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Abstract

We establish the rate region of an extended Gray—Wyner rayfte 2-DMS (X,Y") with two additional decoders having
complementary causal side information. This extensiomtisrésting because in addition to the operationally sicguifi extreme
points of the Gray—Wyner rate region, which include Wynexsmmon information, Gacs-Kérner common information and
information bottleneck, the rate region for the extendestesy also includes the Kérner graph entropy, the privacyéduiand
excess functional information, as well as three new guantitf potential interest, as extreme points. To simplify ithvestigation
of the 5-dimensional rate region of the extended Gray—Wsggistem, we establish an equivalence of this region to a &wional
mutual information region that consists of the set of aplas of the form(1(X;U), I(Y;U), I(X,Y;U)) for somepy x,y-
We further show that projections of this mutual informati@gion yield the rate regions for many settings involving-BMS,
including lossless source coding with causal side infoimnatdistributed channel synthesis, and lossless sourdagawith a
helper.

Index Terms

Gray—-Wyner system, side information, complementary dejivKorner graph entropy, privacy funnel.

|. INTRODUCTION

The lossless Gray—Wyner system [1] is a multi-terminal sewoding setting for two discrete memoryless source (2-PMS
(X,Y) with one encoder and two decoders. This setup draws some sifjitificance from providing operational interpretation
for several information theoretic quantities of interesaimely Wyner's common information![2], the Gacs-Korner coom
information [3], the necessary conditional entropy [4]dahe information bottleneck]5].

In this paper, we consider an extension of the Gray-Wyneteayghenceforth called the EGW system), which includes
two new individual descriptions and two decoders with chs&ie information as depicted in Figufé 1. The encoder maps
sequences from a 2-DMEX, Y) into five indicesM; € [1 : 2], i = 0,...,4. Decoders 1 and 2 correspond to those of
the Gray—Wyner system, that is, decoder 1 recov€tsfrom (M, M7) and decoder 2 recovel§™ from (Mg, Ms). At time
i € [1: n], decoder 3 recoverX; causallyfrom (M, M3,Y*) and decoder 4 similarly recoveYs causally from(Mq, My, X*).
Note that decoders 3 and 4 correspond to those of the comptargealelivery setup studied inl[6].][7] with causal (instest
noncausal) side information and with two additional prvatdicesM3 and My. This extended Gray-Wyner system setup is
lossless, that is, the decoders recover their respectivessequences with probability of error that vanishes approaches
infinity. The rate regionzZ of the EGW system is defined in the usual way as the closureeo§¢h of achievable rate tuples
(Ro, R1, R2, R3, Ry).

The first contribution of this paper is to establish the ragion of the EGW system. Moreover, to simplify the study a$ th
rate region and its extreme points, we show that it is eqgentalo the 3-dimensionahutual information regiorfor (X,Y)
defined as

Ixy = |J {U(X:0), I(Y;0), I(X,Y;U))} CR? 1)
PU|XY

in the sense that we can expregsusing.# and vice versa. As a consequence and of particular intéresgxtreme points
of the rate regionZ (and its equivalent mutual information regiofixy) for the EGW system include, in addition to the
aforementioned extreme points of the Gray—-Wyner system,Kiirner graph entropy[8], privacy funnell[9] and excess
functional information [[I0], as well as three new quangitieith interesting operational meaning, which we refer to as
the maximal interaction informationthe asymmetric private interaction informatipmand thesymmetric private interaction
information These extreme points can be cast as maximizations of teeagtion information[[11)/(X;Y|U) — I(X;Y)
under various constraints. They can be considered as degdrom extreme dependency, as they are equal to zero odér un
certain conditions of extreme dependency. In addition tvigiing operational interpretations to these informatibaoretic
guantities, projections of the mutual information regidelg the rate regions for many settings involving a 2-DM&|uding
lossless source coding with causal side information [1B}riButed channel synthesis |13], [14], and lossless am@oding
with a helper [15], [[16], [[17].

A related extension of lossy Gray—Wyner system with two decs with causal side information was studied by Timo and
Vellambi [18]. If we only consider decoders 3 and 4 in EGW,rthecan be considered as a special case of their setting
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Figure 1. Extended Gray—Wyner system.

(where the side information does not need to be complemgntather related source coding setups to the EGW can be found
in [29], [22], [20], [21], [22]. A related 3-dimensional rim, called the region of tension, was investigated by Pa&bhhan and
Prabhakarar [23][[24]. We show that this region can be nbthfrom the mutual information region, but the other ditt
does not hold in general.

In the following section, we establish the rate region of E@®W system, relate it to the mutual information region, and
show that the region of the original Gray—Wyner system arddigion of tension can be obtained from the mutual inforomati
region. In Sectiofi Tll, we study the extreme points of the umaliinformation region. In Sectidn 1V we establish the ragion
for the same setup as the EGW system but with noncausal thsfeeausal side information at decoders 3 and 4. We show
that the rate region of the noncausal EGW can be expressednis tof the Gray—\Wyner region, hence it does not contain as
many interesting extreme points as the causal EGW. Moreaershow that this region is equivalent to the closure of the
limit of the mutual information region fo(X™,Y ™) asn approaches infinity.

A. Notation

Throughout this paper, we assume thaf is base 2 and the entrogy is in bits. We use the notatiok? = (X,, ..., X3),
X" = X7 and[a : b] = [a,b] N Z.

For discreteX, we write the probability mass function as;. For A C R", we write the closure ofA ascl(A) and the
convex hull asconv(A). We write the support function as

Ya(b) =sup{a’b:a€ A}.

We write the one-sided directional derivative of the supfanction as

.1
Pabie) = lm — (Ya(b+tc) —a(b)).
t—0+ t
Note that if A is compact and convex, then

Yy (b; ) = max {ch cde argmaxaTb} .
a€A
Il. RATE REGION OFEGW AND THE MUTUAL INFORMATION REGION
The rate region of the EGW system is given in the following.

Theorem 1. The rate region the EGW systes is the set of rate tuple€Ry, R1, Ro, R3, R4) such that
Ry > I(X,Y;U),
Ry > H(X|U),
Ry > H(Y|U),
Rs > H(X|Y,U),
Ry > H(Y|X,U)



for somepy | xy, where|U/| < |X| - |V] + 2.

