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On Equivalence of Binary Asymmetric Channels
regarding the Maximum Likelihood Decoding.

Claudio Qureshi, Sueli I. R. Costa, Christiane B. Rodrigues and Marcelo Firer

Abstract

We study the problem of characterizing when two memoryless binary asymmetric channels, described by their transition
probabilities (p, q) and (p′, q′), are equivalent from the point of view of maximum likelihood decoding (MLD) when restricted
to n-block binary codes. This equivalence of channels induces a partition (depending on n) on the space of parameters (p, q)
into regions associated with the equivalence classes. Explicit expressions for describing these regions, their number and areas are
derived. Some perspectives of applications of our results to decoding problems are also presented.

Index Terms

Binary memoryless channel, binary asymmetric channel, maximum likelihood decoding, mismatched decoding

I. INTRODUCTION

The binary asymmetric channel BAC(p, q) is the discrete memoryless channel with binary alphabet and transition probability
given by Pr(1|0) = p, Pr(0|0) = 1 − p, Pr(0|1) = q and Pr(1|1) = 1 − q, where Pr(x |y) denotes the probability of receiving x
if y was sent. Without loss of generality we will assume p ≤ q and p + q < 1 (see discussion in Section IV) and denote the
space of parameters by T = {(p, q) ∈ [0, 1]2 : p ≤ q, p + q < 1} which we refer to as the fundamental triangle.

The interest in binary asymmetric channels has increased due to applications in flash memories [1], [2], [3], [4] and as
models in other areas, such as neuroscience [5]. Most of the work developed on binary asymmetric channels has focused on
coding properties [6], [7] and on the design of codes with given properties, either for general asymmetric channels [8], [6],
[9], [10], [11], [12] or for the Z-channel [13], [14], [15]. We stress that most of these works consider the decoding criterion
determined by the asymmetric metric introduced in [6], or some variant of it. Despite of all its advantages, the asymmetric
metric is not matched to any binary asymmetric channel, that is, it cannot be used to perform maximum likelihood decoding
(MLD).

In this work we study the binary asymmetric channels from the point of view of maximum likelihood decoding. Namely,
two memoryless binary asymmetric channels W1 and W2 are n-equivalent if MLD is the same for both channels, for every
possible code C ⊆ Fn2 (a precise statement is given in Definition 1). The most studied instances of these channels are the
binary symmetric channels (BSCs) corresponding to p = q, and the Z-channels corresponding to p = 0. For these channels the
problem we study here is trivial since two channels W1 and W2 which are either both symmetric channels or both Z-channels
are always n-equivalent, for any positive n. In this sense, we could say that there is a unique BSC and a unique Z-channel
from the MLD point of view. This is not the case of general binary asymmetric channels and to study this equivalence relation
is the focus of this work.

The knowledge of the equivalence classes of binary asymmetric channels may be useful for two purposes.
1) To perform MLD on a memoryless binary channel it is necessary to know the transition probabilities p = Pr(1|0) and

q = Pr(0|1). The more precise the measurement of (p, q), the less the risk of mismatching the channel. Let us suppose
that after a number of experiments, we obtain an approximation (p′, q′) for the real transition probabilities (p, q) with
an error of at most ε > 0 (i.e. such that |p − p0 | < ε and |q − q0 | < ε). We prove that the larger the block length of
a code, the more is the risk of mismatching1 the channel. In fact, there is a maximum block length N , which can be
calculated explicitly from the results developed in this paper, such that there is no risk of mismatching when codes of
block length at most N are considered (see Example 3). A dual situation occurs when we have an upper bound N on
the block length of the codes to be used in a given BAC. In this case the probability of mismatching is reduced when
we increase the precision in the measurement of the transition probabilities (p, q). It is possible to find a maximum
admissible error ε such that if the estimated transition probabilities (p′, q′) verify |p − p′ | < ε and |q − q′ | < ε, there is
no risk of mismatching (see Example 4).

2) A very relevant measure of the performance of a code is the error probability of the encoding-decoding process. Given
a memoryless channel W : X → X and a code C ⊆ Xn, we consider the ML decoder with input x ∈ Xn and output the

The authors are with the Institute of Mathematics, Statistics and Computing Science of the University of Campinas, SP , Brazil (emails:
cqureshi@ime.unicamp.br, sueli@ime.unicamp.br, chrismmor@gmail.com, mfirer@ime.unicamp.br).

1To mismatch a channel W means to use a decoding criteria different from the MLD with respect to the transition probabilities of W . For general references
on mismatched decoding see [16], [17].
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codeword c ∈ C such that PrW (x |c) > PrW (x |c′) for all c′ ∈ C, c′ , c, if such codeword exists. Otherwise, in the case
there are different codewords c that maximize PrW (x |c), it returns a ’FAIL’ message. We will refer to this ML decoder
as the standard ML decoder. For this decoder, the error probability of the code C within the channel W is given by

Perror(C,W) = 1 − 1
|C |

∑
c∈C

∑
x∈V(C,W )(c)

PrW (x |c)

where V(C,W )(c) = {x ∈ Xn : PrW (x |c) > PrW (x |c′), ∀c′ ∈ C, c′ , c} is the probabilistic Voronoi region of c (depending
on W and C). Here we are assuming the messages to be equiprobable. For the particular case of a BAC, the error
probabilities PrW (y |c) are easy to compute, since there are closed formulas for them. The difficult part of computing
Perror(C,W) is determining the probabilistic Voronoi regions. We should mention that, since it is defined depending on
W , we actually have an infinite number of instances, which a priori should be computed for any given W (and the finite
number of possible codes C). Our definition of equivalence of channels actually says that two channels W1 and W2 are
n-equivalent if V(C,W1)(c) = V(C,W2)(c) for every C ⊆ Xn and every c ∈ C. It follows that, knowing the equivalence classes
reduces the problem from infinitely many instances of binary asymmetric channels to a finite number of equivalence
classes of such channels (depending on the length n of the block codes).

We may considered another ML decoder different than the standard ML decoder if instead of return a ’FAIL’ message
in case of ambiguity (i.e. several codewords c maximizing PrW (x |c)), it returns a codeword c maximizing PrW (x |c), chosen
uniformly at random. This (probabilistic) ML decoder will be called the uniform ML decoder. The definition of equivalence
of channels proposed in this paper contemplates both decoders, the standard and the uniform ML decoder, as it is shown in
the next section.

This paper is organized as follows: In Section II we introduce an equivalence relation between channels in such a way that
equivalent channels determine equal decoding criteria when MLD is considered and discuss some properties of this relation.
We consider for each (fixed) n ≥ 2 the above equivalence relation restricted to the BACs. In Section III we introduce the
BAC-function, the key to describe the regions determined by the equivalence relation in the parameter space (i.e. in the
fundamental triangle). The number of such regions is provided for every n ≥ 2. In Section IV we discuss some properties of
the BAC-function and the areas of the regions determined by its level curves, which are related to the probability of a random
choice of (p, q) to produce a channel n-equivalent to a given BAC.

