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Abstract—Regular Spatially-Coupled LDPC (SC-LDPC) en-
sembles have gained significant interest since they were shown to
universally achieve the capacity of binary memoryless channels
under low-complexity belief-propagation decoding. In this work,
we focus primarily on the performance of these ensembles
over binary channels affected by bursts of erasures. We first
develop an analysis of the finite length performance for a single
burst per codeword and no errors otherwise. We first assume
that the burst erases a complete spatial position, modeling for
instance node failures in distributed storage. We provide new
tight lower bounds for the block erasure probability (PB) at
finite block length and bounds on the coupling parameter for
being asymptotically able to recover the burst. We further show
that expurgating the ensemble can improve the block erasure
probability by several orders of magnitude. Later we extend our
methodology to more general channel models. In a first extension,
we consider bursts that can start at a random location in the
codeword and span across multiple spatial positions. Besides
the finite length analysis, we determine by means of density
evolution the maximum correctable burst length. In a second
extension, we consider the case where in addition to a single
burst, random bit erasures may occur. Finally, we consider a
block erasure channel model which erases each spatial position
independently with some probability p, potentially introducing
multiple bursts simultaneously. All results are verified using
Monte-Carlo simulations.

Index Terms—Codes on graphs, low-density parity-check
(LDPC) codes, spatial coupling, finite length code performance,
burst erasures, stopping sets.

I. INTRODUCTION AND MOTIVATION

Low-density parity-check (LDPC) codes, first introduced
by Gallager in 1962 [3], are graph-based codes that have
found widespread use due to their excellent performance
under iterative belief-propagation (BP) decoding. However, BP
decoding is suboptimal and does not reach the performance
of optimal maximum-a-posteriori (MAP) decoding [4]. Yet,
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it is commonly employed in practice due to its significant
computational advantage over MAP decoding. The BP de-
coding threshold of LDPC codes can be improved towards
values close to the capacity of the channel by the use of
irregular LDPC codes [5]. However, capacity-approaching ir-
regular LDPC codes usually require a large fraction of degree-
2 variable nodes, which leads to undesirable finite-length
properties like small minimum distance and a large amount
of stopping or trapping sets that impair the BP decoding
performance.

An attractive possibility to overcome this deficiency is
the use of terminated spatially-coupled (SC) LDPC codes—
originally introduced as convolutional LDPC ensembles by
Feltström and Zigangirov in [6]—which show significantly
better BP thresholds than LDPC codes without requiring
large fractions of degree-2 variable nodes. It was numeri-
cally observed and conjectured [7] that the BP threshold of
terminated SC-LDPC codes saturates to the MAP threshold
of the underlying LDPC code ensemble. This phenomenonm,
termed as threshold saturation, was subsequently rigorously
proven in [8] and it was shown that this method allows us to
asymptotically achieve capacity on the binary erasure channel
(BEC) under low-complexity BP decoding with regular SC-
LDPC ensembles. Threshold saturation was later shown to be
universally true for any binary memoryless symmetric (BMS)
channel [9], and the result has triggered a lot of research
interest for SC-LDPC codes and their practical applications.
While the asymptotic behavior of SC-LDPC codes is now
well understood for a few years, recently the finite length
performance of various constructions of SC-LDPC codes has
been studied [10]–[12] and scaling laws to predict the finite
length behavior have been proposed.

In this paper, we investigate the asymptotic as well as
the finite-length behavior of regular SC-LDPC codes when a
single burst or a sporadic random bursts of erasures occur on
the channel. Burst erasures can model some common practical
communication scenarios such as, e.g., deep fades in wireless
communications, the failure of nodes in distributed storage
systems and content delivery networks (CDNs), collisions
in code slotted ALOHA [13], or the loss of packets in
packet-based communication systems, to name just a few.
One particularly interesting case is the erasure of a complete
spatial position (SP), which can happen for instance when a
node fails in distributed noisy storage, where every node is
mapped to an SP. In such scenarios, many of the common
practically relevant protograph-based constructions of SC-
LDPC codes fail by construction. For example, if a complete
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SP is erased in the protograph construction of [8, Fig. 3], all
check nodes that have connections to this SP have at least
two erased connections and hence, the erased variable nodes
of that SP are not recoverable. This situation has been studied
in [14], where the authors additionally provide protograph
constructions that avoid this situation and also maximize the
correctable burst length given some structural constraints of
the code. To correct bursts encompassing an SP, the authors
in [15] apply interleaving (therein denoted band splitting)
to a protograph-based SC-LDPC code. Interleaving however
increases system latency and if windowed decoding is used,
this approach results in an increased required window length
and thus complexity.

Recently, in [16], [17], it has been shown that some well-
designed protograph-based LDPC codes can increase the di-
versity order of block fading channels and are thus also good
candidates for block erasure channels. The tradeoff with these
constructions is, however, that they require large syndrome
former memories if the burst length becomes large. In addition,
closely related structures based on protographs have been
proposed in [18], [19], which spatially couple the previously
proposed root-check LDPC codes [20] to improve the finite
length performance and thresholds. The analysis of the ran-
domly coupled SC-LDPC ensemble of [8], for the case where
complete SPs are randomly erased, has been discussed in [21].
In this work, the authors notice the robustness of general
SC-LDPC ensembles against bursts and use the randomly
erased SPs as a model for block-fading channels. Based on
an asymptotic analysis, relatively loos easymptotic lower and
upper bounds for the bit and block erasure probabilities are
derived in [21].

In [21] and some of the other previously mentioned works,
the transmitted bits are either received without error, or erased
by the burst. Additionally, the burst erasure affects complete
SPs. In [2], we considered a more general model. First we
allowed the burst erasure to take on any length and assumed
that its starting position can occur anywhere in the codeword.
Bursts of random starting positions have also been investi-
gated in [22], although for different reasons and applications
(synchronization). Additionally, we assumed that the parts of
the codeword not affected by the burst are affected by a
memoryless noise process. We used density evolution to find
the maximum correctable burst length when a random, regular
SC-LDPC ensemble is used for transmission over the BEC or
the binary additive white Gaussian noise channel (BiAWGN).
We empirically observed that the correctable burst length is
minimal when the starting position of the burst is exactly at
the boundary of an SP. This means that the burst is less likely
to be recovered when the first affected SP is completely erased.
This fact additionally motivates the analysis of the scenario in
which a burst erases exactly one SP.

Our main focus in this paper is the finite-length (non-
asymptotic) analysis of the random regular SC-LDPC ensem-
ble [8] over channels with burst erasures. We consider the
random regular SC-LDPC ensemble because it is universally
capacity-achieving over a wide range of memoryless chan-
nels [9] and we investigate if this ensemble can be beneficial
as well if burst erasures occur in the channel. We start with

the case where a complete SP is erased and derive a necessary
condition on the required coupling width to recover from
the burst. Then we give a lower bound on the block erasure
probability for finite length codes based on a novel stopping
set analysis. Subsequently we study the effects of expurgation,
i.e., the removal of short cycles from the graph. We show
that expurgation significantly leads to better performance in
the finite length regime when burst erasures occur. We then
generalize these results to situations where the burst does not
necessarily occur at the boundary of an SP and can span
more than one SP. Based on density evolution, we first derive
a bound that relates the coupling width w and the length
of bursts, and then focus again on the finite block length
regime. Additionally, we introduce random erasures in the
parts of the codeword not affected by the burst, as a more
realistic model for noisy distributed storage or more traditional
communication schemes.

Finally, we consider a more general non-single-burst sce-
nario where the channel erases each spatial position inde-
pendently with some probability. We demonstrate how our
analyses on the single-burst channel models can be used
to closely estimate the decoding failure probability on this
channel as well.

The paper is organized as follows: In Section II, we review
the essential technical background, motivate our problem and
define the channel models. In Section III, we introduce the
novel finite-length analysis of the random ensemble for the
case when a complete SP is erased. Then, in Section IV, we
detail the effects of expurgating the ensemble on this channel.
In section V, we extend the finite-length analysis to some
other channel models including: a single burst of erasures of
arbitrary length and starting position inside the codeword, the
transmission of the bits over a binary erasure channel (BEC)
before a burst erasure occurs, and finally the block erasure
channel which erases each spatial position independently with
some probability. Finally, in Section VI we conclude the paper
highlighting directions for future research.

II. PRELIMINARIES & MOTIVATION

A. Notation

We use N to denote the set of positive integers and [n] to
denote the set [n] = {1, 2, . . . , n}. In a graph, we denote the
neighborhood of a vertex vi by N (vi), i.e., N (vi) is the set
of all nodes such that there exists an edge between vi and the
node. We say that, for n ∈ N, a function f(n) is O(g(n)) if
there exists an n0 ∈ N and a positive constant γ such that
|f(n)| ≤ γ|g(n)| for all integers n > n0. For two real values
a and b, we say a / b if a ≤ b and b

a ≈ 1, i.e. b is a good
approximation of a. Similarly, we define the sign '.

The symmetric binary erasure channel with parameter ε is
denoted by BEC(ε) and its transition probabilities are defined,
for x ∈ {0, 1} and y ∈ {0, 1, ?}, where ? denotes an erasure,
by

W (y|x) =
{
1− ε if y = x

ε if y =?
.
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B. The Random Regular SC-LDPC Ensemble

We now briefly review how to sample a code from
the random regular SC-LDPC ensemble [8], denoted as
CR(dv, dc, w, L,M). We first lay out a set of positions indexed
from z = 1 to L on a spatial dimension. At each spatial
position (SP) z, there are M variable nodes (VNs) and
M dv

dc
check nodes (CNs), where M dv

dc
∈ N and, dv and dc

denote the variable and check node degrees, respectively. Let
w > 1 denote the coupling (smoothing) parameter. Then,
we additionally consider w − 1 sets of M dv

dc
CNs in SPs

L+ 1, . . . , L+w − 1. Every CN is equipped with dc sockets
and imposes an even parity constraint on its dc neighboring
VNs. Each VN in SP z is connected to dv CNs from SPs
z, . . . , z + w − 1 as follows: each of the dv edges of this
VN is allowed to randomly and uniformly connect to any
of the wMdv free sockets arising from the CNs in SPs
z, . . . , z + w − 1, such that parallel edges are avoided in
the resultant bipartite graph. When a VN has multiple edges
connected between itself and a particular CN, those edges are
called parallel edges. We avoid parallel edges as it is well
known that for finite M , the presence of parallel edges can
have detrimental effects on the decoding performance [4].
This graph represents the code so that we have N = LM
code bits, distributed over L SPs. Note that the CNs at the
boundaries, i.e., at SPs 1, . . . , w−1 and L+1, . . . , L+w−1,
can have degree less than dc, due to termination of the code.
CNs of degree zero are removed from the code. Because
of the additional CNs in SPs z > L, the code rate is
r = 1 − dv

dc
− O(wL ). Throughout this work, we assume the

two mild conditions of dv ≥ 3 and wM ≥ 2(dv + 1)dc (see
Appendix A).

