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Abstract

In this paper, we propose systematic block Markov superposition transmission of repetition (BMST-

R) codes, which can support a wide range of code rates but maintain essentially the same encod-

ing/decoding hardware structure. The systematic BMST-R codes resemble the classical rate-compatible

punctured convolutional (RCPC) codes, except that they aretypically non-decodable by the Viterbi

algorithm due to the huge constraint length induced by the block-oriented encoding process. The

information sequence is partitioned equally into blocks and transmitted directly, while their replicas

are interleaved and transmitted in a block Markov superposition manner. By taking into account that

the codes are systematic, we derive both upper and lower bounds on the bit-error-rate (BER) under

maximuma posteriori (MAP) decoding. The derived lower bound reveals connections among BER,

encoding memory and code rate, which provides a way to designgood systematic BMST-R codes

and also allows us to make trade-offs among efficiency, performance and complexity. Numerical results

show that: 1) the proposed bounds are tight in the high signal-to-noise ratio (SNR) region; 2) systematic

BMST-R codes perform well in a wide range of code rates; and 3)systematic BMST-R codes outperform

spatially coupled low-density parity-check (SC-LDPC) codes under an equal decoding latency constraint.
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I. INTRODUCTION

Since the invention of turbo codes [1] and the rediscovery oflow-density parity-check (LDPC)

codes [2], constructing practical good codes has been beingan active research topic in our field.

Recent developments include the invention of polar codes [3] and flourishment of spatially

coupled LDPC (SC-LDPC) codes (first introduced as LDPC convolutional codes [4] and later

recast as SC-LDPC codes [5]), both of which are provable capacity-achieving [3, 5–7] over

memoryless binary-input symmetric-output channels. Despite this success in theory, more flexible

constructions are still desired in practice. Especially, it is often desirable in practice to design

codes that support a variety of code rates but maintain essentially the same encoding/decoding

hardware structure. One way to achieve this is the use of rate-compatible codes, which can be

constructed from a mother code by using the puncturing and/or extending techniques. The former

starts with a low-rate mother code and punctures some coded bits to achieve higher rates [8–12],

while the latter starts with a high-rate code and extends itsparity-check matrix to achieve lower

rates [13–17]. Both puncturing and extending require optimizations. For example, the puncturing

patterns for rate-compatible punctured convolutional (RCPC) codes in [8] were selected by

maximizing the average free distance, while the puncturingdistributions for rate-compatible

LDPC codes in [13] were optimized by density evolution. In [17], the incremental protomatrices

for protograph-based raptor-like (PBRL) LDPC codes were chosen by maximizing the density

evolution threshold. To reduce the construction complexity caused by the optimizations, one

can use random puncturing, as proposed in [18]. However, similar to the conventional punctured

LDPC codes [13], the performance of the randomly punctured LDPC codes degrades significantly

when the puncturing fraction increases beyond a threshold.To the best of our knowledge, no

methods were reported along with simulations in the literature that can construct good rate-

compatible codes over all rates of interest in the interval (0,1).

Recently, a coding scheme called block Markov superposition transmission (BMST) of short

codes (referred to asbasic codes) was proposed [19], which has a good performance over the

binary-input additive white Gaussian noise (AWGN) channel. It has been pointed out in [19]

that any short code (linear or nonlinear) with fast encodingalgorithm and efficient soft-in soft-
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out (SISO) decoding algorithm can be chosen as the basic code. A BMST code is indeed a

convolutional code with extremely large constraint length, which has a simple encoding algorithm

and a low complexity sliding window decoding algorithm. More importantly, BMST codes

have near-capacity performance (observed by simulation and confirmed by extrinsic information

transfer (EXIT) chart analysis [20]) in the waterfall region of the bit-error-rate (BER) curve and

an error floor (predicted by analysis) that can be controlledby the encoding memory. In [21], short

Hadamard transform (HT) codes are taken as the basic codes, resulting in a class of multiple-

rate codes with fixed code length, referred to as BMST-HT codes. An even simpler construction

for multiple-rate BMST codes was proposed in [22], where theinvolved basic codes consist

of repetition (R) codes and single-parity-check (SPC) codes, resulting in BMST-RSPC codes.

Different from BMST-HT codes which adjust their code rates by setting properly the number

of frozen bits in the short HT codes, BMST-RSPC codes adjust the code rates by time-sharing

between the R code and the SPC code. The construction of BMST codes is flexible, in the

sense that it applies to all code rates of interest in the interval (0,1). However, original BMST

codes [19–22] are neither rate-compatible nor systematic.Note that systematic codes may be

more attractive in practical applications since the information bits can be extracted directly from

the estimated codeword. Even worse, original BMST codes do not perform well over block

fading channels due to errors propagating to successive decoding windows.

In this paper, we propose systematic BMST of repetition codes, referred to as systematic

BMST-R codes. For encoding, the information sequence is partitioned equally into blocks and

transmitted directly, while their replicas are interleaved and transmitted in a block Markov super-

position manner. For decoding, a sliding window decoding algorithm with a tunable decoding

delay can be implemented, as with SC-LDPC codes [6, 23]. Systematic BMST-R codes not

only preserve the advantages of the original non-systematic BMST codes, namely, low encoding

complexity, effective sliding window decoding algorithm and predictable error floors, but also

have improved decoding performance especially in short-to-moderate decoding latency.

The main contributions of this paper include:

1) We propose systematic rate-compatible BMST-R codes by using both extending and punc-

turing. The construction requires no optimization but applies universally to all code rates

varying “continuously” from zero to one.

2) We propose an upper bound on the BER of a systematic BMST-R code ensemble under
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maximum a posteriori (MAP) decoding, which can be evaluated by calculating par-

tial input-redundancy weight enumerating function (IRWEF) with truncated information

weight.

3) We propose a lower bound on the BER of a systematic BMST-R code ensemble under

MAP decoding, which depends on the encoding memory and code rate. The derived lower

bound reveals connections among BER, encoding memory and code rate, which provides

a way to design good systematic BMST-R codes and also allows us to make trade-offs

among efficiency, performance and complexity.

4) We investigate the impact of various parameters on the performance of systematic BMST-

R codes, and then present a performance comparison of systematic BMST-R codes and

SC-LDPC codes on the basis of equal decoding latency.

Simulation results show that: 1) the upper and lower bounds are tight in the high signal-

to-noise ratio (SNR) region; 2) with a moderate decoding delay, the BER curves can match

the respective lower bounds in the low BER region, implying that the iterative sliding window

decoding algorithm is near optimal; 3) systematic BMST-R codes perform well (within one

dB away from the corresponding Shannon limits) in a wide range of code rates, confirming

the effectiveness of the construction procedure; and 4) over both AWGN channels and block

fading channels, systematic BMST-R codes, overcoming the weakness of non-systematic BMST

codes, can have better performance than SC-LDPC codes in thewaterfall region under the equal

decoding latency constraint.

The rest of the paper is structured as follows. In Section II,we present the encoding and

decoding algorithms of systematic BMST-R codes. In SectionIII, we analyze the performance

and complexity of systematic BMST-R codes. Numerical analysis and performance comparison

are presented in Section IV. Finally, some concluding remarks are given in Section V.

II. SYSTEMATIC BMST-R CODES

A. Encoding Algorithm

Let F2 = {0, 1} be the binary field. Letu = (u(0), u(1), · · · ) be the information sequence

to be transmitted, whereu(t) ∈ F
K
2 is the information subsequence of lengthK. The encoding

algorithm of a systematic BMST-R code of rate1/N with encoding memorym is described as
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Fig. 1. Encoder of a systematic BMST-R code with repetition degreeN and encoding memorym, where the information
subsequenceu(t) at time t is encoded into the subcodewordc(t) = {c

(t)
0 , c

(t)
1 , c

(t)
2 , · · · , c̃

(t)
N−1} for transmission.

follows (see Fig. 1 for reference), whereΠi,j (1 ≤ i ≤ N − 1, 0 ≤ j ≤ m) are interleavers of

sizeK.

Algorithm 1: Encoding of Systematic BMST-R Codes

1) Initialization: For t < 0 and1 ≤ i ≤ N − 1, setv(t)
i = 0 ∈ F

K
2 .

2) Loop: For t ≥ 0,

• Repeatu(t) N times such thatc(t)0 = u(t) ∈ F
K
2 and v

(t)
i = u(t) ∈ F

K
2 for 1 ≤ i ≤

N − 1;

• For 1 ≤ i ≤ N − 1,

a) For0 ≤ j ≤ m, interleavev(t−j)
i into w

(t,j)
i using the(i, j)-th interleaverΠi,j;

b) Computec(t)i =
∑

0≤j≤mw
(t,j)
i .

