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Abstract

We consider the topic of universal decoding with a decoder that does not have direct access to
the codebook, but only to noisy versions of the various randomly generated codewords, a problem
motivated by biometrical identification systems. Both the source that generates the original (clean)
codewords, and the channel that corrupts them in generating the noisy codewords, as well as the
main channel for communicating the messages, are all modeled by non–unifilar, finite–state systems
(hidden Markov models). As in previous works on universal decoding, here too, the average error
probability of our proposed universal decoder is shown to be as small as that of the optimal max-
imum likelihood (ML) decoder, up to a multiplicative factor that is a sub–exponential function of
the block length. It therefore has the same error exponent, whenever the ML decoder has a positive
error exponent. The universal decoding metric is based on Lempel–Ziv (LZ) incremental parsing
of each noisy codeword jointly with the given channel output vector, but this metric is somewhat
different from the one proposed in earlier works on universal decoding for finite–state channels, by
Ziv (1985) and by Lapidoth and Ziv (1998). The reason for the difference is that here, unlike in
those earlier works, the probability distribution that governs the (noisy) codewords is, in general,
not uniform across its support. This non–uniformity of the codeword distribution also makes our
derivation more challenging. Another reason for the more challenging analysis is the fact that the
effective induced channel between the noisy codeword of the transmitted message and the main
channel output is not a finite–state channel in general.

Index Terms: Universal decoding, finite–state channel, hidden Markov model, Lempel–Ziv algo-
rithm, error exponent.
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1 Introduction

The topic of universal decoding under channel uncertainty has received considerable attention in

the last four decades. In [9] the maximum mutual information (MMI) decoder was first proposed

and shown to achieve the capacity for discrete memoryless channels (DMC’s). Csiszár and Körner

[3] showed that the random coding error exponent of the MMI decoder, associated with a uniform

random coding distribution over a given type class, achieves the same random coding error exponent

as the maximum likelihood (ML) decoder. Csiszár [2] proved that for any modulo–additive DMC

and the uniform random coding distribution over linear codes, the optimum random coding error

exponent is universally achieved by a decoder that minimizes the empirical entropy of the difference

between the output sequence and the input sequence. In [13], a parallel result was obtained for a

certain class of memoryless Gaussian channels with slow fading and an unknown interference signal.

For channels with memory, Ziv [20] considered universal decoding for unknown unifilar finite–

state (FS) channels with finite input and output alphabets, i.e., FS channels for which at each

time instant, the next channel state is given by an unknown deterministic function of the channel

current state, input and output. For ensembles of codes governed by the uniform distribution over

a given permutation–invariant set of channel input vectors (namely, a type class or the disjoint

union of several type classes), he proved that a decoder based on the Lempel–Ziv (LZ) incremental

parsing algorithm asymptotically achieves the same error exponent as the ML decoder. In [11],

Lapidoth and Ziv proved that the same universal decoder continues to be universally asymptotically

optimum even for the broader class of FS channels with stochastic, rather than deterministic, next–

state transitions. They still assumed a random coding distribution which is uniform over a given

permutation–invariant set. In [7], Feder and Lapidoth have furnished sufficient conditions for

general families of channels with memory to have universal decoders that asymptotically achieve

the random coding error exponent of ML decoding. In [8], a competitive minimax criterion was

proposed, in the quest for a more general systematic approach to the problem of universal decoding.

Two additional related works on general methodologies for universal decoding are those of [12] and

[14].

This paper is a further development on [11] and [20]. In particular, here we consider universal

decoding in a situation where the decoder that does not have direct access to the codebook of

the encoder, but only to noisy versions of the various randomly generated codewords, a problem

motivated by applications in biometrical identification systems (see, e.g., [10, Section 5], [17], [18],

[19], and many references therein) or other applications where storage, or finite–precision limitations

do not enable the decoder to save the exact codewords of all messages, and then they must be

quantized and hence distorted. In our model, both the source that generates the original (clean)

codewords, and the channel that corrupts them in the process of generating the noisy codewords,

as well as the main channel for communicating the messages, are all modeled by non–unifilar, FS

systems (hidden Markov models). As in the previous above–mentioned works on universal decoding,

here too, the average error probability of our proposed universal decoder is shown to be as small
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as that of the optimal maximum likelihood (ML) decoder, up to a multiplicative factor that is a

sub–exponential function of the block length, n. It therefore has the same error exponent, whenever

the ML decoder has a positive error exponent. As in [11] and [20], the universal decoding metric

is based on Lempel–Ziv (LZ) incremental parsing of each noisy codeword jointly with the given

channel output vector, but this metric is somewhat different from that of [11] and [20]. Specifically,

it includes an additional term, which is the logarithm of the induced probability of generating the

noisy codeword of the message being tested. The reason for this difference is that here, unlike

in [11] and [20], the probability distribution which governs the (noisy) codewords is, in general,

not uniform across its support. This non–uniformity of the codeword distribution also makes our

derivation quite more challenging. Another factor that makes the analysis here more involved is

the fact that the effective induced channel between the noisy codeword of the transmitted message

and the main channel output is not a FS channel in general.

The outline of the rest of the paper is as follows. In Section 2, we establish the notation con-

ventions, define the problem formally, and spell out the assumptions. Section 3 is devoted to the

statement of the main result and a discussion. Finally, in Section 4 the main results is proved.

