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Wyner’s Common Information under Rényi
Divergence Measures

Lei Yu and Vincent Y. F. Tan, Senior Member, IEEE

Abstract—We study a generalized version of Wyner’s com-
mon information problem (also coined the distributed source
simulation problem). The original common information problem
consists in understanding the minimum rate of the common input
to independent processors to generate an approximation of a joint
distribution when the distance measure used to quantify the dis-
crepancy between the synthesized and target distributions is the
normalized relative entropy. Our generalization involves changing
the distance measure to the unnormalized and normalized Rényi
divergences of order α = 1 + s ∈ [0, 2]. We show that the
minimum rate needed to ensure the Rényi divergences between
the distribution induced by a code and the target distribution
vanishes remains the same as the one in Wyner’s setting, except
when the order α = 1+s = 0. This implies that Wyner’s common
information is rather robust to the choice of distance measure
employed. As a byproduct of the proofs used to the establish the
above results, the exponential strong converse for the common
information problem under the total variation distance measure
is established.

Index Terms—Wyner’s common information, Distributed
source simulation, Rényi divergence, Total variation distance,
Exponential strong converse

I. INTRODUCTION

How much common randomness is needed to simulate
two correlated sources in a distributed fashion? This prob-
lem, termed distributed source simulation, was first studied
by Wyner [1], who used the normalized relative entropy
(Kullback-Leibler divergence or KL divergence) to measure
the approximation level (discrepancy) between the simulated
joint distribution and the joint distribution of the original
correlated sources. He defined the minimum rate needed to
ensure that the normalized relative entropy vanishes asymp-
totically as the common information between the sources. He
also established a single-letter characterization for the common
information, i.e., the common information between correlated
sources X and Y (with target distribution πXY ) is

CWyner(X ;Y ) = min
PXY W :PXY =πXY , X−W−Y

I(XY ;W ). (1)
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The common information is also known to be one of many
reasonable measures of the dependence between two ran-
dom variables [2, Section 14.2.2] (other measures include
the mutual information and the Gács-Körner-Witsenhausen
common information). A related notion is that of the exact

common information which was introduced by Kumar, Li,
and El Gamal [3]. They assumed variable-length codes and
exact generation of the correlated sources (X,Y ), instead of
block codes and approximate simulation of πXY as assumed
by Wyner [1]. The exact common information is not smaller
than Wyner’s common information. However, it is still not
known whether they are equal in general. Furthermore, the
common information problem can be also be regarded as a
distributed coordination problem. The concept of coordination

was first introduced by Cuff, Permuter, and Cover [4], [5], who
used the total variation (TV) distance to measure the level of
approximation between the simulated and target distributions.

Wyner’s common information problem is also closely re-
lated to the channel resolvability problem, which was first
studied by Han and Verdú [6], and subsequently studied by
Hayashi [7], [8], Liu, Cuff, and Verdú [9], and Yu and Tan [10]
among others. For the achievability part, both problems rely on
so-called soft-covering lemmas [5]. The channel resolvability
or common information problems have several interesting
applications—including secrecy, channel synthesis, and source
coding. For example, in [11] it was used to study the perfor-
mance of a wiretap channel system under different secrecy
measures. In [12] it was used to study the reliability and
secrecy exponents of a wiretap channel with cost constraints.
In [13] it was used to study the exact secrecy and reliability
exponents for a wiretap channel.

A. Main Contributions

Different from Wyner’s work, we use (normalized and
unnormalized) Rényi divergences of order 1 + s ∈ [0, 2] to
measure the level of approximation between the simulated and
target distributions. This is motivated in part by our desire to
understand the sensitivity of the divergence as approximation
measure on Wyner’s common information. We prove that for
the distributed source simulation problem, the minimum rate
needed to guarantee that the (normalized and unnormalized)
Rényi divergences vanish asymptotically is equal to Wyner’s
common information (except for the case when Rényi pa-
rameter is equal to 0). This implies that Wyner’s common
information in (1) is rather robust to the distance measure. For
the achievability part, by using the method of types and typi-
cality arguments, we prove that the optimal Rényi divergences
vanish (at least) exponentially fast if the code rate is larger
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than Wyner’s common information. However, for the converse
part, the proof is not straightforward and we have to first
consider an auxiliary problem. We first prove an exponential

strong converse for the common information problem under
the TV distance measure, i.e., when the code rate is smaller
than Wyner’s common information, the TV distance between
the induced distribution and the target distribution tends to one
(at least) exponentially fast. Even though our proof technique
mirrors that of Oohama [14] to establish the exponential strong
converse for the Wyner-Ziv problem, it differs significantly
in some aspects. To wit, some intricate continuity arguments
are required to assert that the strong converse exponent is
positive for all rates below CWyner(X ;Y ) (see part (i) of
Lemma 1). Furthermore and interestingly, by leveraging a key
relationship between the Rényi divergence and the TV distance
[15], this exponential strong converse implies the converse for
the normalized Rényi divergence (which in turn also implies
the strong converse for the unnormalized Rényi divergence).

It is worth noting that it is quite natural to use various
divergences to measure the discrepancy between two distribu-
tions. Wyner [1] used the KL divergence to measure the level
of approximation in the distributed source synthesis problem;
Hayashi [7], [8] and Yu and Tan [10] respectively used the
KL divergence and the Rényi divergence to study the channel
resolvability problem. The latter also applied their results to
study the capacity region for the wiretap channel under these
generalized measures. Furthermore, in probability theory, Bar-
ron [16] and Bobkov, Chistyakov and Götze [17] respectively
used the KL divergence and the Rényi divergence to study
the central limit theorem, i.e., they used them to measure the
discrepancy between the induced distribution of sum of i.i.d.
random variables and the normal distribution with the same
mean and variance. Furthermore, special instances of Rényi
entropies and divergences—including the KL divergence, the
collision entropy (the Rényi divergence of order 2), and
min-entropy (the Rényi divergence of order ∞)—were used
to study various information-theoretic problems (including
security, cryptography, and quantum information) in several
works in the recent literature [10], [11], [18]–[22].

B. Notation

We use PX(x) to denote the probability distribution of
a random variable X . This will also be denoted as P (x)
(when the random variable X is clear from the context).
We also use P̃X , P̂X and QX to denote various probability
distributions with alphabet X . All alphabets considered in
the sequel are finite. The set of probability measures on
X is denoted as P (X ), and the set of conditional prob-
ability measures on Y given a variable in X is denoted
as P(Y|X ) :=

{
PY |X : PY |X(·|x) ∈ P(Y), x ∈ X

}
. Further-

more, the support of a distribution P ∈ P(X ) is denoted as
supp(P ) = {x ∈ X : P (x) > 0}.

We use Txn(x) := 1
n

∑n
i=1 1 {xi = x} to denote the type

(empirical distribution) of a sequence xn, TX and VY |X to re-
spectively denote a type of sequences in Xn and a conditional
type of sequences in Yn (given a sequence xn ∈ Xn). For a
type TX , the type class (set of sequences having the same type

TX) is denoted by TTX
. For a conditional type VY |X and a

sequence xn, the VY |X -shell of xn (the set of yn sequences
having the same conditional type VY |X given xn) is denoted by
TVY |X

(xn). For brevity, sometimes we use T (x, y) to denote
the joint distributions T (x)V (y|x) or T (y)V (x|y).

The ǫ-typical set of QX is denoted as

T n
ǫ (QX) :=

{
xn ∈ Xn :

|Txn(x) −QX(x)| ≤ ǫQX(x), ∀x ∈ X
}
. (2)

The conditionally ǫ-typical set of QXY is denoted as

T n
ǫ (QY X |xn) := {yn ∈ Yn : (xn, yn) ∈ T n

ǫ (QXY )} . (3)

For brevity, sometimes we write T n
ǫ (QX) and T n

ǫ (QYX |xn)
as T n

ǫ and T n
ǫ (xn) respectively.

The TV distance between two probability mass functions P
and Q with a common alphabet X is defined as

|P −Q| :=
1

2

∑

x∈X
|P (x)−Q(x)|. (4)

By the definition of ǫ-typical set, we have that for any xn ∈
T n
ǫ (QX),

|Txn −QX | ≤
ǫ

2
. (5)

Fix distributions PX , QX ∈ P(X ). The relative entropy and
the Rényi divergence of order 1 + s are respectively defined
as

D(PX‖QX) :=
∑

x∈supp(PX )

PX(x) log
PX(x)

QX(x)
(6)

D1+s(PX‖QX) :=
1

s
log

∑

x∈supp(PX)

PX(x)1+sQX(x)−s,

(7)

and the conditional versions are respectively defined as

D(PY |X‖QY |X |PX) := D(PXPY |X‖PXQY |X) (8)

D1+s(PY |X‖QY |X |PX) := D1+s(PXPY |X‖PXQY |X), (9)

where the summations in (6) and (7) are taken over the
elements in supp(PX). Throughout, log is to the natural base
e and s ≥ −1. It is known that lims→0 D1+s(PX‖QX) =
D(PX‖QX) so a special case of the Rényi divergence (or
the conditional version) is the usual relative entropy (or the
conditional version).

Given a number a ∈ [0, 1], we define ā = 1 − a. We also
define [x]

+
= max {x, 0}.

C. Problem Formulation

In this paper, we consider the distributed source simulation
problem illustrated in Fig. 1. Given a target distribution πXY ,
we wish to minimize the alphabet size of a random variable
Mn that is uniformly distributed over1 Mn := {1, . . . , enR}

1For simplicity, we assume that enR and similar expressions are integers.
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Fig. 1. Distributed source synthesis problem, where the random variable
Mn ∈ Mn := {1, . . . , enR}.

(R is a positive number known as the rate), such that the
generated (or synthesized) distribution

PXnY n(xn, yn)

:=
1

|Mn|

∑

m∈Mn

PXn|Mn
(xn|m)PY n|Mn

(yn|m) (10)

forms a good approximation to the product distribu-
tion πXnY n := πn

XY . The pair of random mappings
(PXn|Mn

, PY n|Mn
) constitutes a synthesis code.

Different from Wyner’s seminal work on the distributed
source simulation problem [1], we employ the unnormalized
Rényi divergence

D1+s(PXnY n‖πXnY n) (11)

and the normalized Rényi divergence

1

n
D1+s(PXnY n‖πXnY n) (12)

to measure the discrepancy between PXnY n and πXnY n . The
minimum rates required to ensure these two measures vanish
asymptotically are respectively termed the unnormalized and

normalized Rényi common information, and denoted as

T1+s(πXY )

:= inf
{
R : lim

n→∞
D1+s(PXnY n‖πXnY n) = 0

}
, (13)

T̃1+s(πXY )

:= inf
{
R : lim

n→∞
1

n
D1+s(PXnY n‖πXnY n) = 0

}
. (14)

It is clear that

T̃1+s(πXY ) ≤ T1+s(πXY ). (15)

We also denote the minimum rate required to ensure the
TV distance is bounded above by some constant ε ∈ [0, 1]
asymptotically as

TTV
ε (πXY )

:= inf
{
R : lim sup

n→∞
|PXnY n − πXnY n | ≤ ε

}
. (16)

We say that the strong converse property for the common in-
formation problem under the TV distance holds if TTV

ε (πXY )
does not depend on ε ∈ [0, 1).

II. MAIN RESULTS

Our main result concerns Wyner’s common information
problem when the discrepancy measure is the unnormalized
or normalized Rényi divergence. It is stated as follows.

