can recoverXn, Y n with vanishing
error probability (decoder 3 uses the output of decoder 2 as the side information), and henceR0 + R2 + R3 ≥ H(X,Y ).
Similarly R0 +R1 +R4 ≥ H(X,Y ).

Let Ui = (M0, X
i−1, Y i−1). Using the same arguments in the proof of Theorem 1, we haveR0 ≥ I(X,Y ;U), R1 ≥

H(X |U), R2 ≥ H(Y |U).

nR3 ≥ H(M3 |M0)

≥ I(Xn; M3 |M0)

= H(Xn |M0)−H(Xn |M0,M3)

=

n
∑

i=1

H(Xi |M0, X
i−1)−H(Xn |M0,M3)

≥
n
∑

i=1

H(Xi |M0, X
i−1, Y i−1)−H(Y n)−H(Xn |M0,M3, Y

n)

≥
n
∑

i=1

H(Xi |Ui)−H(Y n)− o(n),

where the last inequality is due to Fano’s inequality. Similarly nR4 ≥
∑

iH(Yi|Ui)−H(Xn)− o(n).

n(R2 +R3)

≥ H(M2,M3 |M0)

≥ I(Xn; M2,M3 |M0)

= H(Xn |M0)−H(Xn |M0,M2,M3)

=

n
∑

i=1

H(Xi |M0, X
i−1)−H(Xn |M0,M2,M3)

≥
n
∑

i=1

H(Xi |M0, X
i−1, Y i−1)−H(Y n |M0,M2,M3)−H(Xn |M0,M2,M3, Y

n)

≥
n
∑

i=1

H(Xi |Ui)− o(n),

where the last inequality follows by Fano’s inequality. Similarly n(R1 +R4) ≥
∑

iH(Yi|Ui)− o(n). Hence the point(R0 +
ǫ, . . . , R4 + ǫ) is in the convex hull ofR′ for any ǫ > 0. We have seen in the achievability proof that (forǫ = 0)

R
′ = R ((IXY + (−∞, 0]× (−∞, 0]× [0,∞)) ∩I

o
XY ) + [0,∞)5

is the increasing hull of an affine transformation of a convexset. ThereforeR′ is convex.
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E. Proof of Proposition 4

1) Since the Gray–Wyner region tensorizes,cl(I ∞
XY ) ⊆ (IXY + (−∞, 0]× (−∞, 0]× [0,∞)) ∩ I o

XY . To prove the
other direction, letw ∈ (IXY + (−∞, 0]× (−∞, 0]× [0,∞)) ∩I o

XY , then by Theorem 2, the following rate tuple is
achievable

R0(w) = wXY + ǫ,

R1(w) = H(X)− wX + ǫ,

R2(w) = H(Y )− wY + ǫ,

R3(w) = H(X |Y )− wXY + wY + ǫ,

R4(w) = H(Y |X)− wXY + wX + ǫ,

i.e. for the sourceX l, Y l, the probability of errorPe(l)→ 0 asl→∞. Apply this schemen times on the sourceXnl, Y nl.
This can be considered as a causal scheme on the source sequence (X l

1, Y
l
1 ), (X

2l
l+1, Y

2l
l+1), . . . , (X

nl
(n−1)l+1, Y

nl
(n−1)l+1)

with rate tuplelR(w) and symbol error probabilityPe(l). Hence by (9) and (10) in the proof of Theorem 1,

R(w) + log (|X | · |Y|)Pe(l) · 1 ∈ (1/l)R(X l;Y l).

Let ǫ′ = ǫ + log (|X | · |Y|)Pe(l). Since

1

l
R(X l;Y l) =

⋃

v∈(1/l)I
XlY l

[vXY ,∞)× [H(X)− vX ,∞)× [H(Y )− vY ,∞)

× [H(X |Y )− vXY + vY ,∞)× [H(Y |X)− vXY + vX ,∞),

there existsv ∈ (1/l)IXlY l ⊆ I
∞
XY such thatvXY ≤ wXY + ǫ′, H(X)− vX ≤ H(X)− wX + ǫ′, and similar for the

other 3 dimensions, which implies‖v − w‖∞ ≤ 2ǫ′. The result follows from takingl →∞, ǫ→ 0.
To show

(IXY + (−∞, 0]× (−∞, 0]× [0,∞)) ∩I
o
XY

= (IXY + {(t, t, t) : t ≤ 0}) ∩
(

[0,∞)× [0,∞)× R
)

,

note that they are both equal to the union of the convex hulls of {v, p1, . . . , p8} for v ∈ IXY (as in the proof of
Theorem 2).

2) The equivalence betweencl(I ∞
XY ) andR′ is proved in the Fourier-Motzkin elimination step in the proof of Theorem 2.

3) By Proposition 2,

RGW =
⋃

v∈IXY

{(

vXY , H(X)− vX , H(Y )− vY
)}

+ [0,∞)3

=
⋃

v∈IXY ∩I o
XY

{(

vXY , H(X)− vX , H(Y )− vY
)}

+ [0,∞)3

=
⋃

v∈(IXY +(−∞,0]2×[0,∞))∩I o
XY

{(

vXY , H(X)− vX , H(Y )− vY
)}

+ [0,∞)3

=
⋃

v∈cl(I ∞
XY

)

{(

vXY , H(X)− vX , H(Y )− vY
)}

+ [0,∞)3.

For the other direction,

cl(I ∞
XY ) =

(

IXY + (−∞, 0]2 × [0,∞)
)

∩I
o
XY

= {v ∈ I
o
XY : vX ≤ wX , vY ≤ wY , vXY ≥ wXY for somew ∈ IXY }

= {v ∈ I
o
XY : vX ≤ I(X ;U), vY ≤ I(Y ;U), vXY ≥ I(X,Y ;U) for someU}

= {v ∈ I
o
XY : H(X)− vX ≥ H(X |U), H(Y )− vY ≥ H(Y |U), vXY ≥ I(X,Y ;U) for someU}

=
{

v ∈ I
o
XY :

(

vXY , H(X)− vX , H(Y )− vY
)

∈ RGW

}

.
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