2 Notation Conventions, Problem Formulation and Assumptions

2.1 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will be

superscripted by their dimensions. For example, the random vector X = (X1, . . . , Xn), (n – positive

integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order Cartesian power

of X , which is the alphabet of each component of this vector. The probability of an event E (with

respect to) w.r.t. a probability measure P will be denoted by P [E ], and the expectation operator

w.r.t. P will be denoted by EP {·}. The subscript will be omitted if the underlying probability

distribution is clear from the context. Logarithms and exponents will be defined w.r.t. the natural

basis e, unless specified otherwise. In particular, exp2(t) will sometimes be used to denote 2t. The

cardinality of a finite set, say, A, will be denoted by |A|.

2.2 Problem Formulation and Assumptions

Consider a coded communication system, defined as follows. First, a rate–R block code of length n,

{x1, x2, . . . , xM }, M = enR, is selected at random, where each xm ∈ X n, m = 1, 2, . . . , M , is drawn

independently under a distribution G(x). A message m is selected under the uniform distribution

over the index set {1, 2, . . . , M}, and accordingly, the codeword xm is transmitted over a vector

channel W (z|x), henceforth referred to as the primary channel (or the main channel), and the
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resulting channel output vector, z ∈ Zn, is received at the decoder side. The decoder, however,

does not have access to the codebook, {x1, x2, . . . , xM }, used by the encoder, but instead, it has

access to a noisy version of that codebook, C = {y1, y2, . . . , yM }, ym ∈ Yn, m = 1, 2, . . . , M , where

each ym is generated from the corresponding xm by another channel, V (y|x), henceforth referred

to as the secondary channel. Clearly, this model, which was addressed by Willems et al. in [18] and

[19] with application to biometrical identification systems (and later, further developed by Tuncel

[17] and others), is formally equivalent to the ordinary model of channel random coding, where the

codebook C is selected at random, with each member, ym, being drawn independently under the

random coding distribution,

P (y) =
∑

x∈X n

G(x)V (y|x), (1)

and where upon selecting the index m of the transmitted message, the corresponding codeword,

ym, is transmitted over the channel

P (z|y) =
P (y, z)

P (y)
=

∑

x∈X n G(x)V (y|x)W (z|x)
∑

x∈X n G(x)V (y|x)
. (2)

From this point onward, the original codebook {x1, x2, . . . , xM } no longer plays a role. Accordingly,

we henceforth refer to {P (y), y ∈ Yn} as the induced random coding distribution (or the effective

random coding distribution), and to {P (z|y) y ∈ Yn, z ∈ Zn} – as the induced channel (or

the effective channel). Clearly, if G is a discrete memoryless source (DMS) and V is a discrete

memoryless channel (DMC), then {P (y), y ∈ Yn} is a DMS as well. If, in addition, W is also a

DMC, then so is the channel {P (z|y) y ∈ Yn, z ∈ Zn}. In this case, the capacity of the system

is simply the mutual information, I(Y ; Z), pertaining to the single–letter marginal {P (y, z), y ∈

Y, z ∈ Z}, see [18], [19]. It should be noted, however, that unlike the traditional model of random

coding for channels, where random coding is a technical concept that merely serves the purpose

of proving existence of good codes, here, when it comes to biometrical systems applications, the

randomness of the code is part of the model setting. As a consequence, both G and V , and hence

also the induced random coding distribution, {P (y), y ∈ Yn}, are dictated to us, and are not

subjected to our control.1

As in [18], [19], here too, it is assumed that all three alphabets, X , Y, and Z, are finite. In

this paper, however, we go considerably beyond the realm of memoryless systems, and allow G, V

and W to be all non-unifilar, FS systems (hidden Markov models), as follows. The distribution G

assumes the form

G(x) =
∑

ω

n
∏

i=1

G(xi, ωi|ωi−1), (3)

where x is as before, ω = (ω1, . . . , ωn) is the source state vector, whose components take on values

in a finite set Ω, and the initial state, ω0 is assumed fixed. The primary channel, W , is modeled as

W (z|x) =
∑

σ

n
∏

i=1

W (zi, σi|xi, σi−1), (4)

1For this reason, the capacity is simply given by I(Y ; Z), without maximizing over the distribution of Y .
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where σ = (σ1, . . . , σn) is the channel state vector, whose components take on values in a finite set

Σ and the initial state, σ0, is fixed. Likewise, the secondary channel, V , is given by

V (y|x) =
∑

θ

n
∏

i=1

V (yi, θi|xi, θi−1), (5)

where θ = (θ1, . . . , θn) is the state vector whose components take on values in a finite set Θ and

there is fixed initial state, θ0.

We consider the problem of universal decoding for the effective channel P (z|y) induced by the

source (3), the main channel (4) and the secondary channel (5), according to (2). We will assume

that G, V and W are not known to the decoder, and hence nor is the effective channel {P (z|y) y ∈

Yn, z ∈ Zn}. Nonetheless, the effective random coding distribution, {P (y), y ∈ Yn}, will assumed

known to the decoder. The rationale behind the latter assumption stems from the fact that the

decoder knows the codebook, C = {y1, . . . , yM }, and so, it has access to an exponential amount of

data from which the parameters of this distribution can be estimated very accurately. In particular,

note that P (y) has a hidden Markov structure,

P (y) =
∑

x
G(x)V (y|x)

=
∑

θ,ω,x

n
∏

i=1

G(xi, ωi|ωi−1)V (yi, θi|xi, θi−1)

=
∑

θ,ω

n
∏

i=1

[

∑

x

G(x, ωi|ωi−1)V (yi, θi|x, θi−1)

]

=
∑

θ,ω

n
∏

i=1

π(yi, θi, ωi|θi−1, ωi−1), (6)

where in the last passage, we have defined the parameters π(y, θ, ω|θ′, ω′)
∆
=

∑

x G(x, ω|ω′)V (y, θ|x, θ′).