• Takec(t) = {c(t)0 , c
(t)
1 , c

(t)
2 , · · · , c(t)N−1} as thet-th block of transmission.
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The above encoding structure can implement all code rates ofthe form 1/N , N = 2, 3, · · · .
If Kp of K bits in c

(t)
N−1 are randomly punctured resulting iñc(t)N−1, we can implement a code

rate 1
N−θ

∈ ( 1
N
, 1
N−1

), whereθ
∆
= Kp

K
is the puncturing fraction. In practice, the code need to be

terminated. This can be done easily by driving the encoder tothe zero state with a zero-tail of

lengthmK afterL blocks of data. That is, fort = L, L+1, · · · , L+m−1, we setu(t) = 0 ∈ F
K
2 ,

computec(t) following Loop in Algorithm 1, and then take the redundant check part ofc(t) as

the t-th block of transmission. The rate of the resulting terminated systematic BMST-R code is

RL =
KL

KL+K(N − 1)(L+m)−Kp(L+m)

=
1

N − θ + (N − 1− θ)m
L

, (1)

which is less than that of the unterminated code. However, the rate loss is negligible for large

L.

In summary, all code rates of interest in the interval (0,1) can be implemented by adjusting

the repetition degreeN and thepuncturing fractionθ, all with the encoding structure as shown

in Fig. 1, where P stands for the optional puncturing.

B. Decoding Algorithm

Assume that the subcodewordc(t) is modulated using binary phase-shift keying (BPSK) with

0 and 1 mapped to+1 and−1, respectively, and transmitted over an AWGN channel, resulting

in a received vectory(t) expressed as

y
(t)
j = c

(t)
j + z

(t)
j , (2)

for 0 ≤ j ≤ KN −Kp − 1, wherey(t)j is the j-th component ofy(t) andz(t)j is a sample from

an independent Gaussian random variable with distributionN (0, σ2).

The decoding algorithm for systematic BMST-R codes can be described as an iterative message

processing/passing algorithm over the associated Forney-style factor graph, which is also known

as a normal graph [24]. In the normal graph, edges represent variables and vertices (nodes)

represent constraints. All edges connected to a node must satisfy the specific constraint of the

node. A full-edge connects to two nodes, while a half-edge connects to only one node. A half-

edge is also connected to a special symbol, called a “dongle”, that denotes coupling to other
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parts of the transmission system (say, the channel or the information source) [24]. Fig. 2 shows

the normal graph of a systematic BMST-R code withN = 4, m = 1 andL = 3. It is indeed a

high-level normal graph, where each edge represents a sequence of random variables. There are

four types of nodes in the normal graph of the systematic BMST-R code.

• Node + : All edges (variables) connected to node+ must sum to the all-zero vector. The

message updating rule at node+ is similar to that of a check node in the factor graph of a

binary LDPC code. The only difference is that the messages onthe half-edges are obtained

from the channel observations.

• Node = : All edges (variables) connected to node= must take the same (binary) values.

The messages on the half-edges are obtained from both the channel observations and the

information source.1 The message updating rule at node= is the same as that of a variable

node in the factor graph of a binary LDPC code.

• Node Πi,j : The node Πi,j represents the(i, j)-th interleaver, which interleaves or de-

interleaves the input messages.

• Node P : Two edges (variables) connected to nodeP must satisfy the constraint specified

by the puncturing rules.

The normal graph of a systematic BMST-R code can be divided into layers, where each layer

typically consists of a node of type= , N − 1 nodes of type+ , (m+1)(N − 1) nodes of type

Π , and a node of typeP (see Fig. 2).

Similar to SC-LDPC codes, an iterative sliding window decoding algorithm with decoding

delayd performing over a subgraph consisting ofd+ 1 consecutive layers can be implemented

for systematic BMST-R codes. For each window position, the sliding window decoding algorithm

can be implemented using the parallel (flooding) updating schedule within the decoding window.

The first layer in any window is called thetarget layer. Decoding proceeds until a fixed number

of iterations has been performed or certain given stopping criterion is satisfied, in which case

the window shifts to the right by one layer and the symbols corresponding to the target layer

shifted out of the window are decoded.

1The half-edges (variables) connected to the information source, which are omitted in Fig. 2 to avoid confusion and messy
plots, are assumed to be independent and uniformly distributed overFK

2 .
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Fig. 2. Normal graph of a systematic BMST-R code withN = 4, m = 1 andL = 3.

C. Relations of Systematic BMST-R Codes to Existing Codes

From Fig. 1, we can see that systematic BMST-R codes resemblethe classical RCPC codes [8].

Evidently, we can start from a rate1/N systematic BMST-R code (the mother code), whereN

is as large as required. By puncturing2, one can obtain all code rates of interest from1/N to

1, all of which can be implemented with essentially the same pair of encoder and decoder. The

difference between systematic BMST-R codes and RCPC codes is also obvious. The encoding

of systematic BMST-R codes is block-oriented and the decoding is typically not implementable

by the Viterbi algorithm [25] due to the huge constraint length induced by the block-oriented

encoding process.

Alternatively, systematic BMST-R codes are decodable witha sliding window decoding algo-

rithm, which is similar to SC-LDPC codes. More generally, systematic BMST-R codes can be

viewed as a special class of spatially coupled codes, since spatial coupling can be interpreted as

introducing memory among successive independent transmissions, where extra edges are allowed

to be added during the coupling process [20]. In contrast to SC-LDPC codes, which are usually

defined by the null space of a sparse parity-check matrix, systematic BMST-R codes are easily

described using generator matrices. Further, since the encoder for a systematic BMST-R code is

2If needed, one or more whole branches in Fig. 1 can be removed.
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non-recursive, an all-zero tail can be added to drive the encoders to the zero state at the end of

the encoding process. This is different from SC-LDPC codes,where the tail is usually non-zero

and depends on the encoded information bits (see Section IV of [26]). As a result, the encoding

procedure for systematic BMST-R codes is simpler than for SC-LDPC codes.

When described in terms of generator matrices, systematic BMST codes can also be viewed

as a special class of spatially coupled low-density generator-matrix (SC-LDGM) codes [27, 28].

However, as an ensemble, systematic BMST-R codes are different from SC-LDGM codes. SC-

LDGM code ensembles are usually defined in terms of their nodedistributions, while systematic

BMST-R code ensembles are defined in terms of their interleavers (see Fig. 1).

As another evidence that systematic BMST-R codes are different from existing codes, we

would like to emphasize that systematic BMST-R codes have a simple lower bound on the BER

performance, as described in the next section.

III. PERFORMANCE AND COMPLEXITY ANALYSIS

A reasonable criterion for a construction to be good is its ability to make trade-offs between

complexity and performance. Specifically, if the error performance required by the user is relaxed

or, if the gap between the code rate and the capacity is more tolerant, the encoding/decoding

complexity should be reduced. In this section, we will find a relation of the performance to the

complexity for terminatedsystematic BMST-R codes. We start with a general systematiclinear

block code.

A. Basic Notations of Systematic Linear Block Codes

A binary linear block codeC[n, k] is ak-dimensional subspace ofFn2 . An encoding algorithm

can be described simply by

φ : F
k
2 → F

n
2

u → c = uG,
(3)

whereu ∈ F
k
2 is the information vector,c is the associated codeword, andG is a generator

matrix of sizek × n with rank of k. Define

C1,i ∆
= {c = uG : ui = 1}. (4)
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Let dmin,i be the minimum Hamming weight ofC1,i, i.e.,

dmin,i
∆
= min

c∈C1,i
WH(c), (5)

whereWH(·) represents the Hamming weight. Obviously, the minimum Hamming weightdmin

of the linear block codeC can be given by

dmin = min
i
dmin,i. (6)

Assume that the codewordc is modulated using BPSK and transmitted over an AWGN

channel, resulting in a received vectory. A decoding algorithm is defined as a mapping

ψ : Yn → F
k
2

y → û = ψ(y),
(7)

where Y ⊂ R. Given the signal mapping0 → +1 and 1 → −1, the SNR is given by

10 log10(1/σ
2) in dB, whereσ2 is the variance of the noise.