A subset A of VNs in a code is a stopping set if all the
neighboring CNs of (the VNs in) A connect to A at least
twice [4, Def. 3.137]. In such a case, if all VNs in A have
been erased by the channel, then the BP decoder will fail since
all the neighboring CNs are connected to at least two erased
VNs. Therefore, such a set will stop the decoding process and
hence is called a stopping set. The cardinality of the set A is
also its size. A minimal stopping set is one which does not
contain a smaller size non-empty stopping set within itself.

The Poisson SC-LDPC Ensemble (CP )

For the sake of comparison, we also consider another
ensemble. We still assume a regular variable node degree dv ,
but there is no limit placed on the check degree. For each VN
at spatial position z, we assume that its edges can connect
to any check node at spatial positions z, . . . , z + w − 1 such
that parallel edges are avoided (and without constraining the
check node degree). Check nodes are selected uniformly at
random for each edge. This construction yields the so-called
Poisson ensemble CP(dv, dc, w, L,M), where dc specifies
the average check node degree of this ensemble. By the
described construction procedure, we do not have a regular
check node degree but instead an irregular distribution that
follows a binomial distribution (which converges to a Poisson
distribution for M →∞). By fixing the number of CNs per SP
to M dv

dc
, we indeed get an average check node degree of dc.
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Normalized burst starting position, s = S/M

β
(s
)/
β
m

a
x

w=3, βmax=1.61 w=4, βmax=2.14 w=5, βmax=2.76

Fig. 1. The normalized maximum correctable burst length for a given starting
position S = sM when the CR(3, 6, w, L,M) ensemble is used.

C. Motivation

Consider the random regular SC-LDPC ensemble
CR(dv, dc, w, L,M) affected by a single burst of b bits.
Let S ∈ [M ] denote the random starting VN of the burst
at some SP z0. Note that z0 is arbitrary1. We define the
normalized quantities s , S

M and β , b
M , so that 0 ≤ s ≤ 1

and 0 ≤ β ≤ L. Using density evolution in the limit of M ,
we showed numerically in [2] that for any fixed s, there is
a maximum normalized β(s) recoverable with an arbitrarily
small probability of decoding failure. Then, a burst of length
βM and random starting position is recoverable in the limit
of M if

β < βmax = min
0≤s<1

β(s).

Figure 1 illustrates β(s)/βmax as a function of the normalized
starting position s for the CR(dv = 3, dc = 6, w, L,M) SC-
LDPC ensemble with w ∈ {3, 4, 5}. Interestingly, we observed
that when βmax > 1, s = 0 (the full erasure of the position
z0) is the worst case scenario as β(0) is a minimum of β(s).
We will also see later in Example 16 that the error floor is
also larger when s = 0.

The observations of Fig. 1 motivates our first focus on a
very simple channel model, where the starting position of a
burst is S = 1 and the burst length is exactly b =M . Later, we
will extend our results to arbitrary values of S and b and then,
to the case of occurring more than a single-burst. We refer the
interested reader to [2] for the details of density evolution and
focus in this paper on the error floor due to the occurrence of
a random burst of length b < βmaxM when M is finite.

D. Burst-Erasure Channel Models

We consider four different channel models introducing
either a single burst of erasures or few random bursts of
erasures during the transmission of a SC-LDPC codeword.
First, the Single Position Burst Channel (SPBC) erases all M
VNs of exactly one SP z ∈ [L] in the transmitted codeword,

1When there is only a burst of erasures, the performance will be equiv-
alent to the performance of the circular tail-biting ensemble with the same
parameters [23].
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so that bit indices E = {(z−1)M+1, . . . , zM} are erased in
the received word, while all other bits are received correctly.
We additionally introduce random independent erasures to this
model in Section V-B.

The third model is the more general Random Burst Channel
(RBC) whose burst pattern is denoted by RBC(b) so that bit
indices E = {(z − 1)M + S, . . . , (z − 1)M + S + b − 1}
are erased with a random S ∈ [M ] with P {S = i} = 1/M ,
z ∈ [L], and b < βmaxM .

The fourth and final channel model is the Block Erasure
Channel, denoted by BLEC(p), which completely erases each
SP independently with probability p. This channel model
includes the case of multiple independent bursts, which can
occur in some practical scenarios like distributed storage.
We show how the basic single-burst models can be used as
building structures to closely estimate the decoding failure
probability in the BLEC(p). A similar approach may be
applicable for other more complex channel models.

The simple single-burst channel model has for instance
been used in [14] to study the recoverability of single bursts
in protograph-based SC-LDPC codes. While multiple other
models exist for a correlated erasure channel, like the Gilbert-
Elliott model [14], the above models can also describe some
realistic scenarios: for instance, the BLEC can model simulta-
neous multiple node failures in a distributed storage scenario
with nodes associated to SPs. Or, the SPBC can be used to
model a slotted-ALOHA multiple access scheme where each
user transmits an SC-LDPC codeword over L time slots, but
one SP might be erased in the case of a single collision event.
Moreover, long burst erasures might occur in block fading
scenarios, in optical communications which are subject to
polarization dependent loss.

III. ERROR ANALYSIS ON THE SPBC
As highlighted above, we empirically observed in [2] that

the worst burst scenario is when the starting position of the
burst is the first bit of a spatial position in the codeword.
Hence, we first analyze the performance of SC-LDPC code
ensembles on the SPBC in this section and later generalize
to the RBC. We give lower bounds on the block erasure rate
after decoding and also provide a comparison with the Poisson
ensemble.

First, we start by giving a necessary condition for being
able to correct a burst.

Proposition 1. Consider the CR(dv, dc, w, L,M) SC-LDPC
ensemble and transmission over the SPBC, where exactly one
SP is erased and all other SPs are received correctly. A
necessary condition for recovering the erased spatial position
is that w ≥ d1/ε?BP(dv, dc)e, where ε?BP(dv, dc) is the BP
threshold of the underlying (dv, dc) LDPC ensemble.

Proof. Consider the CR(dv, dc, w, L,M) ensemble, where we
only consider erasures of entire spatial positions (not bits),
and so M is immaterial. The DE equation of this ensemble is
given by [8]

x
(`)
i = εi


1− 1

w

w−1∑

j=0

(
1− 1

w

w−1∑

k=0

x
(`−1)
i+j−k

)dc−1


dv−1

,

where εi denotes the erasure probability at SP i. For the SPBC,
we have εz = 1 and ε∼z = 0, where the subscript ∼ z denotes
all SPs i ∈ [L]\{z}. We can immediately see that x(`)

∼z = 0
and then we can simplify the DE equation as

x(`)
z =


1− 1

w

w−1∑

j=0

(
1− 1

w
x(`−1)
z

)dc−1


dv−1

=

(
1−

(
1− 1

w
x(`−1)
z

)dc−1
)dv−1

.

After a change of variable x̃(`)
z = x

(`)
z /w, we get

x̃(`)
z =

1

w

(
1−

(
1− x̃(`−1)

z

)dc−1
)dv−1

,

which resembles the well-known DE equation for regular
(dv, dc) LDPC ensembles. We see that we can recover the
missing SP if and only if 1/w ≤ ε?BP(dv, dc), where ε?BP(dv, dc)
is the BP threshold of the underlying regular uncoupled ensem-
ble [4]. Rearranging this condition completes the proof.

Corollary 2. Consider the CR(dv, dc, w, L,M) SC-LDPC en-
semble and transmission over the SPBC. A relaxed necessary
condition for recovering the erased spatial position is that
w ≥

⌈
dc
dv

⌉
.

Proof. By using the fact that ε?BP(dv, dc) ≤ 1 − R ≤ dv
dc

, the
relaxed condition is immediately obtained from Proposition 1.

Remark 3. Note that this result is not only valid for a single
burst, but in general for any combination of erased SPs out of
the L total SPs, provided that they are at least w apart, i.e.,
there are at least w − 1 non-erased SPs between two erased
SPs.

Remark 4. The analysis based on density evolution, e.g.,
Proposition 1, estimates the “bit error probability” in the limit
of M while our main concern is “block error probability”
when there is a burst of erasures. It has been proven for
LDPC ensembles with dv ≥ 3 that a vanishing bit error
probability guarantees a vanishing block error probability
over the BEC [4, Lemma 3.166]. Although it might not be
true in general, our simulations suggest the same behaviour
for SC-LDPC codes when dv ≥ 3 and the channel is affected
by a burst of erasures.

A. The Random Regular SC-LDPC Ensemble (CR)

Let P SPBC
B denote the average block erasure (decoding fail-

ure) probability of the random CR(dv, dc, w, L,M) ensemble
on the SPBC under BP decoding, i.e., the probability that
the iterative decoder fails to recover the codeword. For large
enough M , size-2 stopping sets (each of which also forms a
weight-2 codeword) are the dominant structures in the graph
that cause the BP decoder to fail [10]. Hence, the number of
size-2 stopping sets per SP, denoted NSP

2 , is a good starting
point for analyzing the performance of the ensemble on the
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vi vj

c1 c2 c3Socket

Fig. 2. A size-2 stopping set in a code from the (3, 6) LDPC random ensem-
ble. CNs {c1, c2, c3} and VNs {vi, vj} have been labeled for convenience.
CNs have been expanded to show all their dc = 6 sockets. The solid edges
indicate definite connections and the dashed edges complete to form a stopping
set. Parallel edges are not allowed in the ensemble.

SPBC. We introduce the stopping set indicator function Uij
with

Uij =

{
1 , if VNs vi and vj form a stopping set
0 , otherwise .

We clearly have E[Uij ] = P {Uij = 1}. Thus, NSP
2 =∑

1≤i<j≤M Uij where the summation is over all
(
M
2

)
pairs

of VNs vi and vj from an SP.