II. n-EQUIVALENCE OF CHANNELS

We start by introducing an equivalence relation (depending on n ∈ N) that characterizes when two memoryless channels
with input and output alphabet X determine the same ML decision for every n-block codes (i.e. subsets C ⊆ Xn).

Let W be a memoryless channel with input and output alphabet X and n ∈ N. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Xn we
denote by PrW (x |y) :=

∏n
i=1 PrW (xi |yi) the probability of receiving x if y was sent through the channel W . When W = BAC(p, q)

we denote this probability by Pr(p,q)(x |y) and if the parameters (p, q) are clear from the context or irrelevant, we denote it
by Pr(x |y). Motivated by the definition of matching given in [18, Definition 1], we introduce the following equivalent relation
between memoryless channels.

Definition 1. Let W1,W2 : X → X be two memoryless channels and n be a positive integer.. We say that W1 and W2 are
n-equivalent (denoted by W1 ∼

n
W2) if for every n-block code C ⊆ Xn and every word x ∈ Xn, we have

arg max
c∈C

PrW1 (x |c) = arg max
c∈C

PrW2 (x |c)

where arg maxc∈C PrW (x |c) = {c ∈ C : PrW (x |c) ≥ PrW (x |c′), ∀c′ ∈ C}. The channels W1 and W2 are ∞-equivalent (denoted
by W1 ∼∞ W2) if they are n-equivalent for every n ≥ 1.

Let sdecW and udecW denote the standard and uniform ML decoder introduced in Section I, with respect to a memoryless
channel W : X → X and let W1,W2 : X → X be two memoryless channels. The equality sdecW1 = sdecW2 for n-block codes
means sdecW1 (C, x) = sdecW2 (C, x) for every code C ⊆ Xn and every x ∈ Xn, and udecW1 = udecW2 for n-block codes means
the equality of the probabilities Pr

(
udecW1 (C, x) = c

)
= Pr

(
udecW2 (C, x) = c

)
for every code C ⊆ Xn, every x ∈ Xn and every

c ∈ C. The following theorem, whose proof is given in the Appendix, establishes a relation between the n-equivalence of
channels and the ML decoders mentioned above.

Theorem 1. Let W1,W2 : X → X be two memoryless channels and n ≥ 2. The following assertions are equivalent.
i) W1 and W2 are n-equivalent.

ii) The standard ML decoders sdecW1 and sdecW2 are the same for n-block codes.
iii) The uniform ML decoders udecW1 and udecW2 are the same for n-block codes.

Consider an order in the `-ary alphabet X (for X = F2 we assume 0 < 1) and the lexicographical order in Xn for every
n ≥ 1. With a memoryless channel W : X → X we associate an `n × `n real matrix Mn(W) whose i j-entry is given by
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PrW (x |y) =
∏n

i=1 PrW (xi |yi), where x = (x1, . . . , xn) and y = (y1, . . . , yn) are the i-th and j-th elements of Xn respectively. We
refer to this matrix as the transition matrix of order n of W , or simply as the n-transition matrix. Note that the 1-transition
matrix is the usual transition matrix of the channel. For W = BAC(p, q), the corresponding n-transition matrix is denote by
Mn(p, q). This is a 2n × 2n real matrix and it is not difficult to see that if we consider the binary expansion of i =

∑n
k=1 xk2n−k

and j =
∑n

k=1 yk2n−k (0 ≤ i, j < 2n), the i j-element of Mn(p, q) is given by mi j = Pr(p,q)(x |y) =
∏n

k=1 Pr(p,q)(xk |yk).
For example, the matrix M5(p, q) is a 32 × 32 matrix whose entry in the row 9 = 010012 and column 29 = 111012 is
m9,29 = Pr(01001|11101) = Pr(0|0)Pr(0|1)2Pr(1|1)2 = (1 − p)q2(1 − q)2.

When considering n-equivalence, we need to compare the entries in each line of the n-transition matrix and it is useful to
replace it by a simpler matrix. In [19], the authors substituted a matrix M by a matrix M̃ with entries M̃i j = k if Mi j is the
k-th largest element (allowing ties) of the j-th column. In order to determine whether two channels are equivalent we adopt a
different, but similar substitution.

Definition 2. Let MN (R) denote the set of N × N real matrices and M ∈ MN (R). The ordered form of M is the integer
matrix M∗ ∈ MN (Z) such that M∗i j = #{k : 1 ≤ k ≤ N, Mik < Mi j}.

The next proposition characterizes the n-equivalence of channels in terms of the ordered form of their n-transition matrices
(the proof of this result is given in the Appendix).

Proposition 1. Let W1,W2 : X → X be two memoryless channels and M1 and M2 be their corresponding n-transition matrices.
The following assertions are equivalent.

i) The channels W1 and W2 are n-equivalent.
ii) PrW1 (x |y) ≤ PrW1 (x |z) ⇔ PrW2 (x |y) ≤ PrW2 (x |z) for all x, y, z ∈ Xn.

iii) M∗1 = M∗2 .

Remark 1. If W : X → X is a memoryless channel such that there exists ξ ∈ X such that PrW (ξ |ξ) > 0, then the map
Xn → Xn+1 given by x 7→ x∗ := (x, ξ) verifies that PrW (x∗ |y∗) ≤ PrW (x∗ |z∗) ⇔ PrW (x |y) ≤ PrW (x |z) for all x, y, z ∈ Xn. As a
consequence of this fact, if W1,W2 : X → X are two memoryless channels such that there exists ξ ∈ X such that PrW1 (ξ |ξ) > 0
and PrW2 (ξ |ξ) > 0 (this is always the case if W1 and W2 are BACs) we have the following implications:
• W1 ∼

n+1
W2 implies W1 ∼

n
W2;

• sdecW1 = sdecW2 for n + 1-block codes implies sdecW1 = sdecW2 for n-block codes;
• udecW1 = udecW2 for n + 1-block codes implies sdecW1 = sdecW2 for n-block codes.

In what follows we assume the channels are binary (X = F2). Let n be a fixed positive integer or infinite. The n-equivalence for
BACs induces an equivalence relation on the fundamental triangle T : (p, q) ∼

n
(p′, q′) if and only if BAC(p, q) ∼

n
BAC(p′, q′).

We denote by ∆n = T/∼
n

, the set of equivalence classes and by πn : T → ∆n the projection that associates (p, q) to its
equivalence class (i.e. πn(p, q) = {(p′, q′) ∈ T : (p′, q′) ∼

n
(p, q)}). The main result of this paper is a complete description of

the quotient set ∆n.

Definition 3. A decision criterion of order n for the BACs is an equivalence class A ∈ ∆n (in particular A is a subset of T ).
An n-stable decision criterion A is a decision criterion of order n for the BACs which is an open set of T and an n-unstable
decision criterion is a decision criterion of order n for the BACs with no interior points.

