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On Gaussian MACs with Variable-Length Feedback

and Non-Vanishing Error Probabilities
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Abstract—We characterize the fundamental limits of trans-
mission of information over a Gaussian multiple access channel
(MAC) with the use of variable-length feedback codes and under
a non-vanishing error probability formalism. We develop new
achievability and converse techniques to handle the continuous
nature of the channel and the presence of expected power
constraints. We establish the ε-capacity regions and bounds
on the second-order asymptotics of the Gaussian MAC with
variable-length feedback with termination (VLFT) codes and
stop-feedback codes. We show that the former outperforms the
latter significantly. Due to the multi-terminal nature of the
channel model, we leverage tools from renewal theory developed
by Lai and Siegmund to bound the asymptotic behavior of the
maximum of a finite number of stopping times.

Index Terms—Gaussian multiple access channel, Variable-
length codes, Variable-length feedback with termination, Stop-
feedback, Non-vanishing error probability, Second-order asymp-
totics, Finite blocklength regime,

I. INTRODUCTION

A. Background and Related Works

Shannon [1] showed that noiseless feedback does not in-

crease the capacity of point-to-point memoryless channels. De-

spite this seemingly negative result, it is known that feedback

significantly simplifies coding schemes and decreases the error

probability. For example, Schalkwijk and Kailath (SK) [2]

proposed a simple coding scheme for the additive white

Gaussian noise (AWGN) channel with fixed-length feedback

based on the idea of refining the receiver’s knowledge of the

noise in each transmission. The sender then iteratively corrects

each error in the previous transmission. The error probability

for this scheme is known to decay doubly exponentially fast

in the blocklength. Burnashev and Yamamoto [3] showed that

even with noisy feedback, the reliability function of an AWGN

channel improves (over the no feedback case). Ozarow [4]

extended SK’s coding scheme [2] and showed that the capacity

region of the Gaussian MAC is enlarged in the presence of
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feedback. These ideas are collectively known as posterior

matching [5]. These ideas have also been extended by Truong,

Fong and Tan [6] to the case where the error probability is not

required to vanish.

It is also well known that feedback can increase the capacity

of channels with memory. Cover and Pombra [7] characterized

the feedback capacity of non-stationary additive Gaussian

noise channels with memory. Kim [8] found the capacity of

the first-order autoregressive moving-average AWGN channel

with feedback. For finite alphabet channels with memory and

feedback, expressions of feedback capacity have been derived

for the trapdoor channel [9] and the Ising channel [10]. It is

also known that feedback can increase the second-order coding

rates of certain discrete memoryless channels (DMCs) [11].

A greater advantage of feedback can be observed if one

allows the length of the feedback signal to vary based on the

quality of the channel output. Burnashev [12] demonstrated

that the error exponent improves dramatically in this variable-

length feedback setting. In fact, the error exponent of a DMC

with variable-length feedback is E(R) = C1

(

1 − R
C

)

for all

rates 0 ≤ R ≤ C, where C is the capacity of the DMC and C1

is the maximal relative entropy between the conditional output

distributions. Yamamoto and Itoh [13] proposed a simple and

conceptually important two-phase coding scheme that attains

E(R). While the error exponent results in [12] and [13] are

of paramount importance in feedback communications, we

focus on the scenario in which the error probability is non-

vanishing [14].

For variable-length codes under the non-vanishing error

probability formalism, Polyanskiy, Poor and Verdú [15] pro-

vided non-asymptotic achievability and converse bounds for

the coding rates. They also derived asymptotic expansions for

the optimal code lengths of DMCs and showed dramatic im-

provements over the no feedback and the fixed-length feedback

settings. In particular the channel dispersion vanishes, and so

the backoff from capacity at finite blocklengths is significantly

reduced. Trillingsgaard and Popovski [16] generalized the

results for DMCs in [15] to the discrete memoryless multiple

access channel (DM-MAC). In it, they used ideas contained

in Tan and Kosut [17] and MolavianJazi and Laneman [18]

to analyze achievable second-order asymptotics for the DM-

MAC. However, only achievability results were provided.

It was also shown numerically in [16] that variable-length

feedback outperforms fixed-length feedback. Achievability and

converse bounds under variable-length full-feedback (VLF)

and variable-length stop-feedback (VLSF) for the binary era-

sure channel (BEC) have recently been derived by Devassy et

al. [19]. In addition, Trillingsgaard et al. used ideas related

http://arxiv.org/abs/1609.00594v3
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to the compound channel [20] to study the 2-user [21] and

K-user [22] common-message discrete memoryless broadcast

channel with stop-feedback. However, the techniques used in

both the achievability and converse parts in [19], [21] and

[22] are difficult to extend to Gaussian channels. This is

because the authors leveraged the fact that a set of information

densities for discrete channels can be bounded. This, together

with Hoeffding’s inequality, allows the authors to control

the expectation of the maximum of a set of stopping times

to eventually upper bound the average transmission time.

The information density terms for Gaussian channels are not

bounded. Hence, to study this important class of channels

under variable-length feedback, we develop new techniques.

We mention here that while the analysis of variable-length

codes for non-vanishing error probabilities has been restricted

to the finite alphabet setting, for the vanishing error probability

formalism, however, general alphabets have been considered

both with and without cost constraints in the important works

of Burnashev [23] and Nakiboğlu and Gallager [24].

We characterize the information-theoretic limits of the

Gaussian MAC when variable-length feedback is available at

the encoder and a non-vanishing error probability is permitted.

In particular, we circumvent the problem of the continuous na-

ture of the alphabets by deriving new bounds on the moments

(e.g., expectation and variance) of the maximum of a set of

random variables (e.g., stopping times). These techniques may

be of independent interest in other problems.

B. Main Contributions

We propose a variable-length feedback model for Gaussian

channels. We carefully define the expected power constraint

so that it is analogous to the definition in the fixed-length

feedback setting. In the latter setting, the power constraint

of a code for a point-to-point channel with (deterministic)

blocklength N ∈ N is defined to be

E

[ N
∑

n=1

X2
n

]

≤ NP, (1)

where Xn is the input to the channel at the n-th time slot and

P > 0 is the admissible power. However, in the variable-length

feedback setting, the analogue of N , usually denoted as τ ∈ N,

is a stopping time (i.e., the random decoding time instant).

Hence, one needs to carefully define the analogue of (1) so that

we can utilize existing mathematical techniques for analyzing

stopping times. We note that the expected power constraint we

propose in (6) is analogous to that in [24, Sec. II.A], i.e.,

E

[ τ
∑

n=1

X2
n

]

≤ E(τ)P. (2)

However, our formulation in (6) is somewhat more convenient

to analyze under the non-vanishing error probability formal-

ism.

In our main contribution, we derive achievability and con-

verse bounds for the Gaussian MAC with two forms of

variable-length feedback—stop-feedback and variable-length

feedback with termination (VLFT). We establish the ε-capacity

regions. We show that under the VLFT setting, we can achieve

a larger ε-capacity region compared to the stop-feedback

setting. We also provide bounds on the second-order terms.

Our achievability proof for the Gaussian MAC with stop-

feedback uses some non-standard techniques. We find that

Doob’s optional stopping theorem [25, Thm. 10.10], which

was used in [15] for the DMC, is not sufficient to bound the

expected blocklength of the code. We develop new results,

coupled with work on renewal theory by Gut [26] and Lai

and Siegmund [27], to bound the expected blocklength. The

converse proof for the Gaussian MAC borrows some ideas

from the weak converse proof in Ozarow’s analysis for the

Gaussian MAC with fixed-length feedback [4]. However, our

choice of parameters is different from [4]. This is to account

for the variable-length setting that we study.

C. Paper Organization

The rest of this paper is structured as follows: In Section

II, we provide a precise problem setting for the Gaussian

MAC, state the main results, and provide intuitions for these

results. We also explain the novelties of our arguments relative

to existing works. The achievability and converse proofs are

provided in Sections III and IV respectively. We conclude our

discussion and suggest avenues for future work in Section V.

Auxiliary technical results that are not essential to the main

arguments are relegated to the appendices.

II. GAUSSIAN MAC WITH VARIABLE-LENGTH FEEDBACK

A. Notation, Channel Model and Definitions

1) Notation: We use log x to denote the natural logarithm

so information units throughout are in nats. We also define

x+ = max(x, 0) and x− = max(−x, 0). The Gaussian

capacity and binary entropy functions are respectively de-

fined as C(x) := 1
2 log(1 + x) and hb(x) := −x log x −

(1 − x) log(1 − x). The notation for random variables and

information-theoretic quantities are standard and mainly fol-

low the text by El Gamal and Kim [28]. We use σ(A) to

denote the smallest σ-field on which random variable A is

measurable. We write N (µ, ν) for the univariate Gaussian

distribution with mean µ and variance ν. We also use standard

asymptotic notation such as O(·).
2) Channel Model: The channel model is given by

Y = X1 +X2 + Z, (3)

where X1 and X2 represent the inputs to the channel, Z ∼
N (0, 1) is additive Gaussian noise with zero mean and unit

variance, and Y is the output of the channel. Thus, the channel

law from (X1, X2) to Y can be written as

P(y|x1, x2) =
1√
2π

exp

(

−1

2
(y − x1 − x2)

2

)

. (4)

3) Basic Definitions: The following definitions general-

ize [15] to the Gaussian MAC with expected power constraints.

