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On the Optimality of Secret Key Agreement

via Omniscience
Chung Chan, Manuj Mukherjee, Navin Kashyap and Qiaoqiao Zhou

Abstract—For the multiterminal secret key agreement problem
under a private source model, it is known that the maximum
key rate, i.e., the secrecy capacity, can be achieved through
communication for omniscience, but the omniscience strategy
can be strictly suboptimal in terms of minimizing the public
discussion rate. While a single-letter characterization is not
known for the minimum discussion rate needed for achieving
the secrecy capacity, we derive single-letter lower and upper
bounds that yield some simple conditions for omniscience to be
discussion-rate optimal. These conditions turn out to be enough to
deduce the optimality of omniscience for a large class of sources
including the hypergraphical sources. Through conjectures and
examples, we explore other source models to which our methods
do not easily extend.

Index Terms—secret key agreement, omniscience, multivariate
mutual information, Wyner common information, Gács-Körner
common information.

I. INTRODUCTION

We consider the secret key agreement problem of [1], pos-

sibly with trusted and untrusted helpers, as well as silent users

as in [2]. Two or more users want to agree on a secret key after

observing some discrete memoryless correlated private sources

that take values from finite alphabet sets. The users are allowed

to discuss (possibly interactively) with other users publicly

over a noiseless authenticated broadcast channel. After the

discussion, each active user (who is not a helper) attempts to

compute a common secret key that is asymptotically uniformly

random and independent of the public discussion as well as

the private sources of the untrusted helpers. The maximum

achievable key rate is called the secrecy capacity CS, and

the minimum public discussion rate required to achieve the

capacity is called the communication complexity RS. While

CS was characterized in [1], a single-letter characterization

for RS remains open, and is the main focus of this work.

For the general source model with possibly trusted helpers,

it was shown in [1] that RS can be upper bounded by
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the smallest rate RCO of communication for omniscience

(CO), the state where every active user can asymptotically

recover the entire private source. More precisely, the proposed

capacity-achieving scheme is through omniscience, i.e., by

having users communicate in public until every user recovers

the entire private source and then extract a common secret key

as a function of the recovered source that is asymptotically

independent of the public discussion. While this omniscience

strategy was shown to be capacity-achieving, it was also

pointed out in [1] to be suboptimal in the sense that strict

inequality RS < RCO is possible.

For the general source model with two users but no helpers,

there is a multi-letter characterization of RS in [3], and an

example was also given where non-interactive discussion, i.e.,

the usual independent source coding scheme over a source

network [4], was shown to be suboptimal. When the number of

discussion rounds is bounded, their characterization becomes

a single-letter expression. [5] extended the framework of [3] to

the multiterminal case and obtained a lower bound of RS. The

lower bound is a multi-letter even when the number of rounds

is bounded. A special hypergraphical private source model [6]

was also considered in [7] in the multi-user case but without

helpers, and RS was characterized when the discussion is non-

asymptotic and restricted to be linear functions over a finite

field. However, the expression was NP-hard to compute, and it

was shown to be a loose upper bound for RS in the asymptotic

model [7].

While a single-letter characterization remains unknown even

for the two-user case, simpler questions about the communi-

cation complexity may be asked. In the no-helper case, [8]

considered the refined condition of omnivocality, which is the

scenario when every user must discuss at strictly positive rate

to achieve the secrecy capacity. The result was further refined

by [9] to a set of vocality conditions that describes whether

a particular user needs to discuss at strictly positive rate to

achieve the capacity. These conditions were conjectured to be

necessary and sufficient, but the conjectures turn out to be easy

to resolve (see [10–12]) using

1) the characterization of the secrecy capacity in [2] in the

no-helper case under the additional vocality constraints

that a given proper subset of the users, called the silent

users, are not allowed to discuss, and

2) the properties of the multivariate mutual information

(MMI) [10] that was shown in [6, 13] to be equal to

the secrecy capacity in the no-helper case.

In this work, we consider a different question that turns out

to be easier to address than the problem of characterizing RS:

When is omniscience optimal for achieving secrecy capacity,

http://arxiv.org/abs/1702.07429v2
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i.e., when is RS = RCO? This question was raised in

[14] in the no-helper case, and a sufficient condition for the

optimality of omniscience was given in the special case of the

pairwise independent network (PIN) model defined in [15, 16].

The sufficient condition was later shown to be necessary

in [5]. However, the result does not apply to more general

source models beyond PIN, such as the hypergraphical model.

Moreover, the problem formulation in [5] precludes additional

randomization in the public discussion; it was conjectured (but

not proved) there that randomization does not affect RS. In this

work, we overcome the above weaknesses and the following

are the contributions:

1) Derive single-letter lower and upper bounds for a general

source model possibly with helpers and silent users, and

with private randomization allowed.

2) Obtain easily computable sufficient as well as necessary

conditions for the optimality of omniscience.

3) Discover more scenarios beyond PIN for which RS can

be characterized by RCO.

4) Give concrete examples where the sufficient/necessary

conditions can fail to be necessary/sufficient respectively,

which may inspire further improvement on the bounds.

The results in the no-helper case will be stated more mean-

ingfully using the MMI in [10] that extends Shannon’s mutual

information to the multivariate case. RS can be viewed as a

measure of discord of the mutual information, and the public

discussion viewed as an irreversible process of making the

mutual information among the users less and less discordant

until a consensus is achieved wherein the mutual information

among the users is consolidated as a common secret key

without further discussion.

The paper is organized as follows:

• The main ideas of the paper are motivated in Section II

with some simple examples. Some background knowl-

edge in secret key agreement is assumed.

• Section III formulates the problem by introducing 1) the

secret key agreement problem with different types of

users in Section III-A, and 2) the capacity-achieving

omniscience strategy in Section III-B.

• For ease of understanding, the main results are introduced

in two stages. The basic scenario with no helpers or

silent users is first tackled in Section IV, where the

fundamental proof techniques can be conveyed without

much notational complexity.

• In the second stage, the proof techniques are extended to

the general scenarios with helpers and silent users. We

first derive single-letter upper bounds on the communi-

cation complexity in Section V, which follows directly

from the achievability result of the omniscience strategy

in Section V-A or indirectly by a change of scenario in

Section V-B.

• Single-letter lower bounds for the general scenario are

derived in Section VI. We extend the proof techniques

in an information-theoretically meaningful manner, by

introducing in Section VI-A some properties of a frac-

tional partition information measure useful for proving

converse results. The general lower bound is then derived

in Section VI-B using the converse proof techniques. The

tightness of the bound is investigated in Section VI-C,

VI-D, VI-E and VI-F, where the general lower bound

is specialized and strengthened to different forms under

different scenarios and for the hypergraphical source

model.

• Section VII explain the challenges that remain. The

current techniques was shown to be limited for a non-

hypergraphical source in Section VII-A, resolving the

conjecture in [17]. Potential improvements of the results

are conjectured and illustrated in Section VII-B.

Proofs of the results are included in the appendices.

II. MOTIVATION

The purpose of this section is to present some simple

motivating examples. It is assumed that the reader is familiar

with the basic problem of multiterminal secret key agreement,

as introduced in [1].

We first introduce the idea of secret key agreement infor-

mally by the following example where omniscience is strictly

suboptimal RS < RCO.

Example 2.1 Let X0,X1 and J be uniformly random and

independent bits. Suppose users 1 and 2 observe the private

sources
Z1 := (X0,X1) and

Z2 := (XJ, J)

respectively, where XJ is equal to X0 if J = 0, and equal to X1

otherwise. A secret key agreement scheme with block length

n = 1 is to have
F := F2 = J and

K := XJ,

i.e., have user 2 reveal J in public so that both users can

compute and use XJ as the secret key, which can be shown

to be independent of F as desired. This is capacity-achieving

because the secrecy capacity in the two-user case is the mutual

information [1]

CS = I(Z1 ∧ Z2) = 1

and so the communication complexity RS is at most H(J) =
1. Note that omniscience has not been attained because

H(Z1|Z2) > 0 (and so user 2 cannot recover Z1−J unless

user 1 also communicates). More precisely, from [1], the

minimum rate of communication for omniscience is

RCO = H(Z1|Z2) +H(Z2|Z1) = 2 > 1 ≥ RS.

In particular, to achieve omniscience, user 1 needs to discuss

at rate at least H(Z1|Z2) while user 2 needs to discuss at rate

at least H(Z2|Z1), hence the RCO formula above. ✷

RS is difficult to compute even for the above example.

Nevertheless, there is a simple condition for omniscience to

be optimal in the general two-user case, which is obvious

from [3, 18, 19]:
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Proposition 2.1 For the two-user case, RS = RCO iff RCO =
0, i.e., H(Z1|Z2) = H(Z2|Z1) = 0 where Zi is the private

source observed by user i ∈ {1, 2}. ✷

PROOF The “if” case is trivial and follows from the bound

RS ≤ RCO. To prove the “only if” case, note that the

capacity-achieving scheme of [18, 19] has a discussion rate of

min{H(Z1|Z2), H(Z2|Z1)} ∈ [RS, RCO]. RS = RCO implies

that the minimum is RCO = H(Z1|Z2)+H(Z2|Z1) [1], which

happens iff H(Z1|Z2) = H(Z2|Z1) = 0, or equivalently,

RCO = 0. �

One of our goals is to extend the above condition to the mul-

titerminal case to discover new scenarios where omniscience

is optimal:

Example 2.2 Suppose user 3 observes the private source

Z3 := Z1 ⊕ Z2, (2.2)

which is the XOR of two uniformly random and independent

bits Z1 and Z2 observed by users 1 and 2 respectively. In the

no-helper case, a secret key agreement scheme is to have each

user i ∈ {1, 2, 3} observe n = 2 i.i.d. samples, Zi1 and Zi2,

of its private source, and then choose

F := (F1,F2,F3) = (Z11 ⊕ Z12,Z22,Z31) and

K := Z11.

It can be shown that K is independent of (F1,F2,F3) and

therefore secure. User 1 can recover the key trivially, while

users 2 and 3 can recover it from their observations and the

public discussion by computing respectively

F3 ⊕ Z21 = K and

F1 ⊕ F2 ⊕ Z32 = K

by (2.2). This is capacity-achieving because the secrecy ca-

pacity is upper bounded by [1, (26)] as

CS ≤ 1

2

[
3∑

i=1

H(Zi)−H(Z1,Z2,Z3)

]

=
1

2
,

which is achieved by the current scheme. Omniscience is also

attained because H(K,F) = 4, which is the randomness of

the entire source sequence (Zn
1 ,Z

n
2 ,Z

n
3 ). Since every user can

observe F and recover K, they can also recover the entire

source sequence. ✷

The above example belongs to a more general finite linear

source model [13] instead of the PIN or hypergraphical source

model considered in the existing works of [5, 20]. Our result

will imply RS = RCO for this example.

III. PROBLEM FORMULATION

While the no-helper case provides much intuition into the

problem of communication complexity, we will consider the

more general scenario with helpers and silent users, which

unveils new challenges and inspires new techniques. More

precisely, we will extend the secret key agreement protocol

of [1] without silent users and that of [2] without helpers to

study the problem of communication complexity in the general

case with both helpers and silent users. It will be seen that the

secret key agreement scheme via omniscience from [1] needs

to be modified, in particular, to minimize the discussion of the

untrusted users, and to incorporate silent users as in [2].

A. Communication Complexity

The following specifies all the user sets involved in the

secret key agreement problem:

User sets

V : The ordered finite set of all users, where |V | ≥ 2. Unless

stated otherwise, we assume V = [|V |] where

[m] := {1, . . . ,m} (3.1)

for any positive integer m ≥ 2.

A ⊆ V : The subset of |A| ≥ 2 users, called the active

users (who want to share a common secret key among

themselves). V \A is called the set of helpers (who help

the active users share the secret key).

D ⊆ V \A: The subset of untrusted helpers (whose observa-

tions are wiretapped). The subset1V \ A \D consists of

the trusted helpers.

S ⊆ A ∪D: The subset of silent users (who cannot speak in

public). V \ S consists of the vocal users. Without loss

of generality, we assume V \S := [|V \S|] unless stated

otherwise.

The users have access to a private (discrete memoryless

multiple) source denoted by the random vector

ZV := (Zi | i ∈ V ) ∼ PZV
taking values from

ZV :=
∏

i∈V

Zi,

(3.2a)

(3.2b)

which is assumed to be finite. Note that, for notational

convenience, we use capital letter in sans serif font for random

variables and the same capital letter in the usual math italic

font for the alphabet sets. PZV
denotes the joint distribution

of Zi’s.

The vector (A,S,D, V,ZV ) of user sets and private source

is called a scenario. Given a scenario, the vocal users discuss

in public until the active users can recover a secret key of

their choice that is secured against a wiretapper who can listen

to the public discussion and wiretap the private source of the

untrusted users. The protocol can be divided into the following

phases for ease of exposition:

Secret key agreement protocol

Private observation: Each user i ∈ V observes an i.i.d.

sequence

Z
n
i := (Zit | t ∈ [n]) = (Zi1, . . . ,Zin)

of its private source Zi for some block length n.

1For sets E,F,G, we will use the notation E \ F \ G to denote the set
difference (E \ F ) \G.
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Private randomization: Each user i ∈ V \D \ S generates

a random variable Ui independent of the private source, i.e.,

H(UV \D\S |Zn
V ) =

∑

i∈V \D\S

H(Ui). (3.3)

(We will show in Proposition 3.1 that the silent and untrusted

users need not randomize for the problem of interest.) For

convenience, we let

Z̃i :=

{

(Ui,Z
n
i ) i ∈ V \D \ S

Zn
i i ∈ S ∪D (otherwise)

(3.4)

be the entire private observation of user i ∈ V .

Public discussion: Using a public authenticated noiseless

channel, the vocal users broadcast some messages in a round-

robin fashion interactively for a finite number of rounds.

More precisely, at times t = 1, . . . , r for some positive

integer r, the vocal user i ∈ V \ S broadcasts to everyone a

function of its accumulated observations, denoted as

Fit := fit(Z̃i, F̃it) where (3.5)

F̃it := (F[i−1] t,F
t−1
V \S), (3.6a)

which includes the previous messages F[i−1] t := (Fjt | j <
i) broadcast in the same round and the messages F

t−1
V \S :=

(FV \S τ | τ < t) = (Fiτ | i ∈ V \ S, τ < t) broadcast

in previous rounds. Note that, unless otherwise stated, we

assumed without loss of generality that the discussion in each

round is in the ascending order of i ∈ V and that [i − 1] ⊆
V \ S. We also use

Fi := (Fit | t ∈ [r]) and

F := (Fi | i ∈ V \ S)
(3.6b)

(3.6c)

to denote, respectively, the vector of all messages from

user i ∈ V \ S and all vocal users.

Key generation: Each user i ∈ A is required to recover a

common secret key from his accumulated observations in the

sense that

lim
n→∞

Pr
(

∃i ∈ A,K 6= θi(Z̃i,F)
)

= 0 (3.7)

for a random variable K, called the secret key, and some

function θi that recovers the key from the entire observation

of user i ∈ A. The secret key K must also be nearly uniformly

random and independent of the wiretapper’s observations

(F, Z̃D), i.e.,

lim
n→∞

1

n

[

log |K| −H(K|F, Z̃D)
]

= 0, (3.8)

where K denotes the finite alphabet set of possible key

values.

The secrecy capacity is defined as

CS := sup lim inf
n→∞

1

n
log |K| (3.9)

where the supremum is taken over all key rates achievable for

the given scenario (A,S,D, V,ZV ) but with any sequence (in

n) of choices of other parameters respecting the constraints on

private randomization (3.3), interactive public discussion (3.5)

as well as recoverability (3.7) and secrecy (3.8) of the secret

key. A CS-achieving scheme corresponds to a sequence of

choices with achievable key rate equal to the capacity. If the

supremum in (3.9) and the constraints (3.7) and (3.8) can be

achieved for a finite n, the capacity is said to be achievable

non-asymptotically.

The communication complexity is the minimum public

discussion rate required to achieve the secrecy capacity, i.e.,

RS := inf lim sup
n→∞

1

n
log|F |, (3.10)

where F denotes the finite alphabet set of possible values of

F and the infimum is taken over all the discussion rates of

CS-achieving schemes.

Remark 3.1 Our problem formulation covers [1, 2] as special

cases:

• Without silent active users, i.e., S ⊆ D, our formulation

reduces to that in [1];

• Without trusted helpers, i.e., A = V \D, but at least one

vocal active user A \ S 6= ∅, we obtain the formulation

in [2].

The wiretapper’s side information in [1, 2] can be covered

equivalently as the private source Zi of a silent untrusted user

i ∈ S ∩D. ✷

We will focus on the case without silent untrusted users,

i.e., S ∩D = ∅, because with silent untrusted users, even the

secrecy capacity is largely unknown, let alone the communi-

cation complexity. Indeed, our case of interest will be further

restricted to the following for a similar reason:

S ( A with at least one vocal active user.

The secrecy capacity when all active users are silent remains

unknown except in the special case with only two trusted

users [21] or without helpers.2 We also remark that certain

user types need not be considered in the problem formulation.

Remark 3.2 Without loss of optimality, one need not consider

the presence of the following users:

• Untrusted active users, i.e., A 6⊆ V \ D: The secrecy

capacity is zero trivially because the recoverability con-

dition (3.7) for such users means that the wiretapper

can also recover the key, hence violating the secrecy

condition (3.8).

• Silent trusted helpers, i.e., S 6⊆ A ∪ D: Their presence

affect neither the recoverability condition (3.7) (by being

silent) nor the secrecy condition 3.8 (by being trusted).

✷

2In the case when all users are active and silent, i.e., V = A = S, it is
straightforward to show that CS = JGK(ZV ) := max{H(U) | H(U|Zi) =
0,∀i ∈ A}, which is the multivariate extension of Gács-Körner common
information [22]. We would like to point out here that there is a subtle issue
with our preliminary work in [17], in which it was claimed but not proved
that the Gács-Körner common information is equal to the secrecy capacity
at zero rate of public discussion. We are not able to extend the converse
result [22] from no discussion to sub-linear amount (in n) of discussion.
Hence, in [17], CS > JGK(ZV ) can only be conjectured as a sufficient
condition for RS > 0.
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It was conjectured in [5] that private randomization does not

reduce RS in the case when all users are vocal and active. In

the general case with helpers and silent users, the conjecture

also appears very plausible, with no apparent counter-example

that suggests otherwise. Indeed, as the following result shows,

private randomization by any silent or untrusted user is not

necessary, and so our formulation precluded them without loss

of optimality.

