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Abstract

We find a new formula for the limit of the capacity of certain sequences of multidimensional semiconstrained systems as the
dimension tends to infinity. We do so by generalizing the notion of independence entropy, originally studied in the context of
constrained systems, to the study of semiconstrained systems. Using the independence entropy, we obtain new lower bounds on
the capacity of multidimensional semiconstrained systems in general, and d-dimensional axial-product systems in particular. In
the case of the latter, we prove our bound is asymptotically tight, giving the exact limiting capacity in terms of the independence
entropy. We show the new bound improves upon the best-known bound in a case study of (0, k, p)-RLL.
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I. INTRODUCTION

ERROR-correcting codes and constrained codes may be considered as two extreme ways of coping with a noisy channel.
The former are usually data independent, and assume errors are a statistical phenomenon, reducing data-transmission rate

to protect against such errors. Constrained codes, however, assume certain patterns in the data stream are responsible for the
occurrence of errors. Thus, constrained codes eliminate all undesirable patterns, at the cost of reduced data-transmission rate.

Recently in [9], [10], semiconstrained systems (SCSs) were suggested as a generalization to constrained systems (which we
emphasize by calling fully constrained systems). In SCSs we do not eliminate the undesirable patterns entirely but rather we
allow them to appear with a restriction on their frequency. To illustrate, consider a binary channel in which the appearance of
k-consecutive 1’s is forbidden. The set of allowed words is the well known inverted (0, k)-RLL. However, if k-consecutive 1’s
are not forbidden entirely, but instead are allowed to appear in at most a fraction p of places, then the set of allowed words
forms a SCS called the (0, k, p)-RLL system. Informally, a SCS is defined by a set Γ of probability measures over k-tuples.
The allowed words in the SCS are those in which the empirical distribution of k-tuples belongs to Γ. This may be viewed
as a generalization of fully constrained systems since taking Γ to be a subset with a 0-frequency restriction on some k-tuples
yields a fully constrained system.

SCSs not only generalize fully constrained systems, but also subsume a range of other settings, which were mainly dealt with
in an ad-hoc fashion. Among these we can find DC-free RLL coding [17], constant-weight ICI coding for flash memories [5],
[6], [15], [27], coding to mitigate the appearance of ghost pulses in optical communication [30], [31], and the more general,
channel with cost constraints [13], [16].

In the one-dimensional case, the capacity of a SCS is given by a relatively explicit expression as the solution to a certain
optimization problem on a finite dimensional space, e.g., [22]. A probabilistic encoder for SCSs was constructed in [10],
and constant-bit-rate to constant-bit-rate encoders are possible by approximating a SCS with a fully constrained system, as
described in [9].

A natural extension, and the goal of this work, is to study multidimensional SCSs. This is an extremely challenging problem,
considering the fact that even for fully constrained systems in complete generality it is provably impossible to find an exact
solution. The capacity of multidimensional fully constrained systems is known exactly only in a handful of cases [1], [18],
[20], [28]. In the absence of a general method for computing the capacity, various bounds and approximations were studied,
e.g., [3], [11], [12], [14], [24], [25], [29], [32]–[34]. It should be emphasized that apart from its independent intellectual merit,
studying multidimensional systems is of practical importance since most storage media are two- or three-dimensional, including
magnetic recording devices such as hard drives, optical recording devices such as CDs and DVDs, and flash memories.

The approach we take in this work is bounding the capacity by studying the independence entropy of SCSs, thus extending
the works [19], [23]. The independence entropy appeared in previous works on d-dimensional shifts of finite type. Although
this notion was first defined in [19], the idea stemmed from tradeoff functions studied in [26]. It was defined in a combinatorial
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fashion, where in this work we redefine it in a probabilistic fashion. We show that the two definitions are equal for the special
case of fully constrained systems.

The motivation for the use of independence entropy is the fact that it is more easily computable, since we only need to
consider independent probability measures which satisfy the constraints. We also focus on the class of d-dimensional axial-
product constraints, which form a significant proportion of multidimensional fully constrained systems studied thus far. For
this class, our approach has an additional major advantage in that instead of calculating the independence entropy for a d-
dimensional axial product SCS, we may calculate it directly from the one-dimensional system. This dimensionality reduction
offers further simplification of the calculations.

There are new features and difficulties that come up when adapting the results from fully constrained systems. In an abstract
sense, a very useful property of fully constrained systems is the following: If a measure µ is contained in some fully constrained
system, and µ is a convex combination of measures, then each of them is contained in the same fully constrained system. This
property does not hold for general semiconstrained systems. This is manifested for instance in the fact that any subword of
an admissible word in a fully constrained system is also admissible, leading to sub-additivity of the sequence of the amount
of admissible words. This, in turn, allows the use of Fekete’s Lemma.

The main contributions of this paper are a formulation of the independence entropy for SCSs, and its study in relation to
the capacity of SCSs. As a result, we obtain a new lower bound on the capacity of multidimensional SCSs, generalizing the
results of [19], [23], and in an example test case, improving upon the best known bounds on the capacity of multidimensional
(0, 1, p)-RLL SCSs given in [10].