Suppose thatU is distributed uniformly at random overFk2. Let E ∆
= {Û 6= U} be the

error event that the decoder outputÛ is not equal to the encoder input vectorU , and let

Ei
∆
= {Û i 6= U i} be the error event that thei-th estimated bitÛ i at the decoder is not equal to

the i-th input bitU i. Obviously,E =
⋃

0≤i≤k−1

Ei. Then, under the given decoding algorithmψ,

we can define frame error probability

FERψ
∆
= Pr{E}, (8)

and bit-error probability

BERψ
∆
=

1

k

∑

0≤i≤k−1

Pr{Ei}. (9)

From the definitions of BER and FER, we have

FERψ = Pr

{
⋃

i

Ei

}
≥ max

i
Pr{Ei} ≥ BERψ. (10)

We also have

FERψ = Pr

{
⋃

i

Ei

}
≤

∑

0≤i≤k−1

Pr{Ei} = k BERψ. (11)
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Thus, we have

BERψ ≤ FERψ ≤ k BERψ. (12)

The maximum-likelihood (ML) decoding algorithm selects a codewordĉ such thatf(y|ĉ) ≥
f(y|c) for all codewordsc. If ties happen, the ML decoding algorithm can randomly select one

candidate as the decoder output. SinceU is distributed uniformly at random overFk2, the ML

decoding algorithm is optimal in the sense that it minimizesthe FER. To minimize the BER,

the MAP decoding algorithm computes

Pr(Ui = 0|y) =

∑
u:ui=0

Pr(u)f(y|uG)

∑
u∈Fk

2

Pr(u)f(y|uG)
, (13)

for all i. For eachi = 0, 1, · · · , k − 1, the MAP decoding algorithm outputŝui = 0 if Pr(Ui =

0|y) > 0.5 and ûi = 1 otherwise.

The IRWEF of a systematic block code can be given as [29]

A (X, Y ) ,
∑

i,j

Ai,jX
iY j, (14)

where X, Y are two dummy variables andAi,j denotes the number of codewords having

input (information bits) weighti and redundancy (parity check bits) weightj. The IRWEF

can also be written in a more compact form as

A (X, Y ) =
∑

i

Ai (Y )X
i, (15)

where

Ai (Y ) ,
∑

j

Ai,jY
j (16)

is the conditional redundancy weight enumerating function(CRWEF), which enumerates redun-

dancy weight for a given input weighti.

B. Upper Bound on BER Performance

Since MAP decoding is optimal in the sense that it minimizes the BER, an upper bound on

BER performance under any decoding algorithm is applicableto the MAP decoding algorithm.

In the following, we consider a suboptimal list decoding algorithm.
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Algorithm 2: A List Decoding Algorithm for the Purpose of Performance Analysis

1) Make hard decisions on the information part of the received vectory, resulting in a vector

ŷ of lengthk. Then the channel becomes a memoryless binary symmetric channel (BSC)

with cross probability

ε
∆
= Q

(
1

σ

)
. (17)

2) List all sequences of lengthk within the Hamming sphere with center atŷ of radius

r∗ ≥ 0. The resulting list is denoted asLy.

3) Encode each sequence inLy by the encoding algorithm of the systematic code, resulting

in a list of codewords, denoted asLc.

4) Find the codewordc∗ ∈ Lc that is closest toy. Output the information part̂u of c∗ as

the decoding result.

The above list decoding algorithm is similar to but different from the algorithm presented

in [30]. The list region in [30] is an n-dimensional Hamming sphere with center at the hard

decision of the whole received sequence, while the list region here is ak-dimensional Hamming

sphere with center at the hard decision of the information part of the received sequence. By

analyzing the BER performance of the proposed list decodingalgorithm, we have the following

theorem.

Theorem 1:For any integerr∗ ≥ 0, the bit-error probability of systematic codes under MAP

decoding is upper-bounded by

BERMAP ≤
∑

i≤2r∗

i

k

(
∑

j

Ai,jQ

(√
i+ j

σ

))
+

k∑

i=r∗+1

min{i+ r∗, k}
k

(
k

i

)
εi(1− ε)k−i. (18)

Proof: Consider the list decoding algorithm (Algorithm 2). The decoding error occurs in

two cases under the assumption that the all-zero codeword istransmitted.

1) The all-zero sequence of lengthk is not in the listLy, i.e., the hard-decisions havei ≥ r∗+1

errors. In this case, the decoder output has at mosti+r∗ erroneous bits. Hence, the bit-error

probability, denoted asp1, is upper-bounded by

p1 ≤
k∑

i=r∗+1

min{i+ r∗, k}
k

(
k

i

)
εi(1− ε)k−i. (19)
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2) The all-zero sequence of lengthk is in the listLy, but the all-zero codewordc(0) is not

the closest one toy. In this case, the bit-error probability, denoted asp2, is upper-bounded

by

p2 ≤
∑

i≤2r∗

i

k

(
∑

j

Ai,jQ

(√
i+ j

σ

))
. (20)

In summary, for any given radiusr∗, we have

BERList ≤
∑

i≤2r∗

i

k

(
∑

j

Ai,jQ

(√
i+ j

σ

))
+

k∑

i=r∗+1

min{i+ r∗, k}
k

(
k

i

)
εi(1− ε)k−i. (21)

Combining (21) and the fact thatBERMAP ≤ BERList, we complete the proof.

From Theorem 1, we have the following three corollaries.

Corollary 1:

BERMAP ≤
k∑

i=1

i

k

(
∑

j

Ai,jQ

(√
i+ j

σ

))
. (22)

Proof: It can be proved by simply settingr∗ = k in (18).

Corollary 2:

BERMAP ≤ Q

(
1

σ

)
. (23)

Proof: By simply settingr∗ = 0 in (18), we have

BERMAP ≤
k∑

i=1

i

k

(
k

i

)
εi(1− ε)k−i

= ε = Q

(
1

σ

)
. (24)

Corollary 3: Assuming that we know only the truncated IRWEF{Ai,j, 0 ≤ i ≤ T} of

systematic codes, we have

BERMAP ≤ min
0≤r∗≤T/2





∑

i≤2r∗

i

k

(
∑

j

Ai,jQ

(√
i+ j

σ

))
+

k∑

i=r∗+1

min{i+ r∗, k}
k

(
k

i

)
εi(1−ε)k−i




.

(25)
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Proof: It is obvious and omitted here.

Remarks. Corollary 1 is the well-known union bound, while Corollary 2is almost trivial,

which can be easily understood by noting that settingr∗ = 0 in Algorithm 2 is equivalent to

taking directly the hard decisionŝy as the decoding result̂u (one of the simplest sub-optimal

decoding algorithms). Given that only the truncated IRWEF is available, Corollary 3 is the

tightest upper bound of this type.

C. Lower Bound on BER Performance

There exist several lower bounds on FER under ML decoding [31–34]. However, lower bounds

on BER are rarely mentioned in the literature. Any lower bound onFERML can be adapted to

a lower bound on BER by noticing thatBERML ≥ 1
k
FERML from (12). The simplest lower

bound on FER under ML decoding over AWGN channels is given by

FERML ≥ Q

(√
dmin

σ

)
, (26)

which leads to

BERML ≥ 1

k
FERML ≥ 1

k
Q

(√
dmin

σ

)
. (27)

Logically, it is not safe to conclude from the above derivation that the lower bound (27) applies

to MAP decoding. This is subtle due to the fact that ML decoding is not optimal for minimizing

the bit-error probability. In the following, we will show that the lower bound onBERML (27)

is indeed a lower but usually loose bound onBERMAP by proving an improved lower bound.3

To see the looseness of the lower bound, we consider the following toy example.

Let A = {00, 10} with dmin = 1 and B = {00, 11} with dmin = 2 be two codes. Define

C = A × B9999, whose codewords are in a Cartesian product form(c0, c1, · · · , c9999), where

c0 ∈ A and ci ∈ B for 1 ≤ i ≤ 9999. Obviously, the codeC has minimum Hamming weight

dmin = 1. However, for BPSK modulation over an AWGN channel, the BER for the codeC is

dominated by the codeB rather than the codeA. To be precise,

BERMAP =
1

10000
Q

(
1

σ

)
+

9999

10000
Q

(√
2

σ

)
, (28)

3A slightly surprising fact is that no lower bound onBERMAP was found with proof in the literature.
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which implies that the lower boundBERMAP ≥ 1
10000

Q
(
1
σ

)
can be very loose in the low SNR

region. In the following we present an improved lower bound under MAP decoding.

Theorem 2:The bit-error probability for the linear block codeC under MAP decoding can

be lower-bounded by

BERMAP ≥ 1

k

k−1∑

i=0

Q

(√
dmin,i

σ

)
. (29)

Proof: It suffices to prove thatPr{Ei} ≥ Q

(√
dmin,i

σ

)
for each giveni (0 ≤ i ≤ k − 1).