Proposition 3.1 Allowing private randomization by any silent

or untrusted user j ∈ S ∪D, i.e., modifying (3.4) with

Z̃j = (Uj ,Z
n
j ) where I(Uj ∧ Z̃V \{j},Z

n
j ) = 0 (3.11)

neither increases CS nor decreases RS. ✷

PROOF See Appendix A. �

B. Optimality of Omniscience

Next, we take a step back to formulate the easier problem of

the optimality of a general class of CS-achieving strategies (in

terms of minimizing the public discussion rate, i.e., achieving

RS). In both the case [1] (with helpers but no active users)

and the case [2] (with active users but no helpers), it can be

seen that the proposedCS-achieving schemes require the active

users to recover the private sources of the vocal users after

public discussion. We will extend this idea to the following

CS-achieving scheme for the general case of interest described

with helpers and silent users:

Definition 3.1 For S ( A, the omniscience strategy for secret

key agreement requires each vocal user i ∈ V \S to broadcast

in public a function

Fi := fi(Z̃i) = fi(Z
n
i ) (3.12)

of its source such that each active user can first recover the

private sources of the (vocal) untrusted users in the sense that

lim
n→∞

Pr
(

∃i ∈ A,Zn
D 6= φi(Z̃i,FD)

)

= 0 (3.13a)

for some function φi’s, and then recover the private sources

of all other vocal users, i.e.,

lim
n→∞

Pr
(
∃i ∈ A,

Zn
V \D\S 6= ψi(Z̃i,FV \D\S ,Z

n
D)

)
= 0

(3.13b)

for some function ψi’s. Note that the omniscience strategy

does not require private randomness. Furthermore, a natural

question to ask is whether it is important that Zn
D be recovered

before the other private sources are. This will be addressed in

Example 3.1 and the remark preceding it. We also require

the omniscience strategy to minimize the total discussion rate,

denoted by

RCO := inf lim sup
n→∞

1

n
|F |

= inf lim sup
n→∞

1

n

∑

i∈V \S

|Fi|,
(3.14)

the infimum being taken over all functions fi, i ∈ V \ S,

that satisfy (3.12)–(3.13). The two recoverability constraints in

(3.13) will be called the omniscience constraints, to distinguish

them from the recoverability constraint (3.7) for the secret key.

For the omniscience strategy to be CS-achieving, we will also

limit the discussion rates of the untrusted users to satisfy3

(

lim
n→∞

1

n
log|Fi|

∣
∣
∣i ∈ D

)

∈ R(ZD) where

R(ZD) := {rD ∈ RD | r(B) ≤ H(ZB), ∀B ⊆ D}.

(3.15)

(3.16)

The secret key is then chosen as a function

K = θ(Zn
V \S) (3.17)

of the entire private source of the vocal users at the maximum

rate subject to the secrecy constraint (3.8). (Note that (3.7)

immediately follows from (3.13).) ✷

We will show in Section V that the omniscience strategy

in Definition 3.1 is CS-achieving in the general case of

interest, and that RCO has a single-letter linear-programming

characterization. Therefore,RCO serves as a computable upper

bound on RS. We say that omniscience is optimal for secret

key agreement if the bound is tight, i.e., RS = RCO, in which

case RS has a single-letter characterization given by RCO. Our

goal is to discover general classes of scenarios under which

omniscience is or is not optimal, i.e., the sufficient or necessary

conditions for the optimality of omniscience. In particular,

we will specialize/strengthen the results to the hypergraphical

source model:

Definition 3.2 ([6, Definition 2.4]) ZV is a hypergraphical

source with respect to a hypergraph (V,E, ξ) with edge

function ξ : E → 2V \ {∅} (which maps from an edge label

in E to a non-empty subset of V ) iff

Zi = (Xe | e ∈ E, i ∈ ξ(e)) ∀i ∈ V. (3.18)

for some independent (hyper-)edge variables Xe for e ∈ E
with H(Xe) > 0. ✷

The above source model also covers the PIN model in [15, 16]

as a special case:

Definition 3.3 ([16]) ZV is a PIN iff it is hypergraphical with

respect to a graph (V,E, ξ) with edge function ξ : E →
(
V
2

)

(no self-loops). ✷

An example of a hypergraphical source and a PIN is given at

the end of this section (Example 3.1).

We remark that the omniscience strategy above differs from

that in [1] even in the case without silent users:

Remark 3.3 Instead of (3.13a), [1] require the entire source

of the untrusted user to be revealed in public in the sense that

lim
n→∞

Pr (Zn
D 6= φ(FD)) = 0, (3.19)

i.e., the source of the untrusted users can be recovered not

only by the active users but also by anyone who gets to listen

to the discussion FD by the untrusted users. As will be shown

by the following example, RCO can be strictly larger with

3Although the proof of Theorem 5.1 relies on (3.15), we conjecture that
(3.15) is not required for the omniscience strategy to be CS-achieving.
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this requirement, resulting in a looser upper bound on RS.

The example also shows that (3.13a) and (3.13b) should not

be combined into the constraint

lim
n→∞

Pr
(

∃i ∈ A,Zn
V \S 6= φi(Z

n
i ,F)

)

= 0 (3.20)

because even an optimal discussion F under this constraint

can leak too much information to the wiretapper. Hence

omniscience through (3.20) no longer guarantees achieving

CS. ✷

Example 3.1 Let Xa and Xb be two uniformly random and

independent bits, and

Z1 := Xa

Z2 := (Xa,Xb)

Z3 := Xb

Z4 := (Xa,Xb)

With V = [3], the source ZV = (Z1,Z2,Z3) is a PIN with

vertex set [3], edge set E = {a, b} and the edge function

ξ(e) =

{

{1, 2} e = a

{2, 3} e = b.

With V = [4] instead, the source ZV is not a PIN but a

hypergraphical source with the edge function modified to

ξ(e) =

{

{1, 2, 4} e = a

{2, 3, 4} e = b.

Consider the scenario (A,S,D, V ) = ({2, 4}, ∅, {3}, [4]). It

can be shown that

CS = 1 and RS = RCO = 0,

achieved non-asymptotically with

n = 1, K := Xa and F deterministic.

Hence, omniscience is optimal in this case. Now, if the

recoverability condition (3.19) in [1] were imposed instead

of (3.13a), then RCO ≥ H(Z3) = H(Xb) = 1 > 0 = RS, and

so the omniscience scheme would not be optimal.

Consider the scenario (A,S,D, V ) = ({1, 2, 4}, ∅, {3}, [4])
instead. It can be shown that

CS = 1 and RS = 0,

achieved non-asymptotically with

n = 1, K = Xa and F deterministic.

However, since the active user 1 does not observe Xb directly

from its private source,

RCO ≥ H(ZV |Z1) ≥ H(Xb) = 1,

which is achieved by choosing F := F3 := Xb. It follows that

RS = 0 < 1 = RCO, and so omniscience is not optimal.

Now, if (3.20) were imposed instead of (3.13), then RCO = 1
as before but it could be achieved with F := F2 := Xa ⊕ Xb,

from which user 1 can recover Xb as F ⊕ Z1. However, the

wiretapper can also recover Z1 as F⊕ Z3 by wiretapping the

source of the untrusted user 3. Since the entire source, i.e.,

Xa and Xb, can be recovered by the wiretapper, any secret

key K satisfying (3.17) and (3.8) must have zero rate. In other

words, the current discussion for omniscience, despite being

optimal in achieving RCO, leaks too much information to the

wiretapper. ✷

IV. WITH NO HELPERS OR SILENT USERS

In this section, we will introduce the main ideas through the

basic scenario A = V and S = ∅. Unless stated otherwise,

the basic scenario will be assumed for all the results in this

section.

A. Preliminaries on MMI and Fundamental Partition

CS in the current case is characterized by RCO as:

Proposition 4.1 ([1]) The omniscience strategy achieves

CS = H(ZV )−RCO, (4.1)

and so RS ≤ RCO. ✷

RCO was also characterized in [1] as a linear program using

standard techniques of independent source coding [4]. In fact,

|RCO is easily computable since the expression for RCO in

(3.14) was argued to be solvable in polynomial time4 with

respect to the size of the network [23, 24].

To study the tightness of the RCO upper bound, we will

make use of the following (conditional) multivariate mutual

information (MMI) measure and its properties studied in [10]:

For a finite set U and a random vector (Z′
U ,W

′),

I(Z′
U |W′) := min

P∈Π′(U)
IP(Z

′
U |W′), with

IP(Z
′
U |W′) := 1

|P|−1D
(

PZ′
U
|W′

∥
∥
∥

∏

C∈P
PZ′

C
|W′

∣
∣
∣PW′

)

:= 1
|P|−1

[
∑

C∈P

H(Z′
C |W′)−H(Z′

U |W′)

]

,

(4.2a)

(4.2b)

where Π′(U) is the collection of partitions of U into at

least two non-empty disjoint parts, and D(·‖· | ·) is the

conditional Kullback–Leibler divergence. We also define the

unconditional MMI measures I(Z′
U ) and IP(Z

′
U ) by dropping

the conditioning on W′ throughout (4.2).

The MMI appeared as an upper bound on the secrecy

capacity in [1, (26)] in the special case without helpers. In

[25], the bound [1, (26)] was shown to be loose in the more

general case with helpers but identified to be tight in the no-

helper case and therefore proposed as a measure of mutual

information among multiple random variables:

Proposition 4.2 ([6, Theorem 1.1]) CS = I(ZV ) in the case

without helpers or silent users. ✷

The proof uses the submodularity [26] of the entropy function

B 7→ H(Z′
B|W′) for B ⊆ U (a class of Shannon-type

inequalities [27, 28]) to show that the linear-programming

characterization of CS in [1] is equal to the MMI. A simple

proof using the Dilworth truncation was given in [10]. Like

4This is assuming that the entropy function B 7→ H(ZB) for each B ⊆ V
can be evaluated in polynomial time.
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Shannon’s mutual information, the MMI has various funda-

mental information-theoretic properties including the data pro-

cessing inequality [10] (which will be refined in Lemma 6.1).

Denote the set of all optimal partitions to (4.2a) as

Π
∗(Z′

U |W′) := {P ∈ Π′(U) | IP(Z′
U |W′) = I(Z′

U |W′)}.
(4.3)

The set Π′(U) is endowed with a partial order, denoted by �,

with P � P ′ having the meaning

∀C ∈ P , ∃C′ ∈ P ′ such that C ⊆ C′. (4.4)

In other words, P can be obtained from P ′ by further

partitioning some parts of P ′; we then say that P is finer than

P ′. We will consider the finest partition in Π
∗(Z′

U |W′), the

existence of which is guaranteed by the following proposition.

Proposition 4.3 ([10, Lemma 5.1 and Theorem 5.2])

Π
∗(Z′

U |W′) forms a lower semi-lattice with respect to the

partial order (4.4). In particular, there is a unique finest

partition in Π
∗(Z′

U |W′). ✷

The unique finest partition in Π
∗(Z′

U |W′) is called the fun-

damental partition, and is denoted as P∗(Z′
U |W′). Again, the

unconditional versions of these definitions, namely, Π∗(Z′
U )

and P∗(Z′
U ), are obtained by dropping the conditioning on W′

throughout. The fundamental partition has various meaningful

interpretations in the problems of vocality [8, 9], successive

omniscience [12], data clustering [29, 30] and feature selec-

tion [31].

The condition for the optimality of omniscience in [5, 14]

for the PIN model in Definition 3.3 is expressed in terms of

the fundamental partition.

Proposition 4.4 ([5, Theorem 8, Corollary 23]) For the

PIN model, we have RS = RCO iff P∗(ZV ) = {{i} | i ∈ V },

namely, the partition into singletons. ✷

The result was based on a lower bound on RS in [5] that

extends the result of [3] to the multiterminal setting using the

multi-letter multivariate Wyner common information:

CW := inf lim sup
n→∞

1

n
H(L) such that

lim
n→∞

1

n
IP∗(ZV )(Z

n
V |L) = 0

(4.5a)

(4.5b)

where the infimum is for a given ZV . Note that P∗(ZV ) is

used instead of P∗(Zn
V |L). Furthermore, [5] required L to be

a function of Zn
V , i.e., H(L|Zn

V ) = 0.

Proposition 4.5 ([5, Theorem 2]) The communication com-

plexity RNR
S with private randomization (3.3) precluded in the

problem formulation is lowered bounded as

RNR
S ≥ CW − I(ZV ), (4.6)

which holds also with the additional constraint that

H(L|Zn
V ) = 0. ✷

The use of the above lower bound is somewhat limited

by the difficulty in evaluating the multi-letter expression CW

and the problem formulation that precludes randomization.

The derivation of Proposition 4.5 requires quite a bit of

machinery to evaluate CW, and to extend the result to allow

randomization. We will improve the bound (in Theorem 4.1

in Section IV-B) with a single-letter expression, for which we

need the following definition:

Definition 4.1 For a finite set U with size |U | > 1 and

random vector (Z′
U ,W

′), the (conditional) partition Wyner

common information of Z′
U given W′ with respect to the

partition P ∈ Π′(U) is

JW,P(Z
′
U |W′) := inf{I(W ∧ Z′

U |W′) |
IP (Z

′
U |W,W′) = 0},

(4.7a)

(4.7b)

where the minimum is taken over all possible choices of the

random variable W (or PW|Z′
U
,W′ ). JW(Z′

i∧Z′
j |W′) denotes the

bivariate case U = {i, j} where i 6= j. (The version without

conditioning reduces to the usual Wyner common information

introduced by [32].) ✷

If P is the partition into singletons, and W′ is determinisitic,

then JW,P is the extension in [33] of the Wyner common

information [32] from the bivariate case JW(Zi ∧ Zj), to the

multivariate case. Following the same argument as in [32], the

expression (4.7) is computable with the following bound on

support size:

Proposition 4.6 For the partition Wyner common informa-

tion (4.7), it is admissible to impose

|W | ≤ |Z ′
U ||W ′|, (4.8)

and inf can be replaced by min, i.e., the infimum can be

achieved by a choice of W satisfying (4.8) in addition. ✷

PROOF This follows from the same argument as in [32] and

will be proved for the more general setting in Proposition 6.3.�

Despite the above result, JW,P is not easy to compute

even for the bivariate case [32]. Fortunately, it has non-trivial

entropic [10] bounds that are easy to compute from the entropy

function of the given random vector:

Proposition 4.7

H(Z′
U |W′) ≥ JW,P(Z

′
U |W′) ≥ JD,P(Z

′
U |W′) where

JD,P(Z
′
U |W′) := H(Z′

U |W′)−
∑

C∈P

H(Z′
C |Z′

U\C ,W
′),

(4.9)

(4.10)

which will be called the partition dual total correlation. ✷

PROOF Since W = Z′
U is always a feasible solution to (4.7),

JW,P(Z
′
U |W′) ≤ H(Z′

U |W′), which gives the first inequality

in (4.9). To prove the second inequality, it suffices to show

I(W ∧ Z′
U |W′) ≥ JD,P(Z

′
U |W′)

for all feasible solution W. To do so, notice that the con-

straint (4.7b) means that Z′
C for C ∈ P are mutually
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independent given (W,W′), and so

I(W ∧ Z
′
U |W′) = H(Z′

U |W′)−H(Z′
U |W′,W)

(a)
=H(Z′

U |W′)−
∑

C∈P

H(Z′
C |W′,W)

(b)
=H(Z′

U |W′)−
∑

C∈P

H(Z′
C |W′,W,Z′

U\C)

≥ H(Z′
U |W′)−

∑

C∈P

H(Z′
C |W′,Z′

U\C)

= JD,P(Z
′
U |W′),

where we have applied the independence of Z′
C’s in (a) to

rewrite H(Z′
U |W′,W) as the sums

∑

C∈P H(Z′
C |W′,W)

and in (b) to rewrite
∑

C∈P H(Z′
C |W′,W) as

∑

C∈P H(Z′
C |W′,W,Z′

U\C) respectively. �

When P is the partition into singletons, JD,P is Han’s dual

total correlation [34], which has been shown to be the best

entropic lower bound for JW,P even after incorporating non-

Shannon-type inequalities [35].

B. Main results

We give a single-letter lower bound on RS that improves

upon the result of Proposition 4.5 by allowing private random-

ization.

Theorem 4.1 For any source ZV ,

RS ≥ JW,P∗(ZV )− I(ZV )

≥ JD,P∗(ZV )− I(ZV )

(4.11a)

(4.11b)

where P∗ denotes P∗(ZV ) for convenience, and JW,P∗ and

JD,P∗ are the partition Wyner common information (4.7) and

the partition dual total correlation (4.10). ✷

PROOF See Appendix B-1. �

It was shown in [10, Theorem 6.3] that JD,P(ZV ) is no smaller

than I(ZV ) for all P ∈ Π′(V ), therefore, the lower bounds

above are non-negative.

Corollary 4.1 RS = RCO if JW,P∗(ZV ) = H(ZV ).

PROOF This follows from Theorem 4.1 by virtue of Proposi-

tion 4.1 and 4.2, i.e., substituting JW,P∗(ZV ) = H(ZV ) and

I(ZV ) = CS to the right hand side (r.h.s.) of (4.11a) gives

RCO. �

Compared to Proposition 4.5, (4.11a) is single-letter rather

than multi-letter. Furthermore, (4.11b) is a simple linear func-

tion of the entropy vector of ZV given P∗(ZV ), which is easier

to evaluate than (4.11a).

From Corollary 4.1, we obtain the following sufficient

condition for the optimality of omniscience under a general

source model:

Theorem 4.2 RS = RCO if

H(ZC |ZV \C) = 0 ∀C ∈ P∗(ZV ), (4.12)

where P∗ is the fundamental partition in Proposition 4.3,

namely, the finest optimal partition for the MMI (4.2a). ✷

PROOF The condition in (4.12) implies that JD,P∗(ZV ) =
H(ZV ), and therefore, by (4.9), we also have JW,P∗(ZV ) =
H(ZV ). The theorem now follows from Corollary 4.1. �

Condition (4.12) means that, for all C ∈ P∗(ZV ), no random-

ness of ZC is independent of ZV \C . This condition covers all

the existing results:

• (4.12) covers the condition for the 2-user case in Propo-

sition 2.1 because P∗(Z{1,2}) = {{1}, {2}}.

• (4.12) also extends the sufficiency part of the condition

in Proposition 4.4 because (4.12) holds for P∗(ZV ) =
{{i} : i ∈ V } trivially, as every edge variable Xe (e ∈
E) is a component of Zj and Zk for the distinct pair

{j, k} = ξ(e) of incident nodes.

Despite its generality, (4.12) can be checked easily because

P∗(ZV ) can be computed in strongly polynomial-time. The

following is an example for which the optimality of omni-

science can be easily derived by (4.12) but not by the existing

results.

Example 4.1 (4.12) holds for the source in Example 2.2 as

P∗(Z{1,2,3}) = {{1}, {2}, {3}}, and

H(Z1|Z2,Z3) = H(Z2|Z1,Z3) = H(Z3|Z1,Z2) = 0.