In this work we also establish an equality of the limiting capacity and independence entropy for the d-axial-product SCSs.
As the independence entropy is a lower bound on the entropy of a given SCS in every dimension, the capacity approaches the
independence entropy as the dimension grows.

This paper is organized as follows. In Section II we describe the notation and give the required definitions used throughout
the paper. In Section III we define the independence entropy and provide results characterizing the independence entropy. In
Section IV we show that the capacity is lower bounded by the independence entropy. In Section V we show that the limiting
capacity of the d-axial-product SCS is equal to the independence entropy. We conclude in Section VI by describing a short
case study, and comparing it with previous results. The appendices provide proofs that the generalized notions we define in
this paper indeed contain fully constrained systems as a special case, thus providing a generalization for them.

II. PRELIMINARIES

Let N denote the set of natural numbers. We use ei to denote the unit vector of direction i, 0 to denote the all-zero vector,
and 1 to the denote the all-one vector, where in all cases, the dimension of the vectors is implied by the context. For n ∈N

we define
[n] , {0, 1, . . . , n− 1} .

We shall often use [n]ei to denote the set {0 · ei, 1 · ei, . . . , (n− 1) · ei}. For d, n ∈N, denote by Fd
n the d-dimensional cube

of length n, i.e., the set Fd
n , [n]d. Obviously |Fd

n | = nd. Additionally, for (n0, . . . , nd−1) ∈Nd we conveniently denote

[(n0, . . . , nd−1)] , [n0]× [n1]× · · · × [nd−1].

Throughout the paper, Σ will be used to denote a finite alphabet. A word (or block) w of length n is a sequence of n
letters from Σ, denoted w = a0a1 . . . an−1, with ai ∈ Σ. We let |w| denote the length of the word w. We can also consider
infinite-sized words by mapping letters from Σ to positions on the integer grid Zd. Such a word will be denoted by x ∈ ΣZd

,
and the letter in the v ∈ Zd position will be denoted by xv (sometimes referred to as the restriction of x to v). More generally,
given any subset of the integer grid, S ⊆ Zd, a word x ∈ ΣS is a mapping of letters from Σ to positions indexed by elements
of S.

We require a notation for sets of probability measures and their marginals. For a set W we denote by P(W) the set of all
probability measures over W.

Definition 1. Let (X,B) be a measurable space. For every µ, ν ∈ P(X), the total variation distance is defined as

‖µ− ν‖TV , sup
W∈B
|µ(W)− ν(W)| .

2

Given a compact topological space X, the space P(X) is itself a compact topological space with respect to the weak ∗-
topology. In particular, when X is a finite set with the discrete topology, the topology on P(X) is given by the total variation
distance which also satisfies ‖µ− ν‖TV = 1

2
∑

x∈X |µ(x)− ν(x)|.
Given a continuous map f : X → Y between topological spaces, and µ ∈ P(X), let f (µ) ∈ P(Y) be given by

f (µ)(W) , µ( f−1(W)), W ⊆ Y.
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Definition 2. For d ∈ N, S ⊆ S̃ ⊆ Zd, and x ∈ ΣS̃, let xS denote the restriction of x to the coordinates in S. Let πS̃
S : ΣS̃ → ΣS

denote the restriction map given by
πS̃

S(x) , xS.

When S̃ is clear from the context, we shall write πS instead of πS̃
S . 2

While having the notation πS(x) in addition to the equivalent notation xS, seems superfluous, we shall require the former to
simplify our presentation. As a consequence of the previous definition, for µ ∈ P(ΣS̃) and S ⊆ S̃, we note that πS(µ) ∈ P(ΣS)
is the S-marginal of µ.

Definition 3. For d ∈N, v ∈ Zd, let σv : ΣZd → ΣZd
be the shift by the vector v, given by

(σv(x))u , xu+v, u ∈ Zd, x ∈ ΣZd
.

We denote by Psi(ΣZd
) the space of shift-invariant probability measures on ΣZd

, namely,

Psi(ΣZd
) ,

{
µ ∈ P(ΣZd

) : σv(µ) = µ for all v ∈ Zd
}

.

For k ∈ N we say that µ ∈ P(ΣFd
k ) is shift invariant if it is the projection of some shift-invariant measure on ΣZd

, i.e., if there
exists µ̃ ∈ Psi(ΣZd

) such that µ = πFd
k

µ̃. We denote by Psi(Σ
Fd

k ) the space of shift-invariant probability measures on ΣFd
k ,

namely,

Psi(Σ
Fd

k ) , πFd
k
(Psi(ΣZd

)) ⊆ P(ΣFd
k ).