Theorem 1 (Rényi Common Informations). The unnormalized

and normalized and Rényi common informations satisfy

T1+s(πXY ) = T̃1+s(πXY ) (17)

=

{
CWyner(X ;Y ) s ∈ (−1, 1]

0 s = −1
. (18)

Furthermore, for s ∈ (−1, 1], the optimal Rényi divergence

D1+s(PXnY n‖πXnY n) in the definitions of the Rényi common

informations decays at least exponentially fast in n when R >

CWyner(X ;Y ).

Remark 1. For the converse part, T1+s(πXY ) ≥
T̃1+s(πXY ) ≥ CWyner(X ;Y ) for s ∈ [0, 1] is
implied by Wyner’s work [1] and the monotonicity
of the Rényi divergence. For the achievability part,
T̃1+s(πXY ) ≤ CWyner(X ;Y ) for s ∈ (−1, 0] is also
implied by Wyner’s work [1] and the monotonicity of the
Rényi divergence. Furthermore, since a channel resolvability
code for the memoryless channel PX|W × PY |W can be
used to form a common information code, the achievability
part for the common information problem can be obtained
from existing channel resolvability results. Specifically,
T1+s(πXY ) ≤ CWyner(X ;Y ) for s ∈ (−1, 0] can be obtained
from Hayashi’s [7], [8] or Han, Endo, and Sasaki’s results
[12]. In addition, T̃1+s(πXY ) ≤ T1+s(πXY ) ≤ C1+s (X ;Y )
for s ∈ (0, 1] with

C1+s (X ;Y ) := min
PXY W :PXY =πXY , X−W−Y∑

w

PW (w)D1+s

(
PX|W (·|w)PY |W (·|w)‖PXY

)
(19)

can be obtained from the present authors’ results [10], but
as shown in Theorem 1, this bound is not tight since
C1+s (X ;Y ) > CWyner(X ;Y ) in general for s ∈ (0, 1]. This
is because, on the one hand, for the channel resolvability
problem, the discrete memoryless channel is fixed, and, by
construction, imposes a product conditional distribution of
the output given the input (which is a product distribution),
but for the common information problem, the synthesizer has
the freedom to choose PXnY n|Mn

= PXn|Mn
× PY n|Mn

, so
that the Markov chain Xn − Mn − Y n holds; on the other
hand, for the common information problem, in the sequel,
we will show that if we utilize a truncated channel (which is
not memoryless) as the synthesizer. This results in a smaller
achievable rate for the case s ∈ (0, 1]. Therefore, our converse
for s ∈ [−1, 0) and achievability for s ∈ (0, 1] are new (and
also tight).

Remark 2. An exponential achievability result for s ∈ (−1, 0]
can be obtained from Hayashi’s [7], [8] and Han, Endo, and
Sasaki’s results [12], where i.i.d. codes were employed.

For this theorem, the proof of the achievability part for
the unnormalized Rényi common information is provided
in Appendix A, and the proof of the converse part for
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the normalized Rényi common information is provided in
Section IV. Observe that the unnormalized Rényi divergence
is stronger than the normalized one in the sense of (15),
hence T̃1+s(πXY ) ≤ T1+s(πXY ). This implies, on one hand,
the achievability result for the normalized Rényi common
information T̃1+s(πXY ) can be obtained directly from the
achievability result for the unnormalized version T1+s(πXY ),
and on the other hand, the converse result for the normalized
Rényi common information T̃1+s(πXY ) implies the converse
result for the unnormalized version T1+s(πXY ).

The Rényi common informations are the same for all
s ∈ (−1, 1], and also same as Wyner’s common informa-
tion CWyner(X ;Y ) (which corresponds to s = 0 for the
normalized case). For the case s ∈ (−1, 1], to obtain the
(unnormalized and normalized) Rényi common informations,
we utilize a random code with (Wn, Xn, Y n) (W is the
auxiliary random variable in the definition of CWyner(X ;Y ))
distributed according to a truncated product distribution, i.e.,
a product distribution governed by Qn

WXY but whose mass
is truncated to the typical set T n

ǫ (QWXY ).2 On one hand,
the random sequences (Wn, Xn, Y n) so generated are almost
uniformly distributed over the typical set T n

ǫ (QWXY ); and
on the other hand, the Rényi common informations can be
expressed as some Rényi divergences. Moreover, these Rényi
divergences evaluated at the truncated distribution are almost
the same regardless of the parameter s ∈ (−1, 1]. Therefore,
by using this truncated code, Wyner’s common information is
achievable for any s ∈ (−1, 1].

However, the proof of the converse part for the normal-
ized Rényi common information is not straightforward.3 We
attempted to use the method of types to prove it, just as
in [10] for the Rényi resovability problem, but failed since
the code for the common information problem is arbitrary
and does not need to be i.i.d. In particular, it is not i.i.d.
In the following two sections, we provide an indirect proof
using the following strategy: We first prove an exponential
strong converse for Wyner’s common information problem
under the TV distance measure in Section III. Then by using a
relationship between the Rényi divergence and the TV distance
[15], we show this exponential strong converse implies the
converse for normalized Rényi divergence in Section IV.

As an intermediate result, the common information under
the TV distance measure is characterized in the following

2Interestingly, a truncated code is not necessary for s ∈ (−1, 0] case, since
an i.i.d. code (without truncation) is optimal as well for this case. This point
can be seen from the work of Yu and Tan [10].

3More precisely, the proof of the converse part for s ∈ (−1, 0) case is
not easy. The converse part for s = 0 case was proven by Wyner [1], in
which the continuity of the normalized entropy under the normalized KL
divergence measure was used, i.e., when 1

n
D(PXnY n‖πn

XY ) is small then
1
n
HP (XnY n) is arbitrarily close to Hπ(XY ). But it is not straightforward

to apply Wyner’s proof to the case s ∈ (−1, 0), since we do not know whether
a strong enough continuity condition for the normalized entropy holds under
the normalized Rényi divergence measure with order α = 1 + s ∈ (0, 1).
Even if a strong enough continuity condition holds, it is not straightforward to
prove. Note that we were not able to directly utilize ideas in Wyner’s converse
proof to demonstrate this point. The definition of the “relative entropy typical
set” A(n, ǫ1) :=

{

u : 1
n
log

p1(u)
p0(u)

≤ ǫ1
}

is crucial in Wyner’s proof. If
we adopt this set with this definition for the Rényi divergence setting (with
Rényi parameter < 1), it is not clear to us whether P1(Ac(n, ǫ1)) vanishes
(cf. Equation (A.7) in Wyner’s paper).

theorem.

Theorem 2 (Common Information under the TV Distance
Measure). The following hold:

(i) The common information under the TV distance measure

satisfies

TTV
ε (πXY ) =

{
CWyner(X ;Y ) ε ∈ [0, 1)

0 ε = 1
. (20)

Hence, the strong converse property for the common

information problem under the TV distance holds.

(ii) Furthermore, there exists a sequence of synthesis

codes with rate R > CWyner(X ;Y ), such that

|PXnY n − πXnY n | tends to zero exponentially fast as

n tends to infinity.

(iii) On the other hand, for any sequence of synthesis

codes with rate R < CWyner(X ;Y ), we have that

|PXnY n − πXnY n | tends to one exponentially fast as n

tends to infinity.

Part (ii) is an exponential achievability result while the
part (iii) is an exponential strong converse result. Combining
parts (ii) and (iii) implies part (i). By Pinsker’s inequality
for Rényi divergences [23], the achievability results (including
the exponential achievability result) in Theorem 1 implies the
achievability results (including the exponential achievability
result) in Theorem 2. Conversely, the exponential strong
converse result in part (iii) of Theorem 2 implies the converse
results in Theorem 1 for both unnormalized and normalized
Rényi divergences. To prove part (iii), we draw on several
key ideas from Oohama’s work [14] on the exponential strong
converse for the Wyner-Ziv problem. However, there are
several key differences in our proofs, including the way we
establish that the strong converse exponent is positive for all
rates larger than CWyner(X ;Y ) and the treatment of the cases
when various probability mass functions take on the value
zero.

We note that conclusion in part (ii) (the exponential achiev-
ability result) in Theorem 2 can be also obtained by using the
soft-covering lemma by Cuff [5, Lemma IV.1].

The proof of the conclusion in part (iii) is provided in
the next section. As mentioned above, the other parts follow
directly from Theorem 1.

III. THE PROOF OF PART (III) IN THEOREM 2

In this section, we provide an exponential strong converse
theorem for the common information problem under the TV
distance measure, which will be used to derive the converse
for normalized Rényi divergence in next section.

We define

Q :=
{
QXY U ∈ P(X × Y × U) :

|U| ≤ |X ||Y|, supp(QXY ) ⊆ supp(πXY )
}
. (21)
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Given α ∈ [0, 1] and an arbitrary distribution QXY U ∈ Q,
define the linear combination of the likelihood ratios for
(x, y, u) ∈ supp(QXY U ),

ω
(α)
QXY U

(x, y|u) := ᾱ

(
log

QXY (x, y)

πXY (x, y)

+ log
QXY |U (x, y|u)

QX|U (x|u)QY |U (y|u)

)
+ α log

QXY |U (x, y|u)

πXY (x, y)
.

(22)

This function is finite for all (x, y, u) ∈ supp(QXY U ). For
QXY U ∈ Q and θ ∈ [0,∞), define the negative cumulant
generating functions as

Ω(α,θ)(QXY U )

:= − logEQXY U

[
exp

(
− θω

(α)
QXY U

(X,Y |U)
)]
, (23)

and

Ω(α,θ) := min
QXY U∈Q

Ω(α,θ)(QXY U ), (24)

where the expectation EQXY U
is only taken over the set

supp(QXY U ) (this means we only sum over the elements
(x, y, u) such that QXY U (x, y, u) > 0).

Finally, we define the large deviations rate functions

F (α,θ)(R) :=
Ω(α,θ) − θαR

1 + (5 − 3α)θ
, (25)

F (R) := sup
(α,θ)∈[0,1]×[0,∞)

F (α,θ)(R). (26)

In view of the definitions above, we have the following
theorem. The proof of this theorem is provided in Appendix B.

Theorem 3. For any synthesis code such that

1

n
log |Mn| ≤ R, (27)

we have

|PXnY n − πXnY n | ≥ 1− 4 exp
(
− nF (R)

)
. (28)

If we show F (R) > 0, then Theorem 3 implies the
exponential strong converse for TV distance measure. To that
end, we need the following lemma.

Lemma 1. The following conclusions hold.

(i) If R < CWyner(X ;Y ), then

F (R) > 0. (29)

(ii) If R ≥ CWyner(X ;Y ), then

F (R) = 0. (30)

The proof of Lemma 1 is provided in Appendix C. We
remark that Lemma 1, especially part (i), plays an central
role in claiming the exponential strong converse theorem
for the common information problem with the TV distance
measure. Its proof is completely different from that for the
corresponding statement in [14] and requires some intricate
continuity arguments (e.g., [24, Lemma 14]). As we have seen
in Theorem 3, F (R) in (26) is a lower bound on the exponent

of 1− |PXnY n − πXnY n |. This can be regarded as the strong

converse exponent.
Combining Lemma 1 and Theorem 3, we conclude that the

exponent in the right hand side of (28) is strictly positive if
the rate is smaller than CWyner(X ;Y ). Hence, we obtain the
exponential strong converse result given in the conclusion (iii)
of Theorem 2.