Let c(1) ∈ C1,i be a codeword such thatdmin,i = WH(c
(1)). There must exist an invertible matrix

T of sizek × k such thatG = TG̃ with the first row ofG̃ beingc(1). AssumeU ∈ F
k
2 be the

information vector andC = UG be the codeword to be transmitted. DefineV = UT . The MAP

decoder for a binary linear block code computesPr {ui|y}. We know that ifPr{ui|y} > 0.5,

the decoding output is correct for this considered bit. In the meanwhile, we assume agenie-

aided decoder, which computesPr{ui|y, v′} with v′ = (v1, v2, · · · , vk−1) available. Likewise, if

Pr{ui|y, v′} > 0.5, the decoding output is correct for this considered bit. Fora specificu and

y, it is possible thatPr{ui|v′,y} < Pr{ui|y}. However, the expectation

E

[
log

Pr{ui|v′,y}
Pr{ui|y}

]
= I (Ui;V

′|Y ) ≥ 0, (30)

where I (Ui;V
′|Y ) is the conditional mutual information. This implies that the genie-aided

decoder performs statistically no worse than the MAP decoder of the binary linear block code.

Under the condition thatv′ is available, there exist only two codewords whose Hamming distance

is dmin,i. Thus, the bit-error probability with the genie-aided decoder for the binary-input AWGN

channels isPr{Ei}Genie = Q

(√
dmin,i

σ

)
. It follows that

Pr{Ei} ≥ Pr{Ei}Genie = Q

(√
dmin,i

σ

)
. (31)

Remarks. Theorem 2 also applies tonon-systematiclinear block codes. However, it does not

apply to non-linear codes, indicating that the proof is not that simple as considering only the

two closest codewords.

From Theorem 2, we have the following three corollaries.
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Corollary 4:

BERMAP ≥ 1

k
Q

(√
dmin

σ

)
. (32)

Proof: Combining (6) and Theorem 2, we have

BERMAP ≥ 1

k

k−1∑

i=0

Q

(√
dmin,i

σ

)
≥ 1

k
Q

(√
dmin

σ

)
. (33)

Corollary 5: If a code4 has the property thatdmin,i = dmin for all i, we have

BERMAP ≥ Q

(√
dmin

σ

)
. (34)

Proof: It is obvious and omitted here.

Corollary 6: If the row weights of the generator matrixG for a linear block codeC are

w0, w1, · · · , wk−1, we have

BERMAP ≥ 1

k

k−1∑

i=0

Q

(√
wi
σ

)
. (35)

Proof: This can be proved by noting thatdmin,i ≤ wi and thatQ(x) is a decreasing function.

Remarks. Corollary 4 shows that the lower bound (27) onBERML is also a lower bound

on the BERMAP, while Corollary 5 indicates that the lower bound (27) can bevery loose.

Corollary 6 indicates that an LDGM code may have a higher error floor compared to an LDPC

code, since the generator matrix for an LDPC code is typically high-density.

4A cyclic code can be such an example.
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D. Applications to Systematic BMST-R Codes

To apply the derived bounds to systematic BMST-R codes, we need calculate the IRWEF. For

systematic BMST-R codes, we have

A(X, Y ) =
∑

i,j

Ai,jX
iY j

=
∑

u

XWH(u)
L+m−1∏

t=0

(
Y WH(c̃

(t)
N−1)

N−2∏

i=1

Y WH (c
(t)
i )

)

=
∑

u

L+m−1∏

t=0

(
XWH(u(t))Y WH(c̃

(t)
N−1)

N−2∏

i=1

Y WH(c
(t)
i )

)
, (36)

where the summation is over all possible data sequencesu with u(t) = 0 for t ≥ L. Since it is

a sum of products,A(X, Y ) can be computed in principle by a trellis-based algorithm over the

polynomial ring. For specific interleavers, the trellis hasa state space of size2mK , which makes

the computation intractable for largemK. To circumvent this issue, we turn to an ensemble

of systematic BMST-R codes by assuming that all the interleavers (see Fig. 1 for reference)

are chosen at each time independently and uniformly at random, and that̃c(t)N−1 is obtained by

randomly puncturingKp of K bits in c
(t)
N−1. With the assumption that all interleavers are uniform

interleavers [29], we can see thatWH(c
(t)
i ), for 1 ≤ i ≤ N − 1, is a random variable which

dependsonly on the Hamming weights{WH(u
(t−j)), 0 ≤ j ≤ m}. This admits a reduced-

complexity trellis representation of the average IRWEF of the defined systematic BMST-R code

ensemble.

The trellis is time-invariant. At staget, the trellis has(K + 1)m states, each of which

corresponds to a vector of Hamming weightsp =
(
WH(u

(t−1)),WH(u
(t−2)), · · · ,WH(u

(t−m))
)
.

A statep at staget and a stateq at staget+1 are connected (with a branch denoted byp → q)

if and only if pj = qj+1 for 0 ≤ j ≤ m− 2, wherepj andqj are thej-th components ofp and

q, respectively. Evidently, emitting from (or entering into) each state, there areK +1 branches.

Associated with a branchp → q are a deterministic input weightq0 but a random redundancy

weight due to the existence of random interleavers. The weight distribution of the parity check

vectorc(t)1 is given by

γp→q =
K∑

r=0

f(r|p, q0)Y r, (37)
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wheref(r|p, q0) is interpreted as the probability of current outputsc
(t)
1 having weightr given that

the weight vector of previousm input blocks
(
WH(u

(t−1)),WH(u
(t−2)), · · · ,WH(u

(t−m))
)
= p

and the current input weightWH(u
(t)) = q0. By symmetry, it is easy to see that the weight

distribution ofc(t)i for 1 ≤ i ≤ N − 2 is the same asγp→q. Since the parity check vector̃c(t)N−1

is obtained by randomly puncturingKp of K bits in c
(t)
N−1, the weight distribution of̃c(t)N−1 is

given by5

γ̃p→q =

K∑

r=0

(
f(r|p, q0)

K∑

w=0

(
r
w

)(
K−r
Kp−w

)
(
K
Kp

) Y r−w

)
. (38)

To calculate the probabilityf(r|p, q0), we defineg (r|p, q) as the probability that a vector

of lengthK has weightr, given that the vector is obtained by superimposing two randomly

interleaved vectors of (respective) weightsp and q. Definew
∆
= p + q − r. Following the same

lines as the method in Section IV-B of [19], the probabilityg (r|p, q) is given by

g (r|p, q) =





( q
w/2)(

K−q
p−w/2)

(Kp)
, if w is even,

0, otherwise.
(39)

Then,f(r|p, q0) can be calculated as described in Algorithm 3.

5By a general definition, the binomial coefficient
(
n
k

)
is equal to zero fork < 0 or k > n.
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Algorithm 3: Computing the probabilityf(r|p, q0)
1) Initialize a vectorα(0) of lengthK + 1 such that its components are all zero except that

the q0-th component is 1.

2) For j = 0, 1, · · · , m− 1, compute

α
(j+1)
i =

K∑

ℓ=0

α
(j)
ℓ g (i|ℓ, pj) ,

for 0 ≤ i ≤ K, whereα(j)
ℓ is theℓ-th component ofα(j) andpj is thej-th component of

p.

3) We havef(r|p, q0) = α
(m)
r for r = 0, 1, · · · , K.

Finally, A(X, Y ) can be calculated recursively by performing a forward trellis-based algo-

rithm [35] over the polynomial ring in Algorithm 4.

Algorithm 4: Computing IRWEF of Systematic BMST-R Codes

1) Initialize β0(p) = 1 if p is the all-zero state; otherwise, initializeβ0(p) = 0.

2) For t = 0, 1, · · · , L+m− 1, for each stateq,

βt+1(q) =
∑

p:p→q

(
K

q0

)
Xq0γ̃p→q (γp→q)

N−2 βt(p),

whereq0 ∈ {0, 1, · · · , K} is the first component ofq.

3) At time L+m, we haveA(X, Y ) = βL+m(0).

Remarks. The summation for Step 2) in Algorithm 4 is overK + 1 possible statesp for a

given stateq. The computation of Algorithm 4 becomes more complicated and even intractable

for largem and/orK due to the huge number of trellis states(K+1)m. Fortunately, as shown in

Section III-B, we can calculate bounds by the use of a truncated IRWEF, which can be obtained

by removing certain states and branches from the trellis. Specifically, for a given truncating

parameterT which corresponds to the maximum input weight, we remove allthe branches

p → q with q0+
m−1∑
j=0

pj > T and keep only those termsX iAi(Y ) with i ≤ T of the polynomial

βt(q) for 0 ≤ t ≤ L+m.

