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Abstract

Consider the problem of a Multiple-Input Multiple-Output (MIMO)Multiple-Access
Channel (MAC) at the limit of large number of users. Clearly, in practical scenarios,
only a small subset of the users can be scheduled to utilize the channel simultaneously.
Thus, a problem of user selection arises. However, since solutions which collect Chan-
nel State Information (CSI) from all users and decide on the best subset to transmit
in each slot do not scale when the number of users is large, distributed algorithms for
user selection are advantageous.

In this paper, we analyse a distributed user selection algorithm, which selects a
group of users to transmit without coordinating between users and without all users
sending CSI to the base station. This threshold-based algorithm is analysed for both
Zero-Forcing (ZF) and Minimum Mean Square Error (MMSE) receivers, and its ex-
pected sum-rate in the limit of large number of users is investigated. It is shown that
for large number of users it achieves the same scaling laws as the optimal centralized
scheme.

1 Introduction

Wireless access networks are the typical last-mile networks connecting multiple users to a
high speed backbone. In these networks, a Base Station (BS) serves a large group of users.
Traditionally, either the time or the frequency are divided to ensure users do not interfere
with each other. Modern coding techniques, however, allow multiple users to either transmit
or receive simultaneously, and be decoded successfully using appropriate Multiple Access
Channel (MAC) codes or Broadcast Channel (BC) codes, respectively.

In prevalent scenarios in which the BS is serving a large user population it is not practical
to serve all users simultaneously, and the BS is required to select a subset of users to be served.
In such scenarios the problem of user selection or scheduling is acute, i.e., selecting a proper
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subset of users to be served can dramatically boost the performance in terms of a predefined
objective, e.g., can dramatically increase the achievable sum-rate. As shown in literature,
such performance enhancement is applicable both in the case of downlink traffic, in which a
BS transmits to a group of users, as well as for the case of upstream traffic, in which a selected
sub-set of users are transmitting simultaneously to the BS. Furthermore, numerous papers
have shown that under various setups optimal or near-optimal sum-rate can be attained by
selecting a proper subset of users, e.g., it was shown that for the downstream traffic, selecting
a sub-set of users with good channel condition, yet with relatively orthogonal channels and
utilizing zero-forcing beamforming (ZFBF) strategy achieves the performance of Dirty Paper
Coding (DPC), hence is asymptotically optimal in the Gaussian case (e.g., [1–5]).

The challenge in selecting a proper set of users under the predefined objective is twofold.
First, in order to find a proper set the scheduler (e.g., the BS) needs to attain the channel
state between each and every BS’s antenna and each potential user’s antenna or vice versa
(between the potential users’ antennas and each BS’s antennas), for the downstream or
upstream traffic, respectively. Obviously, such channel state acquisition consumes large
overhead which hinders the gain of serving multiple users simultaneously, especially when
the number of users is moderate or large. Second, even after possessing the channel state
between each and every potential transmit antenna and each and every potential receive
antenna, searching for the optimal user set is computationally prohibitive. Note that most
of the literature considering this problem assumes the Channel State Information (CSI) is
available at the scheduler and suggests heuristics for user selection procedures for various
setups, e.g., in [1] an efficient user selection heuristic was suggested which, given the CSIs,
attains the capacity scaling law when the number of users is large.

In this paper, we analyse a distributed threshold-based user selection algorithm for the
upstream traffic case, in which each user determines for itself whether to transmit or not, in
each transmission opportunity, without any coordination between the users and with minimal
CSI exchange (specifically, the BS attains CSIs only from the self-selected users). We analyse
this threshold-based algorithm both for Zero-Forcing (ZF) and Minimum Mean Square Error
(MMSE) detection, and show that in both cases the ergodic sum-rate for large number of
users achieves the same scaling laws as the one obtained by the optimal centralized scheme.
Note that employing such distributed threshold-based mechanisms tackles both challenges
mentioned above. First, it requires minimal CSI exchange, and second, it provides a simple
and distributed user selection search.

Main Contribution

We consider a MIMO MAC channel with r receiving antennas and K � r users. We
investigate a distributed algorithm for selecting a group of users to transmit in each slot. In
particular, a threshold value for the norm of the channel vector is set, and only users above
the threshold transmit. Hence, there is no need to collect CSIs from all users. Nor is any
cooperation required.

The contribution of this study is the analysis of the resulting ergodic sum-rate in the
limit of large K. The respective scaling laws are given for both Zero-Forcing (ZF) and
Minimum Mean Square Error (MMSE) receivers. This analysis employs recent tools from
both Point Process approximation and asymptotic random matrix theory, that to the best of
our knowledge, were not used in this setting before. Via this analysis, the simple distributed,
threshold based algorithm, is shown to achieve the optimal scaling laws.
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The rest of this paper is organized as follows: Section 2 presents the most relevant
related work. Section 3 includes the required preliminary material. Section 4 introduces the
distributed algorithm, gives its analysis and scaling law under ZF decoding. Section 5 gives
the analysis under an MMSE receiver. While conceptually similar, this analysis is the more
technically challenging. Section 6 concludes the paper. Proofs which were omitted in the
main body are given in Appendix A.

2 Related Work

The essence of multi-user diversity was introduced in [6], where selecting the strongest user
in each time slot was first suggested. In [7], the authors considered the impact of multi-user
diversity on the MIMO channel. Assuming channel state information at the BS, the authors
used order statistics to evaluate the effective SNR when scheduling the strongest user in each
slot. Nevertheless, locating the strongest user is not an easy task, especially for large number
of users, as it requires huge overhead due to excessive CSI exchange. A practical method
to attain multi-user diversity is to schedule the strongest user distributively by setting a
threshold on, e.g., the link capacity or channel gain.

A pioneering study of distributed scheduling was done in [8, 9], where a decentralized
MAC protocol for Orthogonal Frequency Division Multiple Access (OFDMA) channels was
suggested. In this scheme, each user estimated the channel gain and compared it to a
threshold. Only above-the-threshold users could transmit. In [10], the authors proposed
threshold-based scheduling for the SISO downlink channel, and showed that using such a
scheme reduces the required feedback, while preserving most of the system capacity and
outage probability. Recently, we proposed a Point Process approximation which facilitates
the analysis of various distributed threshold-based single user scheduling algorithms in the
non-homogeneous scenario [11,12]. In [13] the authors extended the threshold-based scheme
to a multi-channel setup, where each user competes on m channels. In [14], the authors
used a similar approach for power allocation in the multi-channel setup, and suggested an
algorithm that asymptotically achieves the optimal water filling solution.

Yet, to fulfill the full potential of multiple antenna systems, multi-user scheduling should
be considered. However, when extending the single user scheduling problem to a multi-
user one, the problem of mutual interference arises. Thus, the scheduled group may have
a significant impact on the system performance. In [4], the authors suggested a greedy
algorithm to schedule the strongest and most orthogonal users for the MIMO downlink model
with Zero-Forcing Beamforming (ZFBF) detector. A closely related scheme was suggested
in [15]. Using Block Diagonalization (BD), a capacity-based greedy algorithm was suggested,
in which first the strongest user is scheduled, and then additional users are added, one by
one, based on their marginal contribution to the total capacity. In the same context, [16]
considered the special case of two transmit antennas and one receive antenna per user, and
showed that a greedy, two-stage algorithm, which first selects the strongest user and then the
second to form the best pair is asymptotically optimal. In the context of heterogeneous users,
[2] proposed a scheduling scheme which selects a small subset of the users with favorable
channel characteristics. In fact, in the downlink scenario, it was shown that ZFBF with
sub-optimal user selection can indeed achieve the Dirty Paper Coding (DPC) region [1],
and is hence optimal in the Gaussian case [17]. Additional centralized multi-user scheduling
algorithms for MIMO communication were given in [3,5,18,19]. Space-time coding for fading
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multi-antenna MAC was considered in [20]. The focus therein, however, was on joint code
design for a given point in the rate region and the resulting error probability, rather than user
scheduling and its resulting capacity. In [21], the authors used Extreme Value Theory (EVT)
to derive the scaling laws for scheduling systems using beamforming and linear combining.
In [22], the authors suggested sub-carrier assignment algorithms that achieve fairness and
better cell coverage, and used order statistics to derive an expression for the resulting link
outage probability. An asymptotically optimal scheme for multiple base stations (with joint
optimization) was given in [23]. [24] analysed the scaling laws of base station scheduling,
and showed that by scheduling the strongest among K stations one can gain a factor of
O(
√

2 logK) in the expected capacity (compared to random or Round-Robin scheduling).
Additional surveys and scaling laws can be found in [25–27].

Still, attaining multi-user diversity, and further, selecting a favorable group of users,
requires CSI and complex coordination. Thus, a distributed solution is desirable in this case
as well. In [28], the asymptotic performance of a threshold-based algorithm for scheduling
users in a MIMO broadcast channel environment under ZF detection was analysed. In
particular, the transmitter utilized threshold values on the eigenvalues of the users’ channel
matrix. Then, among the relevant candidates, a set of nearly orthogonal users were selected.
Such a scheduling scheme in nearly optimal, as the transmitter selects both strong and
nearly orthogonal users. Note that to compute a threshold on the eigenvalues, one should
deal with the eigenvalue distribution, which does not have a closed form expression. In this
paper, on the other hand, we compute a threshold on the channel norm, which has a simple
form of the Chi-square distribution, and thus, the analysis herein is inherently different.
In [29], the authors suggested a random beaming scheme for the broadcast channel, in which
the transmitter first chooses the directions at random, then selects users that obtained the
highest SINR values in the directions chosen. Such a scheme requires very limited feedback,
nevertheless, still achieves the optimal scaling law. However, random beaming schemes suffer
from degraded power gains, as a receiver (in an uplink model) sees only the projections on
the a-priori chosen directions, and cannot use the full knowledge on the true directions of
the users actually transmitting. This can be critical, especially in the low SINR regime.
In this paper, however, the receiver can detect the transmitting users based on their exact
directions, since it has the transmitting users CSI and no a-priori directions were defined.
Hence, the resulting power gain and its analysis are different. In other words, herein, we are
able to design the detection matrices based on the channel vectors of the selected users, and
we are not restricted to a (random) set of directions chosen in advanced.

A key contribution of the current work is the non-trivial extension of the work in [11] to
analyse multiple-access protocols, where several users transmit simultaneously and should
be decoded successfully, hence the questions that arise are: (i) how to distributively select a
good subset of users to transmit, (ii) what is the mutual influence between the users in the
selected group, and (iii) what is the performance under different detection schemes.

Channel hardening refers to the phenomenon that the variance of the limiting distribu-
tion of the channel mutual information decreases in relation to the mean as the number of
antennas grows [30]. Accordingly, if matrix H dimensions between the transmit antennas
and selected users are large, channel hardening limits the gains provided by scheduling, i.e.,
the user selection gain of choosing preferable users is much smaller with respect to the gain
already achieved by the large number of antennas. Note that channel hardening relies on the
law of large numbers and is applied to massive MIMO systems. Accordingly, as long as after
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scheduling the dimensions of H remain large, user selection gain is much smaller compared
to gain already achieved by the large number of antennas.

In this work, however, even though the number of potential users is large, the number
of actually selected users is small, and since the number of receive antennas is small as well,
the dimensions of H are fixed, and channel hardening does not apply.

In fact, one of this study’s key contributions is in considering a different kind of asymptotic
in which the size of H is fixed (small), and taking the number of users from which to select,
to infinity. Moreover, due to the distributed algorithm we suggest, the entries in H are
dependent, rendering many previous results useless and requiring us to derive new tools to
analyse the sum-rate.

3 Preliminaries

In this section, we describe the system model and relevant results which will be used through-
out this paper.

3.1 System Model

We consider a multiple-access model with K users, each with a single transmit antenna. The
BS is equipped with r receiving antennas. Let us denote random matrices in bold upper-case
and random vectors and variables in bold lower-case letters. When k users utilize the channel
simultaneously, the received signal at the base station can be described as:

y =
k∑
i=1

hixi + w, (1)

where xi ∈ C is the transmitted signal (scalar). xi has a short-term constrain in its total
power to P , i.e., E[x†ixi] ≤ P per block (users are not allowed to aggregate power if they
do not transmit). However, in most cases, we will assume a constant power constraint P .
w ∈ Cr denotes the uncorrelated Gaussian noise. hi ∈ Cr×1 is a complex random Gaussian
channel vector whose coefficients describe the gain and phase between the user’s transmitting
antenna to each of the receiving antennas at the BS. When all users are identically and
independently distributed, it is common to assume that all entries of hi are independent and
have zero mean and variance 1/2 imaginary and real parts, for all users.

We assume a memoryless block-fading channel model, i.e., the channel remains constant
over each slot (block) period, and at the beginning of each slot independent realizations
of {hi}Ki=1 are drawn. Furthermore, we assume that each user has accurate channel gain
estimation to each of the BS antennas. Eventually, however, in the algorithm we suggest
it is sufficient to know only the norm ‖h‖2. We further assume TDD channel reciprocity,
i.e., the downlink and uplink transmissions are performed at the same carrier frequency
and uplink transmissions happen at the same coherence time such that downlink channel
estimation at the users can be directly utilized for the uplink transmission [31].

This paper focuses on a threshold based scheduling for multiuser selection. In particular,
a group of users schedule themselves if their channels’ gains are above a high threshold,
without knowing the number of above-threshold users at that slot, or their channel correlation
with the other scheduled users. The channel correlation highly affects the resulting rate of
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each user. That is, even if each user knows its own CSI, due to the inter-user interference,
determining the achievable transmission rate is impossible without coordination. As a result,
when each user transmits at a fixed rate R, the BS can decode that transmission only if
the capacity is greater than R at that time. Otherwise, there is an outage event [32].
Alternatively, a user may code over many blocks (time slots) while averaging all fading
values and taking into account the inter-user interference statistics, and thus attain the
ergodic rate. This paper focuses on the latter approach, i.e., analysing the ergodic capacity
under distributed multiuser selection with MMSE and ZF detection.