Lemma 5. Consider a code sampled uniformly from the
CR(dv, dc, w, L,M) SC-LDPC ensemble. The probability that
two variable nodes from a same SP z of this code form a
stopping set amounts to

PR =

(
1− 1

dc

)dv

dv∑
`=0

(
dv
`

)(wM dv
dc
−dv

dv−`
) (

1− 1
dc

)` . (1)

Proof. Let vi and vj be two VNs randomly chosen from an
SP z of the CR(dv, dv, w, L,M) ensemble, i.e., i, j ∈ {(z −
1)M + 1, . . . , zM} for z ∈ [L]. Recall that this ensemble
contains no parallel edges. We use a combinatorial argument
to compute the probability PR that these two VNs form a
size-2 stopping set. We label all the sockets of CNs. Let T
denote the total number of possible sub-graphs from {vi, vj}
and let Tss denote the number of possible sub-graphs in which
these VNs form a size-2 stopping set. First, we connect the dv
edges of vi to randomly chosen empty sockets of dv distinct
CNs as described in Section II-B. A stopping set (and in this
case, also a low-weight codeword) is formed if and only if the
edges of vj are connected to the same CNs, i.e., N (vi). Each
of these CNs has dc − 1 free distinct sockets. Thus,

Tss = dv!(dc − 1)dv ,

where dv! is due to the permutation of edges and (dc − 1)dv

is due to the different ways of connecting to free sockets of
N (vi). The counting argument is illustrated by an example
in Fig. 2. In general, provided that vi connects to some dv
check nodes, vi and vj may connect to some ` common CNs,
0 ≤ ` ≤ dv . On the one hand, there are

(
dv
`

)
(dc − 1)` socket

selections for the ` common CNs. On the other hand, there
are

(wM dv
dc
−dv

dv−`
)
ddv−`c socket selections for all other distinct

wM dv
dc
− dv CNs. Including dv! permutation of edges, we

have,

T = dv!

dv∑

`=0

(
dv
`

)(
wM dv

dc
− dv

dv − `

)
(dc − 1)`(dc)

dv−`.

We get PR , P {Uij = 1} = Tss

T , simplified further to (1).

Remark 6. For large enough M , the quantity T in the proof
of Lemma 5 can be well approximated by the dominating
summand (` = 0) which leads to the following approximations

P {Uij = 1} ≈ (1− 1/dc)
dv

(wM dv
dc
−dv

dv

) ≈ dv!
(

dc − 1

(wM − dc)dv

)dv
.

(2)

Since P {Uij = 1} is identical for all pairs (i, j) of VNs,
we have E[NSP

2 ] =
(
M
2

)
P {Uij = 1} implying the following

result.

Theorem 7. Consider a code sampled uniformly from the
CR(dv, dc, w, L,M) ensemble with wM ≥ 2(dv + 1)dc. If
all variable nodes of a randomly chosen SP are erased, the
(average) probability of BP decoding failure is lower-bounded
by

P SPBC

B ≥
(
M

2

)(
1− M2

( wdcM − 3)dv

)
PR, (3)

where PR is the probability that two variable nodes from an
SP of the code form a stopping set, given by (1).

Proof. See Appendix A.

Remark 8. Since a size-2 stopping set characterizes a low-
weight codeword, Theorem 7 yields a lower-bound on the
average block erasure probability of MAP decoding, too.

Furthermore, P SPBC
B is the average block erasure probabil-

ity over the code ensemble. In the limit of M , the block erasure
probability of each instance of the ensemble concentrates to
its average P SPBC

B (see [4, Theorem 3.30]).

Theorem 7 also implies that for large enough M ,

P SPBC

B ≥ E[NSP

2 ]

(
1−O

(
1

Mdv−2

))
≈ E[NSP

2 ] , λSP. (4)

Note that following standard arguments [10], [4, Appendix C],
for large M , we can also approximate the bound on P SPBC

B by
modeling NSP

2 as a Poisson distribution with mean λSP, i.e.,

P SPBC

B ' 1− P
{
NSP

2 = 0
}
≈ 1− e−λSP ≈ λSP. (5)

We observe that the average block erasure probability scales
as O(M2−dv ).

B. Simulation Examples

To illustrate the accuracy of our bounds, we carried out
Monte-Carlo simulations where we randomly erased a com-
plete spatial position (i.e., all M VNs) from the middle of
the graph (to avoid boundary effects) for each transmitted
codeword. At the receiver we performed BP decoding and
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Fig. 3. Monte Carlo simulations over the SPBC with the CR(3, 6, w, L,M)
ensemble for w = 3 and w = 4, along with their respective lower bounds (3).
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Fig. 4. Monte Carlo simulations over the SPBC with the CP (3, 6, 3, L,M)
ensemble, along with the lower bounds according to Theorem 23. The bound
for the CR ensemble is also plotted for comparison.

estimated the error rate P SPBC
B averaged over the ensemble

by counting 1000 decoding failures in each experiment. The
simulation results for CR(3, 6, w, L = 100,M) with w = 3
and w = 4 are shown in Fig. 3 along with their respective
lower bounds calculated using (3) and (2). We observe that the
bound indeed is very accurate for M large enough (' 180),
since large-size stopping sets (larger than 2) vanish. The
simulation curve is slightly unstable because counting 1000
failures is not enough to keep the sample variance small as
P SPBC

B decreases by O(M2−dv ). By counting 1000 failures,
the simulation results are within ±6.2% of the theoretical
value with a 95% confidence interval.

We repeated the experiment for the CP(3, 6, 3, L,M) Pois-
son ensemble. Using the technique of the second moment
method, we lower-bounded the block error probability of this
ensemble on the SPBC. The lower-bound and some related
results are presented in Appendix B. The simulation results are
given in Fig. 4 along with the lower bound calculated using
(27) and (28) in Appendix B. For comparison, we have also

v1 v2 v3 v4

c1 c2 c3 c4 c5 c6




1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1




v1
v2
v3
v4

c1 c2 c3 c4 c5 c6

Fig. 5. A size-4 stopping set in a code from the expurgated (3, 6, w, L,M)
random ensemble. CNs {c1, c2, c3, c4, c5, c6} and VNs {v1, v2, v3, v4}
have been labeled for convenience. The solid edges indicate definite connec-
tions and the dashed edges complete one configuration to form a stopping set.
Parallel edges are not allowed in the ensemble. The transposed bi-adjacency
matrix is also shown with its pattern highlighted.

plotted the lower bound of Theorem 7 for a CR(3, 6, 3, L,M)
random ensemble. As proved in Theorem 21 of Appendix B,
we observe that the Poisson ensemble always has a larger
probability of size-2 stopping sets than the corresponding
random ensemble. Since the ensemble CP is hence shown to be
suboptimal compared to CR, we do not consider this ensemble
in further discussions. We discussed the simple non-expurgated
ensembles here mainly to illustrate the proof technique based
on the second moment method and to show that simple
lower bounds on the performance exist. The removal of short
cycles in the graph, as it is frequently done in practical code
constructions, is considered in the next section.

IV. EFFECTS OF EXPURGATION ON THE SPBC

A. Minimal Stopping Set Size

As the performance of SC-LDPC codes over (burst and
random) erasure channels is mainly dominated by size-2
stopping sets, it is well known that we can improve the burst
erasure correction capability by expurgating the ensemble and
thereby removing all small stopping sets. Observing that a
size-2 stopping set, as shown in Fig. 2, is built around 4-
cycles, we can reduce the size of the minimal stopping sets by
removing small cycles from the graph. For example, increasing
the girth of the graph to 6 leads to minimal stopping sets of
size smin = dv + 1 [24].

In this section, we first show that all size (dv +1) stopping
sets in an LDPC code share a common structure which we will
use to find the probability of these stopping sets. Consider
a (3, 6) random LDPC code ensemble as an example. We
immediately notice that size-3 stopping sets vanish for girth-
6 graphs. A size-4 stopping set is shown in Fig. 5 along
with its (transposed) bi-adjacency matrix that describes the
neighbors of each VN in the corresponding row. We can notice
a pattern in this matrix which has been highlighted using
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dashed lines in the matrix: row i ∈ {1, 2, . . . , dv} has one
subset of (dv − (i − 1)) columns with all 1s and an identity
matrix Idv−i+1 spanning these columns starting from row i+1.
In the following lemma, we characterize this pattern and relate
it to smallest size stopping sets (SSs) in graphs of girth 6.

Lemma 9. In a regular bipartite graph of girth 6 (i.e.,
without parallel edges), the smallest stopping set is of size
dv + 1, involves exactly 1

2dv(dv + 1) neighboring CNs and is
characterized by a bi-adjacency matrix that contains as rows
all
(
dv+1

2

)
= 1

2dv(dv + 1) permutations of the binary vector(
1 1 0 · · · 0

)
of length dv+1 containing two “1”s and

dv − 1 “0”s.

Proof. From [24], we know that the smallest stopping set is of
size dv + 1. Furthermore the stopping set connects to exactly
1
2 (dv + 1)dv check nodes. This can be seen as follows: the
number of neighboring check nodes cannot be larger than
1
2 (dv + 1)dv as the total number of (dv + 1)dv edges must
connect to every check node at least twice, which is only
fulfilled if the number of check nodes is at most 1

2 (dv+1)dv .
Conversely, if there are less than 1

2 (dv + 1)dv neighboring
check nodes, by the pigeonhole principle, at least one check
node connects to more than two neighboring variable nodes
in the SS. Assume w.l.o.g. that there is a single CN, called
c1, with 3 neighbors v1 v2 and v3 in the SS. The VN v1 must
connect to dv − 1 CNs c2, . . . , cdv other than c1 as parallel
edges are avoided. These dv − 1 CNs in turn need to connect
to dv−1 distinct VNs other than v1, v2 and v3 to avoid a cycle
of length 4. Hence, we need 3 + dv − 1 = dv + 2 VNs which
contradicts the assumption that the SS consists of dv+1 VNs.

From the previous considerations, all CNs must connect
exactly twice to the variable nodes and |N (vi)∩N (vj)| < 2,
for all i 6= j as cycles of length-4 are avoided. Thus,
the bi-adjacency matrix describing the SS consists of rows,
representing connections of CNs, of weight 2 and no row
can be used twice as this violates the previous assumption of
avoiding cycles of length 4. The fact that the SS consists of
1
2dv(dv+1) CNs and that there are only

(
dv+1

2

)
= 1

2dv(dv+1)
distinct binary vectors of length dv + 1 and weight 2 proves
the lemma.

B. Estimation of Block Error Rate

We can use the same approach as in Lemma 5 to calculate
the probability of occurrence of the minimum size stopping
sets, characterized by Lemma 9, within a spatial position of a
code sampled uniformly from the ensemble.

Lemma 10. For a code sampled uniformly from the expur-
gated CR(dv, dc, w, L,M) SC-LDPC ensemble, constructed
without allowing cycles of length 4, the probability PR,6 that
dv + 1 variable nodes of the same spatial position z form a
stopping set is bounded by

K6

(
wM dv

dc
1
2dv(dv + 1)

)(
wM dv

dc

dv

)−(dv+1)

≤ PR,6 ≤ K̃6

(
wM dv

dc
− 1

2dv(dv + 1)
1
2dv(dv + 1)

)−1

(6)

≤ K6

(
wM dv

dc
1
2dv(dv + 1)

)(
wM dv

dc
− d2

v

dv

)−(dv+1)

,

(7)

with

K6 =

(
1− 1

dc

) 1
2dv(dv+1)

(
1

2
dv(dv + 1))!

and

K̃6 =

(
1− 1

dc

) 1
2dv(dv+1)

(dv!)
dv+1

( 1
2dv(dv + 1))!

being constants depending only on the ensemble parameters
dv and dc.