Remark 2. If A is a n-stable decision criterion for the BACs and (p, q) ∈ A , then maximum likelihood decoding on BAC(p, q)
restricted to n-block codes, remains the same under small perturbation of the parameter (p, q).

Definition 4. A point (p, q) ∈ T is n-stable if (p, q) is an interior point of πn((p, q)) and n-unstable otherwise. The n-stable
region (denoted by Rst

n ) is the set of all n-stable points and the n-unstable region (denoted by Run
n ) is the set of all n-unstable

points.

We will prove later that every decision criterion is either stable or unstable, that is, if a criterion contain an n-stable point
then all its points are n-stable. We conclude this section by discussing how the parameter space T decomposes into different
n-equivalence classes for n ≤ 5.

The 1-transition matrix M1(p, q) of BAC(p, q) is given by
(

1 − p q
p 1 − q

)
, thus its ordered form M1(p, q)∗ =

(
1 0
0 1

)
does not depend on (p, q) and we have only one criterion, which is stable.
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The 2-transition matrix M2(p, q) of BAC(p, q) is given by

©­­­«
(1 − p)2 (1 − p)q (1 − p)q q2

(1 − p)p (1 − p)(1 − q) pq q(1 − q)
(1 − p)p pq (1 − p)(1 − q) q(1 − q)

p2 p(1 − q) p(1 − q) (1 − q)2

ª®®®¬ .
In this case the ordered form depends on (p, q) in the following way:

• If (p, q) is an interior point of T the ordered form is given by M2(p, q)∗ =
©­­­«

3 1 1 0
1 3 0 2
1 0 3 2
0 1 1 3

ª®®®¬;

• If p = 0 (and hence q > 0, since (0, 0) < T ) we obtain the ordered form

M2(p, q)∗ =
©­­­«

3 1 1 0
0 3 0 2
0 0 3 2
0 0 0 3

ª®®®¬;

• If p = q we obtain M2(p, q)∗ =
©­­­«

3 1 1 0
1 3 0 1
1 0 3 1
0 1 1 3

ª®®®¬.

In this case we have three different decision criteria, one stable and two unstable.

For n = 3, 4 and 5 we started with some simulations using the software SAGE [20]. We considered a set A of 28900 = 1702

points uniformly distributed on T and calculated the ordered form Mn(p, q)∗ of each (p, q) ∈ A.

For n = 3 we observe two criteria, B and R, and by coloring the points in these regions by blue and red respectively we
obtain the picture showing in Figure 1. As we will prove in Theorem 2, there are two stable criteria B and R (the connected

Fig. 1. Each color corresponds to a 3-stable decision criterion for the BACs.

components of the stable region Rst
3 ) and there are three unstable decision criteria corresponding to the curves p = 0 (the

Z-channel), p = q (the BSC) and the curve that separates the two connected components of the stable region. By considering
the expression for the regions given in Theorem 2 we can find (p, q) for some BACs which are representatives of these five
criteria in the above order, let’s say

(
1
7,

2
7

)
,
(

1
7,

4
7

)
,
(
0, 1

7

)
,
(

1
7,

1
7

)
and

(
1
7,

3
7

)
. We can then assert that any BAC is 3-equivalent

to one of these five channels.

We proceed similarly with the cases n = 4 and n = 5, observing three decision criteria for n = 4 (Figure 2) and five decision
criteria for n = 5 (Figure 3). They correspond to the stable decision criteria and the curves separating these regions correspond
to the four and six different unstable decision criteria for n = 4 and n = 5 respectively (see Theorem 2 in the next section).



5

Fig. 2. Each color corresponds to a 4-stable decision criterion for the BACs.

Fig. 3. Each color corresponds to a 5-stable decision criterion for the BACs.

III. DETERMINING THE n-DECISION CRITERIA FOR THE BACS

We start introducing a function which plays a fundamental role in describing the regions which determine the decision
criteria for the BACs. This function also induces a natural distance between binary asymmetric channels as it is seen in Section
IV.

Definition 5. Let S : T → [0, 1] be the function given by

S(p, q) = ln(1 − p) − ln(q)
ln(1 − q) − ln(p),

if p , 0, and S(p, q) = 0 if p = 0. We refer to this function as the BAC-function.

It is easy to check that in fact the image of S is contained in the interval [0, 1] where the values 0 and 1 are attained by
the extremes cases p = 0 and p = q, respectively. Besides, this function is continuous in the connected set T and therefore
we have S(T ) = [0, 1].

Let a and b be integers with 0 ≤ a ≤ b. For (p, q) ∈ T we have

pa(1 − p)b ≥ qb(1 − q)a ⇔ S(p, q) ≥ a
b
, (1)

where equality holds in the left side if and only if it holds in the right side. The next lemma is a direct consequence of the
above relation.
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Lemma 1. Let a and b be natural numbers with a ≤ b, a+ b ≤ n and η = n−(a+ b) ≥ 0. Consider the words x = 1a+η0b, y =
0n, z = 0η1a+b ∈ Fn2 . Then S(p, q) ≤ a/b if and only if Pr(x |y) ≤ Pr(x |z), where equality corresponds to equality. In particular,
if S(p0, q0) ≤ a/b and S(p1, q1) > a/b the channels BAC(p0, q0) and BAC(p1, q1) are not n-equivalent.

When we consider p and q as variables, the entries of the n-transition matrix Mn(p, q) are polynomials in the variables p
and q. In fact, the entry of Mn(p, q) corresponding to the conditional probability Pr(x |y) (x, y ∈ Fn2 ) is equal to the polynomial
f (p, q) = pa(1 − p)bqc(1 − q)d where a, b, c and d correspond to the number of indices i for which (xi, yi) is equal to
(1, 0), (0, 0), (0, 1) and (1, 1), respectively. In particular we have a + b + c + d = n and the Hamming weight of x is equal to
a + d, which we will refer also as the weight of f and denote by ω( f ). We remark that two polynomials in the same row of
Mn(p, q) have the same weight. By the previous consideration we define the following sets of bivariate polynomials:
• Pn = { f (p, q) = pa(1 − p)bqc(1 − q)d : a, b, c, d ≥ 0, a + b + c + d = n}.
• Pn

k
= { f ∈ Pn : ω( f ) = k} for 0 ≤ k ≤ n.

To determine the n-decision criterion corresponding to a BAC we only need to do comparisons between values in the same
row of its n-transition matrix, this means comparisons of values of polynomials belonging to Pn

k
for some k, 0 ≤ k ≤ n. The

next lemma describes the stable region in terms of these sets.

Lemma 2. The n-stable region Rst
n is given by

Rst
n =

n⋂
k=0

⋂
f ,g∈Pn

k
f,g

{(p, q) ∈ T : f (p, q) , g(p, q)}.