3.2 Multi-User Diversity Via EVT

EVT is a key tool in our evaluation of the rate under scheduling in multi-user systems. In
this subsection we briefly review the most relevant results in this context. In addition, we
develop new normalizing constants for the problem at hand (EVT for the χ2 distribution),
which will later aid at speeding up convergence results.

As the sum rate is mainly influenced by the channel vectors’ gains and directions, our
goal is to explore this behavior for a large number of users. Specifically, we first wish to
explore the behavior of the maximal gain. Since the entries of h are complex Gaussian, the

channel gain follows a χ2 distribution with 2r degrees of freedom, denoted χ2
2r. Let ‘

d→’
denote convergence in distribution. We utilize the following EVT theorem.

Theorem 1 ( [33–35]). Let z1, ..zK be a sequence of i.i.d. random variables with distribution
F (z), and let MK = max(z1, ..., zK). If there exists a sequence of normalizing constants
aK > 0 and bK such that as K →∞,

Pr(MK ≤ aKz + bK)
d→ G(z)

for some non-degenerate distribution G, then G is of the generalized extreme value (GEV)
distribution type

G(z) = exp
{
−(1 + ξz)−1/ξ

}
and we say that F (z) is in the domain of attraction of G, where ξ is the shape parameter,
determined by the ancestor distribution F (z).

It was shown that when {zK} is a sequence of i.i.d. χ2
2r variables, the asymptotic distri-

bution of MK is a Gumbel distribution (e.g., [35, pp. 156]). Specifically,

Pr(MK ≤ aKz + bK)
d→ e−e−z , (2)

where

aK = 2, (3)

bK = 2 (logK + (r − 1) log logK − log Γ(r)) + o(1), (4)

and Γ(r) =
∫∞

0
tr−1e−tdt is the Gamma function.

However, the convergence of the maxima to the Gumbel distribution is quite slow for
i.i.d. χ2

2r random variables, when using the above normalizing constants. That is, the ap-
proximation of the maximal value using the above normalizing constants and the Gumbel
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distribution will not be tight for moderate values of r,K ∈ N. Thus, to provide insight into
practical setups, we devise new normalizing constants for the maxima of χ2-distribution,
which have the same asymptotic limit as the constants in (3) and (4), yet, as will be shown
experimentally, attain an accurate approximation even for moderate K and r (i.e., the ap-
proximation using these constants converges much faster). The method used to derive the
new constants is technical, and hence deferred to Appendix A.1. It results in the following
constants.

a{K,r} =
2

K
Γ(r) exp

{
Q−1

(
r,

1

K

)}
Q−1

(
r,

1

K

)1−r

(5)

b{K,r} = 2Q−1

(
r,

1

K

)
+ o(a{K,r}), (6)

where Q−1
(
r, 1

K

)
is the inverse of the regularized upper incomplete gamma function, that

is, Q(r, z) = Γ(r,z)
Γ(r)

, and the inverse is defined with respect to z. Accordingly, throughout

this paper, whenever the normalizing constants are required (e.g., all simulation results), we
utilize the constants above. It is important to note that the main results of this paper, which
are the scaling laws, are not affected by the constants used, as long as they have the same
asymptotic behaviour. The difference is only in the speed of convergence.

Figure 1 evaluates the expression for the distribution of the maxima of K independent
variables (with a χ2-distribution each), using the normalizing constants in (5) and (6), and
taking o(a{K,r}) to be 0. In particular, we start from the convergence result in (2). This
result holds, of course, when K →∞. However, letting ζ = aKz+ bK , and using this change
of variables, the distribution for finite K can be expressed as Pr (MK ≤ ζ) = e−e−(ζ−bK )/aK .
Of course, differentiating this w.r.t. ζ provides a probability density function (PDF) for any
finite K. This distribution is depicted in the figure (solid line) for 30 chi-squared random
values (i.e., K = 30) with r = 4 (left plot) and r = 16 (right plot) degrees of freedom.
We compare these analytical results with simulation results (presented by bars) which are
generated by randomly generating K = 30 random values, drawn from the χ2-distribution
and selecting the maximal value for each such instance, repeating the process for 10, 000
instances, and presenting the histogram of the outcome (i.e., the empirical PDF). As can
be seen in the figure, the agreement between the simulation results and analytical results
utilizing the normalizing constants suggested in (5) and (6) is evident even for a small
number of random variables. For comparison, we also depict the analytical results obtained
by utilizing the normalizing constants previously suggested in the literature. In particular,
the dashed lines depict the resulting Gumbel distribution under the normalizing constants
given in (3) and (4). As can be seen in the figure, the maximal value distribution is not well
approximated by the Gumbel distribution and these normalizing constants for moderate K
(K = 30). Obviously, for asymptotically large K both sets of normalizing constants provide
good approximation, converging to the Gumbel distribution at the limit (a proof is given in
Appendix A).

3.3 Linear Receivers

In this paper we aim to analyse the ergodic sum-rate of a practical system in which only a
subset of the users is scheduled at each time slot and only linear decoders are considered at
the BS. In particular, we focus on either the ZF receiver (Section 4) or the MMSE receiver
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Figure 1: Convergence of the distribution of the maximum to the analytical result. Bars
depict the maximal channel norm values among K = 30 channels, according to our simula-
tion results, while the solid lines depict the max norm Gumbel distribution with 4 and 16
degrees of freedom, under the normalizing constants derived in (5) and (6). The dashed lines
depict the max norm Gumbel distribution with the same degrees of freedom, but under the
normalizing constants that are found in the literature, and are given in (3) and (4).

(Section 5). We further assume optimal coding of the resulting single user Gaussian channels,
given the effective Signal to Noise Ratio (SNR).

Specifically, for the ZF receiver, focusing on the signal received from the i-th user, rewrite
(1) as:

y = hixi +

j∑
`6=i

h`x` + w.

Let Vi be a unitary matrix representing the null space of the subspace spanned by {h`}` 6=i.
Since the entries of the channel vectors are i.i.d., when j users transmit the subspace spanned
by the vectors {h`} 6̀=i has rank j − 1 with probability one [36, Ch. 8.3.1]. Thus, to null the
inter-stream interference, the receiver projects the received vector y on the subspace spanned
by Vi, and detects stream i by match filtering the resulting vector Vihi. Consequently, the
ZF receiver is the vector V†iVihi, which is the closest direction within the subspace Vi to hi.
Note that this channel inversion technique is simply the i-th row vector of the pseudo-inverse
matrix (H†H)−1H†. The effective channel gain in this case is ‖Vihi‖2. Note also that a full
degrees-of-freedom gain is attained when r users transmit. In this case, dim(Vi) = 1, and
‖Vihi‖2 ∼ χ2

2, e.g., [36]. Accordingly, when using a ZF receiver, we aim at algorithms which
select at most r users (of the available K) at each time slot. The above discussion also
stresses out the point that the number of transmitting users, j, influences the distribution of
Vi. This will be crucial in our future derivations. Thus, hereafter, we will use the notation
Vi(j) to emphasise this fact.

In general, a scheduler with CSI is defined by a function I = I(H) that maps a set of
K channels H to an index subset I ⊂ [1 : K] of cardinality less than or equal to r, which
reflects the set of selected users. Assume |I(H)| = j. The ergodic rate of user i under such
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scheduling is
Ri = E

[
log
(
1 + P‖Vi(j)hi‖2

)
× 1{i∈I(H)}

]
, (7)

where 1{i∈I(H)} is the indicator function of the event that user i is selected with channels state
H, along with other users in the subset I(H). In the ZF detection technique, Vi(j) captures
the influence of the other scheduled users on user i’s instantaneous rate, according to the
correlation between the channels of the users in I(H). Consequently, the ergodic rate of user
i, as defined in (7), not only depends on whether user i is scheduled for transmission or not,
but also on the channel state of all other scheduled users. Both aspects are determined based
on the scheduler policy. For example, in a round robin scheduler, user i is selected whenever
its turn has arrived. As far as user i is concerned, the other users are selected arbitrarily,
independent from its channel. On the other hand, a different scheduler may select users
based on some channel criteria (e.g., channels correlation, channels gain, fairness, etc.),
which results in a different (ergodic) rate.

Summing over all users and taking the expectation with respect to the channel state
matrix (H) distribution, the ergodic sum rate is

R =
K∑
i=1

E
[
log
(
1 + P‖Vi(j)hi‖2

)
× 1{i∈I(H)}

]
= E

[
K∑
i=1

log
(
1 + P‖Vi(j)hi‖2

)
× 1{i∈I(H)}

]

= E

 ∑
i∈I(H)

log
(
1 + P‖Vi(j)hi‖2

) .
Accordingly, considering all index subsets I with size |I| = j ≤ r, the optimal scheduler
maximizes the above expectation. That is, the maximization is over all selection functions
I(H), which yield subsets of cardinality ≤ r. Accordingly, the (ergodic) sum rate of the
optimal scheduler in this case is

R = max
I(H)

E

 ∑
i∈I(H)

log
(
1 + P‖Vi(j)hi‖2

) .
Obviously, this maximization is hard to solve as it needs to examine all possible sets of
users which are smaller than or equal r. Furthermore, such scheduler relies on knowledge
of the matrix H, i.e., acquiring the channel state from all users. Accordingly, substitute
schedulers are considered in practice, which try to minimize the overhead and complexity of
such a centralized process, and select a group of users, preferably in a distributed manner,
approximating the optimal selection.

While simple and intuitive, the ZF receiver is limited in its performance. The MMSE
receiver, however, although still linear, maximizes the mutual information and hence achieves
better performance (e.g. [36–38]). In this receiver, to detect data stream i, the receiver treats
the rest of the streams as noise. It then whitens the resulting colored noise and uses a matched
filter to obtain maximum SINR.
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Let H be a matrix whose columns are the channel vectors of the transmitting users.
Similarly, let H(−i) be the matrix H with its ith column removed and define

R =
(
PH(−i)H

†
(−i) + I

)−1

. (8)

Then, the corresponding output SINRi on the stream i can be expressed by [38]:

SINRi = Ph†iRhi. (9)

This SINR value will be at the basis of our analysis in Section 5.

4 A Distributed Algorithm

The performance of the system, which only schedules a subset of users in each transmission
opportunity, is highly dependent on the user selection procedure. In particular, two main
aspects will highly influence the expected sum rate of such a system: (i) the quality of the
channel between each selected user and the BS (ii) the inter-user interference between the
selected users. The challenge is, hence, how to schedule users opportunistically, without
the burden of pooling CSIs from many users or a tedious negotiation process prior to each
transmission. A common distributed approach for single user selection, which aims to select
only a single user opportunistically, is a threshold-based procedure, in which a capacity
threshold is set, and only a user whose channel capacity exceeds it transmits ( [8, 11]). The
algorithm examined herein, adopts a similar threshold-based approach to select a group of
users.

Determining the threshold raises several important questions. For example, on which
variable should a threshold be set? What should be the threshold value and, specifically, how
many users are expected to pass it on average? How will a user which exceeded the threshold
determine its transmission rate, etc. Recall that the user attainable rate is influenced not
only by its own channel but also by the mutual interference from the other transmitting
users. In the sequel, we address the above questions.

The Threshold-Based (TB) Channel Access algorithm we analyze, denoted TB-Channel-
Access, works as follows: given the number of users K, we set a threshold uk on the channel
norm (gain) ‖h‖2. We assume that prior to each transmission opportunity, the BS sends
a pilot signal from each of its r antennas. A user with a channel norm greater than the
threshold transmits. We further assume that the BS can estimate accurately the channels
hi of the above-threshold users directly from their transmitted signals, e.g., by utilizing the
signaling schemes in [39–41].

Yet, a linear receiver cannot recover more than r data streams simultaneously. That
is, the event that more than r users begin transmission simultaneously (which we term
“collision”) results in an unsuccessful transmission attempt, and zero information is extracted
from the received signal. Thus, the threshold should be set such that no more than r users
will exceed it on each transmission opportunity. On the other hand, if no user attempts
transmission in a slot, it will also be wasted (remain idle). Accordingly, throughout this
paper we say that a slot is utilized if at least one user, but no more than r users, are
transmitting, and unutilized otherwise. Note that the target number of users that their
channel gain exceed the threshold on average (denoted by k), which sequentially determines
the threshold itself, should be optimized in order to minimize the number of unutilized slot.
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In case that the users are not i.i.d., and specifically if the users’ channel distributions are
not identical, one might set different thresholds, such that the access probability remains
fair. On the other hand, one might use a single threshold, and achieve better performance
at the price of possible starvation of the weak users. Clearly, the EVT results for i.i.d.
random variables do not apply directly to the non i.i.d. case. However, in [12], a more
refined version, using point process approximation for non-identically distributed variables
was used to analyse the throughput in such a case. While the model therein assumed single-
user scheduling, without intricate interference and multi-user issues, and hence is simpler
than the one we consider here, some of the methods used can be applied to this problem,
and shed light on the non i.i.d. case.