Definition 1. An (M1,M2, N, P1, P2, ε) stop-feedback code

for the Gaussian MAC P(y|x1, x2), where N,P1, P2 are pos-

itive numbers, M1,M2 are positive integers, and 0 ≤ ε ≤ 1,

is defined by:
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1) Two spaces U1,U2 and probability distributions

PU1 , PU2 on them, defining independent random vari-

ables Uj, j = 1, 2 each of which is revealed to transmit-

ter j = 1, 2 and the receiver before the start of trans-

mission; i.e., (U1, U2) acts as common randomness.1

2) Two sequences of encoders f
(1)
n : U1×{1, 2, . . . ,M1} →

R and f
(2)
n : U2 ×{1, 2, . . . ,M2} → R (indexed by n ∈

N) defining channel inputs Xjn = f
(j)
n (Uj ,Wj). where

Wj is equiprobable on the message set {1, 2, . . . ,Mj}
for j = 1, 2.

3) A sequence of decoders gn : U1 × U2 × R
n →

{1, 2, . . . ,M1} × {1, 2, . . . ,M2} providing estimates

(W1,W2) at times n.

4) A non-negative integer-valued random variable τ , a

stopping time of the filtration {σ(U1, U2, Y
n)}∞n=1,

which satisfies

E(τ) ≤ N. (5)

5) The expected power constraints at the encoders

∞
∑

n=1

E[X2
jn] ≤ E(τ)Pj , j = 1, 2. (6)

The final decision (Ŵ1, Ŵ2) = gτ (U1, U2, Y
τ ) is computed at

time τ and must satisfy

P[(Ŵ1, Ŵ2) 6= (W1,W2)] ≤ ε. (7)

Definition 2. An (M1,M2, N, P1, P2, ε) variable-length

feedback with termination code (VLFT) is defined as

in Definition 1 except that τ is a stopping time of

the filtration {σ(U1, U2,W1,W2, Y
n)}∞n=1 and Xjn =

f
(j)
n (Uj ,Wj , Y

n−1) for j = 1, 2.

B. Main Results and Discussions

We now state our main results for the Gaussian MAC under

various forms of variable-length codes with feedback. The

proofs of the achievability parts of Theorems 1 and 2 are

provided in Section III. The proofs of the converse parts of

Theorems 1 and 2 are provided in Section IV.

Theorem 1. For the Gaussian MAC P(y|x1, x2), there exists

a sequence of (M1,M2, N, P1, P2, ε) stop-feedback codes for

any (M1,M2) satisfying

0 ≤ logMj ≤
(

N

1− ε
−A

√

N

1− ε

)

C(Pj)

− logN +O(1), j = 1, 2 (8)

0 ≤ logM1M2 ≤
(

N

1− ε
−A

√

N

1− ε

)

C(P1 + P2)

− logN +O(1). (9)

1The common randomness is used to initialize the encoders and the decoder
before the start of transmission. See the usage of the Bernoulli random variable
D in Lemmas 6 and 7. The reader is referred to the analogue of this common
randomness and accompanying discussions for the point-to-point case in [15].

where A ≥ 0 is a constant given as

A := min
(i,j,k)∈perm[3]

1

2

(
√

2(Li + Lj) +
√

4Lk

)

+
1

4

(

√

2(Li + Lk) +
√

2(Lj + Lk)
)

, (10)

and where perm[3] is the set of all permutations of the tuple

(1, 2, 3) and

Lj :=
4Pj

(1 + Pj) [log(1 + Pj)]
2 , j = 1, 2 (11)

L3 :=
4(P1 + P2)

(1 + P1 + P2) [log(1 + P1 + P2)]
2 . (12)

Conversely, given any (M1,M2, N, P1, P2, ε) stop-feedback

code, the following inequalities hold

0 ≤ logMj ≤
NC(Pj) + hb(ε)

1− ε
, j = 1, 2 (13)

0 ≤ logM1M2 ≤ NC(P1 + P2) + hb(ε)

1− ε
. (14)

Theorem 2. Given a Gaussian MAC, for any ρ ∈ [0, 1], there

exist a sequence of (M1,M2, N, P1, P2, ε) VLFT-feedback

codes for any M1,M2 satisfying

0 ≤ logMj ≤
NC(Pj(1− ρ2))

1− ε
− log logN +O(1), j = 1, 2 (15)

0 ≤ logM1M2 ≤ NC(P1 + P2 + 2ρ
√
P1P2)

1− ε
− log logN +O(1). (16)

Conversely, for any (M1,M2, N, P1, P2, ε)-VLFT feedback

code for the Gaussian MAC, the following inequalities hold

for some ρ ∈ [0, 1] and for j = 1, 2:

0 ≤ logMj ≤
1

1− ε

[

NC(Pj(1− ρ2))+

(N + 1)hb

( 1

N + 1

)

+ hb(ε)

]

, (17)

0 ≤ logM1M2 ≤
1

1− ε

[

NC(P1 + P2 + 2ρ
√

P1P2)

+ (N + 1)hb

( 1

N + 1

)

+ hb(ε)

]

. (18)

We define the ε-capacity region of a Gaussian MAC un-

der the stop-feedback (resp. VLFT) formalisms Csf(P1, P2, ε)
(resp. Ct(P1, P2, ε)) to be the closure of the set of all

rate pairs (R1, R2) such that there exists a sequence

of (M1,M2, N, P1, P2, ε) stop-feedback codes (resp. VLFT

codes) such that lim infN→∞
1
N logMj ≥ Rj for j = 1, 2.

and also that (7) holds. Theorems 1 and 2 immediately imply

the following corollary.

Corollary 1. Let 0 < ε < 1. The ε-capacity region

Csf(P1, P2, ε) is the set of all (R1, R2) ∈ R
2
+ satisfying

Rj ≤
C(Pj)

1− ε
, j = 1, 2 (19)

R1 +R2 ≤ C(P1 + P2)

1− ε
. (20)
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Similarly, the ε-capacity region Ct(P1, P2, ε) is the set of all

(R1, R2) ∈ R
2
+ satisfying

Rj ≤
C(Pj(1− ρ2))

1− ε
, j = 1, 2 (21)

R1 +R2 ≤ C(P1 + P2 + 2ρ
√
P1P2)

1− ε
(22)

for some ρ ∈ [0, 1].

Some remarks concerning Theorems 1 and 2 and Corollary

1 are now in order:

1) Trillingsgaard and Popovski [16] generalized the point-

to-point variable-length feedback results for the DMC

in Polyanskiy, Poor and Verdú [15] to the DM-MAC.

In it, they used ideas contained in Tan and Kosut

[17] and MolavianJazi and Laneman [18] to analyze

achievable second-order asymptotics for the DM-MAC

with variable-length feedback. However, Trillingsgaard

and Popovski [16] could not analytically bound the

expectation of the maximum of several stopping times

E(maxk τk) and they also could not prove a matching

(first-order) converse. Instead, they provided numerical

results to show that stop-feedback increases the first-

order coding rate compared to the fixed-length feedback

setting.

2) The multiplicative gains of 1
1−ε in (19)–(22) are due

to the non-vanishing nature of the error probability

and the use of variable-length codes with feedback.

Note that for the Gaussian MAC without feedback, the

strong converse holds in the sense that the ε-capacity is

independent of ε [29].

3) The ε-capacity region for VLFT codes is easily seen

to be strictly larger than the corresponding region for

fixed-length feedback codes recently studied by Truong,

Fong and Tan [6]. In that scenario, the ε-capacity region

is given by [6]

Rj ≤ C

(

Pj(1− ρ2)

1− ε

)

, j = 1, 2 (23)

R1 +R2 ≤ C

(

P1 + P2 + 2ρ
√
P1P2

1− ε

)

, (24)

for some ρ ∈ [0, 1]. The enlargement is due to the

following consequence of Jensen’s inequality:

C

(

P

1− ε

)

<
C(P )

1− ε
, ∀ (P, ε) ∈ (0,∞)× (0, 1).

(25)

This gain is present as variable-length feedback codes

are adaptive, i.e., their lengths are adapted to the quality

of Y ∞.