Note that if we ignore decoders 3 and 4, i.e., &t R, be sufficiently large, then this region reduces to the Grayrét

region.
Proof: The converse proof is quite straightforward and is given impéndix[A for completion. We now prove the

achievability.
Codebook generationFix pyxy and randomly and independently generaté® sequences:”(mg), mo € [1 : 2"Fo],
each according tq[;_, pu(u;). Given u™(my), assign indicesn; € [1 : 2", my € [1 : 27f2] to the sequences in
the conditional typical setg ™ (X|u™(mgp)) and 7;(")(Y|u"(m0)), respectively. For eaclh € ), u € U, assign indices
My € [1 1 20Fawupyu@w)] to the sequences i TP U (X |y ), wherey"  Rs,upyu(y,u) < Rz. Define
M4,z SiMilarly.
Encoding.To encode the sequeneé,y”, find mo such that(u™(mg),z™,y") € 7 s jointly typical, and find indices
my, mg Of 2™, y™ in 7;(”)(X|u”(m0)) and 7" (Y[u™(mo)) givenu™(my). For eachr,y, let zy , be the subsequence of
wherez; is included if and only ify; = y andu;(mg) = u. Note that sincgu™(mg),y") € 7. the length ofz} , is not
greater tham(1 + €)py v (y, ). We then find an indexus ,,, of &y TP vl ¢ 7rtaPvuw) ), ) such thate” , is

a prefix of:%ij“)p”(y’“), and outputms as the concatenation of; ,, ., for all y,u. Similar for my.

Decoding.Decoder 1 outputs the sequence corresponding to the indein 7 (X |u™(myg)). Decoder 2 performs simi-
larly using (mg, m2). Decoder 3, upon observing, finds the sequenc;é;l,(_iaf:)”(yi’“7‘(7"”)) at the indexms_y, v, (mg) i
grtrapyy weumo)) (1, 4 (mg)), and output the next symbol in the sequence that is not puelyicused. Decoder 4
performs similarly usingmg, my).
Analysis of the probability of erroBy the covering lemma, the probability that there does nittex, such thatu™(mg), 2™, y") €
7L tends to 0 ifRy > I(X,Y;U). Also \7;(”)(X|u"(mo))] < 27 for largen if Ry > H(X|U) + &(e) (similar for
Ry > H(Y|U) + 6(¢)). Note that(u"(my), 2", y") € T implies
i zi=2yi =y, wilmo) = u}| _ (1+)pxyu(e,y, u)
n(l+e)pyu(y,u) — (I+epyulysu)
<pxyu(z|y,u)

for all (y, u). Hence there exist; ;""" ¢ 71U IPyelws) )y, o) such thate” , is a prefix ofiyly 77, And

|7Z”(1+€)”YU(‘”’“) (X|y, u)| < 2nfsvuprvu:w) for largen if Ry, > (1+4€)H(X|Y =y,U = u)+6(e). Hence we can assign
suitableRs , ,, for eachy,u if R3 > (14 €)H(X|Y,U) + d(e).

|
Although Z is 5-dimensional, the bounds on the rates can be expresgethis of three quantitied:(X; U), I(Y;U) and
I(X,Y;U) together with other constant quantities that involve ohly given(X,Y"). This leads to the following equivalence
of # to the mutual information region?xy defined in [1). We denote the components of a veetor Zxy by v =
(Ux, vy, ’ny).

Proposition 1. The rate region for the EGW system can be expressed as

Z=J {(vxy, HX)—vx, HY) —vy, HX|Y) —vxy + vy, HY|X) —vxy +vx)} +[0,00)°, (2

vEIXY

where the last %" denotes the Minkowski sum. Moreover, the mutual infororatiegion for(X,Y") can be expressed as
Ixy ={ve R*: (vxy, H(X)—vx, HY) —vy, HX|Y) —vxy + vy, HY|X) —vxy +ux) € #}. 3)

Proof: Note that [(2) follows from the definitions o# and .#xy. We now prove[(B). TheC direction follows from [[2).
For theD direction, letv € R? satisfy

(ny, H(X) —Vx, H(Y) — Vy, H(X|Y) —Uxy + Uy, H(Y|X) — VXY +Ux) EX.
Then by Theoreriil1, there exists such that

vxy > I(X,Y;U), (4)

H(X) —vx > H(X|U), (5)
H(Y)—vy > HY|U), (6)
H(X|Y)—uvxy +vy > HX|Y,U), )
H(Y|X)—-vxy +vx > HY|X,U). (8)



Adding (@) and [(B), we havex > I(X;U). Combining this with [(b), we havex = I(X;U). Similarly vy- = I(Y;U).
Substituting this into[{[7), we haveyy < I(X,Y;U). Combining this with[(#), we havexy = I(X,Y;U). Hencev € xvy.
[ |

In the following we list several properties ofxy .

Proposition 2. The mutual information region/xy satisfies:
1) Compactness and convexityxy is compact and convex.
2) Outer bound.”xy C .73, Wwhere 7% is the set ofv such that
vx, vy >0,
vx +uy —oxy < I(X;Y),
0 <wvxy —vy <H(X|Y),
0 <wvxy —vx < H(YI|X).
3) Inner bound.%xy 2 #i-, where 71, is the convex hull of the point®, 0, 0), (H(X), I(X;Y), H(X)),
(I(X:Y), H(Y), H(Y)), (H(X), H(Y), H(X,Y)),(H(X]Y), H(Y|X), H(X[Y) + H(Y[X)).
Moreover, there exist8 < e1,e2 < logI(X;Y) + 4 such that

(0, HY|X) —e1, HY|X)), (H(X[Y) — €2, 0, H(X[Y)) € Ixvy.
4) Superadditivity. If(X1,Y7) is independent of X5, Y3), then
Ixivi Ix0ve © (X1, X0),(Y1,Y2)5

where+ denotes the Minkowski sum. As a resultXf;, Y;) ~ pxy i.i.d. fori=1,...,n, Ixy C (1/n)Ixn yn.
5) Data processing. IfXs — X; — Y7 — Y5 forms a Markov chain, then for any e thyl, there existsv € #x, y, such
thatwx <wvx, wy <vy, wxy < vxy,

I(X2:Ys) —wx —wy +wxy < I(X1;Y1) —vx — vy +vxy.
6) Cardinality bound.

Ixy = U {(I(X;0), I(Y;U), I(X,Y;U))}
puixy: US| X]|Y]+2

7) Relation to Gray—Wyner region and region of tension. They&¥ayner region can be obtained framyy as

%GW_ U { XY U (XlU)’H(YlU))}+[O’OO)3
PU|XY

U {(vxy, HX) —vx, HY) —vy)} + [0, 00)".

vEIXY

The region of tension can be obtained froffy as

T= |J {(v;U1X), I(X;U|Y), I(X; Y |U)) } +[0,00)°

PU|XY

U {(UXY —vx, vxy — vy, I(X;Y) —vx — vy +’ny)} + [0,00)3.

VEIXY

The proof of this proposition is given in AppendiX B.