The next challenge is in determining the rate that an above-threshold user (a self-
scheduled user) should transmit. Note that for user i knowing its own channel vector hi, is
not sufficient to determine its transmission rate, as it must also know the actual number of ex-
ceeding users, j, and their channel vectors, in order to achieve the rate log (1 + P‖Vi(j)hi‖2)
at a specific slot. Specifically, the rate that each above-threshold user i can achieve un-
der ZF depends on both its channel gain, ‖hi‖2, and its correlation with the channels of
other above-threshold users, via the matrix Vi(j). In this section, we analyze the TB-
Channel-Access performance under two transmission schemes, which address the above
challenge. In the first option, users transmit at their ergodic rate [31]. That is, each user
codes over a sequence of slots (blocks) in which it has above-threshold channel gain. The
BS waits until it collects the required number of blocks, and decodes based on all blocks
of all above-threshold users. While this scheme can allow each user to achieve the ergodic
rate E

[
log (1 + P‖Vihi‖2)

∣∣‖hi‖2 > uk
]

at the slots in which the user transmitted, without
exchanging data about the rate each user should use, it may suffer from a large decoding
delay. Thus, to evaluate the benefit of rate coordination, we provide a second, supplementary
scheme, in which prior to each transmission, the BS sends all above-threshold users feedback
(via, e.g., a broadcast message) that indicates their rate. Consequently, in this case, the
user selection process is distributed (i.e., the users still decide whether to transmit or not
distributively, without exchanging any information between themselves or with the BS), yet
the transmission rates are coordinated between the BS and the selected users. Note that
under this approach the BS can also avoid the collision slots by singling only a subset of the
threshold exceeding users to transmit, in case more than r exceeded, avoiding the high price
of a collision slot.

The first result, Proposition 1 below, gives the ergodic rate seen by a user, as well as the
sum-rate under the above distributed user selection algorithm and ZF decoding. Remember
that Vi(j) is determined by the channels {h`}`6=i. I.e., it depends on the channels of the
other exceeding users, and in particular, on the number of exceeding users, j. Consequently,
in the absence of knowledge on the other above-threshold channels, user i cannot resolve its
instantaneous rate, and as a result, it must code over long sequences of slots. Note that this
simple proposition still includes an expectation on the channel vectors seen by the users,
hence cannot give the understanding we wish regarding the ergodic rate and sum-rate under
the suggested algorithm. Still, it will be the starting point, from which we will derive the
bounds which give the right insight and scaling laws.

Proposition 1. For K � r, the ergodic sum-rate of Algorithm TB-Channel-Access
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with ZF detection is given by

R(uk) =
r∑
j=1

kje−k

j!

j∑
i=1

E
[

log
(

1 + P‖Vi(j)hi‖2
)∣∣∣ ‖hi‖2 > uk

]
+O

(
log logK

K

)
,

where k, to be optimized, is the expected number of users to exceed the threshold uk, the
{hi}j≤ri=1 are the channel vectors of the users who exceeded the threshold and {Vi}j≤ri=1 are the
corresponding null spaces.

Note that in analogy to the upper bound in [2] for the downlink scenario, the above
sum rate can be easily upper bounded by rE log

(
1 + P‖h(1)‖2

)
, where h(1) is the channel

vector with the largest norm. Specifically, this bound is derived by assuming exactly r
users transmit, neglecting any inter-user interference and taking all norms to be equal to
the largest one. Obviously, such a bound is very loose. To ease notation, the O

(
log logK

K

)
approximation error is omitted from now on. Clearly, this gap is negligible compared to the
leading terms in the expression.

Proof. According to the law of total probability, we express the ergodic sum-rate in a slot
by summing over the number of users who exceed the threshold, and the sum-rate these
users see, given that they exceeded the threshold. As mentioned, if more than r users are
transmitting in a slot, the BS cannot successfully null the inter-stream interference, and the
sum-rate in that slot is assumed to be zero.

Hence, the expected sum-rate has the form:

r∑
j=1

Pr{j users exceed}
j∑
i=1

E
[
Ci| ‖hi‖2 > uk

]
.

When the users are i.i.d., the probability of j threshold exceedances follows the binomial
distribution with probability p = k/K to exceed the threshold. Since we consider large K
and small values of k, the number of users to exceed the threshold can be approximated by
the Poisson distribution with an approximation error in the order of 1/K. However, as this
approximation error is within the sum, it is multiplied by the individual capacities, which
scales like the optimal scaling law of the multi-user diversity when a single, strongest user, is
scheduled, i.e., Θ (log logK) (see e.g., [1,26] and references therein). Hence, the O

(
log logK

K

)
approximation error. Finally, note that the number of exceeding users j affects the effective
SNR seen by the attending users. In particular, when j users exceed threshold, the dimension
of Vi is (r− j + 1)× r [36, Chapter 8.3.1]. Thus, as j decreases, the signal of the attending
users is projected on a less restrictive null-space. Accordingly, each stream may spread on
more receiving antennas in the ZF process, which leads to a higher power gain. Nonetheless,
the reader should not be confused. The highest sum-rate is attained when r users utilize
the channel simultaneously to achieve a full degrees-of-freedom gain.

To evaluate the result in Proposition 1, the behavior of ‖Vi(j)hi‖2 should be understood,
especially considering the fact that the number of users exceeding the threshold is random.
To this end, the following upper and lower bounds are useful. These bounds will be the basis
of the scaling laws we derive.
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Lemma 1. The ergodic sum-rate of Algorithm TB-Channel-Access with ZF detection
satisfies the following upper bound

R(uk) ≤
r∑
j=1

kje−k

j!
j log

(
1 +

P

r
(r − j + 1)(uk + a{K,r})

)
,

where a{K,r} is given by (5) and uk is the threshold, set such that the number of users that
exceed it on average is k.

The bound in Lemma 1, while not giving the exact sum-rate, still depicts the essence
of the system behavior. To understand its implications, we note the following: We set a
threshold such that k out of the K users exceed it on average. I.e., the average exceedance
rate is k. Indeed, the expression kje−k

j!
in the sum over j gives the probability for exactly j

users exceeding. Each of the j users, under zero forcing, experiences a single user channel,
with its power P scaled according to two factors: (i) a multiplication by (uk + a{K,r}), as
this is the average norm of its channel vector, where uk is the threshold exceeded, and a{K,r}
is the average distance above the threshold. (ii) a multiplication by r−j+1

r
, as in case only

j < r users exceeded the threshold, the zero forcing algorithm does not have to cancel r− 1
users, only j − 1, hence the null space has a larger dimension, yet the number of receive
antennas is r. As the threshold uk will be shown to be Θ(logK), the optimal scaling law
will follow. A complete discussion will be given after the lower bound is introduced. Indeed,
as it turns out in the simulation results, the bound in Lemma 1 is tight even for relatively
small number of antennas and users.

Remark 1. Note that in practice it is beneficial to choose k slightly smaller than the number
of antennas r. This is since if less than r users exceed, the SNR seen by each user is only
larger, yet if more than r users exceed, the slot is lost.

Proof (Lemma 1). We start with Proposition 1. By Jensen inequality,

R(uk) =
r∑
j=1

kje−k

j!

j∑
i=1

E
[

log
(

1 + P‖Vi(j)hi‖2
)∣∣∣ ‖hi‖2 > uk

]
+O

(
log logK

K

)

≤
r∑
j=1

kje−k

j!

j∑
i=1

log
(

1 + PE
[
‖Vi(j)hi‖2

∣∣ ‖hi‖2 > uk
] )

+O

(
log logK

K

)
.(10)

Consider the norm ‖Vi(j)hi‖2, where Vi(j) has r − j + 1 rows. Denote by V
(m)
i the mth

row of Vi(j) (ommiting the dependence on j for clarity), and let |〈·, ·〉|2 denote the squared
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inner product. We have

E[‖Vi(j)hi‖2
∣∣ ‖hi‖2 > uk] = E

[
r−j+1∑
m=1

|〈V(m)
i ,hi〉|2

∣∣∣∣∣ ‖hi‖2 > uk

]
(a)
=

r−j+1∑
m=1

E

[
‖hi‖2 |〈V

(m)
i ,hi〉|2

‖hi‖2‖V(m)
i ‖2

∣∣∣∣∣ ‖hi‖2 > uk

]
(b)
= E[‖hi‖2

∣∣ ‖hi‖2 > uk]

r−j+1∑
m=1

E

[
|〈V(m)

i ,hi〉|2

‖hi‖2‖V(m)
i ‖2

]
(c)
= E[‖hi‖2

∣∣ ‖hi‖2 > uk](r − j + 1)

∫ 1

0

(1− α)r−1dα

(d)
= (uk + a{K,r})(r − j + 1)

1

r
.

In the above chain of equalities, (a) is since ‖V(m)
i ‖2 = 1 (b) is since hi is a random i.i.d.

complex normal vector, and the squared-normalized inner product
|〈V(m)

i ,hi〉|2

‖hi‖2‖V
(m)
i ‖2

is its angle

from V
(m)
i , a vector in the null space of {hl}l 6=i. Since these vectors are independent of

hi, this angle is independent of the norm of hi (c) is since the distributions of the norms
and angles are independent of m, and since, by [16, Lemma 3.2], the angle has the same
distribution as the minimum of r− 1 independent uniform [0, 1] random variables (i.e., with
CDF 1− (1−α)r−1, 0 ≤ α ≤ 1) (d) is the result of computing the expected norm of an i.i.d.
complex normal random vector, given that the norm is above a threshold uk. The details are
in Corollary 2, Appendix A.2.

Substituting in (10), and omitting the O
(

log logK
K

)
, we obtain the result of Lemma 1.

We now present a corresponding lower bound.

Lemma 2. The ergodic sum-rate of Algorithm TB-Channel-Access with ZF detection
satisfies the following lower bound.

R(uk) ≥

(
r∑
j=1

kje−k

j!
j

)
(r − 1)

∫ 1

0

(1− α)r−2 log (1 + Pukα) dα,

where uk is a threshold, set such that the number of users that exceed it on average is k.

It is important to note that the integral in Lemma 2 above has a finite series expansion
with r summands. This finite series has log(1 + Puk) at the leading term, resulting in the
expected scaling law. We describe it in Lemma 3 below, within the proof of the main result
in this section - Theorem 2. The proof of Lemma 2 is deferred to Appendix A.4.

The results above lead to the following scaling law, which is the main result in this
section. It asserts that the scaling law of r log(P logK) for the sum rate in a multi-user
system can in fact be achieved distributively, without collecting all channel states from all
users and scheduling them in a centralized manner. In other words, the TB-Channel-
Access algorithm suggested selects an optimal set of users (asymptotically in the number of
users) distributively and without any cooperation. This is summarized in the next theorem.
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Theorem 2. The ergodic sum-rate of Algorithm TB-Channel-Access with ZF detection
scales as Θ(r log(P logK)) for large enough number of users K.

Proof. By Lemma 1,

R(uk) ≤
r∑
j=1

kje−k

j!
j log

(
1 + P

(r − j + 1)(uk + aK)

r

)
≤

r∑
j=1

kje−k

j!
j log

(
1 + P (uk + aK)

)
≤ r log

(
1 + P (uk + aK)

)
.

On the other hand, consider the lower bound given in Lemma 2. We wish to show that the
sum in the parenthesis is bounded from below by a constant times r. First, since k is a
parameter to be optimized, the optimum is at least as large as when choosing k = r. The
resulting term is therefore

∑r
j=1

rje−r

j!
j. This sum is simply r times a sum over the Poisson

distribution (with parameter r), up to r − 1. In Appendix A.5 we provide a proof that this
sum is monotonically increasing in r, and therefore can be bounded from below by taking
r = 1. We thus have,

r∑
j=1

rje−r

j!
j = r

r−1∑
j=0

rje−r

j!
> re−1.

Note that this gives a bound of 0.37r. Evaluating at r = 2 gives 0.4r, and larger values of r
give only slightly larger values, with a limit of 0.5 as r →∞.1

Now, consider the integral over α in Lemma 2. In Appendix A.6, we prove the following
claim.

Lemma 3. The integral over α in Lemma 2 has the following finite series expansion:

(r − 1)

∫ 1

0

(1− α)r−2 log (1 + Puα) dα

=

(
1 + Pu

Pu

)r−1

log (1 + Pu)−
r−2∑
i=0

(
1 + Pu

Pu

)i
1

r − 1− i
.

This gives a finite series expansion for the integral, in terms of the power P and the
threshold u. For example, for r = 4 we have

(r − 1)

∫ 1

0

(1− α)r−2 log (1 + Puα) dα

=
6(1 + Pu)3 log(1 + Pu)− 2u3P 3 − 3u2P 2(1 + Pu)− 6uP (1 + Pu)2

6u3p3
. (11)

Thus, the integral can be easily approximated by log (1 + Pu) +O
(

log u
u

)
.

Since we consider the regime of large enough number of users K, yet a finite number of
antennas r, we have k = O(1) and as a result uk = Θ(logK). In fact, since the distribution

1This is the CDF of a Poisson random variable with parameter r, calculated at r − 1. The limiting
behavior can be found in [42].
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of the projected channel gain seen by a user in this detection scheme is the exponential
distribution with rate 1/2, it can be shown that uk = 2(logK − log k) (we discuss the
threshold value in detail in Appendix A.3). This gives rise to the Θ(r log(P logK)) scaling
law.

Remark 2. When a long-term power control is considered, an additional power gain factor
of K can be attained. In particular, taking into account the r/K probability of each user to
exceed the threshold and utilize the channel in a slot, a user can transmit at instantaneous
power P ′ ∼ (K/r)P , and still satisfy the long-term power constraint. Thus, when K � r,
the resulting rate scales as r log(K logK), which is much better. In other words, since a
user keeps silence for roughly K/r slots on average, until it exceed the threshold, it can use
very high instantaneous power. Furthermore, the wide dynamic rage of a wireless cellular
device, which is about 90dB, allows a regime with a wide range of values for K and relatively
moderate values of r, and thus, the additional power gain factor K may be achievable in this
regime.