4) The ε-capacity region Ct(P1, P2, ε) is strictly larger

than Csf(P1, P2, ε), which clearly illustrates the fact

that feedback at encoders can enlarge the ε-capacity

region compared to the case where only stop-feedback

is available. That Ct(P1, P2, ε) is strictly larger than

Csf(P1, P2, ε) is completely analogous to the fact that

fixed-length feedback enlarges the capacity region of the

Gaussian MAC (cf. Ozarow [4]).

5) In the achievability proofs, we note that Polyanskiy,

Poor and Verdú [15] utilize the fact that the relevant

information density random variable i(X ;Y ) (induced

by the capacity-achieving input distribution and the

channel) is bounded when the channel is a DMC [15,

Eqn. (107)]. However, this fact does not hold for the

AWGN channel and so our achievability proofs require

some novel elements. All previous works on variable-

length feedback for systems with non-vanishing error

probabilities [15], [19], [21], [22] involve channels with

discrete alphabets. In addition, we leverage novel bounds

(Lemmas 2 and 4) that control the first and second

moments of the maximum of a set of stopping times

maxk τk and multi-user information spectrum methods

[16]–[18].

6) For the converse of Theorem 1, we make use of Fano-

like arguments. Although some of the ideas are inspired

by [15], we need to augment the original arguments so

that the proof is amenable to Gaussian channels. More

specifically, in [15], the authors use the fact that the

capacity of the DMC is sup{I(X̂; Ŷ ) : PX̂(T) = 0},

where T is a new symbol appended to the input and out-

put alphabets of the DMC to form X̂ and Ŷ respectively

and X̂ ∈ X̂ is the input random variable of the new

DMC. However, for Gaussian MAC with the expected

power constraints in (6), this does not hold.

7) For the converse proof of Theorem 2, we borrow some

ideas from Ozarow’s weak converse proof for the Gaus-

sian MAC with fixed-length feedback [4]. However, our

parameter settings and the manipulations of the resultant

bounds are different from Ozarow. See (157) and (158)

in Lemma 9 to follow.

8) Specializing our results for the Gaussian MAC to the

point-to-point AWGN channel also yields novel results.

In this case, the first-order terms for VLFT code and

stop-feedback codes are identical and equal to to
C(P )
1−ε ;

this can be seen by setting ρ = 0 in Theorem 2.

However, the achievability result for VLFT codes is bet-

ter than the corresponding one for stop-feedback codes

in the second-order term (−O(log logN) compared to

−O(
√
N)).

III. ACHIEVABILITY PROOFS

A. Achievability Proof for Theorem 1

To prove the achievability result for Theorem 1 in (8)

and (9), we commence with some technical results in Lem-

mas 1 to 4. The achievability result for Theorem 1 follows

from a combination of Lemmas 5 and 6 to follow.

Definition 3 (Strongly nonlattice [30]). We say that a distri-

bution function F is strongly nonlattice if lim inf |t|→∞ |1 −
f(t)| > 0, where f(t) :=

∫∞

−∞
eitx dF (x) is the characteristic

function of F . This is equivalent to Cramer’s condition (C),

i.e., that lim sup|t|→∞ |f(t)| < 1.

Lemma 1 (Asymptotics of Expected Values of Stopping

Times). Let X1, X2, . . . be i.i.d. random variables with pos-

itive mean µ = E[X1], finite variance σ2 = Var(X1) and
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E[X+
1 ] < ∞. Let Sn := X1 +X2+ . . .+Xn. For each b ≥ 0

define

τ = τ(b) = inf{n : Sn > b}, (26)

τ+ = τ(0) = inf{n : Sn > 0}. (27)

Assume that X1 has a distribution function FX1 that is strongly

nonlattice in the sense of Definition 3. Then as b → ∞,

µE(τ) = b+
E(S2

τ+)

2E(Sτ+)
+ o(1). (28)

Proof: Follows from Gut [26, Thm. 2.6] and Wald’s

identity [31, Eqn. (13) in Sec. 12.5].

Lemma 2 (Asymptotics of Variance of Stopping Times [27]).

Let X1, X2, . . . be i.i.d. random variables with positive mean

µ and finite variance σ2 and E(X+
1 ) < ∞. Let Sn := X1 +

X2 + . . . +Xn. For each b ≥ 0 define τ and τ+ as in (26)

and (27). If X1 has a distribution function that is strongly

nonlattice, then as b → ∞,

Var(τ) = µ−3σ2b+ µ−2K + o(1), (29)

where K is a constant that does not depend on b and is given

by

K :=
σ2

ES2
τ+

2µESτ+

+
3

4

(

ES2
τ+

ESτ+

)2

− 2

3

(

ES3
τ+

ESτ+

)

−
(

ES2
τ+

ESτ+

)

E

{

min
n≥0

Sn

}

− 2

∫ ∞

0

E{Sτ(x) − x}P
{

min
n≥0

Sn ≤ −x
}

dx. (30)

Lemma 3 (Generalization of Wald’s equation [32]2). Let

{Xn}∞n=1 be an infinite sequence of real-valued random

variables and let τ be a non-negative integer-valued random

variable. Assume that

• {Xn}∞n=1 are all integrable (finite-mean) random vari-

ables;

• for all natural numbers n, E[Xn1{τ ≥ n}] =
E[Xn]P(τ ≥ n);

• the infinite series
∑∞

n=1 E[|Xn|1{τ ≥ n}] < ∞;

• {Xn}∞n=1 all have the same expectation, and

• τ has finite expectation.

Define Sτ :=
∑τ

n=1 Xn. Then, we have

E[Sτ ] = E[τ ]E[X1]. (31)

Note that this is indeed a generalization of the standard

Wald’s equation [31], [34] which states that if {Xn}∞n=1 is a

sequence of i.i.d. integrable random variables and τ is a finite

expectation stopping time with respect to {Xn}∞n=1, then (31)

holds. Lemma 3 does not require {Xn}∞n=1 to be i.i.d. The

proof of Lemma 3, which can be found in [32], is similar to

that of Wald’s equation [31], [34].

2The proof of Lemma 3 in [32] has been verified correct by the authors
and the Associate Editor Prof. A. Tchamkerten [33]. We thank the editor for
his kind assistance.

Lemma 4 (Expectation of the Maximum of Random Vari-

ables). Let {(X1N , X2N , X3N )}N≥1 be three sequences of

random variables satisfying

E[XjN ] = N −A
√
N −G−Bj + o(1), j = 1, 2, 3 (32)

for some constants B1, B2, B3 ∈ R, where A as given in (10)

and G is defined as follows:

G := −1

4
(Bi0 +Bj0 + 2Bk0)

+
1

2

(

√

2|Fi0 + Fj0 |+ (Bi0 −Bj0)
2

)

+
1

4

(

√

2|Fi0 + Fk0 |+ (Bi0 −Bk0)
2

+
√

2|Fj0 + Fk0 |+ (Bj0 −Bk0)
2

)

, (33)

where

(i0, j0, k0) := argmin
(i,j,k)∈perm[3]

1

2

√

2(Li + Lj)

+
1

4

(

√

2(Li + Lk) +
√

2(Lj + Lk)

)

. (34)

Furthermore assume that

Var(XjN ) ≤ LjN + Fj + o(1), j = 1, 2, 3 (35)

for some other constants L1 > 0, L2 > 0, L3 > 0 and

F1, F2, F3 ∈ R. Then, we have

E(max{X1N , X2N , X3N}) ≤ N + o(1). (36)

Proof: The proof is deferred to Appendix A.

Lemma 5. Consider a standard Gaussian MAC P(y|x1, x2)
with expected power constraints P1, P2. For any N ′ > 0, and

(M1,M2) satisfying

0 ≤ logMj ≤ (N ′ − A
√
N ′)C(Pj)

− logN ′ +O(1), j = 1, 2 (37)

0 ≤ logM1M2 ≤ (N ′ − A
√
N ′)C(P1 + P2)

− logN ′ +O(1), (38)

we can find an (M1,M2, N
′ + o(1), 1

N ′
) stop-feedback code

with A defined as in (10).

Proof: Part of the proof is based on [15] and [16]

but as mentioned, we need to combine existing ideas with

Lemmas 2 and 4 above. First, we show that there exists

an (M1,M2, N
′ + o(1), P1, P2,

1
N ′

) stop-feedback code with

stopping time τ∗, where E(τ∗) ≤ N ′ + o(1), the sizes of

the message sets M1,M2 satisfy (37) and (38), and finally,

E
[
∑τ∗

n=1 X
2
jn

]

= E(τ∗)Pj , for j = 1, 2. To define this

code, we define two random variables U1 and U2 each with

distribution PUj
:= (PXj

)∞ × (PXj
)∞ × . . .× (PXj

)∞ (Mj

times) where j = 1, 2 and PXj
∼ N (0, Pj).