Proof. Let vi1 , . . . , vidv+1
denote dv+1 randomly chosen VNs

from an SP z of a code sampled from the expurgated, girth-
6, CR(dv, dc, w, L,M) SC-LDPC ensemble. Recall that this
code contains neither parallel edges nor cycles of length 4.
Let T denote the total number of possible sub-graphs from
{vi1 , . . . , vidv+1

} and let Tss denote the number of sub-graphs
in which these VNs form a stopping set.

We first compute Tss. Consider the bi-adjacency matrix of
a stopping set of size dv+1 described in Lemma 9. and label
the rows and column as shown in Fig. 5. Any column-wise
permutation of this matrix represents the bi-adjacency matrix
of another stopping set with the same VNs, and vice versa.
Thus, the number of such sub-graphs is equal to the number
of distinct “labeled” permutations times the permutation of
sockets of each CNs. In other words,

Tss =

(
wM dv

dc
1
2dv(dv + 1)

)
(
1

2
dv(dv +1))! (dc(dc − 1))

1
2dv(dv+1)

,

where the first term is the number of possibilities to select
1
2dv(dv + 1) CNs. The second term ( 1

2dv(dv + 1))! counts
the number of column-wise permutations of the bi-adjacency
matrix. The last term is the number of ways that the edges are
connected to two distinct sockets of each CN.

Unfortunately, obtaining an exact expression for T is tedious
and does not lead to many new insights. We therefore give
upper and lower bounds for T which become tight for large
M .

First, T , the total number of sub-graphs from the dv + 1
VNs such that 4-cycles and parallel edges are avoided is upper-
bounded by the total number of sub-graphs including 4-cycles.
Hence, for every VN, we (randomly) select dv CNs out of
wM dv

dc
CNs. Now, assume that each edge of the VN is paired

to one of the chosen dv CNs. For every selected CN, there
are at most dc possibilities to select a free socket to place the
paired edge from the VN. Hence, we get the bound

T ≤
[(

wM dv
dc

dv

)
ddvc

]dv+1

. (8)

We now proceed to the lower bound. Given a set of (dv + 1)
randomly chosen VNs vi1 , . . . , vidv+1

from a spatial position,
the VN vi1 has to connect its dv edges to CN sockets without
introducing parallel edges or 4-cycles. So, the first VN has
wMdv/dc CNs to chose from. However, once all edges of vi1
are connected, the first edge of vi2 can either connect to one
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of the dv previously connected CNs or to one of the (wM −
dc)dv/dc previously unconnected CNs. In the former case,
none of the remaining edges can connect to another previously
connected CN as a 4-cycle would be formed. As the latter case
is dominant, we lower bound T by only considering that case
where all edges connect to previously unconnected CNs. We
thus get, following a similar line of reasoning as before,

T ≥
[
ddvc
]dv+1

dv∏

j=0

(
wM dv

dc
− jdv

dv

)
(9)

which we can further bound as

T ≥
[(

wM dv
dc
− d2

v

dv

)
ddvc

]dv+1

. (10)

We can also simplify (9) using the fact that

dv∏

j=0

(
wM dv

dc
− jdv

dv

)

=
(wM dv

dc
)!

(wM dv
dc
− dv(dv + 1))!(dv!)dv+1

=

(
wM dv

dc
1
2dv(dv + 1)

)(
wM dv

dc
− 1

2dv(dv + 1)
1
2dv(dv + 1)

)

× ([ 12dv(dv + 1)]!)2

(dv!)dv+1

which leads to

T ≥ ddv(dv+1)
c

(
wM dv

dc
1
2dv(dv + 1)

)(
wM dv

dc
− 1

2dv(dv + 1)
1
2dv(dv + 1)

)

× ([ 12dv(dv + 1)]!)2

(dv!)dv+1
.

(11)

Finally, simplification of PR,6 = Tss

T with the bounds (8),
(10), and (11) leads to the result. Note that in the counting
argument we skipped all (dv + 1)!(dv!)

dv+1 permutations of
VNs and their sockets as they are included in both Tss and T
and henceforth cancel in the final expression.

Remark 11. For a code sampled uniformly from the ex-
purgated CR(dv, dc, w, L,M) ensemble with girth 6, we can
approximate T quite well by (11), which is the dominant
term in the expression of T for large enough M and get the
approximation

PR,6 ≈ K̃6

(
wM dv

dc
− 1

2dv(dv + 1)
1
2dv(dv + 1)

)−1

. (12)

We performed Monte Carlo simulations for the expurgated
CR(3, 6, 3, L,M) ensemble and counted 100 decoding failures
on the SPBC. Figure 6 illustrates the simulation averages for
the block error probability, for varying M , their respective
lower and upper bounds (using the bounds of PR,6 from
Lemma 10), and the approximation using (12). It is evident
that both the bounds and the approximation become tight
very quickly, which reassures that the decoder performance
is indeed dominated by minimal stopping sets.
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Fig. 6. Monte Carlo simulations over the SPBC with the expurgated
CR(3, 6, 3, L,M) ensemble along with the theoretical bounds and approxi-
mations.
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Fig. 7. Approximations on P SPBC
B for CR(dv , dc, w = dv , L,M) ensem-

bles with dv = 3, dv = 4, and dv = 5 in both the unexpurgated and
expurgated (using (12)) scenarios.

Corollary 12. The expected number of such stopping sets
within a SP of the code is λSP ,

(
M
dv+1

)
PR,6. Using similar

arguments as in Section III, we have

NSPdv+1 ∼ Poisson(λSP ).

A tight approximation for the average block erasure probabil-
ity on the SPBC, P SPBC

B,6 , is then obtained as

P SPBC

B,6 ≈ 1− e−λSP ≈ λSP. (13)

We can see from the bounds (6) and (7) that the
average block erasure probability in this case scales as
O(M−d

2
v/2+dv/2+1), or equivalently O(M−

1
2 (dv−2)(dv+1)),

which is in contrast to the non-expurgated case where the scal-
ing behavior was O(M−(dv−2)). Hence, unsurprisingly, expur-
gating always improves the average block erasure probability
in the SPBC case. These scaling behaviours are illustrated in
Fig. 7 for three CR(dv, dc, w = dv, L,M) ensembles with
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dv = 3, dv = 4, and dv = 5. All three ensembles have the
asymptotic design rate of 1

2 . We observe that:
• For the unexpurgated case, linearly increasing dv reduces

the block error probability by multiples of 1/M .
• When the ensemble is expurgated so that girth = 6, unit

increase in dv improves the performance by a factor of
about M−dv .

• On the SPBC, block erasure rates less than 10−15 can be
obtained by codes from an expurgated CR(5, 10, 5, L,M)
ensemble, with M as low as 120. This encourages the use
of short SC-LDPC codes in applications where single SPs
may be erased (e.g., distributed storage of short files) and
high reliability is required.

V. ERROR ANALYSIS ON MORE GENERAL BURST
CHANNEL MODELS

In this section, we study some other transmission scenarios
with less restrictions on the channel model. First, we consider
the random burst channel (RBC) model in which the burst
has a variable length and not necessarily erases complete SPs.
Then, we consider the scenario where there is random back-
ground noise in addition to the burst erasure. For simplicity,
we assume a binary erasure channel for the background noise
and the SPBC model for the burst. We present an extension
of the analysis in previous sections to estimate the decoding
failure probability in these scenarios. Finally, we consider the
scenario of the block erasure channel (BLEC) in which each
SP may be erased randomly with some probability. We show
how such a channel model can be analyzed using the simple
single-burst channel models, e.g. SPBC and RBC.

Although the expurgated ensembles are of more interest,
we present the error analysis for the CR(dv, dc, w, L,M) SC-
LDPC ensemble with size-2 stopping sets because of two
reasons. First, expurgation leads to very small decoding failure
probabilities and it will be more challenging to illustrate the
tightness of the error estimations in simulation. Second, a
similar analysis can be conducted for the expurgated ensemble
as we have shown for the SPBC in Section IV, but it will be
more involved and less insightful.

A. Random Burst Channel (RBC)

We have seen in the previous section that the performance
of SC-LDPC ensembles is asymptotically well characterized
by stopping sets of size 2. We will now generalize this analysis
to the case where there is a single burst of length > M and
with a random starting location within the codeword. Such
a burst can span over multiple SPs because of its random
starting position. In this case, stopping sets formed across
coupled SPs will also contribute to decoding failures. We will
restrict ourselves to the case of a single burst. This case can
then serve as a building block for the more complex case of
having multiple random bursts. For instance, the results can
be easily generalized to the case with multiple bursts spaced
apart by at least w non-affected SPs. We start by first giving a
simple asymptotic condition on w for burst erasure recovery.
Although it is an asymptotically sufficient condition, we have

observed in numerical experiments that it reflects the actual
behavior quite well.

Proposition 13. Consider the CR(dv, dc, w, L,M) SC-LDPC
ensemble and transmission over a channel where a random
selection of b consecutive VNs are erased and all other
VNs are received without erasure. Let β = b

M denote the
normalized burst length. Furthermore, let w ≥ 1 + dβe.
Asymptotically (in the limit of M ), the erased VNs can be re-
covered when w ≥ d(1 + dβe)/ε?BP(dv, dc)e, where ε?BP(dv, dc)
is the BP threshold of the underlying (dv, dc) uncoupled LDPC
ensemble.

Proof. Consider the burst of normalized length β = b
M . This

burst spans at most 1+
⌈
b−1
M

⌉
SPs, which is upper bounded by

c = 1+dβe. If a burst erasing c consecutive SPs is recoverable,
then a random burst of length b is recoverable as well. Let z
denote the first SP affected by the random burst. Using similar
arguments as in the proof of Proposition 1, we can write,
∀ i ∈ {0, . . . , c− 1},

x
(`)
z+i = εz+i


1− 1

w

w−1∑

j=0

(
1− 1

w

w−1∑

k=0

x
(`−1)
z+i+j−k

)dc−1


dv−1

(a)

≤ εz+i


1−

(
1− 1

w

c−1∑

k=0

x
(`−1)
z+k

)dc−1


dv−1

(b)

≤


1−

(
1− 1

w

c−1∑

k=0

x
(`−1)
z+k

)dc−1


dv−1

,

where εz+i is the fraction of VNs erased in SPs z + i. We
have (a) as x(l)

z is nonzero only for {z, . . . , z + c − 1}, and
thus, for any i and j,

w−1∑

k=0

x
(`−1)
z+i+j−k ≤

c−1∑

k=0

x
(`−1)
z+k .