From Corollary 3, the upper bounds may be improved by increasing the truncating parameter

T , which usually needs more computational and memory loads. However, the lower bound (as

well as the upper bound in the high SNR region) is dominated bythe CRWEFs with input
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weights 1 and 2, which can be given explicitly as below.

We first show the CRWEFs for a systematic BMST-R code ensemblewithout puncturing. We

have

A1 (Y ) = LKY (m+1)(N−1). (40)

For the CRWEFA2(Y ), we consider the following three cases.

1) The two non-zero information bits are in the same layer. Inthis case, the corresponding

CRWEFA(1)
2 (Y ) is given by

A
(1)
2 (Y ) =

K(K − 1)L

2
Y 2(m+1)(N−1). (41)

2) The two non-zero information bits are in two different layers with a gapℓ (spaced away

from ℓ − 1 layers) satisfying that1 ≤ ℓ ≤ m. In this case, the corresponding CRWEF

A
(2)
2 (Y ) is given by

A
(2)
2 (Y ) =

m∑

ℓ=1

(L− ℓ)K2Y 2ℓ(N−1)

(
1

K
+
K − 1

K
Y 2

)(m+1−ℓ)(N−1)

. (42)

3) The two non-zero information bits are in two different layers with a gapℓ satisfying that

m+ 1 ≤ ℓ ≤ L− 1. In this case, the corresponding CRWEFA(3)
2 (Y ) is given by

A
(3)
2 (Y ) =

L−1∑

ℓ=m+1

(L− ℓ)K2 · Y 2(m+1)(N−1). (43)

In summary, the CRWEFA2(Y ) for a systematic BMST-R code ensemble without puncturing

is given by

A2 (Y ) = A
(1)
2 (Y ) + A

(2)
2 (Y ) + A

(3)
2 (Y ) . (44)

Then, we consider the CRWEFs for a systematic BMST-R code ensemble withKp bits in

each layer punctured. Taking into account the puncturing effect, whenKp bits of a sequence

with lengthK and weight 1 are randomly punctured, the resulting weight enumeratorB1 (Y ) is
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given by

B1 (Y ) =

(
K−1
Kp−1

)
(
K
Kp

) +

(
K−1
Kp

)
(
K
Kp

) Y

=
Kp

K
+
K −Kp

K
Y

= θ + (1− θ)Y. (45)

WhenKp bits of a sequence with lengthK and weight 2 are punctured, the resulting weight

enumeratorB2 (Y ) is given by

B2 (Y ) =






2Kp

K
Y + K−2Kp

K
Y 2, Kp = 0, 1,

(22)(
K−2
Kp−2)

( K
Kp
)

+
(21)(

K−2
Kp−1)

( K
Kp
)

Y +
(K−2

Kp
)

( K
Kp
)
Y 2, Kp ≥ 2.

(46)

Then we have

A1 (Y ) = LKY (m+1)(N−2) (B1 (Y ))
m+1

= LKY (m+1)(N−2)

m+1∑

ℓ=0

(
m+ 1

ℓ

)
θm+1−ℓ(1− θ)ℓY ℓ. (47)

For the CRWEFA2(Y ), we consider the following three cases.

1) The two non-zero information bits are in the same layer. Inthis case, the corresponding

CRWEFA(1)
2 (Y ) is given by

A
(1)
2 (Y ) =

K(K − 1)L

2
Y 2(m+1)(N−2) (B2(Y ))

m+1 . (48)

2) The two non-zero information bits are in two different layers with a gapℓ satisfying that

1 ≤ ℓ ≤ m. In this case, the corresponding CRWEFA(2)
2 (Y ) is given by

A
(2)
2 (Y ) =

m∑

ℓ=1

(L− ℓ)K2Y 2ℓ(N−2)(B1(Y ))
2ℓ

·
(

1

K
+
K − 1

K
Y 2

)(m+1−ℓ)(N−2)(
1

K
+
K−1

K
B2(Y )

)m+1−ℓ
. (49)

3) The two non-zero information bits are in two different layers with a gapℓ satisfying that
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m+ 1 ≤ ℓ ≤ L− 1. In this case, the corresponding CRWEFA(3)
2 (Y ) is given by

A
(3)
2 (Y ) =

L−1∑

ℓ=m+1

(L− ℓ)K2 · Y 2(m+1)(N−2) (B1(Y ))
2(m+1) . (50)

In summary, the CRWEFA2(Y ) for a systematic BMST-R code ensemble withKp bits in each

layer punctured is given by

A2 (Y ) = A
(1)
2 (Y ) + A

(2)
2 (Y ) + A

(3)
2 (Y ) . (51)

From Theorem 2, we know that the bit-error probability for systematic codes under MAP

decoding can be lower-bounded in terms of the minimum Hamming weightsdmin,i of C1,i.
However, these minimum weights are usually not available for a general code. If this is the case,

we can use instead the row weights of the generator matrix to calculate a looser lower bound

as shown in Corollary 6, where thei-th row weight can be determined by setting the binary

information datau to a nonzero sequence with only thei-th componentui = 1. Then we have

the following two corollaries.

Corollary 7: The bit-error probability of a systematic BMST-R code ensemble under MAP

decoding can be lower-bounded by

BERMAP ≥
m+1∑

ℓ=0

(
m+ 1

ℓ

)
θm+1−ℓ(1− θ)ℓQ

(√
N +m(N − 2)− 1 + ℓ

σ

)
, (52)

whereθ is the puncturing fraction.

Proof: Due to the random puncturing, thei-th row weightWi of the generator matrix for

a systematic BMST-R code ensemble is a random variable. Given a puncturing fractionθ, the

probability mass function ofWi can be calculated as

Pr {Wi = N +m(N − 2)− 1 + ℓ} =

(
m+ 1

ℓ

)
θm+1−ℓ(1− θ)ℓ, (53)

whereℓ ∈ {0, 1, · · · , m+1}. Thus, the error probability of thei-th estimated bit of the systematic
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BMST-R code ensemble under MAP decoding can be lower-bounded by

Pr{Ei}MAP ≥ E

[
Q

(√
Wi

σ

)]

=

m+1∑

ℓ=0

(
m+1

ℓ

)
θm+1−ℓ(1− θ)ℓQ

(√
N +m(N − 2)− 1 + ℓ

σ

)
. (54)

It follows that the bit-error probability of the systematicBMST-R code ensemble under MAP

decoding can be lower-bounded by

BERMAP =
1

k

k−1∑

i=0

Pr{Ei}MAP

≥
m+1∑

ℓ=0

(
m+ 1

ℓ

)
θm+1−ℓ(1− θ)ℓQ

(√
N +m(N − 2)− 1 + ℓ

σ

)
. (55)

Corollary 8: The bit-error probability of a systematic BMST-R code ensemble without punc-

turing (i.e., with puncturing fractionθ = 0) under MAP decoding can be lower-bounded by

BERMAP ≥ Q

(√
N +m(N − 1)

σ

)
. (56)

Proof: For a specifici (0 ≤ i ≤ k − 1), we can see from (40) that thei-th row of the

generator matrix has a deterministic weight

wi = N +m(N − 1). (57)

Thus, the error probability of thei-th estimated bit of the systematic BMST-R code ensemble

under MAP decoding can be lower-bounded by

Pr{Ei}MAP ≥ Q

(√
wi
σ

)

= Q

(√
N +m(N − 1)

σ

)
. (58)

It follows that the bit-error probability of the systematicBMST-R code ensemble without punc-
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Fig. 3. Decoding complexity for systematic BMST-R codes as afunction of code rate that requires an SNR of 2 dB to achieve
target BERs of10−3, 10−4 and10−5.

turing under MAP decoding can be lower-bounded by

BERMAP =
1

k

k−1∑

i=0

Pr{Ei}MAP

≥ Q

(√
N +m(N − 1)

σ

)
. (59)

Remarks. Corollaries 7 and 8 also hold for systematic BMST-R codes with specific inter-

leavers for the reason that the interleavers have no effect on the row weights of the generator

matrix. Since the lower bound (56) without puncturing is equivalent to the lower bound (52)

with puncturing fractionθ = 0, in the rest of the paper, we consider for generality the lower

bound (52).

E. Trade-Off Between Performance and Complexity

The implementation complexity of systematic BMST-R codes can be analyzed as with their

non-systematic counterpart. For encoding, the information sequence is partitioned equally into

blocks and transmitted directly, while their replicas are interleaved and transmitted in a block
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Fig. 4. Decoding complexity for rate 1/2 systematic BMST-R codes as a function of SNR with target BERs of10−3, 10−4

and10−5.