2

In the one-dimensional case, d = 1, it is rather easy to check whether a given probability measure µ ∈ P(ΣF1
k ) is shift

invariant. Indeed, µ ∈ Psi(ΣF1
k ) if and only if it satisfies the following finite system of linear equations,∑

a∈Σ

µ(a, a1, . . . , ak−1) =
∑
a∈Σ

µ(a1, . . . , ak−1, a),

for all a1, . . . , ak−1 ∈ Σ.
When d > 2 the space of finite marginals of shift invariant measures becomes much more complicated. It is still not difficult

to formulate an analogous system of linear equations that are satisfied for every µ ∈ Psi(Σ
Fd

k ). However, these linear conditions
are no longer sufficient conditions for shift invariance. In fact, the problem of checking whether a given µ ∈ P(ΣFd

k ) is shift
invariant, is undecidable (assuming some computable representation of µ). See for instance [4], and references within, for a
related discussion.

We are interested in defining empirical distributions of words. To that end, we give some more general definitions that
we then specialize to our specific needs. Given x ∈ ΣZd

, the delta measure at x, denoted by δx ∈ P(ΣZd
), is defined by

δx({x}) = 1. Additionally, given n ∈ N, the empirical measure associated with x and n, denoted frx,n ∈ P(ΣZd
), is given

by

frx,n ,
1

nd

∑
v∈Fd

n

δσv(x).

For S ⊆ Zd we can take the S-marginal, and define frS
x,n ∈ P(ΣS) by

frS
x,n , πS(frx,n).

Any word w ∈ ΣFd
n may be extended periodically to the entire integer grid ŵ ∈ ΣZd

by defining

ŵv , wv mod n

for all v ∈ Zd, and where the modulo is taken entry-wise. The empirical distribution we shall be requiring may now be
defined.

Definition 4. Let d, n ∈N, w ∈ ΣFd
n , and S ⊆ Zd. The empirical distribution of w with respect to S, denoted frS

w, is defined by

frS
w , frS

ŵ,n .

2
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Combinatorially speaking, the empirical distribution frS
w is obtained by cyclically scanning w with an S-shaped window and

recording the frequency of the S-tuples in w. Thus, for instance, given a word w = w0 . . . wn−1 ∈ Σn, wi ∈ Σ, and a ∈ Σk

we have

fr[k]w (a) =
1
|w|

|w|−1∑
i=0

1a(wi . . . wi+k−1)

where all coordinate indices are taken modulo |w|, and 1a : Σk → {0, 1} is the indicator function of the singleton {a}.

Example 5. Let Σ = {0, 1} and let w = 0010111001 ∈ ΣF1
10 . We have that |F1

10| = 10 and

fr[3]w (110) =
1

10

9∑
i=0

1110(wiwi+1wi+2) =
1

10
,

fr[2]w (10) =
1

10

9∑
i=0

110(wiwi+1) =
3

10

2

Example 6. Let Σ = {0, 1} and consider

w =


0 1 1 1
0 0 1 1
1 0 0 1
1 0 1 0

 ∈ ΣF2
4 , a =

ï
0 1
1 0

ò
∈ ΣF2

2 .

Then fr
F2

2
w (a) = 2

16 since, of the sixteen 2× 2 windows, exactly two contain a, shown in bold in the following:
0 1 1 1
0 0 1 1
1 0 0 1
1 0 1 0

 ,


0 1 1 1
0 0 1 1
1 0 0 1
1 0 1 0

 .

2

Lemma 7. Suppose d, n ∈N, w ∈ ΣFd
n , and S ⊆ S̃ ⊆ Zd. Then

πS̃
S(fr

S̃
w) = frS

w .

Proof: Let us denote µ , frŵ,n ∈ P(ΣZd
). By definition, for the right-hand side of the claim, for every W ⊆ ΣS,

frS
w(W) = πZd

S (µ)(W) = µ
(
(πZd

S )−1(W)
)

.

Similarly, for the left-hand side,

πS̃
S(fr

S̃
w)(W) = πS̃

S

(
πZd

S̃ (µ)
)
(W) = πZd

S̃ (µ)
Ä
(πS̃

S)
−1(W)

ä
= µ

(
(πZd

S̃ )−1
Ä
(πS̃

S)
−1(W)

ä)
.

But clearly for all A ⊆ ΣS,
(πZd

S )−1(W) = (πZd

S̃ )−1
Ä
(πS̃

S)
−1(W)

ä
.

Lemma 7 implies that the empirical frequency of S-tuples in w can be calculated by first calculating the empirical frequency
of S̃-tuples, and then taking the S-marginal.

Example 8. Let Σ = {0, 1} and consider

w =


0 1 1 1
0 0 1 1
1 0 0 1
1 0 1 0

 ∈ ΣF2
4 .

Take S = [1]2 = {(0, 0)} and S̃ = [(2, 1)] = {(0, 0), (1, 0)}. Then

frS̃
w(00) =

2
16

, frS̃
w(01) =

5
16

,

frS̃
w(10) =

5
16

, frS̃
w(11) =

4
16

.
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Moreover, we have that

frS
w(0) =

7
16

, frS
w(1) =

9
16

.

We can verify now that

πS̃
S(fr

S̃
w)(0) = frS̃

w

Ä
(πS̃

S)
−1(0)

ä
= frS̃

w ({00, 01}) = 7
16

= frS
w(0).

2

We are now ready to define multidimensional semiconstrained systems.