These parameters can be estimated using well known estimation methods for hidden Markov mod-

els.2 It will be assumed3 that

π(y, θ, ω|θ′, ω′) > 0 (7)

for all (ω, ω′, θ, θ′, y) ∈ Ω2 × Θ2 × Y, and we denote πmin
∆
= minω,ω′,θ,θ′,y π(y, θ, ω|θ′, ω′).

Like in previous works on universal decoding, our objective is to devise a universal decoding

metric whose average error probability is of the same exponential order as that of the ML decoder.

As described in the Introduction, the problem of universal decoding for FS channels was considered

2 The ML estimator for the parameters of a hidden Markov model, is known to be strongly consistent [1], [15]. More
practically, one may use the iterative Baum algorithm, which is an instance of the EM algorithm [5] (see also the
tutorials [6], [16] and references therein).

3Note that this assumption concerns G and V only, it has nothing to do with the primary channel W . If the
parameters {π(y, θ, ω|θ′, ω′)} are estimated using the ML estimator (referring to footnote 2), then eq. (7) can be
imposed as a constraint on the estimator.
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first in [20], where it was assumed that the next–state transitions are given by a deterministic

function of the current state, the current input and the current output. In [11], the framework was

extended to handle general FS channels, where the state transitions were allowed to be stochastic

(as in eqs. (4) and (5) above). Also, in both [11] and [20], the random coding distribution was

assumed uniform across a given permutation–invariant set.4 Here the situation is different from

both [11] and [20] because of two reasons.

1. The effective random coding distribution {P (y), y ∈ Yn} is not uniform over a permutation–

invariant set, in general.

2. The effective channel {P (z|y), y ∈ Yn, z ∈ Zn} is not a FS channel, in general.

These differences are important, because in [11] and [20], both assumptions were used rather heavily.

For a given noisy code C and a given channel output vector z, let us define (similarly as in

[7] and [11]) the ranking of the members of Yn, according to descending likelihood values, i.e.,

P (z|y[1]) ≥ P (z|y[2]) ≥ . . ., and let us denote by Mo(y, z) the ranking of y given z. For a

given z, the ranking function Mo(y, z) is therefore a one–to–one mapping from Yn to the set

{1, 2, . . . , |Y|n} with the property that P (z|y′) > P (z|y) implies Mo(y
′, z) < Mo(y, z). The

probability of error associated with the ML decoder for the given code C and the effective channel,

{P (z|y), y ∈ Yn, z ∈ Zn}, is given by

Pe,o(C) =
1

M

M
∑

m=1

P





⋃

m′ 6=m

{Mo(ym′ , Z) ≤ Mo(ym, Z)}

∣

∣

∣

∣

message m was sent



 , (8)

where the event Mo(ym′ , Z) = Mo(ym, Z) accounts for the case where ym′ = ym (which is possible

since the members of C are chosen independently at random). The average probability of error

w.r.t. the randomness of C, is then

Pe,o = E {Pe,o(C)} (9)

= 1 −
∑

y,z
P (y, z) (1 − P [Eo(y, z)])enR−1 , (10)

where

Eo(y, z)
∆
= {y′ : Mo(y

′, z) ≤ Mo(y, z)}. (11)

As in [7] and [11], for later use, we define the function

f(t)
∆
= 1 − (1 − t)enR−1, t ∈ [0, 1], (12)

and so,

Pe,o =
∑

y,z
P (y, z)f (P [Eo(y, z)]) . (13)

4A permutation–invariant set is a set that is closed under permutations, in other words, a set that can be represented
by the disjoint union of type classes.

6



By the same token, for an arbitrary decoding metric u(y, z), we define a ranking function Mu(y, z),

as any one–to–one mapping Yn :→ {1, 2, . . . , |Y|n} given z, such that u(y′, z) < u(y, z) implies

Mu(y′, z) < Mu(y, z). Accordingly, the average error probability associated with u(·, ·), is given by

Pe,u =
∑

y,z
P (y, z)f (P [Eu(y, z)]) , (14)

where

Eu(y, z)
∆
= {y′ : Mu(y′, z) ≤ Mu(y, z)}. (15)

We are interested in a universal metric u(·, ·), that is independent of the unknown effective channel

(but possibly dependent on the effective random coding distribution), such that Pe,u would not

exceed Pe,o by more than a sub–exponential function of n, i.e.,

Pe,u ≤ enǫ(n)Pe,o, (16)

where ǫ(n) → 0 as n → ∞.

3 Main Result

Given two sequences, y and z, both of length n, consider the joint incremental parsing [21] of the

sequence of pairs

(y1, z1), (y2, z2), . . . , (yn, zn)

into c distinct phrases. Specifically, denoting wi = (yi, zi), i = 1, 2, . . . , n, we parse w = (w1, . . . , wn),

sequentially into the distinct5 phrases, wn1

1 , wn2

n1+1, . . . , wn
nc−1+1, where ni + 1 is the starting point

of the i–th phrase, i = 1, 2, . . . , c (n0 = 0). According to the incremental parsing procedure of the

LZ algorthm, each phrase w
ni+1

ni+1 is the shortest string that has not been encountered before as a

parsed phrase, which means that its prefix, w
ni+1−1
ni+1 , is identical to an earlier phrase, w

nj+1

nj+1, j < i.