We have (b) as εz+i ≤ 1. The bound on x(`)
z+i is independent

of i and thus,

c−1∑

i=0

x
(`)
z+i ≤ c


1−

(
1− 1

w

c−1∑

k=0

x
(`−1)
z+k

)dc−1


dv−1

.

The substitution y(`)
z = 1

w

∑c−1
k=0 x

(`−1)
z+k yields

y(`)
z ≤

c

w

(
1−

(
1− y(`−1)

z

)dc−1
)dv−1

.

If c/w < ε?BP(dv, dc), then lim`→∞ y
(`)
z = 0 and thus,

lim`→∞ x
(`)
z = 0 for any z. It implies that the decoding failure

(output bit error probability) converges to zero as well in the
asymptotic limit of M and `.

In the remainder of this section, we assume that asymptotic
recovery is possible and we are concerned with decoding
failures that occur when M is finite. Let S ∈ [M ] denote the
random starting VN of the burst at some SP z0. We define the
normalized quantities s = S

M and β = b
M . Recall from Section

II-C that βmax is the largest β asymptotically recoverable. In
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the case of the RBC, besides stopping sets within a single
spatial position, size-2 stopping sets formed across coupled
SPs will also cause decoding failures. We first characterize
the probability of such stopping sets in the following lemma.

Lemma 14. Consider the CR(dv, dc, w, L,M) ensemble. Let
vi denote a randomly chosen VN in spatial position z ≤ L,
and vj denote a random VN in spatial position z + k, for
a non-negative integer k with z + k ≤ L. The probability
that these two random VNs form a stopping set of size 2 is
independent of z and amounts to

qk = PR

(
1− k

w

)dv
, k ∈ {0, 1, . . . , w − 1}, (14)

where PR is given by (1). For k ≥ w, qk = 0.

Proof. From the definition of the ensemble, we know that
N (vi) is part of SPs {z, z + 1, . . . , z + w − 1} and N (vj)
is part of SPs {z + k, z + k + 1, . . . , z + k + w − 1}. A
size-2 stopping set is formed if and only if N (vi) = N (vj).
For k ≥ w, this condition cannot be fulfilled and thus,
qk = 0. For k < w, all check nodes of N (vi) must be
from a subset {z + k, . . . , z + w − 1}. As the edges of the
variable nodes uniformly connect to w neighboring SPs, the
probability of such a selection for vi is (w−kw )dv . Now, the
probability that vj connects exactly to the same CNs as vi,
i.e., N (vi) = N (vj), is equal to PR (by the same argument
as in Lemma 5). Hence, qk =

(
w−k
w

)dv
PR. We immediately

see that q0 > q1 > · · · > qw−1.

The average number of size-2 stopping sets between VNs
lying in SPs z and z + k, where k ∈ [w − 1], is given by

λ0 ,

(
M

2

)
q0 and λk ,M2qk, k ∈ [w − 1].

(15)
Again, we see that λk ∼ O(M2−dv ). To verify, consider the
CR(3, 6, 3, 100,M = 64) SC-LDPC ensemble. By averaging
over all the SPs of 1000 random code instances of the ensem-
ble, the empirical average number of size-2 stopping sets is ob-
tained as (Lλ0, (L−1)λ1, (L−2)λ2) ≈ (0.876, 0.488, 0.060),
which is reasonably close to (0.829, 0.494, 0.061) computed
using (15), even for small M = 64.

We now estimate the average decoding failure probability,
PRBC

B when there is a burst of length b � βmaxM with a
random starting bit M(z0 − 1) + S, 1 ≤ S ≤M . For a given
(S, z0, b), the number of erased VNs in SP z is equal to

mz =





0 z < z0

min{b,M − S + 1} z = z0

max{0,min{M, b+ S − 1− (z − z0)M}} z > z0.
(16)

Our error estimation is again based on the average num-
ber of size-2 stopping sets formed among erased VNs.
Let N2(S, z0, b) denote the number of size-2 stopping sets
formed by VNs erased by the burst. BP decoding fails if
N2(S, z0, b) ≥ 1. Thus,

PRBC

B ≥ P{N2(S, z0, b) ≥ 1} (i)≈ E[N2(S, z0, b)]. (17)

There are two approaches to justify (i). The first approach
is to use arguments similar to Theorem 7 to lower-bound
P{N2(S, z0, b) ≥ 1} in terms of the average number of size-2
stopping sets and a much smaller correction term. However,
the derivation will be more involved than Theorem 7 and
will not lead to new insights, which is why we omit it here.
An alternative is to use standard arguments [4, App. C] to
approximate the distribution of size-2 stopping sets by a joint
Poisson distribution. The decoding error then corresponds
approximately to the average number of stopping sets.

Theorem 15. Consider the CR(dv, dc, w, L,M) SC-LDPC
ensemble affected by a burst of length b = βM with a random
starting bit M(z0−1)+S, where 1 ≤ S ≤M and β � βmax.
The number of erased VNs in SP z is given by mz in (16).
Then the expected number of size-2 stopping sets formed by
VNs erased by the burst is given by

E[N2(S, z0, b)]

'
L− dβe

(L− β)M + 1

M∑

S=1

dβe+1∑

z=1

((
mz

2

)
q0 +

w−1∑

k=1

mzmz+kqk

)

≈ 1

M

M∑

S=1

dβe+1∑

z=1

((
mz

2

)
q0 +

w−1∑

k=1

mzmz+kqk

)
. (18)

Proof. To find an expression for E[N2(S, z0, b)], we first note
that the starting position M(z0−1)+S of the burst is chosen
uniformly among the bits in [LM − b+ 1]. Then,

E[N2(S, z0, b)]

=
1

LM − b+ 1

LM−b+1∑

k=1

E[N2(S, z0, b) |M(z0 − 1) + S = k]

(i)

'
M

LM − b+ 1

L−dβe∑

z0=1

1

M

M∑

S=1

E[N2(S, z0, b)]

(ii)
=

L− dβe
(L− β)M + 1

M∑

S=1

E[N2(S, z0 = 1, b)]

(iii)
=

L− dβe
(L− β)M + 1

M∑

S=1

dβe+1∑

z=1

((
mz

2

)
q0 +

w−1∑

k=1

mzmz+kqk

)
,

where (i) is because we neglect a small positive contribu-
tion (O( 1

L )) of starting positions larger than (L − dβe)M
for non-integer β. Recall that β = b/M . We have (ii)
as 1

M

∑M
S=1 E[N2(S, z0, b)] is identical for different z0. Let

us justify (iii) using Lemma 14: for a given starting bit
1 ≤ S ≤M ,

(
mz

2

)
q0 is the average number of size-2 stopping

sets formed between erased VNs in SP z and mzmz+kqk is the
average number of size-2 stopping sets formed between erased
VNs in all pairs of SP z and z + k, k ∈ [w − 1]. We have
(iii) by summing the average number of size-2 stopping sets
formed between erased VNs in all pairs of SP z and z+k.

We verify Theorem 15 (and in particular (18)) for some
specific choices of b in the following examples.

Example 16 (b = M ). This is a generalized version of the
SPBC where the starting bit of the burst is not constrained to
occur at the exact boundary of the SP. In this case, the nonzero
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terms of (18) are
(
m1

2

)
q0,
(
m2

2

)
q0 and m1m2q1. Then (17) has

the following closed form

PRBC

B (M) '
(M − 1)(2M − 1)

6
q0 +

M2 − 1

6
q1,

which is obtained by summing all contributions after simpli-
fication of the sums. For large enough M , this term is well
approximated by

(
M
2

)
2q0+q1

3 . In contrast, the decoding error
of the SPBC is approximately P SPBC

B '
(
M
2

)
q0 ' PRBC

B (M),
as q1 < q0.

Example 17 (Tightness of (18) for b < βmaxM ). We plot the
decoding failure probability of the CR(3, 6, w, L,M) ensemble
for different finite values of M and for w = 3, 4 in Fig. 8
and Fig. 9. The maximum normalized correctable burst length,
βmax, is also illustrated in both figures. For each pair of M
and β, we choose a random instance from the code ensemble
and generate a random burst with length b = βM . The
decoding failure probability, PRBC

B , is averaged over all trials
until 1000 decoding failures occur. We also plot the error floor
estimation (18) for each M . Moreover, Fig. 10 compares the
error floor estimation with simulations for a larger range of
M and a fixed β = 1.25. For each value of M , we performed
Monte-Carlo simulations and counted 1000 decoding failures
to assess the average block erasure probability PRBC

B .
These figures show that for b < βmaxM , the error floor is

well estimated by (18) even for small M = 100. It implies that
the size-2 stopping sets are the main cause of decoding error.
We also observe that the decoding error increases very fast
for b/M close to βmax. As M increases, the waterfall region
becomes sharper around βmax.
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Fig. 8. Monte Carlo simulations over the RBC with the CR(3, 6, 3, 100,M)
ensemble with burst length b = βM . Solid lines represent simulation results
and dashed lines the error bound (18).

B. Single Burst Erasure in a BEC (SPBC+BEC)

In a more general scenario, we can consider a communi-
cation channel degraded by both memoryless noise and burst
erasures. We showed in [2] that SC-LDPC codes are asymp-
totically immune to a certain maximum burst length, which
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Fig. 9. Monte Carlo simulations over the RBC with the CR(3, 6, 4, 100,M)
ensemble with burst length b = βM . Solid lines represent simulation results
and dashed lines the error bound (18).
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Fig. 10. Monte Carlo simulations over the RBC with the CR(3, 6, 3, 100,M)
ensemble with burst length b = 1.25M , along with the approximation (18).

heavily depends on the distortion amount of the additional
memoryless noise. Moreover, we observed that the behavior
of these codes is very close on the BEC and the binary-input
additive white Gaussian noise channel (BiAWGNC). Here, for
simplicity, we characterize the error floor when the channel is
a BEC. However, it is to be noted that the error floor on both
these channels may not be the same.