We generate the codebook as follows. For a realization of

U1, we generate M1 i.i.d. infinite dimensional vectors {C(1)
j }

from PX1 ∼ N (0, P1). Similarly, for each realization of U2,

we generate M2 i.i.d. infinite dimensional vectors {C(2)
k } from
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PX2 ∼ N (0, P2). The encoder and decoder depend on U1, U2

implicitly through {C(1)
j } and {C(2)

k }.

Encoder j = 1, 2 consists of a sequence of encoders

f
(j)
n that maps message wj ∈ {1, 2, . . . ,Mj} to an infinite

sequence of inputs C
(j)
wj ∈ R

∞. The mappings are without

regard to feedback, Xjn = f
(j)
n (wj) := C

(j)
wj ,n, where C

(1)
w1,n

and C
(2)
w2,n are respectively the n-th coordinates of the infinite

vectors C
(1)
w1 and C

(2)
w2 .

Let C
(1)
j (n) := (C

(1)
j,1 , . . . ,C

(1)
j,n) and similarly define

C
(2)
k (n). At time n, the decoder computes the (conditional)

information densities:

S
(1,n)
j,k := i(C

(1)
j (n);Y n|C(2)

k (n)), (39)

S
(2,n)
j,k := i(C

(2)
k (n);Y n|C(1)

j (n)), (40)

S
(3,n)
j,k := i(C

(1)
j (n),C

(2)
k (n);Y n), (41)

for all (j, k) ∈ {1, 2, . . . ,M1} × {1, 2, . . . ,M2}, where

i(C
(1)
j (n);Y n|C(2)

k (n))

:= log
dPXn

1 Y n|Xn
2

d(PXn
1 |Xn

2
×PY n|Xn

2
)

(

C
(1)
j (n),C

(2)
k (n), Y n

)

, (42)

and similarly for i(C
(2)
k (n);Y n|C(1)

j (n)) and

i(C
(1)
j (n),C

(2)
k (n);Y n). For a triple of positive real

numbers (γ1, γ2, γ3) to be chosen later, the decoder also

defines a number of stopping times as follows:

τ
(1)
j,k := inf{n ≥ 0 : i(C

(1)
j (n);Y n|C(2)

k (n)) > γ1}, (43)

τ
(2)
j,k := inf{n ≥ 0 : i(C

(2)
k (n);Y n|C(1)

j (n)) > γ2}, (44)

τ
(3)
j,k := inf{n ≥ 0 : i(C

(1)
j (n),C

(2)
k (n);Y n) > γ3}, (45)

and τj,k := max{τ (1)j,k , τ
(2)
j,k , τ

(3)
j,k }. The final decision is made

by the decoder at the stopping time

τ∗ := min
j,k

τj,k. (46)

The output of the decoder is given by

g(Y τ∗

) = max{(j, k) : τj,k = τ∗}, (47)

where the maximum is in lexicographic order.

Let X∞
1 , X∞

2 , X̄∞
1 , X̄∞

2 , Y ∞ be i.i.d. infinite-dimensional

vectors with joint distribution

PX1X2Y X̄1X̄2
(x1, x2, y, x̄1, x̄2)

= PX1(x1)PX2(x2)P(y|x1x2)PX1(x̄1)PX2(x̄2), (48)

where PX1 ∼ N (0, P1), PX2 ∼ N (0, P2) and P(y|x1x2) is

the law of the Gaussian MAC.

For each finite n, define three random information density

random variables (random walks) S
(1)
n := i(Xn

1 ;Y
n|Xn

2 ),

S
(2)
n := i(Xn

2 ;Y
n|Xn

1 ), and S
(3)
n := i(Xn

1 , X
n
2 ;Y

n) and

hitting times

τ (1) := inf{n ≥ 0 : i(Xn
1 ;Y

n|Xn
2 ) > γ1}, (49)

τ
(1)
+ := inf{n ≥ 0 : i(Xn

1 ;Y
n|Xn

2 ) > 0}, (50)

τ̄ (1) := inf{n ≥ 0 : i(X̄n
1 ;Y

n|Xn
2 ) > γ1}, (51)

Analogously define τ (2), τ
(2)
+ , τ̄ (2), τ (3), τ

(3)
+ , τ̄ (3) and τ ′ :=

max{τ (1), τ (2), τ (3)}.
It follows that the average length of the transmission satis-

fies

E(τ∗) =
1

M1M2

∑

j,k

E(τ∗|W1 = j,W2 = k) (52)

= E(τ∗|W1 = 1,W2 = 1) (53)

≤ E(max{τ (1)1,1 , τ
(2)
1,1 , τ

(3)
1,1 }|W1 = 1,W2 = 1) (54)

= E(max{τ (1), τ (2), τ (3)}) = E(τ ′). (55)

From the analysis of the DM-MAC in Trillingsgaard and

Popovski [16], we know that the average probability of error

satisfies

P(g(Y τ∗

) 6= (W1,W2)) ≤ (M1 − 1)(M2 − 1)P(τ ′ ≥ τ̄ (3))

+ (M1 − 1)P(τ ′ ≥ τ̄ (1))

+ (M2 − 1)P(τ ′ ≥ τ̄ (2)). (56)

Observe that the following statistics are all finite:

µ1 = E[i(X1;Y |X2)] = I(X1;Y |X2) = C(P1), (57)

σ2
1 = Var (i(X1;Y |X2)) =

P1

1 + P1
, (58)

E
[

i(X1;Y |X2)
+
]

≤ E
[

i(X1;Y |X2)
++i(X1;Y |X2)

−
]

(59)

= E [|i(X1;Y |X2)|] (60)

≤
√

E [(i(X1;Y |X2))2] (61)

≤
√

µ2
1 + σ2

1 < ∞. (62)

Similarly, µ2 = E[i(X2;Y |X1)] = I(X2;Y |X1), µ3 =
E[i(X1, X2;Y )] = I(X1, X2;Y ), σ2

2 = Var (i(X2;Y |X1)),
σ2
3 = Var (i(X1, X2;Y )), E [i(X2;Y |X1)

+], and

E [i(X1, X2;Y )+] are finite. Moreover, by [35, pp. 207],

Cramer’s condition (C) in Definition 3 is satisfied by those

distributions having at least a continuous component in its

Lebesgue decomposition. Since i(X1, Y |X2), i(X2;Y |X1),
and i(X1, X2;Y ) are all continuous random variables, their

distribution functions are strongly nonlattice. Hence, it

follows from Lemma 1 that

I(X1;Y |X2)E(τ
(1)) = γ1 + ξ1 + o(1), as γ1 → ∞, (63)

I(X2;Y |X1)E(τ
(2)) = γ2 + ξ2 + o(1), as γ2 → ∞, (64)

I(X1, X2;Y )E(τ (3)) = γ3 + ξ3 + o(1), as γ3 → ∞, (65)

where

ξj :=

E

[(

S
(j)

τ
(j)
+

)2]

2E
[

S
(j)

τ
(j)
+

] , j = 1, 2, 3. (66)

Recall that S
(1)
n is the n-letter information density

i(Xn
1 ;Y

n|Xn
2 ) and τ

(1)
+ is defined in (50). Additionally, let

νj :=

E

[(

S
(j)

τ
(j)
+

)3]

E

[

S
(j)

τ
(j)
+

] , and (67)

τ (j)(x) := inf{n ≥ 0 : S(j)
n > x}, j = 1, 2, 3. (68)
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From Lemma 2, we have that

Var(τ (j)) = µ−3
j σ2

jγj + µ−2
j Kj + o(1), as γj → ∞, (69)

where for j = 1, 2, 3,

Kj :=
σ2
j

µj
ξj + 3ξ2j −

2

3
νj − 2ξj E

{

min
n≥0

S(j)
n

}

− 2

∫ ∞

0

E{S(j)

τ (j)(x)
− x}P

{

min
n≥0

S(j)
n ≤ −x

}

dx. (70)

are constants which are not dependent on γj , j = 1, 2, 3, (i.e.

K1,K2,K3 = O(1)). Now, for any positive real number N ′,

choose

γ1 = I(X1;Y |X2)(N
′ −A

√
N ′ −G), (71)

γ2 = I(X2;Y |X1)(N
′ −A

√
N ′ −G), (72)

γ3 = I(X1, X2;Y )(N ′ −A
√
N ′ −G), (73)

and a pair (M1,M2) satisfying

0 ≤ logMj ≤ γj − log(3N ′), j = 1, 2, (74)

0 ≤ logM1M2 ≤ γ3 − log(3N ′), (75)

for some A ≥ 0, G ≥ 0 to be determined later. These choices

of M1 and M2 and the fact that ξj = O(1) for all j = 1, 2, 3
show that (37) and (38) are satisfied.