Let c ≡ c(y, z) denote the number of distinct phrases. For example,6 if

y = 0 | 1 | 0 0 | 0 1|

z = 0 | 1 | 0 1 | 0 1|

then c(y, z) = 4. Let c(z) denote the resulting number of distinct phrases of z, and let z(ℓ) denote

the ℓth distinct z–phrase, ℓ = 1, 2, ..., c(z). In the above example, c(z) = 3. Denote by cℓ(y|z) the

number of occurrences of z(ℓ) in the parsing of z, or equivalently, the number of distinct y-phrases

that jointly appear with z(ℓ). Clearly,
∑c(z)

ℓ=1 cℓ(y|z) = c(y, z). In the above example, z(1) = 0,

z(2) = 1, z(3) = 01, c1(y|z) = c2(y|z) = 1, and c3(y|z) = 2. We next define our universal decoding

metric as

u(y, z)
∆
= log P (y) +

c(z)
∑

ℓ=1

cℓ(y|z) log cℓ(y|z), (17)

5 To be more precise, the phrases are all distinct with the possible exception of the last phrase, which might be
incomplete.

6The same example appears in [20].
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which in turn, defines the decoder

m̂u = arg minmu(ym, z), (18)

where ties broken according to an arbitrary ranking function Mu(·, z) associated with (17).

We are now ready to state our main result, whose proof appears in Section 4.

Theorem 1 Under the assumptions of Subsection 2.2, the universal decoder (18) satisfies eq. (16)

where ǫ(n) = O((log log n)/ log n), with a leading term7 that is linear in log |Y × Z|.

It should be noticed that the universal decoding metric (17) is different from the one in [11] and

[20], because it includes the term log P (y) in addition to the LZ conditional compressibility term,
∑c(z)

ℓ=1 cℓ(y|z) log cℓ(y|z) (see also [14]). The reason for this difference is that the effective random

coding distribution, {P (y), y ∈ Yn}, is not necessarily uniform over its support, in contrast to the

assumption in both [11] and [20]. In a way, the decoder (18) can be seen as an extension of the

MMI decoder, which is the well known universal decoder for DMCs [3]. To see this, observe that

(18) can be rewritten as

m̂u = arg maxm







1

n
log

[

1

P (ym)

]

−
1

n

c(z)
∑

ℓ=1

cℓ(ym|z) log cℓ(ym|z)







, (19)

where the term 1
n

log[1/P (ym)] plays a role like the empirical entropy associated with ym and the

term 1
n

∑c(z)
ℓ=1 cℓ(ym|z) log cℓ(ym|z) is parallel to the conditional empirical entropy of ym given z.

Thus, the difference is analogous to a certain notion of a generalized empirical mutual information.

But having said that, we should add a digression that, when confining the discussion to the mem-

oryless case, the first term in (19) gives the empirical entropy of ym only in the case where {P (y)}

is uniform across a single type class. If instead, it is a product distribution, then the MMI metric

should be supplemented with a divergence term between the empirical distribution and the true

distribution.8

The proof of Theorem 1 contains essentially similar ingredients to those in [11]. There are,

however, a few differences that should be pointed out. In the previous paragraph, we mentioned

that here, as opposed to those papers, the random coding distribution is not uniform in general.

This difference is also responsible for the fact that there are a few non–trivial issues in the extension

of the derivations of [11] and [20] to our setting, as in those two earlier papers, the uniformity of the

random coding distribution (across its support), was used quite heavily. In particular, the pairwise

error probability, P [Eo(y, z)], which plays a central role in the analysis in [11] and [20], is simply

proportional to the cardinality of Eo(y, z), namely to Mo(y, z), which in turn, can be evaluated

using combinatorial considerations. Here, on the other hand, the members of Eo(y, z) have to

7The sequence ǫ(n) depends also on other parameters of the problem, like |Θ|, |Ω|, |Σ|, and πmin, but these parameters
appear in negligible terms of ǫ(n), that decay faster than (log log n)/ log n.

8In this context, the author has some doubts concerning the asymptotic optimality of the MMI decoder used in [4].
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be weighed by their various probabilities, {P (y′), y′ ∈ Eo(y, z)}. In particular, in an important

technical lemma of [11] (Lemma 2 therein), the last step of the proof is relatively easy, because

thanks to the uniformity assumption therein, it is associated with the calculation of the quantity,
∑

y 1/Mo(y, z) (in our notation), which is nothing but the harmonic series,
∑N

i=1 1/i ≤ ln N +1 (N

– positive integer), as Mo(y, z) is defined as a ranking function (see, in particular, the last step in the

chain of inequalities at the end of page 1751 in [11]). For the non–uniform input considered here,

the relevant extension of the above mentioned expression turns out to be
∑

y P (y)/P [Eo(y, z)],

which is not as straightforward to bound in a useful manner. Fortunately enough, as is shown in

Lemma 1 below, this can nevertheless still be done, and in a quite general manner, that is almost

completely unrelated to the hidden Markov structure of the model. Another source for some

technical challenges is the fact that the induced channel, {P (z|y)}, is not a FS channel, in general.