IV. CONVERSE PROOF OF THEOREM 1 FOR THE

NORMALIZED RÉNYI COMMON INFORMATION

In this section, we provide a proof of the converse part of
Theorem 1 for the normalized Rényi common information.
To this end, we need the following relationships between the
Rényi divergence and the TV distance.

Lemma 2 (Relationship between the Rényi Divergence and
the TV Distance (Sason [15])). For any s ∈ (−1,+∞),

inf
PX ,QX :|PX−QX |≥ǫ

D1+s(PX‖QX)

= inf
PX ,QX :|PX−QX |=ǫ

D1+s(PX‖QX) (31)

= inf
q∈[0,1−ǫ]

d1+s(q + ǫ‖q), (32)

and for any s ∈ (0, 1),

inf
q∈[0,1−ǫ]

d1−s(q + ǫ‖q)

≥

[
min

{
1,

1− s

s

}
log

1

1− ǫ
−

1

s
log 2

]+
, (33)

where

d1+s(p‖q) :=

{
1
s
log(p1+sq−s + p̄1+sq̄−s), s ≥ −1, s 6= 0

p log p
q
+ p̄ log p̄

q̄
, s = 0

(34)
denotes the binary Rényi divergence of order 1 + s.4 We also

have

inf
PX ,QX :|PX−QX |≥ǫ

D0(PX‖QX)

= inf
PX ,QX :|PX−QX |=ǫ

D0(PX‖QX) (35)

= 0. (36)

Remark 3. Pinsker’s inequality provides a lower
bound for infPX ,QX :|PX−QX |≥ǫD1+s(PX‖QX) or
infPX ,QX :|PX−QX |=ǫ D1+s(PX‖QX), i.e.,

inf
PX ,QX :|PX−QX |=ǫ

D1+s(PX‖QX) ≥
(1 + s)ǫ2

2
. (37)

Hence (1+s)ǫ2

2 is also a lower bound of infq∈[0,1−ǫ] d1+s(q +
ǫ‖q).

Remark 4. Using (32) and the lower bound in (33), it is easy
to obtain the following improved lower bounds. For any s ∈
(0, 1),

inf
PX ,QX :|PX−QX |≥ǫ

D1−s(PX‖QX)

= inf
PX ,QX :|PX−QX |≥ǫ

sup
t∈[s,1)

D1−t(PX‖QX) (38)

4For s = 0 case, the binary Rényi divergence is known as the binary
relative entropy, and it is usually denoted as d(p‖q).
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≥ sup
t∈[s,1)

inf
PX ,QX :|PX−QX |≥ǫ

D1−t(PX‖QX) (39)

≥ sup
t∈[s,1)

inf
q∈[0,1−ǫ]

d1−t(q + ǫ‖q) (40)

≥ sup
t∈[s,1)

[
min

{
1,

1− t

t

}
log

1

1− ǫ
−

1

t
log 2

]+
(41)

=





[
log 1

4(1−ǫ)

]+
s ∈ (0, 1

2 ],[
1−s
s

log 1
1−ǫ

− 1
s
log 2

]+
s ∈ (12 , 1), ǫ >

1
2

0 s ∈ (12 , 1), ǫ ≤
1
2

(42)

and for any s ∈ [0,+∞),

inf
PX ,QX :|PX−QX |≥ǫ

D1+s(PX‖QX)

≥ inf
PX ,QX :|PX−QX |≥ǫ

sup
t∈(0,1)

D1−t(PX‖QX) (43)

≥ sup
t∈(0,1)

inf
PX ,QX :|PX−QX |≥ǫ

D1−t(PX‖QX) (44)

≥ sup
t∈(0,1)

inf
q∈[0,1−ǫ]

d1−t(q + ǫ‖q) (45)

≥ sup
t∈(0,1)

[
min

{
1,

1− t

t

}
log

1

1− ǫ
−

1

t
log 2

]+
(46)

=

[
log

1

4 (1− ǫ)

]+
. (47)

Remark 5. The improved lower bounds (42) and (47) (or
combining (32) and the lower bound in (33)) implies if

|PX −QX | → 1, (48)

then for any s ∈ (−1,+∞),

D1+s(PX‖QX) → ∞. (49)

Combining Lemma 2 with Theorem 3, we have the converse
part for the normalized Rényi divergence, which implies the
strong converse for the unnormalized Rényi divergence.

Theorem 4. For any synthesis codes such that

lim sup
n→∞

1

n
log |Mn| < CWyner(X ;Y ), (50)

we have for any s > −1,

lim inf
n→∞

1

n
D1+s(PXnY n‖πXnY n) > 0. (51)

Remark 6. This theorem establishes the converse part of
Theorem 1 for the normalized Rényi common information.

Remark 7. Since lim infn→∞
1
n
D1+s(PXnY n‖πXnY n) > 0

implies D1+s(PXnY n‖πXnY n) → ∞, the theorem above im-
plies the strong converse for the Wyner’s common information
problem under the unnormalized Rényi divergence.

Proof: Theorem 3 states if 1
n
log |Mn| < CWyner(X ;Y ),

then |PXnY n − πXnY n | → 1 exponentially fast. In other
words,

|PXnY n − πXnY n | ≥ 1− e−nδn , (52)

for some sequence δn > 0 such that lim infn→∞ δn > 0.
Therefore, using Lemma 2 we have

lim inf
n→∞

1

n
D1+s(PXnY n‖πXnY n)

≥ lim inf
n→∞

{
min

{
1,

1− s

s

}
δn −

1

ns
log 2

}
(53)

= min

{
1,

1− s

s

}
lim inf
n→∞

δn (54)

> 0. (55)

This completes the proof.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied a generalized version of Wyner’s
common information problem (or the distributed source sim-
ulation problem), in which the unnormalized and normalized
Rényi divergences were used to measure the level of approx-
imation. We showed the minimum rate needed to ensure that
the unnormalized or normalized Rényi divergence vanishes
asymptotically remains the same as the one under Wyner’s
setting where the relative entropy was used.

In the future, we plan to investigate the second-order coding
rate for Wyner’s common information under the unnormalized
Rényi divergence or the TV distance. For the unnormalized
Rényi divergence, the one-shot achievability bound given in
Lemma 3 can be used to obtain an achievability bound for
the second-order coding rate. In fact, it can easily be shown
that the optimal second-order coding rate scales as O( 1√

n
).

For the TV distance, the one-shot achievability bound given
by Cuff [5] can be used to derive an achievability bound.
However, the converse parts for both cases are not straight-
forward. One may leverage the perturbation approach [25]
used to prove the second-order coding rate for the Gray-Wyner
problem in [26], [27]. This is left as future work.

Furthermore, we are also interested in various closely-
related problems. Among them, the most interesting one is
the distributed channel synthesis problem under the Rényi

divergence measure: The coordination problem or distributed
channel synthesis problem was studied by Cuff, Permuter, and
Cover [4], [5]. In this problem, an observer (encoder) of a
source sequence describes the sequence to a distant random
number generator (decoder) that produces another sequence.
What is the minimum description rate needed to produce
achieve a joint distribution that is statistically indistinguish-
able, under the TV distance, from the distribution induced
by a given channel? For this problem, Cuff [5] provided
a complete characterization of the minimum rate. We can
enhance the level of coordination by replacing the TV measure
with the Rényi divergence. For this enhanced version of the
problem, we are interested in characterizing the corresponding
admissible rate region.

APPENDIX A
ACHIEVABILITY PROOF OF THEOREM 1 FOR THE

UNNORMALIZED RÉNYI COMMON INFORMATION

A. Achievability

Next we focus on the achievability part. We first consider
the case s ∈ (0, 1]. First we introduce the following one-shot
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achievability bound (i.e., achievability bound for blocklength
n equal to 1).

Lemma 3 (One-Shot Achievability Bound). [10] Consider

a random mapping PX|W and a random codebook U =
{W (i)}i∈M with W (i) ∼ PW , i ∈ M, where M =
{1, . . . , eR}. We define

PX|U (x| {w(i)}i∈M) :=
1

|M|

∑

m∈M
PX|W (x|w(m)) (56)

Then we have for s ∈ (0, 1],

esD1+s(PX|U‖πX |PU )

≤ esD1+s(PX|W ‖πX |PW )−sR + esD1+s(PX‖πX ) (57)

≤ 2esΓ1+s(PW ,PX|W ,πX ,R), (58)

where

Γ1+s(PW , PX|W , πX , R)

:= max
{
D1+s(PX|W ‖πX |PW )−R,D1+s(PX‖πX)

}
.

(59)

Remark 8. This lemma provides a one-shot achievability
bound for general source synthesis problems, not only for the
distributed source synthesis or common information problem
as studied in this paper.

By setting πX , PX|W , PW , and R to πXnY n , PXnY n|Wn =
PXn|WnPY n|Wn ,5 PWn , and nR respectively, Lemma 3
can be used to derive an achievability result for the
common information problem. Applying Lemma 3 and
taking limits appropriately, we obtain if there exists
a sequence of distributions

{
PWnPXn|WnPY n|Wn

}
such

that limn→∞ D1+s(PXnY n‖πXnY n) → 0 and R >

lim supn→∞
1
n
D1+s(PXnY n|Wn‖πXnY n |PWn), then there

exists a sequence of codes such that

lim sup
n→∞

D1+s(PXnY n|Un
‖πXnY n |PUn

)

≤ lim sup
n→∞

1

s
log
{
esD1+s(PXnY n|Wn‖πXnY n |PWn)−nsR

+ esD1+s(PXnY n‖πXnY n )
}

(60)

≤
1

s
log
{
lim sup
n→∞

es(D1+s(PXnY n|Wn‖πXnY n |PWn)−nR) + 1
}

(61)

≤
1

s
log
{
lim sup
n→∞

es(n(R−ǫ)−nR) + 1
}

(62)

= 0, (63)

where (62) follows since

R > lim sup
n→∞

1

n
D1+s(PXnY n|Wn‖πXnY n |PWn)

implies there exists a constant ǫ > 0 such that

R− ǫ >
1

n
D1+s(PXnY n|Wn‖πXnY n |PWn)

5The pair (Xn, Y n) plays the role of X in Lemma 3.

holds for all sufficiently large n. Therefore, the minimum
achievable rate satisfies

inf
{
R : D1+s(PXnY n|Un

‖πXnY n |PUn
) → 0

}

≤ inf
{PWn ,PXn|Wn ,PY n|Wn}∞

n=1:

D1+s(PXnY n‖πXnY n )→0

lim sup
n→∞

1

n
D1+s(PXnY n|Wn‖πXnY n |PWn). (64)

Let QWXY be a distribution such that QXY = πXY and
X −W − Y . For the optimization in (64), to obtain an upper
bound, we set the distributions

PWn (wn) ∝ Qn
W (wn) 1 {wn ∈ T n

ǫ′ (QW )} ,

PXn|Wn (xn|wn) ∝ Qn
X|W (xn|wn) 1 {xn ∈ T n

ǫ (QWX |wn)} ,

PY n|Wn (xn|wn) ∝ Qn
Y |W (xn|wn) 1 {yn ∈ T n

ǫ (QWY |w
n)} ,

where 0 < ǫ′ < ǫ ≤ 1. Then we have

PXnY n (xn, yn)

=
∑

wn

PWn (wn)PXn|Wn (xn|wn)PY n|Wn (xn|wn) (65)

=
∑

wn

Qn
W (wn) 1 {wn ∈ T n

ǫ′ (QW )}

Qn
W (T n

ǫ′ )

×
Qn

X|W (xn|wn) 1 {xn ∈ T n
ǫ (QWX |wn)}

Qn
X|W (T n

ǫ (QWX |wn) |wn)

×
Qn

Y |W (xn|wn) 1 {yn ∈ T n
ǫ (QWY |w

n)}

Qn
Y |W (T n

ǫ (QWY |wn) |wn)
(66)

≤

∑
wn Qn

WXY (wn, xn, yn)

Qn
W (T n

ǫ′ )

×
1

minwn∈T n
ǫ′
Qn

X|W (T n
ǫ (QWX |wn) |wn)

×
1

minwn∈T n
ǫ′
Qn

Y |W (T n
ǫ (QWY |wn) |wn)

(67)

=
πXnY n(xn, yn)

1− δn
, (68)

where in (68) δn is defined as 1 minus the denominator of (67).
Here we claim that δn → 0 as n → ∞. This follows since
Qn

W (T n
ǫ′ ) → 1, minwn∈T n

ǫ′
Qn

X|W
(
T n
ǫ (QWX |wn)|wn

)
→ 1,

and minwn∈T n
ǫ′
Qn

Y |W
(
T n
ǫ (QWY |w

n)|wn
)

→ 1, where the
last two limits hold due to the following lemma.