Hence, RS = RCO by Theorem 4.2. This example is not

covered by Proposition 4.4 because the private source belongs

to the more general finite linear source model [13] rather than

the PIN model (Definition 3.3) (or the hypergraphical source

model in Definition 3.2). ✷

C. Stronger Results for Hypergraphical Sources

The necessity of the condition in Proposition 4.4 can be

extended to the more general hypergraphical source model in

Definition 3.2:

Theorem 4.3 For hypergraphical sources with respect to the

hypergraph (V,E, ξ), we have RS = RCO iff

6 ∃e ∈ E such that ξ(e) ⊆ C for some C ∈ P∗(ZV ), (4.13)

which means that there does not exists a hyperedge entirely

contained by a part of the fundamental partition, i.e., every

hyperedge crosses the fundamental partition. ✷

PROOF See Section B-2. �

Example 4.2 Let Xa,Xb and Xc be uniformly random and

independent bits. With V := [5], define the private source as

Z1 := Xa

Z2 := Xb

Z3 := Xc

Z4 := (Xa,Xb)

Z5 := (Xa,Xb,Xc).

It is hypergraphical with edge function

ξ(e) =







{1, 4, 5} e = a

{2, 4, 5} e = b

{3, 5} e = c.
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To check condition (4.13), we can first obtain

I(ZV ) = 1 and P∗(ZV ) = {{1}, {2}, {3}, {4, 5}}.

Then, (4.13) holds because every hyperedge crosses P∗(ZV ).
(4.12) also holds because, for every C ∈ P∗(ZV ), every edge

variable in ZC also appears in ZV \C . By Theorem 4.2,

RS = RCO = H(ZV )− I(ZV ) = 2 by (4.1).

This can be achieved non-asymptotically with n = 1, K :=
Z1 = Xa and F5 := (Xa ⊕ Xb,Xa ⊕ Xc). ✷

JW,P∗(ZV ) can be evaluated for hypergraphical sources

because its lower bound by (4.9) is tight:

Proposition 4.8 For hypergraphical sources with respect to

the hypergraph (V,E, ξ), we have

JW,P∗(ZV ) = H(XE∗) where

E∗ := {e ∈ E |6 ∃C ∈ P∗(ZV ), ξ(e) ⊆ C}
(4.14a)

(4.14b)

is the set of hyperedges that cross P∗(ZV ). Furthermore, an

optimal solution to (4.7) is W := (Xe | e ∈ E∗). ✷

PROOF See Appendix B-3. �

This means that the lower bound (4.11a) can be easily com-

puted for hypergraphical sources. Interestingly, while the lower

bound leads to a complete characterization of the optimality

of omniscience for the hypergraphical model, it may be loose

in general when condition (4.13) is not satisfied. A counter

example can be found even for the PIN model as follows.

Example 4.3 Let Xa, Xb and Xc be uniformly random and

independent bits. With V = [3], define

Z1 := Xa

Z2 := (Xa,Xb,Xc)

Z3 := (Xb,Xc),

(4.15)

which is a PIN. It can be shown that

I(ZV ) = 1 and P∗(ZV ) = {{1}, {2, 3}}.

The edge a is the only edge that crosses P∗(ZV ). Therefore,

JW,P∗(ZV ) = H(Xa) = 1, and so (4.11a) gives the trivial

lower bound RS ≥ 1− 1 = 0. However, it was proved in [36]

that RS = 1 for this example, and so the bound is loose. ✷

V. SINGLE-LETTER UPPER BOUNDS AND

NECESSARY CONDITIONS

In this section, we consider the general case S ( A, with

possibly helpers and silent users. The single-letter upper bound

on RS by RCO continues to hold in the more general case

because the omniscience strategy in Definition 3.1 can be

shown to be CS-achieving.

A. Smallest Rate of CO

The following result establishes the RCO upper bound on

RS and characterizes CS and RCO.

Theorem 5.1 With S ( A, the omniscience strategy in

Definition 3.1 is CS-achieving, with

CS = H(ZV \D\S | ZD)− ρ

RS ≤ RCO = ρ̄+ ρ

(5.1)

(5.2)

where ρ and ρ̄ are defined as the following linear programs:

ρ := min
{
r(V \D \ S) | rV \D\S ∈ RV \D\S ,

r(B) ≥ H(ZB|ZV \S\B,Zj) ∀j ∈ A,B ⊆ V \D\S}
(5.3a)

(5.3b)

ρ̄ := min
{
r(D) | rD ∈ R(ZD),

r(B) ≥ H(ZB|ZD\B,Zj) ∀j ∈ A,B ⊆ D}.
(5.4a)

(5.4b)

R(ZD) is defined in (3.16), and we have used the notation

rB := (ri | i ∈ B) and r(B) :=
∑

i∈B ri for any set B. ✷

PROOF See Appendix C-1. �

The single-letter characterizations for ρ and ρ̄ in (5.3) and

(5.4) can be computed in polynomial time,5 and hence, so can

CS and RCO. (5.1) covers the results of [1, 2] as the following

special cases:

Corollary 5.1 ([1, Theorem 2]) For S = ∅,

CS = H(ZV \D|ZD)− ρ where

ρ = min
{
r(V \D) | r(B) ≥ H(ZB|ZV \B), ∀B ∈ H}

and H := {B ⊆ V \D | ∅ 6= B 6⊇ A}. ✷

PROOF When S = ∅, (5.3b) becomes

r(B) ≥ H(ZB|ZV \B,Zj), ∀j ∈ A,B ⊆ V \D.

This yields the expression in the corollary after removing the

redundant constraints where B = ∅ or B ∋ j. �

Corollary 5.2 ([2, Theorem 6]) For S ( A = V ,

CS = H(ZV \S)− ρ where

ρ = min
{
r(V \ S) | r(B \ S) ≥ H(ZB\S |ZV \B), ∀B ∈ H}

and H := {B ⊆ V | ∅ 6= B 6⊇ A}. ✷

PROOF With S ( A = V , (5.3b) becomes

r(B) ≥ H(ZB|ZV \S\B,Zj) ∀j ∈ A,B ⊆ V \ S.

The constraints with B ∋ j are again redundant and so we

can impose j 6∈ B. With B′ = B ∪ S \ {j}, the constraints

can be rewritten as

r(B′ \ S) ≥ H(ZB′\S |ZV \B′).

The constraints can only be weaker if some element in S is

removed from B′, as the r.h.s. cannot increase but the left hand

side (l.h.s.) remains unchanged. This yields the expression in

the corollary. �

5This can be argued as in [23] by noting that the separation oracle
corresponds to performing a polynomial number of submodular function
minimizations, which can be done in polynomial time.
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As illustrated by Example 3.1, ρ̄ can be strictly smaller than

H(ZD), i.e., the omniscience strategy is an improved version

of that [1] when S = ∅ 6= D. Consequently, the RCO upper

bound (5.2) is also improved.

B. Change of Scenario

In this section we will introduce some general techniques to

strengthen the upper bound on RS. In particular, we will make

use of the monotonicity of (CS, RS) with respect to certain

changes of scenario, namely the vector (A,S,D, V,ZV ) of

user sets and the private source. We first consider changes in

the user sets.

Theorem 5.2 Suppose (CS, RS) becomes (C′
S, R

′
S) by one of

the following changes in the user sets:

(i) A vocal active user is turned into a silent active user, and

a new trusted helper with the same private source as the

original vocal active user is added. That is to say, (S, V )
becomes (S ∪ {i}, V ∪ {i′}) for some i ∈ A \ S, with

i′ /∈ V being a new user with private source Zi′ = Zi.

(ii) A trusted helper is removed, i.e., V becomes V \ {i} for

some i ∈ V \ (A ∪D).

Then, we have C′
S ≤ CS. If equality holds, then R′

S ≥ RS. ✷

PROOF See Appendix C-2. �

Therefore, using Theorem 5.2, if C′
S = CS, then the RCO

of the new scenario can serve as an upper bound on the RS of

the original scenario. This leads to the following application.

Corollary 5.3 With S ( A, if CS remains unchanged after

(i) turning a proper subset of vocal active users into silent

active users, and

(ii) removing all the trusted helpers,

i.e., (S, V ) becomes (S′, V ′) causing (CS, RS, RCO) to

change to (C′
S, R

′
S, R

′
CO), such that CS = C′

S, V ′ = A ∪D,

S ⊆ S′ ( A. Then,

RS ≤ R′
S ≤ R′

CO ≤ RCO. (5.5)

It follows that RS = RCO only if CS 6= C′
S or

H(ZV ′\S′) = H(ZV \S), (5.6)

i.e., H(Z(S′\S)∪(V \V ′)|ZV ′\S′) = 0. ✷

PROOF See Appendix C-2. �

The following is another application of Theorem 5.2 when

the entire set of vocal active users is turned into silent active

users.

Corollary 5.4 With S ( A, if

CS ≤ H(U|ZD) (5.7)

for any common function U such that

H(U|Zi) = 0 ∀i ∈ A, (5.8)

then RS = 0. In this case, RS = RCO iff RCO = 0, i.e.,

H(ZV \S |Zi) = 0, ∀i ∈ A. (5.9)

PROOF See Appendix C-2. �

Example 5.1 To illustrate Corollary 5.3, consider Exam-

ple 2.1 with A = V = {1, 2}, D = S = ∅,Z1 = (X0,X1)
and Z2 = (XJ, J). If we choose S′ = {1} and everything

else the same, then condition (5.6) fails because H(Z2) =
2 < 3 = H(Z{1,2}), or equivalently, H(Z1|Z2) = 1 > 0, but

C′
S = I(Z1 ∧ Z2) = CS, which follows from Proposition 6.4

and (4.2). Hence, by Corollary 5.3, RS < RCO as expected.✷

Example 5.2 The necessary condition (5.6) may not be suf-

ficient in general. For instance, consider Example 4.3 with

A = V = [3] but with S = {1, 3}. Note that the only possible

choice of S′ in (5.6) is S, and so (5.6) holds trivially. However,

by result of [37], it can be shown that the randomness

of Xc can be reduced without diminishing the capacity. In

this example, CS = min{I(Z1 ∧ Z2), I(Z2 ∧ Z3)} = 1
by Proposition 6.4, which remains unchanged even if Xc is

eliminated (doing so will only reduce I(Z2∧Z1) from 2 to 1).

Consequently, R′
CO < RCO, and hence, RS ≤ R′

S < RCO. ✷

The following is a single-letter bound that generalizes the

idea beyond the hypergraphical source.

Theorem 5.3 For any finite set Q, let

Z
(q)
i := ζ

(q)
i (Zi) ∀i ∈ V, q ∈ Q, (5.10)

and for some functions ζ
(q)
i such that

I(Z
(q)
V \D ∧ ZD|Z(q)

D ) = 0 ∀q ∈ Q. (5.11)

If, for some random variable Q independent of ZV , we have

CS ≤ H(Z
(Q)
V \S |Q)−R′

CO, (5.12)

where R′
CO is the smallest rate of CO for Z

(Q)
V given Q (i.e.,

with Q observerd a priori), then

RS ≤ R′
CO ≤ H(Z

(Q)
V \S |Q)− CS.✷ (5.13)

PROOF See Appendix C-3. �

This result covers the PIN model in Example 5.2, with Q

chosen to be deterministic and ZV processed to Z′
V , where

Z′
1 := Z1 = Xa, Z′

2 := (Xa,Xb), Z
′
3 := Xb. The following

example shows that (5.11) is useful in handling the case with

untrusted helpers as well.

Example 5.3 Consider the same source as in Example 5.2

(Example 4.3) but with (A,S,D) = ({2, 3}, ∅, {1}) instead.

Then, CS = I(Z2 ∧ Z3|Z1) = 2. We process ZV to Z′
V where

Z′
2 = Z2 = (Xb,Xc), Z′

3 = (Xb,Xc), and Z′
1 is determinisitic.

Then, the secrecy capacity remains unchanged, i.e., equal to

I(Z′
2 ∧ Z′

3|Z′
1) = 2, and I(Z′

V \D ∧ ZD|Z′
D) = I(Z′

{2,3} ∧
Z1) = I(Xb,Xc ∧ Xa) = 0 satisfy (5.11). R′

CO = 0 since

Z′
{1,2,3} = Z′

2 = Z′
3, and so RS = 0 < RCO = H(Z1) = 1 by

Theorem 5.3, and so, omniscience is not optimal. ✷

Note that, in the above example, the edge variable Xc observed

by the untrusted user 3 can be removed without affecting RS.

This can be proved more generally:
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Proposition 5.1 For any random variable X independent of

ZV , consider the new scenario with ZV changed to Z′
V where

Z
′
i =

{

(Zi,X) i ∈ T

Zi otherwise,
(5.14)

for some T ⊆ V such that T ∩D 6= ∅, i.e., X is observed by

the wiretapper. Then, both CS and RS remain unchanged. ✷

PROOF To prove Proposition 5.1, note that the proof of

Proposition 3.1 in Appendix A remains valid even if Ũi for

an untrusted user i ∈ D is observed by other user j ∈ V , i.e.,

with (3.5) modified to have Fi depend on Ũi directly. Hence,

with Ũi = Xn, the proof of Proposition 3.1 shows that Xn

neither increases CS nor decreases RS, as desired. �

Corollary 5.5 For any hypergraphical source, the hyperedges

e ∈ E with ξ(e) ∩ D 6= ∅ can be removed without changing

CS and RS. ✷

PROOF The corollary follows from Proposition 5.1 with Z′
V

being the original hypergraphical source and ZV being the

source after removing the edge variable X := Xe. �

While Q was chosen to be deterministic for the previous

example, it is sometimes useful to make Q random as shown

by the following example.

Example 5.4 Let Xa,Xb,Xc,Xd and Xe be uniformly random

and independent bits, and define

Z1 := (Xa,Xb, Xe)

Z2 := (Xa,Xb,Xc)

Z3 := (Xc,Xd)

Z4 := (Xd,Xe)

With A = V = [4], S = D = ∅, we have

CS = I(ZV ) = 1.5 with

P∗(V ) = {{1, 2}, {3}, {4}}
RCO = H(ZV )− I(ZV )

= 5− 1.5 = 3.5.

Let Q be a uniformly random bit independent of ZV and

process ZV to Z
(Q)
V with Z

(Q)
i := Zi for i ∈ {2, 3} but

Z
(Q)
1 :=

{

(Xa,Xb,Xe) if Q = 1

(Xa,Xb) otherwise, and

Z
(Q)
4 :=

{

(Xd,Xe) if Q = 1

Xd otherwise.

It follows that

H(Z
(Q)
{1,4}|Q) = 0.5H(X{a,b,d,e}) + 0.5H(X{a,b,d})

= 3.5 < 4 = H(Z{1,4}).

By Proposition 4.1 and 4.2, we have R′
CO = H(Z

(Q)
V |Q) −

I(Z
(Q)
V |Q) = 4.5− 1.5 = 3, because

H(Z
(Q)
V |Q) = 4 + 5

2
= 4.5 and

I(Z
(Q)
V |Q) = 2.5 + 2.5 + 2 + 2− 4.5

3
= 1.5.

Hence,RS ≤ R′
CO < RCO, and so omniscience is not optimal.

It can be seen the benefit of making Q random is that it

allows the edge e to be removed a fraction (half) of the time.

Note that a complete removal of the edge, i.e., with Q =
0 deterministically, is suboptimal, because it diminishes the

secrecy capacity, i.e.,

I(Z
(Q)
V |Q = 0) =

2 + 2 + 2 + 2− 4

3
=

4

3
< 1.5.✷

The following example shows that Theorem 5.3 is useful for

more general sources that are not necessarily hypergraphical.

Example 5.5 Let X0,X1 and J be uniformly random and

independent bits, and define

Z1 := (J,X0 ⊕ X1)

Z2 := (X0,X1)

Z3 := XJ.

With A = V = [3] and S = D = ∅, we have CS = I(ZV ) = 1
and RCO = H(ZV ) − I(ZV ) = 2. Now, with Z′

i := Zi for

i ∈ {2, 3} and

Z
′
1 :=

{

(J,X0 ⊕ X1) if X0 6= X1, i.e., X0 ⊕ X1 = 1,

X0 ⊕ X1 otherwise,

(or, alternatively, Z′
1 := (2J−1) · (X0⊕X1) which takes value

from {−1, 0, 1}.) It follows that

H(Z′
1)

(a)
=H(X0 ⊕ X1,Z

′
1)

= H(X0 ⊕ X1) +H(Z′
1|X0 ⊕ X1)

(b)
=1 + 0.5 = 1.5 < 2 = H(Z1)

where (a) is because Z′
1 determines X0 ⊕ X1; (b) is because

H(Z′
1|X0⊕X1 = 0) = 0 while H(Z′

1|X0⊕X1 = 1) = H(J) =
1. Using this, it can be shown that (C′

S, R
′
CO) is given by C′

S =
I(Z′

V ) = 1 and R′
CO = H(Z′

V ) − I(Z′
V ) = 2.5 − 1 = 1.5.

By Theorem 5.3, we have RS ≤ R′
CO < RCO, and so the

omniscience strategy is not optimal. Indeed, it can be shown

that RS = 1.5 by the result of [36].

As an interesting side note, although the omniscience strat-

egy is not optimal, it can be non-asymptotic, for instance,

by setting n = 1, K = XJ, F1 = J, F2 = X1−J and

F3 deterministic. However, it seems impossible to achieve

RS ≤ 1.5 non-asymptotically. To construct an asymptotic

scheme, note that the fraction of time X0 ⊕ X1 = 0 is 1/2
almost surely as n→ ∞ by the law of large number. Whenever

X0 ⊕ X1 = 0, both user 1 and 2 knows. In particular, user 2
can recover X1−J even without knowing J since X0 = X1.

Hence, XJ can potentially be used as a secret key bit without

omniscience of the source, i.e., without user 2 knowing J

all the time. To do so, however, the public discussion must

be chosen carefully in order not to let the wiretapper know

the time instances when X0 = X1. This can be done by

an asymptotic scheme, where the realizations of J for the

time instances when X0 6= X1 are concatenated and then

truncated/zero-padded by user 1 to form a sequence of length

n/2+
√
n. Then, the sequence can be revealed in public as F1,

which does not leak any information about the time instances

where X0 = X1. Since user 2 can recover X0 ⊕ X1 from his
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private observation, he can recover the sequence of realizations

of ZJ−1 almost completely (close to a fraction of 1 by the law

of large number) and reveal it in public as F2. Hence, almost

the entire sequence of XJ can be recovered by everyone and

used as the secret key. ✷

VI. SINGLE-LETTER LOWER BOUNDS AND

SUFFICIENT CONDITIONS

In this section, we derive general single-letter bounds on RS.

We will first extend the definitions in (4.2) to characterize CS.

A. Fractional Partition Information

We will use the following generalization of the notion of

partitions. For a finite set U , a fractional partition is a non-

negative set function λ : 2U → R+ that satisfies

∑

B⊆U :i∈B

λ(B) = 1 ∀i ∈ U. (6.1)

For a set family H ⊆ 2U \ {∅}, we use Λ(U,H) to denote the

set of fractional partitions λ whose support lies within H, i.e.,

supp(λ) := {B ⊆ U | λ(B) > 0} ⊆ H. (6.2)

For instance, the indicator function χP of a partition P ∈
Π(U) is a fractional partition, i.e.,

λ(B) = χP(B) =

{

1 B ∈ P
0 otherwise.

(6.3)

However, the notion of fractional partition is more general. An

important case of interest is

λ(C) =
χP(U \ C)
|P| − 1

=

{
1

|P|−1 U \ C ∈ P
0 otherwise,

(6.4)

for some P ∈ Π′(U). This is called a co-partition.