This calls for separate treatment of the numerator and the denominator of P (z|y) = P (y, z)/P (y)

(which both obey a hidden Markov model), that in turn, may be dominated by two different

sequences of states. Nonetheless, these difficulties can also be circumvented, as will be seen in

Section 4.

4 Proof of Theorem 1

The idea of the proof is to lower bound P̄e,o and to upper bound P̄e,u by two expressions which are

identical up to a multiplicative factor of enǫ(n). We begin with the upper bound to P̄e,u.

Let us denote

v(y, z)
∆
=

c(z)
∑

ℓ=1

cℓ(y|z) log cℓ(y|z), (20)

so that u(y, z) = log P (y) + v(y, z). We will use the fact that v(y, z) is almost large enough to

serve as a legitimate length function for lossless compression of y given z, where z serves as side

information available to both the encoder and the decoder. In particular, in the proof of Lemma

2 in [20, p. 460], Ziv describes a lossless compression scheme with side information, whose length

function, L(y|z), satisfies

L(y|z) ≤ v(y, z) + nǫ1(n), (21)

with

ǫ1(n) = O

(

log log n

log n

)

, (22)

whose leading term is linear in log |Y × Z|. Now, let us define

P̄e,u(y, z) = f(P [Eu(y, z)]), (23)

where f(·) is defined as in (12). Now,

P [Eu(y, z)] =
∑

{y′: Mu(y′,z)≤Mu(y,z)}

P (y′)

9



≤
∑

{y′: P (y′) exp2[v(y′,z)]≤P (y) exp2[v(y,z)]}

P (y′)

≤
∑

{y′: P (y′) exp2[v(y′,z)]≤P (y) exp2[v(y,z)]}

P (y) exp2[v(y, z) − v(y′, z)]

≤ P (y) exp2[v(y, z)]
∑

y′∈Yn

exp2[−v(y′, z)]

≤ 2nǫ1(n)P (y) exp2[v(y, z)]
∑

y′∈Yn

2−L(y′|z)

≤ enǫ1(n)P (y) · exp2[v(y, z)]

= enǫ1(n) · exp2[u(y, z)], (24)

where the in the second to the last step, we have used Kraft’s inequality and we bounded 2nǫ1(n)

by enǫ1(n), simply for convenience in later steps of the proof. It now follows from (24) and the

monotonicity of f that

P̄e,u(y, z) ≤ f
(

enǫ1(n) · exp2[u(y, z)]
)

. (25)

For later use, we also have

P̄e,u(z)
∆
=

∑

y∈Yn

P (y|z)P̄e,u(y, z) (26)

≤
∑

y∈Yn

P (y|z)f
(

enǫ1(n) · exp2[u(y, z)]
)

. (27)

We next move on to derive a matching lower bound to P̄e,o. Similarly, as in [11], we will need

to refer to an auxiliary threshold decoder (in the terminology of [11]), which is a slightly more

conservative version of the ML decoder. Specifically, for a given threshold parameter, α > 1, this

decoder outputs the message m with the property that P (z|ym) > α · P (z|ym′) for all m′ 6= m,

and declares an error if no such m exists. Accordingly, let P̄e,t(y, z) denote the conditional average

error probability of the threshold decoder, given (y, z), i.e.,

P̄e,t(y, z) = f(P [Et(y, z)]), (28)

where

Et(y, z) = {y′ : P (z|y′) ≥ α−1P (z|y)}. (29)

As in Lemma 2 of [11], here too, the next lemma (proved in the appendix) asserts that the per-

formance of the threshold decoder cannot be much worse than that of the ML decoder, provided

that α is not too large. In particular, if α = αn grows subexponetially with n, then the threshold

decoder has the same error exponent as that of the ML decoder.

Lemma 1 Define

P̄e,t(z) =
∑

y∈Yn

P (y|z)f(P [Et(y, z)]) (30)
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P̄e,o(z) =
∑

y∈Yn

P (y|z)f(P [Eo(y, z)]). (31)

Then, under the positivity assumption (7),

P̄e,t(z) ≤

{

α

[

n ln

(

1

πmin · |Θ| · |Ω|

)

+ 1

]

+ 1

}

· P̄e,o(z) (32)

for every z ∈ Zn.

It should be noted that assumption (7) is essentially not needed for the above Lemma. What is

really needed is that the smallest P (y), across all y ∈ Yn with P (y) > 0, would not decay faster

than exponentially with n. But owing to (6), one can easily see that P (y) ≥ πn
+, where π+ is the

smallest positive π(y, θ, ω|θ′, ω′). We are using (7) nonetheless, because we make this assumption

anyway (as it is needed elsewhere), and then the upper bound given by the lemma is slightly tighter.

On the basis of Lemma 1, any lower bound on P̄e,t in terms of P̄e,u, would immediately yield a

lower bound P̄e,o in terms of P̄e,u, as desired. Accordingly, the next step would be to lower bound

P̄e,t. This in turn will be done by lower bounding P [Et(y, z)] (for a certain choice of the threshold

α, to be defined) in terms of P [E1(y, z)], for a certain E1(y, z) ⊆ Et(y, z) to be specified shortly.