Lemma 4. Assume 0 < ǫ′ < ǫ ≤ 1, then as n → ∞,

Qn
X|W

(
T n
ǫ (QWX |wn)|wn

)
converges uniformly6 to 1 (in

wn ∈ T n
ǫ′ (QW )).

1−Qn
X|W

(
T n
ǫ (QWX |wn)|wn

)
≤

|X | |W|
(
e
− 1

3

(
ǫ−ǫ′

1+ǫ′

)2
nQ

(min)

X|W + e
− 1

2

(
ǫ−ǫ′

1−ǫ′

)2
nQ

(min)

X|W

)
, (69)

6This means that for any η > 0, there exists an integer N = Nη such
that maxwn∈T n

ǫ′
(QW ) 1 − Qn

X|W

(

T n
ǫ (QWX |wn)|wn

)

≤ η for all n >

Nη . Here the notion of “uniform convergence” is a slightly different from
the conventional one [28, Definition 7.7]. In the conventional definition, the
domain of the functions are fixed but here, the domain T n

ǫ′
(QW ) depends

on n.
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for all wn ∈ T n
ǫ′ (QW ), where Q

(min)
X|W :=

min(x,w):QX|W (x|w)>0QX|W (x|w).

This lemma is a stronger version of the conditional typ-
icality lemma in [2], since here the probability converges
uniformly, instead of converging pointwise. However, the
proof is merely a refinement of the conditional typicality
lemma [2, Appendix 2A] (by applying the Chernoff bound,
instead of the law of large numbers), and hence omitted here.
Besides, a similar lemma can be found in [29, Lemma 2.12],
which is established based on a slightly different definition of
strong typicality.

Using this upper bound of PXnY n(xn, yn) we have

D1+s(PXnY n‖πXnY n)

=
1

s
log

∑

xn,yn

P 1+s
XnY n(x

n, yn)π−s
XnY n(x

n, yn) (70)

≤
1

s
log

∑

xn,yn

(
πXnY n(xn, yn)

1− δn

)1+s

π−s
XnY n(x

n, yn) (71)

=
1

s
log

(
1

1− δn

)1+s

(72)

→ 0. (73)

Let [TWVX|W ] denote the joint distribution of X and W

induced by the type TW and conditional type VX|W . Now
define the sets of tuples of types and conditional types:

A :=
{
(TW , VX|W , VY |W ) :

∀w, |TW (w) −QW (w)| ≤ ǫ′QW (w),

∀(w, x),
∣∣[TWVX|W ](w, x) −QWX(w, x)

∣∣ ≤ ǫQWX(w, x),

∀(w, y),
∣∣[TWVY |W ](w, y) −QWY (w, y)

∣∣ ≤ ǫQWY (w, y)
}

(74)

and

B :=
{
(TW , VX|W , VY |W ) : ∀(w, x, y),

(1− ǫ)2

1 + ǫ′
≤

[TWVX|WVY |W ](w, x, y)

QWXY (w, x, y)
≤

(1 + ǫ)2

1− ǫ′

}
. (75)

In (75), if QWXY (w, x, y) = 0, this imposes that[
TWVX|WVY |W

]
(w, x, y) = 0. It is easy to verify that

A ⊆ B. Let δ1,n and δ2,n be two arbitrary sequences tending
to zero as n → ∞. Using these notations, we can write (76)-
(84) (shown at the top of the next page), where (79) follows
from Lemma 4, (80) follows since A ⊆ B, (81) follows since

∑

(TX ,VX|W ,VY |W )∈B

∑

wn∈TTW
,xn∈TVX|W

(wn),

yn∈TVY |W
(wn)

P (wn, xn, yn) ≤ 1,

(85)
and (83) follows since QXY = πXY .

Letting n → ∞ in (84), we have

lim sup
n→∞

1

n
D1+s (PWnXnY n‖PWnπXnY n)

≤
(1− ǫ)2

1 + ǫ′
IQ(XY ;W ) +

4ǫ

1− ǫ′
HQ(XY ). (86)

Combining (86) with (64) and (73), we obtain

inf
{
R : D1+s(PXnY n|Un

‖πXnY n |PUn
) → 0

}

≤
(1− ǫ)2

1 + ǫ′
IQ(XY ;W ) +

4ǫ

1− ǫ′
HQ(XY ). (87)

Since ǫ > ǫ′ > 0 are arbitrary, and HQ(XY ) = Hπ(XY ) ≤
log {|X ||Y|} is bounded, we have

inf
{
R : D1+s(PXnY n|Un

‖πXnY n |PUn
) → 0

}

≤ IQ(XY ;W ). (88)

Since the distribution QWXY is arbitrary, we can minimize
IQ(XY ;W ) over all distributions satisfying QXY = πXY

and X −W − Y . Hence

inf
{
R : D1+s(PXnY n|Un

‖πXnY n |PUn
) → 0

}

≤ min
QXY W :QXY =πXY , X−W−Y

IQ(XY ;W ) (89)

= CWyner(X ;Y ). (90)

Observe that

D1+s(PXnY n|Un
‖πXnY n |PUn

)

=
1

s
logEUn

[ ∑

xn,yn

PXnY n|Un
(xn, yn|Un)

×

(
PXnY n|Un

(xn, yn|Un)

πXnY n(xn, yn)

)s ]
, (91)

where EUn
is the expectation taken with respect to the distribu-

tion PUn
. Hence D1+s(PXnY n|Un

‖πXnY n |PUn
) → 0 implies

that there must exist at least one sequence of codebooks in-
dexed by {un}

∞
n=1 such that D1+s(PXnY n|Un=un

‖πXnY n) →
0. Therefore, the Rényi common information for s ∈ (0, 1] is
not larger than CWyner(X ;Y ). This completes the proof for
the case s ∈ (0, 1].

Now we prove the case s ∈ (−1, 0). Since
D1+s(PXnY n‖πXnY n) is non-decreasing in s, the result for
s ∈ (0, 1] implies the achievability result for s ∈ (−1, 0).

B. Exponential Achievability

Since D1+s(PXnY nUn
‖πXnY n ×PUn

) is non-decreasing in
s, to prove the exponential result for s ∈ (−1, 1], we only need
to show the result holds for s ∈ (0, 1]. To this end, we use
the random code given in Appendix A-A. For this code, by
Lemma 3, we obtain

esD1+s(PXnY nUn‖πXnY n×PUn )

≤ esD1+s(PWnXnY n‖PWnπXnY n )−nsR

+ esD1+s(PXnY n‖πXnY n) (92)

= esD1+s(PXnY n‖πXnY n )
(
esD1+s(PWnXnY n‖PWnπXnY n )−nsR

× e−sD1+s(PXnY n‖πXnY n ) + 1
)
. (93)
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1

n
D1+s (PWnXnY n‖PWnπXnY n)

=
1

ns
log

∑

wn,xn,yn

P (wn) (P (xn|wn)P (yn|wn))1+s
π−s(xn, yn) (76)

=
1

ns
log

∑

wn,xn,yn

P (wn, xn, yn)

×

(
Qn

X|W (xn|wn) 1 {xn ∈ T n
ǫ (QWX |wn)}

Qn
X|W (T n

ǫ (QWX |wn) |wn)

Qn
Y |W (xn|wn) 1 {yn ∈ T n

ǫ (QWY |w
n)}

Qn
Y |W (T n

ǫ (QWY |wn) |wn)

)s

π−s
XnY n(x

n, yn) (77)

=
1

ns
log

∑

TW ,VX|W ,VY |W

∑

wn∈TTW
,xn∈TVX|W

(wn),

yn∈TVY |W
(wn)

P (wn, xn, yn)

×

(
Qn

X|W (xn|wn) 1 {xn ∈ T n
ǫ (QWX |wn)}

Qn
X|W (T n

ǫ (QWX |wn) |wn)

Qn
Y |W (xn|wn) 1 {yn ∈ T n

ǫ (QWY |w
n)}

Qn
Y |W (T n

ǫ (QWY |wn) |wn)

)s

π−s
XnY n(x

n, yn) (78)

≤
1

ns
log

∑

(TX ,VX|W ,VY |W )∈A

∑

wn∈TTW
,xn∈TVX|W

(wn),

yn∈TVY |W
(wn)

P (wn, xn, yn)

×

(
en

∑
w,x

T (w,x) logQ(x|w)

1− δ1,n

en
∑

w,y
T (w,y) logQ(y|w)

1− δ2,n

)s

e−ns
∑

x,y
T (x,y) log π(x,y) (79)

≤ −
1

n
log(1− δ1,n)(1 − δ2,n) +

1

ns
log

∑

(TX ,VX|W ,VY |W )∈B

∑

wn∈TTW
,xn∈TVX|W

(wn),

yn∈TVY |W
(wn)

P (wn, xn, yn)

× max
(TX ,VX|W ,VY |W )∈B

esn
∑

w,x T (w,x) logQ(x|w)+sn
∑

w,y T (w,y) logQ(y|w)−ns
∑

x,y T (x,y) log π(x,y) (80)

≤ max
(TX ,VX|W ,VY |W )∈B

(
∑

w,x

T (w, x) logQ (x|w) +
∑

w,y

T (w, y) logQ (y|w)−
∑

x,y

T (x, y) log π (x, y)

)

−
1

n
log(1 − δ1,n)(1− δ2,n) (81)

≤
(1− ǫ)2

1 + ǫ′

(
∑

w,x

Q (w, x) logQ (x|w) +
∑

w,y

Q (w, y) logQ (y|w)

)
−

(1 + ǫ)2

1− ǫ′

∑

x,y

Q (x, y) log π (x, y)

−
1

n
log(1 − δ1,n)(1− δ2,n) (82)

= −
(1− ǫ)2

1 + ǫ′
(HQ(X |W ) +HQ(Y |W )) +

(1 + ǫ)2

1− ǫ′
HQ(XY )−

1

n
log(1− δ1,n)(1 − δ2,n) (83)

=
(1− ǫ)2

1 + ǫ′
IQ(XY ;W ) +

4ǫ

1− ǫ′
HQ(XY )−

1

n
log(1− δ1,n)(1 − δ2,n), (84)

Taking log’s and normalizing by s,

D1+s(PXnY nUn
‖πXnY n × PUn

)

= D1+s(PXnY n‖πXnY n)

+
1

s
log
(
esD1+s(PWnXnY n‖PWnπXnY n )−nsR

× e−sD1+s(PXnY n‖πXnY n ) + 1
)

(94)

≤ D1+s(PXnY n‖πXnY n) +
1

s
esD1+s(PWnXnY n‖PWnπXnY n)

× e−nsR−sD1+s(PXnY n‖πXnY n ). (95)

We first consider the first term of (95). Note that in

(68), δn tends to zero exponentially fast as n → ∞,
since Qn

W (T n
ǫ′ ), minwn∈T n

ǫ′
Qn

X|W
(
T n
ǫ (QWX |wn)|wn

)
, and

minwn∈T n
ǫ′
Qn

Y |W
(
T n
ǫ (QWY |w

n)|wn
)

all tend to one expo-
nentially fast as n → ∞. Combining this with (73), we obtain
that D1+s(PXnY n‖πXnY n) → 0 exponentially fast.