Definition 9. For d ∈ N, a Zd-semiconstrained system (SCS) is a set Γ ⊆ P(ΣS) for some finite set S ⊆ Zd. For n ∈ N, the
admissible n-blocks of Γ are

Bn(Γ) ,
{

w ∈ ΣFd
n : frS

w ∈ Γ
}

.

2

Since all SCSs we study in this paper are Zd-SCSs, we shall abbreviate and call them just SCSs, where the dimension, d,
will be clear from the context.

Note that SCSs generalize d-dimensional fully constrained systems. Recall that fully constrained systems are defined by a
set of “forbidden patterns”, A ⊆ ΣFd

k , such that a word w ∈ ΣZd
is admissible if and only if none of the elements of A

appear as an Fd
k -tuple of w. Thus, fully constrained systems correspond to subshifts of finite type in symbolic dynamics. In

our notation, we therefore have the following.

Definition 10. For d, k ∈N, we say that Γ ⊆ P(ΣFd
k ) is fully constrained if there exists some L ⊆ ΣFd

k such that

Γ = {µ ∈ P(ΣFd
k ) : µ(L) = 1}.

2

Example 11. Let Σ = {0, 1}, take

L = ΣF2
2 \
ßï

0 0
1 1

ò
,
ï

0 1
1 1

ò
,
ï
1 0
1 1

ò
,
ï
1 1
1 1

ò
,
ï

1 0
1 0

ò
,
ï
1 1
1 0

ò™
,

and consider the fully constrained system, Γ, defined by

Γ =
¶

µ ∈ P(ΣF2
2 ) : µ(L) = 1

©
.

Note that Bn(Γ) is the set of all n × n two-dimensional binary arrays such that none of the six patterns above appears within
a 2× 2 window in them. It is simple to verify that in fact, no two horizontally adjacent 1’s may appear, and no two vertically
adjacent 1’s may appear, in any admissible word. Thus, the n × n arrays in Bn(Γ) are the admissible words of the (cyclical)
(1, ∞)-RLL fully constrained system. 2

An important figure of merit we associate with any set of words, and in particular, with SCSs, is the capacity, which we
now define.

Definition 12. Let d ∈N, and let S ⊆ Zd be a finite subset. For any SCS, Γ ⊆ P(ΣS), and for ε > 0, let

Bε(Γ) ,
ß

µ ∈ P(ΣS) : inf
ν∈Γ
‖µ− ν‖TV 6 ε

™
.

The capacity of Γ is defined as,

cap(Γ) , lim
ε→0+

lim sup
n→∞

1
nd log2 (|Bn(Γ)|) .

2

First, we mention that limε→0+ in the definition of the capacity exists due to monotonicity, since |Bn(Bε(Γ))| is non-
increasing in ε.

To avoid certain pathological scenarios, [9], [10] defined sets of weakly-admissible words and their capacity. We contend
that the capacity definition provided here is the proper multidimensional generalization of these definitions. Intuitively, the
capacity measures the exponential growth rate of the number of words that “almost” satisfy the semiconstraints given by Γ.
Additionally, it has the nice property that the capacity of a set Γ is equal to the capacity of the closure of Γ.

At first glance this definition of capacity may seem odd. A naive definition, which we call the internal capacity, might be
as follows.
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Definition 13. Let d ∈N, S ⊆ Zd finite, and Γ ⊆ P(ΣS) be a SCS. The internal capacity of Γ is defined as”cap(Γ) , lim sup
n→∞

1
nd log2 (|Bn(Γ)|) .

2

By definition we have
cap(Γ) = lim

ε→0+
”cap(Bε(Γ))

which means that ”cap(Γ) 6 cap(Γ). (1)

We also observe that for some “nice” SCSs Γ, ”cap(Γ) = cap(Γ). For instance, we have the following result for one-dimensional
SCSs.

Theorem 14. [9, Section 2] Let k ∈ N, and Γ ⊆ P(Σk) be convex and equal to the closure of its relative interior in Psi(Σk).
Then

cap(Γ) = ”cap(Γ) = log2 |Σ| − inf
η∈Γ∩Psi(Σk)

H(η|µ)

where H(·|·) is the relative entropy function, and µ is defined by µ(φa) , 1
|Σ|
∑

a′∈Σ η(φa′) for all φ ∈ Σk−1 and a ∈ Σ.