Definition 6.1 ([10, (4.4b)]) For a finite set U with size

|U | > 1, λ ∈ Λ(U, 2U\{∅, U}) and a random vector (Z′
U ,W

′),
define the (conditional) fractional partition information as

Iλ(Z
′
U |W′) := H(Z′

U |W′)−
∑

B∈2U\{∅,U}

λ(B)H(Z′
B |Z′

U\B,W
′). (6.5)

For P ∈ Π′(U), IP (Z
′
U |W′) (4.2b) and JD,P(Z

′
V |W′) (4.10)

are the special cases of Iλ(Z
′
U |W′) when λ satisfies (6.4) and

(6.3) respectively. ✷

The secrecy capacity was first characterized using fractional

partitions in [38]. Iλ for different values of λ was introduced

in [10] as the space of information measures relating various

multivariate information measures.

The secrecy capacity in the case without silent users can be

characterized by Iλ as follows:

Proposition 6.1 ([38, Theorem 3.1]) For S = ∅,

CS = min
λ∈Λ(V \D,H)

Iλ(ZV \D|ZD) (6.6)

where H := {B ⊆ V \D : ∅ 6= B 6⊇ A}. ✷

Like IP(ZV ) (4.2b), Iλ(Z
′
V ) (6.5) is also non-negative [38],

which is a consequence of the Shearer-type lemma in [39].

We will need the stronger statement below (with an equality

condition):

Proposition 6.2 ([10, Lemma 6.1]) For any random vector

(Z′
U ,W

′) and λ ∈ Λ(U, 2U \{∅, U}), we have Iλ(Z
′
U |W′) ≥ 0

with equality iff

I(Z′
B ∧ Z′

U\B |W′) = 0 ∀B ∈ supp(λ), (6.7)

which is the condition in terms of Shannon’s mutual informa-

tion for the fractional partition information to be zero. ✷

For completeness, we will prove a stronger version of the

result in Appendix D-1.

As pointed out in [10, Footnote 17], Iλ (6.5) also satisfies

the data processing inequality [10, (5.20b)]. We will use the

following more elaborate version:

Lemma 6.1 For any random vector (Z′
U ,W

′,Y′), λ ∈
Λ(U, 2U \ {∅, U}) and i ∈ U , we have

Iλ(Z
′
U |W′) ≥ Iλ(Z

′′
U |W′)− δ, (6.8)

where

Z′′
j :=

{

Y′, j = i

Z′
j , j ∈ U \ {i} and

δ :=




∑

B∈2U\{∅,U}

λ(B) − 1



 I(Y′ ∧ Z′
U\{i}|W′,Z′

i).

Furthermore,

Iλ(Z
′
U |W′) ≥ Iλ(Z

′
U |W′,Y′)− δ + γ, (6.9)

where

γ := min
B∈supp(λ):

i∈B

max
j∈U\B

I(Y′ ∧ Z′
j|W′)

and δ is as defined for (6.8). ✷

PROOF See Appendix D-2. �

(6.8) and (6.9) can be viewed as the extensions of the following

well-known data processing inequality in the bivariate case

U = {1, 2} for the Markov chain Z′
1 − Z′

2 − Y′ (i.e., I(Z′
1 ∧

Y′|Z′
2) = 0):

I(Z′
1 ∧ Z′

2) ≥ I(Z′
1 ∧ Y′) and

I(Z′
1 ∧ Z′

2) ≥ I(Z′
1 ∧ Z′

2|Y′) + I(Z′
1 ∧ Y′).

(6.10a)

(6.10b)

More precisely, Λ(U, 2U \ {∅, U}) contains only the partition

(co-partition) λ with λ({1}) = λ({2}) = 1. With i = 2
and W′ = ∅, (6.8) reduces to (6.10a), while (6.9) reduces

to (6.10b).

B. General lower bound

The lower bound on RS will be stated and derived using

the following single-letter expression that extends the partition

Wyner common information (4.7):
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Definition 6.2 For a finite set U with size |U | > 1, random

vector (Z′
U ,W

′) and λ ∈ Λ(U, 2U \ {∅, U}),

JW,λ(Z
′
U |W′) := inf{I(W ∧ Z

′
U |W′) |

Iλ(Z
′
U |W′,W) = 0}.

(6.11a)

(6.11b)

For any partition P ∈ Π′(U), JW,P(Z
′
U |W′) (4.7) is the

special case when λ satisfies (6.4). In the bivariate case

U = {i, j} where i 6= j, it reduces to JW(Z′
i ∧ Z′

j |W′) [32].✷

A bound on the support size of W similar to Wyner common

information can be imposed to make the computation more

tractable.

Proposition 6.3 It is admissible to have |W | ≤ |Z ′
U ||W ′|

in (6.11), in which the “inf” can be replaced by “min”. ✷

PROOF This follows from Lemma D.4 and (D.15) in Ap-

pendix D-3. �

The desired lower bound on RS is:

Theorem 6.1 For the general scenario S ( A, if we have

CS = Iλ(ZU |ZD) for some λ ∈ Λ(U,H) where

U ⊆ V is such that V \D \ S ⊆ U ⊆ V \D and

H := {B ⊆ U | ∅ 6= B 6⊇ A ∩ U},

(6.12a)

(6.12b)

(6.12c)

then the communication complexity is lower bounded as

RS ≥ lim inf
n→∞

1

n
H(F|Z̃D)

≥ JW,λ(ZU |ZD)− Iλ(ZU |ZD), (6.13)

which is in fact a lower bound on the total discussion rate of

the trusted users, since H(F|Z̃D) = H(FV \D\S |Z̃D). ✷

PROOF See Appendix D-3. �

C. With helpers

In this section, we specialize the results to the scenario A ⊆
V but S = D = ∅. This will be assumed throughout the

section, unless otherwise stated.

Theorem 6.2 Let Λ∗(A,ZV ) be the set of optimal fractional

partitions in the characterization (6.6) of CS by Iλ, and

H := {B, V \B | B ∈ supp(λ∗), λ∗ ∈ Λ∗(A,ZV )} . (6.14)

Then,

RS ≥ max
λ∗∈Λ∗(A,ZV )

JW,λ∗(ZV )− CS

≥ Iλ(ZV )− CS,

(6.15a)

(6.15b)

for any λ ∈ Λ(V,H). ✷

PROOF See Appendix D-4. �

Theorem 6.3 RS = RCO if, for H defined in (6.14),

∃λ ∈ Λ(V,H), Iλ(ZV ) = H(ZV ), (6.16)

i.e., H(ZB|ZV \B) = 0 for all B ∈ supp(λ). ✷

PROOF This follows immediately from Theorem 6.2 by mak-

ing use of Proposition 6.1 with D = S = ∅. �

Note that (4.11a) is the special case of (6.15a) when λ is

chosen to be (6.4) for the fundamental partition P∗(ZV ),
and (4.11b) is the special case of (6.15b) when λ is chosen to

be (6.3) for the fundamental partition P∗(ZV ). The sufficient

condition (4.12) in Theorem 4.2 also follows from Theo-

rem 6.3 when λ satisfies (6.3) for the fundamental partition

P∗(ZV ).
The following is an example taken from [10, Example

A.1]. It has the property that the optimal λ∗ to (6.6) is not

the co-partition (i.e., the divergence upper bound [1, (26)

in Example 4] is loose), unlike the case with no helpers in

Theorem 4.1.

Example 6.1 Let Z4,Z5 and Z6 be independent uniformly

random bits, and define

Z1 := Z5 ⊕ Z6

Z2 := Z4 ⊕ Z6

Z3 := Z4 ⊕ Z5

With V := [6] and A = [3], it can be shown that

Λ∗(A,ZV ) = {λ∗} where

λ∗(B) ∈
{

0,
1

4

}

for B ⊆ V \ {∅} and

supp(λ∗) =
{

{2, 3, 4}, {1, 3, 5}, {1, 2, 6},

V \ {1}, V \ {2}, V \ {3}
}

.

Consider the fractional partition λ with

λ(B) :=

{
1
2 if V \B ∈ supp(λ∗)

0 otherwise.

It can be checked that λ ∈ Λ(V,H) with H defined in (6.14),

using the fact that every i ∈ V appears in exactly two

subsets of supp(λ), which is a subset of H. We also have

Iλ(ZV ) = H(ZV ) since H(ZB|ZV \B) = 0 for all B ∈
supp(λ). It follows from Theorem 6.3 that RS = RCO, and

so omniscience is optimal. ✷

The following example shows that not only is the lower

bound (6.15) loose, but the sufficient condition is also not

necessary, even for a simple PIN (Definition 3.3).

Example 6.2 Let Xa and Xb be uniformly random and inde-

pendent bits. With V := [3], let

Z1 := Xa

Z2 := (Xa,Xb)

Z3 := Xb,

which is the same as the source in Example 4.3 but with Xc

removed. Consider A = {1, 3}, S = D = ∅. Then, CS in (6.6)

is 1, where the extremal6 optimal solutions are λ(1) and λ(2)

defined as

λ(1)(B) =

{

1 if B ∈ {{1, 2}, {3}}
0 otherwise,

and

λ(2)(B) =

{

1 if B ∈ {{1}, {2, 3}}
0 otherwise.

6All other solutions can be expressed as convex combinations of the
extremal solutions.
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It can be achieved non-asymptotically with n = 1 and

(K,F) = (Xa,Xa ⊕ Xb). The support (6.14) for the optimal

λ’s is H = {{1, 2}, {2, 3}, {1}, {3}}. The lower bound on RS

given by Theorem 6.2 is trivial since λ(1) and λ(2) are the

only feasible choices supported by H, i.e., it is easy to see

that Λ(V,H) = {λ(1), λ(2)}. However, by the result of [36], it

can be shown that omniscience is indeed optimal in this case,

i.e., RS = 1. ✷

D. With Silent Users

This section considers the scenario S ( A = V , i.e, all the

users are active but some of them may be forced to be silent.

This will be assumed throughout the section unless otherwise

stated. We begin by providing an alternate characterization of

the secrecy capacity in [2, Theorem 6].

Proposition 6.4

CS =

{
min
i∈S

I(ZV \S ∧ Zi) if |V \ S| = 1

min{α, I(ZV \S)} if |V \ S| > 1,

(6.18a)

(6.18b)

where α := mini∈S I(ZV \S ∧ Zi). ✷

PROOF See Appendix D-5 �

The result can be easily extended to the case with untrusted

helpers, i.e., S ( A = V \D with D possibly non-empty. To

be precise, we have

CS =

{
min
i∈S

I(Z(V \D)\S ∧ Zi|ZD) if |(V \D) \ S| = 1

min{α, I(Z(V \D)\S |ZD)} if |(V \D) \ S| > 1

where α := mini∈S I(Z(V \D)\S ∧ Zi|ZD).
We now turn our attention to lower bounding RS for the

case with S ( A = V . For this, we introduce some convenient

notation, starting with the definition

S∗ := {i ∈ S | I(ZV \S ∧ Zi) = α}, (6.19)

where α is as defined in Proposition 6.4. We extend the

notation introduced in Theorem 4.1: for any U ⊆ V , the

P∗ in the subscripts of JW,P∗(ZU ), JD,P∗(ZU ) and IP∗(ZU )
denotes the fundamental partition P∗(ZU ).

Applying the lower bound in Theorem 4.1 with an appro-

priate choice of U and P ∈ Π′(U) yields the following result.

Theorem 6.4

RS ≥







JW,P∗(ZV \S)− I(ZV \S)

if I(ZV \S) < α and |V \ S| > 1,

max
i∈S∗

JW(ZV \S ∧ Zi)− α,

if |V \ S| = 1,

or, if I(ZV \S) > α and |V \ S| > 1,

max
i∈S∗

JW,P∗(Z(V \S)∪{i})− α,

if I(ZV \S) = α and |V \ S| > 1,

(6.20a)

(6.20b)

(6.20c)

where S∗ is as defined in (6.19). ✷

PROOF See Appendix D-5 �

The lower bounds in Theorem 6.4 can be weakened by

replacing JW,P with the more easily computable JD,P . Using

arguments similar to those in Section IV, we arrive at the

following sufficient condition for RS = RCO to hold.

Theorem 6.5 RS = RCO in either of the following scenarios:

(i) H(ZC |ZV \C) = 0, ∀C ∈ P∗(ZV \S), when |V \ S| > 1
and I(ZV \S) < α,

(ii) ∃i ∈ S∗ such that H(ZV \S |Zi) = 0, when |V \ S| = 1,

or when |V \ S| > 1 and I(ZV \S) > α,

(iii) ∃i ∈ S∗ such that H(ZC |ZV \S\C ,Zi) = 0, ∀C ∈
P∗(ZV \S) ∪ {i}, when |V \ S| > 1 and I(ZV \S) = α,

where S∗ is as defined in (6.19). ✷

PROOF See Appendix D-5 �

Example 6.3 Consider the PIN in Example 6.2 with A =
V = [3]. We consider the following cases:

• S = {3}: It is easy to verify that I(ZV \S) = 1 with

P∗(ZV \S) = {{1}, {2}}, and α = I(Z{1,2} ∧ Z3) = 1 =
I(ZV \S). It is obvious that S∗ = S = {3}. Therefore, the

condition for Theorem 6.5.(iii) holds and so RS = RCO.

• S = {2}: Again, it is easy to verify that I(ZV \S) =
I(Z{1,3}) = 0 and P∗(ZV \S) = {{1}, {3}}. Also,

α = I(Z{1,3} ∧ Z2) = 2 > I(ZV \S). Now, as

H(Z3|Z1) = 1 > 0, Theorem 6.5.(i) fails to confirm

whether RS = RCO. However, it is easy to see that

CS = 0 and RCO = 2, which follows using Theorem 6 of

[2] and Proposition 6.4. Therefore,RS = 0 holds trivially,

and hence RS < RCO.

• S = {1, 3}: In this case, we have |V \S| = 1 and see that

α = min{I(Z2 ∧ Z3), I(Z2 ∧ Z1)} = 1, with S∗ = S =
{1, 3}. However, it turns out that H(Z2|Zi) = 1 > 0, i =
1, 3, and hence Theorem 6.5.(ii) is unable to conclude

whether RS = RCO.

We remark here that for the special case of a hypergraphical

source (as defined in Definition 3.2), the sufficient conditions

in Theorem 6.5 can be strengthened to a necessary and

sufficient condition for RS = RCO. (See Theorem 6.7.) Using

the stronger result, we can show that RS = RCO holds for the

last case when S = {1, 3}. ✷

E. The Hypergraphical Source with Silent Users

In this section, we restrict our attention to the hypergraphical

source with silent users, i.e, S ( A = V . The goal of this

section is to strengthen the sufficient conditions for RS = RCO

given in Theorem 6.5. We will show that the strengthened

conditions are both necessary and sufficient for RS = RCO to

be valid, as promised in Example 6.3.

The idea is based on the following observation.

Proposition 6.5 For any hypergraphical source, (V,E, ξ),
CS, RS and RCO remain unchanged by removing any hyper-

edge e′ ∈ E such that ξ(e′) ⊆ S. ✷

PROOF See Appendix D-6 �

Thanks to this fact we will assume that the hypergraphical

sources considered later in this section satisfy

∀e ∈ E, ξ(e) 6⊆ S. (6.21)
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Using (6.21), the lower bound in Theorem 6.4 can be

strengthened to the following for the hypergraphical source.

Theorem 6.6 For any hypergraphical source (V,E, ξ) with

S ( A = V , we have

RS ≥







JW,P∗(ZV \S)− I(ZV \S)

if I(ZV \S) < α and |V \ S| > 1,

JW,(V \S)∪{{i}|i∈S∗}(Z(V \S)∪S∗)− α,

if |V \ S| = 1,

or, if I(ZV \S) > α and |V \ S| > 1,

JW,P∗(ZV \S)∪{{i}|i∈S∗}(Z(V \S)∪S∗)− α,

if I(ZV \S) = 1 and |V \ S| > 1,

(6.22a)

(6.22b)

(6.22c)

where S∗ is as defined in (6.19). ✷

PROOF See Appendix D-6 �

The results of Theorem 6.6 can be used to obtain sufficient

conditions for RS = RCO to hold, by following the same steps

as in the proof of Theorem 6.5. Fortunately, it turns out that

those conditions are also necessary, a fact that can be proved

using the idea of decremental secret key agreement highlighted

in [37].

Theorem 6.7 For any hypergraphical source (V,E, ξ) with

S ( A = V , we have RCO = RS iff

(i) H(ZC |ZV \C) = 0, ∀C ∈ P∗(ZV \S), when |V \ S| > 1
and I(ZV \S) < α,

(ii) H(ZV \S |ZS∗) = 0, when |V \ S| = 1 or, if |V \ S| > 1
and I(ZV \S) > α,

(iii) H(ZC |Z((V \S)∪S∗)\C) = 0, ∀C ∈ P∗(ZV \S), when |V \
S| > 1 and I(ZV \S) = α. ✷

PROOF See Appendix D-6 �

F. With Untrusted Users

The lower bounds and sufficient conditions derived so far

(Theorems 4.2–4.3 and Theorems 6.2–6.7) can all be extended

to the case with untrusted helpers by further conditioning on

ZD in the entropies, as in Theorem 6.1. For hypergraphical

sources, this is equivalent to removing the hyperedges incident

on D, as in Corollary 5.5.

VII. CHALLENGES

In this section, we conclude our work by explaining some

challenges that remain and techniques that potentially improve

the results derived so far.

A. Limitation

We first show that the sufficient condition in Theorem 4.2

for the optimality of omniscience may not be necessary for the

following example from [17], resolving the conjecture therein.

Example 7.1 Let Xa,Xb,Xc and Xd be uniformly random and

independent bits, and define

Z1 := Xa

Z2 := Xb

Z3 := Xc

Z4 := (Xa,Xb,Xc ⊕ Xd)

Z5 := (Xa,Xb,Xd).

With A = V := [5] and S = ∅, it can be shown that

CS = I(ZV ) = 1 with P∗(ZV ) = {{1}, {2}, {3}, {4, 5}}
RCO = H(ZV )− CS = 3

JW,P∗(ZV ) = JD,P∗(ZV ) = 3 < H(ZV ) = 4

with W = (X{a,b,c}). To achieve the capacity, we can choose

for n = 1
K := Z1 = Xa

F4 := Xc ⊕ Xd

F5 := (Xa ⊕ Xb,Xa ⊕ Xd),

which also achieves omniscience at the minimum rate.

Note that the sufficient condition (4.12) for the optimality

of omniscience does not hold because

H(Z{4,5}|Z{1,2,3}) = H(Xd,Xc ⊕ Xd|Xc) = 1 > 0.