IIl. EXTREME POINTS OF THEMUTUAL INFORMATION REGION

Many interesting information theoretic quantities can Bpressed as optimizations ovefxy (and #Z). Since Zxy is
convex and compact, some of these quantities can be repedsarterms of the support functian s, , () and its one-sided
directional derivative, which provides a representatibthose quantities using at most 6 coordinates. To avoid it fand
for consistency, we use different notation for some of thgsentities from the original literature . We use semicojang.,
G(X;Y), for symmetric quantities, and arrows, e.§(X — Y), for asymmetric quantities.

Figured2[B illustrate the mutual information regigfcy and its extreme points, and Talfle | lists the extreme points a
their corresponding optimization problems and supportfion representations.

We first consider the extreme points &fyy that correspond to previously known quantities.

Wyner’s common information [2]
J(X;Y) = Xm(}nyI(X,Y;U)



K(X;Y)

Figure 2. lllustration of.xy (yellow), .#% (green) and.#, (grey) defined in Propositiofl 2. The axes ate= I(X;U|Y) = vxy — vy,
B8=I1Y;U|X)=vxy —vx andy = vx +vy —vxy, i.e., the mutual informatiod (X; Y; U). Without loss of generality, we assuni&(X) > H(Y).
Note that the original Gray—Wyner region and the region aki@n correspond to the upper-left corner.

can be expressed as
J(X;Y) =min{vxy : v € Ixy, vx +vy —vxy = I(X;Y)}
=min{Ro: Ry € X, Ro+Ri+ Ry = H(X,Y)}
=, (1,1,-1; 0,0, -1).
Géacs-Korner common information [3], [25]

K(X;Y)

H(U) I(X,Y;U)

= max = max
U:HU|X)=HU|Y)=0 U X-Y-UU-X-Y

can be expressed as
K(X,Y) = max{vxy NS fxy, Vx = Vy = ’ny}
:max{Ro : Ré €eZ, Ry + Ry :H(X), Ro+ Re = H(Y)}
=¢']XY(1,1,—2; 0,0,1).

Korner graph entropy [8], [26]. Let Gxy be a graph with a set of vertice® and edges between confusable symbols upon
observingY, i.e., there is an edger, z2) if p(x1,y), p(x2,y) > 0 for somey. The Kdrner graph entropy

HK(ny,X): min I(X,U)
U:U-X-Y,H(X|Y,U)=0
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Figure 3. lllustration of.Zxy (yellow), j}(y (green) and.sy . (grey) restricted to different planes. The axes are= I(X;U|Y) = vxy — vy,

B=I1Y;U|X)=vxy —vx andy =vx + vy —vxy. We assumed(X) > H(Y).

can be expressed as
HK(ny,X) = min{vx NS fxy, VX = UXy, VUXy —Vy = H(X|Y)}
=min{Ry: R} € #Z, Ro+ R1 = H(X), Ry =0}
= —wfgxy(l,—l,o; —-1,0,0).

In the Gray—Wyner system with causal complementary sidermdtion, Hx (G xy, X ) corresponds to the setting with only
decoders 1, 3 andl/; = (), and we restrict the sum raféy+ R; = H(X). This is in line with the lossless source coding setting
with causal side information [12], where the optimal ratalso given byHk (Gxy, X). An intuitive reason of this equality
is that Ry + Ry = H(X) and the recovery requirement of decoder 1 fordés and M; to contain negligible information
outside X™, hence the setting is similar to the case in which the enchdsraccess only t& ™. This corresponds to lossless
source coding with causal side information setting.

Necessary conditional entropyf4] (also seeH (Y \, X|X) in [27], G(Y — X) in [28], private information in[[29] and_[30])

H(Y {X)= min H(U|X) = min I(Y;U) = I(X;Y)
U:HU|Y)=0,X-U-Y U: X-Y-U X-U-Y



can be expressed as
H(Y t X) =min{uxy : v € Ixy, vy =vxy, vx = [(X;Y)} - I(X;Y)
=min{Ry: R§ € #, Ro+ Ry = H(Y), Ry = H(X|Y)}
= —zﬁfﬁxy(l,2, -2;1,0,—1).

Information bottleneck [5]

GIB(t, X — Y) = min I(Y, U)
U: X—Y—U, I(X;U)>t

can be expressed as
Gi(t, X = Y)=min{vy : v € Ixy, vy =vxy, vx >t}
=min{Ry: R € Z, Ro+ Ro = H(Y), R < H(X) —t}.
Note that the same tradeoff also appears in common randsnexésction on a 2-DMS with one-way communicatibn| [31],

lossless source coding with a helperl[15],][16].1[17], anduardity studied by Witsenhausen and Wyrler]| [32]. It is shown
in [33] that its slope is given by the chordal slope of the hgpatractivity of Markov operatoi [34]

I1(X;U)
sV - X)=su :
V=2 X)= 0 1v0)
=sup {vx /vy : v € Ixy, vy = Uxy}.
Privacy funnel [9] (also see the rate-privacy function defined[inl[29])

GPF(t, X — Y) =

I1(X;U)

U:X—Yanl,I}(Y;U)Zt
can be expressed as
Gpr(t, X = Y) =min{vx : v € Ixy, vy = vxy, vy >t}

=min{Ro+ Ry —H(Y|X): Ry €%, Ro+ Ra=H(Y), Ro > t}.

In particular, the maximung® for perfect privacy (written ago(X;Y") in [29], also seel[35]) is
Gr (X —=Y)=max{t >0: Gpr(t, X - Y) =0}

= max{vy : v € Ixy, vy = vxy, vx =0}

=max{Ro: Ry €%, Ro+ Ry =H(Y), Ry + Ry = H(Y|X)}

=4y (-1,1,-1;0,1,0).
The optimal privacy-utility coefficien{[35] is

inf IX;0)

v:x-y-u I(Y;U)

=inf{vx /vy : v € Ixy, vy =vxv}.

V(X =Y)=

Excess functional information [[10]
(X —-Y)= U:mUlﬁXH(Y|U) —I(X;Y)
is closely related to one-shot channel simulation [36] ars$y source coding, and can be expressed as
V(X —-Y)=HY|X)—-max{vy : v € Ixy, vx =0}
=min{Ry: Ry € #, Ro+ Ry = HY|X)} - I(X;Y)
=min{Ry: Ry €%, Ry =0, Ry = HY|X)} — I(X;Y)
= —w’]xy(—Q,O, 1;0,1,-1).

In the EGW system¥(X — Y') corresponds to the setting with only decoders 2, 4 Afhd= () (since it is better to allocate
the rate toR, instead ofR,), and we restricl?y = H(Y'|X). The value of# (X — YY)+ I(X;Y) is the rate of the additional
information M, that decoder 2 needs, in order to compensate the lack of isideriation compared to decoder 4.