First observe that, similarly as in eq. (6),

P (y, z) =
∑

θ,σ,ω,x

n
∏

i=1

[G(xi, ωi|ωi−1)V (yi, θi|xi, θi−1)W (zi, σi|xi, σi−1)] (33)

=
∑

θ,σ,ω

n
∏

i=1

∑

x

[G(x, ωi|ωi−1)V (yi, θi|x, θi−1)W (zi, σi|x, σi−1)] (34)

=
∑

θ,σ,ω

n
∏

i=1

Π(yi, zi, θi, σi, ωi|θi−1, σi−1, ωi−1) (35)

where we have defined Π(y, z, θ, σ, ω|θ′, σ′, ω′) =
∑

x G(x, ω|ω′)V (y, θ|x, θ′)W (z, σ|x, σ′). We will

henceforth use the following notation for two positive integers i and j, where j > i:

Π(yj
i , zj

i , θj , σj , ωj|θi−1, σi−1, ωi−1)

=
∑

θ
j−1

i

∑

σ
j−1

i

∑

ω
j−1

i

j
∏

k=i

Π(yk, zk, θk, σk, ωk|θk−1, σk−1, ωk−1) (36)

and

π(yj
i , θj, ωj |θi−1, ωi−1) =

∑

θ
j−1

i

∑

ω
j−1

i

j
∏

k=i

π(yk, θk, ωk|θk−1, ωk−1). (37)

Next, define

t
∆
= {(θi, σi, ωi) : i = n0, n1, . . . , nc−1}, (38)

11



s
∆
= {(θi, ωi) : i = n0, n1, . . . , nc−1}, (39)

where {ni} are phrase boundaries, as defined at the beginning of Section 3, for a given (y, z). Now,

for the same (y, z), let

t̂ = arg maxtP (y, z, t) = arg maxt

c−1
∏

i=0

Π(y
ni+1

ni+1, z
ni+1

ni+1, θni+1
, σni+1

, ωni+1
|θni

, σni
, ωni

) (40)

s̃ = arg maxsP (y, s) = arg maxs

c−1
∏

i=0

π(y
ni+1

ni+1, θni+1
, ωni+1

|θni
, ωni

). (41)

We denote the components of t̂ and s̃ by {(θ̂ni
, σ̂ni

, ω̂ni
)} and {(θ̃ni

, ω̃ni
)}, respectively. Denoting

K = |Θ × Σ × Ω|, it is obvious that P (y, z, t̂) ≥ K−cP (y, z), and a similar relation holds between

P (y, s̃) and P (y). For the given pair (y, z), let

E1(y, z)
∆
=

{

y′ : P (y′, z, t̂) = P (y, z, t̂), P (y′, s̃) = P (y, s̃)
}

. (42)

Owing to assumption (7), it is shown in the appendix (similarly as in [22, eq. (A.7)]) that

P (y′) ≤ P (y′, s̃) ·

(

|Θ × Ω|

π2
min

)c

≤ P (y′, s̃) ·

(

K

π2
min

)c

, (43)

and so, for y′ ∈ E1(y, z), the chain of inequalities,

(

K

π2
min

)c

· P (z|y′) =

(

K

π2
min

)c

·
P (y′, z)

P (y′)
(44)

≥

(

K

π2
min

)c P (y′, z, t̂)

(K/π2
min)cP (y′, s̃)

(45)

=
P (y′, z, t̂)

P (y′, s̃)
(46)

=
P (y, z, t̂)

P (y, s̃)
(47)

≥ K−c P (y, z)

P (y)
(48)

= K−cP (z|y), (49)

implies that

E1(y, z) ⊆ {y′ : P (z|y′) ≥ (K/πmin)−2cP (z|y)} (50)

⊆ {y′ : P (z|y′) ≥ (K/πmin)−2c̄nP (z|y)} (51)

= Et(y, z) with the choice α = (K/πmin)2c̄n (52)

where

c̄n
∆
=

n log |Y × Z|

(1 − εn) log n
, (53)

12



with εn → 0 as n → 0, so that c̄n serves as a uniform upper bound to c ≡ c(y, z) for every

(y, z) ∈ Y × Zn, according to [21, eq. (6)]. Thus,

P [Et(y, z)] =
∑

y′∈Et(y,z)

P (y′) (54)

≥
∑

y′∈E1(y,z)

P (y′) (55)

≥
∑

y′∈E1(y,z)

P (y′, s̃) (56)

=
∑

y′∈E1(y,z)

P (y, s̃) (57)

= |E1(y, z)| · P (y, s̃) (58)

≥ K−c · |E1(y, z)| · P (y) (59)

≥ K−c̄n · |E1(y, z)| · P (y). (60)

Now, let T (y|z, t̂, s̃) denote the set of all y′ ∈ Yn that are obtained from y by permuting y–phrases,

{y
ni+1

ni+1}, that are: (i) aligned to the same z-phrases, z
ni+1

ni+1, (ii) of the same length, (iii) begin at

the same states, of both t̂i = (θ̂ni
, σ̂ni

, ω̂ni
) and s̃i = (θ̃ni

, ω̃ni
), and (iv) end at the same states of

both t̂i+1 = (θ̂ni+1
, σ̂ni+1

, ω̂ni+1
) and s̃i+1 = (θ̃ni+1

, ω̃ni+1
). Clearly, T (y|z, t̂, t̃) ⊆ E1(y, z), and so,

P [Et(y, z)] is further lower bounded by

P [Et(y, z)] ≥ K−c̄n |T (y|z, t̂, t̃)| · P (y). (61)

Now, according to Lemma 1 of [20],

|T (y|z, t̂, t̃)| ≥ exp2{v(y, z) − nǫ′
2(n)}, (62)

where

ǫ′
2(n) =

c̄n

n
· log(|Θ|4 · |Ω|4 · |Σ|2e) (63)