Markov superposition manner. This shows that the encoding complexity grows linearly with

the encoding memorym. For decoding, a sliding window decoding algorithm with a tunable

decoding delay can be implemented over the normal graph (seeFig. 2). The decoding complexity

for node + and node= of systematic BMST-R codes grows linearly with the encodingmemory

m. Furthermore, similar to non-systematic BMST codes, a decoding delayd = 2m ∼ 3m is

required to achieve the lower bound on the performance. As a result, the decoding complexity

for systematic BMST-R codes can be roughly given asO(Nmd), or equivalently,O(Nm2).

The above analysis shows that the decoding complexity is closely related to the repetition

degreeN and the encoding memorym, both of which in turn determine the lower bound (52).

This allows us to make trade-offs among efficiency, performance and complexity. To be precise,

we consider the following two cases.

1) Fixed SNR. We can observe from the lower bound (52) that, for a given SNR and BER, the

required encoding memorym decreases as the repetition degreeN increases (accordingly,

the code rate decreases), resulting in a lower complexity. Fig. 3 shows the decoding

complexity for systematic BMST-R codes as a function of coderate that requires an SNR

of 2 dB to achieve BERs of10−3, 10−4 and10−5. As expected, for fixed BER, the greater
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the code rate is, the higher the decoding complexity is. We also see that for fixed code

rate, the higher the performance requirement (equivalently, the more stringent the BER)

is, the higher the decoding complexity is.

2) Fixed code rate. We can observe from the lower bound (52) that, for a given rate and BER,

the required encoding memorym decreases as the SNR increases, resulting in a lower

decoding complexity. This is reasonable since more excessive SNR is available compared

to the corresponding Shannon limit. Fig. 4 shows the decoding complexity for rate 1/2

systematic BMST-R codes as a function of SNR with BERs of10−3, 10−4 and10−5. As

expected, for fixed BER, the greater the SNR is, the lower the decoding complexity is. We

also observe that for fixed SNR, the more stringent the BER is,the higher the decoding

complexity is.

IV. NUMERICAL ANALYSIS AND PERFORMANCE COMPARISON

In this section, all simulations are performed assuming BPSK modulation and transmitted over

an AWGN channel, unless otherwise specified. The(m+1)(N−1) random interleavers (randomly

generated but fixed) of sizeK are used for encoding. The iterative sliding window decoding

algorithm for systematic BMST-R codes is performed using the parallel (flooding) updating

schedule within the decoding window with a maximum iteration number of 18, and the entropy

stopping criterion [19, 36] with a preselected threshold of10−6 is employed.

A. Performance Bounds and Code Construction

In this subsection, we present an example to study the performance bounds on BER of

systematic BMST-R codes. We consider systematic BMST-R codes with repetition degreeN = 2

and puncturing fractionθ = 0. The decoding delayd for the sliding window decoding is specified

asd = 3m.

Assume that there areL = 20 blocks of information data to be transmitted, where the

information subsequence have lengthK = 30. We consider systematic BMST-R code ensembles

with encoding memorym = 0, m = 1 andm = 2, whose code rates are 0.5, 0.4878 and 0.4762,

respectively. Here, the systematic BMST-R code withm = 0 is equivalent to the independent

transmission of rate 0.5 repetition code. Assume that we only calculate the truncated IRWEF
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Fig. 5. Spectrum{Ds} (0 ≤ s ≤ 60) of systematic BMST-R code ensembles with encoding encodingmemorym = 0,
m = 1 andm = 2 in Example 1. AssumeL = 20 blocks of information data, where the information subsequence has length
K = 30. The systematic BMST-R code withm = 0 is equivalent to the independent transmission of rate 0.5 repetition code.
The truncating parameter is set toT = 60. The code rates of systematic BMST-R code ensembles withm = 0, m = 1 and
m = 2 are 0.5, 0.4878 and 0.4762, respectively.

{Ai,j, 0 ≤ i ≤ 60}. That is, the truncating parameter is set toT = 60. Fig. 5 shows the spectrum

{Ds} (0 < s ≤ T ) of systematic BMST-R code ensembles, where

Ds =

T∑

i=1

i

k
Ai,s−i. (60)

From Fig. 5, we see that the spectrum of the systematic BMST-Rcode ensembles withm = 1

andm = 2 have less number of codewords with small Hamming weights. Wealso see that the

minimum Hamming distances of systematic BMST-R code ensembles with encoding memory

m = 0, m = 1 andm = 2 are 2, 3 and 4, respectively. These indicate that the systematic

BMST-R codes have potentially better performance than the independent transmission system.

The simulation results are shown in Fig. 6, where we observe that

1) The lower and upper bounds on the BER performance of systematic BMST-R codes are

tight in the high SNR region.

2) The simulated BER performance curves match well with the bounds in the high SNR

region, indicating that the sliding window decoding algorithm is near optimal in the high
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Fig. 6. Performance of systematic BMST-R code ensembles with encoding encoding memorym = 0, m = 1 andm = 2
in Example 1. The systematic BMST-R code withm = 0 is equivalent to the independent transmission of rate 0.5 repetition
code. AssumeL = 20 blocks of information data, where the information subsequence has lengthK = 30. The codeword is
modulated using BPSK and transmitted over an AWGN channel. The decoding delayd is specified asd = 3m. The truncating
parameter is set toT = 60. The code rates of systematic BMST-R code ensembles withm = 0, m = 1 andm = 2 are 0.5,
0.4878 and 0.4762, respectively.

SNR region.

3) The systematic BMST-R codes outperform the independent transmission system (i.e., the

systematic BMST-R code withm = 0). Furthermore, the systematic BMST-R code with

encoding memorym = 2 outperforms the systematic BMST-R code withm = 1. Taking

into account the rate loss, the systematic BMST-R code withm = 2 obtains a net gain of

1.175 dB in terms ofEb/N0 at a BER of10−5, compared to the systematic BMST-R code

with m = 1.

Given the tightness of the lower bound (52) as demonstrated in Example 1, we have the

following simple procedure to construct good codes. LetR ∈ (0, 1) be the target code rate

and ptarget be the target BER. The object is to construct a code with rateRL ≈ R, which can

approach the Shannon limit at the target BER. A systematic BMST-R code has the following

five parameters: repetition degreeN , information subsequence lengthK, puncturing lengthKp,

data block lengthL, and encoding memorym. These parameters can be determined as follows.

1) Determine the repetition degreeN and puncturing fractionθ such that 1
N−θ

= R. Choose
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TABLE I
ENCODING MEMORIES FOR SYSTEMATICBMST-R CODES REQUIRED TO APPROACH THE CORRESPONDINGSHANNON

LIMITS AT GIVEN TARGET BERS

Systematic BMST-R Codes
Encoding Memorym

BER = 10−3 BER = 10−4 BER = 10−5 BER = 10−6

Rate 2/3, N = 2, θ = 0.5 12 18 24 31
Rate 1/2, N = 2, θ = 0 8 12 16 20
Rate 2/5, N = 3, θ = 0.5 8 11 15 19
Rate 1/3, N = 3, θ = 0 7 11 14 18
Rate 1/4, N = 4, θ = 0 7 10 14 17

sufficiently large information subsequence length6 K and puncturing lengthKp such that

Kp/K ≈ θ;

2) Find the Shannon limit for the given code rateR and target BERptarget;

3) Determine the minimum encoding memorym such that the lower bound ofBERMAP

in (52) at the Shannon limit is not greater than the preselected target BERptarget;

4) Choose a data block lengthL such that the rate loss (i.e.,R−RL) due to the termination

is small;

5) Generate(m+ 1)(N − 1) interleavers randomly.

Evidently, the above procedure requires no optimization and hence can be easily implemented.

The encoding memories for some systematic BMST-R codes required to approach the correspond-

ing Shannon limits at given target BERs are shown in Table I. As expected, the lower the target

BER is, the greater the required encoding memorym is.

B. Impact of Parameters on BER

In this subsection, we study the impact of various parameters (e.g., encoding memorym,

information subsequence lengthK and decoding delayd) on the BER performance of systematic

BMST-R codes with fixed code rate. Note that, as pointed out inSection II-A, varying repetition

degreeN and puncturing fractionθ results in systematic codes with different rates. For simplicity,

we focus onRL = 0.49 systematic BMST-R codes with repetition degreeN = 2 and puncturing

fraction θ = 0. Three regimes are considered: (1) fixedm andK, increasingd, (2) fixedm and

d, increasingK, and (3) fixedK, increasingm (and henced).