Proof. We denote by R̂st
n the set on the right side of the above equality. This set is open in T (since it is a finite intersection

of open sets in T ), therefore if (p0, q0) ∈ R̂st
n there is a ball B0 with center at this point such that B0 ∩T ⊆ R̂st

n . Since B0 ∩T
is connected, the signal of f (p, q)−g(p, q) does not depends on (p, q) ∈ B0∩T (whenever f , g ∈ Pn

k
for some k) and the same

occurs with their associated decision criteria, so R̂st
n ⊆ Rst

n . To prove the other inclusion we suppose by contradiction that there
exists (p, q) < R̂st

n verifying (p, q) ∈ Rst
n . Then, there exist two distinct polynomials f , g ∈ Pn

k
for some k : 0 ≤ k ≤ n and a

ball B0 centered at (p0, q0) such that f (p0, q0) = g(p0, q0) and every point in B0 ∩ T determines the same decision criterion,
in particular f (p, q) = g(p, q) for all (p, q) ∈ B0 ∩ T . Since B0 ∩ T has interior points and two polynomials that coincide in
an open set must be equal, we have f = g which is a contradiction. �

As we will prove next, the main property of the BAC-function from the point of view of this work, is that the curves which
separate the regions corresponding to the stable and unstable criteria are level curves of this function associated with rational
values. First, we prove some lemmas.

Lemma 3. Let (p, q) ∈ T be an n-unstable point for the BACs. Then S(p, q) = a
b where a, b are integers verifying a ≥ 0, b ≥

1, a ≤ b, gcd(a, b) = 1 and a + b ≤ n.

Proof. By Lemma 2, if (p0, q0) ∈ T is an n-unstable point for the BACs then there exists distinct polynomials f1, f2 ∈ Pn
k

for
some k : 0 ≤ k ≤ n such that f1(p0, q0) = f2(p0, q0). We write fi(p, q) = pai (1 − p)bi qci (1 − q)di with ai + bi + ci + di = n and
ai + di = k for i = 1, 2. Without loss of generality we suppose a1 ≥ a2. Let a := a1 − a2 = d2 − d1 and b := b1 − b2 = c2 − c1,
then we have

f1(p, q)
f2(p, q)

=

(
p

1 − q

)a (
1 − p

q

)b
,

or, equivalently,

pa(1 − p)b =
(

f1(p, q)
f2(p, q)

)
· qb(1 − q)a . (2)

Evaluating the Equation 2 for (p, q) = (p0, q0) and using the relation (1) we have S(p0, q0) = a
b . By our assumption we have

a ≥ 0, since S(T ) = [0, 1] then b ≥ 1 and a + b = a1 − a2 + b1 − b2 ≤ a1 + b1 ≤ n; simplifying common factors if necessary
we can assume gcd(a, b) = 1. �

Based on the above result, we introduce the following definition.

Definition 6. The weight of a non-negative rational r (denoted by ω(r)), is the sum of its numerator and denominator in
the reduced expression of r. An n-critical value for the BAC-function S (where n ≥ 2) is a rational number r ∈ [0, 1] with
ω(r) ≤ n. The set of all n-critical values for S is denoted by Dn.

Corollary 1. If we write the set of the n-critical values for S as Dn = {r0 = 0 < r1 < · · · < rt = 1} and denote by
Rn(ri) = {(p, q) ∈ T : ri < S(p, q) < ri+1} then Rn(ri) ⊆ Rst

n for 0 ≤ i < t.

Lemma 4. Let (p, q) ∈ T and Mn(p, q) be the n-transition matrix for the channel BAC(p, q) (seeing as an element of Rn
2
).

The function φ : Rst
n → Rn

2
given by φ(p, q) = Mn(p, q)∗ is continuous.
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Proof. Let (p0, q0) ∈ Rst
n and f , g ∈ Pn

k
for some k, 0 ≤ k ≤ n with f , g. By Lemma 2 we have f (p0, q0) , g(p0, q0),

then there exists ε = ε( f , g) > 0 such that the sign of f (p, q) − g(p, q) does not depend on (p, q) ∈ B ((p0, q0), ε) ∩ T .
If ε = min{ε( f , g) : f , g ∈ Pn

k
, f , g, 0 ≤ k ≤ n} and denoting by B the ε-ball centered at (p0, q0) we have that f (p, q) >

g(p, q) ⇔ f (p0, q0) > g(p0, q0) for all (p, q) ∈ B∩T and for all f , g ∈ Pn
k
, f , g, 0 ≤ k ≤ n. Therefore Mn(p, q)∗ = Mn(p0, q0)∗,

so φ is locally constant and in particular continuous. �

Lemma 5. Let S be the BAC-function. Then S−1(I) is a connected set for every interval I ⊆ [0, 1].

Proof. Let τ ∈ (0, 1) and gτ : [0, τ2 ] → [0, 1] be the function given by gτ(p) = S(p, τ − p). We affirm that it is increasing (in
the variable p). To prove this we consider s ∈ [0, 1] and the function fs(p) = ps(1 − p) − q(1 − q)s (where q = τ − p). Since
1 − q > p we have ps−1 > (1 − q)s−1 and (1 − q)s > ps , therefore

f ′s (p) = s
(
ps−1(1 − p) − q(1 − q)s−1

)
+ (1 − q)s − ps

> s(1 − q)s−1(1 − p − q) + (1 − q)s − ps > 0.

Since fs(0) = −q(1− q)s < 0 and fs(τ/2) = τ/2 (1 − τ/2)
(
(τ/2)s−1 − (1 − τ/2)s−1) > 0 (because 1− τ/2 > τ/2 and s− 1 < 0),

then there is an unique p ∈ (0, τ/2) such that fs(p) = 0, or equivalently, such that gτ(p) = S(p, τ − p) = s. Therefore
gτ : [0, τ2 ] → [0, 1] is increasing since it is a continuous bijection with gτ(0) = 0 and gτ(τ/2) = 1. Let I ⊆ [0, 1] be an
interval and (p0, q0), (p1, q1) ∈ T be two points in S−1(I). We denote by si = S(pi, qi) and τi = pi + qi for i = 0, 1. Without
loss of generality we assume s0 ≤ s1. Since gτ0 (p0) = S(p0, q0) = s0 < s1 there exists t0 > 0 such that gτ0 (p0 + t0) = s1 and
gτ0 (p0 + t) ∈ (s0, s1) for all t ∈ (0, t0) (in particular (p0 + t, q0 − t) ∈ S−1(I) for all t ∈ [0, t0]). Taking the path α : [0, t0] → T
given by α(t) = (p0 + t, q0 − t) and β the segment of curve in S−1(s1) from (p0 + t0, q0 − t0) to (p1, q1), we have that the
concatenation path β ∗α is a path connecting (p0, q0) with (p1, q1). Therefore S−1(I) is path-connected and then connected. �

Lemma 6. Let (p0, q0) and (p1, q1) be two points in T . If S(p0, q0) = S(p1, q1) then BAC(p0, q0) ∼
n

BAC(p1, q1) for all n ≥ 1.