Minimum communication rate for distributed channel synthesis with common randomness ratet [13], [14]
Ct,X -Y)= U:)I{n_lll}_ymax{I(X;U), I(X,Y;U) -t}
can be expressed as
C(f,X — Y) = min{max{vx, VXy — t} LU E fxy, vx + vy —Uvxy = I(X,Y)}
= min {max{H(X) — Ry, Ry —t}: R} € Z, Ro+ R1 + Ro = H(X,Y)}.



A. New information theoretic quantities

We now present three new quantities which arise as extrermspof .#xy. These extreme points concern the case in
which decoders 3 and 4 are active in the EGW system. Note hiegt dre all maximizations of the interaction information
I(X;Y|U) — I(X;Y) under various constraints. They can be considered as dégdrmom extreme dependency, in the sense
that they are equal to zero only under certain conditionsxteene dependency.

Maximal interaction information is defined as
Gani(X;Y) = max I(X;Y|U) — I(X;Y).
Pu|xy

It can be shown that

Gawi(X;Y) = H(X|Y) + H(Y'|X) — I(X,Y;U)

min

U: H(Y |X,U)=H(X|Y,U)=0
= max{vxy —vx — vy : v € Ixy}
=H(X|Y)+ H(Y|X)—min{Ro+ Rs + Ry : Ry € %}
=H(X|Y)+H(Y|X)—min{Ro: Ry € #, R3 = Ry =0}
=Ygy (—1,—-1,1).

The maximal interaction information concerns the sum-cdtihe EGW system with only decoders 3,4. Note that it is avay

better to allocate the rate®;, R4 to R, instead, hence we can assuilg = R4 = 0 (which corresponds té7 (Y |X,U) =

H(X|Y,U) = 0). The quantityd (X |Y) + H(Y|X) — Gaai(X; Y) is the maximum rate in the lossless causal version of the
complementary delivery setupl [7].

Asymmetric private interaction information is defined as

Gpni(X = Y) maXXI(X;Y|U)—I(X;Y).

- U:U 1L
It can be shown that

Gpni(X = Y) = HY|X) - min I(Y;U)
U:ULLX,H(Y|X,U)=0
=HY|X)—min{vy : v € Ixy,vx =0, vxy = HY|X)}
=H(X|Y)-min{Rs: Rj € #Z, Ry + Ry = H(Y|X)}
=H(X|Y)-min{Rs: Rj € #Z, Ry =0, Ro=H(Y|X)}

= z//;xy(—l, 0,0;0,—1,1).

The asymmetric private interaction information is the ogifof excess functional information defined in][10] in whic
I1(Y;U) is maximized instead. Another operational meaningGgf\; is the generation of random variables with a privacy
constraint. Suppose Alice observes and wants to generaté ~ py|x(-|X). However, she does not have any private
randomness and can only access public randomiigsshich is also available to Eve. Her goal is to genedatas a function
of X andW, while minimizing Eve’s knowledge ol measured by (Y; W). The minimum/(Y; W) is H(Y|X)—Gpn1(X —

Y).
Symmetric private interaction information is defined as

Gpp1(X;Y) = I(X;Y|U) - I(X5Y).

max
U:ULX,ULY
It can be shown that

GPPI(X; Y)Z I(X,Y,U)

U:Uan)%XUJLY
=max{vxy : v € Ixy, vx =vy =0}

=max{Ro: Ry € #, Ro+ Ry = H(X|Y), Ro + Ry = H(Y |X)}
=y, (~1,-1,0;0,0,1).

Intuitively, Gpp; captures the maximum amount of information one can discidmrit(X,Y), such that an eavesdropper
who only has one oX or Y would know nothing about the disclosed information. Anotbperational meaning afrpnr IS
the generation of random variables with a privacy constr@imilar to that forGpnr). Suppose Alice observe’s and wants
to generate” ~ py | x (| X). She has access to public randomnésswhich is also available to Eve. She also has access to
private randomness. Her goal is to generdteising X, W and her private randomness such that Eve has no knowledge on
Y (i.e., I(Y; W) = 0), while minimizing the amount of private randomness usedsueed byH (Y| X, W) (note that if Alice



Active
decoders Information quantity Objective and constraints in EGW Support fen. rep.
in EGW (Y =vrxy)
Wyner's Cl [2] min Ry : Ro+ R1+ Ro = H(X,Y) —'(1,1,—1; 0,0, —1)
Gacs-Korner CI[[B],[125] max Ry : Ro+ R1 = H(X), Ro+ R2 = H(Y) P/(1,1,-2; 0,0,1)
1,2 Necessary conditional entropyl [4].]27] min Rp : Ro+ Re = H(Y), R1 = H(X[Y) —’'(1,2,-2; 1,0, —1)
Info. bottleneck [[5] minRy: R+ Ra=H(Y), Ri < H(X) —t none
Comm. rate for channel synthesis [13]. [14] min max{H (X)—R1, Ro—t} : Ro+R1+R2=H(X,Y) none
Korner graph entropy[[8] min Ry : Ro+ R1 = H(X), R3=0 —¢/(1,-1,0; —1,0,0)
1,3 Excess functional infol10] min Ry — I(X;Y): Ry =0, Ro = HY|X) —¢'(-2,0,1; 0,1, —1)
or2, 4 Max. rate for perfect privacy [9]129] maxRg: Ro+ Ra = H(Y), Ro+ Rs = HY|X) P'(—=1,1,-1; 0,1,0)
Privacy funnel[[9] min Ro + Ry — H(Y|X): Ro+R2=H(Y), Ro >t none
Maximal interaction info. max H(X|Y)+ HY|X)—Ro: R3=Rs4=0 P(—=1,-1,1)
3,4 Asymm. private interaction info. max H(X|Y) — Rz : R4 =0, Ro = H(Y|X) ¥’(-1,0,0; 0,—1,1)
Symm. private interaction info. max Ro : Ro+ R3 = H(X|Y), Ro+ Rs = HY|X) Y'(-1,-1,0; 0,0,1)
Table |

EXTREME POINTS OF.¥xy AND THE CORRESPONDING EXTREME POINTS IN THEGW, AND THEIR SUPPORT FUNCTION REPRESENTATIONS

can flip fair coins for the private randomness, then by Knvgle-algorithm [37] the expected number of flips is bounded by
H(Y|X,W)+2). The minimumH (Y| X, W) is H(Y|X) — Gpp1(X;Y).

We now list several properties @fxn1, Gpnr and Gppr.

Proposition 3. Gnni, Gpnt and Gppr satisfies

1) Bounds.
0 < GPPI(X; Y) < GPNI(X — Y) < GNNI(X; Y) < mln{H(X|Y), H(Y|X)}

2) Conditions for zero.

e Gnni(X; Y) = 0if and only if the characteristic bipartite graph of, Y (i.e. verticesX¥ U Y with edge(z, y) if
p(z,y) > 0) does not contain paths of length 3, or equivalentlys|y) = 1 or p(y|z) = 1 for all z,y such that
p(z,y) > 0.