Remark 15. Consider the (compact) space M = P(ΣS) and let C(M) be the set of all closed (hence, compact) subsets of M.
Thus, C(M) is a compact topological space (under the Hausdorff metric). Since ”cap(Γ) is monotone, the set of Γs for which”cap(Γ) 6= cap(Γ) is meager. In other words, if we consider ”cap(Bε(Bδ(Γ))) as a function of ε, f (ε) , ”cap(Bε(Γ)), then
cap(Bδ(Γ)) = ”cap(Bδ(Γ)) whenever f is continuous in δ. Since f is a monotone function, it is discontinuous on a countable
number of places. In practice, it means that if for a specific Γ, cap(Γ) 6= ”cap(Γ) an arbitrary small change in Γ will give an
equality. 2

Remark 16. For a fully constrained system, Γ ⊆ P(ΣFd
k ), non-emptyness of Bn(Γ) for all n > 0 is equivalent to the fact that the

subshift of finite type {
w ∈ ΣZd

: ∀v ∈ Zd, (σv(w))Fd
k
∈ L

}
,

is not empty. Berger’s Theorem [2] implies that it is undecidable whether a subshift of finite type is empty given L. Because (under
reasonable assumptions on the representation) it is undecidable if a given multidimensional SCS is non-empty, it is difficult to
understand what a SCS really looks like. 2

At this point we pause to ponder the following: Note that the definition of empirical frequency is cyclic (in the sense that
coordinates are taken modulo n) while in traditional fully constrained systems it is not. This seems at odds with our claim
of SCSs generalizing fully constrained systems. The necessity of the modulo in the definition of SCSs stems from working
with the space of shift-invariant measures and their associated admissible words. Shift-invariant measures are defined over Zd,
hence, it is necessary to complete a word w ∈ ΣFd

n to a word from ΣZd
. We choose to do this completion periodically using

the modulo notion, extending w to ŵ. This choice simplifies the analysis which follows. We contend that with respect to this
issue, the capacity is more natural than the internal capacity, since it is equal to the non-cyclic capacity of fully constrained
systems. To avoid a lengthy detour, the full details are provided in Appendix A.

Finally, we raise the question: what multidimensional SCSs are of interest? If we examine the extensive literature for fully
constrained systems, a significant proportion of multidimensional fully constrained systems are defined as an axial product
of one-dimensional fully constrained systems. Intuitively speaking, if we have a set of “forbidden patterns” defining a one-
dimensional fully constrained system, we can define its d-dimensional axial product by forbidding these patterns along each
dimension. We now formally define this for the case of d-dimensional SCSs with slightly more generality. This definition
generalizes the d-dimensional axial product defined in [19].

Definition 17. Consider S0, . . . , Sd−1 ⊆ N, with 0 ∈ Si for all i ∈ [d], and SCSs Γi ⊆ P(ΣSi ). Denote S ,
⋃

i∈[d] Siei ⊆ Zd.
The d-axial-product SCS, denoted ⊗i∈[d]Γi, is defined by

⊗i∈[d]Γi ,
¶

µ ∈ P(ΣS) : ∀i ∈ [d], πSiei (µ) ∈ Γi
©

.

2

It follows from the above definition, that for every n ∈N we have

Bn
Ä
⊗i∈[d]Γi

ä
=
¶

w ∈ Fd
n : ∀i ∈ [d], frSiei

w ∈ Γi
©

,
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with coordinates taken modulo n. Intuitively, the arrays of a d-axial-product SCS satisfy that along the ith direction, the empirical
distribution of Si-tuples is in Γi. Note that ⊗i∈[d]Γi induces a set of measures over ΣFd

k where k = maxi {ki : ki ∈ Si}. Hence,

we sometimes consider a d-axial-product SCS ⊗i∈[d]Γi as a subset of P(ΣFd
k ).

Example 18. Let Σ = {0, 1}. Consider two real constants 0 6 p0, p1 6 1, and the one-dimensional SCSs, Γ0 and Γ1, given by

Γ0 =
¶

µ ∈ P(Σ2) : µ(11) 6 p0
©

,

Γ1 =
¶

µ ∈ P(Σ2) : µ(11) 6 p1
©

.

Here we are taking S0 = S1 = {0, 1}. The admissible words in the 2-axial-product SCS, Γ0 ⊗ Γ1, are all two-dimensional words
in which the empirical frequency of two horizontally adjacent 1s is at most p0, and the empirical frequency of two vertically
adjacent 1s is at most p1, i.e., all the words w ∈ ΣF2

n such that

fr{(0,0),(1,0)}
w (11) 6 p0,

fr{(0,0),(0,1)}
w (11) 6 p1.

We may also consider Γ0 ⊗ Γ1 as a subset of P(ΣF2
2 )

Γ0 ⊗ Γ1 =
¶

µ ∈ P(ΣF2
2 ) : π{(0,0),(0,1)}(µ)(11) 6 p0, π{(0,0),(1,0)}(µ)(11) 6 p1

©
.

Note that

π{(0,0),(1,0)}(µ)(11) = µ

Åï
0 0
1 1

òã
+ µ

Åï
0 1
1 1

òã
+ µ

Åï
1 0
1 1

òã
+ µ

Åï
1 1
1 1

òã
,

π{(0,0),(0,1)}(µ)(11) = µ

Åï
1 0
1 0

òã
+ µ

Åï
1 0
1 1

òã
+ µ

Åï
1 1
1 0

òã
+ µ

Åï
1 1
1 1

òã
.

2

In this paper we are interested in the capacity and the internal capacity of multidimensional SCSs. Although the capacity
is easier to work with, as we will see later on, the task of computing it is still daunting. Thus, there is a necessity for more
easily computable bounds on the capacity. To this end, we define the independence entropy of a d-dimensional SCS, which is
the basis of the main results of this paper.