=
log(|Y| · |Z|)

(1 − εn) log n
· log(|Θ|4 · |Ω|4 · |Σ|2e) (64)

= O

(

1

log n

)

. (65)

Thus,

P [Et(y, z)] ≥ K−c̄nP (y) · exp2{v(y, z) − nǫ′
2(n)}

∆
= exp2{u(y, z) − nǫ2(n)} (66)

where

ǫ2(n) = ǫ′
2(n) +

c̄n log K

n
(67)

≤ ǫ′
2(n) +

log(|Y| · |Z|) · log K

(1 − εn) log n
(68)
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= O

(

1

log n

)

, (69)

and so,

P [Et(y, z)] ≥ exp2{u(y, z) − nǫ2(n)}. (70)

To complete the proof, we use the first part of Lemma 1 of [11], which asserts that for every

a, b ∈ [0, 1], f(a)/f(b) ≤ max{1, a/b}, and so,

f(P [Eu(y, z)])

f(P [Et(y, z)])
≤ max

{

1,
P [Eu(y, z)]

P [Et(y, z)]

}

(71)

≤ max

{

1,
exp2{u(y, z) + nǫ1(n)}

exp2{u(y, z) − nǫ2(n)}

}

(72)

≤ en[ǫ1(n)+ǫ2(n)], (73)

where in the second inequality, we have used eqs. (24) and (70). Now, referring to Lemma 1, let us

define

ǫ3(n) =
1

n
log

{

(

K

πmin

)2c̄n
[

n ln

(

1

πmin|Θ × Σ|

)

+ 1

]

+ 1

}

(74)

= O

(

1

log n

)

. (75)

Then,

P̄e,o(z) ≥ e−nǫ3(n)P̄e,t(z) (by Lemma 1) (76)

= e−nǫ3(n)
∑

y∈Yn

P (y|z)f(P [Et(y, z)]) (77)

≥ e−n[ǫ1(n)+ǫ2(n)+ǫ3(n)]
∑

y∈Yn

P (y|z)f(P [Eu(y, z)]) (78)

= e−n[ǫ1(n)+ǫ2(n)+ǫ3(n)]P̄e,u(z). (79)

Finally, upon averaging both sides over {z}, we complete the proof of Theorem 1, with

ǫ(n)
∆
= ǫ1(n) + ǫ2(n) + ǫ3(n), (80)

which is O((log log n)/ log n) since ǫ1(n) is such.

Appendix

A1. Proof of Lemma 1

Let us define

∆(y, z)
∆
= {y′ : Mo(y

′, z) > Mo(y, z), P (z|y′) ≥ α−1P (z|y)} (A.1)
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= {y′ : Mo(y
′, z) > Mo(y, z), P (y)P (y′|z) ≥ α−1P (y′)P (y|z)}, (A.2)

so that Et(y, z) is given by the disjoint union of Eo(y, z) and ∆(y, z). Then the average conditional

error probabilities given z are

P̄e,o(z) =
∑

y
P (y|z)f(P [Eo(y, z)]) (A.3)

P̄e,t(z) =
∑

y
P (y|z)f(P [Eo(y, z)] + P [∆(y, z)]) (A.4)

≤
∑

y
P (y|z)

(

P [Eo(y, z)] + P [∆(y, z)]

(P [Eo(y, z)]

)

f(P [Eo(y, z)]), (A.5)

where in the last step, we have used the first part of Lemma 1 from [11] (see also [7]). Now, let us

define

r(y, z)
∆
=

∑

y′∈Eo(y,z)

P (y′|z). (A.6)

Then,

P (y) =
∑

y′

P (y)P (y′|z) (A.7)

≥
∑

y′∈Eo(y,z)

P (y)P (y′|z) +
∑

y′∈∆(y,z)

P (y)P (y′|z) (A.8)

= P (y)r(y, z) +
∑

y′∈∆(y,z)

P (y)P (y′|z) (A.9)

≥ P (y)r(y, z) +
1

α

∑

y′∈∆(y,z)

P (y′)P (y|z) (A.10)

= P (y)r(y, z) +
P (y|z)

α
P [∆(y, z)], (A.11)

and so,

P (y|z)P [∆(y, z)] ≤ αP (y)[1 − r(y, z)]. (A.12)

We then have

P̄e,t(z) − P̄e,o(z) (A.13)

≤
∑

y
P (y|z)

P [∆(y, z)]

P [Eo(y, z)]
f(P [Eo(y, z)]) (A.14)

≤ α ·
∑

y

P (y)[1 − r(y, z)]

P [Eo(y, z)]
f(P [Eo(y, z)]) (A.15)

= α ·
∑

y

∑

{y′: Mo(y′,z)>Mo(y,z)}

P (y)P (y′|z)

P [Eo(y, z)]
f(P [Eo(y, z)]) (A.16)

(a)
= α ·

∑

y′

∑

{y: Mo(y′,z)>Mo(y,z)}

P (y)P (y′|z)

P [Eo(y, z)]
f(P [Eo(y, z)]) (A.17)
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(b)
≤ α ·

∑

y′

∑

{y: Mo(y′,z)>Mo(y,z)}

P (y)P (y′|z)

P [Eo(y, z)]
f(P [Eo(y

′, z)]) (A.18)

≤ α ·
∑

y′

P (y′|z)f(P [Eo(y
′, z)]) ·

∑

y

P (y)

P [Eo(y, z)]
(A.19)

= α · P̄e,o(z) ·
∑

y∈Yn

P (y)

P [Eo(y, z)]
, (A.20)

where in (a) we have interchanged the order of the summation and in (b), we have used the

monotonicity of f together with the fact that Eo(y, z) ⊆ Eo(y
′, z) whenever Mo(y

′, z) > Mo(y, z).

