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FROM RATE DISTORTION THEORY TO METRIC

MEAN DIMENSION: VARIATIONAL PRINCIPLE

ELON LINDENSTRAUSS, MASAKI TSUKAMOTO

Abstract. The purpose of this paper is to point out a new con-
nection between information theory and dynamical systems. In the
information theory side, we consider rate distortion theory, which
studies lossy data compression of stochastic processes under dis-
tortion constraints. In the dynamical systems side, we consider
mean dimension theory, which studies how many parameters per
second we need to describe a dynamical system. The main results
are new variational principles connecting rate distortion function
to metric mean dimension.

1. Introduction

1.1. Main results. There is a long tradition in the study of dynamical
systems to consider the interplay between ergodic theory and topologi-
cal dynamics (see e.g. Glasner–Weiss [GW] for an in depth discussion).
An important manifastation of this interplay is the variational principle
relating measure theoretic and topological entropy (Goodwyn [Goodw],
Dinaburg [Din] and Goodman [Goodm]). Let (X , T ) be a dynamical
system, i.e. X is a compact metric space and T is a continuous map
from X to X . We denote by M T (X ) the set of all invariant proba-
bility measures on X . The variational principle connects the measure
theoretic entropy hµ(T ) to the topological entropy htop(T ) by

(1.1) htop(T ) = sup
µ∈M T (X )

hµ(T ).

In the end of the last century Gromov [Gro] proposed a new topolog-
ical invariant of dynamical systems called mean dimension. The mean
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dimension of a dynamical system (X , T ) is denoted by mdim(X , T ).
This invariant counts the average number of parameters needed per
itaration for describing a point in X , and gives a non-degenerate nu-
merical invariant for dynamical systems of infinite dimensional and
infinite entropy.
For example, consider the infinite product of the unit interval

[0, 1]Z = · · · × [0, 1]× [0, 1]× [0, 1]× · · ·

and let σ be the shift map on this space. The system ([0, 1]Z, σ) is
obviously infinite dimensional and has infinite topological entropy, but
its mean dimension is one. Intuitively this means that to describe
an orbit in ([0, 1]Z, σ) one needs one parameter per iterate. This is
analogous to the fact that the symbolic shift {1, 2, . . . , n}Z has the
topological entropy log n.
Mean dimension has applications to topological dynamics, which

cannot be touched within the framework of topological entropy. Here
we briefly explain an application to a natural embedding problem, raised
many years before the definition of mean dimension:

When can we embed a dynamical system (X , T ) in the
shift ([0, 1]Z, σ)?

Mean dimension provides a necessary condition: If (X , T ) is embed-
dable in ([0, 1]Z, σ) then mdim(X , T ) ≤ 1. A deeper result [GT, The-
orem 1.4] states that a minimal system (X , T ) of mean dimension less
than 1/2 can be embedded into ([0, 1]Z, σ) (this strenghened [Lin, The-
orem 5.1], which proved a similar result but with a non-optimal con-
stant). The result [GT, Theorem 1.4] is optimal in the sense that
there exists a minimal system of mean dimension 1/2 which cannot
be embedded in ([0, 1]Z, σ) ([LT, Theorem 1.3]). These results show
that mean dimension is certainly a reasonable measure of the “size”
of dynamical systems. The theory of mean dimension turns out to
have connection to problems in several different mathematical fields,
e.g. topological dynamics ([Lin, LW, Li, Gut1, Gut2, Gut3]), geometric
analysis ([Cos, MT]), and operator algebra ([LL, EN]).
Motivated by the success of the variational principle (1.1), one might

want to define a measure theoretic mean dimension and try to prove a
corresponding variational principle, but any näıve attemp to carry out
this idea is doomed to failure. The reason can be easily seen by using
the Jewett–Krieger theorem ([Jew, Kri]): Every ergodic measurable
dynamical system has a uniquely ergodic model. Consider an arbitrary
ergodic measurable dynamical system X . Suppose we want to define
its “measure theoretic mean dimension”. There exists a topological
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system (X , T ) such that it is uniquely ergodic (i.e. M T (X ) consists of
a single measure, say µ) and (X , µ, T ) is measurably isomorphic to X .
It is known that uniquely ergodic systems always have zero topological
mean dimension ([LW, Theorem 5.4]). Then if we have a “variational
principle”, the only possibility is that the “measure theoretic mean
dimension” of X is zero.
It turned out that rate distortion theory and metric mean dimen-

sion provide a much better framework to study this interplay. Rate
distortion theory is a standard concept in information theory originally
introduced by the monumental paper of Shannon [Sha]. Its primary
object is data compression of continuous random variables and their
processes. Continuous random variables always have infinite entropy,
so it is impossible to describe them perfectly with only finitely many
bits. Instead rate distortion theory studies a lossy data compression
method achieving some distortion constraints. A friendly introduction
can be found in Cover–Thomas [CT, Chapter 10]. Metric mean dimen-
sion is a metric space version of mean dimension introduced by Weiss
and the first named author [LW] that is related to mean dimension in a
way that is very analogous to how Minkowski or Hausdorff dimensions
are related to the topological dimension. Both rate distortion theory
and metric mean dimension use distance as a crucial ingredient. This
metric structure enables us to give a meaningful variational principle.
First we explain rate distortion theory. For a couple (X, Y ) of ran-

dom variables X and Y we denote its mutual information by I(X ; Y ).
We review the definition and basic properties of I(X ; Y ) in Section
2. Intuitively it is the amount of information which X and Y share.
Let (X , T ) be a dynamical system with a distance d on X . Take an
invariant probability measure µ ∈ M T (X ). For a positive number ε
we define the rate distortion function Rµ(ε) as the infimum of

(1.2)
I(X ; Y )

n
,

where n runs over all natural numbers, and X and Y = (Y0, . . . , Yn−1)
are random variables defined on some probability space (Ω,P) such
that

• X takes values in X , and its law is given by µ.
• Each Yk takes values in X , and Y approximates the process
(X, TX, . . . , T n−1X) in the sense that

(1.3) E

(

1

n

n−1
∑

k=0

d(T kX, Yk)

)

< ε.
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Here E(·) is the expectation with respect to the probability measure P.
Note that Rµ(ε) depends on the distance d although it is not explicitly
written in the notation.
Roughly speaking, Rµ(ε) is the minimum rate of quantizations of the

process {T kX}∞k=0 under the distortion constraint (1.3). More precisely,
a main theorem of rate distortion theory [Ber, Chapter 7] states that if
the invariant measure µ is ergodic then there exists a sequence of maps
fn = (fn,0, . . . , fn,n−1) : X → X n (n ≥ 1) satisfying

lim
n→∞

log |fn(X )|

n
= Rµ(ε), E

(

1

n

n−1
∑

k=0

d(T kX, fn,k(X))

)

< ε,

whereX is a random variable obeying µ (and |fn(X )| denotes the cardi-
nality of the set fn(X )). Then we can represent the process {T kX}∞k=0

by the quantization

fn,0(X), . . . , fn,n−1(X), fn,0(T
nX), . . . ,

fn,n−1(T
nX), fn,0(T

2nX), . . . , fn,n−1(T
2nX), . . . .

This approximates {T kX}∞k=0 by ε in average, and (if n is sufficiently
large) we need

log |fn(X )|

n
≈ Rµ(ε) nats per second

for describing the sequence1. There also exists a similar theorem for
non-ergodic µ, but the statement is a bit more involved. See [ECG,
LDN] for the details.
Next we explain metric mean dimension. Let (X , T ) be a dynam-

ical system with a distance d as above. For a positive number ε we
define #(X , d, ε) as the minimum cardinarity N of the open covering
{U1, . . . , UN} of X such that all Un have diameter smaller than ε. For
a natural number n we define a distance dn on X by

(1.4) dn(x, y) = max
0≤k<n

d(T kx, T ky).

We set

S(X , T, d, ε) = lim
n→∞

log#(X , dn, ε)

n
.

This limit always exists because log#(X , dn, ε) is a subadditive func-
tion of n. The topological entropy htop(T ) is the limit of S(X , T, d, ε)
as ε → 0. When the topological entropy is infinite, we are interested

1“nats” means “natural unit of information”. Here the base of the logarithm is
e not 2.
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in the growth of S(X , T, d, ε). This motivates the definition of upper
and lower metric mean dimension:

mdimM(X , T, d) = lim sup
ε→0

S(X , T, d, ε)

| log ε|
,

mdimM(X , T, d) = lim inf
ε→0

S(X , T, d, ε)

| log ε|
.

If the limit supremum and infimum agree, we denote the common value
by mdimM(X , T, d).
By [LW, Theorem 4.2] the metric mean dimensions always dominate

the topological mean dimension:

(1.5) mdim(X , T ) ≤ mdimM(X , T, d) ≤ mdimM(X , T, d).

It is also known ([Lin, Theorem 4.3]) that if (X , T ) is minimal then
there exists a distance d on X satisfying

mdimM(X , T, d) = mdim(X , T ).