III. INDEPENDENCE ENTROPY

In this section we define the independence entropy of multidimensional SCSs and present some of its properties. It will be
used to bound the capacity. The independence entropy is not a new notion, and has appeared previously in [19] in relation
to the capacity of fully constrained systems. However, the formulation of the independence entropy was combinatorial and
therefore less suitable for our purposes. Thus, we modify the definition of independence entropy and formulate it as a statistical
notion.

The admissible words of SCSs (see Definition 9) have their empirical S-tuple distribution from Γ. Finding such words
inexorably involves intricate dependencies between coordinates. This affects not only the task of generating such words, but
also the very basic problem of calculating or bounding the capacity of the SCS – the problem that is the focus of this paper.

In an attempt to simplify this problem, we study the independence-entropy approach. We eliminate all dependencies by
considering only product measures, i.e., where the symbol in each coordinate of the word is chosen independently of other
coordinates. Accordingly, we only require the average of S-marginals to be in Γ. We then ask what is the entropy of such
a system. Intuitively, we are seeking the maximum rate of transmission in a system where word coordinates are transmitted
independently and in parallel, designed such that the average S-marginals are in Γ. The following model provides a rough
interpretation of the independence entropy: Suppose each bit of the output is transmitted by a different agent, and the number
of agents is very large. The agents are allowed to coordinate a protocol in advance, but are unable to communicate once they
receive the messages to be transmitted. In addition, the statistics of the output should roughly satisfy the constraints given
by Γ, with high probability (as a function of the number of agents). In this case under suitable assumptions, the maximal
transmission rate would coincide with the independence entropy. We proceed with formal definitions, starting with a product
measure.

Definition 19. Let d ∈ N, and let S ⊆ Zd be a finite set. We say that µ ∈ P(ΣS) is an independent probability measure or a
product measure if µ(w) =

∏
v∈S π{v}(µ)(w). For S ⊆ Zd that is possibly infinite, µ ∈ P(ΣS) is a product measure whenever

πS′(µ) is a product measure for every finite S′ ⊆ S. 2

In other words, we say that µ is independent if there exists {pv ∈ P(Σ) : v ∈ S} such that µ =
∏

v∈S pv. We naturally
identify the set of product measures in P(ΣS) with (P(Σ))S.
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Next, we define the average of a marginal.

Definition 20. Given d, n ∈ N, µ ∈ P(ΣFd
n ), and S ⊆ Fd

n , let πS(µ) ∈ P(ΣS) be the average of the S-marginals over translates
of µ:

πS(µ) ,
1
|Fd

n |
∑
v∈Fd

n

πS+v(µ),

where the coordinates S + v are taken modulo n. 2

Let S ⊆ Fd
k and let Γ ⊆ P(ΣS) be a SCS. For n > k we define

Pn(Γ) ,
{

µ ∈ (P(Σ))Fd
n : πS(µ) ∈ Γ

}
.

Thus, Pn(Γ) consists of product measures on ΣFd
n such that the average of the S-marginals is in Γ. We can now define the

independence entropy of a SCS.

Definition 21. Let d, k ∈ N, S ⊆ Fd
k , and let Γ ⊆ P(ΣS) be a d-dimensional SCS. The internal independence entropy of Γ is

defined by ‘hind(Γ) , lim sup
n→∞

sup
µ∈Pn(Γ)

1
nd H(µ),

where H(µ) , −∑
w∈ΣFd

n
µ(w) log2 µ(w) is the entropy of µ. The independence entropy of Γ is defined by

hind(Γ) , lim
ε→0+

‘hind(Bε(Γ)).

2

Again, it is clear by definition that ‘hind(Γ) 6 hind(Γ). (2)

The notion of independence entropy which appears here is a generalization of the combinatorial notion for fully constrained
systems that appears in [19].

Theorem 22. Let d, k ∈N, and let Γ ⊆ P(ΣFd
k ) be a fully constrained system. Then

hind(Γ) = hcom
ind (Γ)

where hcom
ind is the combinatorial independence entropy from [19].

To avoid a significant diversion from the main discussion, the proof of Theorem 22, together with the required definitions
from [19], are given in Appendix B.

We now show properties of ‘hind and hind which make them easier to analyze by reducing the multidimensional case to the
one-dimensional case. We start with an inequality given in the following lemma. The proof follows the same argument that
was used in [19] to show the inequality for fully constrained systems. However, the equality for fully constrained systems
holds in an easier and stronger sense.

Lemma 23. Let k ∈N, and let Γ ⊆ P(Σk) be a one-dimensional SCS. Then for all d ∈N,‘hind(Γ) 6‘hind(Γ
⊗d).