6By simulation, we find thatK ≥ 2500 suffices to approach the Shannon limit within around half dB.
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Example 2 (Fixedm andK, Increasingd):
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K = 300 m = 16 d = 16
K = 300 m = 16 d = 18
K = 300 m = 16 d = 20
K = 300 m = 16 d = 22
K = 300 m = 16 d = 32
Threshold m = 16 d = 16
Threshold m = 16 d = 18
Threshold m = 16 d = 20
Threshold m = 16 d = 22
Threshold m = 16 d = 32
Lower bound for m = 16

Fig. 7. Simulated decoding performance of rateRL = 0.49 systematic BMST-R codes decoded with different decoding delays
d in Example 2. Information subsequence lengthK = 300, encoding memorym = 16 and data block lengthL = 392. The
codeword is modulated using BPSK and transmitted over an AWGN channel. The corresponding window decoding thresholds
and the lower bound are also plotted.

Consider a systematic BMST-R code with information subsequence lengthK = 300, encoding

memorym = 16 and data block lengthL = 392. The BER performance of the systematic BMST-

R code decoded with different decoding delaysd is shown in Fig. 7. The asymptotic threshold

performance obtained by using the EXIT chart analysis method in [20] is also included. From

Fig. 7, we observe that

1) The BER performance of the systematic BMST-R code decodedwith different delaysd

matches well with the corresponding window decoding thresholds in the high SNR region.

2) The BER performance in the waterfall region improves as the decoding delayd increases,

but it does not improve much further beyond a certain decoding delay (roughlyd = 20).

3) The BER performance in the error floor region improves as the decoding delayd increases,

and it matches well with the lower bound for the systematic BMST-R code withm = 16

whend increases up to a certain point (roughlyd = 32).

Consider systematic BMST-R codes constructed with encoding memorym = 16, data block

lengthL = 392 and decoded with decoding delayd = 32. The BER performance of systematic
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Example 3 (Fixedm and d, IncreasingK):
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K = 200 m = 16 d = 32
K = 450 m = 16 d = 32
K = 700 m = 16 d = 32
K = 950 m = 16 d = 32
Lower bound for m = 16

Fig. 8. Simulated decoding performance of rateRL = 0.49 systematic BMST-R codes with different information subsequence
lengthsK in Example 3. The codes are constructed with encoding memorym = 16 and data block lengthL = 392, and
decoded with decoding delayd = 32. The codeword is modulated using BPSK and transmitted over an AWGN channel. The
corresponding lower bound is also plotted.

BMST-R codes constructed with different information subsequence lengthsK is shown in Fig. 8,

where we observe that

1) Increasing the information subsequence lengthK can improve waterfall region perfor-

mance. As expected, this improvement saturates for sufficiently largeK. For example, the

improvement at a BER of10−5 from K = 200 to K = 450, both decoded withd = 16,

is about 0.25 dB, while the improvement decreases to about 0.05 dB fromK = 700 to

K = 950.

2) The error floors, which are determined by the encoding memory and code rate (see

Corollary 7), cannot be lowered by increasingK.

Example 4 (FixedK, Increasingm (and henced)): Consider systematic BMST-R codes con-

structed with information subsequence lengthK = 2500 and encoding memoriesm = 8, 12 and

16. The performance with sufficiently large decoding delayd = 2m of the systematic BMST-R

codes is shown in Fig. 9, where we observe that

1) The BER performance of systematic BMST-R codes matches well with the corresponding
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Shannon limit of rate 0.49
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Threshold m = 8 d = 16
Threshold m = 12 d = 24
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Lower bound for m = 8
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Fig. 9. Simulated decoding performance of rateRL = 0.49 systematic BMST-R codes constructed with different encoding
memoriesm and decoded with decoding delayd = 2m in Example 4. The information subsequence length of the involved
systematic BMST-R codes isK = 2500. The codeword is modulated using BPSK and transmitted over an AWGN channel. The
corresponding window decoding thresholds and lower boundsfor systematic BMST-R codes are also plotted.

window decoding thresholds in the high SNR region.

2) For a high target BER (roughly above10−3), the BER performance improves as the encod-

ing memorym increases, which is consistent with the threshold analysisperformance. Note

that this phenomenon does not exist for non-systematic BMSTcodes whose performance

degrades slightly asm increases (see Section V-C of [20]).

3) The error floor can be lowered by increasing the encoding memory m (and hence the

decoding delayd).

C. Decoding Performance Based on Latency

In addition to decoding performance, the latency introduced by employing channel coding is

a crucial factor in the design of a practical communication system, such as personal wireless

communication and real-time audio and video. In this subsection, we study the BER performance

of systematic BMST-R codes based on their decoding latency.

Example 5: We consider rateRL = 0.49 systematic BMST-R codes with encoding memory

m = 16, repetition degreeN = 2 and puncturing fractionθ = 0. The decoding latency of the
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(3,6)-regular SC-LDPC
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Non-systematic BMST-R
Systematic BMST-R, K = 150
Systematic BMST-R, K = 200
Systematic BMST-R, K = 250
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Systematic BMST-R, K = 350
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Fig. 10. Required SNR to achieve a BER of10−5 for finite-length systematic BMST-R codes, non-systematicBMST-R codes
in [20], (3, 6)-regular SC-LDPC codes, and(4, 8)-regular SC-LDPC codes as a function of decoding latency. All the codes have
rate 0.49. The decoding delays for(3, 6)-regular SC-LDPC codes and(4, 8)-regular SC-LDPC codes are5 and3, respectively.
The encoding memories for non-systematic BMST-R codes and systematic BMST-R codes are 8 and 16, respectively. The
values of the information subsequence length and decoding delay for the non-systematic BMST-R codes are chosen such that
the combination gives the best decoding performance. The decoding delays for the systematic BMST-R codes ared = 16, 17,
· · · , 24. The codeword is modulated using BPSK and transmitted over an AWGN channel.

sliding window decoder, in terms of bits, is given by

τ = 2K(d+ 1). (61)

The SNR required to achieve a BER of10−5 as a function of decoding latency is shown in

Fig. 10. We observe that the performance of systematic BMST-R codes (with fixed information

subsequence lengthK) improves as the decoding delayd (and hence the latency) increases, but

it does not improve much further beyond a certain decoding delay. Moreover, beyond a certain

latency, using a greater information subsequence lengthK with a smaller decoding delayd

gives better performance. For example, the systematic BMST-R code constructed with a greater

information subsequence lengthK = 300 and decoded with a smaller decoding delayd = 19

outperforms the systematic BMST-R code constructed with a small information subsequence

length K = 250 and decoded with a greater decoding delayd = 23 (both have the same

decoding latency of 12000 bits).
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We also compare the performance of systematic BMST-R codes,non-systematic BMST-R

codes in [20], and SC-LDPC codes when the decoding latenciesare equal, as shown in Fig. 10.

All the codes have rate 0.49. We restrict consideration to(3, 6)-regular SC-LDPC codes with

two component submatricesB0 = [2 1] and B1 = [1 2], and (4, 8)-regular SC-LDPC codes

with two component submatricesB0 = [3 1] andB1 = [1 3]. The decoding delays for(3, 6)-

regular SC-LDPC codes and(4, 8)-regular SC-LDPC codes are5 and 3, respectively, which

are good choices to achieve optimum performance when the decoding latencies are fixed.7 The

encoding memories for non-systematic BMST-R codes and systematic BMST-R codes are 8 and

16, respectively. The values of the information subsequence length and decoding delay for the

non-systematic BMST-R codes are chosen such that the combination gives the best decoding

performance (see Section VI-A of [20]). The decoding delaysfor the systematic BMST-R codes

ared = 16, 17, · · · , 24. We observe that the systematic BMST-R codes perform betterthan both

the non-systematic BMST-R codes and the SC-LDPC codes. For example, in the decoding latency

of 12000 bits, the systematic BMST-R code with information subsequence lengthK = 300 and

decoding delayd = 19 gains 0.12 dB, 0.21 dB and 0.24 dB, respectively, compared tothe

non-systematic BMST-R code,(3, 6)-regular SC-LDPC code, and(4, 8)-regular SC-LDPC code.

D. Rate-Compatible Property

In this subsection, we show the performance of systematic BMST-R codes with different rates

by varying repetition degreeN and puncturing fractionθ.