It is conjectured that such a distance exists for every system.
Metric mean dimension is not just a theoretical object. It is an

important tool for computing topological mean dimension. At least
in our experience, it is generally difficult to prove upper bounds on
topological mean dimension. The most powerful method (known to the
authors) is to use metric mean dimension. If we obtain an upper bound
on metric mean dimension, then we can also bound topological mean
dimension by the inequality (1.5). The papers [Tsu1, Tsu2] employ
this method to compute the topological mean dimensions of certain
dynamical systems in geometric analysis and complex geometry.
The main purpose of this paper is to establish a variational principle

connecting rate distortion function to metric mean dimension. Before
going further, we look at an example:

Example 1.1. Let X = [0, 1]Z be the infinite product of the unit
interval, and let T : X → X be the shift: T ((xm)m∈Z) = (xm+1)m∈Z.
We define a distance d on X by

(1.6) d(x, y) =
∑

m∈Z

2−|m||xm − ym|, (x = (xm)m∈Z, y = (ym)m∈Z) .

First we calculate the metric mean dimension. Let ε > 0 and set l =
⌈log2(4/ε)⌉. Then

∑

|n|>l 2
−|n| ≤ ε/2. We consider an open covering of

[0, 1] by

Ik =

(

(k − 1)ε

12
,
(k + 1)ε

12

)

, 0 ≤ k ≤ ⌊12/ε⌋.
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Ik has length ε/6. For n ≥ 1, consider

[0, 1]Z =
⋃

0≤k−l,...,kn+l≤⌊12/ε⌋

{

x| x−l ∈ Ik−l
, x−l+1 ∈ Ik−l+1

, . . . , xn+l ∈ Ikn+l

}

.

Each open set in the right-hand side has diameter less than ε with
respect to the distance dn. Hence
(1.7)

#([0, 1]Z, dn, ε) ≤ (1 + ⌊12/ε⌋)n+2l+1 = (1 + ⌊12/ε⌋)n+2⌈log2(4/ε)⌉+1 .

On the other hand, any two distinct points in the sets
{

x ∈ [0, 1]Z| xm ∈ {0, ε, 2ε, . . . , ⌊1/ε⌋ε} for all 0 ≤ m < n
}

have distance ≥ ε with respect to dn. It follows #(X , dn, ε) ≥ (1 +
⌊1/ε⌋)n. Therefore

S(X , T, d, ε) = lim
n→∞

log#(X , dn, ε)

n
∼ | log ε| (ε → 0).

Thus mdimM(X , T, d) = 1.
Next we consider the rate distortion function for the measure µ =

(Lebesgue measure)⊗Z. The calculation of Rµ(ε) requires some famil-
iarity with mutual information, so we postpone it to Example 2.11 in
Section 2, and here we state only the result:

(1.8) Rµ(ε) ∼ | log ε| (ε → 0).

Therefore

lim
ε→0

Rµ(ε)

| log ε|
= 1 = mdimM(X , T, d).

The purpose of this paper is to generalize this phenomena to arbitrary
dynamical systems.

For some of our results, we need to introduce a certain regularity
condition on the underlying mertic space.

Condition 1.2. Let (X , d) be a compact metric space. It is said to
have tame growth of covering numbers if for every δ > 0 we have

lim
ε→0

εδ log#(X , d, ε) = 0.

Note that this is purely a condition on metric spaces and does not
involve the dynamics.

For example, if X is a compact subset of the Euclidean space R
n,

then
#(X ,Euclidean distance, ε) = O((1/ε)n),

and so X satisfies Condition 1.2. Indeed the tame growth of covering
numbers condition is a fairly mild condition:
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Lemma 1.3. Every compact metrizable space admits a distance satis-
fying Condition 1.2.

Proof. Every compact metrizable space can be topologically embedded
into the infinite dimensional cube [0, 1]Z, so it is enough to prove the
statement for [0, 1]Z. Let d be the distance introduced in (1.6). By
(1.7)

#([0, 1]Z, d, ε) ≤ (1 + ⌊12/ε⌋)2⌈log2(4/ε)⌉+2 .

It follows

log#([0, 1]Z, d, ε) = O
(

| log ε|2
)

.

This satisfies the tame growth of covering numbers condition. �

Remark 1.4. It is easy to check that if (A, d) is a compact metric space
satisfying Condition 1.2 then the distance d′ on the shift AZ defined by

d′(x, y) =
∑

n∈Z

2−|n|d(xn, yn)

also satisfies Condition 1.2.

Our first main result is:

Theorem 1.5. Let (X , T ) be a dynamical system with a distance d.
Suppose d satisfies Condition 1.2. Then

mdimM(X , T, d) = lim sup
ε→0

supµ∈M T (X ) Rµ(ε)

| log ε|
,

mdimM(X , T, d) = lim inf
ε→0

supµ∈M T (X ) Rµ(ε)

| log ε|
.

(1.9)

Therefore we can say that metric mean dimension is a topological
dynamics counterpart of rate distortion theory.

Remark 1.6. Our formulation of the variational principle (1.9) is
strongly influenced by the work of Kawabata–Dembo [KD]. For a met-
ric space A, they studied connections between the fractal dimensions
of A and the rate distortion functions of i.i.d. processes taking values
in A. Theorem 1.5 can be seen as a generalization of [KD, Proposi-
tion 3.1] from the case of (X , T ) = (AZ, shift) to arbitrary dynamical
systems.

Although Condition 1.2 is a mild condition, it might still look tech-
nical and one might want to remove it. But indeed the equalities (1.9)
do not hold in general without an additional assumption:
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Proposition 1.7. There exists a dynamical system (X , T ) with a dis-
tance d such that

mdimM(X , T, d) = ∞, lim
ε→0

supµ∈M T (X )Rµ(ε)

| log ε|
= 0.

Remark 1.8. In the proof of Theorem 1.5, we use Condition 1.2 to
compare the two distances

(1.10)
1

n

n−1
∑

k=0

d(T kx, T ky) and max
0≤k<n

d(T kx, T ky).

The former is closely related to the distortion condition (1.3) in the
definition of rate distortion function. The latter is used in the definition
of metric mean dimension. Under Condition 1.2, these two distances
behave quite similarly. A rough idea of the proof of Proposition 1.7
is to construct a system (X , T ) where the two distances (1.10) show
radically different behaviors.

The above definition of the rate distortion function Rµ(ε), or the
similar L2-rate distortion function defined in §1.2, seems to be the
most widely used one. It has from our point of view the disadvantage
that in this case we need to assume Condition 1.2 for establishing the
variational principle (1.9). Next we propose another version of rate
distortion function and establish a corresponding variational principle
without any additional condition.
Let (X , T ) be a dynamical system with a distance d and an invariant

probability measure µ. For positive numbers ε and α we define the L∞-

rate distortion function R̃µ(ε, α) as the infimum of

I(X ; Y )

n
,

where n runs over all natural numbers, and X and Y = (Y0, . . . , Yn−1)
are random variables defined on some probability space (Ω,P) such
that

• X takes values in X , and its law is given by µ.
• Each Yk takes values in X , and they satisfy the following mod-
ified distortion condition:

(1.11)
E
(

the number of k ∈ [0, n− 1] satisfying d(T kX, Yk) ≥ ε
)

< αn.

In other words, we define R̃µ(ε, α) by replacing the distortion condition

(1.3) in the definition of Rµ(ε) with (1.11). We set

R̃µ(ε) = lim
α→0

R̃µ(ε, α).
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The reason for our use of terminology “L∞-rate distortion function”
will (hopefully) become clearer to the reader in the next subsection.
Our second main result is:

Theorem 1.9. For any dynamical system (X , T ) with a distance d, we
have

mdimM(X , T, d) = lim sup
ε→0

supµ∈M T (X ) R̃µ(ε)

| log ε|
,

mdimM(X , T, d) = lim inf
ε→0

supµ∈M T (X ) R̃µ(ε)

| log ε|
.

(1.12)

We emphasize that we do not need any additional condition for estab-
lishing (1.12) in this case.

1.2. Lp-variants. We can also consider Lp-versions of the variational
principle. The L2-case might be of special interest because it is related
to the least squares method. Let (X , T ) be a dynamical system with
a distance d. For 1 ≤ p < ∞, ε > 0 and µ ∈ M T (X ) we define
the Lp-rate distortion function Rµ,p(ε) by replacing the distortion
condition (1.3) in the definition of Rµ(ε) with

(1.13) E

(

1

n

n−1
∑

k=0

d(T kX, Yk)
p

)

< εp.

By the Hölder inequality, this is stronger than (1.3), hence Rµ(ε) ≤
Rµ,p(ε). On the other hand, the condition (1.13) is essentially weaker

than (1.11) in the definition of R̃µ(ε). Indeed

1

n

n−1
∑

k=0

d(T kX, Yk)
p ≤

εp + (diam(X , d))p ·
1

n
· |{k ∈ [0, n− 1]| d(T kX, Yk) ≥ ε}|.

So the condition (1.11) implies

E

(

1

n

n−1
∑

k=0

d(T kX, Yk)
p

)

< εp + α (diam(X , d))p .

This leads to Rµ,p(ε
′) ≤ R̃µ(ε) for any ε′ > ε. Thus we get

Rµ(ε
′) ≤ Rµ,p(ε

′) ≤ R̃µ(ε) for any ε′ > ε > 0.

Therefore Theorems 1.5 and 1.9 imply
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Corollary 1.10. If the distance d satisfies Condition 1.2, then for any
p ≥ 1

mdimM(X , T, d) = lim sup
ε→0

supµ∈M T (X )Rµ,p(ε)

| log ε|
,

mdimM(X , T, d) = lim inf
ε→0

supµ∈M T (X ) Rµ,p(ε)

| log ε|
.