Furthermore, by (84) we can write the exponent of the
second term of (95) as

lim inf
n→∞

sR−
1

n
sD1+s(PWnXnY n‖PWnπXnY n)

+
1

n
sD1+s(PXnY n‖πXnY n)



10

= sR − s

(
(1 − ǫ)2

1 + ǫ′
IQ(XY ;W ) +

4ǫ

1− ǫ′
HQ(XY )

)
.

(96)

Since HQ(XY ) = Hπ(XY ) ≤ log {|X ||Y|} is bounded and
R > IQ(XY ;W ), by choosing sufficiently small ǫ > ǫ′ > 0,
we can ensure this exponent is positive.

Combining the two points above, we conclude that the
optimal D1+s(PXnY nUn

‖πXnY n × PUn
) tends to zero ex-

ponentially fast as long as R > CWyner(X ;Y ). On the
other hand, by a similar argument in Appendix A-A,
D1+s(PXnY n|Un

‖πXnY n |PUn
) → 0 exponentially fast im-

plies that there must exist at least one sequence of codebooks
indexed by {un}

∞
n=1 such that

D1+s(PXnY n|Un=un
‖πXnY n) → 0

exponentially fast. Hence the proof is completed.

APPENDIX B
PROOF OF THEOREM 3

A. Proof of Theorem 3

In this section, we present the proof of Theorem 3. In
the proof, we adapt the information spectrum method pro-
posed by Oohama [14] to first establish a non-asymptotic
lower bound on |PXnY n − πXnY n |. Invoking the lower bound
(cf. Lemma 6) and applying Cramér’s bound in the theory of
large deviations [30], we can obtain a further lower bound on
|PXnY n − πXnY n | leading to (28).

Let PMnXnY n be the joint distribution of (Mn, X
n, Y n),

induced by the synthesis code, i.e.,

PMnXnY n(m,xn, yn)

=
1

|Mn|
PXn|Mn

(xn|m)PY n|Mn
(yn|m). (97)

In the following, for brevity sometimes we omit the subscript,
and write PMnXnY n as P .

Let QXnY n and QXnY n|Mn
be arbitrary distributions.

Given any η > 0, define the following information-spectrum
sets and support sets:

A1 :=
{
(xn, yn) :

1

n
log

πXnY n(xn, yn)

QXnY n(xn, yn)
≥ −η

}
×Mn, (98)

A2 :=
{
(xn, yn,m) :

1

n
log

PXn|Mn
(xn|w)PY n|Mn

(yn|m)

QXnY n|Mn
(xn, yn|m)

≥ −η
}
, (99)

A3 :=
{
(xn, yn,m) :

1

n
log

QXnY n|Mn
(xn, yn|m)

πXnY n(xn, yn)
≤ R+ η

}
, (100)

Ã1 := supp(πXnY n)×Mn, (101)

Ã2 := supp(PXnY nMn
), (102)

Ã := Ã1 ∩ Ã2. (103)

Choose Ui = Mn and Vi = (X i−1, Y i−1). For
i = 1, . . . , n, let QXiYiUiVi

be any distribution and let

QXnY n =
∏n

i=1 QXiYi|Xi−1Y i−1 =
∏n

i=1 QXiYi|Vi
and

QXnY n|Mn
=
∏n

i=1 QXiYi|MnXi−1Y i−1 =
∏n

i=1 QXiYi|UiVi
,

where QXiYi|Vi
and QXiYi|UiVi

are conditional distributions
induced by QXiYiUiVi

. Paralleling (98) to (100), given any
η > 0, we define the following memoryless version of
information-spectrum sets:

B1 :=
{
(xn, yn, vn) :

1

n

n∑

i=1

log
QXiYi|Vi

(xi, yi|vi)

πXY (xi, yi)
≤ η

}
×Mn

n, (104)

B2 :=
{
(xn, yn, un, vn) :

1

n

n∑

i=1

log
QXiYi|UiVi

(xi, yi|ui, vi)

PXi|UiVi
(xi|ui, vi)PYi|UiVi

(yi|ui, vi)
≤ η

}
,

(105)

B3 :=
{
(xn, yn, un, vn) :

1

n

n∑

i=1

log
QXiYi|UiVi

(xi, yi|ui, vi)

πXY (xi, yi)
≤ R+ η

}
. (106)

We first present a non-asymptotic lower bound on
|PXnY n − πXnY n |, i.e., a non-asymptotic converse bound for
the problem.

Lemma 5. For any synthesis code such that

1

n
log |Mn| ≤ R, (107)

we have

|PXnY n − πXnY n | ≥ 1− P
( 3⋂

i=1

Ai

∣∣∣ Ã
)
− 3e−nη, (108)

where P (·|Ã) = P
XnY nMn|Ã denotes the conditional

distribution of (Xn, Y n,Mn) ∼ PMnXnY n given that

(Xn, Y n,Mn) ∈ Ã, with PMnXnY n denoting the distribution

induced by the synthesis code.

The proof of Lemma 5 is given in Appendix B-B.

Invoking Lemma 5 and choosing the distributions QXnY n

and QXnY n|Mn
as in the paragraph above (104), we obtain

the following lemma.

Lemma 6. Given the conditions in Lemma 5, we have

|PXnY n − πXnY n | ≥ 1− P
( 3⋂

i=1

Bi

∣∣∣ Ã
)
− 3e−nη. (109)

The proof of Lemma 6 is given in Appendix B-C.

In the following, for simplicity, we will use Qi to denote
QXiYiUiVi

and use Pi to denote PXiYiUiVi
. Let α ∈ [0, 1].

Then we need the following definitions to further lower bound
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(109). Similar to the definition of ω(α)
QXY U

(x, y|u) in (22), we
define

ω
(α)
Qi,Pi

(xi, yi|ui, vi)

:= ᾱ

(
log

QXiYi|Vi
(xi, yi|vi)

πXY (xi, yi)

+ log
QXiYi|UiVi

(xi, yi|ui, vi)

PXi|UiVi
(xi|ui, vi)PYi|UiVi

(yi|ui, vi)

)

+ α log
QXiYi|UiVi

(xi, yi|ui, vi)

πXY (xi, yi)
. (110)

Then, similar to the definition of Ω(α,θ)(QXY U ) in (23), we
define

Ω(α,λ)({Qi}
n
i=1)

:= − log

( ∑

xn,yn,m

P
XnY nMn|Ã(x

n, yn,m)

× exp
(
− λ

n∑

i=1

ω
(α)
Qi,Pi

(xi, yi|ui, vi)
))

. (111)

where ui = m, vi = (xi−1, yi−1), and P
XnY nMn|Ã is the con-

ditional distribution of (Xn, Y n,Mn) given (Xn, Y n,Mn) ∈
Ã.

Applying Cramér’s bound [30, Section 2.2] and utilizing
Lemma 6, we obtain the following lemma. The proof of this
lemma is similar to that of [14, Proposition 1], and hence we
omit it for the sake of brevity.

Lemma 7. For any (α, λ) ∈ [0, 1]×[0,∞), given the condition

in Lemma 5, we have

|PXnY n − πXnY n |

≥ 1− 4 exp

(
−n

1
n
Ω(α,λ)({Qi}

n
i=1)− λαR

1 + (1 + ᾱ)λ

)
. (112)

Let

Ω(α,λ) := inf
n≥1

inf
{Qi}n

i=1

1

n
Ω(α,λ)({Qi}

n
i=1). (113)

Define

θ :=
λ

1− 2ᾱλ
. (114)

Hence, we have

λ =
θ

1 + 2ᾱθ
. (115)

The next lemma is essential in the proof.

Lemma 8. For α ∈ [0, 1] and λ ∈ [0, 1
2ᾱ ), we have

Ω(α,λ) ≥
Ω(α,θ)

1 + 2ᾱθ
. (116)

The proof of Lemma 8 is similar to that of [14, Proposi-
tion 2] and given in Appendix B-D. In the proof of Lemma 8,
we adopt ideas from [14] and choose appropriate distributions
QXiYiUiVi

via the recursive method.

Combining Lemmas 7 and 8 yields

|PXnY n − πXnY n |

≥ 1− 4 exp

(
−n

Ω(α,λ) − λαR

1 + (1 + ᾱ)λ

)
(117)

≥ 1− 4 exp

(
−n

Ω(α,θ)

1+2ᾱθ − θαR
1+2ᾱθ

1 + (1+ᾱ)θ
1+2ᾱθ

)
(118)

= 1− 4 exp

(
− n

Ω(α,θ) − θαR

1 + (5 − 3α)θ

)
(119)

≥ 1− 4 exp
(
− nF (R)

)
, (120)

where (120) follows from the definition of F (R) in (26) and
the fact that (119) holds for any (α, θ) ∈ [0, 1] × (0,+∞).
The proof of Theorem 3 is now complete.