Combining these choices of γj with (63)–(65) we obtain

E[τ (j)] = N ′ −A
√
N ′ −G−Bj + o(1) j = 1, 2, 3, (76)

where

Bj :=
−2ξj

log (1 + Pj)
, j = 1, 2 (77)

B3 :=
−2ξ3

log (1 + P1 + P2)
, (78)

are constants. By using the facts that A ≥ 0, G ≥ 0 and (69),

we also have

Var(τ (j)) = Lj(N
′ −A

√
N ′ −G) + Fj + o(1)

≤ LjN
′ + Fj + o(1), (79)

where the constants Lj and Fj are defined according to

Lemma 2. Specifically,

Lj :=

(

σj

µj

)2

= (11), (80)

Fj := µ−2
j Kj , j = 1, 2, 3. (81)

It follows from Lemma 4 that

E(τ∗) ≤ E[τ ′] = E[max{τ (1), τ (2), τ (3)}] ≤ N ′ + o(1) (82)

as N ′ → ∞. Moreover, from (76) we have E(τ (j)) < ∞,

hence

P(τ (j) < ∞) = 1, j = 1, 2, 3. (83)

Applying a change of measure, we observe that for any

measurable function f ,

E[f(X̄n
1 , X

n
2 , Y

n)]=E
[

f(Xn
1 , X

n
2 , Y

n) exp
(

−S(1)
n

)]

, (84)

E[f(Xn
1 , X̄

n
2 , Y

n)]=E
[

f(Xn
1 , X

n
2 , Y

n) exp
(

−S(2)
n

)]

, (85)

E[f(X̄n
1 , X̄

n
2 , Y

n)]=E
[

f(Xn
1 , X

n
2 , Y

n) exp
(

−S(3)
n

)]

. (86)

Observe that 1{τ (j) ≤ n} ∈ σ(Xn
1 , X

n
2 , Y

n) for j =
1, 2, 3, 1{τ ′ ≤ n} ∈ σ(Xn

1 , X
n
2 , Y

n), 1{τ̄ (1) ≤ n} ∈
σ(X̄n

1 , X
n
2 , Y

n), 1{τ̄ (2) ≤ n} ∈ σ(Xn
1 , X̄

n
2 , Y

n), and

1{τ̄ (3) ≤ n} ∈ σ(X̄n
1 , X̄

n
2 , Y

n). Following the same argu-

ments as in [15, Eqns. (111)–(118)], we have

P(τ̄ (3) ≤ τ ′) ≤ P(τ̄ (3) < ∞) ≤ exp(−γ3), (87)

Similarly, for j = 1, 2,

P(τ̄ (j) ≤ τ ′) ≤ P(τ̄ (j) < ∞) ≤ exp(−γj). (88)

From the bound on the error probability in (56), the bounds

on the individual probabilities in (87) and (88), the choices of

M1 and M2 in (74) and (75), we see that the average error

probability of the stop-feedback code satisfies

ε′ ≤ 1

N ′
. (89)

Observe that

E

[ τ∗

∑

n=1

X2
jn

]

= E

[ τ∗

∑

n=1

X2
jn

∣

∣

∣

∣

W1 = 1,W2 = 1

]

(90)

≤ E

[ τ1,1
∑

n=1

X2
jn

∣

∣

∣

∣

W1 = 1,W2 = 1

]

(91)

= E

[ τ ′

∑

n=1

X2
jn

]

, j = 1, 2. (92)

To verify that the expected power constraints are satisfied,

we now check all the conditions of Lemma 3 (with X2
jn for

j = 1, 2 here playing the role of Xn in Lemma 3).

• We have E[X2
jn] = Pj for j = 1, 2 so it follows that X2

1n

and X2
2n are integrable for all n ≥ 1.

• Now, we see that 1{τ ′ ≥ n} = 1 − 1{τ ′ ≤ n − 1} ∈
σ(Xn−1

1 , Xn−1
2 , Y n−1). Moreover, since the sequence

{X1n}n≥1 as well as the sequence {X2n}n≥1 are i.i.d.

generated and the channel is memoryless, we have that

1{τ ′ ≥ n} is independent of X1n and X2n. It follows

that E[X2
jn1{τ ′ ≥ n}] = E[X2

jn]E[1{τ ′ ≥ n}] =
E[X2

jn]P(τ
′ ≥ n) for j = 1, 2;

• For each j = 1, 2, the infinite series
∑∞

n=1 E[X
2
jn1{τ ′ ≥

n}] satisfies

∞
∑

n=1

E[X2
jn1{τ ′ ≥ n}] =

∞
∑

n=1

E[X2
jn]P(τ

′ ≥ n) (93)

≤ Pj

∞
∑

n=1

P(τ ′ ≥ n) (94)

= PjE(τ
′) (95)

≤ Pj(N
′ + o(1)) < ∞, (96)

where (96) follows from (82).

• For each j = 1, 2, all random variables X2
jn, n ≥ 1 have

the same expectation Pj .

• E(τ ′) ≤ N ′ + o(1) < ∞.
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Hence, by (92) and Lemma 3, the expected power constraints

at the encoders satisfy

E

[ τ∗

∑

n=1

X2
jn

]

≤ E

[ τ ′

∑

n=1

X2
jn

]

(97)

= E(τ ′)E[X2
j1] (98)

≤ E(τ ′)Pj , j = 1, 2. (99)

This means that we have shown there exists an (M1,M2, N
′+

o(1), 1
N ′

) stop-feedback code with stopping time τ∗ such

that (99) holds. Since there exists such a code, we can find

an (M1,M2, N
′+o(1), 1

N ′
) stop-feedback code with stopping

time τ ′ by increasing the stopping time from τ∗ to τ ′ (using

the same decoder at time τ∗). It follows that (99) holds with

equality. Moreover, if there exists an (M1,M2, N
′+o(1), 1

N ′
)

stop-feedback code with stopping time τ∗, by keeping the

same stopping rule and the decoder of the aforementioned

code and setting

X̃jn :=

{

Xjn, n ≤ τ∗

0, n > τ∗
, j = 1, 2, (100)

we have a new (M1,M2, N
′ + o(1), 1

N ′
) stop-feedback code

satisfying:

∞
∑

n=1

E[X̃2
jn] = E

[ ∞
∑

n=1

X̃2
jn

]

(101)

= E

[ τ∗

∑

n=1

X2
jn

]

(102)

= E(τ∗)Pj , j = 1, 2, (103)

where (101) follows from Tonelli’s theorem [36]. This con-

cludes the proof of Lemma 5.

Lemma 6. For the Gaussian MAC P(y|x1, x2), there exists

an (M1,M2, N, P1, P2, ε) stop-feedback code for M1,M2

satisfying (8) and (9).

Proof: We propose a stop-feedback coding scheme as

follows:

• The decoder chooses numbers N ′, P ′
1, P

′
2 such that

(N ′)2(1− ε)

N ′ − 1
≤ N, (104)

P ′
j = Pj , j = 1, 2. (105)

• The decoder generates a Bernoulli random variable D ∼
Bern(p), where

p :=
N ′ε− 1

N ′ − 1
. (106)

• If D = 1, the decoder sends a stop-feedback (or a NACK)

to the encoder via the feedback link. This means that

τ = 0.

• If D = 0, the encoder sends the intended message

to the decoder using the stop-feedback (M1,M2, N
′ +

o(1), P ′
1, P

′
2,

1
N ′

) mentioned in Lemma 5 for the Gaussian

MAC with expected powers P ′
1 and P ′

2 and stops at time

τ ′. This means that τ = τ ′.

It follows that the error probability of the proposed stop-

feedback coding scheme is upper bounded by

1
N ′ε− 1

N ′ − 1
+

(

1− N ′ε− 1

N ′ − 1

)

1

N ′
= ε. (107)

In addition, the average length of the proposed stop-feedback

coding scheme is less than or equal to
(

1− N ′ε− 1

N ′ − 1

)

E(τ ′)

≤
(

1− N ′ε− 1

N ′ − 1

)

N ′ + o(1)

(

1− N ′ε− 1

N ′ − 1

)

(108)

=
(N ′)2(1− ε)

N ′ − 1
+ o(1) (109)

≤ N + o(1). (110)

From (104) and (105), the expected powers of the combined

scheme satisfy
(

1− N ′ε− 1

N ′ − 1

)

E(τ ′)P ′
j = E(τ)P ′

j = E(τ)Pj , j = 1, 2.

(111)

Therefore, combining this code construction with Lemma 5,

we see that there exists an (M1,M2, N+o(1), P1, P2, ε) stop-

feedback code where

0 ≤ logMj ≤
(

N

1− ε
−A

√

N

1− ε
−G+ o(1)

)

C(Pj)

− log

(

N

1− ε

)

+O(1), j = 1, 2 (112)

0 ≤ logM1M2 ≤
(

N

1−ε
−A

√

N

1−ε
−G+o(1)

)

C(P1+P2)

− log

(

N

1− ε

)

+O(1). (113)

Observe that if there exists an (M1,M2, N + o(1), P1, P2, ε)
stop-feedback code, then there also exists an

(M1,M2, N, P1, P2, ε) stop-feedback code by setting

the expected length equal to N − o(1). This change of the

expected length does not affect the asymptotic approximation

of the code rates. This concludes our proof of the achievability

part of Theorem 1.