1.3. Comments on the proofs and the organization of the pa-

per. The uniform distribution on the set {1, 2, . . . , n} has entropy
logn, and this is the maximal entropy measure among all probability
distributions on it. There exists a similar result about mutual informa-
tion I(X ; Y ): Roughly speaking, if X is uniformly distributed over an
ε-separated set S of a compact metric space X , and if ε−1

E (d(X, Y ))
is sufficiently small, then I(X ; Y ) is almost equal to log |S| (for precise
statements, see Corollary 2.5 and Lemma 2.6 below). This observation
is key to the proofs of Theorems 1.5 and 1.9. Starting from this, we will
follow a line of ideas analogous to Misiurewicz’s proof [Mis] of the vari-
ational principle (1.1). Misiurewicz’s argument adapts quite naturally
(perhaps even suprisingly so) to the setting of rate distortion theory.
Organization of the paper is as follows: We recall some basics of

mutual information in Section 2. Theorems 1.5 and 1.9 are proved in
Sections 3 and 4 respectively. We prove Proposition 1.7 in Section 5.
We recall some elementary results on optimal transport (which are used
in Sections 3 and 4) in the Appendix.

Acknowledgement. We would like to thank Professor Benjamin
Weiss for helpful discussions. The second named author would like to
thank Professors Kazumasa Kuwada and Shinichi Ohta for advice on
optimal transport. This paper was written while the sescond named
author stayed in the Einstein Institute of Mathematics in the Hebrew
University of Jerusalem. He would like to thank all the Institute staff
for their hospitality.

2. Mutual information

In this section we recall some basic properties of mutual information.
A good reference is Cover–Thomas [CT, Chapter 2].
Throughout this section (Ω,P) is a probability space. Let X and Y

be measurable spaces, and X : Ω → X and Y : Ω → Y measurable
maps. We define the mutual information I(X ; Y ) as the supremum
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of

(2.1)

M
∑

m=1

N
∑

n=1

P ((X, Y ) ∈ Pm ×Qn) log
P ((X, Y ) ∈ Pm ×Qn)

P(X ∈ Pm)P(Y ∈ Qn)
,

where {P1, . . . , PM} and {Q1, . . . , QN} are partitions of X and Y re-
spectively, with the convention that 0 log(0/a) = 0 for all a ≥ 0. The
mutual information I(X ; Y ) is nonnegative and symmetric: I(X ; Y ) =
I(Y ;X) ≥ 0.
If X and Y are finite sets, then

I(X ; Y ) =
∑

x∈X , y∈Y

P(X = x, Y = y) log
P(X = x, Y = y)

P(X = x)P(Y = y)

= H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y ),

(2.2)

where H(X|Y ) is the conditional entropy of X given Y . The formula
I(X ; Y ) = H(X) − H(X|Y ) shows an intuitive meaning of mutual
information; it is the amount of information which the random variables
X and Y share.
The following two lemmas are trivial but important in the proofs of

the main theorems.

Lemma 2.1. Suppose X and Y are finite sets. Let (Xn, Yn) : Ω →
X ×Y (n ≥ 1) be a sequence of measurable maps converging to (X, Y ) :
Ω → X ×Y in law. Then I(Xn; Yn) converges to I(X ; Y ).

Proof. This follows from the first equation of (2.2). �

Lemma 2.2 (Data-processing inequality). Let X ,Y ,Z be measurable
spaces, and X : Ω → X and Y : Ω → Y measurable maps. Let
f : Y → Z be a measurable map. Then2

I(X ; f(Y )) ≤ I(X ; Y ).

Proof. This immediately follows from the definition of I(X ; Y ). �

Remark 2.3. Lemma 2.2 implies that, in the definition (1.2) of the
rate distortion function Rµ(ε), we can assume that the random variable
Y there takes only finitely many values, namely that its distribution is
supported on a finite set. Indeed, let X and Y be as in (1.2) and (1.3).
Take a sufficiently fine partition P of X and for each atom of A of P
choose one point pA ∈ A. Define f : X → X by f(A) = {pA}, and set

2Indeed data-processing inequality is a more general statement; see [CT, Section
2.8]. But we need only this statement here.
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Z = (Z0, . . . , Zn−1) = (f(Y0), . . . , f(Yn−1)). Then

E

(

1

n

n−1
∑

k=0

d
(

T kX,Zk

)

)

≤ max
A∈P

diam(A) + E

(

1

n

n−1
∑

k=0

d
(

T kX, Yk

)

)

< ε

if P is sufficiently fine. Hence Z satisfies the distortion condition (1.3).
Lemma 2.2 implies

I(X ;Z) ≤ I(X ; Y ).

The random variable Z obviously takes only finitely many values.
Similarly we can also assume that Y takes only finitely many values

in the definition of R̃µ(ε, α): Suppose Y satisfies the modified distortion
condition (1.11). Then we can find 0 < ε′ < ε satisfying

E
(

number of 0 ≤ k ≤ n− 1 satisfying d(T kX, Yk) ≥ ε′
)

< αn.

If the partition P is sufficiently fine, then for Zk as above

E
(

number of 0 ≤ k ≤ n− 1 satisfying d(T kX,Zk) ≥ ε
)

≤ E
(

number of 0 ≤ k ≤ n− 1 satisfying d(T kX, Yk) ≥ ε′
)

< αn.

For real numbers 0 ≤ p ≤ 1 we set H(p) = −p log p− (1− p) log(1− p)
(with H(0) = H(1) = 0).

Lemma 2.4 (Fano’s inequality). Suppose X , Y and Z are finite sets.
Let f : Y → Z be a map, and let X : Ω → X and Y : Ω → Y be
measurable maps. Set Pe = P(X 6= f(Y )) (the probability of error).
Then3

H(X|Y ) ≤ H(Pe) + Pe log |X |.

Proof. We briefly explain the proof given by [CT, Section 2.10] for the
convenience of readers. We define a random variable E by

E = 0 if X = f(Y ), E = 1 if X 6= f(Y ).

We expand H(X,E|Y ) in two ways:

H(X,E|Y ) = H(X|Y ) +H(E|X, Y )

= H(E|Y ) +H(X|E, Y ).

We have H(E|X, Y ) = 0 because E is determined by X and Y . Thus

H(X|Y ) = H(E|Y ) +H(X|E, Y )

≤ H(E) + P(E = 0)H(X|E = 0, Y ) + P(E = 1)H(X|E = 1, Y ).

3As in the case of data-processing inequality, Fano’s inequality is more general
than this statement; see [CT, Section 2.10].
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It follows from the definition of E that H(E) = H(Pe) and H(X|E =
0, Y ) = 0 (because E = 0 means that X is determined by Y ). Since X
takes at most |X | values, H(X|E = 1, Y ) ≤ H(X) ≤ log |X |. Thus

H(X|Y ) ≤ H(Pe) + Pe ·H(X|E = 1, Y ) ≤ H(Pe) + Pe log |X |.

�

The next corollary is essentially contained in [KD, Corollary A.1].
This is the basis of the proof of Theorem 1.5.

Corollary 2.5. Let (X , d) be a compact metric space. Let ε > 0 and
D > 2. Suppose S ⊂ X is a (2Dε)-separated set (i.e. any two distinct
points in S have distance ≥ 2Dε). Let X and Y be measurable maps
from Ω to X such that X is uniformly distributed over S and

E (d(X, Y )) < ε.

Then

I(X ; Y ) ≥

(

1−
1

D

)

log |S| −H(1/D).

Proof. Since S is a finite set, X takes only finitely many values. We
can assume that Y also takes only finitely many values as in Remark
2.3. Define f : X → X by

f(x) =

{

a if x ∈ BDε(a) for some a ∈ S,

x otherwise,

with Br(x) denoting the open ball of radius r around a point x ∈ X .
Set Pe = P(X 6= f(Y )). Since {X 6= f(Y )} is contained in {d(X, Y ) ≥
Dε},

Pe ≤ P (d(X, Y ) ≥ Dε) ≤
1

Dε
E (d(X, Y )) <

1

D
<

1

2
.

By Lemma 2.4,

H(X|Y ) ≤ H(Pe) + Pe log |S| ≤ H(1/D) + (1/D) log |S|.

Since X is uniformly distributed over S, its entropy is log |S|. Thus

I(X ; Y ) = H(X)−H(X|Y )

= log |S| −H(X|Y ) ≥

(

1−
1

D

)

log |S| −H(1/D).

�

The next lemma is used in the proof of Theorem 1.9.
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Lemma 2.6. Let (X , d) be a compact metric space with a finite sub-
set A. Let n be a natural number and ε, α positive numbers with
α ≤ 1/2. Suppose S ⊂ An is a 2ε-separated set with respect to the
distance

dn ((x0, . . . , xn−1), (y0, . . . , yn−1)) = max
0≤k≤n−1

d(xk, yk).

Let X = (X0, . . . , Xn−1) and Y = (Y0, . . . , Yn−1) be measurable maps
from Ω to X n such that X is uniformly distributed over S and

(2.3) E(number of k ∈ [0, n− 1] satisfying d(Xk, Yk) ≥ ε) < αn.

Then
I(X ; Y ) ≥ log |S| − nH(α)− αn log |A|.

Proof. The argument is similar to the proof of Fano’s inequality. We
can assume that Y takes only finitely many values as in Remark 2.3.
We define a random variable Z by

Z = {k ∈ [0, n− 1]| d(Xk, Yk) ≥ ε} ⊂ {0, 1, . . . , n− 1}.

Note that by assumption (2.3) we have that E|Z| < αn.

Claim 2.7.