B. Proof of Lemma 5

Define πXnY nMn
:= πXnY nPMn|XnY n . Then

|PXnY n − πXnY n |

= |PXnY nMn
− πXnY nMn

| (121)

≥ π(Ã1 ∩ A1 ∩A3)− P (Ã1 ∩ A1 ∩A3) (122)

= 1− π(Ãc
1 ∪ Ac

1 ∪Ac
3)− P (Ã1 ∩ A1 ∩A3) (123)

= 1− P
(
Ã ∩

( 3⋂

i=1

Ai

))

− P (Ã1 ∩ A1 ∩ A3 ∩ (Ac
2 ∪ Ãc

2))

− π(Ãc
1 ∪Ac

1 ∪ Ac
3) (124)

≥ 1− P
(
Ã ∩

( 3⋂

i=1

Ai

))
− P (Ac

2)− P (Ãc
2)

− π(Ãc
1)− π(Ac

1)− π(Ac
3) (125)

= 1− P
(
Ã ∩

( 3⋂

i=1

Ai

))
− P (Ac

2)− π(Ac
1)− π(Ac

3)

(126)

The last three terms above can each be bounded above by
e−nη because

P (Ac
2) =

∑

(xn,yn,m)∈Ac
2

P (xn, yn,m) (127)

≤
∑

(xn,yn,m)∈Ac
2

P (w)Q(xn, yn|m)e−nη (128)

≤ e−nη, (129)

and

π(Ac
3) =

∑

(xn,yn,m)∈Ac
3

π(xn, yn)P (m|xn, yn) (130)

≤
∑

(xn,yn,m)∈Ac
3

Q(xn, yn|m)

× e−n(R+η)P (m|xn, yn) (131)

≤
∑

(xn,yn,m)∈Ac
3

Q(xn, yn|m)e−n(R+η) (132)

≤ e−nη, (133)
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and

π(Ac
1) =

∑

(xn,yn)∈Ac
1

π(xn, yn) (134)

≤
∑

(xn,yn)∈Ac
1

Q(xn, yn)e−nη (135)

≤ e−nη. (136)

Therefore, we have

|PXnY n − πXnY n |

≥ 1− P
(
Ã ∩

( 3⋂

i=1

Ai

))
− 3e−nη (137)

≥ 1− P
( 3⋂

i=1

Ai

∣∣∣ Ã
)
− 3e−nη. (138)

C. Proof of Lemma 6

Recall that in Appendix B-A, we choose Ui = Mn and
Vi = (X i−1, Y i−1). Then QXnY n and QXnY n|Mn

can be
written as follows:

QXnY n(xn, yn)

=

n∏

i=1

QXiYi|Xi−1Y i−1(xi, yi|x
i−1, yi−1) (139)

=

n∏

i=1

QXiYi|Vi
(xi, yi|vi), (140)

QXnY n|Mn
(xn, yn|m)

=

n∏

i=1

QXiYi|MnXi−1Y i−1(xi, yi|m,xi−1, yi−1) (141)

=

n∏

i=1

QXiYi|UiVi
(xi, yi|ui, vi). (142)

Now recall from Appendix B-A that the joint distribution
of (Xn, Y n,Mn) induced by the code is PXnY nMn

. The
marginal distributions of PXnY nMn

are as follows:

πXnY n(xn, yn) =

n∏

i=1

πXY (xi, yi), (143)

PXn|Mn
(xn|m) =

n∏

i=1

PXi|MnXi−1(xi|m,xi−1) (144)

=

n∏

i=1

PXi|MnXi−1Y i−1(xi|m,xi−1, yi−1)

(145)

=

n∏

i=1

PXi|UiVi
(xi|ui, vi), (146)

PY n|Mn
(yn|m) =

n∏

i=1

PYi|MnY i−1(yi|m, yi−1) (147)

=
n∏

i=1

PYi|MnXi−1Y i−1(yi|m,xi−1, yi−1)

(148)

=
n∏

i=1

PYi|UiVi
(yi|ui, vi), (149)

where (145) and (148) follow from the Markov chains Xi −
MnX

i−1−Y i−1 and Yi−MnY
i−1−X i−1 under distribution

PXnY nMn
(these two Markov chains can be easily obtained

by observing that PXiY iMn
= PMn

PXi|MnXi−1PYi|MnY i−1).
Using Lemma 5 and (139)–(149), we obtain

|PXnY n − πXnY n | ≥ 1− P
( 3⋂

i=1

Bi

∣∣∣ Ã
)
− 3e−nη. (150)

D. Proof of Lemma 8

1) Removing Dependence on the Indices: Recall from
Appendix B-A that the joint distribution of (Xn, Y n,Mn) is
PXnY nMn

and PXiYiUiVi
is induced by PXnY nMn

. Further,
recall that Qi denotes QXiYiUiVi

and Pi denotes PXiYiUiVi
.

Define

g
(α,λ)
Qi,Pi

(xi, yi|ui, vi) := exp
(
− λω

(α)
Qi,Pi

(xi, yi|ui, vi)
)
,

(151)

where ω
(α)
Qi,Pi

(xi, yi|ui, vi) is defined in (110).
Recall the definition of Ω(α,λ)({Qi}

n
i=1) in (111), then we

obtain that

exp
(
− Ω(α,λ)({Qi}

n
i=1)

)

=
∑

xn,yn,m

P
XnY nMn|Ã(x

n, yn,m)

n∏

i=1

g
(α,λ)
Qi,Pi

(xi, yi|ui, vi),

(152)

where ui = m, vi = (xi−1, yi−1), and P
XnY nMn|Ã is the con-

ditional distribution of (Xn, Y n,Mn) given (Xn, Y n,Mn) ∈
Ã.

For i = 1, . . . , n, define

C̃i :=
∑

xn,yn,m

P
XnY nMn|Ã(x

n, yn,m)

×

i∏

j=1

g
(α,λ)
Qj ,Pj

(xj , yj|uj , vj), (153)

P
(α,λ)|i
XnY nMn|Ã

(xn, yn,m) :=
1

C̃i

P
XnY nMn|Ã(x

n, yn,m)

×
i∏

j=1

g
(α,λ)
Qj ,Pj

(xj , yj|uj , vj), (154)

Λ
(α,λ)
i ({Qj}

i
j=1) :=

C̃i

C̃i−1

. (155)

Obviously, P (α,λ)|i
XnY nMn|Ã

(xn, yn,m) is a distribution induced
by normalizing all the terms of the summation in the definition
of C̃i.

Similarly to [14, Lemma 7], we obtain the following lemma,
which will be used to simplify Λ

(α,λ)
i ({Qj}

i
j=1), defined in

(155), in Appendix B-D2.
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Lemma 9. For i = 1, . . . , n, we have

Λ
(α,λ)
i ({Qj}

i
j=1)

=
∑

xn,yn,m

P
(α,λ)|i−1

XnY nMn|Ã
(xn, yn,m)g

(α,λ)
Qi,Pi

(xi, yi|ui, vi).

(156)

Furthermore, combining (152), (153) and (155) gives us

exp
(
− Ω(α,λ)({Qi}

n
i=1)

)
=

n∏

i=1

Λ
(α,λ)
i ({Qj}

i
j=1). (157)

2) Completion of the Proof of Lemma 8: Assume U and V
are two countable sets. Paralleling (21) to (24), for (α, θ) ∈
(0, 1]× (0,∞), we define the following quantities:

Q̃ :=
{
QXYUV ∈ P(X × Y × U × V) :

supp(QXY ) ⊆ supp(πXY )
}
, (158)

ω̃
(α)
QXY UV

(x, y|u, v) := ᾱ

(
log

QXY |V (x, y|v)

πXY (x, y)

+ log
QXY |UV (x, y|u, v)

QX|UV (x|u, v)QY |UV (y|u, v)

)

+ α log
QXY |UV (x, y|u, v)

πXY (x, y)
, (159)

Ω̃(α,λ)(QXY UV )

:= − logEQXY UV

[
exp

(
− θω

(α)
QXY UV

(X,Y |U, V )
)]
,

(160)

Ω̃(α,λ) := inf
QXY UV ∈Q̃

Ω̃(α,λ)(QXY UV ), (161)

where EQXY UV
in (160) is only taken over the set

supp(QXY UV ).
Recall that ui = m and vi = (xi−1, yi−1). For each i =

1, . . . , n, define

P (α,λ)(xi, yi, ui, vi) :=
∑

xn
i+1,y

n
i+1

P
(α,λ)|i−1

XnY nMn|Ã
(xn, yn,m),

(162)

where P
(α,λ)|i−1
XnY nMn

(xn, yn,m) was defined in (154).
Combining Lemma 9 and (162) yields

Λ
(α,λ)
i ({Qj}

i
j=1)

=
∑

xi,yi,ui,vi

P (α,λ)(xi, yi, ui, vi)g
(α,λ)
Qi,Pi

(xi, yi|ui, vi). (163)

Note that Qi = QXiYiUiVi
can be chosen arbitrarily for all

i = 1, . . . , n. Here we apply the recursive method. For each
i = 1, . . . , n, we choose QXiYiUiVi

such that

QXiYiUiVi
(xi, yi, ui, vi) = P (α,λ)(xi, yi, ui, vi). (164)

Then, let QXiYi|Vi
, QXiYi|UiVi

be induced by QXiYiUiVi
.

Define

h
(α,λ)
Qi

(xi, yi|ui, vi) := g
(α,λ)
Qi,Pi

(xi, yi|ui, vi)

×

(
Pλᾱ
Xi|UiVi

(xi|ui, vi)P
λᾱ
Yi|UiVi

(yi|ui, vi)

Qλᾱ
Xi|UiVi

(xi|ui, vi)Qλᾱ
Yi|UiVi

(yi|ui, vi)

)−1

, (165)

where g
(α,λ)
Qi,Pi

was defined in (151). In the following, for
brevity, we drop the subscripts of the distributions. From (163),
we obtain

Λ
(α,λ)
i ({Qj}

i
j=1)

= EQi
[g

(α,λ)
Qi,Pi

(Xi, Yi|Ui, Vi)] (166)

= EQi

[
h
(α,λ)
Qi

(Xi, Yi|Ui, Vi)

×
Pλᾱ
Xi|UiVi

(Xi|Ui, Vi)P
λᾱ
Yi|UiVi

(Yi|Ui, Vi)

Qλᾱ
Xi|UiVi

(Xi|Ui, Vi)Qλᾱ
Yi|UiVi

(Yi|Ui, Vi)

]
(167)

≤
(
EQi

[{
h
(α,λ)
Qi

(Xi, Yi|Ui, Vi)
} 1

1−2λᾱ
])1−2λᾱ

×

(
EQi

[
PXi|UiVi

(Xi|Ui, Vi)

QXi|UiVi
(Xi|Ui, Vi)

])λᾱ

×

(
EQi

[
PYi|UiVi

(Yi|Ui, Vi)

QYi|UiVi
(Yi|Ui, Vi)

])λᾱ

(168)

≤ exp
(
−
(
1− 2λᾱ

)
Ω̃(α, λ

1−2λᾱ
)(Qi)

)
(169)

= exp

(
−
Ω̃(α,θ)(Qi)

1 + 2ᾱθ

)
(170)

≤ exp

(
−

Ω̃(α,θ)

1 + 2ᾱθ

)
(171)

= exp

(
−

Ω(α,θ)

1 + 2ᾱθ

)
, (172)

where (167) follows from (165); (168) follows from Hölder’s
inequality; (169) follows from the definitions of Ω(α,θ)(·)

and h
(α,λ)
Qi

(·) in (23) and (165) respectively; (170) follows
from (114) and (115); (171) follows since Ω(α,θ)(QXY UV ) ≥
Ω̃(α,θ) for any QXY UV such that supp(QXY ) ⊆ supp(πXY )
(The fact that Qi satisfies this point will be shown in the
following paragraph); and (172) follows since by the support
lemma [2], the cardinality bounds |V| ≤ 1, |U| ≤ |X ||Y| are
sufficient to exhaust Ω̃(α,θ).

Now we show that according to the choice of QXiYiUiVi
, we

have supp(QXiYi
) ⊆ supp(πXY ), which was used in (171).

Note that PXnY nMn
(xn, yn,m) > 0 and πXnY n(xn, yn) > 0

for any (xn, yn,m) ∈ Ã, and hence the marginal distributions
PXiYiUiVi

, PXi|UiVi
and PYi|UiVi

when evaluated at any
(xn, yn,m) ∈ Ã is positive as well. According to the choice
of QXiYiUiVi

in (164), we have that QXiYiUiVi
is also positive

when evaluated at (xn, yn,m) ∈ Ã (this point can be shown
via mathematical induction), i.e.,

supp(QXiYiUiVi
) ⊇

{
(x, y, u, v) : ∃(xn, yn,m) ∈ Ã :

xi = x, yi = y,m = u, (xi−1, yi−1) = v
}
.