B. Achievability Proof for Theorem 2

Lemma 7. Given a Gaussian MAC, for any ρ ∈ [0, 1], there

exist an (M1,M2, N, P1, P2, ε) VLFT-feedback code for any

M1,M2 satisfying (15) and (16).

Proof: Consider Ozarow’s coding scheme (for the Gaus-

sian MAC with fixed-length feedback) [4] with fixed block-

length N ′ ∈ N, expected powers bounded by P ′
1 and P ′

2, and

message sizes M1 and M2 satisfying

logMj = N ′
C
(

P ′
j(1− ρ2)

)

− log logN ′ +O(1), j = 1, 2 (114)

logM1M2 = N ′
C
(

P1 + P2 + 2ρ
√

P1P2

)

− log logN ′ +O(1) (115)
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where ρ ∈ [0, 1]. Then, from [4, Eqn. (13)] and [6, Eqn. (121)],

one sees that Ozarow’s scheme results in an error probability

ε′ ≤ 2

(N ′)2
≤ 1

N ′
, ∀N ′ ≥ 2. (116)

Therefore, we construct the VLFT coding scheme as fol-

lows.

• The decoder chooses the largest natural number N ′ such

that (104) is satisfied. It also chooses positive numbers

P ′
1, P

′
2 as in (105).

• The decoder generates a Bernoulli random variable D ∼
Bern(p), where p is defined in (106).

• If D = 1, the decoder sends a stop-feedback signal (or a

NACK) to the encoder via the feedback link. This means

that, conditioned on D = 1, τ = 0.

• If D = 0, the encoder sends the intended message to the

decoder using Ozarow’s coding scheme with parameters

(M1,M2, N
′, P ′

1, P
′
2,

1
N ′

) with expected powers P ′
1 = P1

and P ′
2 = P2 and stops at time τ ′. This means that,

conditioned on D = 0, we have τ = N ′.

Similarly to the stop-feedback case, it follows that the error

probability of the proposed VLFT coding scheme is upper

bounded by ε. The expected powers of the combined scheme

are also bounded by E(τ)Pj , j = 1, 2. Consequently, the

achievability part of Theorem 2 is proved.

IV. CONVERSE PROOFS

A. Converse Proof for Theorem 1

Lemma 8. Given a Gaussian MAC P(y|x1, x2), 0 ≤ ε ≤
1−max{ 1

M1
, 1
M2

}, any (M1,M2, N, P1, P2, ε) stop-feedback

code satisfies (13) and (14) for all N ∈ N.

Proof: First, we consider the case |U1| = |U2| =
1. For the stop-feedback formalism, τ is a stopping time

of the filtration {σ(Y n)}∞n=0. We note that if there exists

a code (f
(1)
n , f

(2)
n , gn, τ), we can construct another code

(f̂
(1)
n , f̂

(2)
n , ĝn, τ̂ ) such that X̂n = Ŷn = T for any n ≥ τ̂ ,

where T /∈ R is a special symbol appended to the input and

output alphabets to form the common input-output alphabet

R ∪ {T} and τ̂ = τ + 1 = inf{n : Ŷn = T}. Thus for the

converse, it is suffices to consider (f̂
(1)
n , f̂

(2)
n , ĝn, τ̂), where the

encoders f̂
(j)
n , j = 1, 2 are defined as in [15, Eqn. (59)] and

the decoder ĝn as in [15, Eqn. (61)].

In addition, using the same arguments as [15, Eqn. (68)] we

have

(1− ε) logM1M2 ≤ I(W1W2; Ŷ
∞) + hb(ε), (117)

(1 − ε) logM1 ≤ I(W1; Ŷ
∞|W2 = w2) + hb(ε), (118)

(1 − ε) logM2 ≤ I(W2; Ŷ
∞|W1 = w1) + hb(ε). (119)

By taking expectations of (118) and (119) with respect to PW2

and PW1 respectively, we obtain

(1− ε) logM1 ≤ I(W1; Ŷ
∞|W2) + hb(ε), (120)

(1− ε) logM2 ≤ I(W2; Ŷ
∞|W1) + hb(ε). (121)

Define

Ψn := 1{τ̂ ≤ n− 1} ∈ σ(Ŷ n−1). (122)

By Lemma 10 in Appendix B, we have

I(W1W2; Ŷ
∞)

≤
∞
∑

n=1

1

2
P(Ψn = 0) log(1 + E[(X1n +X2n)

2|Ψn = 0]),

(123)

I(W1; Ŷ
∞|W2)

≤
∞
∑

n=1

1

2
P(Ψn = 0) log(1 + E[X2

1n|Ψn = 0]), (124)

I(W2; Ŷ
∞|W1)

≤
∞
∑

n=1

1

2
P(Ψn = 0) log(1 + E[X2

2n|Ψn = 0]). (125)

We observe that

∞
∑

n=1

P(Ψn = 0) =
∞
∑

n=1

P(τ ≥ n) = E(τ). (126)

It follows that {P(Ψn = 0)/E(τ)}∞n=1 is a probability distri-

bution. Moreover, since the function f(x) = log(1 + x) is

concave, we have from (117) and (123) that

(1− ε) logM1M2

≤ 1

2
E(τ) log

(

1 +
∞
∑

n=1

P(Ψn = 0)

E(τ)
E[(X1n+X2n)

2|Ψn=0]

)

+ hb(ε) (127)

≤ N

2
log

(

1+
1

E(τ)

∞
∑

n=1

P(Ψn=0)E[(X1n+X2n)
2|Ψn=0]

)

+ hb(ε) (128)

≤ N

2
log

(

1 +
1

E(τ)

∞
∑

n=1

E[(X1n +X2n)
2]

)

+ hb(ε) (129)

=
N

2
log

(

1 +
1

E(τ)

∞
∑

n=1

E[X2
1n] + E[X2

2n] + 2E[X1nX2n]

)

+ hb(ε) (130)

≤ N

2
log

(

1 +
P1E(τ) + P2E(τ)

E(τ)

)

+ hb(ε) (131)

Here, (129) follows from the fact that E[(X1n + X2n)
2] ≥

P(Ψn = 0)E[(X1n +X2n)
2|Ψn = 0]. and (131) follows from

the power constraints of the stop-feedback code and the fact

that X1n = f
(1)
n (W1) is independent of X2n = f

(2)
n (W2).

Similarly, we have from (120) and (124) that

(1 − ε) logM1

≤ 1

2
E(τ) log

(

1 +

∞
∑

n=1

P(Ψn = 0)

E(τ)
E[X2

1n|Ψn = 0]

)

+ hb(ε) (132)

≤ N

2
log

(

1 +
1

E(τ)

∞
∑

n=1

P(Ψn = 0)E[X2
1n|Ψn = 0]

)

+ hb(ε) (133)
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≤ N

2
log

(

1 +
1

E(τ)

∞
∑

n=1

E[X2
1n]

)

+ hb(ε) (134)

≤ N

2
log

(

1 +
P1E(τ)

E(τ)

)

+ hb(ε) (135)

For the case |U1| ≥ 1, |U2| ≥ 1, with the above arguments

and Fn = σ(U1, U2, Ŷ
n), the following expressions hold

almost surely:

(1− P[(Ŵ1, Ŵ2) 6= (W1,W2)|U1, U2]) logM1M2

≤ 1

2
log(1 + P1 + P2)

+ hb(P[(Ŵ1, Ŵ2) 6= (W1,W2)|U1, U2)]), (136)

(1− P[(Ŵ1, Ŵ2) 6= (W1,W2)|U1, U2]) logMj

≤ 1

2
log(1+Pj)+hb(P[(Ŵ1, Ŵ2) 6=(W1,W2)|U1, U2)]),

(137)

where j = 1, 2. By taking the expectation with respect to

(U1, U2) on both sides of (136)–(137) and applying Jensen’s

inequality for the binary entropy terms, we obtain (13)–(14).

This concludes the converse proof of Theorem 1.

B. Converse Proof for Theorem 2

Lemma 9. Given a Gaussian MAC P(y|x1, x2), for any 0 ≤
ε ≤ 1 − max{ 1

M1
, 1
M2

}, any (M1,M2, N, P1, P2, ε) VLFT

code for any N ∈ N satisfies (17) and (18) for some ρ ∈ [0, 1].