H(Z) ≤ nH(α).

Proof. We define Zk (0 ≤ k ≤ n− 1) by

Zk = 0 if k 6∈ Z, Zk = 1 if k ∈ Z.

We have |Z| = Z0+· · ·+Zn−1 andH(Z) = H(Z0, . . . , Zn−1) ≤ H(Z0)+
· · · + H(Zn−1). Set αk = P(Zk = 1). From the concavity of H(p) =
−p log p− (1− p) log(1− p),

H(Z) ≤

n−1
∑

k=0

H(αk) ≤ nH

(

1

n

n−1
∑

k=0

αk

)

≤ nH(α),

where we used
∑

αk = E|Z| < αn and α ≤ 1/2. �

Expanding H(X,Z|Y ) in two ways:

H(X,Z|Y ) = H(X|Y ) +H(Z|X, Y )

= H(Z|Y ) +H(X|Y, Z).

We have H(Z|X, Y ) = 0 because Z is determined by X and Y . Hence
by Claim 2.7

(2.4) H(X|Y ) = H(X|Y, Z) +H(Z|Y ) ≤ H(X|Y, Z) + nH(α).

Take a subset E ⊂ {0, 1, . . . , n − 1}. (We write Ec = {0, 1, . . . , n −
1} \ E.) We estimate the conditional entropy H(X|Y, Z = E). Under
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the condition Z = E, we have maxk∈Ec d(Xk, Yk) < ε. Since S is 2ε-
separated with respect to dn, for each a ∈ X n the number of x ∈ S
satisfying

max
k∈Ec

d(xk, ak) < ε

is at most |A||E|. Therefore the number of possible outcomes of X
(given Y and Z = E) is at most |A||E|. Thus

H (X|Y, Z = E) ≤ |E| log |A|.

It follows that

H(X|Y, Z) =
∑

E

P(Z = E)H(X|Y, Z = E)

≤ log |A|
∑

E

|E| · P(Z = E)

= log |A| · E|Z|

≤ αn log |A| (by the assumption E|Z| < αn).

Combining (2.4)

I(X ; Y ) = H(X)−H(X|Y ) ≥ log |S| − nH(α)− αn log |A|.

Here we used H(X) = log |S| since X is uniformly distributed over S.
�

In the rest of this section we assume for simplicity that X ,Y ,Z are
finites sets.

Lemma 2.8 (Subadditivity of mutual information). Let X, Y, Z be
measurable maps from Ω to X ,Y ,Z respectively. Suppose X and Z
are conditionally independent given Y , namely for every y ∈ Y with
P(Y = y) 6= 0 we have

(2.5) P(X = x, Z = z|Y = y) = P(X = x|Y = y)P(Z = z|Y = y)

for every x ∈ X and z ∈ Z. Then

I(Y ;X,Z) ≤ I(Y ;X) + I(Y ;Z).

Proof. From the conditional independence,

(2.6) H(X,Z|Y ) = H(X|Y ) +H(Z|Y ).

Indeed H(X,Z|Y ) is equal to

−
∑

y

P(Y = y)

(

∑

x,z

P(X = x, Z = z|Y = y) logP(X = x, Z = z|Y = y)

)

.
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By using (2.5) we can easily check (2.6). Then

I(Y ;X,Z) = H(X,Z)−H(X,Z|Y )

= H(X,Z)−H(X|Y )−H(Z|Y )

≤ H(X) +H(Z)−H(X|Y )−H(Z|Y )

= I(X ; Y ) + I(Z; Y ).

In the passage from the second line to the third, we used H(X,Z) ≤
H(X) +H(Z). �

On the other hand, we have:

Lemma 2.9 (Superadditivity of mutual information). Let X, Y, Z be
measurable maps from Ω to X ,Y ,Z respectively. Suppose X and Z are
independent. Then

I(Y ;X,Z) ≥ I(Y ;X) + I(Y ;Z).

Proof. Since X,Z are independent, H(X,Z) = H(X) +H(Z) hence

I(Y ;X,Z) = H(X,Z)−H(X,Z|Y ) = H(X) +H(Z)−H(X,Z|Y )

≥ H(X) +H(Z)−H(X|Y )−H(Z|Y )

= I(Y ;X) + I(Y ;Z).

�

Let X : Ω → X and Y : Ω → Y be measurable maps. We define
a probability mass function µ(x) and a conditional probability mass
function ν(y|x) by

µ(x) = P(X = x), ν(y|x) = P(Y = y|X = x).

Notice that ν(y|x) is defined only for x ∈ X with P(X = x) 6= 0.
The distribution of (X, Y ) is given by µ(x)ν(y|x) and it determines
the mutual information I(X ; Y ), hence we sometimes write I(X ; Y ) =
I(µ, ν).

Lemma 2.10 (Concavity/convexity of mutual information). I(µ, ν) is
a concave function of µ(x) for fixed ν(y|x) and a convex function of
ν(y|x) for fixed µ(x). More precisely,

(1) Suppose that for each x ∈ X we are given a probability mass
function ν(·|x) on Y. Let µ1 and µ2 be two probability mass
functions on X . Then

I((1− t)µ1 + tµ2, ν) ≥ (1− t)I(µ1, ν) + tI(µ2, ν) (0 ≤ t ≤ 1).

Here the left-hand side is the mutual information of the joint
distribution (1− t)µ1(x)ν(y|x) + tµ2(x)ν(y|x).
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(2) Suppose that for each x ∈ X we are given two probability mass
functions ν1(·|x) and ν2(·|x) on Y. Let µ be a probability mass
function on X . Then

I(µ, (1− t)ν1 + tν2) ≤ (1− t)I(µ, ν1) + tI(µ, ν2) (0 ≤ t ≤ 1).

Here the left-hand side is the mutual information of the joint
distribution (1− t)µ(x)ν1(y|x) + tµ(x)ν2(y|x).

Proof. See [CT, Theorem 2.7.4] for the detailed proof. Here we sketch
the outline. First we explain (1).

I(µ, ν) = I(X ; Y ) = H(Y )−H(Y |X).

If ν(y|x) is fixed, H(Y ) is a concave function of µ(x) and H(Y |X) is a
linear function of µ(x). The difference I(µ, ν) is a concave function of
µ(x).
Next we explain (2). The function φ(t) = t log t is convex. So

φ

(

a + a′

b+ b′

)

≤
b

b+ b′
φ
(a

b

)

+
b′

b+ b′
φ

(

a′

b′

)

for positive numbers a, a′, b, b′. This leads to

(2.7) (a+ a′) log
a+ a′

b+ b′
≤ a log

a

b
+ a′ log

a′

b′
.

Set σi(y) =
∑

x∈X µ(x)νi(y|x) for i = 1, 2. Then I(µ, (1− t)ν1 + tν2) is
given by
∑

x,y

{(1− t)µ(x)ν1(y|x) + tµ(x)ν2(y|x)} log
(1− t)µ(x)ν1(y|x) + tµ(x)ν2(y|x)

(1− t)µ(x)σ1(y) + tµ(x)σ2(y)
.

Applying the inequality (2.7) to each summand, I(µ, (1− t)ν1 + tν2) is
bounded by
∑

x,y

(1−t)µ(x)ν1(y|x) log
µ(x)ν1(y|x)

µ(x)σ1(y)
+
∑

x,y

tµ(x)ν2(y|x) log
µ(x)ν2(y|x)

µ(x)σ2(y)
.

This is equal to (1− t)I(µ, ν1) + tI(µ, ν2). �

Example 2.11 (Continuation of Example 1.1). Here we sketch the
proof of the estimate (1.8) in Example 1.1. Note that this is not used for
the proofs of Theorems 1.5 and 1.9. We use the notations in Example
1.1. It is easy to prove

lim sup
ε→0

Rµ(ε)

| log ε|
≤ 1.

See Lemma 3.1 below for the details. The main issue is a lower bound
on Rµ(ε). Let X and Y = (Y0, . . . , Yn−1) be random variables defined
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on some probability space such that X has distribution µ and Yk take
values in [0, 1]Z satisfying the distortion condition (1.3). We write
X = (Xm)m∈Z and Yk = (Yk,m)m∈Z.

I(X ; Y ) ≥ I ((X0, . . . , Xn−1); (Y0,0, Y1,0, . . . , Yn−1,0))

(by data-processing inequality; see Lemma 2.2)

≥
n−1
∑

m=0

I (Xm; (Y0,0, Y1,0, . . . , Yn−1,0))

(since X0, . . . , Xn−1 are independent; see Lemma 2.9)

≥

n−1
∑

m=0

I(Xm; Ym,0) (by data-processing inequality).

(2.8)

It follows from the distortion condition (1.3) that

(2.9)
1

n

n−1
∑

m=0

E|Xm − Ym,0| ≤
1

n
E

(

n−1
∑

m=0

d(TmX, Ym)

)

< ε.

We denote by r(ε) the infimum of the mutual information I(U ;V ) such
that U and V are random variables (defined on some probability space)
taking values in [0, 1] satisfying

• U obeys the Lebesgue measure.
• V satisfies E|U − V | ≤ ε.

The convexity/concavity properties of mutual information, specifically
Lemma 2.10.(2), imply that r(ε) is a convex function in ε (c.f. [CT,
Lemma 10.4.1].) Thus it follows from (2.8) and (2.9) that

I(X ; Y )

n
≥

1

n

n−1
∑

m=0

r (E|Xm − Ym,0|) ≥ r

(

1

n

n−1
∑

m=0

E|Xm − Ym,0|

)

≥ r(ε),

and hence Rµ(ε) ≥ r(ε). Then Rµ(ε) ∼ | log ε| follows from the next
claim.