° GPNI(X — Y) =0 if and Only IfGNNI(X7 Y) =0.

e Gppi(X;Y) =0 if and only if the characteristic bipartite graph of, Y does not contain cycles.

3) Condition for maximum. I (X) = H(Y'), then the following statements are equivalent:

[ GNNI(X; Y) = H(Y|X)

° GPNI(X — Y) = H(Y|X)

GPPI(X; Y) = H(Y|X)
p(z) = p(y) for all x,y such thatp(z,y) > 0.
4) Lower bound for independer¥, Y. If X 1l Y,

Gpp1(X;Y) > E[~logmax{p(X), p(Y)}] — 1.

5) Superadditivity. If(X,Y7) is independent of X, Y>), then
Gt (X1, Xo; Y1, Y2) > Guni (X1 Y1) 4+ Gane (Xo; Y2).
Similar for Gpn1 and Gppr.

The proof of this proposition is given in Appendi¥ C.
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IV. EXTENDED GRAY—WYNER SYSTEM WITHNONCAUSAL COMPLEMENTARY SIDE INFORMATION

In this section we establish the rate regigil for the EGW system with complementary noncausal side inftion at
decoders 3 and 4 (noncausal EGW), that is, decoder 3 recaveifsom (Mg, M3, Y™) and decoder 4 similarly recovers®
from (Mo, My, X™). We show that#’ can be expressed in terms of the Gray-Wyner regiany, hence it contains fewer
interesting extreme points compared4 This is the reason we emphasized the causal side informatithis paper. We
further show that#’ is related to theasymptotic mutual information regiotefined as

1
f)%oy = U EanA/n,
n=1

where (X™,Y") is i.i.d. with (X1,Y1) ~ pxy. Note that.Zg3, may not be closed (unlike’xy which is always closed).
The following gives the rate region for the noncausal EGW.

Theorem 2. The optimal rate regiow#?’ for the extended Gray—Wyner system with noncausal comptanyeside information
is the set of rate tuple6Ry, R, Ra, R3, R4) such that

Ry > I(X,Y;U),
Ry > H(X|U),
Ry > H(Y|U),
Ry > H(X|U) - H(Y),
Ry > HY|U) - H(X),
Ro+ R3 > H(XY),
Ro+ Ry > H(Y|X),
Ry + R3 > H(X|U),
Ry + Ry > H(Y|U),
Ro+ Ry + Rs > H(X,Y),
Ro+ Ri+ Ry > H(X,Y)

for somepy | xy, where|U| < |X| - |V] + 2.

The proof is given in AppendikdD. Then we characterize theswie of .7g5,. We show thatcl(.7g5,), #’ and the the
Gray—Wyner regiorZqw can be expressed in terms of each other.

Proposition 4. The closure of#gs,, the rate regionZ’ for the noncausal EGW and the Gray—Wyner regiaw satisfy:
1) Characterization otl(.75, ).

() = (FIxy + (—00,0] x (—00,0] x [0,00)) N ILy
= (Ixy +{(t;t,t) : t <0}) N ([0,00) x [0,00) x R).
2) Equivalence betweedl(.75,) and Z'.

R = U {(vxy, H(X) —vx, HY) —vy, H(X|Y) —voxy + vy, HY|X) —vxy + vx)} + [0,00)°,
vecl(FL)

and
A(I5) ={veR’: (vxy, HX)—uvx, HY) — vy, HX|Y) —vxy + vy, HY|X) —vxy +vx) € Z'}.
3) Equivalence betweerl(.#5,) and Zaw -

Zow= | {(oxv, HX) —vx, HY) —vy)} +[0,00)?,
vecl(F)
and
(I ) ={ve IRy (vxy, HX) —vx, HY) —vy) € Zaw} -

The proof is given in AppendiX]E. Note that Propositidn 4 dnescharacterizeZ5, completely since it does not specify
which boundary points are iZgs,.
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APPENDIX
A. Proof of the converse of Theoréin 1
To prove the converse, 1&f; = (My, X'~ Y*~1). Consider

nRO Z I(Xn, Yn, Mo)

I(X3,Yi; Mo | X1 Y

I

s
Il
-

I(X;, Y Mo, X771 Y1)

I

s
Il
-

[
NE

1
an 2 H(M1|M0)

> I(X™; My | My)

= H(X"|Mo) — H(X"| Mo, My)

-
Il

H(Xi|MOaXi71) - H(Xn|MOaM1)

I

s
Il
-

> H(X;| Mo, X* 1, Y1) — H(X"| Moy, M)

s.
I M:
I

I

s
Il
-

HOG My, XY —log |4 SR X # X} -1 ©
1=1

> Y H(Xi|U;) —o(n),

I

N
Il
-

where the last inequality follows by Fano’s inequality. 8ary nR, > . H(Y;|U;) — o(n). Next, consider

nR3 2 H(M3|M0)
> I(X",Y"; M3| M)

I(X;, Yy Ms| Mo, X'~ 1, Y

I
NE

.
Il
A

I(Xi; M3 | Mo, X1, Y7)

NIE

.
Il
-

(H(Xi|M07Xi715 YZ) - H(X1|M07 M3a Xiilv Yl))

[
NIE

.
Il
-

H(X;|Y;,Us) = > H(X;| Mo, Ms, X1, Y")
1=1

H(XiD/ivUi)_1Og|X|iP{Xi7AX3,i}_1 (10)

=1

[
M=

.
Il
-

M=

.
Il
-

I
M=

H(XAY;, Ul) — O(?’L),

.
I
=

where the last inequality follows by Fano’s inequality $J'|:72§3,Z- is a function ofMy, M3, Y. Similarly nRy > > HY: | X, Up)—
o(n). Hence the pointRy +¢,..., Ry + €) is in the convex hull ofZ for any e > 0. From [2),Z is the increasing hull of
an affine transformation of’xy, and thus is convex.

To prove the cardinality bound, we apply Fenchel-Eggle€tanathéodory theorem [B8], [39] on tke¥'|| V| +2)-dimensional
vectors with entried? (X|U = u), HY|U = u), H(X,Y|U = u) andp(x, y|u) foru € {1,...,[U|}, (z,y) € {1,...,|X]|} x
{L,.... Y\ [V); see [16], [19].



12

B. Proof of Propositiof 2

1) To see thatZxy is convex, for anylUy,U; and A € [0,1], let Q@ ~ Bern()\) be independent oKX, Y, Uy, U;, and let
U=(Q,Ug). ThenI(X;U) = (1 - NI(X;Up) + M (X;U,) (similarly for the other two quantities). Compactness will
be proved later.

2) The outer bound follows directly from the properties ofrepy and mutual information.