Proof. We suppose by contradiction that (p0, q0) and (p1, q1) are not n-equivalent, so there exists two polynomials f , g ∈ Pn
k

for some k verifying f (p0, q0) < g(p0, q0) and f (p1, q1) ≥ g(p1, q1). As in the proof of Lemma 3, the polynomials f and g

must verify an equation similar to Equation (2):

pa(1 − p)b =
(

f (p, q)
g(p, q)

)
· qb(1 − q)a (3)

for some integers a ≥ 0 and b ≥ 1 satisfying a ≤ b and a+b ≤ n. We consider a path α contained in the curve S−1(r) connecting
(p0, q0) with (p1, q1), since f /g < 1 in (p0, q0) and f /g ≥ 1 in (p1, q1), by continuity there exists an intermediate point (p2, q2)
in α for which f /g = 1. Evaluating Equation (3) in (p, q) = (p2, q2) and using the relation (1) we have S(p2, q2) = a/b.
Since (p2, q2) belongs to α which is contained in the level curve S−1(r) we have S(p2, q2) = r , then r = a/b. Substituting
(p, q) = (p0, q0) in Equation (3) and using the relation 1 we have r = S(p0, q0) < a/b which is a contradiction. Therefore
(p0, q0) and (p1, q1) must be n-equivalent. �

Now we are ready to state the main result of this paper.

Theorem 2. Let S : T → [0, 1] be the BAC-function

S(p, q) = ln(1 − p) − ln(q)
ln(1 − q) − ln(p),

for p , 0, S(0, q) = 0 and Dn = {0 = r0 < r1 < · · · < rtn = 1} its set of n-critical values (n ≥ 2). We consider the level curves
γi = S−1(ri) for 0 ≤ i ≤ tn and the regions Rn(ri) = {(p, q) ∈ T : ri < S(p, q) < ri+1} for 0 ≤ i < tn. Then

tn = 1 +
1
2

n∑
k=3

ϕ(k) (4)

where ϕ denotes the Euler’s totient function and there are exactly tn stable decision criteria of order n for the BACs, which are
given by {Rn(ri) : 0 ≤ i < tn} and exactly tn + 1 unstable decision criteria of order n for the BACs given by {γi : 0 ≤ i ≤ tn}.

Proof. Consider T written as the disjoint union

T =
t−1⊎
i=0

Rn(ri) ]
t⊎

i=0
γi .

We have to prove that each Rn(ri) and each γi is a n-decision criterion (i.e. an equivalent class in ∆n). If (p0, q0) ∈ γi for
some i : 0 ≤ i ≤ t, by Lemma 6 and Lemma 1 we have BAC(p1, q1) ∼

n
BAC(p0, q0) if and only if (p1, q1) ∈ γi , then each

γi is a decision criterion. We consider now a point (p0, q0) ∈ Rn(ri) for some i : 0 ≤ i < t and (p1, q1) ∈ T \ Rn(ri). If
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(p1, q1) ∈ γj for some j, since each γj is a decision criterion we have that BAC(p1, q1) and BACn(p0, q0) are not n-equivalent.
Otherwise (p1, q1) ∈ Rn(rj) for some j : 0 ≤ j < n, j , i and there exists rk ∈ Dn such that S(p0, q0) < rk < S(p1, q1) or
S(p1, q1) < rk < S(p0, q0). In both cases, by Lemma 1 the channels BAC(p1, q1) and BACn(p0, q0) are not n-equivalent. It only
remains to prove that if (p1, q1) ∈ Rn(ri) the channels BAC(p1, q1) and BAC(p0, q0) are n-equivalent. We consider the function
φ : Rst

n → Rn
2

given by φ(p, q) = Mn(p, q)∗ where Mn(p, q) denotes the n-transition matrix for the channel BAC(p, q). By
Lemma 5, Rn(ri) is a connected set (since Rn(ri) = S−1(I) for I = (ri, ri+1)), and by Lemma 3, Rn(ri) is contained in the stable
region Rst

n . By Lemma 4, the set φ(Rn(ri)) ⊆ Mn(Z) is connected and since Mn(Z) is discrete, there exists M ∈ Mn(Z) such
that φ(Rn(ri)) = {M}. Therefore Mn(p1, q1)∗ = Mn(p0, q0)∗ = M and BACn(p1, q1) ∼ BACn(p0, q0).

Since the sets Rn(ri) are open for 0 ≤ i < tn and the sets γi have empty interior they correspond to the stable and unstable
criteria respectively. To derive the formula for tn we consider the decomposition into disjoint sets: Dn =

⊎n
k=1Do

k
where

Do
k
= {a/b ∈ Q+ : a ≤ b, gcd(a, b) = 1, a + b = k}. We have #Do

k
= 1 for k = 1, 2. For k ≥ 3 if a/b ∈ Do

k
then a < b and in

this case:
#Do

k =
1
2
· #

{
(a, b) ∈ N2 : gcd(a, b) = 1, a + b = k

}
=

1
2
· #

{
(a, b) ∈ N2 : gcd(a, k) = 1, a + b = k

}
=

1
2
· # {a ∈ N : gcd(a, k) = 1, a ≤ k} = 1

2
· ϕ(k).

Then, for n ≥ 3 we have:

tn = #Dn − 1 =
n∑

k=1
#Do

k − 1

= 2 +
1
2
·

n∑
k=3

ϕ(k) − 1 = 1 +
1
2
·

n∑
k=3

ϕ(k).

For n = 2 we have #D2 = # {(0, 1), (1, 1)} = 2 and the above formula also holds in this case. �

Corollary 2. Let (p0, q0), (p1, q1) ∈ T . The channels BAC(p0, q0) and BAC(p1, q1) are ∞-equivalent (i.e. n-equivalent for all
n) if and only if S(p0, q0) = S(p1, q1).

Proof. If S(p0, q0) < S(p1, q1) there exists a rational number r ∈ Dn for some n ≥ 1 large enough such that S(p0, q0) < r <
S(p1, q1), then the channels BAC(p0, q0) and BAC(p1, q1) are not n-equivalent. The converse is consequence of Lemma 6. �

Corollary 3. A point (p, q) ∈ T is a stable point of order n for all n ≥ 1 if and only if S(p, q) is an irrational number.

Using the average order formula for the Euler’s totient function ϕ (see for example Theorem 3.7 of [21]) we obtain the
following corollary.

Corollary 4. The number of stable decision criteria of order n for the BACs grows quadratically with n. More explicitly, it is
given by 3

π2 · n2 +O (n · ln n).

Example 1. For n = 5 (see Figure 3), we have the set of critical values D5 = {0, 1/4, 1/3, 1/2, 2/3, 1} which correspond
to the level curves of the BAC-function describing the unstable sets. Those curves can be seen from left to right according to
the order in D5. The five stable regions are the ones bounded by these curves.

Example 2. For n = 9, we have t9 = 29 decision regions, 15 instable, associated to the critical setD9 = {0, 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4,
4/5, 1} and 14 stable, situated between the level curves of the BAC-function attached to values in D9.