The following result will show that omniscience is indeed

optimal for this example, and so the sufficient condition is

not necessary. Furthermore, since the sufficient condition is

derived from the lower bound (4.11) on RS, the bound is also

loose for this example. ✷

Proposition 7.1 For Example 7.1, RS = RCO. ✷

PROOF See Appendix E-1. �

B. Potential Improvements

In this section, we give some potential improvements of the

lower bound by a change of scenario.

Theorem 7.1 CS and RS remain unchanged by the following

change of user sets:

(i) A vocal untrusted user is turned into a silent untrusted

user, and a new trusted helper with the same private

source as the original vocal untrusted user is added. That

is to say, (S, V ) becomes (S ∪ {i}, V ∪ {i′}) for some

i ∈ D \S and with i′ 6∈ V being a new user with private

source Zi′ = Zi identical to that of i.
(ii) A trusted helper i ∈ V \A\S \D with H(Zi|Zj) = 0 for

some vocal user j ∈ V \ S is removed, i.e., V becomes

V \ {i}. ✷

PROOF See Appendix E-2 �

Theorem 7.2 Suppose (CS, RS) becomes (C′
S, R

′
S) by one of

the following change of user sets:

(i) a silent user is removed, i.e., (A,S,D, V ) becomes

(A,S \ {i}, D \ {i}, V \ {i}) for some i ∈ S ∩ D, or

(A \ {i}, S \ {i}, D, V \ {i}) for some i ∈ A ∩ S.

(ii) a silent active user is turned into a vocal active user, i.e.,

S becomes S \ {i} for some i ∈ A ∩ S.
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Then, C′
S ≥ CS. If equality holds, then R′

S ≤ RS. ✷

PROOF See Appendix E-2 �

Example 7.2 Let Xa and Xb be independent uniformly ran-

dom bits. Consider the PIN in Example 6.2 but with user 4
added so that the private source consists of

Z1 := Xa

Z2 := (Xa,Xb)

Z3 := Xb

Z4 := Xb

Suppose (A,S,D) = ([3], {1, 3}, ∅). It can be shown that

CS = RCO = 1, which is achievable non-asymptotically

with n = 1 and (K,F) = (Z1,F2) = (Za,Za ⊕ Zb). We

can apply (ii) in Theorem 7.1 to remove the trusted user 4,

since H(Z4|Z2) = 0 and 2 ∈ V \ S. With V changed to

V ′ = {1, 2, 3}, the CS and RS remain unchanged. Since

the model is hypergraphical (in particular, a PIN), we can

apply Theorem 6.6 to show that RS of the new scenario is at

least 1, and so RS = RCO = 1 in the original scenario by

Theorem 7.1 ✷

The following conjectures, if proven correct, can further

improve the lower bound (6.13). They are true if one can

prove the stronger conjecture in [5] that private randomization

does not decrease RS.

Conjecture 1 RS does not increase by

(i) making a trusted helper active provided that the private

source of the helper determines that of another active

user.

(ii) forcing a vocal active user silent if its source is deter-

mined by that of another vocal user. ✷

Example 7.3 Consider the PIN in Example 6.2 with V = [3].
Let (A,S,D) = ({1, 3}, ∅, ∅). As discussed in Example 6.2,

the lower bound (6.13) fails to show RS ≥ 1. However, if

the conjecture above is proved, then we could apply (i) in the

conjecture to turn the trusted helper into an active vocal user,

in which case RS = 1 as described in the previous example

for the new scenario. ✷

APPENDIX A

PROOF OF PROPOSITION 3.1

Consider j ∈ D first. As will be useful to a later result, we

will prove the stronger statement that Uj neither increases CS

nor decreases RS even when Uj is a public randomization [13]

observed by everyone in addition to the wiretapper, i.e.,

with (3.5) modified to have Fi depend directly on Uj . To

do so, it suffices to show that the recoverability (3.7) and

secrecy (3.8) constraints continue to hold even if Uj is chosen

to be deterministic. More precisely, for any δ > 0, let

Uj(δ) :=

{

u ∈ Uj |

Pr(∃i ∈ A,K 6= θi(Z̃i,F) | Uj = u) ≤ δ,

1

n

[

log|K| −H(K|F, Z̃D,Uj = u)
]

≤ δ

}

.

(A.1a)

(A.1b)

We have the desired result if Uj(δn) 6= ∅ for some δn → 0
since, by choosing Uj to be deterministically equal to any

element in Uj(δn), (A.1a) and (A.1b) implies (3.7) and (3.8)

respectively. Indeed, not only can we show that Uj(δ) 6= ∅,

i.e., Pr(Uj ∈ Uj(δ)) > 0, but also that

lim
n→∞

Pr(Uj ∈ Uj(δ)) = 1 ∀δ > 0. (A.2)

Let U ′
j(δ) be the set Uj(δ) in (A.1) with only (A.1a) (but not

(A.1b)) imposed. Similarly, let U ′′
j (δ) to be the set with only

(A.1b) imposed. It follows that

Uj(δ) = U ′
j(δ) ∩ U ′′

j (δ)

and so, by the union bound,

Pr(Uj ∈ Uj(δ)) ≥ 1− Pr(Uj 6∈ U ′
j(δ))− Pr(Uj 6∈ U ′′

j (δ)).

It suffices to show that the last two probabilities go to 0
asymptotically in n. By the Markov inequality,

Pr(Uj 6∈ U ′
j(δ)) ≤ Pr(∃i∈A,K 6=θi(Z̃i,F))

δ

Pr(Uj 6∈ U ′′
j (δ)) ≤

1

n [log|K|−H(K|F,Z̃D ,Uj)]
δ .

The bounds go to zero as desired by (3.7) and (3.8), hence

completing the proof of (A.2).

Consider the remaining case j ∈ S. (Unlike the previous

case, we do not consider Uj is a public randomization here.)

Note that

I(Uj ∧ Z̃V \{j},F) = 0 (A.3)

because F in (3.5) does not depend on Uj as user j is silent,

and the Uj is independent of Z̃V \{j} by the assumption (3.11).

We will show that this implies that

lim
n→∞

1

n
I(Uj ∧ K|F, Z̃D) = 0 (A.4)

Since |A| ≥ 2, there exists another active user, say i ∈ A\{j}.

By the recoverability condition (3.7) for user i (which does

not depend on Uj), we have

lim
n→∞

Pr{K 6= θi(Z̃i,F)} = 0

which gives

I(Uj ∧ K|F, Z̃D)
(a)

≤ I(Uj ∧ Z̃i,F|F, Z̃D) + nδn
(b)
= nδn

for some δn → 0. Here, (a) follows from Fano’s inequality,

and (b) is because

I(Uj ∧ Z̃i,F|F, Z̃D) ≤ I(Uj ∧ Z̃i,F, Z̃D)

≤ I(Uj ∧ Z̃V \{j},F),

which equals zero by (A.3), completing the proof of (A.4).

Now, by (3.8),

0 = lim
n→∞

1

n

[

log|K| −H(K|F, Z̃D)
]

= lim
n→∞

1

n

[

log|K| −H(K|F, Z̃D,Uj)
]

= lim
n→∞

1

n

[

log|K| −max
u∈Uj

H(K|F, Z̃D,Uj = u)

]

where the second equality follows from (A.4). Hence, by

setting Uj = u deterministically, (3.8) remains to hold (since
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maxu∈Uj
H(K|F, Z̃D,Uj = u) = H(K|F, Z̃D) in the above).

Furthermore, (3.7) (without Uj) also hold by (A.4). This

completes the proof of the proposition.

APPENDIX B

PROOFS FOR SECTION IV

1. Proof of Theorem 4.1

It is enough to prove (4.11a), since (4.11b) then follows

from (4.9). Let UV be the optimal sequence of randomization

that achieves RS, and let RNR
S (Z̃V ) be the communication

complexity when the source ZV is changed to Z̃V instead (see

(3.4) for the definition of Z̃V ). Then,

RS(ZV )
(a)

≥ 1

n
RNR

S (Z̃V )
(b)

≥ 1

n
[CW(Z̃V )− I(Z̃V )]

(c)

≥ 1

n
[nJW,P∗(ZV )− I(Z̃V )]

(d)
= JW,P∗(ZV )− I(ZV )

• To explain (a), note that the secrecy capacity of the new

scenario is nCS, since randomization does not change the

secrecy capacity [1]. Any optimal scheme that achieves

RS for the original scenario can therefore be translated

directly to a scheme that achieves nRS for the new

scenario without randomization.

• (b) is by Proposition 4.5 with ZV replaced by Z̃V , and

CW(Z̃V ) denoting the corresponding multi-letter multi-

variate Wyner common information (4.5).

• (c) follows from

CW(Z̃V ) ≥ nJW,P∗(ZV ), (B.1)

which will be argued in more detail later.

• To explain (d), note that for all B ⊆ V ,

H(Z̃B) = H(Zn
B,UB)

= nH(ZB) +H(UB),

which gives

IP(Z̃V ) = nIP(ZV ) + IP(UV )

for all P ∈ Π′(V ). Since IP (UV ) = 0 by the fact that the

Ui’s are mutually independent (3.3), the above equation

implies I(Z̃V ) = nI(ZV ) as desired.

To explain (B.1), consider the optimal sequence in n′ of L to

CW(Z̃V ). By standard arguments,

H(L) ≥ I(Z̃n′

V ∧ L) ≥ I(Znn′

V ∧ L)

= H(Znn′

V )−H(Znn′

V |L)

=
nn′
∑

t=1

H(ZV t)−
nn′
∑

t=1

H(ZV t|Zt−1
V , L)

where the second inequality follows from the usual data

processing inequality (see (6.10a)) since Zn
V is determined

by Z̃V , and so, we have the Markov chain L − Z̃n′

V − Znn′

V .

Let J be the usual time-sharing random variable uniformly

distributed over [nn′] and independent of everything else,

namely (Z̃n′

V , L), and define

WJ := (J,ZJ−1
V , L).

Then, the above inequality gives

1

n′
H(L) ≥ nI(ZV J ∧WJ). (B.2)

On the other hand, we can also bound IP∗ in the con-

straint (4.5b) of CW as follows:

IP∗(Z̃V )(Z̃
n′

V |L) ≥ IP∗(ZV )(Z
nn′

V |L)

=
1

|P∗| − 1

[
∑

C∈P∗

H(Znn′

C |L)
︸ ︷︷ ︸

1,

−H(Znn′

V |L)
︸ ︷︷ ︸

2,

]

where, as in the statement of the theorem, P∗ denotes P∗(ZV )
for convenience. In the above inequality, we have applied

P∗(Z̃V ) = P∗(ZV ) and the data processing inequality [10,

(5.20b)] since Zn
i is determined by Z̃i. (See also (6.8) with Iλ

reduces to IP by restricting λ to (6.4).) Expanding 1, and 2,

by the chain rule,

1,=
nn′
∑

t=1

H(ZCt|L,Zt−1
C )

≥
nn′
∑

t=1

H(ZCt|L,Zt−1
V ) =nn′H(ZCJ|WJ)

2,=

nn′
∑

t=1

H(ZV t|L,Zt−1
V ) = nn′H(ZV J|WJ).

Altogether, we have

1

n′
IP∗(Z̃V )(Z̃

n′

V |L)

≥ n

|P∗| − 1

[
∑

C∈P∗

H(ZCJ|WJ)−H(ZV J|WJ)

]

= nIP∗(ZV J|WJ), (B.3)

Now, for δ ≥ 0, define

Γ(δ) := sup
PW|ZV

:IP∗ (ZV |W)≤δ

H(ZV |W), (B.4)

where the supremum is over all possible choices of the condi-

tional distribution PW|ZV
. The expression depends implicitly

on the distribution PZV
. It follows that

Γ
(

1
nn′ IP∗(Z̃V )(Z̃

n′

V |L)
)

≥ H(ZV J|WJ)

since ZV J has the same distribution as ZV and so the condi-

tional distribution PWJ|ZV J
is a feasible solution to (B.4) with

δ chosen appropriately from the bound (B.3) on IP∗(ZV J|WJ).
Together with (B.2), we have

CW(Z̃V ) ≥ lim
n′→∞

n
[

H(ZV J)− Γ
(

1
nn′ IP∗(Z̃V )(Z̃

n′

V |L)
)]

= n

[

H(ZV )− lim
δ→0

Γ(δ)

]

where the last equality is because H(ZV J) = H(ZV ) and
1
n′ IP∗(Z̃V )(Z̃

n′

V |L) goes to 0 as n′ goes to ∞ by the constraint

(4.5b) for CW(Z̃V ). It can be shown that Γ(δ) is continuous

in δ using the same argument as in [32]. For completeness,
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this is proved for the more general case in Lemma D.4 in

Appendix D-3. Hence,

CW(Z̃V ) ≥ n [H(ZV )− Γ(0)]

= nJW,P∗(ZV )

by the definition (4.7) of JW,P .

2. Proof of Theorem 4.3

To prove Theorem 4.3, we use the idea of decremental secret

key agreement [37, Theorem 4.2].

Proposition B.1 ([37, Theorem 4.2]) If ZV can be rewritten

for some ∅ 6= T ⊆ C ∈ P∗(ZV ) as

Zi =

{

(Ẑi,X) ∀i ∈ T

Ẑi ∀i ∈ V \ T, (B.5)

where H(X) = H(X|ẐV ) > 0, then, we have

H(Z′
V ) < H(ZV ) and I(Z′

V ) = I(ZV ) (B.6)

for some function Z′
i = ϑi(Zi) for i ∈ V . ✷

Roughly speaking, when (4.12) fails for hypergraphical

sources, we can identify and reduce excess randomness in

the source without changing CS, and so omniscience is not

optimal in achieving RS.

The “if” case of Theorem 4.3 follows from Theorem 4.2

directly. To prove the “only if” part, suppose to the contrary

that

H(ZC |ZV \C) > 0 for some C ∈ P∗(ZV ).

For hypergraphical model, this means that

H(Xe′ |ZV \C) > 0 for some e′ ∈ E,

i.e., ξ(e′) ⊆ C. Thus, (B.5) holds with X := Xe′ , T := ξ(e′) ⊆
C and

Ẑi := (Xe | e ∈ E \ e′, i ∈ ξ(e)).

By Proposition B.1, we have (B.6). With R′
S and R′

CO

denoting the communication complexity and the smallest rate

of CO for the source Z′
V , we have

RS

(a)

≤R′
S ≤ R′

CO = H(Z′
V )− I(Z′

V )
(b)
<H(ZV )− I(ZV ) = RCO(ZV ),

where (a) is due to the fact that processing Zi’s individually

cannot reduce the communication complexity RS; and (b) is

by (B.6). This completes the proof of Theorem 4.3.

3. Proof of Proposition 4.8

First, observe that with W = (Xe | e ∈ E∗), using

the assumption that the random variables Xe’s are mutually

independent, we have
∑

C∈P∗

H(ZC |W) =
∑

C∈P∗

H(X{e∈E\E∗|ξ(e)⊆C})

= H(X{E\E∗}) = H(ZV |W)

Hence, IP∗(ZV |W) = 0, and so W is a feasible solution to

JW,P∗(ZV ). Thus, JW,P∗(ZV ) ≤ H(XE∗). By (4.9), On the

other hand, we also have, by (4.9),

JW,P∗(ZV ) ≥ H(ZV )−
∑

C∈P∗

H(ZC |ZV \C)

= H(XE)−
∑

C∈P∗

H(X{e∈E\E∗|ξ(e)⊆C})

= H(XE)−H(X{E\E∗})

= H(XE∗)

Thus, JW,P∗(ZV ) = H(XE∗) with W = (Xe | e ∈ E∗) being

an optimal solution.

APPENDIX C

PROOFS FOR SECTION V

1. Proof of Theorem 5.1

Converse proof of CS:

We first prove ‘≤’ for (5.1) by making use of the following

result that directly extends the technique of the converse proof

of [1, Theorem 2] and [2, Theorem 6].

Lemma C.1 For any B ⊆ V \D \ S, we have

lim sup
n→∞

1

n
H(K|F, Z̃V \S\B) ≥ H(ZB|ZV \S\B)− r(B)

with ri := lim sup
n→∞

1

n

[
∑

t∈[r]
H(Fit | F̃it, Z̃D)

+H(Z̃i|Z̃D, Z̃[i−1],K,F)−H(Ui)

]

.

(C.1a)

(C.1b)

The inequality is satisfied with equality if B = V \D \ S. ✷

This completes the proof because, by the secrecy con-

straint (3.8),

lim inf
n→∞

1

n
log|K| ≤ lim sup

n→∞

1

n
H(K|F, Z̃D)

= H(ZV \D\S |ZD)− r(V \D \ S)
by the equality case of (C.1a) with B = V \D \S. Moreover,

rV \D\S satisfies (5.3b) because, for any j ∈ A and B ⊆
V \D \ S \ {j}, the limit in (C.1a) is 0 by Fano’s inequality

and the recoverability constraint (3.7) as j ∈ V \S \B. (Note

that the constraints for B ∋ j are redundant.)

PROOF (LEMMA C.1) By the assumption (3.3) of the private

randomizations and the memorylessness of the private source,

H(Z̃B|Z̃V \S\B) =
∑

i∈B

H(Ui) + nH(ZB|ZV \S\B).

Alternatively, since F is determined by Z̃V \S by (3.5), we have

H(Z̃B|Z̃V \S\B) = H(F, Z̃B|Z̃V \S\B)

= H(K,F, Z̃B|Z̃V \S\B)
︸ ︷︷ ︸

1,

−nδn

where δn := 1
nH(K|F, Z̃V \S) goes to 0 as n → ∞ by

Fano’s inequality because K can be recovered from (F, Z̃V \S)
asymptotically by (3.7), due to the assumption S ( A that
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there must be at least one vocal active user, i.e, A∩(V \S) 6= ∅.