Claim 2.12.

r(ε) ∼ | log ε| (ε → 0).

Proof. It is again easy to prove lim supε→0 r(ε)/| log ε| ≤ 1. So we prove
a lower bound on r(ε). Let U and V be random variables in the above
definition of r(ε). Fix D > 1 and set l = ⌊1/(Dε)⌋. We define a
partition P of [0, 1] by

P = {[0, Dε), [Dε, 2Dε), [2Dε, 3Dε), . . . , [lDε, 1]} .
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For u ∈ [0, 1] we denote by P(u) the atom of P containing u. It follows
from E|U − V | ≤ ε that

P (|U − V | ≥ Dε) ≤
E|U − V |

Dε
≤

1

D
.

By the data-processing inequality

I(U ;V ) ≥ I (P(U);V ) = H (P(U))−H (P(U)|V ) .

Under the condition |U − V | < Dε, if we know V then the number of
possibilities of P(U) is at most three. This implies

H(P(U)|V ) ≤ log 3 + P (|U − V | ≥ Dε) log(l+ 1) ≤ log 3 +
log(l + 1)

D
.

Since U obeys the Lebesgue measure, H (P(U)) is bounded from below
by

l(Dε) log(1/Dε) ≥ (1−Dε) log(1/Dε).

Thus

r(ε) ≥ (1−Dε) log(1/Dε)−
log (1 + ⌊1/(Dε)⌋)

D
− log 3.

It follows

lim inf
ε→0

r(ε)

| log ε|
≥ 1−

1

D
.

Letting D → ∞ we get lim infε→0 r(ε)/| log ε| ≥ 1. �

3. Proof of Theorem 1.5

In this section we prove Theorem 1.5. Throughout this section (X , T )
is a dynamical system, and d a metric on X . Recall that for n ≥ 1 we
defined the distance dn on X by

dn(x, y) = max
0≤k<n

d(T kx, T ky).

We define another distance d̄n on X by

d̄n(x, y) =
1

n

n−1
∑

k=0

d(T kx, T ky).

Obviously d̄n(x, y) ≤ dn(x, y). For ε > 0 we set

S̃(X , T, d, ε) = lim
n→∞

1

n
log#(X , d̄n, ε).

This limit exists because log#(X , d̄n, ε) is a subaddtive function of n.
We have

(3.1) S̃(X , T, d, ε) ≤ S(X , T, d, ε) = lim
n→∞

1

n
log#(X , dn, ε).
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3.1. Metric mean dimension dominates rate distortion func-

tions.

Lemma 3.1. For ε > 0 and every invariant probability measure µ on
X we have

Rµ(ε) ≤ S̃(X , T, d, ε) ≤ S(X , T, d, ε).

Proof. Let n > 0, and let {U1, . . . , UK} be an open covering of X such
that every Uk has diameter smaller than ε with respect to the distance
d̄n. We choose a point pk ∈ Uk for each k. We define a map f :
X → {p1, . . . , pK} by setting f(x) = pk where k is the smallest number
satisfying x ∈ Uk. Obviously d̄n(x, f(x)) < ε. Let X be a random
variable obeying µ. We set Y = (f(X), T f(X), . . . , T n−1f(X)). This
satisfies the distortion condition (1.3):

E

(

1

n

n−1
∑

k=0

d(T kX, T kf(X))

)

= Ed̄n(X, f(X)) < ε.

The mutual information I(X ; Y ) is bounded by

I(X ; Y ) ≤ H(Y ) ≤ logK,

where the second inequality holds because Y takes at most K values.
This shows Rµ(ε) ≤ S̃(X , T, d, ε). �

Lemma 3.1 immediately implies one direction of Theorem 1.5:

(3.2) mdimM(X , T, d) ≥ lim sup
ε→0

supµ∈M T (X ) Rµ(ε)

| log ε|
.

The case of mdimM(X , T, d) is the same. Notice that we have not used
Condition 1.2 so far.

3.2. Condition 1.2 implies that dn and d̄n look the same. This
subsection is the only place where Condition 1.2 plays a role. We
set [n] = {0, 1, 2, . . . , n − 1}. For a finite subset A ⊂ Z we define
dA(x, y) = maxa∈A d(T ax, T ay) for x, y ∈ X . In particular dn = d[n].

Lemma 3.2. For any natural number n and any real numbers ε > 0
and L > 1 we have

1

n
log#(X , dn, 2Lε) ≤ log 2 +

1

L
log#(X , d, ε) +

1

n
log#(X , d̄n, ε).

Proof. LetX = W1∪· · ·∪WM be an open covering such that diam(Wm, d) <
ε for all 1 ≤ m ≤ M and M = #(X , d, ε). We also take an open cov-
ering X = U1 ∪ · · · ∪ UN such that diam(Ui, d̄n) < ε for all 1 ≤ i ≤ N
and N = #(X , d̄n, ε).
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We choose a point pi ∈ Ui for each 1 ≤ i ≤ N . Every point x ∈ Ui

satisfies d̄n(x, pi) < ε, and hence

|{0 ≤ k ≤ n− 1| d(T kx, T kpi) ≥ Lε}| <
n

L
.

It follows that Ui is contained in the union of the open balls

BLε(pi, d[n]\A),

where A runs over subsets of [n] = {0, 1, 2, . . . , n− 1} satisfying |A| <
n/L. For A = {k1, . . . , ka} ⊂ [n] with a < n/L, the ball BLε(pi, d[n]\A)
is equal to the union of
(3.3)
BLε(pi, d[n]\A) ∩ T−k1Wm1

∩ · · · ∩ T−kaWma
, (1 ≤ m1, . . . , ma ≤ M).

The sets (3.3) have diameter less than 2Lε with respect to the distance
dn. Hence

#(BLε(pi, d[n]\A), dn, 2Lε) ≤ Ma ≤ Mn/L.

There are N choices of Ui and 2n choices of A ⊂ [n]. Thus

#(X, dn, 2Lε) ≤ 2nMn/LN.

This proves the statement. �

Lemma 3.3. Under Condition 1.2,

mdimM(X , T, d) = lim sup
ε→0

S̃(X , T, d, ε)

| log ε|
,

mdimM(X , T, d) = lim inf
ε→0

S̃(X , T, d, ε)

| log ε|
.

Proof. We prove the equality for mdimM(X , T, d). The case of mdimM(X , T, d)
is the same. From S(X , T, d, ε) ≥ S̃(X , T, d, ε), the inequality

mdimM(X , T, d) = lim sup
ε→0

S(X , T, d, ε)

| log ε|
≥ lim sup

ε→0

S̃(X , T, d, ε)

| log ε|

is obvious. Take 0 < δ < 1 and apply Lemma 3.2 with L = (1/ε)δ.
Then we get

1

n
log#(X , dn, 2ε

1−δ) ≤ log 2 +
log#(X , d, ε)

(1/ε)δ
+

1

n
log#(X , d̄n, ε).

Letting n → ∞

S(X , T, d, 2ε1−δ) ≤ log 2 + εδ log#(X , d, ε) + S̃(X , T, d, ε).
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By Condition 1.2, the second term in the right-hand side goes to zero
as ε → 0 (this is the only place where we use Condition 1.2). It follows
that

(1− δ) ·mdimM(X , T, d) ≤ lim sup
ε→0

S̃(X , T, d, ε)

| log ε|
.

Letting δ → 0, we get the statement. �

3.3. Completion of the proof of Theorem 1.5. For n ≥ 1 we
define a distance d̄n on X n by

d̄n ((x0, . . . , xn−1), (y0, . . . , yn−1)) =
1

n

n−1
∑

k=0

d(xk, yk).

In particular

d̄n(x, y) = d̄n
(

(x, Tx, . . . , T n−1x), (y, Ty, . . . , T n−1y)
)

(x, y ∈ X ).

Proposition 3.4. For any real numbers ε > 0 and D > 2 there exists
an invariant probability measure µ on X satisfying

Rµ(ε) ≥

(

1−
1

D

)

S̃(X , T, d, (12D + 4)ε).

Proof. For each n ≥ 1 we choose Sn ⊂ X a maximal (6D+2)ε-separated
set with respect to the distance d̄n. It follows

(3.4) |Sn| ≥ #(X , d̄n, (12D + 4)ε).

Let νn be the uniform distribution over Sn:

νn =
1

|Sn|

∑

p∈Sn

δp.

Set

µn =
1

n

n−1
∑

k=0

T k
∗ νn.

We can choose a subsequence {µni
}∞i=1 converging to an invariant prob-

ability measure µ in the weak∗ topology. We prove that this µ satisfies
the statement.
We choose a partition P = {P1, . . . , PK} of X such that

• Every Pk has diameter smaller than ε with respect to the dis-
tance d.

• µ(∂Pk) = 0 for all 1 ≤ k ≤ K.
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We choose a point pk ∈ Pk for each 1 ≤ k ≤ K. Set A = {p1, . . . , pK}.
We define a map P : X → A by P(x) = pk for x ∈ Pk. It follows that

(3.5) d(x,P(x)) < ε.

For n ≥ 1 we set

Pn(x) = (P(x),P(Tx), . . . ,P(T n−1x)).