To conclude this section we present some situations of decoding problems that can be solved using Theorem 2.

Example 3. Let W be a memoryless binary asymmetric channel. Suppose that a series of measurements was performed in
order to obtain the transition probabilities (p, q) for W and the following values were obtained: p = 0.212 and q = 0.531
with a possible error of at most ε = 0.001 in both probabilities. We want to determine the maximum possible length N
such that there is no risk of mismatching when we perform MLD on W with respect to (p, q) = (0.212, 0.531) and binary
codes with block length n ≤ N. In term of n-equivalence of channels this means to find the maximum value of N such that
the channels W and BAC(0.212, 0.531) are n-equivalent for all n ≤ N. By our assumption, the real transition probabilities
(p0, q0) for W (which is unknown) belongs to the square I = [0.211, 0.213] × [0.530, 0.532]. By Theorem 2, the problem is
reduced to find the maximum value of N such that the critical set DN = { ab : 0 ≤ b ≤ a, a + b ≤ N} has empty intersection
with the interval S(I) = [S(0.211, 0.532), S(0.213, 0.530)] = [0.4947499.., 0.4995337]. The maximum value of N is 144 since
47/95 = 0.4947368.. and 1/2 = 0.5 are consecutive elements in D144 but 0.4947499 < 48/97 < 0.4995337 with 48+97 = 145.
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Thus, if we implement MLD with respect to the measured approximated value (p, q) = (0.212, 0.531), restricted to codes with
block length n ≤ 144, there is no risk of mismatched decoding since in this case BAC(p, q) ∼

n
BAC(p0, q0).

Example 4. Let W = BAC(p0, q0) with p0 = 0.314, q0 = 0.594 and suppose that only binary codes with block length at most
n = 32 are considered. We call ε > 0 an admissible error if BAC(p, q) ∼

20
W for all (p, q) ∈ T such that |p − p0 | < ε and

|q−q0 | < ε. We want to find the greatest admissible error. For each ε > 0 we consider the box Iε = [p0−ε, p0+ε]×[q0−ε, q0+ε].
By Theorem 2, the problem is equivalent to find the greatest ε > 0 such that S(Iε) ∩ D32 = ∅. Since 5/9 and 9/16 are
consecutive elements of D32 satisfying 5/9 < S(p0, q0) = 0.56039... < 9/16, and the endpoints of S(Iε) are S(p0 − ε, q0 + ε)
and S(p0 + ε, q0 − ε) , it suffices to find ε0, ε1 > 0 such that S(p0 − ε0, q0 + ε0) = 5/9 and S(p0 + ε1, q0 − ε1) = 9/16, and
take the minimum of these two values. By direct calculation we obtain ε0 = 0.0019779637.. and ε1 = 0.0008585765.., thus
ε = min{ε0, ε1} = 0.0008585765...

IV. FURTHER REMARKS

A. On the BAC-function and the parameter space for the BACs

To study the different n-decision criteria for the BACs, we choose the parameter space T = {(p, q) ∈ [0, 1] : p + q < 1, 0 ≤
p ≤ q} \ {(0, 0)} and use the BAC-function to describe the regions determined by these criteria. In the first part of this section
we discuss what happens when we remove the restriction p + q < 1 and 0 ≤ p ≤ q and what is the role of the BAC-function
in these cases. Next, we show how to obtain a natural distance between BACs in such a way that the BAC-function measures
how far a channel is from the binary symmetric channel, in this sense the BAC-function provides a measure of the asymmetry
of the channel.

Consider a BAC with transition probabilities p, q ∈ [0, 1]2. A BAC is reasonable (in the sense of [18]) if their transition
probabilities verify Pr(0|0) > Pr(0|1) and Pr(1|1) > Pr(1|0). Note that this is equivalent to the condition p + q < 1. It is not
difficult to check, using Equation (2)), the following facts:
• p + q < 1⇔ Pr(x |x) > Pr(x |y), ∀x, y ∈ Fn2, x , y;
• p + q > 1⇔ Pr(x |x) < Pr(x |y), ∀x, y ∈ Fn2, x , y;
• p + q = 1⇔ Pr(x |x) = Pr(x |y), ∀x, y ∈ Fn2, x , y.
As a consequence, we have that if two channels BAC(p, q) and BAC(p′, q′) are n-equivalent. then the sign of 1 − p − q and

1 − p′ − q′ is the same. The case p + q = 1 corresponds to the completely noisy channel, which are not interesting from the
coding/decoding point of view, since Pr(x |y) = Pr(x |z) for all x, y, z ∈ Fn2 . These channels are n-equivalent among them, for all
n ≥ 1. The case p + q < 1 can be decomposed into two regions T and T ′ = {(p, q) ∈ [0, 1]2 : p + q < 1, 0 ≤ q ≤ p} \ {(0, 0)}
which are symmetric one to the other (via the map (p, q) 7→ (q, p)).

We observe that the BAC-function S can be extended to a function Ŝ : T ∪ T ′ → [0,+∞] defining Ŝ(q, p) = 1/S(p, q) for
(q, p) ∈ T ′ if pq , 0 and Ŝ(p, 0) = +∞. This extension is continuous and verifies Ŝ(T ′) = [1,+∞]. By relation (1), S(p, q) ≤ 1
if and only if p(1 − p) ≤ q(1 − q), if and only if pn−1(1 − p) ≤ pn−2q(1 − q). Therefore, for x = 1n−10, y = 0n and z = 0n−212

we have:
• Pr(x |y) < Pr(x |z) if (p, q) ∈ T with p , q,
• Pr(x |y) > Pr(x |z) if (p, q) ∈ T ′ with p , q and
• Pr(x |y) > Pr(x |z) if p = q.

Thus, we conclude that the triangles T and T ′ have no common criteria decision except for those points corresponding to the
BSC. Since the i-th row of the n-transition matrix Mn(p, q) is just the (2n + 1 − i)-th row of Mn(q, p) in reverse order, then
BAC(p, q) ∼

n
BAC(p′, q′) if and only if BAC(q, p) ∼

n
BAC(q′, p′) for all (p, q), (p′, q′) ∈ T . By the above consideration we have

the following proposition.

Proposition 2. Let S : T ∪ T ′ → [0,+∞] be the BAC-function defined as above and Dn = {0 = r0 < r1 < · · · < rtn = 1} its
set of n-critical values (n ≥ 2) where tn = 1 + 1

2
∑n

k=3 ϕ(k). There are exactly 2tn stable decision criteria of order n for the
BAC(p, q) with (p, q) ∈ T ∪ T ′ and exactly 2tn − 1 unstable decision criteria of order n. The n-stable criteria are given by
Rn(ri) = {(p, q) ∈ T : ri < S(p, q) < ri+1} and Rn(r−1

i ) = {(p, q) ∈ T : r−1
i+1 < S(p, q) < r−1

i } for 0 ≤ i < tn. The n-unstable
criteria are given by the level curves S−1(ri) and S−1(r−1

i ) for 0 ≤ i ≤ tn.