Example 6: Consider systematic BMST-R codes with information subsequence lengthK =

500 and data block lengthL = 500. The encoding memoriesm for systematic BMST-R codes

required to approach the Shannon limits at a target BER of10−5 are determined following the

procedure described in Section IV-A. The decoding delay is specified asd = 2m. Simulation

results for systematic BMST-R codes with different rates are shown in Fig. 11. We observe that

the performances for all code rates are almost the same as that for uncoded code in the relatively

low SNR region. This is different from non-systematic BMST codes whose performance in the

relatively low SNR region is very bad due to error propagation. We also observe that, as the SNR

7For a more in-depth discussion of the relationship between the protograph lifting factor, the decoding window size and the
decoding performance of SC-LDPC codes when the decoding latency is fixed, we refer the reader to [37].
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N = 2 m = 40 θ = 0.75
N = 2 m = 24 θ = 0.5
N = 2 m = 19 θ = 0.25
N = 2 m = 16 θ = 0
N = 3 m = 15 θ = 0.5
N = 3 m = 14 θ = 0
N = 4 m = 14 θ = 0.5
N = 4 m = 14 θ = 0
N = 5 m = 13 θ = 0
N = 6 m = 13 θ = 0
Uncoded code

Fig. 11. Simulated decoding performance of systematic BMST-R codes with information subsequence lengthK = 500
and data block lengthL = 500. The repetition degreeN , encoding memoriesm and puncturing fractionθ are specified
in the legends. The decoding delay is specified asd = 2m. The codeword is modulated using BPSK and transmitted
over an AWGN channel. The corresponding lower bounds (dotted magenta) for systematic BMST-R codes are also plot-
ted. The rates of the systematic BMST-R codes correspondingto the BER curves from left to right in the figure are
0.1631, 0.1959, 0.2449, 0.2801, 0.3272, 0.3929, 0.4921, 0.5623, 0.6562, and0.7874.

increases, the performance curves of the systematic BMST-Rcodes drop down to the respective

lower bounds for all considered code rates.

To evaluate the bandwidth efficiency, we plot the required SNR to achieve a BER of10−5 of

the systematic BMST-R codes with information subsequence lengthK = 500 against the code

rate in Fig. 12, where we observe that the systematic BMST-R codes achieve the BER of10−5

within one dB from the Shannon limits for all considered coderates. In Fig. 12, we also include

the simulation results of three AR4JA LDPC codes with code rates 1/2, 2/3 and 4/5 in the

CCSDS standard [38], and five PBRL LDPC codes [17] with code rates1/4, 1/3, 1/2, 2/3, and

4/5, all of which have information length16384. We observe that the systematic BMST-R codes

have a similar performance as both AR4JA LDPC codes and PBRL LDPC codes over such code

rates. Note that no simulation results were reported for AR4JA LDPC codes and PBRL LDPC

codes with rates less than1/4, while codes of all rates of interest in the interval (0,1) can be

constructed using the systematic BMST-R construction. Actually, to the best of our knowledge,

no other methods were reported along with simulations in theliterature that can construct good
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Fig. 12. Required SNR to achieve a BER of10−5 for systematic BMST-R codes with information subsequence lengthK = 500.
The codeword is modulated using BPSK and transmitted over anAWGN channel. The performances of three AR4JA LDPC
codes with code rates1/2, 2/3 and 4/5 in the CCSDS standard [38], and five PBRL LDPC codes [17] with code rates1/4,
1/3, 1/2, 2/3, and4/5, all of which have information length16384, are also included.

rate-compatible codes over such a wide range of code rates.

E. Further Discussions

All the examples above assume that the subcodewords are modulated using BPSK and trans-

mitted over an AWGN channel. In this subsection, we study theperformance of systematic

BMST-R codes transmitted over a block fading channel. The word-error-rate (WER) is defined as

the ratio between the number of erroneous subcodewords and the total number of subcodewords

transmitted.

Assume that the subcodewordc(t) is modulated using BPSK with 0 and 1 mapped to+1 and

−1, respectively, and transmitted over a block fading channel, resulting in a received vectory(t)

expressed as

y
(t)
j = a

(t)
j c

(t)
j + z

(t)
j (62)

for 0 ≤ j ≤ KN − Kp, wherey(t)j is the j-th component ofy(t), z(t)j is a sample from an

independent Gaussian random variable with distributionN (0, σ2), anda(t)j is a fading coefficient.
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Systematic BMST-R, m = 4 d = 8
Systematic BMST-R, m = 6 d = 12
Systematic BMST-R, m = 8 d = 16
Systematic BMST-R, m = 10 d = 20

Fig. 13. Performance ofRL = 0.49 systematic BMST-R codes with information subsequence length K = 100, repetition
degreeN = 2 and puncturing fractionθ = 0 over a block fading channel. The encoding memories arem = 4, 6, 8, and 10.
The decoding delay is specified asd = 2m.

In this paper, we consider a Rayleigh fading channel, wherea
(t)
j is a sample from a Rayleigh

distribution R with E [R2] = 1. For block fading channels with a coherence period ofBf

symbols, we assume thata(t)j (perfectly known at the receiver) remains constant overBf symbols

within the same period and is independent identically distributed across different coherence

periods.

Example 7: ConsiderRL = 0.49 systematic BMST-R codes with information subsequence

lengthK = 100, repetition degreeN = 2 and puncturing fractionθ = 0. The subcodewords are

modulated using BPSK and transmitted over a block fading channel with a coherence period of

Bf = 100 symbols. That is, a subcodewordc(t) hasF = KN/Bf = 2 independent fading values.

The WER curves of systematic BMST-R codes constructed with encoding memorym = 4, 6, 8,

and 10, and decoded with decoding delayd = 2m are shown in Fig. 13, where we observe

that the performance of systematic BMST-R code improves with increasing encoding memory

m until m = 8 and then it degrades slightly asm increases further. This implies thatm = 8 is

a good choice for optimum performance.
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Systematic BMST-R, m = 8 d = 9
(3,6)-regular SC-LDPC, m = 2 d = 9

Fig. 14. Performance comparison of the systematic BMST-R code and the SC-LDPC code with BPSK modulation over a block
fading channel. The systematic BMST-R code is constructed with information subsequence lengthK = 100, encoding memory
m = 8, repetition degreeN = 2, and puncturing fractionθ = 0, and decoded with decoding delayd = 9. The (3, 6)-regular
SC-LDPC codes is constructed with the protograph lifting factor 100 and three component submatricesB0 = B1 = B2 = [1 1],
and decoded with decoding delayd = 9. The decoding latencies of two codes are the same.

The performance comparison8 of the systematic BMST-R code and the SC-LDPC code over

a block fading channel is shown in Fig. 14. The systematic BMST-R code is constructed with

information subsequence lengthK = 100, encoding memorym = 8, repetition degreeN = 2,

and puncturing fractionθ = 0, and decoded with decoding delayd = 9. The (3, 6)-regular SC-

LDPC code is constructed with the protograph lifting factor100 and three component submatrices

B0 = B1 = B2 = [1 1], and decoded with decoding delayd = 9 presented in [39]. Thus, the

decoding latencies of two codes are the same. We see from Fig.14 that, in the low WER region,

the systematic BMST-R code performs better than the(3, 6)-regular SC-LDPC code under the

equal decoding latency constraint. For example, at a WER of10−4, the systematic BMST-R code

gains about one dB compared to the equal latency(3, 6)-regular SC-LDPC code. These results

confirm that systematic BMST-R codes without any further optimization can perform well over

block fading channels.

8The simulation results (not included in the figure) suggest that non-systematic BMST codes suffer from severe performance
degradation caused by the error propagation.
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V. CONCLUSIONS

In this paper, we have proposed systematic block Markov superposition transmission (BMST)

of repetition codes, referred to as systematic BMST-R codes. Using both extending and punctur-

ing, systematic BMST-R codes support a wide range of code rates but maintain essentially the

same encoding/decoding hardware structure. The systematic BMST-R codes not only preserve

the advantages of the original non-systematic BMST codes, namely, low encoding complexity,

effective sliding window decoding algorithm and predictable error floors, but also have improved

decoding performance especially in short-to-moderate decoding latency. A simple lower bound

and an upper bound were derived to analyze the performance ofsystematic BMST-R codes

under MAP decoding. Simulation results show that, over an AWGN channel, 1) the performance

of systematic BMST-R codes around or below the BER of10−5 can be predicted by the lower

bound; 2) systematic BMST-R codes can approach the Shannon limit at a BER of10−5 within one

dB for a wide range of code rates; and 3) systematic BMST-R codes can outperform both non-

systematic BMST codes and SC-LDPC codes in the waterfall region under the equal decoding

latency constraint. Simulation results also show that, systematic BMST-R codes without any

further optimization can outperform(3, 6)-regular SC-LDPC codes over a block fading channel.

A final note is that the construction of systematic BMST-R codes can be extended to high-order

Abelian groups since only addition is required during the encoding process.
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