Expanding the last entropy term 1, by the chain rule gives

1,=

2,
︷ ︸︸ ︷

H(F|Z̃V \S\B)+H(K|F,Z̃V \S\B)+

3,
︷ ︸︸ ︷

H(Z̃B|K,F,Z̃V \S\B)

2,=
∑

t∈[r]

∑

i∈V \S

H(Fit|F̃it, Z̃V \S\B)

(a)
=
∑

i∈B

∑

t∈[r]

H(Fit|F̃it, Z̃V \S\B)
(b)

≤
∑

i∈B

∑

t∈[r]

H(Fit|F̃it, Z̃D)

3,=
∑

i∈B

H(Z̃i|Z̃(V \S\B)∪[i−1],K,F)

(c)

≤
∑

i∈B

H(Z̃i|Z̃D, Z̃[i−1],K,F),

where (a) is because the entropy terms for i 6∈ B are zero

by (3.5). Rearranging the terms give (C.1) with the desired

equality condition because inequalities (b) and (c) hold with

equality if B = V \D \ S. �

Characterization of RCO:

Next, we prove the characterization of RCO in (5.2). For each

j ∈ A, let

R
′(ZV \D\S |ZD∪{j}) := {rV \D\S ∈ RV \D\S |

r(B) ≥ H(ZB|ZV \S\B,Zj) ∀B ⊆ V \D\S}
R

′(ZD|Zj) := {rD ∈ RD |
r(B) ≥ H(ZB|ZD\B,Zj) ∀B ⊆ D}

(C.2a)

(C.2b)

(C.2c)

(C.2d)

Note that, by the standard result of independent source

coding with side information, R′(ZV \D\S |ZD∪{j}) is the

set of achievable rate tuple for encoding each components

of the source ZV \D\S independently so that they can be

recovered from the codewords given the source ZD∪{j} as

side information. The omniscience constraint (3.13b) requires

the recoverability simultaneously for all j ∈ A, and so the

achievable rate region is
⋂

j∈A

R
′(ZV \D\S |ZD∪{j})

by the result of normal source network [4, Chapter 1]. ρ in

(5.3a) is the minimum sum rate over this region because (5.3b)

is composed of (C.2b) for all j ∈ A. Similarly, it can be argued

that ⋂

j∈A

R
′(ZD|Zj) ∩ R(ZD)

(with R(ZD) defined in (3.15)) is the achievable rate region

for the omniscience constraint (3.13a) together with the

rate constraints (3.16). ρ̄ in (5.4a) is the minimum sum rate

over this region. Since the above two rate constraints are

separable, the total minimum sum rate is given by ρ + ρ̄,

which completes the proof.7

Achievability of CS via omniscience:

7As a side note, although the omniscience strategy here assumes non-
interactive discussion, it can be shown as in [1] that the characterization of
RCO remains unchanged even if interactive discussion is allowed.

We first argue that an optimal solution rD to (5.4a) exists, and

so the omniscience strategy is feasible. (An optimal solution

rV \D\S to (5.3a) clearly exists.) As in (C.2), let

R
′(ZD) := {rD ∈ RD | r(B) ≥ H(ZB|ZD\B) ∀B ⊆ D}

which is the set of achievable rate tuples for encoding the

components of ZD independently so that they can be recovered

from the codewords (without any side-information).

Proposition C.1 ([40]) R(ZD) is the downward hull of

R(ZD) ∩ R
′(ZD). ✷

PROOF Since the entropy function is a normalized submodular

function [26], R(ZD) defines an extended polymatroid and

R(ZD) ∩ R′(ZD) is the base of the polymatroid [40]. The

result follows immediately from the fact that an extended

polymatroid is a downward hull of its base. �

It follows that R(ZD) ∩ R′(ZD) is non-empty since its

downward hull R(ZD) is clearly non-empty. Furthermore,

r(D) = H(ZD) ∀rD ∈ R(ZD) ∩ R
′(ZD),

which is the maximum and minimum possible sum rates over

R(ZD) and R′(ZD) respectively. An optimal solution to (5.4)

exists because any rD ∈ R(ZD) ∩ R′(ZD) is a feasible

solution, i.e., for all j ∈ A and B ⊆ D,

r(B) = r(D) − r(D \B)

≥ H(ZD)−H(ZD\B) = H(ZB|ZD\B),

satisfying the constraint (5.4b).

It remains to show that the omniscience strategy achieves

CS in (3.9). Consider r∗V \D\S optimal to (5.3a) and any r∗D
optimal to (5.4a). Note that r∗D ∈ R(ZD) by (5.4a). Then,

by Proposition C.1, there exists a non-negative weight vector

δD ≥ 0 such that r∗D + δD ∈ R(ZD) ∩ R′(ZD), which is

therefore in R′(ZD). By the usual source coding results [4],

there exists (F,GD) at rate (r∗V \S , δD) such that

lim
n→∞

Pr(Zn
D 6= φ(FD,GD)) = 0

in addition to satisfying the omniscience constraints (3.13).

Note that GD is constructed only for the purpose of proof and

will not be discussed in public (F is the public discussion as

usual). GD is the public discussion saving of our scheme (3.13)

compare to (3.19). It follows by Fano’s inequality that the l.h.s.

of the secrecy constraint (3.8) can be rewritten as

lim inf
n→∞

1

n
[log|K| −H(K|F,Zn

D)]

= lim inf
n→∞

1

n
[log|K| −H(K|F,GD)] .

By [1, Lemma B.2], the r.h.s. can be made equal to 0
(satisfying (3.8)) with

lim
n→∞

1

n
log|K| ≥ H(ZV \S)− r∗(V \ S)− δ(D)

= H(ZV \D\S |ZD)−
=ρ

︷ ︸︸ ︷

r∗(V \D \ S)
+ [H(ZD)− r∗(D)− δ(D)]
︸ ︷︷ ︸

=0

.

This achieves the r.h.s. of (5.1) as desired.
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2. Proofs of Theorem 5.2 and its Corollaries

PROOF (THEOREM 5.2) We will argue that for both the cases

(i)-(ii), a capacity achieving scheme for the new scenario is

a valid SK generation scheme for the original scenario and

hence C′
S ≤ CS. In particular, if C′

S = CS, then the capacity

achieving schemes for the changed scenario will be capacity

achieving for the original scenario as well, and hence RS ≤
R′

S.

Case (i): Consider turning an achievability scheme in the

new scenario to that of the original scenario. To satisfy (3.5),

the discussion by the new trusted helper can be performed by

the original vocal active user. The original vocal active user

can recover the key because the new silent active user can,

and so (3.7) holds. Observe that (3.8) continues to hold as the

untrusted users remain unchanged.

Case (ii): The constraint on (3.5) becomes more stringent

with the removal of a vocal helper, while the other constraints,

namely, (3.7) and (3.8), remain unchanged. Hence, any capac-

ity achieving scheme for the new scenario continues to be an

SK generation scheme for the original one. �

PROOF (COROLLARY 5.3) Suppose C′
S = CS. The proce-

dures (i) and (ii) correspond to the cases (i) and (ii) of

Theorem 5.2, and so RS ≤ R′
S. Also, using (5.2) we have

R′
S ≤ R′

CO. Suppose (ρ, ρ̄) becomes (ρ′, ρ̄′) in the new sce-

nario. Note that, ρ̄ = ρ̄′ if the sets (A,D) remain unchanged.

We also have (5.1), that

ρ′ = ρ−
[
H(Z(V \D)\S |ZD)−H(Z(V ′\D)\S′ |ZD)

]

︸ ︷︷ ︸

β

,

by noting that A \ S′ = (V ′ \D) \ S′. Here,

β = H(ZV \S)−H(ZV ′\S′)

= H(Z(S′\S)∪(V \V ′)|ZV ′\S′) ≥ 0.

Hence, by (5.2), R′
CO = ρ̄′ + ρ′ = ρ̄+ ρ− β ≤ ρ̄+ ρ = RCO,

which completes the proof of (5.5). Furthermore, RS = RCO

happens only if β = 0, which is the same as (5.9). �

PROOF (COROLLARY 5.4) Suppose, (5.7) holds. Then, by

(5.8), every active user can recover Un. By [1, Lemma B3],

(3.8) holds for a choice of K as a function of Un of rate

H(U|ZD). Therefore, CS can be achieved without public

discussion, i.e., RS = 0. Now, if (5.9) holds in addition,

then (3.13) holds without discussion, i.e., RCO = 0. Con-

versely, suppose that (5.9) fails, i.e., for some j ∈ A,

0 < H(ZV \S |Zj) = H(ZD|Zj) + H(ZV \S\{j}\D|Zj) holds.

Then, either H(ZD|Zj) > 0, in which case ρ̄ > 0, or

H(ZV \S\{j}\D|Zj) > 0, in which case ρ > 0. In either case,

RCO > 0 by (5.2). �

3. Proof of Theorem 5.3

The idea is to process the original source ZV to Z
(q)
V

possibly with different choices of q at different times. We

will show that (5.11) ensures that secrecy in the new scenario

guarantees secrecy in the original scenario. On the other hand,

(5.12) makes sure that the capacity does not diminish.

To proceed, divide the n-block of time instances into

consecutive nq-blocks for q ∈ Q, such that

∑

q∈Q

nq = n and lim
n→∞

nq

n
= PQ(q) ∀q ∈ Q, (C.3)

where, PQ(·) is the distribution of some random variable

Q taking values in a finite set Q. The source is processed

block-by-block, with the source corresponding to the q-th

block being processed to Z
(q)
V . Therefore, Zn

V becomes ZV :=

(Z
(q)
V

nq |q ∈ Q). There exists a public discussion F at the

rate R′
CO for the active users to recover ZV , which can be

argued using the strong law of large numbers and (C.3). By

Lemma B3 of [1], a key K of rate equal to the r.h.s. of (5.12)

can be recovered by the active users, which satisfies (3.8) with

ZD replaced by ZD.

To complete the proof, we show that (3.8) is still valid with

Z̃D. Recalling that Z̃D = Zn
D, we have

1

n
H(K|F, Z̃D) =

1

n
H(K|F,Zn

D)

=
1

n

[
H(K|F,ZD)− I(Zn

D ∧ K|F,ZD)
]
. (C.4)

Therefore, for some δn → 0,

I(Zn
D ∧ K|F,ZD) ≤ I(Zn

D ∧ ZV \D,K|F,ZD)
(a)

≤ I(Zn
D ∧ ZV \D|F,ZD) + nδn

(b)

≤ I(Zn
D ∧ ZV \D|ZD) + nδn

=
∑

q∈Q

nqI(ZD ∧ Z
(q)
V \D|Z(q)

D ) + nδn

(c)
=nδn. (C.5)

(a) is by Fano’s inequality because K is recoverable asymp-

totically from ZV \D given ZD. (b) is because F is determined

by ZV . (c) follows directly from the assumption (5.11) in the

theorem statement. Therefore, combining (C.4) and (C.5), we

have 1
nH(K|F, Z̃D) ≥ 1

nH(K|F,ZD) − δn, which combined

with (3.8) with respect to ZD gives us the desired result.

APPENDIX D

PROOFS FOR SECTION VI

1. Proof of Shearer-Type Lemma

In this section, we prove a stronger version of Proposi-

tion 6.2 below:

Lemma D.1 For any random vector (Z′
U ,W

′) and λ ∈
Λ(U, 2U \ {∅, U}),

Iλ(Z
′
U |W′) ≥ max

B∈2U\{∅,U}
λ(B)I(Z′

B ∧ Z′
U\B|W′)

Iλ(Z
′
U |W′) ≤

∑

B∈2U\{∅,U}

λ(B)I(Z′
B ∧ Z′

U\B|W′)

(D.1a)

(D.1b)

which are the lower and upper bounds of the fractional parti-

tion information in terms of Shannon’s mutual information.✷
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Note that Iλ(Z
′
U |W′) = 0 implies the lower bound (D.1a) is

zero, which implies (6.7). Conversely, Iλ(Z
′
U |W′) = 0 if the

upper bound (D.1b) is zero, which is implied by (6.7).8

PROOF Without loss of generality, let U := [m] for some

integer m > 1, and assume the optimal solution to (D.1a) is

[l] for some l ∈ [m]. By definition (6.5),

Iλ(Z
′
U |W′) = H(Z′

U |W′)
︸ ︷︷ ︸

1,

−
∑

B∈2U\{∅,U}

λ(B)H(Z′
B |Z′

U\B,W
′)

︸ ︷︷ ︸

2,

By the chain rule,

1,=
∑

i∈U

= 1 by (6.1)
︷ ︸︸ ︷

∑

B∈2U\{∅,U}:
i∈B

λ(B)H(Z′
i|Z′

[i−1],W
′)

2,=
∑

i∈B

H(Z′
i|Z′

[i−1]∪(U\B),W
′).

Exchanging the summations in 1,, substituting both 1, and

2, back to the original expression and simplify using the

definition of mutual information, we have

Iλ(Z
′
U |W′) =

∑

B∈2U\{∅,U}

λ(B)
∑

i∈B

I(Z′
i ∧ Z′

U\B |Z′
[i−1],W

′)

(a)

≤
∑

B∈2U\{∅,U}

λ(B)
∑

i∈B

I(Z′
i ∧ Z

′
U\B|Z′

[i−1]∩B,W
′)

(b)
=

∑

B∈2U\{∅,U}

λ(B)I(Z′
B ∧ Z

′
U\B|W′)

where (a) follows from the fact that conditioning does not

increase entropy, and the equality holds if [i − 1] ⊆ B; (b)

follows from chain rule expansion. This gives the desired

upper bound (D.1b). The lower bound (D.1a) follows from

the equality case when B = [l], and the fact that all the other

terms in the sum are non-negative. �

2. Proof of Lemma 6.1

Consider proving (6.8) first. By definition (6.5),

Iλ(Z
′
U |W′)− Iλ(Z

′′
U |W′) =

1,
︷ ︸︸ ︷

H(Z′
U |W′)−H(Z′′

U |W′)

−
∑

B∈2U\{∅,U}

λ(B)
[

H(Z′
B|Z′

U\B ,W
′)−H(Z′′

B|Z′′
U\B ,W

′)
]

︸ ︷︷ ︸

2,

Note that by the definition of Z′′
U , we have for B ∋ i that,

1,= 2,= H(Z′
i|Z′

U\{i},W
′)−H(Z′′

i |Z′
U\{i},W

′).

Since the value is independent of B, we have

Iλ(Z
′
U |W′)− Iλ(Z

′′
U |W′) = 1,− 1,

= 1 by (6.1)
︷ ︸︸ ︷
∑

B∋i

λ(B)−
∑

B 6∋i

λ(B) 2,

= −
∑

B 6∋i

λ(B) 2,

8It also follows from Lemma D.1 that Iλ(Z
′
U
|W′) → 0 is equivalent

to ∀B ∈ supp(λ), I(Z′
B

∧ Z′
U\B

|W′) → 0, which is not covered by

Proposition 6.2 directly.

For B 6∋ i, it can be shown using standard arguments that

2,= I(Z′′
i ∧ Z′

B|Z′
U\B\{i},W

′)− I(Z′
i ∧ Z′

B|Z′
U\B\{i},W

′)

≤ I(Z′′
i ∧ Z′

B|Z′
U\B\{i},W

′,Z′
i)

≤ I(Z′′
i ∧ Z′

U\{i}|W′,Z′
i)

︸ ︷︷ ︸

3,

,

the value of which is independent of B. Hence,

Iλ(Z
′
U |W′)− Iλ(Z

′′
U |W′) ≥ − 3,

∑

B 6∋i

λ(B)

= − 3,

[
∑

B

λ(B)−
∑

B∋i

λ(B)

]

which simplifies to −δ as desired by (6.1) and the fact that

Z′′
i = Y′.

Consider proving (6.9). By definition (6.5),

Iλ(Z
′
U |W′)− Iλ(Z

′
U |W′,Y′)

= I(Y′ ∧ Z′
U |W′)

︸ ︷︷ ︸

4,

−
∑

B

λ(B) I(Y′ ∧ Z′
B|Z′

U\B,W
′)

︸ ︷︷ ︸

5,

For B 6∋ i, we have by standard techniques that

5,≤ I(Y′ ∧ Z
′
U\{i}|W′,Z′

i),

the value of which is independent of B. Hence,
∑

B 6∋i

λ(B) 5,≤ δ.

Hence, we have

Iλ(Z
′
U |W′)− Iλ(Z

′
U |W′,Y′) + δ ≥ 4,−

∑

B∋i

λ(B) 5,

and so it suffices to prove that the r.h.s. is at least γ. By (6.1)

again,

4,−
∑

B∋i

λ(B) 5,=
∑

B∋i

λ(B) [ 4,− 5,]

=
∑

B∋i

λ(B)I(Y′ ∧ Z′
U\B|W′)

≥
∑

B∋i

λ(B) max
j∈U\B

I(Y′ ∧ Z′
j|W′)

which is at least γ as desired.

3. Proof of Theorem 6.1

We will show that for any CS-achieving scheme,

lim sup
n→∞

1

n
H(K,F|Z̃D) ≥ JW,λ(ZU |ZD) (D.2)

and so we have the desired lower bound (6.13) since

H(K,F|Z̃D) = H(F|Z̃D) +H(K|F, Z̃D) and

lim sup
n→∞

1

n
H(K|F, Z̃D) ≥ CS = Iλ(ZU |ZD)

by (3.8) and the assumption (6.12). To prove (D.2), we will

rely on the following fundamental property of Iλ (6.5) for

secret key agreement:
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Lemma D.2 If CS = Iλ(ZU |ZD) as in (6.12), then

lim
n→∞

1

n
Iλ(Z̃U |K,F, Z̃D) = 0 (D.3)

for any CS-achieving scheme. ✷

It follows that L = (K,F) for any CS-achieving scheme is a

feasible solution to

CW,λ := inf lim sup
n→∞

1

n
H(L|Z̃D) such that

lim
n→∞

1

n
Iλ(Z̃U |L, Z̃D) = 0.

(D.4a)

(D.4b)

In other words,

lim sup
n→∞

1

n
H(K,F|Z̃D) ≥ CW,λ.

and the proof is completed by showing that:

Lemma D.3

CW,λ = JW,λ(ZU |ZD), (D.5)

which is a single-letterization of (D.4). ✷

PROOF (LEMMA D.2) We will show using the data process-

ing inequalities in Lemma 6.1 that

1

n
Iλ(Z̃U |F, Z̃D) ≤ Iλ(ZU |ZD) and (D.6a)

lim
n→∞

1

n

{

log|K| −
[

Iλ(Z̃U |F, Z̃D)− Iλ(Z̃U |K,F, Z̃D)
]}

≤ 0.

(D.6b)

Then, for any CS-achieving scheme,

lim
n→∞

1

n

[

log|K| − Iλ(Z̃U |F, Z̃D)
]

≥ 0

by (D.6a) and that the key rate is CS = Iλ(ZU |ZD) by

assumption. Applying this to (D.6b) gives ≤ in (D.3), and

the reverse inequality follows from Proposition 6.2.

We first show (D.6a). Applying (6.9) with

Z′
U = Z̃U , Y

′ = Fit, and W′ = (Z̃D, F̃it)

for i ∈ V \ S and t ∈ [r] gives

Iλ(Z̃U |Z̃D, F̃it,Fit) ≤ Iλ(Z̃U |Z̃D, F̃it), (D.7)

because γ ≥ 0 and δ = 0 in (6.9) as

I(Y′ ∧ Z′
U\{i}|W′,Z′

i) ≤ H(Y′|Z′
i,W

′)

= H(Fit|Z̃i, Z̃D, F̃it) = 0

by (3.5). Applying (D.7) repeatedly for different (i, t) yields

Iλ(Z̃U |Z̃D) ≥ Iλ(Z̃U |Z̃D,F11)

≥ Iλ(Z̃U |Z̃D,F21)

≥ . . .