4.1 Distributed User Selection with Feedback

As previously mentioned, in order to achieve the ergodic rate, a sender needs to code over
many signal blocks, each of which having an above-threshold channel vector and no more
than additional r − 1 such above-threshold users. When the number of users K is large
and the threshold exceedance probability is small, such a procedure may be prohibitively
long. Specifically, when the probability of a user to exceed the threshold is k/K, the average
interval between consecutive exceedances of a user is K/k, and the average number of slots
that are required for transmitting N blocks is NK/k, assuming there are no unutilized slots.
Obviously, taking into account unutilized slots (collisions and idle slots), this number can
grow depending on the probability of such event; increasing the threshold exceedance prob-
ability (increasing k) reduces the time interval between the user’s consecutive transmission
attempts, yet increases the number of collisions and vice versa, decreasing the threshold ex-
ceedance probability (decreasing k) enlarges the time interval between the user’s consecutive
transmission attempts, yet decreases collision probability and increases idle slot probability.

Besides the aforementioned latency issue, not knowing the exact transmission rate on
a per slot basis requires the user to transmit in its expected ergodic rate, and the BS to
completely drop slots in which too many users transmitted. In this subsection, we investigate
the benefits of rate coordination, which mitigate the above issues. In particular, we examine
the attainable expected rate when each transmitting user can set its rate based on the
transmitting set (the above-threshold users) in each of its transmission attempts. Obviously,
such mechanism requires coordination between the users, which can be attained by a feedback
from the BS to the transmitting users, prior to each transmission, notifying each transmitting
user its transmission rate based on the other transmitting users. Even though this subsection
aims at evaluating the gain/loss due to such coordination or lack thereof, it is important to
note that as far as practicality is concerned, such a mechanism is relatively easy to attain.
For example, a procedure in which the above-threshold users signal the BS their intention
to transmit, the BS estimates the channel vector between each such user and itself based on
these transmitted signals and based on this channel state information notifies the selected
users (e.g., via a broadcast message) their transmission rate. Obviously, the feedback process
must be sufficiently short compared to the coherence time. In other words, the slot duration
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which includes, besides the data transmission itself, a short preceding process, in which the
above-threshold users estimate and signal the BS their channel gain, and the BS replies
with the rate each should transmit, is within the fading block duration. Note that this
rate-coordination process signals only the rates back to the users and not complete CSI,
hence requires only a small number of feedback bits per block (see e.g., [43]). Further,
note that a similar process is implemented by various standards and protocols such as the
IEEE 802.11. Moreover, this signaling process is done only with self-selected users. Thus,
the user selection process is still distributed in its essence, with only a limited amount of
feedback sent by the BS. Obviously, such feedback not only enables us to announce the
instantaneous rates users should use, but also reduces the decoding delay, as each user can
code over a single fading block. Since as previously mentioned, in the context of this paper
the main motivation of analyzing this process is to quantify the rate-coordination gain, we
omit any further discussion regarding the exact procedure utilized to attain such feedback,
and concentrate on the analysis of the attainable rate.

Thus, a feedback that is sent before each transmission to the above-threshold users can
indicate to each above-threshold user its transmission rate in the upcoming slot. Moreover,
the feedback can even increase the expected sum-rate, as it allows the BS to avoid unutilized
slots due to collision (i.e., when more than r users have exceeded the threshold), by notifying
some of the above-threshold users not to transmit. In particular, the gain in performance is
the following.

Corollary 1. When feedback is available to the transmitting users, the sum-rate in Propo-
sition 1 is

Rfb(uk) =
∞∑
j=1

kje−k

j!

min(j,r)∑
i=1

E
[
log
(

1 + P‖Vi(j)hi‖2
)∣∣∣ ‖hi‖2 > uk

]
where uk is a threshold, set such that the number of users that exceed it on average is k.

The dependence of Vi(j) on the number of active users j is even more important in
Corollary 1, as it reveals the gain in sum-rate that is obtained from avoiding collision slots,
compared to scheduling without feedback. In particular, note that while for min{j, r} = j
the statistics of Vi depends on j, for min{j, r} = r, the statistics of Vi is the same for all j
since it depends only on r. Therefore, the additional rate gained by the scheduler, R∆, can
be quantified, and is exactly

R∆(uk) =
∞∑

j=r+1

kje−k

j!

r∑
i=1

E
[

log
(

1 + P‖Vi(r)hi‖2
)∣∣∣ ‖hi‖2 > uk

]
=

∞∑
j=r+1

kje−k

j!
rE
[

log
(

1 + P‖V1(r)h1‖2
)∣∣∣ ‖h1‖2 > uk

]
= rE

[
log
(

1 + P‖V1(r)h1‖2
)∣∣∣ ‖h1‖2 > uk

] ∞∑
j=r+1

kje−k

j!
.

The upper and lower bounds in Lemma 1 and Lemma 2, respectively, are also applicable to
this gain, in addition to a smaller delay in the decoding process.
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Extensive simulations were conducted to compare the analytical bounds derived above to
real world situations with a finite number of users. The setting we explore is the following:
Each block, each of the K users has a new, independent channel vector. As mentioned, these
vectors are drawn using a Gaussian distribution. Our algorithm has a parameter k, and sets
a threshold such that on average k out of K will exceed the threshold for each block. The
exceeding users transmit, they are detected using ZF or MMSE, and so on. Now, clearly, as
the channel vectors of the users where chosen at random, the resulting sum-rate under this
procedure is also random. This is the randomness we explore. Specifically, in the analytical
results, we give upper and lower bounds on the expected sum-rate, and in Figures 2-3 we
compare the bounds to simulation results, when vectors are chosen at random, users are
”selected” using the algorithm, and the sum-rate is computed. In particular, a random
channel was drawn for each user from the complex Gaussian distribution, then, a group of
users were selected according to the TB-Channel-Access scheme, and the resulting sum-
rate was calculated. This experiment was repeated 1000 times, such that the average sum-
rate is a good approximation for the expected sum-rate (assuming ergodicity). In Figure 2,
we compare the bounds on the ergodic sum-rate of the TB-Channel-Access scheme under
ZF-receiver (i.e., Lemma 1 and Lemma 2), to the simulation results, for a different threshold
values uk. The bounds and simulation are for K = 300 users, with 2, 4 and 8 receiving
antennas at the BS. The tightness of the upper bound is clearly visible. While the lower
bound is looser, it still gives the correct behavior as a function of the number of users passing
the threshold on average, k. Indeed, it is clear from the figure that a key factor affecting the
system performance is the number of users passing the threshold. This distribution gives
the graphs their Poisson-like shape.

To see that the trend holds even for a relatively small number of users, Figure 3 includes
the same plots for K = 30. Note that even for 30 users the algorithm manages to achieve a
significant rate (compared, e.g., to the one achieved with 300 users). This means the essence
of the multi-user diversity is exploited by the algorithm even for a relatively small number
of users. Note, however, that as r approaches K then the accuracy of the bounds decreases.

The results in Figure 2 and Figure 3 give the expected sum-rate as a function of k. The
rate distribution, compared to different algorithms, will be given in the subsequent sections.

5 MMSE receiver

The ZF receiver discussed thus far is on the one hand simple enough to facilitate rigorous
analysis, yet, as shown in the previous sections, powerful enough in the sense that with
intelligent user selection (in this paper, distributed) can achieve the optimal scaling laws.
Still, this is not the optimal linear receiver. In this section, we explore the scaling laws of
the ergodic sum-rate of the MMSE receiver. Note that, similar to the ZF detection, also
in MMSE detection, the SINR of user i depends on all other above-threshold users, i.e., on
the whole channel matrix H, via matrix R.

As mentioned, in this case we let H denote a matrix whose columns are the channel
vectors of the transmitting users. That is, when using the TB-Channel-Access algorithm,
vectors with norm greater than the threshold. H(−i) is the matrix H with its ith column
removed. Under these definitions, the SINR seen at the ith stream was given in (9). Let S
denote the set of channels with norm greater than a threshold. Then, the expected achievable
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@ DR

Figure 2: Ergodic sum-rate under the TB-Channel-Access scheme and K = 300. Bars
are simulation results, while the solid and dashed lines represent the upper and lower bounds,
respectively. The threshold uk is set such that k users exceed it on average. The green (up-
per), red (middle) and blue (lower) lobes are for r = 8, 4 and 2 receive antennas, respectively.
Note that the optimal k is smaller than r. This is since it is better to aim at slightly less
than r users passing, as the performance deteriorates significantly for more than r users
transmitting concurrently.

@ DR

Figure 3: Expected achievable sum-rate under the TB-Channel-Access scheme and K =
30. Bars are simulation results, while the solid and dashed lines represent the upper and
lower bounds, respectively. The threshold uk is set such that k users exceed it on average.
The green (upper), red (middle) and blue (lower) lobes are for r = 8, 4 and 2 receive antennas,
respectively. Note that the essence of the analysis holds for even a relatively small number
of users as 30, as the bounds still depict the key elements affecting the performance.
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sum-rate under the TB-Channel-Access algorithm in Section 4 is as follows.

Proposition 2. For K � r, the ergodic sum-rate with MMSE detection is

R(uk) =
r∑
j=1

kje−k

j!

j∑
i=1

E
[

log
(

1 + Ph†iRhi

)∣∣∣ ‖hs‖2 > uk,∀s ∈ S
]

+O

(
log logK

K

)
where uk is a threshold, set such that the number of users that exceed it on average is k.

This expected sum-rate should be optimized over k. The proof is similar to the ZF
setting. The only change is in the SNR seen by the users, as reflected by the term within
the log.

Remark 3. When r strongest users are selected out of K users, and K is large, the channel
gain (of these strong users) scales as O(logK). It is interesting to see how this affects the
SNR in both ZF and MMSE. Rewrite hi as αwi, where wi = hi

‖hi‖ . Thus, α2 represents the

scaling of the channel norm ‖hi‖2.
When using ZF, the effective SNR seen by a user is P‖Vihi‖2 = α2P‖Viwi‖2. As the

matrix Vi is unitary, the scaling of the SNR with α is clear. In the MMSE case, how-
ever, the analysis is intricate. The SNR is Ph†iRhi = α2Pw†iRwi. However, at first sight,
R = (PH(−i)H

†
(−i) + I)−1 appears to contribute a 1

α2 factor, as the eigenvalues of H(−i)H
†
(−i)

increase like α2. Fortunately, H(−i)H
†
(−i) is not full rank, hence has at least one zero eigen-

value, which does not increase with α. As a result, R has at least one eigenvalue which
remains constant and does not scale down when α increases, and therefore the SNR under
MMSE scales up like α2 as well.

To evaluate the ergodic sum-rate in Proposition 2, the characteristics of the random
variables h†iRhi should be understood, especially when the number of transmitting users
is random. Further, the influence of the norms ‖hs‖2 on h†iRhi should be evaluated. The
key technical challenge, however, is due to the norm condition inducing dependence on the
matrix elements, hence the random matrix theory usually used in the MIMO literature does
not hold. Part of the contribution in this section, is by bringing new tools to tackle this
problem.

Note that in this section, regular type letters represent random variables as well as scalar
variables. The difference will be clear from the context. As a first tool to handle the
dependence within the matrix entries, we start with the following lemma:

Lemma 4. Assume the norms ‖hs‖2,∀s ∈ S are above a given threshold uk. Then the
following properties hold:

(i) The entries of the channel vector remain zero mean.

(ii) The variance of each entry in the vector scales. In particular, is equals to

E
[
|hi,n|2

∣∣ ‖hi‖2 > uk
]

= (uk + a{K,r})/r.

(iii) The vector elements remain uncorrelated in pairs.

Note that, to begin with, the entries of H are i.i.d. The lemma states that conditioned
on exceeding a threshold, while not i.i.d., they sustain the zero correlation. This property
will be useful throughout the remainder of this paper. The proof of Lemma 4 is deferred to
Appendix A.7.
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5.1 Threshold-based MMSE Upper Bound

Now we are ready to derive the scaling-law of the MMSE receiver, using the following upper
and lower bounds on the TB-Channel-Access scheme ergodic sum-rate.

Lemma 5. The ergodic sum-rate of Algorithm TB-Channel-Access with MMSE detec-
tion satisfies the following upper bound.

R(uk) ≤
r∑
j=1

kje−k

j!
j

log

1 + P

(
1− (j − 1)u2

k

r
(

(1 + j
r
)(uk + a{K,r})2 + a2

{K,r} + (a{K,r} + uk)/P
))(uk + a{K,r})

 .

where a{K,r} is given by (5) and uk is a threshold, set such that the number of users that
exceed it on average is k.

Before we prove the lemma, it is interesting to compare the scaling law under MMSE
decoding to that achieved with ZF decoding. In both Lemma 1 and Lemma 5, the rate seen
by each user is approximately log(1 + cPuk), for some constant c. Asymptotically, it follows
that 0 < c < 1, and in both cases, the rate gain comes from the threshold value uk, which
is, as mentioned, O(logK). This gives the growth rate of log logK per user. However, note
that while c = r−j+1

r
in Lemma 1, for large enough uk the gain in Lemma 5 is asymptotically

c = r+1
r+j

, that is, a larger gain for any j ≥ 1. This is not surprising, as an MMSE detector
does give a better power gain, but does not improve the already optimal scaling law.