(173)

On the other hand, also according to the choice of QXiYiUiVi
,

we have

supp(QXiYiUiVi
) ⊆

{
(x, y, u, v) : ∃(xn, yn,m) ∈ Ã :

xi = x, yi = y,m = u, (xi−1, yi−1) = v
}
.

(174)
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Therefore,

supp(QXiYiUiVi
) =

{
(x, y, u, v) : ∃(xn, yn,m) ∈ Ã :

xi = x, yi = y,m = u, (xi−1, yi−1) = v
}
.

(175)

Further, we have

supp(QXiYi
)

=
{
(x, y) : ∃(xn, yn,m) ∈ Ã : xi = x, yi = y

}
(176)

⊆
{
(x, y) : ∃(xn, yn,m) ∈ supp(πXnY n)×Mn :

xi = x, yi = y
}

(177)

= supp(πXY ). (178)

Combining (157) and (172), we obtain that

1

n
Ω(α,λ)({Qi}

n
i=1) = −

1

n

n∑

i=1

log Λ
(α,λ)
i ({Qj}

i
j=1) (179)

≥
Ω(α,θ)

1 + 2ᾱθ
. (180)

Finally, combining (113) and (180), we have that

Ω(α,λ) ≥
Ω(α,θ)

1 + 2ᾱθ
. (181)

The proof of Lemma 8 is now complete.

APPENDIX C
PROOF OF LEMMA 1

Let U be a random variable taking values in a finite alphabet
U . Define a set of joint distributions on X × Y × U as

P∗ :=
{
PXY U : |U| ≤ |X ||Y|, PXY = πXY , X − U − Y

}
.

(182)

and let

R∗ := min
PXY U∈P∗

I(XY ;U). (183)

A. Preliminary Lemmata for the Proof of Lemma 1

By the support lemma [2, Appendix C], we have the
following lemma [1].

Lemma 10. Wyner’s common information CWyner(X ;Y ) sat-

isfies

CWyner(X ;Y ) = R∗. (184)

Before proceeding the proof of Lemma 1, we present
an alternative expression for Wyner’s common information.
Recall that given a number a ∈ [0, 1], we define ā = 1 − a.
Then for any α ∈ [0, 1] and QXY U ∈ Q, define

R(α)(QXY U ) := ᾱ
(
D(QXY ‖πXY )

+D(QXY |U‖QX|UQY |U |QU )
)

+ αD(QXY |U‖πXY |QU ), (185)

R(α) := min
QXY U∈Q

R(α)(QXY U ) (186)

Rsh := sup
α∈(0,1]

1

α
R(α). (187)

By observing that both P∗ and Q are compact, and by utilizing
the fact that a continuous function defined on a compact set
attains its minimum, we obtain the following.

Fact 1. Both the minima in the definitions of R∗ in (183) and

R(α) in (186) are attained.

We then have the following lemma.

Lemma 11. The following conclusions hold.

(i) For any α ∈ (0, 1], we have

1

α
R(α) ≤ R∗. (188)

Moreover, there exists some decreasing sequence

{αk}
∞
k=1 ⊂ R such that limk→∞ αk = 0 and

1

αk

R(αk) ≥ R∗ − c(αk), (189)

where {c(αk)}
∞
k=1 ⊂ R is another sequence such that

limk→∞ c(αk) = 0.

(ii) We have

Rsh = R∗ = CWyner(X ;Y ). (190)

Lemma 11 is similar to [14, Property 3], but the proofs
are different. Essentially, in both the proof of [14, Property 3]
and our proof, an intermediate distribution Q̃XY U is used to
establish the inequality

R∗ − c(αk) ≤
1

αk

R(αk)(Q̃XY U ) ≤
1

αk

R(αk). (191)

However, the construction of such an intermediate distribution
is different for these two proofs. The construction in [14] does
not apply to our case, since our case does not only require
Q̃XY U to satisfy the Markov chain X − U − Y , but also
requires that Q̃XY = πXY .

Proof of Lemma 11: It is easy to show (188). Hence, by
the definition of Rsh in (187),

Rsh ≤ R∗. (192)

In the following we prove (189). Let {αm}
∞
m=1 be an arbi-

trary sequence of decreasing positive real numbers such that
limm→∞ αm = 0, and let Q(m)

XY U be a minimizing distribution
of (186) with α = αm. The existence of this minimizing
distribution is guaranteed by Fact 1. Since P(X × Y × U)
is compact (following from the definition of Q), there must
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exist some sequence of increasing integers {mk}
∞
k=1 such that

Q
(mk)
XY U converges to some distribution Q̃XY U . Consider,

Rsh = sup
α∈(0,1]

1

α
R(α) (193)

≥ lim sup
k→∞

1

αmk

R(αmk
) (194)

= lim sup
k→∞

{
ᾱmk

αmk

(
D(Q

(mk)
XY ‖πXY )

+D(Q
(mk)
XY |U‖Q

(mk)
X|U Q

(mk)
Y |U |Q

(mk)
U )

)

+D(Q
(mk)
XY |U‖πXY |Q

(mk)
U )

}
(195)

≥ lim sup
k→∞

{
ᾱmk

αmk

}
lim inf
k→∞

{
D(Q

(mk)
XY ‖πXY )

+D(Q
(mk)
XY |U‖Q

(mk)
X|U Q

(mk)
Y |U |Q

(mk)
U )

}

+ lim inf
k→∞

D(Q
(mk)
XY |U‖πXY |Q

(mk)
U ) (196)

= ∞
(
D(Q̃XY ‖πXY ) +D(Q̃XY |U‖Q̃X|UQ̃Y |U |Q̃U )

)

+D(Q̃XY |U‖πXY |Q̃U ). (197)

Observe that Rsh is finite due to (192). Hence it holds that

D(Q̃XY ‖πXY ) = 0, (198)

D(Q̃XY |U‖Q̃X|UQ̃Y |U |Q̃U ) = 0. (199)

That is,

Q̃XY = πXY , (200)

Q̃XY |U = Q̃X|UQ̃Y |U . (201)

Therefore, under (200) and (201), we have

(197) ≥ D(Q̃XY |U‖πXY |Q̃U ) (202)

= I(Q̃XY |U , Q̃XY ) (203)

≥ R∗. (204)

Combining (192), (197) and (204) yields us

Rsh = R∗ = lim
k→∞

1

αmk

R(αmk
). (205)

Therefore, there exists some sequence {c(αmk
)}∞k=1 ⊂ R

(e.g., the sequence {R∗ − 1
αmk

R(αmk
)}∞k=1 ⊂ R) such that

limk→∞ c(αmk
) = 0 and

R∗ − c(αmk
) ≤

1

αmk

R(αmk
) ≤ R∗. (206)

This concludes the proof.
We also have the following crucial lemma.

Lemma 12. Let α ∈ (0, 1] and QXY U ∈ Q. Then we have

lim
θ↓0

1

θ
Ω(α,θ) = R(α), (207)

or equivalently,

1

θ
Ω(α,θ) = R(α) + ǫ(α,θ), (208)

where Ω(α,θ) and R(α) were defined in (24) and (186) respec-

tively, and ǫ(α,θ) is a term that vanishes as θ ↓ 0, the rate

being dependent on α.

Proof of Lemma 12: To show this lemma, we first need
to show that

R̂(α,θ)(QXY U ) :=

{
1
θ
Ω(α,θ)(QXY U ), θ > 0

R(α)(QXY U ), θ = 0
(209)

is continuous in (θ,QXY U ) ∈ [0, 1
1+ᾱ

) × Q. It is easy to
observe that

Ω(α,θ)(QXY U )

= − logEQXY U

[
exp

(
− θω

(α)
QXY U

(X,Y |U)
)]

(210)

= − log
∑

x,y,u

Q
1−θ(1+ᾱ)
XY U (x, y, u) (QU (u)πXY (x, y))

θ

×
(
QU|XY (u|x, y)QX|U (x|u)QY |U (y|u)

)θᾱ
(211)

is jointly continuous in (θ,QXY U ) ∈ [0, 1
1+ᾱ

) × Q, hence

R̂(α,θ)(QXY U ) is jointly continuous on (0, 1
1+ᾱ

)×Q. There-

fore, to show the continuity of R̂(α,θ)(QXY U ) in (θ,QXY U ) ∈
[0, 1

1+ᾱ
)×Q, it suffices to show it is continuous at any point

in {0} × Q, i.e.,

lim
(θ,QXY U )→(0,Q′

XY U
)

1

θ
Ω(α,θ)(QXY U ) = R(α)(Q′

XY U )

(212)
for any Q′

XY U ∈ Q.
Let

Q
(α,θ)
XY U (x, y, u)

:=
QXY U (x, y, u) exp

(
− θω

(α)
QXY U

(x, y|u)
)

∑
x,y,uQXY U (x, y, u) exp

(
− θω

(α)
QXY U

(x, y|u)
) .

(213)

Invoking the definition of Ω(α,θ)(QXY U ) in (23), we obtain

∂Ω(α,θ)(QXY U )

∂θ
= E

Q
(α,θ)
XY U

[
ω
(α)
QXY U

(X,Y |U)
]
, (214)

and

∂2Ω(α,θ)(QXY U )

∂θ2
= −Var

Q
(α,θ)
XY U

[
ω
(α)
QXY U

(X,Y |U)
]
. (215)

Hence for fixed QXY U ∈ Q, we have

∂Ω(α,θ)(QXY U )

∂θ

∣∣∣∣
θ=0

= R(α)(QXY U ) > 0, (216)

∂2Ω(α,θ)(QXY U )

∂θ2
≤ 0, (217)

which implies that

θ
∂Ω(α,θ)(QXY U )

∂θ
≤ Ω(α,θ)(QXY U ) ≤ θR(α)(QXY U ).

(218)
Furthermore, observe that R(α)(QXY U ) is continuous in

QXY U ∈ Q, hence

lim
QXY U→Q′

XY U

R(α)(QXY U ) = R(α)(Q′
XY U ). (219)
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On the other hand, observe that ∂Ω(α,θ)(QXY U )
∂θ

given in (214)
is continuous in (θ,QXY U ) ∈ [0, 1

1+ᾱ
)×Q. Hence

lim
(θ,QXY U )→(0,Q′

XY U
)

∂Ω(α,θ)(QXY U )

∂θ

=
∑

x,y,u

Q′
XY U (x, y, u)ω

(α)
Q′

XY U
(X,Y |U) (220)

= R(α)(Q′
XY U ). (221)

Therefore, combining (218), (219), and (221), we observe
that the limit lim(θ,QXY U )→(0,Q′

XY U
)
1
θ
Ω(α,θ)(QXY U ) exists,

and moreover, lim(θ,QXY U )→(0,Q′
XY U

)
1
θ
Ω(α,θ)(QXY U ) =

R(α)(Q′
XY U ). Hence, we obtain (212). In other words,

R̂(α,θ)(QXY U ) is jointly continuous in (θ,QXY U ) ∈
[0, 1

1+ᾱ
) × Q. In addition, observe that Q is a compact

set. By using the following lemma we can assert that
minQXY U∈Q R̂(α,θ)(QXY U ) is continuous in θ ∈ [0, 1

1+ᾱ
).

Lemma 13 (Lemma 14 in [24]). Let X and Y be two metric

spaces and let K ⊂ X be a compact set. Let f : X×Y → R be

a (jointly) continuous real-valued function. Then the function

g : Y → R, defined as

g(y) := min
x∈K

f(x, y), ∀ y ∈ Y, (222)

is continuous on Y .