≥ Iλ(Z̃U |Z̃D,F). (D.8)

On the other hand, note that for all B ⊆ U , by (3.4),

H(Z̃B|Z̃D) = H(Zn
B,UB|Zn

D)

= nH(ZB|ZD) +H(UB),

which gives

Iλ(Z̃U |Z̃D) = nIλ(ZU |ZD) + Iλ(UU )

for all λ ∈ Λ(U, 2U \ {∅, U}). Since Iλ(UU ) = 0 by (3.3)

that Ui’s are mutually independent, the above equation implies

Iλ(Z̃U |Z̃D) = nIλ(ZU |ZD). This together with (D.8) give the

desired (D.6a).

To show (D.6b), we again apply (6.9) but with

Z′
U = Z̃U , Y

′ = K, and W′ = (Z̃D,F)

and any i ∈ A∩U , which is feasible by the assumption S ( A
that there is at least one active vocal user and U ⊇ V \D \S
from (6.12). This gives

Iλ(Z̃U |Z̃D,F) ≥ Iλ(Z̃U |K, Z̃D,F) +H(K|Z̃D,F)− nδn

(D.9)
for some δn → 0 as n→ ∞, because

• the term δ in (6.9) goes to 0 because

I(Y′ ∧ Z′
U\{i}|Z′

i,W
′) ≤ H(K|Z̃i, Z̃D,F) ≤ nδ′n

(D.10)

for some δ′n → 0 as n → ∞ by (3.7) and Fano’s

inequality;

• the term γ in (6.9) can be bounded as follow:

min
B∈supp(λ):B∋i

max
j∈U\B

I(Y′ ∧ Z′
j |W′)

(a)

≥min
j∈A

I(Y′ ∧ Z′
j|W′)

= min
j∈A

I(K ∧ Z̃j |F, Z̃D)

= min
j∈A

[

H(K|F, Z̃D)−H(K|Z̃j,F, Z̃D)
]

(b)

≥min
j∈A

H(K|F, Z̃D)− nδ′n

where (a) is due to (U \B) ∩A 6= ∅, ∀B ∈ 2U \ {∅, U},

(b) is by (D.10) (with j in place of i).
(D.9) implies (D.6b) by (3.8) as desired. Although not essential

for the proof of the lemma here, the reverse inequality ≥ of

(D.6b) also holds more generally by the definition of Iλ:

Iλ(Z̃U |F, Z̃D)− Iλ(Z̃U |K,F, Z̃D)

= H(K|F, Z̃D)−
∑

B

λ(B)H(K|Z̃U\B ,F, Z̃D)

≤ log|K|.
Hence, (D.6b) is indeed satisfied with equality. �

PROOF (LEMMA D.3) We single-letterize CW,λ as in [32]:

H(L|Z̃D) ≥ I(Zn
U ∧ L|Z̃D)

= H(Zn
U |Z̃D)−H(Zn

U |Z̃D, L)

=
n∑

t=1

H(ZUt|ZDt)−
n∑

t=1

H(ZUt|Zt−1
U , Z̃D, L)

=

n∑

t=1

H(ZUt|ZDt)−
n∑

t=1

H(ZUt|Zt−1
U , Z̃D, L,ZDt)

= nI(ZUJ ∧WJ|ZDJ) (D.11)
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where J is the usual time-sharing random variable uniformly

distributed over [n] and independent of (ZU , Z̃D, L), and

WJ := (J,ZJ−1
U , L, Z̃D).

We can also bound Iλ in the constraint (D.4b) of CW,λ:

Iλ(Z̃U |L, Z̃D) ≥ Iλ(Z
n
U |L, Z̃D)

︸ ︷︷ ︸

1,

by the data processing inequality (6.8) since Zn
i is determined

by Z̃i. By definition (6.5)

1,= H(Zn
U |L, Z̃D)

︸ ︷︷ ︸

2,

−
∑

B

λ(B)H(Zn
B |Zn

U\B , L, Z̃D)
︸ ︷︷ ︸

3,

(D.12)

Using the fact that Z̃D = Zn
D, the r.h.s. can be further expanded

as follows:

2,=
n∑

t=1

H(ZUt|Zt−1
U , L,Zn

D)

=

n∑

t=1

H(ZUt|Zt−1
U , L,Zn

D,ZDt)

= nH(ZUJ|WJ,ZDJ)

3,=

n∑

t=1

H(ZBt|Zt−1
B ,Zn

U\B, L,Z
n
D,ZDt)

≤
n∑

t=1

H(ZBt|Zt−1
U ,Z{U\B}t, L,Z

n
D,ZDt)

= nH(ZBJ|WJ,Z{U\B}J,ZDJ)

Altogether, we have the inequality

Iλ(ZUJ|WJ,ZDJ) ≤
1

n
Iλ(Z̃U |L, Z̃D). (D.13)

Similar to the arguments in the proof of Theorem 4.1 in

Appendix B-1, by (D.11) and (D.13), and the fact that ZUJ

has the same distribution as ZU , we have

CW,λ ≥ H(ZU |ZD)− lim
δ→0

Γ(δ) where

Γ(δ) := sup
PW|ZU∪D

:

Iλ(ZU |W,ZD)≤δ

H(ZU |ZD,W). (D.14)

(In fact, the above inequality is satisfied with equality.9) Note

that

H(ZU |ZD)− Γ(0) = JW,λ(ZU |ZD) (D.15)

and so the proof is completed by showing that Γ(δ) is

continuous at δ = 0. To show this, we will prove the following

support-type lemma that extends Proposition 6.3, following

essentialy the same argument as in [32]. �

Lemma D.4 It is admissible to impose in (D.14) that

|W | ≤
{

|ZU∪D|+ 1 δ > 0

|ZU∪D| δ = 0,
(D.16)

9The reverse inequality holds by the fact Wn i.i.d. generated according to
the solution PW|ZU∪D

to (D.14) is a feasible solution to (D.4).

and so sup in (D.14) can be replaced by max and Γ(δ) is

continous in δ.10
✷

PROOF (LEMMA D.4) Pick any z′U∪D ∈ ZU∪D, and define S
as the set of all possible vectors of values for

(
H(ZU |ZD,W = w), Iλ(ZU |ZD,W = w),

PZU∪D |W=w(zU∪D) | zU∪D ∈ ZU∪D \ {z′U∪D}
)
.

There is a one-to-one mapping between the choice of

PZU∪D|W=w and the choice of v(w) ∈ S, noting that

PZU∪D|W=w(z
′
U∪D) = 1−

∑

z∈ZU∪D\{z′
U∪D

}

PZU∪D|W=w(zU∪D).

Thus, a feasible solution to (D.14) corresponds to a choice of

a set W , a distribution PW over W , and a vector v(w) for

every w ∈ W, such that

∑

PW(w)v(w) = (H(ZU |ZD,W), Iλ(ZU |ZD,W),

PZU∪D |W(zU∪D) | zU∪D ∈ ZU∪D \ {z′U∪D}).
(D.17)

(D.18)

By the Fenchel-Eggleston-Carathéodory theorem [41], it is ad-

missible to choose |W | equal to the length of v(w) plus 1, i.e.,

|ZU∪D|+ 1 as desired in (D.16) for δ ≥ 0. If δ = 0, i.e., one

requires Iλ(ZU |ZD,W) = 0, then Iλ(ZU |ZD,W = w) = 0 for

all w ∈W since Iλ is non-negative by Proposition 6.2. In other

words, the constraint is on individual choice of PZU∪D|W=w

and so we can redefine S without having Iλ(ZU |ZD,W = w)
as a component of v(w), i.e., which gives the smaller bound

in (D.16).

Suppose there is a sequence in k of choices of

(PWk
, PZU∪D |Wk

) that attains Γ(δ) in the limit as k → ∞
while satisfying the constraint in (D.14), i.e.,

Iλ(ZU |ZD,Wk) ≤ δ

By imposing (D.16) such thatW is finite with size independent

of k, the feasible choices of (PWk
, PZU∪D |Wk

) form a compact

set. Hence, there exists a subsequence {kj}∞j=1 such that

PW = lim
j→∞

PWkj
and PZU∪D |W = lim

j→∞
PZU∪D|Wkj

. (D.19)

By the continuity of entropy [4], we also have

Iλ(ZU |ZD,W) = lim
j→∞

Iλ(ZU |ZD,Wkj
), and

H(ZU |ZD,W) = lim
j→∞

H(ZU |ZD,Wkj
).

(D.20a)

(D.20b)

Note that the r.h.s. of (D.20a) is upper bounded by δ since

each term in the limit is. Furthermore, the r.h.s. of (D.20b)

attains Γ(δ) by assumption. Hence, the supremum in (D.14)

is achieved by the above choice of W, i.e., the sup in (D.14)

can be replaced by max.

Consider proving the continuity of Γ(δ). Consider any

sequence {δk}∞k=1 such that δk > δ and δk ↓ δ as k ↑ ∞.

Since Γ(δ) is non-decreasing in δ, we have

Γ(δ) ≤ lim
k→∞

Γ(δk). (D.21)

10As in [32], it is also possible to argue that Γ(δ) is non-decreasing and
concave in δ.
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Let (PWk
, PZU∪D|Wk

) be the optimal solution for Γ(δk). Then,

as argued previously, (PW, PZU∪D |W) exists satisfying (D.19)

and (D.20) for some subsequent {kj}∞j=1. Furthermore, the

r.h.s. of (D.20a) is equal to limk→∞ δk = δ, and so W is a

feasible solution to (D.14). The l.h.s. of (D.20b) is therefore

upper bounded by Γ(δ) and so

Γ(δ) ≥ lim
k→∞

Γ(δk),

which is satisfied with equality by (D.21), implying that Γ(δ)
is continuous in δ. �

4. Proof of Theorem 6.2

(6.15a) follows from Theorem 6.1 directly since CS =
Iλ∗(ZV ) for all λ∗ ∈ Λ∗(A,ZV ). To show (6.15b), choose

λ∗ ∈ Λ∗(A,ZV ) such that

supp(λ∗) =
⋃

λ′∈Λ∗(A,ZV )

supp(λ′).

This is possible, for instance, by choosing λ∗ as the average of

the extreme elements in Λ∗(A,ZV ), which are the vertices of

the feasible set in (6.6), and so there are only a finite number

of them by (6.1). Let W be the optimal solution to JW,λ∗(ZV ),
and consider λ ∈ Λ(V,H) with H defined in (6.14), we then

have

JW,λ∗(ZV ) = I(ZV ∧W)

= H(ZV )−H(ZV |W)
(a)

≥H(ZV )−
∑

B∈H

λ(B)H(ZB |W)

(b)
=H(ZV )−

∑

B∈H

λ(B)H(ZB |ZV \B,W)

≥ H(ZV )−
∑

B∈H

λ(B)H(ZB |ZV \B)

which gives Iλ(ZV ) as desired by (6.5). The inequality (a) is

because of the Shearer-type Lemma [39] stated in a slightly

different form than Proposition 6.2:
∑

B

λ(B)H(ZB |W) =
∑

B

λ(B)
∑

i∈B

H(Zi|Z[i−1]∩B,W)

≥
∑

B

λ(B)
∑

i∈B

H(Zi|Z[i−1],W)

=
∑

i∈V

∑

i∈B

λ(B)H(Zi|Z[i−1],W)

=
∑

i∈V

H(Zi|Z[i−1],W)

= H(ZV |W).

The equality (b) is because the definition of JW,λ∗(ZV )
requires Iλ∗(ZV |W) = 0, which by Proposition 6.2, results

in I(ZB ∧ ZV \B|W) = 0 for all B ∈ supp(λ∗), and hence,

for all B ∈ H.

5. Proofs for Section VI-D

PROOF (PROPOSITION 6.4) Applying Theorem 5.1 to the

current case S ( A = V , (5.1) becomes

CS = H(ZV \S)−RCO, (D.22)

where RCO = ρ = min
rV \S

r(V \ S) subject to the constraints

r(B) ≥ H(ZB|Z(V \S)\B) ∀B ( V \ S : B 6= ∅
r(V \ S) ≥ H(ZV \S |Zi) ∀i ∈ S,

(D.23a)

(D.23b)

where we have used a similar argument as in the proof of

Corollary 5.1 to derive (D.23a). Note also that the set of

constraints are equivalent to the those in Corollary 5.2 but

stated in a convenient form for the current proof. We proceed

to prove (6.18a) and hence assume |V \ S| = 1. Observe

that this condition renders (D.23a) obsolete and hence using

(D.22) we have CS = H(ZV \S) −maxi∈S H(ZV \S |Zi) = α
as desired.

To complete the proof of Proposition 6.4 we consider the

case when |V \ S| > 1. Again, we shall prove this in a

case by case basis. First, consider the case when (D.23b)

are redundant, and hence RCO ≥ maxi∈S H(ZV \S |Zi). Also,

observe that since RCO = min
rV \S

r(V \ S), where rV \S is

constrained by the first set of constraints in (D.23a), we

have H(ZV \S) − RCO = I(ZV \S) using Proposition 4.2.

Therefore, using (D.22), we have CS = I(ZV \S). Also,

from the fact that RCO ≥ maxi∈S H(ZV \S |Zi), we have

CS = H(ZV \S)−RCO ≤ α, and hence (6.18b) is satisfied. We

finish the proof by looking at the remaining case, i.e., when

there exists some i ∈ S such that (D.23b) is not redundant.

An immediate consequence of this is RCO = H(ZV \S |Zi)
and hence using (D.22) we have CS = α. Also, defining

R′
CO = min

rV \S

r(V \S), where rV \S is constrained by (D.23a),

we see that RCO ≥ R′
CO. Therefore, using Proposition 4.2,

we have I(ZV \S) ≥ H(ZV \S)−RCO = CS. Hence, we have

CS = min{α, I(ZV \S)} as desired. �

PROOF (THEOREM 6.4) We first consider the case when the

conditions for (6.20a) hold. The proof is carried out by exactly

following the same steps as in the proof of Theorem 4.1 with

the choice P = P∗(ZV \S). This is possible as in this case

CS = I(ZV \S) by (6.18b). Similarly, we prove the result for

the case when the conditions for (6.20b) hold, by using CS =
I(ZV \S ∧ Zi), for some i ∈ S∗, which follows from (6.18a).

For the remaining case when |V \S| > 1 and α = I(ZV \S),
we observe using (6.18b) that every i ∈ S∗ satisfies

CS = IP∗(ZV \S) = I(ZV \S ∧ Zi). (D.24)

Corollary 5.3 of [10], says that there exists some θ ∈
(0, 1) which satisfies IP(Z(V \S)∪{i}) = θIP∗(ZV \S) + (1 −
θ)I(ZV \S ∧ Zi), with P = P∗(ZV \S) ∪ {i}. Hence, using

(D.24), we have CS = IP (Z(V \S)∪{i}) for every i ∈ S∗. The

result now follows by proceeding along the same steps as in the

proof of Theorem 4.1, with the choice P = P∗(ZV \S) ∪ {i},

for any i ∈ S∗. �

PROOF (THEOREM 6.5) The proof technique is similar to the

proof of Theorem 4.2. We use the hypothesis of Theorem 6.5

to show that the lower bound to RS obtained in Theorem 6.4

evaluates to RCO. This, in conjunction with the trivial upper

bound RS ≤ RCO, gives us the result.

We first observe that the conditions in (i) imply that

JD,P∗(ZV \S) = H(ZV \S). Hence, via (6.20a) and the in-
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equality JW,P∗(ZV \S) ≥ JD,P∗(ZV \S), we have RS ≥
H(ZV \S)− I(ZV \S) = RCO.

Next we consider the case when the conditions in

(ii) hold. Therefore, there exists i ∈ S∗ satisfying

JD,{V \S,{i}}(ZV \S ,Zi) = H(ZV \S .Zi) − H(Zi|ZV \S) =
H(ZV \S). Using (D.22) and Proposition 6.4, the bound in

(6.20b) evaluates to RS ≥ RCO.

To complete the proof, we look at the scenario

described in (iii). Observe that there exists i ∈ S∗,

such that JD,P∗(ZV \S)∪{i}(Z(V \S)∪{i}) = H(ZV \S ,Zi) −
∑

C∈P∗(ZV \S)H(ZC |Z(V \S)\C ,Zi) − H(Zi|ZV \S) =

H(ZV \S). Hence, the lower bound to RS in (6.20c) evaluates

to RCO by (6.18b) and (D.22). Therefore, we have RS = RCO

as required. �

6. Proofs for Section VI-E

PROOF (PROPOSITION 6.5) Choose any vocal active user j ∈
A∩ (V \ S). Observe that by (3.7), it is admissible to choose

the secret key K = θj(Z̃j ,F) for some function θj . Assume

there is a hyperedge e′ such that ξ(e′) ⊆ S. Then, the sequence

of random variables Xn
e′ associated with the hyperedge e′ is

independent of (K,F, (Xn
e | e ∈ E \ {e′}),UV \S). This is

because Xe′ is not observed by any vocal user, including j,
who generate K,F entirely from ((Xn

e | e ∈ E \ {e′}),UV \S).
Similarly, it can be argued that Xn

e′ does not play any part

in recovering Zn
V \S , as it is independent of Xn

e′ . Therefore,

removing the hyperedge e′ does not affect CS, RS and RCO.�

PROOF (THEOREM 6.6) Proposition 6.5 ensures it is enough

to prove the results for hypergraphs satisfying (6.21). Observe

that (6.22a) follows directly from (6.20a). We only need to

verify the other two scenarios.

We begin by arguing the following claim, that I(Zj ∧
Z(V \S)∪S′) = α, for all j ∈ S∗, and all S′ ⊆ S∗ \ {j}.

First, assume to the contrary that we have a strict inequality

(>) instead of an equality for some i ∈ S∗ and some

S′ ⊆ S∗ \ {i}. Then, there exists a hyperedge e′ ∈ E
that contributes to I(Zj ∧ Z(V \S)∪S′) = H(XE′), but not to

I(Zi ∧ ZV \S) = H(XE′′ ), i.e., e′ ∈ E′ \ E′′

and E′ ⊇ E
′′

.

It immediately implies that j ∈ ξ(e′) and ξ(e′) ⊆ S, which

violates (6.21). Hence, we must have I(Zj ∧Z(V \S)∪S′) = α,

for all j ∈ S∗ and all S′ ⊆ S∗ \ {j}.

Using the above claim, we proceed to prove (6.22c).

Consider any j ∈ S∗, and observe that α = I(ZV \S ∧
Zj) = IP∗(ZV \S), using the hypothesis of (6.22c). Now,

using Corollary 5.3 of [10], there exists θ ∈ (0, 1) such that

IP∗(ZV \S)∪{j}(Z(V \S)∪{j}) = θIP∗(ZV \S)+(1−θ)I(ZV \S∧
Zj) = α. We can continue with this process inductively to

show that IP∗(ZV \S)∪{{i}|i∈S∗}(Z(V \S)∪S∗) = α = CS. Using

this, one can proceed along similar steps as in the proof of

Theorem 4.1 to obtain (6.22c).

The proof of (6.22b) follows using a similar inductive

argument and we omit the details. �

PROOF (THEOREM 6.7) To begin with, we restrict our at-

tention to hypergraphs satisfying (6.21). This is because of

Proposition 6.5 and the fact that none of the entropy terms

in (i)-(iii) are affected by the removal of some hyperedge e
satisfying ξ(e) ⊆ S.