Claim 3.5. (1) The set

Pn(Sn) = {Pn(x)| x ∈ Sn}

is a 6Dε-separated set with respect to the distance d̄n.
(2) The push-forward measure Pn

∗ νn is the uniform distribution over
Pn(Sn). Moreover |Pn(Sn)| = |Sn|.

Proof. By (3.5) we have d̄n ((x, Tx, . . . , T
n−1x),Pn(x)) < ε. For any

two distinct points x, y in Sn, the distance d̄n(P
n(x),Pn(y)) is bounded

from below by

d̄n(x, y)− d̄n
(

(x, Tx, . . . , T n−1x),Pn(x)
)

− d̄n
(

(y, Ty, . . . , T n−1y),Pn(y)
)

≥ (6D + 2)ε− 2ε = 6Dε.

This proves part (1) of the claim. Moreover it shows that the map

Sn ∋ x 7→ Pn(x) ∈ Pn(Sn)

is bijective. Since νn is uniformly distributed over Sn, the measure Pn
∗ νn

is uniformly distributed over Pn(Sn). This establishes part (2). �

Consider random variables X and Y = (Y0, . . . , Ym−1) defined on a
probability space (Ω,P) such that Law(X) = µ and Yi take values in
X with

(3.6) E

(

1

m

m−1
∑

i=0

d(T iX, Yi)

)

< ε.

We estimate the mutual information I(X ; Y ) from below. As in Re-
mark 2.3, we can assume that the distribution of Y is supported on a
finite set Y ⊂ Xm. From the data-processing inequality (Lemma 2.2)

I(X ; Y ) ≥ I(Pm(X); Y ).

So it is enough to estimate I(Pm(X); Y ) from below. Let τ = Law(Pm(X), Y )
be the law of (Pm(X), Y ), which is a probability measure on Am × Y .
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It follows that
∫

Am×Y

d̄m(x, y) dτ(x, y) = E

(

1

m

m−1
∑

i=0

d(P(T iX), Yi)

)

≤ ε+ E

(

1

m

m−1
∑

i=0

d(T iX, Yi)

)

< 2ε.

(3.7)

Here we used d(P(T iX), T iX) < ε and (3.6).
For each n ≥ 1 we choose a probability measure πn on Am×Am such

that

• πn is a coupling of (Pm
∗ µn,P

m
∗ µ), namely its first and second

marginals are Pm
∗ µn and Pm

∗ µ respectively.
• πn minimizes the integral

∫

Am×Am

d̄m(x, y)dπ(x, y)

among all couplings π of (Pm
∗ µn,P

m
∗ µ).

(These two conditions means that πn is an optimal transference plan
in the language of Optimal Transport.)

Claim 3.6. The sequence πni
converges to (Pm ×Pm)∗µ in the weak∗

topology.

Proof. Since µ(∂Pk) = 0, the sequence Pm
∗ µni

converges to Pm
∗ µ. Then

the statement becomes a very special case of a theorem of optimal
transport [Vil, Theorem 5.20]. As all the measures here are supported
on finite sets, our situation is simpler than the general setting in [Vil],
and we provide a self-contained elementary proof in Lemma A.2 in the
Appendix. �

Both the second marginal of πn and the first marginal of τ are equal
to the measure Pm

∗ µ. So we can compose them and produce a coupling
τn of (Pm

∗ µn,Law(Y )). Namely

τn(x, y) =
∑

x′∈Am

πn(x, x
′)P(Y = y|Pm(X) = x′), (x ∈ Am, y ∈ Y).

Here we identify probability measures with their probability mass func-
tions. From Claim 3.6 the measures τni

converge to τ in the weak∗

topology. In particular, it follows from (3.7) that

(3.8) Eτni
(d̄m(x, y)) :=

∫

Am×Y

d̄m(x, y) dτni
(x, y) < 2ε

for all sufficiently large ni.
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We define a conditional probability mass function τn(y|x) by

τn(y|x) =
τn(x, y)

Pm
∗ µn(x)

.

This is defined for

x ∈
n−1
⋃

k=0

Pm
(

T kSn

)

, y ∈ Xm.

Take n ≥ 2m and let n = qm+ r with m ≤ r ≤ 2m− 1. Fix a point
a ∈ X . We denote by δa(·) the delta probability measure at a on X .
For x = (x1, . . . , xn) ∈ Pn(Sn) we let xl

k denote the (l − k + 1)-tuple
xl
k = (xk, . . . , xl) for 0 ≤ k ≤ l < n. For such an x we define probability

mass functions σn,0(·|x), . . . , σn,m−1(·|x) on X n as follows:

σn,0(y|x) =

q−1
∏

j=0

τn
(

yjm+m−1
jm |xjm+m−1

jm

)

·

n−1
∏

k=n−r

δa(yk),

σn,1(y|x) =δa(y0) ·

q−1
∏

j=0

τn
(

yjm+m
jm+1 |x

jm+m
jm+1

)

·

n−1
∏

k=n−r+1

δa(yk),

. . .

σn,m−1(y|x) =

m−2
∏

k=0

δa(yk) ·

q−1
∏

j=0

τn
(

yjm+2m−2
jm+m−1 |xjm+2m−2

jm+m−1

)

·

n−1
∏

k=n−r+m−1

δa(yk).

(3.9)

See Figure 3.1. Finally we set

σn(y|x) =
σn,0(y|x) + σn,1(y|x) + · · ·+ σn,m−1(y|x)

m
.

Figure 3.1. Definition of σn,i(y|x)

Claim 3.7.
1

m
I (Pm

∗ µn, τn) ≥
1

n
I (Pn

∗ νn, σn) .
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Here I (Pm
∗ µn, τn) and I (Pn

∗ νn, σn) are the mutual informations of the
probability distributions

Pm
∗ µn(x)τn(y|x), Pn

∗ νn(x)σn(y|x)

respectively.

Proof. We use the concavity/convexity of mutual information (Lemma
2.10). From the convexity

I (Pn
∗ νn, σn) ≤

1

m

m−1
∑

i=0

I (Pn
∗ νn, σn,i) .

From (3.9) and the subadditivity of mutual information (Lemma 2.8)

I (Pn
∗ νn, σn,i) ≤

q−1
∑

j=0

I
(

Pm
∗ (T i+jm

∗ νn), τn
)

.

Therefore

I (Pn
∗ νn, σn) ≤

1

m

m−1
∑

i=0

q−1
∑

j=0

I
(

Pm
∗ (T i+jm

∗ νn), τn
)

=
1

m

qm−1
∑

k=0

I
(

Pm
∗ (T k

∗ νn), τn
)

≤
1

m

n−1
∑

k=0

I
(

Pm
∗ (T k

∗ νn), τn
)

≤
n

m
I

(

Pm
∗

(

1

n

n−1
∑

k=0

T k
∗ νn

)

, τn

)

(by the concavity in Lemma 2.10 (1))

=
n

m
I (Pm

∗ µn, τn) (by µn =
1

n

n−1
∑

k=0

T k
∗ νn).

We would like to remark that the above calculation is quite analogous
to Misiurewicz’s proof [Mis] of the standard variational principle. �

Claim 3.8. We denote by EPn
∗
νn,σn

(d̄n(x, y)) the expected value of d̄n(x, y)
(x, y ∈ X n) with respect to the probability measure

Pn
∗ νn(x)σn(y|x).
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Then EP
ni
∗ νni

,σni
(d̄ni

(x, y)) < 3ε for sufficiently large ni. Moreover

(3.10)

I (Pni
∗ νni

, σni
) ≥

(

1−
1

D

)

log |Sni
|−H(1/D) for sufficiently large ni.

Proof.

EPn
∗
νn,σn

(

d̄n(x, y)
)

=
1

m

m−1
∑

i=0

EPn
∗
νn, σn,i

(

d̄n(x, y)
)

.

By (3.9)

1

m
EPn

∗
νn, σn,i

(

d̄n(x, y)
)

≤
1

n

q−1
∑

j=0

EPm
∗
(T i+jm)∗νn,τn

(

d̄m(x
′, y′)

)

+
r · diam(X , d)

mn
.

Here x, y are random points in X n, whereas x′, y′ are in Xm. Therefore

EPn
∗
νn,σn

(

d̄n(x, y)
)

≤
1

n

m−1
∑

i=0

q−1
∑

j=0

EPm
∗
(T i+jm)∗νn, τn

(

d̄m(x
′, y′)

)

+
r · diam(X , d)

n

=
1

n

qm−1
∑

k=0

EPm
∗
(T k

∗
νn), τn

(

d̄m(x
′, y′)

)

+
r · diam(X , d)

n

≤
1

n

n−1
∑

k=0

EPm
∗
(T k

∗
νn), τn

(

d̄m(x
′, y′)

)

+
r · diam(X , d)

n

= EPm
∗
µn, τn

(

d̄m(x
′, y′)

)

+
r · diam(X , d)

n
.

In the last line we used µn = (1/n)
∑n−1

k=0 T
k
∗ νn. As a conclusion,

EPn
∗
νn,σn

(

d̄n(x, y)
)

≤

∫

Am×Y

d̄m(x
′, y′)dτn(x

′, y′) +
r · diam(X , d)

n
.