3) For the inner bound, the first 4 points can be obtained bgtgubng U = 0, X, Y, (X,Y) respectively. For the last
point, by the functional representation lemmal[40, p. 6]/ 1 X such thatd (Y| X, V) = 0. Again by the functional
representation lemma, 18V 1L (Y, V) such thatd (X|Y,V,W) = 0. LetU = (V,W), thenI(X,Y;U) — I(X;U) =
H(Y|X)-H(Y|X,U)=H(Y|X), I(X,Y;U)-I(Y;U)= H(X|Y) - H(X|Y,U) = H(X|Y), and

I(X,Y;U) = I(X,Y;V,W)
= I(X,Y;V) + [(X,Y; W|V)
= I(YV;VIX) + I(X; W|Y,V)
< H(Y|X)+ H(X|Y).

Hence there exists < H(Y|X) + H(X|Y) such that(t — HY|X), t — H(X|Y), t) € #xy (by substitutingt =
I(X,Y;U)). Taking convex combination of this pointafd (X ), H(Y), H(X,Y)) € Ixy,we have(H(X|Y), H(Y|X), H(X|Y)-
H(Y|X)) € Ixy.

The existence off < ¢; < logI(X;Y)+4 such that(0, H(Y|X) —e1, H(Y|X)) € #xy can be proved by substituting

€1 = U(X — Y) and invoking the strong functional representation lemntj.[1

4) The superadditivity property can be obtained from coasyU = (Uy, Us), where(I(X;; Us), I(Y;; Uy), 1(X,,Y;;U;)) €
IX, Y-

5) The data processing property can be obtained from comsip& where (I(X1;U), I(Y1;U), I(X1,Y1;0)) € Ix, v;-

6) The cardinality bound can be proved using Fenchel-Eggle€arathéodory theorem using the same arguments as in the
converse proof of Theorel 1. Compactness follows from teetfeat mutual information is a continuous function, and
the set of conditional pmfg;|xy with [14] < |X]-|V|+ 2 is a compact set.

7) The relation to Gray—Wyner region and region of tensidiofes from the definitions of the regions.

C. Proof of Propositiofi 13

1) To prove the bound, note thatX;Y|U) < H(X), hencel(X;Y|U) — I(X;Y) < H(X|Y), Gunt < H(X]|Y).

2) We first prove that if there does not exist length 3 pathdenhipartite graph, thetinni(X; V) = Geni(X; Y) = 0.
Let @ achieves the Gacs-Korner common information, ¢ represents which connected component the €dge”)
lies in. If the bipartite graph does not contain length 3 patvery connected component is a star, i.e., for each
either H(X|Q = ¢q) = 0or HY|Q = ¢q) = 0. ThenI(X;Y) = HQ) + I(X;Y|Q) = H(Q), andI(X;Y|U) =
H(Q|U) +1(X;Y|Q,U) = H(QIU) < H(Q) for any U. HenceGnni (X; Y) = Gpni(X; V) = 0.

We then prove that if there exist a length 3 path in the biagraph, therGani (X; Y) > Gpni(X; YY) > 0. Assume
p(x1,y1),p(171,y2),p(:1?2,y1) > 0. LetU € {L 2}*

1/2+¢/p(z1,y1) i (z,y,u) = (z1,91,1)
1/2 —¢/p(z1,y1) i (z,y,u) = (z1,91,2)

plulz,y) = §1/2—¢/p(ar,y2) if (2,y,u) = (21,92,1)
1/2+€¢/p(xr,y2) if (z,y,u) = (21,92,2)
1/2 otherwise

wheree > 0 is small enough such that the above is a valid conditional. gdnfe can verify that/ 1L X. Since
puixy (Llz,y1) = 1/2 4+ ¢/p(x1,y1) # 1/2 = pyjxy (1|z2, 1), X andU are not conditionally independent givén
Hencel(X;Y|U) - I(X;Y) = I(X;U|Y) > 0.

We then prove that it7pp1(X; Y') > 0, then there exists a cycle in the bipartite graph. UesatisfiesU 1L X, U 1L Y
andI(X;Y|U) > I(X,;Y). SinceU is not independent ok, Y, there existsc1, y1, u such thaip(xq, y1|u) > p(z1,v1).
Since}_,, p(z1,y'[u) = p(z1|u) = p(z1) =3, p(z1,y’), there existyz # y1 such thap(z1, y2|u) < p(z1,y2). Since
Yoo (@ y2lu) = p(y2lu) = p(y2) = >, p(2’,y2), there existsry # 1 such thatp(zz, y2|u) > p(x2,y2). Continue
this process until we return to a visitedy pair, i.e.,(zq, ya) = (25, yp) for a < b. Thenya, o, Yat+1, Tatis- - To—1, Yo
forms a cycle.

We then prove that if there exist a cycle in the bipartite grapenGpp; (X; Y) > 0. Letyy, z1,y2, 2, . . ., Tay Yat1 = Y1
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4)

13

be a cycle. LelU € {1,2},

1/2 +¢€/p(wi,y:) if (z,y,u) = (i, i, 1)

1/2—¢/p(xi,yi) i (z,y,u) = (24,5, 2)
p(ulz,y) = {1/2 = ¢/p(zi, yir1) i (z,y,u) = (2, Yit1, 1)

1/2+¢€/p(zi,yir1) i (2,9, u) = (2, yi1+1,2)

1/2 otherwise

wheree > 0 is small enough such that the above is a valid conditional. @mie can verify that/ 1l X andU 1L Y.
Since py|xy (1|z1,y1) > 1/2 > pyjxy(1]z1,92), U is not independent ofX, Y. HenceI(X;Y|U) — I(X;Y) =
I(X,Y;U) > 0.

We then prove that ifH(X) = H(Y) and p(x) = p(y) for all z,y such thatp(z,y) > 0, then Gppi(X;Y) =
H(Y|X). Let@Q achieves the Gacs-Kérner common information, andtlet {z : p(z|q) > 0}, Y, = {v : p(ylq) > 0},
then X|{Q = ¢} ~ Unif(X,), Y{Q = ¢} ~ Unif(Y,) and |X,| = |),| for all ¢. Applying Birkhoff-von Neu-
mann theorem on the submatrix pfz,y) with rows X, and columns),, there existsU, such thatp(z,ylq) =
>uPu,(Wpxyiv,q (T ylu, @), Pxjv,Q(x|u, @) = Py v, Wlu, @) = 1/]A| and pxyv,q (@, ylu,q) € {0, 1/|Xy[} for
all z,y,u. LetU = {U, }4c0, WhereU, are assumed to be independent ackpsshen for anyz andu = {ug},

p(x{ug}) = p(z, q[{uq})

= p(@)p(z|uq, q)

=p(q)/ 1]

=p(),
whereq = ¢(x) since H(Q|X) = 0. HenceU 1L X. Similarly U 1L Y. Also since there is only one non-zero in
pxv|v,Q (T, ylu, q) for differentz, we haveH (X |Y,U) = 0. Similarly H(Y|X,U) = 0. Hencel (X; Y|U) - I(X;Y) =
I(V;U|X) - I(Y;U) = HY|X).
We then prove that iff (X) = H(Y) andGani(X; Y) = H(Y|X), thenp(x) = p(y) for all z,y such thaip(z, y) > 0.
Let U satisfiesI(X;Y|U) = I(X;Y)+ H(Y|X) = H(Y), then one can check thét L X, U 1LY, H(X|Y,U)=0
andH(Y|X,U) = 0. For anyz,y such thatp(z,y) > 0, let u such thap(z, y, u) > 0, then

p(z) = p(z|u)

zlu)p(y|z, u)
ylu)p(x|y, )

p

(
»(
(
p(y).