We omit the proof of the fact that RS = RCO if the

required condition from (i)-(iii) hold, by noting that the proof

follows from Theorem 6.6 by the same steps as in the proof

of Theorem 6.5. We focus on proving the fact that RS = RCO

implies that the required condition from (i)-(iii) hold. We

proceed according to a case by case basis.

Case I: |V \ S| > 1 and I(ZV \S) < α.

We assume that (i) does not hold. We will show that RS <
RCO. Then, there exists e′ ∈ E such that ξ(e′) \ S ⊆ C, for

some C ∈ P∗(V \ S). We use the idea of decremental secret

key agreement as in [37] to reduce H(Xe′ ) by an amount

ǫ ∈ (0, α− I(ZV \S)). Whereas, this operation does not affect

I(ZV \S), we note that α changes by at most ǫ, thereby keeping

CS unaffected. However,H(ZV \S) does decrease by ǫ, and the

fact that CS remains unchanged implies that RCO reduces by

ǫ using (D.22). Thus, we must have RS being strictly less than

the RCO before the reduction by ǫ.
Case II: |V \S| = 1 or, when |V \S| > 1 and I(ZV \S) > α.

Here, we drop the case when |V \ S| = 1 as the condition

holds by default.

Again, assume (ii) does not hold. Then, there exists a

hyperedge e′ ∈ E such that ξ(e′) ⊆ (V \ S∗). We can

reduce the entropy of Xe′ by some ǫ > 0 small enough

without affecting the secrecy capacity using decremental secret

key agreement of [37]. If |V \ S| = 1, we can choose any

ǫ ∈ (0,mini∈S/S∗ I(ZV \S ∧ Zi) − α) as the reduction in

entropy will not affect the set S∗ of optimal solutions and

therefore α. In the other case |V \S| > 1 and I(ZV \S) > α, we

impose an additional constraint that ǫ < I(ZV \S) − α. Then,

α remains unaffected after the reduction in entropy, whereas

I(ZV \S) decreases by at most ǫ. Thus, CS remains unchanged.

Moreover, the fact that (6.21) holds implies H(ZV \S) reduces

by ǫ, and so does RCO using (D.22). Therefore, we must have

RS < RCO before reduction.

Case III: |V \ S| > 1 and I(ZV \S) = α
Assume (iii) is invalid and hence, there exists e′ ∈ E such

that ξ(e′) ⊆ C for some C ∈ P∗(ZV \S). We reduce the

entropy of Xe by some amount of ǫ > 0. While α remains

unaffected by the operation, the decremental secret key agree-

ment detailed in [37] ensures that choosing ǫ sufficiently small

not affect I(ZV \S) either. Thus, CS is unaffected. However,

clearly H(ZV \S) reduces by ǫ and so does RCO. Hence,

RS < RCO before reduction as required. �

APPENDIX E

PROOF FOR SECTION VII

1. Proof of Proposition 7.1

To prove the desired result, we will make use of the

following independence relation satisfied by the private source:

0 = I(Z1 ∧ Z2) = I(Z3 ∧ Z{1,2,4}) = I(Z3 ∧ Z{1,2,5}). (E.1)

The desired conclusion will be proved by showing the stronger

result that

lim sup
n→∞

1

n

[
H(F{4,5})− 3H(K)

]
≥ 0 (E.2)
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which implies RS ≥ 3CS = 3 = RCO as desired.

To prove the above, define

at : = I(Z̃1 ∧ Z̃2|Ft
V )− I(Z̃1 ∧ Z̃2|Ft−1

V )

bt : = I(Z̃3 ∧ Z̃{1,2,4}|Ft
V )− I(Z̃3 ∧ Z̃{1,2,4}|Ft−1

V )

ct : = I(Z̃3 ∧ Z̃{1,2,5}|Ft
V )− I(Z̃3 ∧ Z̃{1,2,5}|Ft−1

V )

(E.3a)

(E.3b)

(E.3c)

By definition of (E.3), we have

r∑

t=1

(at + bt + ct)

= I(Z̃1 ∧ Z̃2|F) + I(Z̃3 ∧ Z̃{1,2,4}|F) + I(Z̃3 ∧ Z̃{1,2,5}|F)
≥ 3H(K)− 3nδn

for some δn → 0 as n → ∞. Here, the inequality follows

from the recoverability (3.7) and secrecy (3.8) requirement,

for instance, I(Z̃1 ∧ Z̃2|F) ≥ I(Z̃1,K ∧ Z̃2,K|F) − nδn
2 ≥

H(K)− nδn. Then, it suffices to show that

H(F{4,5}) ≥
r∑

t=1

(at + bt + ct). (E.4)

To achieve this, we will bound at, bt and ct one by one. We

first bound at as follows:

at
(a)
= I(FV t ∧ Z̃2|Ft−1

V , Z̃1)− I(FV t ∧ Z̃2|Ft−1
V )

(b)
= I(FV t ∧ Z̃{1,2}|Ft−1

V )− I(FV t ∧ Z̃1|Ft−1
V )

− I(FV t ∧ Z̃2|Ft−1
V )

(c)
= I(F{1,2}t ∧ Z̃{1,2}|Ft−1

V )

+ I(F{3,4,5}t ∧ Z̃{1,2}|Ft−1
V ,F{1,2}t)

− I(FV t ∧ Z̃1|Ft−1
V )− I(FV t ∧ Z̃2|Ft−1

V )
(d)
=H(F{1,2}t|Ft−1

V ) + I(F{3,4,5}t ∧ Z̃{1,2}|Ft−1
V ,F{1,2}t)

− I(FV t ∧ Z̃1|Ft−1
V )− I(FV t ∧ Z̃2|Ft−1

V )
(e)

≤ I(F{3,4,5}t ∧ Z̃{1,2}|Ft−1
V ,F{1,2}t)

where (a) is due to the fact that

I(Z̃1,FV t ∧ Z̃2|Ft−1
V )

= I(Z̃1 ∧ Z̃2|Ft−1
V ) + I(FV t ∧ Z̃2|Ft−1

V , Z̃1)

= I(FV t ∧ Z̃2|Ft−1
V ) + I(Z̃1 ∧ Z̃2|Ft

V ),

(b) and (c) are due to the chain rule expansion, (d) is due to

the fact that

I(F{1,2}t ∧ Z̃{1,2}|Ft−1
V ) = H(F{1,2}t|Ft−1

V )

by (3.5), (e) is due to the fact that

I(FV t ∧ Z̃1|Ft−1
V ) + I(FV t ∧ Z̃2|Ft−1

V )

≥ I(F1t ∧ Z̃1|Ft−1
V ) + I(F{1,2}t ∧ Z̃2|Ft−1

V )

≥ I(F1t ∧ Z̃1|Ft−1
V ) + I(F2t ∧ Z̃2|Ft−1

V ,F1t)

= H(F1t|Ft−1
V ) +H(F2t|Ft−1

V ,F1t)

= H(F{1,2}t|Ft−1
V )

We then bound bt as follows:

bt
(a)
= I(FV t ∧ Z̃{1,2,4}|Ft−1

V , Z̃3)− I(FV t ∧ Z̃{1,2,4}|Ft−1
V )

(b)
= I(FV t ∧ Z̃{1,2,3,4}|Ft−1

V )− I(FV t ∧ Z̃3|Ft−1
V )

− I(FV t ∧ Z̃{1,2,4}|Ft−1
V )

(c)

≤H(FV t|Ft−1
V , Z̃{1,2,4})− I(FV t ∧ Z̃3|Ft−1

V )
(d)
=H(F3t|Ft−1

V , Z̃{1,2,4},F{1,2}t)

+H(F4t|Ft−1
V , Z̃{1,2,4},F{1,2,3}t)

+H(F5t|Ft−1
V , Z̃{1,2,4},F{1,2,3,4}t)− I(FV t ∧ Z̃3|Ft−1

V )
(e)
=H(F3t|Ft−1

V , Z̃{1,2,4},F{1,2}t)

+H(F5t|Ft−1
V , Z̃{1,2,4},F{1,2,3,4}t)− I(FV t ∧ Z̃3|Ft−1

V )
(f)

≤H(F3t|Ft−1
V , Z̃{1,2},F{1,2}t)

+H(F5t|Ft−1
V , Z̃{1,2},F{1,2,3,4}t)− I(FV t ∧ Z̃3|Ft−1

V )
(g)

≤H(F3t|Ft−1
V , Z̃{1,2},F{1,2}t)

+H(F5t|Ft−1
V , Z̃{1,2},F{1,2,3,4}t)−H(F3t|Ft−1

V ,F{1,2}t)

where (a) is due to the fact that

I(Z̃3,FV t ∧ Z̃{1,2,4}|Ft−1
V )

= I(Z̃3 ∧ Z̃{1,2,4}|Ft−1
V ) + I(FV t ∧ Z̃{1,2,4}|Ft−1

V , Z̃3)

= I(FV t ∧ Z̃{1,2,4}|Ft−1
V ) + I(Z̃3 ∧ Z̃{1,2,4}|Ft

V ),

(b) is due to the chain rule expansion, (c) is due to the fact

that

I(FV t ∧ Z̃{1,2,3,4}|Ft−1
V ) ≤ H(FV t|Ft−1

V ),

(d) is due to the chain rule expansion and the fact that

H(F{1,2}t|Ft−1
V , Z̃{1,2,4}) = 0

by (3.5), Similarly, (e) follows from (3.5) that

H(F4t|Ft−1
V , Z̃{1,2,4},F{1,2,3}t) = 0

(f) follows from the fact that conditioning cannot increase

entropy, (g) is because

I(FV t ∧ Z̃3|Ft−1
V ) ≥ I(F{1,2,3}t ∧ Z̃3|Ft−1

V )

≥ I(F3t ∧ Z̃3|Ft−1
V ,F{1,2}t)

= H(F3t|Ft−1
V ,F{1,2}t)

by (3.5).

Following similar steps as above, ct is also upper bounded

by

ct ≤ H(F{3,4}t|Ft−1
V , Z̃{1,2,5},F{1,2}t)

+H(F5t|Ft−1
V , Z̃{1,2,5},F{1,2,3,4}t)

−H(F3t|Ft−1
V ,F{1,2}t)

≤ H(F{3,4}t|Ft−1
V , Z̃{1,2},F{1,2}t)−H(F3t|Ft−1

V ,F{1,2}t)
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Therefore, we have at + bt + ct

≤ I(F{3,4,5}t ∧ Z̃{1,2}|Ft−1
V ,F{1,2}t)

+H(F3t|Ft−1
V , Z̃{1,2},F{1,2}t)

+H(F5t|Ft−1
V , Z̃{1,2},F{1,2,3,4}t)

+H(F{3,4}t|Ft−1
V , Z̃{1,2},F{1,2}t)− 2H(F3t|Ft−1

V ,F{1,2}t)
(a)

≤H(F{3,4,5}t|Ft−1
V ,F{1,2}t)−H(F3t|Ft−1

V ,F{1,2}t)

= H(F{4,5}t|Ft−1
V ,F{1,2,3}t)

where (a) is because

I(F{3,4,5}t∧Z̃{1,2}|Ft−1
V ,F{1,2}t)

= H(F{3,4,5}t|Ft−1
V ,F{1,2}t)

−H(F{3,4,5}t|Ft−1
V ,F{1,2}t, Z̃{1,2}),

H(F3t|Ft−1
V , Z̃{1,2},F{1,2}t) ≤ H(F3t|Ft−1

V ,F{1,2}t),

H(F{3,4,5}t|Ft−1
V ,F{1,2}t, Z̃{1,2})

= H(F5t|Ft−1
V , Z̃{1,2},F{1,2,3,4}t)

+H(F{3,4}t|Ft−1
V , Z̃{1,2},F{1,2}t)

Finally,

H(F{4,5}) =

r∑

t=1

H(F{4,5}t|Ft−1
{4,5})

≥
r∑

t=1

H(F{4,5}t|Ft−1
V ,F{1,2,3}t)

≥
r∑

t=1

(at + bt + ct),

which completes the proof.

2. Proofs of Theorems 7.1 and 7.2

PROOF (THEOREM 7.1) We prove the cases one by one:

(i) We first show that an achieving scheme for the original

scenario is an achieving scheme for the new scenario.

To satisfy (3.5), the discussion by the original vocal

untrusted user i can be done by the new vocal trusted

helper i′. (3.7) and (3.8) still hold because there is no

change to (A,D). Hence, CS does not decrease and RS

does not increase.

To prove the reverse inequalities, consider an achieving

scheme for the new scenario. By Proposition 3.1, it

suffices to show that the scheme can be applied to the

original scenario, with private randomization allowed for

the untrusted user. To satisfy (3.5), the discussion and

private randomization by the new user i′ can be done by

the original vocal untrusted user. (3.7) and (3.8) continue

to hold trivially.

(ii) Similar to the above case, the vocal user j can play the

role of the removed trusted helper i in terms of private

randomization and public discussion, and so (3.5) can be

satisfied. (3.7) and (3.8) remain unchanged since (A,D)
remains unchanged. �

PROOF (THEOREM 7.2) It suffices to show that an achieving

scheme for the original scenario can be applied to the new

scenario.

(i) (3.5) continues to hold as the set V \ S of vocal users

remains unchanged. (3.7) and (3.8) also hold as they can

only be less stringent with (A,D) diminished.

(ii) (3.5) continues to hold because the set V \ S of vocal

users becomes larger.(3.7) and (3.8) remain unchanged

trivially. �
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[22] P. Gács and J. Körner, “Common information is far less than mutual
information,” Probl. Control Inf. Theory, vol. 2, no. 2, pp. 149–162,
Feb. 1972.

[23] C. Chan, “The hidden flow of information,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), St. Petersburg, Russia, Jul./Aug. 2011, pp. 978–982.
[24] N. Milosavljevic, S. Pawar, S. E. Rouayheb, M. Gastpar, and K. Ram-

chandran, “Deterministic algorithm for the cooperative data exchange
problem,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), St. Petersburg,
Russia, Jul./Aug. 2011, pp. 410–414.

[25] C. Chan, “On tightness of mutual dependence upperbound for secret-
key capacity of multiple terminals,” CoRR, vol. abs/0805.3200, 2008.
[Online]. Available: http://arxiv.org/abs/0805.3200

[26] S. Fujishige, “Polymatroidal dependence structure of a set of random
variables,” Inf. Control, vol. 39, no. 1, pp. 55–72, 1978.

[27] R. W. Yeung, “A new outlook on Shannon’s information measures,”
IEEE Trans. Inf. Theory, vol. 37, no. 3, pp. 466–474, May 1991.

[28] ——, Information Theory and Network Coding. New York, NY, USA:
Springer, 2008.

[29] C. Chan and T. Liu, “Clustering by multivariate mutual information
under chow-liu tree approximation,” in Proc. 53rd Annu. Allerton Conf.

Commun., Control, Comput. (Allerton), Monticello, IL, USA, Sep. 2015,
pp. 993–999.

[30] C. Chan, A. Al-Bashabsheh, Q. Zhou, T. Kaced, and T. Liu, “Info-
clustering: A mathematical theory for data clustering,” IEEE Trans.
Molecular, Biol., Multi-Scale Commun., vol. 2, no. 1, pp. 64–91, Jun.
2016.

[31] C. Chan, A. Al-Bashabsheh, Q. Zhou, and T. Liu, “Duality between
feature selection and data clustering,” in Proc. 54th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Monticello, IL, USA, Sep. 2016,
pp. 142–147.

[32] A. Wyner, “The common information of two dependent random vari-
ables,” IEEE Trans. Inf. Theory, vol. 21, no. 2, pp. 163–179, Mar. 1975.

[33] W. Liu, G. Xu, and B. Chen, “The common information of N dependent
random variables,” in Proc. 48th Annu. Allerton Conf. Commun., Con-

trol, Comput. (Allerton), Monticello, IL, USA, Sep. 2010, pp. 836–843.
[34] T. S. Han, “Linear dependence structure of the entropy space,” Inf.

Control, vol. 29, pp. 337–368, 1975.
[35] Q. Chen, F. Cheng, T. Liu, and R. W. Yeung, “A marginal characteriza-

tion of entropy functions for conditional mutually independent random
variables (with application to wyner’s common information),” in Proc.

IEEE Int. Symp. Inf. Theory (ISIT), Hong Kong, Jun. 2015, pp. 974–978.
[36] C. Chan, M. Mukherjee, N. Kashyap, and Q. Zhou, “Secret key

agreement under discussion rate constraints,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), Aachen, Germany, Jun. 2017, pp. 1519–1523.
[37] C. Chan, A. Al-Bashabsheh, and Q. Zhou, “Incremental and decremental

secret key agreement,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Barcelona, Spain, Jul. 2016, pp. 2514–2518.

[38] I. Csiszár and P. Narayan, “Secrecy capacities for multiterminal channel
models,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2437–2452, Jun.
2008.

[39] M. Madiman and P. Tetali, “Information inequalities for joint distribu-
tions, with interpretations and applications,” IEEE Trans. Inf. Theory,
vol. 56, no. 6, pp. 2699–2713, Jun. 2010.

[40] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency.
New York, NY, USA: Springer, 2002.

[41] H. G. Eggleston, Convexity. CUP Archive, 1958, no. 47.

http://arxiv.org/abs/0805.3200

	I Introduction
	II Motivation
	III Problem Formulation
	III-A Communication Complexity
	III-B Optimality of Omniscience

	IV With No helpers or Silent Users
	IV-A Preliminaries on MMI and Fundamental Partition
	IV-B Main results
	IV-C Stronger Results for Hypergraphical Sources

	V Single-Letter Upper Bounds and Necessary Conditions
	V-A Smallest Rate of CO
	V-B Change of Scenario

	VI Single-Letter Lower Bounds and Sufficient Conditions
	VI-A Fractional Partition Information
	VI-B General lower bound
	VI-C With helpers
	VI-D With Silent Users
	VI-E The Hypergraphical Source with Silent Users
	VI-F With Untrusted Users

	VII Challenges
	VII-A Limitation
	VII-B Potential Improvements

	Appendix A: Proof of Proposition 3.1
	Appendix B: Proofs for Section IV
	B-1 Proof of Theorem 4.1
	B-2 Proof of Theorem 4.3
	B-3 Proof of Proposition 4.8

	Appendix C: Proofs for Section V
	C-1 Proof of Theorem 5.1
	C-2 Proofs of Theorem 5.2 and its Corollaries
	C-3 Proof of Theorem 5.3

	Appendix D: Proofs for Section VI
	D-1 Proof of Shearer-Type Lemma
	D-2 Proof of Lemma 6.1
	D-3 Proof of Theorem 6.1
	D-4 Proof of Theorem 6.2
	D-5 Proofs for Section VI-D
	D-6 Proofs for Section VI-E

	Appendix E: Proof for Section VII
	E-1 Proof of Proposition 7.1
	E-2 Proofs of Theorems 7.1 and 7.2