Proof (Lemma 5). The rate seen by user i is bounded by:

Ri(uk)
(a)

≤ log
(

1 + PE
[
h†iRhi

∣∣∣ ‖hs‖2 > uk, ∀s ∈ S
])

(b)
= log

(
1 + PE

[
r∑

n=1

r∑
m=1

h∗i,mhi,n [R]mn

∣∣∣∣∣ ‖hs‖2 > uk, ∀s ∈ S

])
(c)
= log

(
1 + P

r∑
n=1

r∑
m=1

E
[
h∗i,mhi,n

∣∣∣‖hi‖2 > uk

]
E
[
[R]mn

∣∣∣‖hs‖2 > uk,∀s ∈ S
])

(d)
= log

(
1 + P

r∑
n=1

E
[
|hi,n|2

∣∣∣‖hi‖2 > uk

]
E
[
[R]nn

∣∣∣‖hs‖2 > uk, ∀s ∈ S
])

(e)
= log

(
1 + P

(uk + a{K,r})

r
E
[
tr (R)

∣∣∣‖hs‖2 > uk,∀s ∈ S
])

(12)

In the above chain of equalities, (a) follows from Jensen inequality. (b) is the equivalent
quadric form of h†iRhi. (c) is since R is a matrix involving only random variables in H(−i),
that is, excluding hi, hence the random variables in R and hi are independent. (d) is since by
Lemma 4 part (iii), the elements of the vector hi are uncorrelated. (e) follows from Lemma 4
part (ii).
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Now, to address tr (R), conditioned on ‖hs‖2 > uk, ∀s ∈ S, we first use the following
upper bound on the trace of the inverse of a matrix. For a symmetric r× r positive definite
matrix A [44],

tr
(
A−1

)
≤
(
tr(A) r

)(tr(A†A) tr(A)

λ2
min(A) λmin(A)

)−1(
r

1

)
, (13)

where λmin(A) is the smallest eigenvalue of the matrix A. In our case, take A−1 = R.

To obtain λmin(R−1), we recall that R−1 =
(
PH(−i)H

†
(−i) + I

)
and that H(−i)H

†
(−i) is an

r × r matrix with rank j − 1, with j ≤ r, thus, by the eigenvalues decomposition theorem,
H(−i)H

†
(−i) has r − j + 1 of its eigenvalues equal to zero. Hence, the smallest eigenvalue of

R−1 is λmin(R−1) = 1. Thus, using (13), it follows that

tr(R) ≤
r
[
tr (R−1) + tr

(
R−†R−1

)]
− tr2 (R−1)− r2

tr (R−†R−1)− tr (R−1)

=
r
[
P 2tr

(
H(−i)H

†
(−i)H(−i)H

†
(−i)

)
+ P tr

(
H(−i)H

†
(−i)

)]
− P 2tr2

(
H(−i)H

†
(−i)

)
P 2tr

(
H(−i)H

†
(−i)H(−i)H

†
(−i)

)
+ P tr

(
H(−i)H

†
(−i)

)
= r −

tr2
(
H†(−i)H(−i)

)
tr
(
H†(−i)H(−i)H

†
(−i)H(−i)

)
+ 1

P
tr
(
H†(−i)H(−i)

) .
Note that the expression in (12) had a power loss of factor r, that is, P is divided by r.

However, it is multiplied by E
[
tr(R)

∣∣∣‖hs‖2 > uk

]
. In the last equality above we actually

see that in this multiplication we gain back a factor of the form (r − ζ). This suggests that
the MMSE detector is superior to the ZF detector in terms of power gain, as the expression
in the ZF detector performance does not have this multiplicative factor (this in consistent
with, e.g., [36]). We will later evaluate the value of ζ explicitly. Furthermore, note that
tr
(
R−†R−1

)
is actually the squared Frobenius norm of R−1, which is equal to the sum of

squares of it entries. Thus, we have,

E
[
tr(R)| ‖hs‖2 > uk, ∀s ∈ S

]
≤ r − E

 tr2
(
H†(−i)H(−i)

)
tr
(
H†(−i)H(−i)H

†
(−i)H(−i)

)
+ 1

P
tr
(
H†(−i)H(−i)

)
∣∣∣∣∣∣ ‖hs‖2 > uk,∀s ∈ S



= r − E


(∑j

n=1
n6=i
‖hn‖2

)2

∑j
n=1
n6=i

(‖hn‖2)2 + 2
∑j

n=1
n6=i

∑j
m=n+1
m 6=i

|〈hn,hm〉|2 + 1
P

∑j
n=1
n6=i
‖hn‖2

∣∣∣∣∣∣∣∣∣ ‖hs‖
2 > uk,∀s ∈ S



= r − E


(∑j

n=1
n6=i
‖hn‖2

)2

∑j
n=1
n6=i

(‖hn‖2)2 + 2
∑j

n=1
n6=i

∑j
m=n+1
m6=i

|〈hn,hm〉|2
‖hn‖2‖hm‖2‖hn‖

2‖hm‖2 + 1
P

∑j
n=1
n6=i
‖hn‖2

∣∣∣∣∣‖hs‖2 > uk,∀s ∈ S

]
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Note that the numerator inside the expectation is at least (j − 1)2u2
k. Thus,

E
[
tr(R)| ‖hs‖2 > uk, ∀s ∈ S

]
≤ r + E

 −(j − 1)2u2
k∑j

n=1
n6=i

(‖hn‖2)2 + 2
∑j

n=1
n6=i

∑j
m=n+1
m6=i

|〈hn,hm〉|2
‖hn‖2‖hm‖2‖hn‖

2‖hm‖2 + 1
P

∑j
n=1
n6=i
‖hn‖2∣∣∣∣∣‖hs‖2 > uk,∀s ∈ S

]

Now, we have a concave function of the form −1/x inside the expectation. Accordingly,
using Jensen inequality for concave functions, we obtain that

E
[
tr(R)| ‖hs‖2 > uk, ∀s ∈ S

]
≤ r − (j − 1)2u2

k

E

 j∑
n=1
n6=i

(
‖hn‖2

)2
+ 2

j∑
n=1
n 6=i

j∑
m=n+1
m 6=i

|〈hn,hm〉|2

‖hn‖2‖hm‖2
‖hn‖2‖hm‖2

+
1

P

j∑
n=1
n6=i

‖hn‖2

∣∣∣∣∣∣∣ ‖hs‖2 > uk,∀s ∈ S



−1

= r − (j − 1)2u2
k

 j∑
n=1
n6=i

E
[(
‖hn‖2

)2
∣∣∣ ‖hn‖2 > uk

]

+ 2

j∑
n=1
n6=i

j∑
m=n+1
m6=i

E

[
|〈hn,hm〉|2

‖hn‖2‖hm‖2

∣∣∣∣ ‖hs‖2 > uk,∀s ∈ S
]

· E
[
‖hn‖2

∣∣ ‖hn‖2 > uk
]

E
[
‖hm‖2

∣∣ ‖hm‖2 > uk
]

+
1

P

j∑
n=1
n6=i

E
[
‖hn‖2

∣∣ ‖hn‖2 > uk
]
−1

where the last equality follows from the linearity of the expectation and since 〈hn,hm〉2
‖hn‖2‖hm‖2 ,

which is the angle between two independent vectors, hm and hn, is independent of the
vectors’ norms. Moreover, we can now remove the conditioning on the norm when taking
the expectation of the angle. Accordingly, an upper bound can be evaluated by computing
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the expectations in the denominator as follows.

r − (j − 1)2u2
k

 j∑
n=1
n 6=i

E
[(
‖hn‖2

)2
∣∣∣ ‖hn‖2 > uk

]

+ 2

j∑
n=1
n6=i

j∑
m=n+1
m6=i

E

[
|〈hn,hm〉|2

‖hn‖2‖hm‖2

]
E
[
‖hn‖2

∣∣ ‖hn‖2 > uk
]

E
[
‖hm‖2

∣∣ ‖hm‖2 > uk
]

+
1

P

j∑
n=1
n6=i

E
[
‖hn‖2

∣∣ ‖hn‖2 > uk
]
−1

(a)
= r − (j − 1)2u2

k

·
(

(j − 1)(u2
k + 2a{K,r}uk + 2a2

{K,r}) + j(j − 1)
1

r
(uk + a{K,r})

2 +
(j − 1)

P
(uk + a{K,r})

)−1

= r − (j − 1)u2
k(

1 + j
r

)
(uk + a{K,r})2 + a2

{K,r} + (a{K,r} + uk)/P
,

where (a) follows since the limit distribution of the channel norm tail is exponentially
distributed with rate parameter 1/a{K,r} given that it is above high threshold. Namely,

‖hn‖2
∣∣∣‖hn‖2 > uk ∼ Exp(1/a{K,r}), [34]. Thus, E

[
(‖hn‖2)

2
∣∣∣ ‖h‖2 > uk

]
can be interpreted

as a second moment of exponential random variable. Similar to Section 4, by [16, Lemma
3.2], the angle has the same distribution as that of the minimum of r−1 independent uniform
[0, 1] random variables (i.e., with CDF 1− (1− α)r−1, 0 ≤ α ≤ 1). The expectations of the
norms, again, follow from the EVT. Details are in Corollary 2, Appendix A.2.

5.2 Threshold-based MMSE Lower Bound

To completely characterize the performance of the suggested TB-Channel-Access algo-
rithm under MMSE decoding, we proceed to derive a corresponding lower bound. To this
end, the following lemmas will be useful. The proofs are deferred to Appendix A.8.

Lemma 6. Let H be a complex Gaussian matrix with i.i.d. entries. Then,

(i) R−1 =
(
PHH† + I

)
is unitary invariant. In particular, R can be decomposed as

UΛΛΛU†, where U is a unitary matrix, independent of the diagonal matrix ΛΛΛ.

(ii) The property above holds conditioned on all norms of the columns hi of H being above
a threshold u. In particular, conditioned on ‖hi‖2 > u, Uhi and hi have the same
distribution.

Let Γ(s, x) =
∫∞
x
τ s−1e−τdτ denote the upper incomplete Gamma function.

Claim 1 (E.g., [45]). For s ≥ 2, we have Γ(s, x) ≥ e−x(1 + x)s−1.
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Lemma 7. Let x ∼ χ2
2(r−j+1) and let y ∼ χ2

2(j−1), independent of x, for some integer
1 < j ≤ r. Then,

E [log(1 + x)|x + y > u] >

(
Γ(r)Γ(r − j + 1, u/2)

Γ(r, u/2)Γ(r − j + 1)
+

e−u/2ur−1

2r−1Γ(r, u/2)

)
log(u)

+
e−u/2ur−1

2r−1Γ(r, u/2)
(ψ(r − j + 1)− ψ(r)) + e

Γ(r)Γ(r − j, 1 + u/2)

Γ(r, u/2)Γ(r − j + 1)
,

where ψ(x) = d
dx

ln Γ(x) is the Digamma function.

To understand Lemma 7, note that Γ(s, x) = (s − 1)Γ(s − 1, x) + xs−1e−x. Hence, it is
not hard to show that

lim
u→∞

Γ(r)Γ(r − j + 1, u/2)

Γ(r, u/2)Γ(r − j + 1)
= 1.

Moreover, using Claim 1 above, one can also show that

0 ≤ e−u/2ur−1

2r−1Γ(r, u/2)
≤ 1.

Hence, the importance of Lemma 7 is in showing that E[log(1 +x)|x+y > uk] = Θ(log uk).
Similar to the upper bound, since uk = Θ(logK), the scaling law of Θ(log logK) will result.

To conclude, a lower bound on the performance of the TB-Channel-Access algorithm
with MMSE receiver is as follows. For simplicity of the presentation, we assume P = 1.

Lemma 8. For sufficiently large K, the ergodic sum-rate under the TB-Channel-Access
algorithm and MMSE detection satisfies the following lower bound.

R(uk) >
r∑
j=2

kje−k

j!
j

[(
Γ(r)Γ(r − j + 1, uk/2)

Γ(r, uk/2)Γ(r − j + 1)
+ e−uk/2

ur−1
k

2r−1Γ(r, uk/2)

)
log(uk)

+e−uk/2
ur−1
k

2r−1Γ(r, uk/2)
(ψ(r − j + 1)− ψ(r)) + e

Γ(r)Γ(r − j, 1 + uk/2)

Γ(r, uk/2)Γ(r − j + 1)

]
.

Proof. We assume 1 < j ≤ r users begin their transmission simultaneously and let S denote
the set of channels with norm greater than threshold. Note that when only one user passed
the threshold, while its rate is easy to compute, as it is the single-user MISO capacity,
within this bound it is negligible as it is multiplied by the probability (under the Poisson
distribution) that only one user passed the threshold. Hence, it is omitted for simplicity.
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In this case, the rate of stream i under MMSE receiver satisfies the following lower bound.

Ri(uk) = E
[

log
(

1 + Ph†iRhi

)∣∣∣ ‖hs‖2 > uk,∀s ∈ S
]

(a)
= E

[
log

(
1 + P

r∑
n=1

λn(R)
∣∣(U †hi)n∣∣2)

∣∣∣∣∣ ‖hs‖2 > uk,∀s ∈ S

]
(b)
= E

[
log

(
1 + P

r∑
n=1

∣∣(U †hi)n∣∣2
λn (R−1)

)∣∣∣∣∣ ‖hs‖2 > uk,∀s ∈ S

]
(c)
= E

[
log

(
1 + P

(
r−j+1∑
n=1

∣∣(U †hi)n∣∣2 +
r∑

n=r−j+2

∣∣(U †hi)n∣∣2
λn (R−1)

))∣∣∣∣∣ ‖hs‖2 > uk,∀s ∈ S

]
(d)
> E

[
log

(
1 + P

r−j+1∑
n=1

∣∣(U †hi)n∣∣2
)∣∣∣∣∣ ‖hs‖2 > uk,∀s ∈ S

]
(e)
= E

[
log

(
1 + P

r−j+1∑
n=1

|(hi)n|
2

)∣∣∣∣∣ ‖hs‖2 > uk,∀s ∈ S

]

= E

[
log

(
1 + P

r−j+1∑
n=1

|(hi)n|
2

)∣∣∣∣∣ ‖hi‖2 > uk

]

In the above chain of inequalities, (a) is since by Lemma 6, there is a unitary matrix U such
that R = UΛΛΛU† with ΛΛΛ = diag(λλλ1, ..,λλλr). As a result, we have the following quadric form:

h†Rh = h†UΛU †h =
r∑

n=1

λn(R)
∣∣(U †h)

n

∣∣2 .
(b) is since the eigenvalues of R are the reciprocals of those of R−1. (c) and (d) follow since,
first, the dimensions of H(−i)H

†
(−i) is r × r and its rank is j − 1. Thus, r − j + 1 of the

eigenvalues of R−1 (corresponding to the zero eigenvalues of H(−i)H
†
(−i)) are equal to one.