Proof: Take µ̂ ∈ Pn(Γ). Since µ̂ is a product measure, it can be written as µ̂ =
∏n−1

i=0 π{i}(µ̂). We now construct a
measure µ ∈ Pn(Γ⊗d) using µ̂. For every v ∈ Fd

n set

π{v}(µ) , π{`(v)}(µ̂),

where `(v) ,
Ä∑d−1

i=0 vi
ä

mod n is the modulo n of the sum of the coordinates of v.
Observe that µ is such that in every row in every direction, i.e., a set of coordinates of the form v + [n]ei, we obtain

some cyclic rotation of µ̂ by t positions, denoted σt(µ̂). However, µ̂ ∈ Pn(Γ) implies σt(µ̂) ∈ Pn(Γ). Thus, we obtain that
µ ∈ Pn(Γ⊗d) and

1
n

H(µ̂) =
1

nd H(µ).

Since we are taking the supremum over all measures µ̂, we have ‘hind(Γ) 6‘hind(Γ⊗d).

Theorem 24. Let k ∈N, and let Γ ⊆ P(Σk) be a one-dimensional SCS. Then for all d ∈N,

hind(Γ
⊗d) = hind(Γ).
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Proof: We first show that hind(Γ⊗d) 6 hind(Γ). Fix δ > 0 and take µ ∈ Pn(Bδ(Γ⊗d)). Recall that

Pn(Bδ(Γ⊗d)) ⊆ P(ΣFd
n ).

Let (vi)i∈[nd−1] be an enumeration of {0} × Fd−1
n , i.e.,

{v0, . . . , vnd−1−1} = {0} × Fd−1
n .

For i ∈ [nd−1], define µi ∈ P(Σn) by µi , π[n]e0+vi
(µ). Now let µ̂ ∈ P(Σnd

) be the product measure that is the product of

all the µi’s. This means that for a word a = a0 . . . and−1 ∈ Σnd
,

µ̂(a) , µ0(a0 . . . an−1)µ1(an . . . a2n−1) · · · µnd−1(an(nd−1−1) . . . and−1),

Since each of the µi’s is already a product measure, µ̂ ∈ P(Σnd
) is also a product measure. We have

π[k](µ̂) =
1

nd

nd−1∑
j=0

πj+[k](µ̂)

=
1

nd

Ñ
nd−1−1∑

i=0

(i+1)n−1∑
j=in

πj+[k](µ̂)

é
=

1
nd

Ñ
nd−1−1∑

i=0

Ñ
(i+1)n−k∑

j=in

πj+[k](µ̂) +

(i+1)n−1∑
j=(i+1)n−k+1

πj+[k](µ̂)

éé
(a)
=

1
nd

Ñ
nd−1−1∑

i=0

(i+1)n−k∑
j=in

π(j−in)+[k](µi) +
nd−1−1∑

i=0

(i+1)n−1∑
j=(i+1)n−k+1

πj+[k](µ̂)

é
=

1
nd

Ñ
nd−1−1∑

i=0

(i+1)n−1∑
j=in

π(j−in)+[k](µi)−
nd−1−1∑

i=0

(i+1)n−1∑
j=(i+1)n−k+1

π(j−in)+[k](µi) +
nd−1−1∑

i=0

(i+1)n−1∑
j=(i+1)n−k+1

πj+[k](µ̂)

é
=

1
nd−1

Ñ
nd−1−1∑

i=0

π[k](µi)−
1
n

nd−1−1∑
i=0

(i+1)n−1∑
j=(i+1)n−k+1

Ä
π(j−in)+[k](µi)− πj+[k](µ̂)

äé
= π[k]e0

(µ)− 1
nd

nd−1−1∑
i=0

(i+1)n−1∑
j=(i+1)n−k+1

Ä
π(j−in)+[k](µi)− πj+[k](µ̂)

ä
where (a) follows from the definition of µ̂ and since the coordinates are taken modulo n when calculating π[k](µi). EachÄ

π(j−in)+[k](µi)− πj+[k](µ̂)
ä

is a signed measure of total variation norm at most 1. Therefore,∥∥∥π[k](µ̂)− π[k]e0
(µ)
∥∥∥

TV
6

k
n

.

This means that π[k](µ̂) ∈ B k
n +δ

(Γ). We obtained that for every ε > δ > 0, and every µ ∈ Pn(Bδ(Γ⊗d)), we can find

n0 ∈N such that for every n > n0, µ̂ ∈ Pnd (Bε(Γ)). Since µ and µ̂ are both product measures we have

H(µ) =
∑
v∈Fd

n

H(π{v}(µ))

=
∑

i∈[nd ]

H(π{i}(µ̂))

= H(µ̂).

This implies that for every ε > δ > 0,

lim sup
n→∞

sup
µ∈Pn(Bδ(Γ⊗d))

1
nd H(µ) 6 lim sup

n→∞
sup

µ∈Pnd (Bε(Γ))

1
nd H(µ).

We therefore obtain hind(Γ⊗d) 6‘hind(Bε(Γ)) for every ε > 0. Taking the limit as ε→ 0+, by the definition of hind(Γ) we
have

hind(Γ
⊗d) 6 hind(Γ).
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We now show the other direction. By Lemma 23, For every δ > 0 we have‘hind(Bδ(Γ)) 6‘hind(Bδ(Γ)⊗d).

By monotonicity of ‘hind it thus follows that for every δ > 0,

hind(Γ) 6‘hind(Bδ(Γ)⊗d).