Consider a BEC with (random) erasure probability ε that, in
addition, also introduces a single burst of erasures. We assume
that the burst erases a complete spatial position, i.e., a scenario
similar to the SPBC. For instance, this setup can model a noisy
distributed storage system with a single node failure and a
noisy channel between storage nodes and users. As before,
we focus on the number of erased size-2 stopping sets, N2(ε),
because on the one hand,

PB = P {at least one stopping set erased} ≥ P {N2(ε) ≥ 1} ,

and on the other hand, P {N2(ε) ≥ 1} converges to
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the expectation E[N2(ε)] for large ML. Consider the
CR(dv, dc, w, L,M) ensemble in which VNs of SP z0 ∈
{w, . . . , L − w} are erased by the burst error. The rest of
the VNs are randomly erased with probability ε. We compute
E[N2(ε)] by summation of three distinct contributions:
(i) Only BEC: A VN vi of SP z and a VN vj of SP z+k form

a stopping set contributing to the error rate if and only if
both VNs are erased. The events of forming a stopping set
and being erased are independent and thus the probability
of having such an erased stopping set amounts to ε2qk,
where qk is given by (14). Summing over all pairs of
VNs (taking into account boundary effects), yields

E(i) = ε2
w−1∑

k=0

(L− k)λk,

where λk is the average number of size-2 stopping sets
given by (15).

(ii) SPBC and BEC at SP z0: The VNs of SP z0 are all
erased. We already counted the contribution of a fraction
of these VNs in E(i) by assuming that the BEC erased
the bits in SP z0 equally likely. In particular, a pair of
VNs in SP z0 erased by the BEC will not be considered
here. Using (14), the probability that a pair of VNs (in
SP z0) is not both erased by BEC, and forms a stopping
set is (1 − ε2)q0. Summing over all

(
M
2

)
distinct pairs

gives
E(ii) = (1− ε2)λ0.

(iii) BEC and SPBC between SPs: A VN in SP z0, erased by
the SPBC and not by the BEC, can also form a stopping
set with VNs erased by the BEC in SP z0±k, 1 ≤ k < w.
The probability of such a stopping set is ε(1− ε)qk, and
summing over all possible pairs gives

E(iii) = 2ε(1− ε)
w−1∑

k=1

λk.

Summing all disjoint contributions leads to

E[N2(ε)] = E(i) + E(ii) + E(iii)

= λ0 + ε(2− ε)
w−1∑

k=1

λk + ε2
w−1∑

k=0

(L− k − 1)λk

and thus,
PB ≥ P {N2(ε) ≥ 1} ≈ E[N2(ε)]. (19)

In case there is no contribution from the additional BEC (i.e.,
ε = 0), E[N2(0)] = E[NSP

2 ] and the channel reduces to the
SPBC model (E(ii)). From Sec. III, we know that PB ≈
E[N2(0)] for large enough M . The same approximation is also
valid if ε� εBP, the BP threshold of the CR(dv, dc, w, L,M)
ensemble [8]. The reason is that size-2 stopping sets become
the dominant stopping sets when ε� εBP and M is large (see
also [10]). Moreover, N2(ε) converges to a Poisson distribution
for large M .

Note that E(i) = O(ε2L) and it can become the dominant
term when L is large. To see all the contributions, we compute
the decoding failure of CR(3, 6, 3, L = 10,M) ensemble over
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Fig. 11. Monte Carlo simulations over the SPBC with random erasures at
rate ε with the CR(3, 6, w, 10,M) ensemble, along with the approximate
bound (19).
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Fig. 12. Expected error floors for the CR(3, 6, 3, L,M) ensemble on the
BEC.

a combined SPBC and BEC. Two different erasure probabil-
ities are considered: ε = 0.1 and ε = 0.2. Fig. 11 illustrates
the results of both simulations. We plot the empirical block
erasure probabilities as well as its approximation from (19) in
terms of M . The simulation results are averaged over 1000
decoder failures. The results suggest that the approximation
becomes tight beyond M ' 150.

If we neglect the contributions of the SPBC (considering
only E(i)), we find an approximation for the error floor of the
ensemble over a BEC. For ε� εBP,

PB ≈ E[N2(ε)] = E(i) = ε2
w−1∑

k=0

(L− k)λk,

and the bit erasure probability of decoding is

Pb ≈
2E[N2(ε)]

LM
. (20)
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Similar approximations are shown in [10] for the error floor
of particular protograph-based SC-LDPC ensembles over the
BEC. Fig. 12 shows the error floor of CR(3, 6, 3, L,M) en-
semble in terms of ε with M = 128, 256, 512 and L =M/2.
The dashed-lines are computed according to (20). We see that
the approximation becomes tight for small ε when, indeed,
size-2 stopping sets dominate the performance.

C. Block Erasure Channel (BLEC)

Now we consider a more practical scenario where multi-
ple bursts may simultaneously affect the transmission. The
channel erases (all the VNs lying in) each SP independently
with some probability p. We call this model block erasure
channel and denote by BLEC(p). This channel model is more
challenging to analyze because there are Lp SPs erased on
average, with arbitrary locations. Two such erasures can be
spaced closely together (within w SPs) causing correlated
decoding failures or sufficiently spaced apart causing uncor-
related decoding failures. Our analysis consists of three steps:

(i) The first step is to partition the SPs into segments of
uncorrelated decoding failures. The key observation is
that decoding failures from two consecutive erased SPs
are independent if there are at least w − 1 non-erased
SPs between them. Thus, a segment is defined as the
sequence of consecutive SPs such that the last w−1 SPs
are non-erased and those are the only w− 1 consecutive
non-erased SPs in the segment. Let τi denote the length
of segment i. Since each SP is erased independently
with probability p, τi is an i.i.d. random process with
a bounded variance and average length given by the
following lemma.

Lemma 18. Consider the CR(dv, dc, w, L,M) SC-LDPC
ensemble on the block erasure channel BLEC(p). Assume
that L � w. Define a segment as the sequence of
consecutive SPs such that the last w − 1 SPs are non-
erased and those are the only w − 1 consecutive non-
erased SPs in the segment. The expected number of
spatial positions in a segment is given by

E[τi] =
1

p

(
1

(1− p)w−1
− 1

)

≈ (w − 1)

(
1 +

1

2
(w − 1)p+

5

6
(w − 1)2p2

)
.

(21)

The proof is outlined in Appendix C.
(ii) There are N segments if we have2 ∑N

i=1 τi = L+w−1. If
P

(i)
e denotes the decoding failure probability of segment
i, the average probability of decoding failure is

PBLEC

B = 1− E

[
N∏

i=1

(
1− P (i)

e

)]
,

2In the boundary, there are w−1 extra SPs with only check nodes. We can
assume that those SPs have known VNs (non-erased) with trivial zero values.

where the expectation is taken over different channel
realizations and the code ensemble. To simplify the above
expression, we apply the tower rule of expectation to get

PBLEC

B = 1− EN

[
E

[
N∏

i=1

(
1− P (i)

e

) ∣∣∣∣N
]]

= 1− EN
[(

1− E
[
P (1)
e

])N]

(i)

/ 1−
(
1− E

[
P (1)
e

])E[N ]

(ii)

/ E [N ]E
[
P (1)
e

]

=
(L+ w − 1)

E[τi]
E
[
P (1)
e

]
, (22)

where (i) follows from Jensen’s inequality and (ii) is
because (1−x)k ≥ 1−kx for x ≥ 0 and the last identity
is because E[N ] = (L + w − 1)/E[τi]. The inequality
(i) becomes a good approximation as N concentrates
to E[N ] for large L, and the inequality (ii) is a good
approximation if E [N ]E

[
P

(1)
e

]
� 1.

(iii) Finally, we need to estimate PB,seg = E
[
P

(1)
e

]
, the block

error probability of a segment, which can be written as

PB,seg =

∞∑

k=1

Qk,

where Qk is the average probability of segment block
error when k SPs (in arbitrary locations) have been
erased. In fact, each Qk is the expectation of the existence
of a stopping set (SS) over all possible combinations
of k erased SPs in a segment. While the probability of
each of those combinations depends on w and the block
erasure probability p of the channel, the occurrence of an
SS depends on the code ensemble and in particular M .
We can simply estimate the dominant term of each Qk
separately following the methodology introduced in the
previous sections.
For ease of exposition, we exemplarily consider the
specific ensemble CR(3, 6, w = 4, L,M). The results
can be easily modified for other ensembles. The DE
analysis of a single-burst channel, shown in Fig. 1, yields
β(0) = βmax = 2.14 implying that BP decoding is not
successful if three or more consecutive SPs are erased
in the ensemble and thus, Qk > 0 for k ≥ 3, even
asymptotically. For k < 3, Qk tends to zero in the limit
of M . In this case, we estimate Qk using our single-
burst models. The case of k = 1 is basically the SPBC
scenario when a single SP is erased times the probability
of erasing only a SP in a segment. Therefore,

Q1 = P SPBC

B (1− p)w−1G(1)

= P SPBC

B (1− p)w−1(1− (1− p)w−1),
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where G(x) is defined in Appendix C. For k = 2,

Q2 =

w−2∑

z=0

P {z SPs between 2 erased SPs}

× P {having an SS|z SPs between 2 erased SPs}
(i)

' P {z = 0}P {having an SS|z = 0}
= p(1− p)w−1G(1)P {having an SS|z = 0} (23)
(ii)

' p(1− p)w−1G(1)

(
2

(
M

2

)
q0 +M2q1

)
, (24)

where q0 and q1 are obtained using Lemma 14 and
G(1) = 1−(1−p)w−1 as defined in Appendix C. and the
inequality (i) is obtained by only considering the domi-
nant term of the sum, when 2 consecutive SPs are erased
(z = 0). We define P 2PBC

B = P {having an SS|z = 0} =
2
(
M
2

)
q0 + M2q1. Let us justify (ii) using the bound

for the RBC. Consider a burst of length b = 2M . We
bound the probability of error in (18) by averaging over a
random, uniformly distributed starting bit S. Here, S = 1.
Hence, we have (ii) by considering only the term for
S = 1 in (18) (without the averaging factor 1

M ).
Note that one can also estimate all remaining w−1 terms
of Q2 following the same methodology. We neglect these
terms as (23) is simple and much larger than the other
terms. For k ≥ 3, BP decoding fails if there are at least 3
consecutive erased SPs out of k erased SPs in a segment.
These combinations become the dominant term of Qk
for large values of M . Let Qcons

k denote the probability
of observing k erased SPs with at least 3 consecutive
erased SPs (in this case, there is certainly a stopping set
and decoding is impossible). Then

∞∑

k=3

Qk '
∞∑

k=3

Qcons
k

= p2 1− (1− p)w−1

(1− p)w−1 + p
,

where the last equality is the result of Lemma 24 in
Appendix C. As a result,

PB,seg ≈ Q1 +Q2︸ ︷︷ ︸
finite−length error

+

∞∑

k=3

Qcons
k

︸ ︷︷ ︸
DE error

.