Then, as H(−i)H
†
(−i) is positive semidefinite, the non-zero eigenvalues are non negative. In

fact, the eigenvalues of H(−i)H
†
(−i) + I which are not unity, are relatively large as all columns

of H are above a threshold. (e) is by Lemma 6 (ii).
Now, setting x =

∑r−j+1
n=1 |(hi)n|

2 and x + y = ‖hi‖2, Lemma 7 completes the proof.

In Figure 4 we simulate the achievable sum-rate of the Channel-Access algorithm versus
the number of users K, under the MMSE and the ZF receivers. The simulation results are
compared to the upper and lower bounds. As can be seen, the MMSE receiver performance
is indeed superior to the ZF receiver. Nevertheless, we see that both receivers attain the
optimal scaling law. Interestingly, even though the bounds mostly apply to a large number
of users, besides when the number of users is extremely small (K = 10 users) all results fall
within the bounds, and even for this small number of users case, the simulation results only
slightly exceed the upper-bound and only for the ZF receiver.

In Figure 5 we simulate the expected sum-rate of the TB-Channel-Access scheme,
with MMSE-receiver and compare the simulation results to the upper and lower sum-rate
bounds given in Lemma 5 and Lemma 8, respectively.
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Figure 4: ZF and MMSE scaling-laws. The solid (dashed) red and blue lines represent the
upper (lower) bound of the MMSE and ZF achievable rates, respectively, for different values
of K, with r = 4 antennas. The red circles and blue stars are based on simulation results,
and depict the average sum-rate of the MMSE and ZF, respectively, upon 1500 experiments.

In Figure 6 we compare the MMSE receiver lower bound (dot-dashed line) and the ZF
receiver lower bound (dashed line). As expected the MMSE achieves better performance
when the threshold is lower, which corresponds to a lower SNR, and further, to a lower idle
slot probability. On the other hand, as the threshold gets higher, which translates to high
SNR, the ZF yields same results as MMSE. From this observation, since the MMSE receiver
requires lower threshold to achieve higher sum-rate, we comprehend that the MMSE receiver
is preferable to the ZF receiver, both in terms of sum-rate and idle slot probability, yet, still
has a linear decoding complexity.

6 Conclusion

In this paper, we analysed a distributed multiuser scheduling algorithm which utilizes the
multiuser diversity and achieves the optimal sum-rate scaling laws (for large number of
users). Specifically, we examined threshold-based algorithm, and characterized the scaling
law of the expected sum-rate under linear detection, e.g., ZF and MMSE. To support the
results, we provided both tractable analysis which gave insightful results as well as simula-
tions which showed tightness even for moderate number of users. We concluded that the
distributed algorithm achieves the optimal scaling laws, i.e., Θ(r log logK).

A Appendix

The methods discussed in the previous sections are based on a common baseline procedure.
First, given that the norm threshold was exceeded, we wish to get a handle on the rate
distribution. Then, we wish to express the rate at which users exceed the threshold, in order
to understand how likely is that a given number of users exceed a certain threshold. Finally,
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Figure 5: MMSE bounds. Bars are simulation results, while the solid and dashed lines
represent upper and lower bound results respectively. Expected sum-rate under a single
threshold algorithm and K = 300. The threshold uk is set such that k users exceed it on
average. Bars are the sum-rate under the TB-Channel-Access scheme simulation results
under MMSE receiver, while the solid and dashed lines represent the upper and lower bounds,
respectively. The orange (upper), green (2nd from above), red (3rd from above) and blue
(lower) lobes are for r = 16, 8, 4 and 2 receive antennas, respectively. Note that the optimal
k is smaller than r.

@ DR

Figure 6: A comparison between the lower bound under an MMSE receiver (dot-dashed)
and the lower bound under the ZF (dashed) receiver. The orange (upper), green (2nd from
above), red (3rd from above) and blue (lower) lobes are for r = 16, 8, 4 and 2 receive antennas,
respectively. Note that since one should choose k for best results, the MMSE lower bound
predicts better results, achieved for a smaller k per r (the number of receive antennas).
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a threshold is estimated. This threshold is set according to the fraction of users which are
required to exceed it on average. In this paper, the threshold is set on the channel vector
norm, either directly or after projecting it on the null-space of the already chosen users. Note
that we used a similar approach to analyse the expected rate, when the channel capacity is
approximately Gaussian in [11]. In this section, we discuss the following problems directly
for the problem at hand.

A.1 Derivation of the Normalizing Constants a{K,r} and b{K,r}

The χ2 distribution is a special case of the gamma distribution. I.e., if z ∼ χ2
2r then

z ∼ Γ(r, β = 2), where Γ(r, β = 2) is the Gamma distribution with shape parameter r and
rate parameter β. According to the EVT, bK is the 1−1/K quantile, i.e., 1−Fχ2(bn) = 1/K,
and the corresponding aK is equals to h(bK), where h(z) is the reciprocal hazard function
[33,34]

h(z) =
1− F (z)

f(z)
for zF ≤ z ≤ zF ,

where zF = inf{z : F (z) > 0} and zF = sup{z : F (z) < 1} are the lower and upper endpoints
of the ancestor distribution, respectively. Accordingly, for the b{K,r} constant we consider
the 1−1/K quantile of the Gamma distribution, which can be obtained by using the inverse
of the regularized upper incomplete gamma function. In particular, b{K,r} = βQ−1

(
r, 1

K

)
yields the 1− 1/K quantile of the Gamma distribution. To attain the a{K,r} constant, let us
examine the hazard function h(z) of the Gamma distribution.

h(z/β) =
1− FΓ(z/β)

fΓ(z/β)

= βez/β(z/β)1−rΓ(r)(1− FΓ(z/β)).

Accordingly, for z = b{K,r} we obtain,

a{K,r} = h
(
b{K,r}/β

)
=

β

K
Γ(r) exp

{
Q−1

(
r,

1

K

)}
Q−1

(
r,

1

K

)1−r

.

A.2 Threshold Arrival Rate and Channel Gain Tail Distribution

Once a threshold is set, it is important to evaluate both the distribution of the number
of users which exceed it as well as the conditional distribution of the norm given that the
threshold was exceeded. Herein, we utilize the Point Process Approximation [46] and its
specific usage for threshold arrival rates in the single user case [11] in order to derive these
distributions for the problem at hand.

Assume that z1, ..., zK is a sequence of i.i.d. random variables with a distribution function
F (z), such that F (z) is in the domain of attraction of some GEV distribution G, with
normalizing constants aK and bK . We construct a sequence of points P1, P2, ... on [0, 1]× R
by

PK =

{(
i

K
,
zi − bK
aK

)
, i = 1, 2, ..., K

}
,
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and examine the limit process, as K →∞. Consider PK on the set [0, 1]×(bl+ε,∞), where bl
is some floor value and ε > 0. According to Kallenberg’s theorem [46,47], limK→∞ PK → P ,

where P is a non-homogeneous Poisson process with intensity density λ(t, z) = (1+ξz)
− 1
ξ
−1

+ ,
at sample value z, and t is the index of occurrence. In fact, in the i.i.d. case, the process
intensity density λ(t, z) is independent of t.

Let Λ(B) be the expected number of points in the set B. Λ(B) can be obtained by
integrating the intensity of the Poisson process over B, That is Λ(B) =

∫
b∈B λ(b)db. As we

are interested in sets of the form Bv = [0, 1]× (v,∞), where v > bl (threshold exceedance),

we have Λ(Bv) = (1 + ξv)
−1/ξ
+ , where a+ denotes max{0, a} (e.g., [11]). That is, the number

of users whose channel norms exceed a threshold can be modeled by a Poisson process, with
parameter Λ (Bv). Note that for ξ → 0, as in the case of the χ2 distribution, we have
Λ (Bv)→ e−v, hence setting a threshold logK − log k results in a per-user arrival rate of k

K
,

and, as a result, a total arrival rate of k.
To compute the conditional distribution of the channel norm, given that it is above the

threshold, at the limit of large K, we proceed similar to [11]. Specifically, focusing on points
of the process PK that are above a fixed threshold v > bl, let uK(v) = aKv + bK , and let
z > 0. Then,

lim
K→∞

Pr (zi > aKz + uK(v)|zi > uK(v)) (14)

= lim
K→∞

Pr

(
PK

(
i

K

)
> z + v|PK

(
i

K

)
> v

)
= Pr(P (t) > z + v|P (t) > v)

=
Λ(Bz+v)

Λ(Bv)

=

[(
1 + ξ

z

1 + ξv

)
+

]−1/ξ

,

where PK
(
i
K

)
denotes the process value at time i

K
, that is, P

(
i
K
, zi−bK

aK

)
at index i

K
for

any finite K, and P (t) is the corresponding value for the limit process, with t = limK→∞
i
K

.
The result is exactly a generalized Pareto distribution, GPD(σv, ξ), where σv = 1 + ξv. In
other words, at the limit of large K, the conditional distribution of the norm, given that it
is above a high enough threshold, converges to a GPD. However, this is only convergence in
distribution. In general, it does not directly result in convergence of the mean. Yet, by the
claim below, the distributions at hand converge monotonically to the limit, and, as a result,
the limit of the expectations exists and equals the expectation at the limit.

Claim 2. The above-threshold tail distributions in (14) converge monotonically (in K) to
the GPD.

Proof. The above-threshold tail distribution of the χ2(2r) distribution in (14), for a given
threshold uK(v), can be expressed using the upper incomplete gamma function as

Pr
(
zi > aKz + uK(v)

∣∣zi > uK(v)
)

=
Pr (zi > aKz + uK(v))

Pr (zi > uK(v))

=
Γ (r, aKz + uK(v))

Γ (r, uK(v))
,
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Figure 7: Monotone convergence of the excess over the threshold distribution (14).

where aK and bK are given in (3) and (4), respectively. Note that uK(v) scales up with K
as Θ(logK). To ease notation, hereafter we use uK to denote uK(v).

Consider a series of above-threshold tail distributions, where the threshold uK grows
monotonically with K. Then, for monotone convergence it is enough to show that

∂

∂uK

Γ(r, aKz + uK)

Γ(r, uK)
=

∂
∂uK

Γ(r, aKz + uK) · Γ(r, uK)− ∂
∂uK

Γ(r, uK) · Γ(r, aKz + uK)

Γ(r, uK)2

≤ 0.

We focus on the enumerator, take the derivatives of the gamma functions, and conclude that
one has to show that

(aKz + uK)r−1e−(aKz+uK)

∫ ∞
uK

tr−1e−tdt− ur−1
K e−uK

∫ ∞
aKz+uK

tr−1e−tdt ≥ 0.

Changing variables to t = τ + uK and t = τ + aKz + uK in the left and right integrals,
respectively, the above simplifies to∫ ∞

0

[
(τ + uK)r−1(aKz + uK)r−1 − ur−1

K (τ + aKz + uK)r−1
]

e−τdτ ≥ 0

which is clearly true since (τ + uK)(aKz + uK) ≥ uK(τ + aKz + uK) when aKzτ ≥ 0. This
completes the proof.

The convergence of the mean excess from the threshold to the mean of the limiting
generalized Pareto distribution, can now follow from the monotone convergence theorem [48,
Ch. 1]. The monotone convergence is also clearly visible in Figure 7.

Since the above-threshold tail is GPD, by [49, Ch. 4.3.1], we now have E
[
zi−uk
aK

∣∣zi > uk

]
→

σv
1−ξ , and hence we approximate the expectation of the tail (for large enoughK) as E

[
zi
∣∣zi > uk

]
=

uk + aKσv
1−ξ . Moreover, focusing on the excess values over the threshold, since the channel gain

has a χ2 distribution, where ξ → 0, by setting α = aKz in (14), we obtain the exponential
approximation, that is

Pr(z− uK(v) ≤ α|z− uK(v) > 0) = 1− e
− α
aK

for all α ≥ 0 and large enough K. That is, the above-threshold tail distribution can be
approximated using an exponential distribution with rate λ = 1/aK . This results in the
following corollary.
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Figure 8: Convergence of the normalizing constant a{K,r} for {2r}8
r=1 receiving antennas to

the limit aK = 2. Note that this slow convergence does not affect the convergence of the
actual distribution, as the values of a{K,r} are within a constant factor from 2 even for very
moderate K.

Corollary 2 ( [49, Ch. 4.3.1]). Given a random complex Gaussian vector, and a sufficiently
high threshold such that the number of users that exceed it on average is k out of K, then

E

[
‖h‖2

∣∣∣∣‖h‖2 > uk

]
= uk + a{K,r},

where a{K,r} is given in (5).

A.3 Threshold Estimation

Let uk be a threshold such that only the k users with the strongest channel norm ‖hi‖2 will
exceed it on average. Since ‖hi‖2 follows χ2

2r distribution, uk can be easily estimated using
the Inverse-Gamma function. That is,

uk = 2Q−1(r, k/K).