The function S is constant when restricted to a criterion A ⊆ T ∪T ′. Thus it defines an injective function on the equivalent
classes S : ∆n → [0,+∞] such that S(A) := S(p, q) for any (p, q) ∈ A. If ∆∗n denotes the set of all n-decision criteria for the
BACs except for those corresponding to the Z-channels (i.e. when pq = 0), then the function d : ∆∗n × ∆∗n → [0,+∞) given
by d(A,B) = | ln S(A) − ln S(B)| defines a metric in the n-decision criteria space for the BACs. In particular if B denotes the
criterion corresponding to the BSC then d(A,B) = | ln S(A)| can be interpreted as a measure of how asymmetric a channel is.

Since the ordered form of the n-transition matrix associated with the completely noisy channels (p+q = 1) is the null matrix
(because in this case Pr(x |y) = pwH (x)(1 − p)n−wH (x) depends only on the Hamming weight of x and not on y) and this is the
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only situation for which it happens, then the points in the line p + q = 1 correspond to a single criterion when considering
BACs with (p, q) ∈ [0, 1]2. If p + q < 1 and p′ + q′ > 1, the channels BAC(p, q) and BAC(p′, q′) are not n-equivalent, since
the first is reasonable and the last is not.

Let T− = T ∪ T ′ = {(p, q) ∈ [0, 1]2 : p + q < 1} \ {(0, 0)} and T+ = {(p, q) ∈ [0, 1]2 : p + q > 1)} \ {(1, 1)}. The involution
φ(p, q) = (1 − q, 1 − p) maps the triangle T− into T+ and the curves γa/b : pa(1 − p)b = qb(1 − q)a into itself. Moreover, the
i-th rows of Mn(p, q) and Mn(1 − q, 1 − p) are the same but in reverse order. Therefore for (p, q), (p′, q′) ∈ T+, the channels
BAC(p, q) and BAC(p′, q′) are n-equivalent if and only if BAC(1 − q, 1 − p) and BAC(1 − q′, 1 − p′) are n-equivalent.

We conclude that if we consider BACs with parameters (p, q) ∈ [0, 1]2, the n-stable criteria are the regions bounded by
the edges of the square [0, 1]2 and the curves γa/b where a/b is a positive rational number with a, b ∈ Z+, gcd(a, b) = 1
and a + b ≤ n. We also remark that the level curves γa/b contain the line p + q − 1 = 0 but if we divide the equation
pa(1 − p)b − qb(1 − q)a = 0 which defines γa/b (see Equation (1)) by p + q − 1 we obtain irreducible curves γ̂a/b (see Figure
4).

Fig. 4. Decision criteria (regions) of order 7 for the BACs with (p, q) in the unit square: the line p + q = 1 (dotted) and the curves γ̂q and γ̂q−1 for q = 1/6
(brown), 1/5 (violet), 1/4 (blue), 1/3 (orange), 2/5 (sky blue), 1/2 (green), 2/3 (red), 3/4 (yellow) and 1 (black). Curves corresponding to reciprocal values
have the same color.

B. The most probable BACs are those next to the BSC

By the previous discussion, without loss of generality we can restrict our parameter space to T = {(p, q) ∈ [0, 1]2 :
p + q < 1, p ≤ q} \ {(0, 0)} . Let A ⊆ T be a n-decision criterion for the BACs. If we choose a point (p, q) ∈ T
uniformly at random and consider the channel W = BAC(p, q), the probability Pr

(
W ∼

n
A

)
= 4 · a(A) where a(A) is the

area of the region corresponding to the criterion A. In this sense, the area of a given n-decision criterion for the BACs is a
measure of how probably this criterion is to be chosen (assuming uniform distribution on (p, q)). By Theorem 2, the area of
A = {(p, q) ∈ T : r0 < S(p, q) < r1} is a(r1) − a(r0) where r1 and r0 are consecutive rational numbers in Dn and A(r) = a(Rr )
is the area of the region Rr = {(p, q) ∈ T : 0 < S(p, q) < r}. This area is equal to

A(r) =
∬

Rr

1 dp dq.

Let r = a/b where a and b and coprime positive integers with a < b. Applying the change of variable formula for double
integrals with p = u−1

uv−1, q =
v−1
uv−1 and after some calculations we obtain:

A(r) =
∫ 1

0

b(xa − 1)2xb−1

2(xa+b − 1)2
dx. (5)

Since x = 1 is a zero of order 2 of the numerator, the integral is a proper integral. In some cases, a primitive for the integrand
can be calculated explicitly, for example when r = 1/2 and r = 1/3 obtaining A(1/2) = 1

3 −
√

3π
27 and A(1/3) = 3

8 −
3π
32 . In the

other cases we have use the software Wolfram Mathematica [22] to calculate the integral (5) numerically after some reductions.
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The n-stable criterion for the BACs nearest the BSC is denoted by An
QS

. It is given by the criterion corresponding to
the channels BAC(p, q) satisfying rn := 2n−3−(−1)n

2n+1−(−1)n < S(p, q) < 1. We refer to these channels as n-quasi-symmetric channels.
Clearly a(An

QS
) → 0 when n→∞ (since rn → 1). In the next table we show the percentages (rounded to the nearest integer)

represented by the different n-stable criteria for the BACs, for 3 ≤ n ≤ 7.

0 1
6

1
5

1
4

1
3

2
5

1
2

2
3

3
4 1

n = 3 53 47
n = 4 32 21 47
n = 5 22 11 21 18 29
n = 6 16 6 11 21 18 29
n = 7 12 4 6 11 8 12 18 8 21

For example, for n = 3 the region corresponding to the BAC(p, q) with 1
2 < S(p, q) < 1 (the 3-quasi-symmetric channels) rep-

resents the 47% of the total area. The last percentage in each row of this table corresponds to the criterion An
QS

, associated with
the n- quasi-symmetric channels. By (4), the number of stable regions for n = 8 and n = 9 is t8 = 11 and t9 = 14 respectively. The
percentages represented by these regions (from left to right) are (9.09, 2.58, 3.85, 6.13, 10.54, 8.41, 12.12, 11.28, 7.00, 8.16,
20.84) for n = 8 and (7.28, 1.81, 2.58, 3.85, 6.13, 4.49, 6.06, 8.41, 12.12, 11.28, 7.00, 8.16, 4.59, 16.24), for n = 9.
As we can see, the criterion An

QS
is the most probable criterion, when (p, q) are chosen uniformly at random, among all

the n-criteria for 4 ≤ n ≤ 9. We have also checked this fact for n ≤ 80 and conjecture that this is true for any n ≥ 4.
Figure 5 displays graphically the percentages represented by all regions for n = 40. Let An

Z be the n-stable decision
criterion for the BACs nearest to the criterion corresponding to the Z-channel. We also point out an interesting comparison
regarding the sizes of the areas corresponding to the criteria An

QS
and An

Z . By considering for each n the ratios R(n) and
r(n) between the areas corresponding to An

QS
and An

Z and the average area for this n, it can be observed from our data
that R(n) grows (with some very small oscillation) with n linearly (i.e. R(kn)/R(n) approaches k) whereas r(n) gets near
to one. As a sample, for n = 4, 8, 16, 18, 25, 36, 49, 40, 50, 100 and 200, the obtained sequences (n, R(n), r(n))
are (4, 1.418, 0.966), (8, 2.292, 0.100), (16, 3.908, 0.966), (18, 4.398, 0.980), (25, 5.867, 1.012), (36, 8.299, 0.978)
(40, 9.217, 0.983), (50, 11.588, 0.998), (100, 22.559, 0.991) and (200, 45.098, 1.001).