Let us now summarize the above analysis. The error
events are divided into two subsets: the first subset, named
here “finite-length error”, includes the error events with
vanishing probability in the limit of M . The quantities
Q1 and Q2 are its dominant terms. The second subset,
named here “DE error”, are the error events that cause the
BP decoder to always fail for any value of M . Combining
steps (i), (ii), and (iii), we have,

PBLEC

B ≈ (L+ w − 1)p(1− p)w−1

(
(1− p)w−1

[
P SPBC

B +

pP 2PBC
B

]
+

p2

(1− p)w−1 + p

)
, (25)

where P SPBC
B and P 2PBC

B are given in (3) and (24),
respectively.
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Fig. 13. Monte Carlo simulations over the BLEC with the CR(3, 6, 4, 30,M)
ensemble, along with their respective approximations according to (25).
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Fig. 14. Monte Carlo simulations over the BLEC with the CR(3, 6, 4, 30,M)
ensemble, along with their respective approximations according to (25).

We performed Monte Carlo simulations over the BLEC
to verify the tightness of the above estimation for the
CR(3, 6, 4, 30,M) ensemble. The simulation results are ob-
tained by counting 100 decoding failures. Figure 13 illustrates
the goodness of approximation (25) in terms of M for two
different values of p = 0.01 and p = 0.03. We observe that
the approximation well match the simulation results. Note that
the approximation requires the estimation of P 2PBC

B for a burst
of length 2M . For this purpose, we used computer simulations
to numerically compute this value. Another option would be
to use the error-floor expression (24), which would however
result in a worse approximation for small values of M ≈ 100.

We also plot the average block error probability in terms
of the channel parameter p in Fig. 14. We see again that the
approximations track the actual performance closely for p even
as large as 0.1 and for M as small as 100.
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The above analysis indicates that the error analysis of a
more complex erasure channel model, such as the BLEC(p),
is feasible by breaking down the channel model into combi-
nations of single-burst channel models.

VI. CONCLUSIONS

In this paper, we have analyzed random regular SC-LDPC
ensembles on burst-erasure channels. Using density evolution,
we have shown the asymptotically correctable maximum burst
erasure length. However, for finite-length codes, some burst
erasures shorter than this length may not be recoverable. The
reason is that due to finite-length effects of certain graph
structures, known from conventional LDPC decoding, the
decoding could stop prematurely. Based on these structures,
we have derived tight lower bounds or approximations on the
block erasure probability of SC-LDPC code ensembles when
the burst has one of the following characteristics:
• it erases a single random spatial position completely, or
• it erases a random spatial position completely in addition

to a memoryless background noise (e.g. BEC), or
• it has a fixed length but starts at a random bit and erases

a sequence of spatial positions, or
• it erases each spatial position independently with some

probability p.
Moreover, we have shown that expurgating the codes can
considerably improve the block erasure rates and guarantee
virtually error-free performance (e.g. P SPBC

B ≈ 10−15) for very
short block lengths (e.g. M ≈ 120).

Directions for future research include the construction of
new, possibly more structured burst-resilient ensembles based
on this analysis and a more detailed analysis of the block
erasure channel.
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APPENDIX A
PROOF OF THEOREM 7

Before presenting the proof of Theorem 7, we give the
following Lemma, which we will need in our proof besides
Lemma 5.

Lemma 19. Consider one SP of a code sampled from the
CR(dv, dc, w, L,M) SC-LDPC ensemble. Recall the indicator
function Uij = 1 if VNs vi and vj in that SP form a size-2
stopping set. Assuming dc > 2 and wM ≥ 2(dv + 1)dc, we
have the following bound on the joint expectation

E[UijUkl] ≤
2E[Uij ]

(wM dv
dc
−2dv

dv

) .

http://arxiv.org/abs/1501.04394
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Proof. We have to distinguish two cases. In the first case,
variable nodes vi and vj , j 6= i form a stopping set of size
two and variable nodes vk and vl, l 6= k 6= i form another
stopping set, where w.l.o.g., we assume k = j, i.e., the two
stopping sets share a variable node. In this case, we have

E [UijUjl] = P {Uij = 1, Ujl = 1}
= P {Ujl = 1|Uij = 1}P {Uij = 1}
= E[Uij ] · P {Ujl = 1|Uij = 1}

where P {Ujl = 1|Uij = 1} can be computed using similar
arguments as in the proof of Lemma 5, except that some
sockets have already been occupied by the edges emerging
from the VNs vi and vj and for forming an SS, node vl can
choose among dv(dc − 2) sockets. We have

P {Ujl = 1|Uij = 1} = (1− 2/dc)
dv

∑dv
`=0

(
dv
`

)(wM dv
dc
−dv

dv−`
)
(1− 2/dc)`

.

We upper bound P {Ujl = 1|Uij = 1} by considering only the
dominant term (` = 0) in the denominator

P {Ujl = 1|Uij = 1} ≤ (1− 2/dc)
dv

(wM dv
dc
−dv

dv

) ≤
1

(wM dv
dc
−dv

dv

) .

Hence, for i ∈ [M ], j ∈ [M ]\{i} and l ∈ [M ]\{i, j} we have

E [UijUjl] ≤
E[Uij ]

(wM dv
dc
−dv

dv

) .

Now, we consider the second, more general case, where i ∈
[M ], j ∈ [M ]\{i} and k ∈ [M ]\{i, j} and l ∈ [M ]\{i, j, k}.
If vi and vj form a stopping set of size two, we have |N (vi)∩
N (vj)| = dv . Thus, we have

E [UijUkl]

= P {Uij = 1}P {Ukl = 1|Uij = 1}
(a)
= P {Uij = 1}

dv−1∑

b=0

P
{
Ukl = 1, |N (vi) ∩N (vk)| = b

∣∣Uij = 1
}

, P {Uij = 1}
dv−1∑

b=0

Pcorr,b,

where in (a) we marginalize over the number b of check
nodes shared between both size-2 stopping sets {vi, vj} and
{vk, vl}, b ≤ dv . Let Tss,b denote the number of favorable sub-
graphs from these VNs provided that b check nodes between
both stopping sets are shared and let T̃ denote the number
of all sub-graphs from these VNs provided that Uij = 1 and
|N (vi) ∩N (vl) ∩N (vk)| ≤ dv . Thus,

Pcorr,b ,P
{
Ukl=1, |N (vi) ∩N (vk)| = b

∣∣Uij = 1
}
= Tss,b/T̃ .

First, we compute Tss,b = T{i,j},k,bT{i,j,k},l,b as follows:
T{i,j},k,b is the number of sub-graphs in which vk is connected
to randomly chosen b CNs of N (vi), i.e., CNs with already 2
connections from vi and vj . T{i,j,k},l,b is the number of ways
to connect vl to any of these sub-graphs such that Ukl = 1.
We have

T{i,j},k,b = dv!

(
dv
b

)(
wM dv

dc
− dv

dv − b

)
(dc − 2)b(dc)

dv−b,

where dv! is due to the permutation of labeled edges, and the
rest is counting the different ways of choosing labeled sockets
of CNs. Similarly, we get

T{i,j,k},l,b = dv!(dc − 3)b(dc − 1)dv−b.

This yields

Tss,b

= T{i,j},k,bT{i,j,k},l,b

= (dv!)
2

(
dv
b

)(
wM dv

dc
− dv

dv − b

)
(dc(dc − 1))

dv−b

× ((dc − 2)(dc − 3))
b

≤ (dv!)
2

(
dv
b

)(
wM dv

dc
− dv

dv − b

)
(dc(dc − 1))

dv

(
dc − 2

dc

)2b

.

The total number of possibilities T̃ can be lower bounded
by its subset which is |N (vi) ∪ N (vk) ∪ N (vl)| = 3dv (no
common CNs).

T̃ ≥ (dv!)
2

(
wM dv

dc
− dv

dv

)(
wM dv

dc
− 2dv

dv

)
(dc)

2dv .

Hence Pcorr,b can be bounded as

Pcorr,b =
Tss,b

Tb

≤
(
dv
b

)(wM dv
dc
−dv

dv−b
)

(wM dv
dc
−dv

dv

)(wM dv
dc
−2dv

dv

)
(
1− 1

dc

)dv (
1− 2

dc

)2b

(a)

≤
(
dv
b

)
dbc

(wM − 2dc)b
(wM dv

dc
−2dv

dv

)
(
1− 1

dc

)dv (
1− 2

dc

)2b

,

where (a) is as
(wM dv

dc
−dv

dv−b
)
≤
(wM dv

dc
−dv

dv

)(
dv

wM dv
dc
−2dv

)b
.

Finally, we get

dv−1∑

b=0

Pcorr,b ≤
(1− 1/dc)

dv

(wM dv
dc
−2dv

dv

)
dv∑

b=0

(
dv
b

)(
dc − 2

wM − 2dc

)b

=
(1− 1/dc)

dv

(wM dv
dc
−2dv

dv

)
(
1 +

dc − 2

wM − 2dc

)dv

(a)

≤ 2
(wM dv

dc
−2dv

dv

)

where (a) is because (1 + dc−2
wM−2dc

)dv ≤ (1 + 1
2dv

)dv < 2 for
wM ≥ 2(dv + 1)dc. Taking the larger upper-bound of both
cases proves the claim.

Proof of Theorem 7:

Consider one SP of a code sampled from the
CR(dv, dc, w, L,M) ensemble. Recall that NSP

2 =∑
1≤i<j≤M Uij and E[NSP

2 ] =
(
M
2

)
P {Uij = 1} =

(
M
2

)
E[Uij ].

We then have

P SPBC

B = P {At least one stopping set in a SP}
≥ P {NSP

2 ≥ 1}
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(a)

≥ E[NSP
2 ]2

E
[
(NSP

2 )
2
] (26)

where (a) is the application of the second moment method [4,
Lemma C.8]. Furthermore,

E
[
(NSP

2 )
2
]
= E





 ∑

1≤i<j≤M
Uij




2



=
∑

1≤i<j≤M
E[U2

ij ] +
∑

(i,j) 6=(k,l)
i<j,k<l

E[UijUkl]

≤
(
M

2

)
E[Uij ] +

2
(
M
2

) ((
M
2

)
− 1
)

(wM dv
dc
−2dv

dv

) E[Uij ],

where in the last step,
∑

1≤i<j≤M E[U2
ij ] =

(
M
2

)
E[Uij ] as

Uij ∈ {0, 1} and the second term is the application of
Lemma 19 over the remaining

(
M
2

) ((
M
2

)
− 1
)

combinations.
Finally, we can write (26) as

P SPBC

B ≥
(
M
2

)2
E[Uij ]2

(
M
2

)
E[Uij ] +

2(M2 )((
M
2 )−1)

(
wM

dv
dc

−2dv

dv
)
E[Uij ]

≥
(
M
2

)
E[Uij ]

1 +
2(M2 )

(
wM

dv
dc

−2dv

dv
)

(a)

≥ E[NSP

2 ]


1− 2

(
M
2

)
(wM dv

dc
−2dv

dv

)




≥ E[NSP

2 ]


1− M2

(
wM
dc
− 3
)dv




where (a) is due to the fact that 1
1+τ ≥ 1−τ for τ > −1.