By (3.8) and r ≤ 2m − 1, this is bounded by 3ε for sufficiently large
n = ni.
By Claim 3.5, Pn

∗ νn is uniformly distributed over Pn(Sn), which is
a (6Dε)-separated set of cardinarity |Sn|. Then (3.10) follows from
Corollary 2.5. �
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We conclude that for sufficiently large ni

1

m
I (Pm

∗ µni
, τni

) ≥
1

ni

I(Pni

∗ νni
, σni

) (by Claim 3.7)

≥

(

1−
1

D

)

log |Sni
|

ni

−
H(1/D)

ni

(by Claim 3.8)

≥

(

1−
1

D

)

log#(X , d̄ni
, (12D + 4)ε)

ni

−
H(1/D)

ni

(by (3.4)).

The probability measures τni
(x, y) converge to τ = Law(Pm(X), Y )

in the weak∗ topology. Therefore it follows from Lemma 2.1 that

1

m
I(Pm(X); Y ) ≥

(

1−
1

D

)

S̃(X , T, d, (12D + 4)ε).

From the data-processing inequality (Lemma 2.2)

1

m
I(X ; Y ) ≥

(

1−
1

D

)

S̃(X , T, d, (12D + 4)ε).

This proves the statement. �

Lemma 3.1 and Proposition 3.4 immediately imply:

Corollary 3.9.

lim sup
ε→0

S̃(X , T, d, ε)

| log ε|
= lim sup

ε→0

supµ∈M T (X )Rµ(ε)

| log ε|

lim inf
ε→0

S̃(X , T, d, ε)

| log ε|
= lim inf

ε→0

supµ∈M T (X ) Rµ(ε)

| log ε|
.

Theorem 1.5 follows from Lemma 3.3 and Corollary 3.9.

4. Proof of Theorem 1.9

Here we prove Theorem 1.9. The proof is very close to that of Theo-
rem 1.5, and in view of this our explanation is more concise. Through-
out this section, (X , T ) is a dynamical system with a distance d. For
x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) in X n we set

dn(x, y) = max
0≤i≤n−1

d(xi, yi).

Lemma 4.1. For every ε > 0 and every invariant probability measure
µ on X we have

R̃µ(ε) ≤ S(X , T, d, ε).
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Proof. Let n > 0 and choose an open covering {U1, . . . , UK} of X such
that every Uk has diameter less than ε with respect to dn. Choose
a point pk ∈ Uk for each k. We define f : X → {p1, . . . , pK} by
f(x) = pk where k is the smallest integer satisfying x ∈ Uk. Then
dn(x, f(x)) < ε. Let X be a random variable obeying µ, and set
Y = (f(X), T f(X), . . . , T n−1f(X)). We have dn(X, f(X)) < ε almost
surely. It follows that

E
(

the number of i ∈ [0, n− 1] with d(T iX, T if(X)) ≥ ε
)

= 0.

Thus (X, Y ) satisfies the distortion condition (1.11) for any α > 0.
Since Y takes at most K values

I(X ; Y ) ≤ H(Y ) ≤ logK.

This proves the statement. �

Proposition 4.2. For any positive number ε there exists an invariant
probability measure µ on X satisfying

R̃µ(ε) ≥ S(X , T, d, 12ε).

Proof. For each n ≥ 1 we take a maximal 6ε-separated set Sn ⊂ X
with respect to the distance dn. It follows |Sn| ≥ #(X , dn, 12ε). Let
νn be the uniform distribution over Sn and set

µn =
1

n

n−1
∑

k=0

T k
∗ νn.

Choose a subsequence {ni} so that µni
converges to µ ∈ M T (X ) in

the weak∗ topology. We prove that this µ satisfies the statement. For
n ≥ 1, x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) in X n we set

fn(x, y) = the number of k ∈ [0, n− 1] satisfying d(xk, yk) ≥ 2ε.

Here we chose “2ε” for the later convenience.
We take a partition P = {P1, . . . , PK} such that diam(Pk, d) < ε

and µ(∂Pk) = 0 for all 1 ≤ k ≤ K. Choose a point pk ∈ Pk for
each k and set A = {p1, . . . , pK}. We define a map P : X → A by
P(Pk) = {pk}. We have d(x,P(x)) < ε for all x ∈ X . For n ≥ 1 we
set Pn(x) = (P(x),P(Tx), . . . ,P(T n−1x)).

Claim 4.3. (1) The set Pn(Sn) is 4ε-separated with respect to the
distance dn.

(2) The measure Pn
∗ νn is uniformly distributed over Pn(Sn) and

|Pn(Sn)| = |Sn|.

Proof. See Claim 3.5. �
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Let 0 < α < 1/4. LetX and Y = (Y0, . . . , Ym−1) be random variables
such that Law(X) = µ, and Yi take values in X and satisfy

E
(

the number of 0 ≤ i ≤ m− 1 satisfying d(T iX, Yi) ≥ ε
)

< αm.

We estimate I(X ; Y ) ≥ I(Pm(X); Y ) from below. As in Remark 2.3,
we can assume that the distribution of Y is supported on a finite set
Y ⊂ Xm. Set τ = Law(Pm(X), Y ), which is a probability measure on
Am × Y . Since d (T iX,P(T iX)) < ε, it follows that

{0 ≤ i ≤ m−1| d
(

P(T iX), Yi

)

≥ 2ε} ⊂ {0 ≤ i ≤ m−1| d(T iX, Yi) ≥ ε}.

Thus

Eτfm(x, y) :=

∫

Am×Y

fm(x, y)dτ(x, y)

= E
(

the number of 0 ≤ i ≤ m− 1 s.t. d
(

P(T iX), Yi

)

≥ 2ε
)

< αm.

For each n ≥ 1 we take a coupling πn of (Pm
∗ µn,P

m
∗ µ) which mini-

mizes
∫

Am×Am

dm(x, y)dπ(x, y)

among all couplings π of (Pm
∗ µn,P

m
∗ µ). As in Claim 3.6 in Section

3, it follows from µ(∂Pk) = 0 and Lemma A.2 in Appendix that the
measures πni

converge to (Pm × Pm)∗µ in the weak∗ topology. We
define a coupling τn of (Pm

∗ µn,Law(Y )) by composing πn and τ :

τn(x, y) =
∑

x′∈Am

πn(x, x
′)P(Y = y|Pm(X) = x′), (x ∈ Am, y ∈ Y).

τni
converges to τ in the weak∗ topology. In particular

(4.1)

Eτni
fm(x, y) =

∫

Am×Y

fm(x, y)dτni
(x, y) < αm for sufficiently large ni.

(Here notice that fm(x, y) is a continuous function on Am × Y be-
cause Am×Y is a finite set.) We define a conditional probability mass
function τn(y|x) by

τn(y|x) =
τn(x, y)

Pm
∗ µn(x)

,

which is defined for

x ∈
n−1
⋃

k=0

Pm(T kSn), y ∈ Xm.
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Fix a point a ∈ X . For n ≥ 2m, let n = mq + r with m ≤ r ≤
2m− 1. For x ∈ Pn(Sn) we define probability mass functions σn,i(·|x)
(0 ≤ i ≤ m− 1) on X n as in (3.9):

σn,i(y|x) =

q−1
∏

j=0

τn
(

yi+jm+m−1
i+jm |xi+jm+m−1

i+jm

)

·
∏

k∈[0,i)∪[n−r+i,n)

δa(yk).

We set

σn(y|x) =
1

m

m−1
∑

i=0

σn,i(y|x).

Exactly as in Claim 3.7

(4.2)
1

m
I(Pm

∗ µn, τn) ≥
1

n
I(Pn

∗ νn, σn).

Claim 4.4. We denote by EPn
∗
νn,σn

fn(x, y) the expected value of the
function fn(x, y) (i.e. the number of k ∈ [0, n−1] satisfying d(xk, yk) ≥
2ε) with respect to the measure

Pn
∗ νn(x)σn(y|x).

Then for sufficiently large ni

EP
ni
∗ νni

,σni
fni

(x, y) < 2αni.

Proof.

EPn
∗
νn,σn

fn(x, y) =
1

m

m−1
∑

i=0

EPn
∗
νn,σn,i

fn(x, y).

EPn
∗
νn,σn,i

fn(x, y) ≤ r +

q−1
∑

j=0

EPm
∗
T i+jm
∗ νn,τn

fm(x, y).

Thus

EPn
∗
νn,σn

fn(x, y) ≤ r +
1

m

m−1
∑

i=0

q−1
∑

j=0

EPm
∗
T i+jm
∗ νn,τn

fm(x, y)

≤ r +
1

m

n−1
∑

k=0

EPm
∗
T k
∗
νn,τnfm(x, y)

= r +
n

m
EPm

∗
µn,τnfm(x, y) (by µn =

1

n

n−1
∑

k=0

T k
∗ νn)

= r +
n

m

∫

Am×Y

fm(x, y)dτn(x, y) = r +
n

m
Eτnfm(x, y).
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We have Eτnfm(x, y) < αm for sufficiently large n = ni by (4.1). Thus
(by r ≤ 2m− 1)

EP
ni
∗ νni

,σni
fni

(x, y) < αni + r < 2αni

for sufficiently large ni. �

In view of Claim 4.3, Claim 4.4 and Lemma 2.6 imply that for suffi-
ciently large ni,

(4.3)
1

ni
I(Pni

∗ νni
, σni

) ≥
1

ni
log |Sni

| − 2α logK −H(2α).

It follows from |Sn| ≥ #(X , dn, 12ε) and the inequalities (4.2) and
(4.3) that

1

m
I(Pm

∗ µni
, τni

) ≥
1

ni

log#(X , dni
, 12ε)− 2α logK −H(2α)

for sufficiently large ni. Recall that the measures τni
(x, y) converge to

τ = Law (Pm(X), Y ). By letting ni → ∞ we obtain that

1

m
I(Pm(X); Y ) ≥ S(X , T, d, 12ε)− 2α logK −H(2α).