Considering the point θ = 0, we obtain

lim
θ→0

min
QXY U∈Q

R̂(α,θ)(QXY U )

= min
QXY U∈Q

R̂(α,0)(QXY U ) (223)

= min
QXY U∈Q

R(α)(QXY U ) = R(α), (224)

where the first equality follows from Lemma 13 which es-
sentially says that the limit and minimum operations can be
swapped. On the other hand, observe that

lim
θ→0

min
QXY U∈Q

R̂(α,θ)(QXY U )

= lim
θ→0

min
QXY U∈Q

1

θ
Ω(α,θ)(QXY U ) (225)

= lim
θ→0

1

θ
Ω(α,θ). (226)

Combining (224) and (226), we obtain (207) as desired.

B. Proof of Part (i) in Lemma 1

Using Lemma 10, we obtain that if R < CWyner(X ;Y ),
then

R + τ ≤ R∗ (227)

for some τ > 0. Further, invoking (189) and (227), we obtain
that there exists k0 such that for any k ≥ k0,

R+ τ ≤
1

αk

R(αk) + c(αk), (228)

and

c(αk) ≤
τ

2
. (229)

Referring to (228) and (229), we obtain that for any k ≥ k0,

R+
τ

2
≤

1

αk

R(αk). (230)

Therefore, invoking (26), we conclude that for any k ≥ k0,

F (R) ≥ sup
θ≥0

F (αk,θ)(R) (231)

≥ sup
θ∈[0, 1

1+ᾱk
)

F (αk,θ)(R) (232)

= sup
θ∈[0, 1

1+ᾱk
)

Ω(αk,θ) − θαkR

1 + (5− 3αk)θ
(233)

≥ sup
θ∈[0, 1

1+ᾱk
)

1

1 + 5θ

{
θR(αk) + θǫ(αk,θ) − θαkR

}

(234)

≥ sup
θ∈[0, 1

1+ᾱk
)

θ

1 + 5θ

{
ǫ(αk,θ) +

αkτ

2

}
(235)

≥ sup
θ∈[0,θ̃]

αkτθ

4(1 + 5θ)
(236)

≥
αkτ θ̃

4(1 + 5θ̃)
, (237)

where (234) follows from Lemma 12 and the inequality 1 +
(5 − 3αk)θ ≤ 1 + 5θ, (235) follows from (230), and (236)
follows since there exists a sufficiently small θ̃ ∈ (0, 1

1+ᾱk
)

such that |ǫ(αk,θ)| ≤ 1
4αkτ for all θ ≤ θ̃. Since the expression

in (237) is positive, we have F (R) > 0 as desired.

C. Proof of Part (ii) in Lemma 1

Because exp(·) is convex, applying Jensen’s inequality, we
obtain

Ω(α,θ)(QXY U ) ≤ θEQXY U

[
ω
(α)
QXY U

(X,Y |U)
]

(238)

= θR(α)(QXY U ). (239)

Hence we have

Ω(α,θ) ≤ min
QXY U∈Q

θR(α)(QXY U ) (240)

= θR(α). (241)

Thus, recalling the definition of F (α,θ)(R) in (25), we obtain
that

F (α,θ)(R) =
Ω(α,θ) − θαR

1 + (5− 3α)θ
(242)

≤
θα( 1

α
R(α) −R)

1 + (5− 3α)θ
(243)

≤
θα(Rsh −R)

1 + (5− 3α)θ
(244)

≤ 0, (245)

where (245) follows from the assumption R ≥
CWyner(X ;Y ) = Rsh. On the other hand, note that

lim
θ→0

F (α,θ) = 0. (246)

Hence, combining (245) and (246), we conclude that

F = sup
(α,θ)∈[0,1]×[0,∞)

F (α,θ)(R) = 0. (247)



17

Acknowledgements

The authors thank the reviewers and the editor for their
suggestions to enhance the quality of the paper.

REFERENCES

[1] A. Wyner. The common information of two dependent random variables.
IEEE Trans. on Inform. Theory, 21(2):163–179, 1975.

[2] A. El Gamal and Y.-H. Kim. Network Information Theory. Cambridge
university press, 2011.

[3] G. R. Kumar, C. T. Li, and A. El Gamal. Exact common information.
In IEEE International Symposium on Information Theory (ISIT), pages
161–165. IEEE, 2014.

[4] P. Cuff, H. Permuter, and T. Cover. Coordination capacity. IEEE Trans.

on Inform. Theory, 56(9):4181–4206, 2010.
[5] P. Cuff. Distributed channel synthesis. IEEE Trans. on Inform. Theory,

59(11):7071–7096, 2013.
[6] T. Han and S. Verdú. Approximation theory of output statistics. IEEE

Trans. on Inform. Theory, 39(3):752–772, 1993.
[7] M. Hayashi. General nonasymptotic and asymptotic formulas in channel

resolvability and identification capacity and their application to the
wiretap channel. IEEE Trans. on Inform. Theory, 52(4):1562–1575,
2006.

[8] M. Hayashi. Exponential decreasing rate of leaked information in
universal random privacy amplification. IEEE Trans. on Inform. Theory,
57(6):3989–4001, 2011.

[9] J. Liu, P. Cuff, and S. Verdú. Eγ -resolvability. IEEE Trans. on Inform.

Theory, 63(5):2629–2658, 2017.
[10] L. Yu and V. Y. F. Tan. Rényi resolvability and its applications to the

wiretap channel. arXiv preprint 1707.00810, 2017.
[11] M. R. Bloch and J. N. Laneman. Strong secrecy from channel

resolvability. IEEE Trans. on Inform. Theory, 59(12):8077–8098, 2013.
[12] T. S. Han, H. Endo, and M. Sasaki. Reliability and secrecy functions

of the wiretap channel under cost constraint. IEEE Trans. on Inform.

Theory, 60(11):6819–6843, 2014.
[13] M. B. Parizi, E. Telatar, and N. Merhav. Exact random coding secrecy

exponents for the wiretap channel. IEEE Trans. on Inform. Theory,
63(1):509–531, 2017.

[14] Y. Oohama. Exponent function for source coding with side information
at the decoder at rates below the rate distortion function. arXiv preprint
arXiv:1601.05650, 2016.

[15] I. Sason. On the Rényi divergence, joint range of relative entropies, and
a channel coding theorem. IEEE Trans. on Inform. Theory, 62(1):23–34,
2016.

[16] A. R. Barron. Entropy and the central limit theorem. The Annals of

Probability, pages 336–342, 1986.
[17] S. G. Bobkov, G. P. Chistyakov, and F. Götze. Rényi divergence and

the central limit theorem. arXiv preprint arXiv:1608.01805, 2016.
[18] J. Hou and G. Kramer. Effective secrecy: Reliability, confusion and

stealth. In IEEE International Symposium on Information Theory (ISIT),
pages 601–605. IEEE, 2014.

[19] S. Beigi and A. Gohari. Quantum achievability proof via collision
relative entropy. IEEE Trans. on Inform. Theory, 60(12):7980–7986,
2014.

[20] Y. Dodis and Y. Yu. Overcoming weak expectations. In Theory of
Cryptography, pages 1–22. Springer, 2013.

[21] M. Hayashi and V. Y. F. Tan. Equivocations, exponents, and second-
order coding rates under various Rényi information measures. IEEE
Trans. on Inform. Theory, 63(2):975–1005, 2017.

[22] V. Y. F. Tan and M. Hayashi. Analysis of remaining uncertainties
and exponents under various conditional Rényi entropies. IEEE Trans.

on Inform. Theory, to be published. DOI: 10.1109/TIT.2018.2792495.,
2018.

[23] T. Van Erven and P. Harremoës. Rényi divergence and Kullback-Leibler
divergence. IEEE Trans. on Inform. Theory, 60(7):3797–3820, 2014.

[24] V. Y. F. Tan, A. Anandkumar, L. Tong, and A. S. Willsky. A large-
deviation analysis of the maximum-likelihood learning of Markov tree
structures. IEEE Trans. on Inform. Theory, 57(3):1714–1735, 2011.

[25] W.-H. Gu and M. Effros. A strong converse for a collection of
network source coding problems. In IEEE International Symposium

on Information Theory (ISIT), pages 2316–2320. IEEE, 2009.
[26] S. Watanabe. Second-order region for Gray–Wyner network. IEEE

Trans. on Inform. Theory, 63(2):1006–1018, 2017.
[27] L. Zhou, V. Y. F. Tan, and M. Motani. Discrete lossy Gray-Wyner

revisited: Second-order asymptotics, large and moderate deviations.
IEEE Trans. on Inform. Theory, 63(3):1766–1791, 2017.

[28] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976.
[29] I. Csiszar and J. Körner. Information Theory: Coding Theorems for

Discrete Memoryless Systems. Cambridge University Press, 2011.
[30] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applica-

tions. Springer-Verlag, 2nd edition, 1998.

Lei Yu received the B.E. and Ph.D. degrees, both in electronic engineering,
from University of Science and Technology of China (USTC) in 2010 and
2015, respectively. From 2015 to 2017, he was a postdoctoral researcher at
the Department of Electronic Engineering and Information Science (EEIS),
USTC. Currently, he is a research fellow at the Department of Electrical
and Computer Engineering, National University of Singapore. His research
interests include information theory, probability theory, and security.

Vincent Y. F. Tan (S’07-M’11-SM’15) was born in Singapore in 1981. He is
currently an Associate Professor in the Department of Electrical and Computer
Engineering and the Department of Mathematics at the National University
of Singapore (NUS). He received the B.A. and M.Eng. degrees in Electrical
and Information Sciences from Cambridge University in 2005 and the Ph.D.
degree in Electrical Engineering and Computer Science (EECS) from the
Massachusetts Institute of Technology in 2011. His research interests include
information theory and machine learning.

Dr. Tan received the MIT EECS Jin-Au Kong outstanding doctoral thesis
prize in 2011, the NUS Young Investigator Award in 2014, the NUS
Engineering Young Researcher Award in 2018, and the Singapore National
Research Foundation (NRF) Fellowship (Class of 2018). He has authored
a research monograph on “Asymptotic Estimates in Information Theory

with Non-Vanishing Error Probabilities” in the Foundations and Trends in
Communications and Information Theory Series (NOW Publishers). He is
currently an Editor of the IEEE Transactions on Communications and a Guest
Editor for the IEEE Journal of Selected Topics in Signal Processing.


	I Introduction
	I-A Main Contributions
	I-B Notation 
	I-C Problem Formulation

	II Main Results
	III  The Proof of Part (iii) in Theorem 2 
	IV Converse Proof of Theorem 1 for the Normalized Rényi Common Information 
	V Conclusion and Future Work
	Appendix A: Achievability Proof of Theorem 1 for the Unnormalized Rényi Common Information
	A-A Achievability
	A-B Exponential Achievability

	Appendix B: Proof of Theorem 3
	B-A Proof of Theorem 3
	B-B Proof of Lemma 5
	B-C Proof of Lemma 6
	B-D Proof of Lemma 8
	B-D1 Removing Dependence on the Indices
	B-D2 Completion of the Proof of Lemma 8


	Appendix C: Proof of Lemma 1
	C-A Preliminary Lemmata for the Proof of Lemma 1
	C-B Proof of Part (i) in Lemma 1
	C-C Proof of Part (ii) in Lemma 1

	References
	Biographies
	Lei Yu
	Vincent Y. F. Tan