APPENDIX B
THE POISSON ENSEMBLE

Lemma 20. Consider a code sampled uniformly from the
Poisson ensemble CP(dv, dc, w, L,M). The probability that
two variable nodes from a spatial position form a stopping
set amounts to

PP =

(
wM dv

dc

dv

)−1

. (27)

Proof. Let vi and vj be two VNs randomly chosen from an SP
z of the CP(dv, dv, w, L,M) ensemble, i.e., i, j ∈ {(z−1)M+
1, . . . , zM} for z ∈ [L]. The computation of PP , E[Uij ] for
this ensemble is much simpler as we do not need to distinguish
sockets. Assume that the edges of vj are assigned to CNs
sequentially after edges of vi have been assigned to CNs. The
first edge can connect to any of the (wM dv

dc
) CNs from SPs

z, z + 1, . . . , z + w − 1. As we avoid parallel edges in the
construction, the second edge has one CN less to choose from,
the third edge has two CNs less to choose from and so on.
But, there is exactly one way in which the edges can connect

exactly to the same CNs as vi, with dv! possible permutations
of the edge arrangements. Hence the probability of vj forming
a stopping set with vi is

PP , P {Uij = 1}

=
dv!(

wM dv
dc

)(
wM dv

dc
− 1
)
· · ·
(
wM dv

dc
− dv + 1

) .

which leads to the statement after simplification.

Theorem 21. Consider the ensembles CR(dv, dc, w, L,M)
and CP(dv, dc, w, L,M). For two VNs from the same spatial
position, the probability that they form a stopping set is larger
for the Poisson ensemble, i.e., PP ≥ PR.

Proof. We upper bound (1) as

PR =

(
1− 1

dc

)dv

dv∑
`=0

(
dv
`

)(wM dv
dc
−dv

dv−`
) (

1− 1
dc

)`

≤ 1
dv∑
`=0

(
dv
`

)(wM dv
dc
−dv

dv−`
)

(a)
=

1
(wM dv

dc
dv

) = PP ,

where (a) is due to Vandermonde’s identity.

Lemma 22. Consider one SP of a code sampled from the
CP(dv, dc, w, L,M) SC-LDPC ensemble. Define the indicator
function Uij = 1 if VNs vi and vj in that SP form a size-2
stopping set. If wM ≥ 2(dv + 1)dc, we have the following
bound on the joint expectation

E[UijUkl] ≤
2E[Uij ]

(wM dv
dc
−dv

dv

)

Proof. We follow lines of the proof of Lemma 19. Again, we
distinguish two cases. In the first case, variables vi and vj ,
j 6= i, form a stopping set of size two and variable nodes vk
and vl form another stopping stop, where w.l.o.g., we assume
k = j, i.e., the two stopping sets share a variable node. In this
case, we have

E [UijUjl] = E[Uij ] · P {Ujl = 1|Uij = 1}
where P {Ujl = 1|Uij = 1} can be computed using similar
arguments as in the proof of Lemma 20 and we have

P {Ujl = 1|Uij = 1} = 1
(wM dv

dc
dv

) .

In the second, more general case, where i ∈ [M ], j ∈ [M ]\{i}
and k ∈ [M ]\{i, j} and l ∈ [M ]\{i, j, k}, we have with PP ,
P {Uij = 1},

E [UijUkl]

= PP · P {Ukl = 1|Uij = 1}
(a)
= PP

dv∑

b=0

P {Ukl = 1, |N (vi) ∩N (vk)| = b | Uij = 1}

, PP

dv∑

b=0

PP,corr,b,
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where in (a) we marginalize over the number b of check nodes
shared by both size-2 stopping sets {vi, vj} and {vk, vl}, b ≤
dv . Let Tss,b denote the number of favorable sub-graphs from
these VNs provided that b check nodes between both stopping
sets are shared and let T̃ denote the number of all sub-graphs
from these VNs provided that Uij = 1 and |N (vi)∩N (vl)∩
N (vk)| ≤ dv . Thus,

PP,corr,b ,P
{
Ukl=1, |N (vi) ∩N (vk)| = b

∣∣Uij=1
}
=Tss,b/T̃ .

First, we compute Tss,b = T{i,j},k,bT{i,j,k},l,b as follows:
T{i,j},k,b is the number of sub-graphs in which vk is connected
to randomly chosen b CNs of N (vi), i.e., CNs with already
2 connections from vi and vj . T{i,j,k},l,b = dv! is the number
of ways to connect vl to N (vk), i.e., Ukl = 1. We have

T{i,j},k,b = dv!

(
dv
b

)(
wM dv

dc
− dv

dv − b

)
,

where dv! is due to the permutation of labeled edges, and the
rest of the expression counts the different ways of choosing
CNs. This yields

Tss,b = (dv!)
2

(
dv
b

)(
wM dv

dc
− dv

dv − b

)
.

The total number of possibilities T̃ can be lower bounded by
its subset which is |N (vi)∪N (vk)| = |N (vi)∪N (vl)| = 2dv
(no common CNs with vi and vj), with

T̃ ≥
(
dv!

(
wM dv

dc
− dv

dv

))2

.

Using Vandermonde’s identity, we have,

dv∑

b=0

PPcorr,b ≤
1

(wM dv
dc
−dv

dv

)2
dv∑

b=0

(
dv
b

)(
wM dv

dc
− dv

dv − b

)

≤
(wM dv

dc
dv

)

(wM dv
dc
−dv

dv

)2 .

We further have
(wM dv

dc
dv

)

(wM dv
dc
−dv

dv

) ≤
(
wM dv

dc
− dv

wM dv
dc
− 2dv

)dv

≤
(
1 +

1

2dv

)dv
≤ √e < 2.

where the second inequality is because wM ≥ 2(dv + 1)dc
by assumption. Thus,

dv∑

b=0

PPcorr,b ≤
2

(wM dv
dc
−dv

dv

) .

The statement of the lemma follows by combining both cases.

Theorem 23. Consider a code sampled uniformly from the
CP(dv, dc, w, L,M) ensemble with wM ≥ d2

c . If a randomly
chosen spatial position of this code is completely erased, the

(average) probability of BP decoding failure is lower-bounded
by

P SPBC

B ≥
(
M

2

)(
1− M2

( wdcM − 2)dv

)
PP , (28)

where PP is the probability that two variable nodes from a
spatial position of the code form a stopping set, given by (27).

Proof. We follow a similar argument as in the proof of
Theorem 7. We get with Lemma 22

P SPBC

B ≥
(
M
2

)
E[Uij ]

1 +
(M2 )

(
wM

dv
dc

−2dv

dv
)

≥ E[NSP

2 ]


1− M2

(
wM
dc
− 2
)dv




and by computing E[NSP
2 ] as

(
M
2

)
PP using Lemma 20.

APPENDIX C

Proof of Lemma 18:

We use the method of generating functions to compute this
quantity. Specifically, we construct a function G(x) where
the exponent of x in each term signifies the number of SPs
involved in a segment with one erased SP. For convenience,
we exclude the final sequence of w−1 unerased SPs in G(x).
So finally we will have to multiply G(x) by (1− p)w−1xw−1

to account for these. Let E denote an erased SP and N denote
a non-erased SP. Then, starting from the first SP in a segment,
we have the following possible outcomes with their respective
probabilities and generating function terms:

Pattern Probability Term in G(x)
E p px

NE (1− p)p (1− p)px2

NNE (1− p)2p (1− p)2px3

...
...

...
NN . . .N︸ ︷︷ ︸

w−2

E (1− p)w−2p (1− p)w−2pxw−1

So we have

G(x) = px+ (1− p)px2 + . . .+ (1− p)w−2pxw−1

= px · 1− (1− p)w−1xw−1

1− (1− p)x
Note that G(x) < 1 ∀ x ≤ 1 and G(1) = 1−(1−p)w−1. Also
for k ≥ 0, G(x)k generates all the possible sequences with k
SPs erased and where the separation between two consecutive
erased SPs is strictly less than w − 1. Hence every possible
sequence ending with w − 1 Ns can be enumerated as

F (x) =

∞∑

k=0

G(x)k(1−p)w−1xw−1 = (1−p)w−1xw−1 1

1−G(x) .

Note that F (1) = 1 which implies that we have counted all
the possible sequences. Also, implicitly we have set L → ∞
for convenience. In fact, we can rewrite F (x) as

F (x) =

∞∑

n=w−1

pnx
n,
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where pn is the probability of all sequences of length n. Then
we can compute the required quantity as

E[τi] =
d

dx
F (x)

∣∣∣∣
x=1

= F ′(1) =
1

p

(
1

(1− p)w−1
− 1

)
.

Lemma 24. Assume the transmission of a code from the
CR(dv, dc, w, L =∞,M) SC-LDPC ensemble over the block
erasure channel BLEC(p). Consider a segment of spatial
positions, as defined in Section V-C. Let Qcons

k denote the prob-
ability of incurring k erased SPs with at least 3 consecutive
erased SPs. Then

∞∑

k=3

Qcons
k = p2 1− (1− p)w−1

(1− p)w−1 + p
.

Proof. We need to count all possible combinations of erased
SPs in a segment with at least 3 consecutive erased SPs.
We use again the method of generating functions with the
same G(x) as defined in the proof of Lemma 18. All possible
combinations are depicted as follows:





E
NE
NNE

...
N . . .NE





· · ·





E
NE
NNE

...
N . . .NE





︸ ︷︷ ︸
k1≥0





E
NE
NNE

...
N . . .NE





EE





NE
NNE

...
N . . .NE




· · ·





NE
NNE

...
N . . .NE





︸ ︷︷ ︸
k2≥0

NN . . .N︸ ︷︷ ︸
w−1

.

The middle terms guarantee to have 3 consecutive erased SPs.
The k1 and k2 enumerate all possible erasure sequences that
can happen before and after the consecutive erased SPs. Note
that we must exclude the event of “E” (only single erased SP)
in the k2 sequences (or, alternatively, in the k1 sequences) to
generate all possible combinations once.

As a result,
∞∑

k=3

Qcons
k =

( ∞∑

k1=0

G(x)k1

)
G(x)(px)2

×
( ∞∑

k2=0

(G(x)− px)k2
)
(1− p)w−1xw−1

∣∣∣∣
x=1

=
1

1−G(1)G(1)p
2 1

1−G(1) + p
(1− p)w−1

= p2 1− (1− p)w−1

(1− p)w−1 + p
.
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