We then prove the lower bound whéf Y independent. Assum& I Y. AssumeX = {1,...,|X|},\Y ={1,..., )|},
X =F V), Y = F, Y (W), V,W ~ Unif[0, 1] independent. Let = V + W mod 1, thenU 1L X, U 1L Y.

<

HY|U,X) = ;pm/olmyw X = 2
= zx:p(af) /01 H(Y |W € ([u— Fx(z), u — Fx(z — 1)) mod 1))du
= Zx:p(iv) /01 H(Y | W € ([u, u+ p(x)] mod 1))du
= ;mw /01 Zy:l (P{Y =y |W € ([u, u+ p(z)] mod 1)}) du
= ;p@) /01 zy:l (p(x) " |[Fy (y — 1), Fy ()] 0 ([u, u+ p(x)] mod 1)]) du
= ;p(x)zy:/oll(p(:v)‘l 110, p(y)] N ([, u + p(x)] mod 1)|) du

0+Y / 110, p()] 1 ([, u -+ p()] mod 1)[) du
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where we writeA mod 1 = {eamod 1: a € A} and|A]| for the Lebesgue measure fdrC R, /(t) = —tlogt. Consider

1
F(a,b) :/O L0, 8] N ([u, u + a] mod 1)]) du.

fb<a<landa+b<l,

b
f(a,b) = (a—Db)l(b) + 2/0 I (u)du
< (a—Db)l(b) + 2bl (b/2)
= al(b) + b?

1
= ablogg + b2

1
< ablog 7 + ab.

If b<aanda+0b>1,

b

fla,b) =(a—=0b)l(b)+ (a+b—1)l(a+b— 1)+2/b+ _1l(u)du

<(a—bIb)+(a+b—Dila+b—1)+2(1—a)l (b— 1;“)

2
<(a=0b)lb)+ (1+b—a)l (Jﬁ)

= (a — b)I(b) + b*log 14_()#
gm—mmm+wmg%
= al(b) 4 b*
< ab log% + ab.
Hence
I(X,Y;U)=H(X,Y)-HY|U X)—-H(X|U)

= H(X,Y)=>_ f(p(x),p(y))

> HECY) = 3 (sla)plo) oo

z,y

! )}+p@m@0

min{p(z), p(y

-F {k’g max{p&),p(yﬂ b

5) The superadditivity property follows from the superdidty of mutual information region.

D. Proof of Theorer]2

We first prove the achievability. Without loss of generatigsume? (X) > H(Y). Fix any pointv = (vx,vy,vxy) € Ixy.
Consider the region
F(v) = ((—o0,vx]| X (—o0,vy] X [uxy,00)) N Iy
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It can be seen from Figufd 2 thaf (v) is a subset of the convex hull of the following 9 points:

v,

= (0,0, 0),

= (H(X ) I(X;Y), H(X)),

= (I[(X;Y), ( ), H(Y)),

= (H(X ) H(Y), H(X,Y)),

= (H(X]Y), 0, H(X|Y)),

= (0, (YIX) H(Y|X)),
p7—(0 0, H(Y'|X)),

= (H(X) - H(Y), 0, H(X|Y)),

i.e., v together with the corner points QVOY except( (X;Y), I(X;Y), I(X;Y)). We will prove that for anyw =
(wx,wy,wxy) € Z(v), the rate tupleR(w) = (Ro(w), ..., Rs(w)),

Ro(w) = wxy + ¢,

Ri(w) = H(X) —wx +¢,
Ro(w) = HY) —wy +e,

R3(w) = H(X|Y) —wxy +wy +¢,
Ry(w) =H(Y|X)—wxy +wx +¢€

is achievable in the extended Gray—Wyner system with n@gaazomplementary side information fer> 0. It suffices to
prove the corner point®(v), R(p1), ..., R(ps) are achievable.

R(v) is achievable using the causal scheme in Thedrem 1. To &chigw), R(p2), R(ps) and R(p4), apply the causal
scheme in Theoref 1 ofi < (), U + X, U + Y andU «+ (X,Y), respectively.

To achieveR(ps), applying the strong functional representation lemma,[tH@re existd/,, 1L Y™ such thatd (X"|Y",V,,) =
0 andI(V,;Y"|X™) < en/2 for n large enough. We then apply the causal scheme&Xon- X", Y + Y™ andU + V,,.
Similar for R(ps).

We now prove the achievability oR(p7). To generate the codebook, randomly partitilﬂ;(b)(X, Y’) into bins By(my)
of size 2n(H(X.Y)+e/2=Fo) for mq € [1 : 2], Further randomly partition the biiB,(mg) into Bz(mo, ms) of size
2n(H(X,Y)+€/2—R0—R3) for mg € [1 . 2nR3]'

To encoder™, y™, find mg, ms such that(z",y™) € Bs(mg,ms). Directly encodex™, 3™ into m; andms respectively.

Decoder 3 receivesyy, ms, y™ and output the uniqué™ such thatz", y™) € Bs(mg, m3). The probability of error vanishes
if H(YY) > H(X,Y)+¢/2— Ry — Rs, which is guaranteed by the definition &{p-). Decoder 4 receivesy, 2" and output
the uniquey™ such that(z",§™) € Bo(mo). The probability of error vanishes 7 (X) > H(X,Y) + ¢/2 — Ry, which is
guaranteed by the definition d¥(p7).

The achievability ofR(ps) is similar to that ofR(p7). To generate the codebook, randomly partiﬁ”Q'W)(X, Y') into bins
Bo(myg) of size 2n(H(X:Y)+e/2=Fo) for m € [1 = 2"Fo]. Givenmy, assign indicesn; to the sequences in the bify(1mg)
for m; € [1: 27F1]. This is possible ifR; > H(X,Y) + ¢/2 — Ry, which is guaranteed by the definition &f{ps).