Fig. 5. The percentages represented by the 245 stable regions for n = 40 ordered by its BAC-function values. The rightmost bar corresponds to A40
QS

.
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APPENDIX

Proof of the Proposition 1.
i) ⇒ ii). We consider x, y, z ∈ Xn and the code C = {y, z}. Then, PrW1 (x |y) ≤ PrW1 (x |z) ⇔ arg maxc∈{y,z } PrW1 (x |c) , {y} ⇔
arg maxc∈{y,z } PrW2 (x |c) , {y} ⇔ PrW2 (x |y) ≤ PrW2 (x |z), where the second implication follows from assuming i).
ii) ⇒ i). We consider a code C ⊆ Xn and x ∈ Xn, we have c0 ∈ arg maxc∈C PrW1 (x |c) ⇔ PrW1 (x |c0) ≥ PrW1 (x |c), ∀c ∈ C ⇔
PrW2 (x |c0) ≥ PrW2 (x |c), ∀c ∈ C ⇔ c0 ∈ arg maxc∈C PrW2 (x |c).
ii) ⇔ iii). We consider the following equivalence relation in Rn. Two vectors a = (a1, . . . , an) and a′ = (a′1, . . . , a

′
n) are

equivalent (which is denoted by a ∼ a′) if for all i, j: ai ≤ aj ⇔ a′i ≤ a′j . Let τ : Rn → Rn be the function given by
τ(a1, . . . , an) = (b1, . . . , bn) with bi = #{ j : aj ≤ ai}, and fi and f ′i be the i-th lines of M1 and M2, respectively. We note that
ii) is equivalent to fi ∼ f ′i , ∀i : 1 ≤ i ≤ 2n; and iii) is equivalent to τ( fi) = τ( f ′i ), ∀i : 1 ≤ i ≤ 2n. Thus, it suffices to prove
that for every a = (a1, . . . , an) and a′ = (a′1, . . . , a

′
n) ∈ Rn: a ∼ a′⇔ τ(a) = τ(a′).

(⇒) We consider a, a′ ∈ Rn such that a ∼ a′. For each j : 1 ≤ j ≤ n we have: k ∈ {i : ai ≤ aj} ⇔ ak ≤ aj ⇔ a′
k
≤ a′j ⇔

k ∈ {i : a′i ≤ a′j}. Thus {i : ai ≤ aj} = {i : a′i ≤ a′j}. Taking cardinalities we obtain τ(a)j = τ(a′)j , ∀ j : 1 ≤ j ≤ n and then
τ(a) = τ(a′).
(⇐) We consider a, a′ ∈ Rn such that τ(a) = τ(a′) and note that if τ(a)i ≤ τ(a)j then {k : ak ≤ ai} ⊆ {k : ak ≤ aj} (because
in this case {k : ak ≤ aj} 1 {k : ak ≤ ai}). Thus, for all i, j we have ai ≤ aj ⇔ {k : ak ≤ ai} ⊆ {k : ak ≤ aj} ⇔ τ(a)i ≤
τ(a)j ⇔ τ(a′)i ≤ τ(a′)j (because τ(a) = τ(a′)) ⇔ {k : a′

k
≤ a′i} ⊆ {k : a′

k
≤ a′j} ⇔ a′i ≤ a′j ; and we conclude that a ∼ a′.

Proof of the Theorem 1.
i) ⇒ ii) Follows from the definition of n-equivalence and the fact that sdecW1 (C, x) = sdecW2 (C, x) if and only if one of the
following possibilities occurs:
• arg maxc∈C PrW1 (x |c) = arg maxc∈C PrW2 (x |c) = {c0} for some c0 ∈ C or
• #arg maxc∈C PrW1 (x |c) > 1 and #arg maxc∈C PrW2 (x |c) > 1.

ii) ⇒ i) We assume that sdecW1 = sdecW2 for n-block codes, n ≥ 2. This also implies that sdecW1 = sdecW2 for 2-block codes
(see Remark 1). Let’s suppose by contradiction that the channels W1 and W2 are not n-equivalent. In this case, there exists a
code C ⊆ Xn, x ∈ Xn and c0 ∈ C such that c0 ∈ arg maxc∈C PrW1 (x |c) and c0 < arg maxc∈C PrW2 (x |c). Thus, there exists
c1 ∈ C such that PrW2 (x |c1) > PrW2 (x |c0). Consider the code C ′ = {c0, c1} ⊆ C. We have that arg maxc∈C′ PrW2 (x |c) = {c1}.
Since sdecW1 = sdecW2 for 2-block codes, we have that arg maxc∈C′ PrW1 (x |c) = {c1}. Thus PrW1 (x |c1) > PrW1 (x |c0) which
contradicts that c0 ∈ arg maxc∈C PrW1 (x |c). Thus, the channels W1 and W2 are n-equivalent.
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i) ⇔ iii) We define the extended probabilistic Voronoi regions Vext
(C,W )(c) = {x ∈ X

n : PrW (x |c) ≥ PrW (x |c′), ∀c′ ∈ C}. Using
Proposition 1, it is not difficult to prove that W1 ∼

n
W2 if and only if Vext

(C,W1)(c) = Vext
(C,W2)(c) for all C ⊆ Xn and c ∈ C. By

direct calculation we have

Pr(udecW (C, x) = c) =
{

0 if x < Vext
(C,W )(c);

1
M if x ∈ Vext

(C,W )(c);
(6)

where M =

���Vext
(C,W )(c)

���. If W1 ∼
n

W2, then Vext
(C,W1)(c) = Vext

(C,W2)(c) for all C ⊆ Xn, x ∈ Xn and by Equation (6) we have
Pr(udecW1 (C, x) = c) = Pr(udecW2 (C, x) = c) for all C ⊆ Xn, x ∈ Xn. This proves i) ⇒ iii). The converse follows from the fact
that if udecW1 = udecW2 then

Vext
(C,W1)(c) = {x ∈ X

n : Pr(udecW1 (C, x) = c) > 0}
= {x ∈ Xn : Pr(udecW2 (C, x) = c) > 0}
= Vext
(C,W2)(c)

(where in the first and last equality we use Equation (6) and udecW1 = udecW2 is used in the second equality). From which
we conclude W1 ∼

n
W2.
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