To complete the proof, it remains to show then that for any z,

Ln(z)
∆
=

∑

y∈Yn

P (y)

P [E(y, z)]
=

∑

y∈Yn

P (y)
∑

{y′: Mo(y′,z)≤Mo(y,z)} P (y′)
(A.21)

cannot exceed 1 + n ln[1/(πmin|Θ × Ω|)]. For the given z, consider the ordering of all members of

Yn (not only those in C) according to the ranking function Mo(y, z), i.e.,

P (z|y[1]) ≥ P (z|y[2]) ≥ . . . ≥ P (z|y[N ]), N = |Y|n (A.22)

and let us denote ai = P (y[i]), Ai =
∑i

j=1 aj , i = 1, . . . , N . Then, using the facts that A1 = a1 =

P (y[1]) and AN = 1, as well as the inequality

ln(1 + u) ≡ − ln

(

1 −
u

1 + u

)

≥
u

1 + u
, (A.23)

we have

Ln(z) =
N

∑

i=1

ai

Ai

(A.24)

= 1 +
N

∑

i=2

ai

Ai−1 + ai

(A.25)

= 1 +
N

∑

i=2

ai/Ai−1

1 + ai/Ai−1
(A.26)

≤ 1 +
N

∑

i=2

ln

(

1 +
ai

Ai−1

)

(A.27)

= 1 +
N

∑

i=2

ln

(

Ai−1 + ai

Ai−1

)

(A.28)

= 1 +
N

∑

i=2

ln

(

Ai

Ai−1

)

(A.29)

= 1 + ln

(

AN

A1

)

(A.30)
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= ln

[

1

P (y[1])

]

+ 1 (A.31)

≤ ln

[

1

(πmin · |Θ| · |Ω|)n

]

+ 1 (A.32)

= n ln

(

1

πmin · |Θ| · |Ω|

)

+ 1, (A.33)

where we have used the assumption (7), which implies that P (y) ≥ (πmin · |Θ| · |Ω|)n for all y. This

completes the proof of Lemma 1.

A.2 Proof of Eq. (43)

We next show that for every y and s,

P (y) ≤ P (y, s) ·

(

|Θ × Ω|

π2
min

)c

. (A.34)

For the sake of brevity, let us denote ζi = (θi, ωi) (so that si = ζni
). Now,

P (y, s) =
c−1
∏

i=0

π(y
ni+1

ni+1, ζni+1
|ζni

). (A.35)

But

π(y
ni+1

ni+1, ζni+1
|ζni

) =
∑

ζ
ni+1−1

ni+1

ni+1
∏

t=ni+1

π(yt, ζt|ζt−1) (A.36)

=
∑

ζni+1

π(yni+1, ζni+1|ζni
) ×

∑

ζ
ni+1−2

ni+2

ni+1−1
∏

t=ni+2

π(yt, ζt|ζt−1) ×

∑

ζni+1−1

π(yni+1
, ζni+1

|ζni+1−1) (A.37)

≥ π2
min

∑

ζ
ni+1−1

ni+1

ni+1−1
∏

t=ni+2

π(yt, ζt|ζt−1), (A.38)

where we have assumed that ni + 2 ≤ ni+1 − 1, which means that the phrase length must be at

least three,9 and where we have lower bounded both π(yni+1, ζni+1|ζni
) and π(yni+1

, ζni+1
|ζni+1−1)

by πmin. Similarly, since both π(yni+1, ζni+1|ζni
) and π(yni+1

, ζni+1
|ζni+1−1) are upper bounded by

unity, we have

π(y
ni+1

ni+1, ζni+1
|ζni

) ≤
∑

ζ
ni+1−1

ni+1

ni+1−1
∏

t=ni+2

π(yt, ζt|ζt−1). (A.39)

9This assumption does not affect the generality, as the number of phrases of length shorter than three cannot exceed
|Y × Z| + |Y × Z|2, which is fixed and hence negligible compared to the total number of phrases for large n.
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Since the expression
∑

ζ
ni+1−1

ni+1

ni+1−1
∏

t=ni+2

π(yt, ζt|ζt−1)

depends neither on ζni
nor on ζni+1

, it follows that for any ζni
, ζ ′

ni
, ζni+1

, and ζ ′
ni+1

,

π2
min ≤

π(y
ni+1

ni+1, ζ ′
ni+1

|ζ ′
ni

)

π(y
ni+1

ni+1, ζni+1
|ζni

)
≤

1

π2
min

, (A.40)

and so,

P (y) =
∑

s′

P (y, s′) (A.41)

= P (y, s)
∑

s′

P (y, s′)

P (y, s)
(A.42)

= P (y, s)
∑

s′

c−1
∏

i=0

π(y
ni+1

ni+1, ζ ′
ni+1

|ζ ′
ni

)

π(y
ni+1

ni+1, ζni+1
|ζni

)
(A.43)

≤ P (y, s)
∑

s′

c−1
∏

i=0

1

π2
min

(A.44)

= P (y, s) ·

(

|Ω × Θ|

π2
min

)c

, (A.45)

which completes the proof of eq. (43).
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