Note, however, that the expression above does not give any intuition on the actual threshold
value, or, more importantly, how it scales with K for fixed k. Yet, note that the threshold
uk is closely related to the normalizing constant b{K,r}, since both aim to capture the last
quantiles of the ancestor distribution. The exact relation can be obtain using the Point
process approximation. Specifically, the exceeding rate for the χ2-distribution is

Λ(uk) = e
−
uk−b{K,r}
a{K,r} .

Accordingly, choosing uk = −a{K,r} log k + b{K,r} gives a rate of k in total. Thus, letting
a{K,r} and b{K,r} to be set according to (5) and (6), respectively, uk is set. Now, to see the
scaling law, note that a{K,r} and b{K,r} in (5) and (6) converges to aK and bK in (3) and
(4), respectively, hence uk = O(logK). In Figure 8 Figure 9 depicts the above convergence
result.
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Figure 9: The ratio between the normalizing constant b{K,r} in (6) and the value in (4). The
curves are plotted for r = 16, 8, 4 and 2, top to bottom.

A.4 Proof of Lemma 2

Following the derivations of the upper bound, we have

E [R(uk)] =
r∑
j=1

kje−k

j!

j∑
i=1

E

[
log

(
1 + P

r−j+1∑
m=1

‖hi‖2 |〈V
(m)
i ,hi〉|2

‖hi‖2‖V(m)
i ‖2

)∣∣∣∣∣ ‖hi‖2 > uk

]
+O

(
log logK

K

)
(a)

≥
r∑
j=1

kje−k

j!

j∑
i=1

E log

(
1 + Puk

r−j+1∑
m=1

|〈V(m)
i ,hi〉|2

‖hi‖2‖V(m)
i ‖2

)
+O

(
log logK

K

)
(b)
=

r∑
j=1

kje−k

j!
jE log

(
1 + Puk

r−j+1∑
m=1

|〈V(m)
i′ ,hi′〉|2

‖hi′‖2‖V(m)
i′ ‖2

)
+O

(
log logK

K

)

≥
r∑
j=1

kje−k

j!
jE log

(
1 + Puk

|〈V(1)
i′ ,hi′〉|2

‖hi′‖2‖V(1)
i′ ‖2

)
+O

(
log logK

K

)
(c)
=

r∑
j=1

kje−k

j!
j

∫ 1

0

(r − 1)(1− α)r−2 log (1 + Pukα) dα +O

(
log logK

K

)
where (a) is since the norms of all users participating are above the threshold uk; (b) is
since the angles in the inner sum are identically distributed and independent of i, hence an
arbitrary 1 ≤ i′ ≤ j can be used; (c) is by explicitly computing the expectation over the

angle between hi and V
(1)
i , remembering that it has a density (r−1)(1−α)r−2 for 0 ≤ α ≤ 1.

Omitting the O
(

log logK
K

)
, completes the proof.
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A.5 A Proof that the Sum Over the Poisson Distribution is Mono-
tonically Increasing in r

To prove that the sum over the Poisson distribution with parameter r, up to r − 1, is
monotonically increasing in r, one must show that

r−1∑
j=0

rj

j!
e−r <

r∑
j=0

(r + 1)j

j!
e−(r+1),∀r ∈ N.

This can be rewritten as
Γ(r, r)

Γ(r)
<

Γ(r + 1, r + 1)

Γ(r + 1)
,

where Γ(r, r) =
∫∞
r
tr−1e−tdt is the upper incomplete gamma function. Equivalently, we

need to show that

r

∫ ∞
r

tr−1e−tdt <

∫ ∞
r+1

tre−tdt.

Since the derivative of tre−t is negative on the interval [r,∞), the integrand is decreasing on
that interval and we have, ∫ r+1

r

tre−tdt < rre−r, ∀r > 0.

Accordingly, ∫ ∞
r+1

tre−tdt =

∫ ∞
r

tre−tdt−
∫ r+1

r

tre−tdt

>

∫ ∞
r

tre−tdt− rre−r

= r

∫ ∞
r

tr−1e−tdt,

where the last step is due to integration by parts. This completes the proof.

A.6 Proof of Lemma 3

We wish to solve the following definite integral:

(r − 1)

∫ 1

0

(1− α)r−2 log (1 + Puα) dα.

We first make the substitution x = (1− α). As a result, we obtain the following integral:

(r − 1)

∫ 1

0

xr−2 log (1 + Pu(1− x)) dx.

Now, using integration by parts, we have

(r − 1)

∫ 1

0

xr−2 log (1 + Pu(1− x)) dx = xr−1 log (1 + Pu(1− x))

∣∣∣∣∣
1

0

+

∫ 1

0

Puxr−1

1 + Pu(1− x)
dx.
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First, note that

xr−1 log (1 + Pu(1− x))

∣∣∣∣∣
1

0

= 0.

Now, performing a polynomial long division, the term inside the integral can be expressed
as

Puxr−1

1 + Pu(1− x)
= −

r−2∑
i=0

(
1 + Pu

Pu

)i
xr−2−i +

(1 + Pu)r−1

(Pu)r−2(1 + Pu(1− x))
.

Finally, we exchange the integration with the (finite) summation, then integrate each term
in the sum according to dx. We have:∫ 1

0

Puxr−1

1 + Pu(1− x)
dx

= −
r−2∑
i=0

(
1 + Pu

Pu

)i
1

r − 1− i
xr−1−i

∣∣∣∣∣
1

0

−
(

1 + Pu

Pu

)r−1

log (1 + Pu(1− x))

∣∣∣∣∣
1

0

.

=

(
1 + Pu

Pu

)r−1

log (1 + Pu)−
r−2∑
i=0

(
1 + Pu

Pu

)i
1

r − 1− i
.

Thus, Lemma 3 follows.

A.7 Proof of Lemma 4

It can be shown by the total law of expectation, that the entries of the channel vector remain
zero, given that the channel norm is greater than a threshold, as follows.

E
[
hi,n

∣∣∣‖hi‖2 > uk

]
= E

[
hi,n

∣∣∣ r∑
n=1

|hi,n|2 > uk

]

= E

E

hi,n∣∣∣ r∑
n=1

|hi,n|2 > uk,
r∑

m=1,
m 6=n

|hi,m|2 = ũ


∣∣∣∣∣∣∣∣

r∑
n=1

|hi,n|2 > uk



= E

E
[
hi,n

∣∣∣|hi,n|2 > uk − ũ
]

︸ ︷︷ ︸
(∗)

∣∣∣∣∣∣∣∣
r∑

n=1

|hi,n|2 > uk


Since hi,n is complex Gaussian random variable, the inner expectation (∗) can be decomposed
to a real and an imaginary part as

E
[
hi,n
∣∣|hi,n|2 > uk − ũ

]
= E

[
a+ ib

∣∣a2 + b2 > uk − ũ
]

= E
[
a
∣∣a2 + b2 > uk − ũ

]
+ iE

[
b
∣∣a2 + b2 > uk − ũ

]
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To ease notation, let us denote ˜̃u
.
=
√
uk − ũ− b2. Focusing on the real part, we use the

total expectation law again to obtain:

E
[
a
∣∣∣a2 + b2 > uk − ũ

]
= E

[
E
[
a
∣∣∣a2 > uk − ũ− b2, b2

]∣∣∣ a2 + b2 > uk − ũ
]

= E
[

E
[
a
∣∣∣|a| > ˜̃u, b2

]∣∣∣ a2 + b2 > uk − ũ
]

= E

E
[
sign(a)|a|

∣∣∣|a| > ˜̃u, b2
]

︸ ︷︷ ︸
(∗∗)

∣∣∣∣∣∣∣∣ a
2 + b2 > uk − ũ

 .
Now, we show that the sign of a is independent of the amplitude |a| and b2.

Pr
(
sign(a) = −1

∣∣∣|a| > ˜̃u, b2
)

= Pr
(
a < 0

∣∣∣|a| > ˜̃u, b2
)

=
Pr
(
a < 0, |a| > ˜̃u, b2

)
Pr
(
|a| > ˜̃u, b2

)
=

Pr
(
a < −˜̃u, b2

)
Pr
(
a < −˜̃u, b2

)
+ Pr

(
a > ˜̃u, b2

)
=

1

2
.

Thus, the sign of a, the amplitude |a| and b2 are independent. Consequently, the inner
expectation (∗∗) is equal to:

E
[
sign(a)|a|

∣∣|a| > ˜̃u, b2
]

= E [sign(a)] E
[
|a|
∣∣|a| > ˜̃u, b2

]
= 0.

From symmetry, same result can be obtained for the imaginary part. Thus, the vectors are
still zero mean vectors.

However, the variance of the vector entries increase, given that the vector norm is greater
than a threshold. Remember, by EVT [34], the tail is exponentially distributed with rate
parameter 1/a{K,r}. Thus, it follows that

uk + a{K,r}
(a)
= E

[
‖hi‖2

∣∣ ‖hi‖2 > uk
]

(b)
=

r∑
n=1

E
[
|hi,n|2

∣∣ ‖hi‖2 > uk
]

(c)
= rE

[
|hi,n|2

∣∣ ‖hi‖2 > uk
]

where (a) is the result of computing the expected norm of an i.i.d. complex normal random
vector, given that it exceeded a threshold uk. (b) follows from the linearity of expectation
operator. (c) is since the elements of hi are identically distributed. We point out that
choosing vectors with norm greater than a threshold increase the variance of the entries to
(uk + a{K,r})/r.
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Similar to the entries conditional expectation, it can be shown that the matrix entries
are still uncorrelated in pairs. Namely,

E
[
h∗i,nhi,m

∣∣‖hi‖2 > uk
]

= E

[
h∗i,nhi,m

∣∣ r∑
n=1

|hi,n|2 > uk

]

= E

E

h∗i,nhi,m∣∣ r∑
n=1

|hi,n|2 > uk,
r∑

m=1
m6=n

|hi,m|2 = ũ


∣∣∣∣∣∣∣

r∑
n=1

|hi,n|2 > uk


= E

E
[
h∗i,nhi,m

∣∣|hi,n|2 > uk − ũ
]︸ ︷︷ ︸

(∗̃)

∣∣∣∣∣∣∣
r∑

n=1

|hi,n|2 > uk


Similar to the method above, we decompose h∗i,n to its real and imaginary part. Thus, the
inner expectation (∗̃) is

E
[
h∗i,nhi,m

∣∣∣|hi,n|2 > uk − ũ
]

= E
[
ahi,m − ibhi,m

∣∣∣a2 + b2 > uk − ũ
]

= E
[
ahi,m

∣∣∣a2 + b2 > uk − ũ
]
− iE

[
bhi,m

∣∣∣a2 + b2 > uk − ũ
]

Using the total expectation law on the real part of the expectation, we have

E
[
ahi,m

∣∣∣a2 + b2 > uk − ũ
]

= E
[

E
[
ahi,m

∣∣∣a2 > uk − ũ− b2, b2
]∣∣∣ a2 + b2 > uk − ũ

]

= E

E
[
sign(a)|a|hi,m

∣∣∣|a| > ˜̃u, b2
]

︸ ︷︷ ︸
(∗̃∗)

∣∣∣∣∣∣∣∣ a
2 + b2 > uk − ũ

 .
Now, similar to the above method, let us show that the sign of a is independent of |a| and
hi,m.

Pr
(
sign(a) = −1

∣∣∣|a| > ˜̃u, b2, hi,m

)
= Pr

(
a < 0

∣∣∣|a| > ˜̃u, b2, hi,m

)
=

Pr
(
a < 0, |a| > ˜̃u, b2, hi,m

)
Pr
(
|a| > ˜̃u, b2, hi,m

)
=

Pr
(
a < −˜̃u, b2, hi,m

)
Pr
(
a < −˜̃u, b2, hi,m

)
+ Pr

(
a > ˜̃u, b2, hi,m

)
=

1

2
= Pr(a < 0).

Thus, the inner expectation (∗̃∗) can be expressed as

E
[
sign(a)|a|hi,m

∣∣|a| > ˜̃u, b2
]

= E [sign(a)] E
[
|a|hi,m

∣∣|a| > ˜̃u, b2
]

= 0.

37



From symmetry, same result can be obtained for the imaginary part. Thus, given that the
norm is greater than a threshold, the vector entries sill are uncorrelated. Thus, Claim 4
follows.

A.8 Proof of Lemma 6

A Hermitian random matrix is unitary invariant if the joint distribution of its entries does
not change under unitary transformation, namely, H ∼ UH for any unitary matrix U . It
is well known that a Gaussian matrix is unitary invariant (e.g., [50]). It is not hard to see
that HH† ∼ UHH†U †. That is, the Wishart matrix is also unitary invariant. Similarly, as
UIU † = I,

(
HH† + I

)
∼ U

(
HH† + I

)
U †.

Since
(
HH† + I

)
is unitary invariant, by [51, Lemma 2.6], there is a decomposition such

that
(
HH† + I

)
= UΛ̃̃Λ̃ΛU†, U being unitary and independent of Λ̃̃Λ̃Λ, hence

(
HH† + I

)−1
=

UΛ̃̃Λ̃Λ−1U† and part (i) follows with ΛΛΛ = Λ̃̃Λ̃Λ−1. Note that if we are only interested in the
decomposition, and the independence between the unitary matrix and the eigenvalues is not
required (as is the case in the lower bound below), the proof is simpler since R is Hermitian.

For part (ii), note that if h ∼ Uh, then h| ‖hi‖2 > u ∼ Uh| ‖hi‖2 > u. This is since the
unitary transform does not change the vector norm, hence the set of instances h ∈ Cr with
‖h‖2 > u is the same as those with ‖Uh‖2 > u. The rest follows in the same manner.