Proof: Similarly to the converse proof for Gaussian MAC

with a stop-feedback code, we first consider the case in which

|U1| = |U2| = 1. Since the receiver decides on the transmitted

messages based only on Y τ and (W1,W2) (not dependent on

the channel outputs that are received after time τ ), as in [15],

we can convert any given code (f
(1)
n , f

(2)
n , gn, τ) to an equiva-

lent code (f̂
(1)
n , f̂

(2)
n , ĝn, τ) to remove the dependence of τ on

(W1,W2). To do so, we append a special symbol T /∈ R to the

input and output alphabets to form the common input-output

alphabet R ∪ {T}. We also set τ̂ = τ + 1 = inf{n : Ŷn = T}
and

Ψn := 1{τ̂ ≤ n} ∈ σ(Ŷ n), (138)

which is slightly different from the stop-feedback case (cf.

(122)).

Using the same approach as the proof of converse for the

Gaussian MAC with a stop-feedback code in Section IV-A,

we obtain from the bounds in Appendix B that

I(W1,W2; Ŷn|Ŷ n−1) ≤ H(Ψn|Ŷ n−1)

+
1

2
P(Ψn = 0) log(1 + E[(X1n +X2n)

2|Ψn = 0]), (139)

I(W1; Ŷn|Ŷ n−1W2) ≤ H(Ψn|Ŷ n−1)

+ P(Ψn = 0)I(X1n;Yn|Ψn = 0, Y n−1, X2n,W2), (140)

I(W2; Ŷn|Ŷ n−1W1) ≤ H(Ψn|Ŷ n−1)

+ P(Ψn = 0)I(X2n;Yn|Ψn = 0, Y n−1, X1n,W1). (141)

Note that {τ̂ ≤ n− 1} for the stop-feedback case (cf. Lemma

8) is equivalent to {τ̂ ≤ n} for the VLFT case we consider

here. Also compare (122) to (138). Observe that

I(X1n;Yn|Ψn = 0, Y n−1, X2n,W2)

≤ h(X1n + Zn|Ψn = 0, X2n)−
1

2
log(2πe). (142)

From here on, we essentially mimic Ozarow’s weak converse

proof for the Gaussian MAC with fixed-length feedback [4]

but with some changes in the parameter settings. First define

σ2
jn := Var[Xjn|Ψn = 0], j = 1, 2 (143)

λn := Cov[X1n, X2n|Ψn = 0]. (144)

Using the same approach as in [4], we can show that

h(X1n + Zn|Ψn = 0, X2n)

≤ 1

2
log

[

2πeσ2
1n

(

1− λ2
n

σ2
1nσ

2
2n

)

+ 2πe

]

. (145)

Therefore, we obtain

I(W1,W2; Ŷn|Ŷ n−1) ≤ H(Ψn|Ŷ n−1)

+
1

2
P(Ψn = 0) log

[

1 + σ2
1n + σ2

2n + 2λn

]

, (146)

I(W1; Ŷn|Ŷ n−1W2) ≤ H(Ψn|Ŷ n−1)

+
1

2
P(Ψn = 0) log

[

1 + σ2
1n

(

1− λ2
n

σ2
1nσ

2
2n

)]

, (147)

I(W2; Ŷn|Ŷ n−1W1) ≤ H(Ψn|Ŷ n−1)

+
1

2
P(Ψn = 0) log

[

1 + σ2
2n

(

1− λ2
n

σ2
1nσ

2
2n

)]

. (148)

It follows from (117), (120), and (121) and the above consid-

erations that

(1− ε) logM1M2 ≤
∞
∑

n=1

H(Ψn|Ŷ n−1)

+

∞
∑

n=1

1

2
P(Ψn = 0) log

[

1 + σ2
1n + σ2

2n + 2λn

]

+ hb(ε),

(149)

(1− ε) logM1 ≤
∞
∑

n=1

H(Ψn|Ŷ n−1)

+

∞
∑

n=1

1

2
P(Ψn = 0) log

[

1 + σ2
1n

(

1− λ2
n

σ2
1nσ

2
2n

)]

+ hb(ε),

(150)

(1− ε) logM2 ≤
∞
∑

n=1

H(Ψn|Ŷ n−1)

+
∞
∑

n=1

1

2
P(Ψn = 0) log

[

1 + σ2
2n

(

1− λ2
n

σ2
1nσ

2
2n

)]

+ hb(ε).

(151)

Note that by [15, Eqn. (90)], we have

∞
∑

n=1

H(Ψn|Ŷ n−1) = H(τ) ≤ (N + 1)hb

(

1

N + 1

)

(152)

≤ log(N + 1) + 1. (153)
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Moreover, since we have

∞
∑

n=1

P(Ψn = 0) =

∞
∑

n=1

P(τ̂ > n) (154)

=

∞
∑

n=1

P(τ ≥ n) (155)

= E(τ), (156)

it follows that {P(Ψn = 0)/E(τ)}∞n=1 is a valid probability

distribution. As in Ozarow’s weak converse proof for the

Gaussian MAC with fixed-length feedback [4], the right-hand-

sides of (149), (150), and (151) can be readily shown to be

jointly concave in (σ2
1n, σ

2
2n, λn). Thus, we can use Jensen’s

inequality to upper bound them.

More specifically, we set

G2
j :=

∞
∑

n=1

P(Ψn = 0)

E(τ)
σ2
jn, j = 1, 2 (157)

ρ :=
1

G1G2

∞
∑

n=1

P(Ψn = 0)

E(τ)
λn. (158)

We can bound G1 as follows:

G2
1 =

∞
∑

n=1

P(Ψn = 0)

E(τ)
σ2
1n, (159)

≤
∞
∑

n=1

P(Ψn = 0)

E(τ)
E(X2

1n|Ψn = 0) (160)

≤
∞
∑

n=1

E[X2
1n]

E(τ)
≤ P1. (161)

The last step follows from the expected power constraints in

(6). Similarly, we have G2
2 ≤ P2. Moreover, we also have

|λn| ≤ σ1nσ2n and so from (158) and the Cauchy-Schwarz

inequality,

|ρ|2 ≤
(

∞
∑

n=1

1

G1G2

P(Ψn = 0)

E(τ)
σ1nσ2n

)2

(162)

≤
(

∞
∑

n=1

P(Ψn=0)

E(τ)

σ2
1n

G2
1

)(

∞
∑

n=1

P(Ψn=0)

E(τ)

σ2
1n

G2
2

)

(163)

= 1. (164)

By applying Jensen’s inequality to (149), we obtain

(1 − ε) logM1M2

≤(N+1)hb

(

1

N+1

)

+
E(τ)

2
log
[

1+G2
1+G2

2+2ρG1G2

]

(165)

≤(N+1)hb

(

1

N+1

)

+
N

2
log
[

1+G2
1+G2

2+2ρG1G2

]

(166)

≤(N+1)hb

(

1

N+1

)

+
N

2
log
[

1+P1+P2+2|ρ|
√

P1P2

]

.

(167)

Similarly, by applying Jensen’s inequality to (150) and (151),

we obtain

(1− ε) logMj ≤ (N + 1)hb

(

1

N + 1

)

+
N

2
log
[

1 + P 2
j (1− ρ2)

]

, (168)

for j = 1, 2. This completes the proof of Lemma 9 and hence,

the converse proof of Theorem 2.

V. CONCLUSION AND FUTURE WORK

In this paper, we derived bounds on achievable rates of

the Gaussian MAC with the use of variable-length codes

with feedback and under the non-vanishing error probability

formalism. We quantified the gains of VLFT codes over stop-

feedback codes. To establish our results, we leveraged some

non-standard techniques to deal with the continuous nature of

the channel and also to control the overshoot of the barrier (or

threshold) of some relevant random walks.

In the future, it would be a fruitful endeavor to improve on

the second-order terms in Theorems 1 and 2 as they are likely

to be loose. In addition, it would be interesting to check if our

newly-developed techniques for systems with variable-length

feedback can be extended to other multi-terminal channel

models such as the Gaussian broadcast channel.

APPENDIX A

PROOF OF LEMMA 4

Proof: First, observe that

E[(X1N +X2N )2] + E[(X1N −X2N )2]

= 2(E[X2
1N ] + E[X2

2N ]) (169)

= 2[Var(X1N )+(EX1N )2+Var(X2N )+(EX2N )2] (170)

≤ 2[L1N + F1 + o(1) + (N −A
√
N −G−B1 + o(1))2

+ L2N + F2 + o(1) + (N −A
√
N −G−B2 + o(1))2].