Thus we conclude

R̃µ(ε, α) ≥ S(X , T, d, 12ε)− 2α logK −H(2α).

Now notice that K depends only on ε and independent of α. By letting
α → 0 we get

R̃µ(ε) ≥ S(X , T, d, 12ε).

�

Theorem 1.9 follows from Lemma 4.1 and Proposition 4.2.

5. Proof of Proposition 1.7

In this section we construct a dynamical system (X , T ) with a dis-
tance d satisfying

(5.1) lim
ε→0

S̃(X , T, d, ε)

| log ε|
= 0, mdimM(X , T, d) = ∞.

This proves Proposition 1.7 because Rµ(ε) ≤ S̃(X , T, d, ε) by Lemma
3.1.
Let V be an infinite dimensional Hilbert space. We denote its norm

by ||·||. We can take A1, A2, · · · ⊂ V such that

• 0 ∈ An for every n.
• For every n and any two distinct points a, b ∈ An we have
||a− b|| = 1/n.



FROM RATE DISTORTION THEORY TO METRIC MEAN DIMENSION 33

• log |An| = Θ(2n(log n)2), namely there exists C > 1 indepen-
dent of n satisfying

C−12n(logn)2 ≤ log |An| ≤ C2n(log n)2.

Set B =
⋃

n≥1An. This is a compact subset of V and its diameter is

bounded by 2. For each n ≥ 1 we define Xn ⊂ AZ

n as the set of (xk)k∈Z
such that

∃l ∈ Z : xk = 0 for all k ∈ Z \ (l + 2nZ) .

Set X =
⋃

n≥1Xn ⊂ BZ. This is compact with respect to the distance

d(x, y) =
∑

k∈Z

2−|k| ||xk − yk|| .

Let T : X → X be the shift. We show that (X , T, d) satisfies the
property (5.1).

Claim 5.1.

mdimM(X , T, d) = ∞.

Proof. Let N be a multiple of 2n. For 0 < ε ≤ 1/n

#(Xn, dN , ε) ≥ |An|
N/2n .

Thus

S(Xn, T, d, ε) = lim
N→∞

1

N
log#(Xn, dN , ε) ≥ 2−n log |An| = Θ

(

(log n)2
)

.

For any 0 < ε < 1

S(X , T, d, ε) ≥ S(X⌊1/ε⌋, T, d, ε) ≥ Θ
(

(log⌊1/ε⌋)2
)

.

It follows

mdimM(X , T, d) = lim
ε→0

S(X , T, d, ε)

| log ε|
= ∞.

�

Let ε > 0 and set L = L(ε) = ⌈log2(8/ε)⌉. It follows
∑

|n|>L 2
−|n| ≤

ε/4.

Claim 5.2. If N ≥ 2L + 2n and n > log2(1/ε) + log2(48L+ 24) then
every x ∈ Xn satisfies d̄N(x, 0) < ε/2. Here 0 = (. . . , 0, 0, 0, . . . ) ∈ X.

Proof. Let x ∈ Xn. There exists an integer l such that xk = 0 for all k ∈
Z\(l+2nZ). Then d(T ix, 0) ≤ ε/4 for any i outside of [l−L, l+L]+2nZ.
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We count how many i ∈ [0, N) fall in [l − L, l + L] + 2nZ:

1

N
| ([l − L, l + L] + 2nZ) ∩ [0, N)| ≤

1

N

(

1 +
N + 2L

2n

)

(2L+ 1)

=

(

1 +
2L+ 2n

N

)

2L+ 1

2n

≤
4L+ 2

2n
(by N ≥ 2L+ 2n).

Therefore

d̄N(x, 0) ≤
ε

4
+

3(4L+ 2)

2n
<

ε

2
(by n > log2(1/ε) + log2(48L+ 24)).

�

We take ε0 > 0 so that all 0 < ε < ε0 satisfy log2(1/ε) > log2(48L(ε)+
24). We set N0(ε) = 2L(ε)+2⌊6/ε⌋. In the rest of this section we always
assume

0 < ε < ε0, N ≥ N0(ε).

Claim 5.3.
⋃

n≥2 log2(1/ε)

Xn ⊂ Bε/2(0, d̄N),

where the right-hand side is the open ε/2-ball around 0 with respect to
the distance d̄N . Therefore

#





⋃

n≥2 log2(1/ε)

Xn, d̄N , ε



 = 1.

Proof. For n > 6/ε every x ∈ Xn satisfies d(x, 0) ≤ 3/n < ε/2. Thus
Xn ⊂ Bε/2(0, d̄N). For 2 log2(1/ε) ≤ n ≤ 6/ε it also follows that Xn ⊂
Bε/2(0, d̄N) by Claim 5.2 because the assumptions imply N ≥ 2L+ 2n

and n > log2(1/ε) + log2(48L+ 24). �

From Claim 5.3 and an elementary inequality

log(a1 + a2 + · · ·+ aK) ≤ logK + max
1≤i≤K

log ai, (a1, . . . , aK > 0),

it follows that

log#(X , d̄N , ε) ≤ log (1 + 2 log2(1/ε)) + max
1≤n<2 log2(1/ε)

log#(Xn, d̄N , ε).

The term log#(Xn, d̄N , ε) can be easily estimated:

#(Xn, d̄N , ε) ≤ #(Xn, dN , ε) ≤ 2n|An|
1+2−n(N+2L) (by

∑

|n|>L

2−|n| < ε/4).
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log#(Xn, d̄N , ε) ≤ n log 2 + {1 + 2−n(N + 2L)} log |An|

≤ n log 2 + (2n +N + 2L)O
(

(logn)2
)

.

Hence log#(X , d̄N , ε) is bounded by

(2 log 2) log2(1/ε)+log (1 + log2(1/ε))+
(

(1/ε)2 +N + 2L
)

O
(

(log log 1/ε)2
)

.

Thus

S̃(X , T, d, ε) = lim
N→∞

1

N
log#(X , d̄N , ε) ≤ O

(

(log log 1/ε)2
)

.

So we conclude

lim
ε→0

S̃(X , T, d, ε)

| log ε|
= 0.

Appendix A. Elementary lemmas on optimal transport

The purpose of this appendix is to prove lemmas on optimal trans-
port which are used in the proofs of Theorems 1.5 and 1.9. Our argu-
ment here is completely elementary. Much more general and systematic
treatments can be found in [AGS] and [Vil]. In this appendix we iden-
tify probability measures with their probability mass functions.
Let A be a finite set with a distance d. For two probability measures

µ and ν on A we denote by M (µ, ν) the set of probability measures π
on A × A whose first and second marginals are µ and ν respectively.
We define the L1-Wasserstein distance W (µ, ν) by

W (µ, ν) = min
π∈M (µ,ν)

∫

A×A

d(x, y)dπ(x, y).

A measure π ∈ M (µ, ν) attaining this minimum is called an optimal
transference plan between µ and ν.

Lemma A.1. Let {µn}n≥1 be a sequence of probability measures on A
converging to µ in the weak∗ topology. Then

lim
n→∞

W (µn, µ) = 0.

Proof. This is a consequence of the general fact that the Wasserstein
distance metrizes the weak∗ topology ([Vil, Theorem 6.9]). Here we
prove it directly. For the notational convenience we identify A with
some cyclic group Z/KZ.
We define πn ∈ M (µn, µ) as follows. First we set

πn(0, 0) = min(µn(0), µ(0)),

πn(0, y) = min
(

µn(0)−

y−1
∑

k=0

πn(0, k), µ(y)
)

(1 ≤ y ≤ K − 1).



36 ELON LINDENSTRAUSS, MASAKI TSUKAMOTO

Here we defined πn(0, y) inductively with respect to y. Next we set

πn(1, 1) = min(µn(1), µ(1)− πn(0, 1)),

and for 2 ≤ y ≤ K

πn(1, y) = min
(

µn(1)−

y−1
∑

k=1

πn(1, k), µ(y)− πn(0, y)
)

.

Note that y = K is the same as y = 0 in Z/KZ. In general we set

πn(x, x) = min
(

µn(x), µ(x)−
x−1
∑

k=0

πn(k, x)
)

,

and for x+ 1 ≤ y ≤ K + x− 1

πn(x, y) = min
(

µn(x)−

y−1
∑

k=x

πn(x, k), µ(y)−

x−1
∑

k=0

πn(k, y)
)

.

The assumed convergence µn → µ in the weak∗ topology means that
µn(x) → µ(x) for every x. Then it is easy to check that

πn(x, x) → µ(x), πn(x, y) → 0 (x 6= y).

This implies

W (µn, µ) ≤

∫

A×A

d(x, y)dπn(x, y) → 0.

�

Lemma A.2. Let {µn}n≥1 be a sequence of probability measures on A
converging to µ in the weak∗ topology. Let πn be an optimal transference
plan between µn and µ. Then the sequence πn converges to (Id× Id)∗µ.

Proof. For any a 6= b in A

πn(a, b) ≤
1

d(a, b)

∫

A×A

d(x, y)dπn(x, y) =
W (µn, µ)

d(a, b)
.

The right-hand side converges to zero by Lemma A.1. In the diagonal

πn(b, b) = µ(b)−
∑

a6=b

πn(a, b) → µ(b).

�
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