A.9 Proof of Claim 1

First, note that,

Γ(s, x) =

∫ ∞
x

τ s−1e−τdτ = e−x
∫ ∞

0

(t+ x)s−1e−tdt = e−xE[(T + x)s−1],

where T ∼ exp(1).
Accordingly, since (t + x)s−1 is convex in t for the corresponding s, we apply Jensen’s

inequality to the r.h.s. and note that E[T ] = 1, proving the bound.

A.10 Proof of Lemma 7

We wish to bound the following expectation, when x ∼ χ2
2(r−j+1) and y ∼ χ2

2(j−1), indepen-
dent of x:

E[log(1 + x)|x + y > u] =
1

Pr (x + y > u)[∫ u

x=0

∫ ∞
y=u−x

log(1 + x)fx(x)fy(y)dydx+

∫ ∞
x=u

∫ ∞
y=0

log(1 + x)fx(x)fy(y)dydx

]
.

Performing integration on y, we have the following.

E[log(1 + x)|x + y > u]

=
1

Pr (x + y > u)


∫ u

x=0

Γ(j − 1, (u− x)/2)

Γ(j − 1)
log(1 + x)fx(x)dx︸ ︷︷ ︸

I2(x)

+

∫ ∞
x=u

log(1 + x)fx(x)dx︸ ︷︷ ︸
I1(x)


(15)
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where Γ(s, x) =
∫∞
x
ts−1e−tdt is the upper incomplete Gamma function. Further, note that

the complement CDF of the χ2
2(j−1)-distribution is Pr (y > u− x) = Γ(j−1,(u−x)/2)

Γ(j−1)
.

Accordingly, to evaluate (15), we need to evaluate both I1(x) and I2(x). We begin with
integration by parts on I1(x), where the anti-derivative is fx(x). We have

I1(x) = log(1 + x)

∫
fx(x)dx

∣∣∣∣∣
∞

x=u

−
∫ ∞
x=u

∫
fx(x)dx

1 + x
dx

= log(1 + x)

(
−Γ(r − j + 1, x/2)

Γ(r − j + 1)

) ∣∣∣∣∣
∞

x=u

+
1

Γ(r − j + 1)

∫ ∞
x=u

Γ(r − j + 1, x/2)

1 + x
dx,

where the last equality follows since
∫
fx(x)dx =

∫
xr−je−x/2

2r−j+1Γ(r−j+1)
dx = −Γ(r−j+1,x/2)

Γ(r−j+1)
. Now,

to bound the above expression, we restrict our attention to 1 < j ≤ r. Since limx→∞ log(1 +
x)Γ(s, x/2) = 0, utilizing Claim 1, we have

I1(x) ≥ Γ(r − j + 1, u/2)

Γ(r − j + 1)
log(1 + u) +

1

Γ(r − j + 1)

∫ ∞
x=u

e−x/2(1 + x/2)r−j

1 + x
dx

>
Γ(r − j + 1, u/2)

Γ(r − j + 1)
log(1 + u) +

1

Γ(r − j + 1)

∫ ∞
x=u

e−x/2(1 + x/2)r−j

2 + x
dx

=
Γ(r − j + 1, u/2)

Γ(r − j + 1)
log(1 + u) +

1

2Γ(r − j + 1)

∫ ∞
x=u

e−x/2(1 + x/2)r−j−1dx

=
Γ(r − j + 1, u/2)

Γ(r − j + 1)
log(1 + u) +

e

Γ(r − j + 1)

∫ ∞
z=1+u/2

e−zzr−j−1dz

=
Γ(r − j + 1, u/2)

Γ(r − j + 1)
log(1 + u) +

e

Γ(r − j + 1)
Γ(r − j, 1 + u/2).

Next, let us address I2(x). Again, using Claim 1, we have

I2(x) ≥ 1

Γ(j − 1)

∫ u

x=0

e−
u−x
2

(
1 +

u− x
2

)j−2

log(1 + x)fx(x)dx

=
1

Γ(j − 1)

∫ u

x=0

e−
u−x
2

(
1 +

u− x
2

)j−2

log(1 + x)
xr−je−x/2

2r−j+1Γ(r − j + 1)
dx

=
e−u/2

2r−j+1Γ(r − j + 1)Γ(j − 1)

∫ u

x=0

(
1 +

u− x
2

)j−2

xr−j log(1 + x)dx

=
e−u/2

2j−22r−j+1Γ(r − j + 1)Γ(j − 1)

∫ u

x=0

(2 + u− x)j−2 xr−j log(1 + x)dx

>
e−u/2

2r−1Γ(r − j + 1)Γ(j − 1)

∫ u

x=0

(u− x)j−2 xr−j log(1 + x)dx

=
e−u/2ur−2

2r−1Γ(r − j + 1)Γ(j − 1)

∫ u

x=0

(
1− x

u

)j−2 (x
u

)r−j
log(1 + x)dx
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Let z = x/u. Accordingly, we have

I2(x) >
e−u/2ur−1

2r−1Γ(r − j + 1)Γ(j − 1)

∫ 1

z=0

(1− z)j−2 zr−j log(1 + uz)dz

≥ e−u/2ur−1β(r − j + 1, j − 1)

2r−1Γ(r − j + 1)Γ(j − 1)

∫ 1

z=0

1

β(r − j + 1, j − 1)
(1− z)j−2 zr−j log(uz)dz

=
e−u/2ur−1β(r − j + 1, j − 1)

2r−1Γ(r − j + 1)Γ(j − 1)

[
log(u)

∫ 1

z=0

1

β(r − j + 1, j − 1)
(1− z)j−2 zr−jdz

+

∫ 1

z=0

1

β(r − j + 1, j − 1)
(1− z)j−2 zr−j log(z)dz

]
where β(r− j+ 1, j−1) = Γ(r−j+1)Γ(j−1)

Γ(r)
is the Beta function. Note that while log(z)→ −∞

as z → 0, the integral converges as this is the mean of log(Z) when Z has a Beta distribution.
Accordingly, we have

I2(x) >
e−u/2ur−1

2r−1Γ(r)
[log(u) + ψ(r − j + 1)− ψ(r)] .

To complete the proof, remember that Pr(x + y > u) = Γ(r,u/2)
Γ(r)

. Thus, we have

E[log(1 + x)|x + y > u] >
Γ(r)

Γ(r, u/2)

(
e−u/2ur−1

2r−1Γ(r)
[log(u) + ψ(r − j + 1)− ψ(r)]

+
Γ(r − j + 1, u/2)

Γ(r − j + 1)
log(1 + u) + e

Γ(r − j, 1 + u/2)

Γ(r − j + 1)

)
.

References

[1] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling
using zero-forcing beamforming,” Selected Areas in Communications, IEEE Journal
on, vol. 24, no. 3, pp. 528–541, 2006.

[2] K. Jagannathan, S. Borst, P. Whiting, and E. Modiano, “Scheduling of multi-antenna
broadcast systems with heterogeneous users,” Selected Areas in Communications, IEEE
Journal on, vol. 25, no. 7, pp. 1424–1434, 2007.

[3] C. Swannack, E. Uysal-Biyikoglu, and G. Wornell, “Low complexity multiuser schedul-
ing for maximizing throughput in the MIMO broadcast channel,” in Proc. Allerton
Conf. Communications, Control and Computing, 2004.

[4] J. Kim, S. Park, J. Lee, J. Lee, and H. Jung, “A scheduling algorithm combined with
zero-forcing beamforming for a multiuser MIMO wireless system,” in IEEE Vehicular
Technology Conference, vol. 1, 2005, pp. 211–215.

[5] M. Airy, S. Shakkattai, and R. Heath Jr, “Spatially greedy scheduling in multi-user
MIMO wireless systems,” in the Thirty-Seventh Asilomar Conference on Signals, Sys-
tems and Computers, vol. 1. IEEE, 2003, pp. 982–986.

40



[6] R. Knopp and P. Humblet, “Information capacity and power control in single-cell mul-
tiuser communications,” in IEEE International Conference on Communications, Seattle,
vol. 1, 1995, pp. 331–335.

[7] R. Gozali, R. Buehrer, and B. Woerner, “The impact of multiuser diversity on space-
time block coding,” Communications Letters, IEEE, vol. 7, no. 5, pp. 213–215, 2003.

[8] X. Qin and R. Berry, “Exploiting multiuser diversity for medium access control in
wireless networks,” in INFOCOM 2003. Twenty-Second Annual Joint Conference of
the IEEE Computer and Communications. IEEE Societies, vol. 2. IEEE, 2003, pp.
1084–1094.

[9] ——, “Distributed approaches for exploiting multiuser diversity in wireless networks,”
Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 392–413, 2006.

[10] D. Gesbert and M.-S. Alouini, “How much feedback is multi-user diversity really worth?”
in Communications, 2004 IEEE International Conference on, vol. 1. IEEE, 2004, pp.
234–238.

[11] J. Kampeas, A. Cohen, and O. Gurewitz, “Capacity of distributed opportunistic
scheduling in nonhomogeneous networks,” Information Theory, IEEE Transactions on,
vol. 60, no. 11, pp. 7231–7247, 2014.

[12] ——, “Capacity of distributed opportunistic scheduling in heterogeneous networks,” in
Proceedings of the Annual Allerton Conference on Communication Control and Com-
puting, 2012.

[13] K. Bai and J. Zhang, “Opportunistic multichannel aloha: distributed multiaccess control
scheme for OFDMA wireless networks,” Vehicular Technology, IEEE Transactions on,
vol. 55, no. 3, pp. 848–855, 2006.

[14] X. Qin and R. Berry, “Distributed power allocation and scheduling for parallel channel
wireless networks,” Wireless Networks, vol. 14, no. 5, pp. 601–613, 2008.

[15] Z. Shen, R. Chen, J. Andrews, R. Heath, and B. Evans, “Low complexity user selection
algorithms for multiuser MIMO systems with block diagonalization,” Signal Processing,
IEEE Transactions on, vol. 54, no. 9, pp. 3658–3663, 2006.

[16] K. Jagannathan, S. Borst, P. Whiting, and E. Modiano, “Efficient scheduling of multi-
user multi-antenna systems,” in Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks, 2006 4th International Symposium on. IEEE, 2006, pp. 1–8.

[17] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the gaussian
multiple-input multiple-output broadcast channel,” Information Theory, IEEE Trans-
actions on, vol. 52, no. 9, pp. 3936–3964, 2006.

[18] G. Primolevo, O. Simeone, and U. Spagnolini, “Channel aware scheduling for broadcast
MIMO systems with orthogonal linear precoding and fairness constraints,” in IEEE
International Conference on Communications, vol. 4, 2005, pp. 2749–2753.

41



[19] T. Yoo, N. Jindal, and A. Goldsmith, “Finite-rate feedback MIMO broadcast chan-
nels with a large number of users,” in Information Theory, 2006 IEEE International
Symposium on. IEEE, 2006, pp. 1214–1218.

[20] M. Gartner and H. Bolcskei, “Multiuser space-time/frequency code design,” in Infor-
mation Theory, 2006 IEEE International Symposium on. IEEE, 2006, pp. 2819–2823.

[21] M. Pun, V. Koivunen, and H. Poor, “Opportunistic scheduling and beamforming for
MIMO-SDMA downlink systems with linear combining,” in IEEE 18th International
Symposium on Personal, Indoor and Mobile Radio Communications, 2007, pp. 1–6.

[22] L. Wang, C. Chiu, C. Yeh, and C. Li, “Coverage enhancement for OFDM-based spatial
multiplexing systems by scheduling,” in IEEE Wireless Communications and Network-
ing Conference, WCNC. IEEE, 2007, pp. 1439–1443.

[23] R. Zakhour and S. Hanly, “Min-max fair coordinated beamforming via large sys-
tem analysis,” IEEE International Symposium on Information Theory Proceedings, pp.
1896–1900, 2011.

[24] W. Choi and J. Andrews, “The capacity gain from intercell scheduling in multi-antenna
systems,” Wireless Communications, IEEE Transactions on, vol. 7, no. 2, pp. 714–725,
2008.

[25] G. Caire, “MIMO downlink joint processing and scheduling: a survey of classical and
recent results,” in Proc. Workshop on Information Theory and Its Applications, 2006.

[26] B. Hassibi and M. Sharif, “Fundamental limits in MIMO broadcast channels,” Selected
Areas in Communications, IEEE Journal on, vol. 25, no. 7, pp. 1333–1344, 2007.

[27] M. Sharif and B. Hassibi, “A comparison of time-sharing, dpc, and beamforming for
MIMO broadcast channels with many users,” Communications, IEEE Transactions on,
vol. 55, no. 1, pp. 11–15, 2007.

[28] A. Bayesteh and A. K. Khandani, “On the user selection for MIMO broadcast channels,”
Information Theory, IEEE Transactions on, vol. 54, no. 3, pp. 1086–1107, 2008.

[29] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channels with partial
side information,” Information Theory, IEEE Transactions on, vol. 51, no. 2, pp. 506–
522, 2005.

[30] B. M. Hochwald, T. L. Marzetta, and V. Tarokh, “Multiple-antenna channel harden-
ing and its implications for rate feedback and scheduling,” Information Theory, IEEE
Transactions on, vol. 50, no. 9, pp. 1893–1909, 2004.

[31] G. Caire and S. Shamai, “On the capacity of some channels with channel state infor-
mation,” Information Theory, IEEE Transactions on, vol. 45, no. 6, pp. 2007–2019,
1999.

[32] L. H. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic considerations for
cellular mobile radio,” IEEE transactions on Vehicular Technology, vol. 43, no. 2, pp.
359–378, 1994.

42



[33] L. De Haan and A. Ferreira, Extreme value theory: an introduction. Springer Verlag,
2006.

[34] M. Leadbetter, Extremes and Related Properties of Random Sequences and Processes.
Springer-Verlag, N.Y, 1983.
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