To encoder™, y", find mq such that(z™,y™) € By(mo) and find the indexn,. Directly encodey™ into ms.

Decoder 1 receivesyy, m; and outpute” where(a",y™) € Bo(mg) with indexm,. Decoder 3 receivesiy, y™ and output
the uniquez™ such that(z™, y™) € By(myg). The probability of error vanishes #(Y) > H(X,Y) + ¢/2 — Ry, which is
guaranteed by the definition &(ps). Decoder 4 receivesy, z™ and output the uniqug™ such that(z", ") € By(mg). The
probability of error vanishes iff (X) > H(X,Y)+¢/2— Ry, which follows from the definition oR(ps) andH (X ) > H(Y).

Hence we have proved that for any poinE .#xy and
w € S (v) = ((—o0,vx] X (—o0,vy] X [uxy,00)) N Ly,
the rate tupleR(w) is achievable. In other words, the region

R((FIxy + (—00,0] x (—=00,0] x [0,00)) N.#%y) + [0, 00)°
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is achievable. The region can be written as

wxy > I[(X,Y;U),
wx < I(X;U),
wy < I(Y;U),
wx 2 0,
wy > 0,
wyy —wy < H(X|Y),
wxy —wx < H(Y|X),
Ry > wxy +e,
Ry > H(X) —wx +e,
Ry > H(Y) —wy +¢,
R32H(X|Y) wxy + wy + €,
Ry > H(Y|X) —wxy +wx +¢

o

for someU, wx,wy,wxy. The final rate region can
nation.

e obtained by eliminating, wy , wxy using Fourier-Motzkin elimi-

We then prove the converse. Since decoder 3 obséigd/s, Y™ and has to recovek™ with vanishing error probability,
Ryo+ Rs > H(X|Y). Similarly Ry + R4 > H(Y|X). Note that decoders 2 and 3 together can recéferY™ with vanishing
error probability (decoder 3 uses the output of decoder zhasside information), and hend®, + Ry + R; > H(X,Y).
Similarly Ry + Ry + Ry > H(X, Y)

Let U; = (M, X*~1, Y1), Using the same arguments in the proof of Theofém 1, we e I(X,Y;U), R, >
H(X|U), Ry > HY|U).

TLRg Z H(M3|M0)
2 I(Xn, MglMo)
= H(X"|Mo) — H(X™|Mo, M3)

H(X;| My, X — H(X™| My, M3)

|

@
Il
=

H(X;| Mo, X1 YY) — H(Y™) — H(X"™| Mo, M3,Y™)

M-

@
I
A

> ST HXG|U) - HY™) = o(n),

-

@
Il
A

where the last inequality is due to Fano’s inequality. Samyl nR, > . H(Y;|U;) — H(X™) — o(n).
n(Ra + R3)
> H(Ma, M3| My)
> I(X"; My, M3| M)
= H(X"[Mo) — H(X"[Mo, M2, M3)

H(X;| My, X*™1) — H(X™| Mgy, My, Ms3)

=107

N
Il
-

Y

H(X;| Mo, X1 Y"1y — H(Y"™ | My, M2, M3) — H(X™| Mo, Ma, M3,Y™)

> H(X;|U;) — o(n),

-

N
Il
-

where the last inequality follows by Fano’s inequality. 8arly n(R, + R4) > >, H(Y;|U;) — o(n). Hence the pointR, +
., R4 +€) is in the convex hull ofZ’ for any e > 0. We have seen in the achievability proof that (éor 0)

% = R((Ixy + (—00,0] x (—00,0] x [0,00)) N F2y) + [0,00)°

is the increasing hull of an affine transformation of a consek ThereforeZ’ is convex.
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E. Proof of Propositioh 4

1) Since the Gray—Wyner region tensorize¥,.#35,) € (Hxy + (—00,0] x (—00,0] x [0,00)) N #Zy. To prove the

other direction, letw € (Fxy + (—00,0] x (—00,0] x [0,00)) N #2y, then by Theorerh]2, the following rate tuple is

achievable
Ro(w) =wxy + €,
Rq (’LU) H ) wx + €,
Ro(w) = HY) —wy +¢,
Rs(w) =H

(X
Y
(XY) —wxy +wy +¢,
Ry(w) = H(Y |X) — wxy + wx + €,
)

i.e. for the source!, Y, the probability of erro®, (1) — 0 asl — co. Apply this scheme: times on the sourc& ™, Y™,

This can be considered as a causal scheme on the source seqlienyy), (X7, YV, (X1 Yoo 1)z+1)

with rate tuplel R(w) and symbol error probability’,(1). Hence by [(B) andIlO) in the proof of Theoréin 1,
R(w) +log (|X| - |V]) P.(1) - 1 € (1/)Z (X5 Y").
Let ¢ =€ +log (|X]-|Y]) P(l). Since
1
T%’(XZ;YZ)— U [vxy,0) X [H(X) —vx,00) x [H(Y) — vy, 00)

ve(1/D)F iy
x [H(X]Y) —vxy +vy,00) x [HY|X) —vxy + vx,00),

there existw € (1/1)Zxiyi C #5- such thatvxy < wxy + ¢, H(X) —vx < H(X) —wx + €, and similar for the
other 3 dimensions, which implige — w||, < 2¢’. The result follows from taking — oo, € — 0.

To show

(Fxy + (—00,0] X (=00,0] x [0,00)) N Iy

= (Sxy +{(t,t,t) : t <0})N ([0,00) x [0,00) x R),
note that they are both equal to the union of the convex hull§vop,...,ps} for v € Fxy (as in the proof of
TheorenlD).

2) The equivalence betweel(.7{5,) and#’ is proved in the Fourier-Motzkin elimination step in the pfof Theoreni 2.
3) By Propositioi R,

Zow = |J {(vxy, HX) —vx, HY) = vy)} +[0,00)

vEIXY

= U Alxy, HX)—vx, HY) = vy)} +[0,00)?

vEIxyNIZy

- U {(vxy, H(X) —vx, HY) = vy)} +[0,00)°
vE(FIxy +(—00,0]2x[0,00))N.ILy

- U {(vxy, H(X) —vx, HY) —vy)} + [0,00)°.
vecl(F)

For the other direction,

A(I35) = (Ixy + (—00,01? x [0,00)) N IRy
= {’U € fXY tvx S wx, vy < Wy, UXy = WXY for somew € fxy}
={ve Iy ox <I(X;0),vy <IY;U), vxy > I(X,Y;U) for someU}
—{ve Iy HX) —vx > HX|U), H(Y) — vy > H(Y|U), vxy > I(X,Y;U) for someU}
= {v S f)%y : (vxy, H(X) —Vx, H(Y) —’Uy) S L@Gw}
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