(171)

Since, we have

E[(X1N +X2N )2] ≥ (E[X1N +X2N ])2 (172)

= (N −A
√
N −G−B1 + o(1)

+N −A
√
N −G−B2 + o(1))2. (173)

It follows from (171) and (173) that

E[(X1N −X2N )2]

≤ 2[L1N + F1 + o(1) + (N −A
√
N −G−B1 + o(1))2

+ L2N + F2 + o(1) + (N −A
√
N −G−B2 + o(1))2]

− (N −A
√
N −G−B1 + o(1)

+N −A
√
N −G−B2 + o(1))2 (174)

= 2[L1N + F1 + o(1) + L2N + F2 + o(1)]

+ (B1 −B2 + o(1))2 (175)

≤ 2[L1 + L2]N + 2(F1 + F2) + (B1 −B2)
2 + o(1) (176)

≤ 2[L1 + L2]N + 2|F1 + F2|+ (B1 −B2)
2 + o(1). (177)
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Therefore, we have

(E|X1N −X2N |)2 ≤ E[(X1N −X2N )2] (178)

≤ 2[L1 + L2]N + 2|F1 + F2|+ (B1 −B2)
2 + o(1). (179)

By using the fact that (a+b)1/2 ≤ a1/2+b1/2 for nonnegative

a, b, it follows that

E|X1N −X2N | ≤
√

2(L1 + L2)N

+
√

2|F1 + F2|+ (B1 −B2)2 + o(1). (180)

Similarly, we have

E|XiN −XjN | ≤
√

2(Li + Lj)N

+
√

2|Fi + Fj |+ (Bi −Bj)2 + o(1). (181)

for any (i, j) ∈ {1, 2, 3} × {1, 2, 3}.

Now, we note that

max{XiN , XjN} =
1

2
[XiN +XjN + |XiN −XjN |] (182)

for any (i, j) ∈ {1, 2, 3} × {1, 2, 3}.

Therefore, we have

max{X1N , X2N , X3N}
= max{max{X1N , X2N}, X3N} (183)

=
1

2
max{X1N +X2N + |X1N −X2N |, 2X3N} (184)

=
1

4

[

X1N +X2N + |X1N −X2N |+ 2X3N

+ |(X1N +X2N + |X1N −X2N |)− 2X3N |
]

(185)

=
1

4

[

(X1N +X2N + 2X3N ) + |X1N −X2N |

+ |(X1N−X3N)+(X2N−X3N)+|X1N−X2N |
]

(186)

≤ 1

4

[

(X1N +X2N + 2X3N ) + 2|X1N −X2N |

+ |X1N −X3N |+ |X2N −X3N |
]

. (187)

It follows that

E[max{X1N , X2N , X3N}]

≤ 1

4
E[X1N +X2N + 2X3N ]

+
1

4
E (2|X1N −X2N |+ |X1N −X3N |+ |X2N −X3N |)

(188)

=
1

4

(

E[X1N ] + E[X2N ] + 2E[X3N ]
)

+
1

2

(

E|X1N −X2N |
)

+
1

4

(

E|X1N −X3N |+ E|X2N −X3N |
)

(189)

≤ N −A
√
N −G− 1

4
(B1 +B2 + 2B3) + o(1)

+
1

2

[

√

2(L1+L2)
√
N+

√

2|F1+F2|+(B1−B2)2+o(1)
]

+
1

4

[

√

2(L1+L3)
√
N+

√

2|F1+F3|+(B1−B3)2 + o(1)

+
√

2(L2+L3)
√
N+

√

2|F2+F3|+(B2−B3)2+o(1)
]

(190)

= N −
√
N
[

A− 1

2

√

2(L1 + L2)−
1

4
(
√

2(L1 + L3)

+
√

2(L2 + L3))
]

−G− 1

4
(B1 +B2 + 2B3)

+
1

2

(

√

2|F1 + F2|+ (B1 −B2)2
)

+
1

4

(

√

2|F1 + F3|+ (B1 −B3)2

+
√

2|F2 + F3|+ (B2 −B3)2
)

+ o(1). (191)

Now, if we choose

A =
1

2

√

2(L1 + L2) +
1

4

(

√

2(L1 + L3)+
√

2(L2 + L4)
)

(192)

and

G = −1

4
(B1+B2+2B3) +

1

2

(

√

2|F1+F2|+ (B1−B2)2
)

+
1

4

(

√

2|F1 + F3|+ (B1 −B3)2

+
√

2|F2 + F3|+ (B2 −B3)2
)

, (193)

from (191), we have

E[max{X1N , X2N , X3N}] ≤ N + o(1). (194)

Notice the symmetry of X1N , X2N , X3N in the expression

max{X1N , X2N , X3N}. Hence, by the above approximation

procedure, the smallest value of A that we can choose is given

by (10). The proof of Lemma 4 can now be completed by

choosing the order of combination X1N , X2N , X3N in (183)

such that A is minimized.

APPENDIX B

BOUNDS ON MUTUAL INFORMATION QUANTITIES FOR THE

GAUSSIAN MAC

Lemma 10. For any stop-feedback code for the Gaussian

MAC as in Definition 1 and its equivalent form with the

augmented symbol T for the case |U1| = |U2| = 1, define

Ψn := 1{τ̂ ≤ n − 1} ∈ σ(Ŷ n−1) (cf. (122)). Then the

following bounds hold:

I(W1W2; Ŷ
∞)

≤
∞
∑

n=1

1

2
P(Ψn = 0) log(1 + E[(X1n +X2n)

2|Ψn = 0]),

(195)

I(W1; Ŷ
∞|W2)

≤
∞
∑

n=1

1

2
P(Ψn = 0) log(1 + E[X2

1n|Ψn = 0]), (196)

I(W2; Ŷ
∞|W1)

≤
∞
∑

n=1

1

2
P(Ψn = 0) log(1 + E[X2

2n|Ψn = 0]). (197)

Proof: To prove (195), we observe that

I(W1W2; Ŷ
∞) =

∞
∑

n=1

I(W1,W2; Ŷn|Ŷ n−1). (198)
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Consider,

I(W1,W2; Ŷn|Ŷ n−1)

= I(W1,W2; Ŷn,Ψn|Ŷ n−1) (199)

= I(W1,W2; Ψn|Ŷ n−1) + I(W1,W2; Ŷn|Ψn, Ŷ
n−1) (200)

≤ H(Ψn|Ŷ n−1) + I(W1,W2; Ŷn|Ψn, Ŷ
n−1) (201)

= I(W1,W2; Ŷn|Ψn, Ŷ
n−1) (202)

= P(Ψn = 0)I(W1,W2; Ŷn|Ψn = 0, Ŷ n−1) (203)

≤ P(Ψn = 0)I(X̂1n, X̂2n; Ŷn|Ψn = 0, Ŷ n−1) (204)

= P(Ψn = 0)I(X1n, X2n;Yn|Ψn = 0, Y n−1) (205)

= P(Ψn = 0)[h(Yn|Ψn = 0, Y n−1)

− h(Yn|X1n, X2n,Ψn = 0, Y n−1)] (206)

≤ P(Ψn = 0)[h(Yn|Ψn = 0)

− h(Yn|X1n, X2n,Ψn = 0, Y n−1)] (207)

= P(Ψn = 0)[h(Yn|Ψn = 0)

− h(Zn|X1n, X2n,Ψn = 0, Y n−1)] (208)

≤ P(Ψn = 0)[h(Yn|Ψn = 0)− h(Zn)] (209)

≤ P(Ψn=0)

[

1

2
log[2πeE(Y 2

n |Ψn=0)]− 1

2
log[2πe]

]

(210)

=
1

2
P(Ψn = 0) log[E(X1n +X2n + Zn)

2|Ψn = 0] (211)

=
1

2
P(Ψn = 0) log[E((X1n +X2n)

2|Ψn = 0)

+ E(X1nZn|Ψn = 0) + E(X2nZn|Ψn = 0)

+ E(Z2
n|Ψn = 0)] (212)

=
1

2
P(Ψn = 0) log[1 + E((X1n +X2n)

2|Ψn = 0)], (213)

where (201) follows from the fact that Ψn is a binary

random variable, (202) follows from the fact that Ψn ∈
σ(Ŷ n−1), (203) follows from the fact that given Ψn = 1
or n ≥ τ̂ + 1 we always have Ŷn = T, (205) follows

from the fact that given Ψn = 0 or τ ≥ n we have

X̂1n = X1n, X̂2n = X2n, and Ŷn = Yn, (209) follows from

the fact that Ψn = 1{τ̂ ≤ n − 1} = 1{τ ≤ n − 1} is a

function of σ(Y n−1), X1n = f
(1)
n (W1), X2n = f

(1)
n (W2) and

Zn is independent of (Y n−1,W1,W2), (210) follows from the

maximal differential entropy formula, (213) follows from the

facts that Ψn is a function of Y n−1 and Zn is independent of

(X1n, X2n, Y
n−1).

It follows that

I(W1W2; Ŷ
∞)

≤
∞
∑

n=1

1

2
P(Ψn = 0) log[1 + E(X1n +X2n)

2|Ψn = 0].

(214)

The other inequalities can be shown in a completely analogous

manner.
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