Now observe that for every ε > 0 there exists δ > 0 so that

Bδ(Γ)⊗d ⊆ Bε

Ä
Γ⊗d
ä

.

It follows that for every ε > 0
hind(Γ) 6‘hind

Ä
Bε

Ä
Γ⊗d
ää

.

Thus, by taking the limit ε→ 0+,
hind(Γ) 6 hind

Ä
Γ⊗d
ä

.

We conclude this section by noting that Lemma 23 and Theorem 24 show that for Γ ⊆ P(Σk),‘hind(Γ) 6‘hind(Γ
⊗d) 6 hind(Γ

⊗d) = hind(Γ). (3)

IV. INDEPENDENCE ENTROPY LOWER BOUNDS THE CAPACITY

This section and the next explore the relationship between the independence entropy and the capacity. In this section we
show that the capacity of any d-dimensional SCS (not necessarily an axial product) is lower bounded by the independence
entropy.

Before proceeding we require a simple lemma.

Lemma 25. Let d, n ∈ N, and S ⊆ Fd
n , then πS and πS are contractions with respect to the total-variation distance, i.e., for all

µ, ν ∈ P(ΣFd
n ),

‖πS(µ)− πS(ν)‖TV 6 ‖µ− ν‖TV ,
‖πS(µ)− πS(ν)‖TV 6 ‖µ− ν‖TV .

Proof: For every W ⊆ ΣS we have

|πS(µ)(W)− πS(ν)(W)| =
∣∣∣µ(π−1

S (W))− ν(π−1
S (W))

∣∣∣ 6 sup
A′⊂ΣS

∣∣µ(W ′)− ν(W ′)
∣∣ = ‖µ− ν‖TV .

Hence the function πS+v is a contraction for every v ∈ Fd
n . Then πS, being an average of contractions, is itself a contraction.

We are now ready to state and prove the main result of this section – a lower bound on the capacity. The corresponding
result for fully constrained systems was obtained in [19].

Theorem 26. Let d ∈N, S ⊆ Zd be a finite set, and let Γ ⊆ P(ΣS) be a SCS. Then hind(Γ) 6 cap(Γ).

Proof: Fix δ > 0, n ∈ N such that S ⊆ Fd
n , and let µ ∈ Pn(Bδ(Γ)). For m ∈ N, we have a natural identification

isomorphism ΣFd
nm ∼= (ΣFd

n )Fd
m that identifies v ∈ Fd

nm with the unique pair r ∈ Fd
n and q ∈ Fd

m such that v = nq + r. Consider
the product measure µm ∈ P(ΣFd

n )Fd
m ⊆ P(ΣFd

nm) satisfying

µm({x}) =
∏

v∈Fd
m

µ(πFd
n
(σnv(x))).

Note that since µ is a product measure, µm is also a product measure.

For a word w ∈ ΣFd
nm , denote by f̂r

Fd
n

w the empirical distribution of non-overlapping Fd
n -tuples, i.e.,

f̂r
Fd

n
w ,

1
|Fd

m|
∑

u∈Fd
m

δπ
Fd
n
(σnu(ŵ)).

Additionally, observe that
1
|Fd

n |
∑
v∈Fd

n

f̂r
Fd

n
σv(w) = frFd

n
w .
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Also, because π
Fd

n
S is an affine map, it follows that

1
|Fd

n |
∑
v∈Fd

n

π
Fd

n
S f̂r

Fd
n

σv(w) = πS(fr
Fd

n
w ).

By Lemma 7, πS(fr
Fd

n
w ) = frS

w.
Note that by the construction of µm we have πS(µ) = πS(µ

m), and we obtain,∥∥∥frS
w−πS(µ

m)
∥∥∥

TV
=
∥∥∥frS

w−πS(µ)
∥∥∥

TV

=

∥∥∥∥∥∥∥
1
|Fd

nm|
∑

u∈Fd
nm

πS(δσu(w))−
1
|Fd

n |
∑
v∈Fd

n

πS+v(µ)

∥∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥∥
1

|Fd
n ||Fd

m|
∑
v∈Fd

n

∑
u∈Fd

m

πS(δσnu+v(w))−
1
|Fd

n |
∑
v∈Fd

n

πS+v(µ)

∥∥∥∥∥∥∥
TV

(a)
=

∥∥∥∥∥∥∥
1

|Fd
n ||Fd

m|
∑
v∈Fd

n

∑
u∈Fd

m

πS+v(δσnu(w))−
1
|Fd

n |
∑
v∈Fd

n

πS+v(µ)

∥∥∥∥∥∥∥
TV

(b)
6

1
|Fd

n |
∑
v∈Fd

n

∥∥∥∥∥∥∥
1
|Fd

m|
∑

u∈Fd
m

πS+v(δσnu(w))− πS+v(µ)

∥∥∥∥∥∥∥
TV

(c)
=

1
|Fd

n |
∑
v∈Fd

n

∥∥∥∥∥∥∥πS+v

Ñ
1
|Fd

m|
∑

u∈Fd
m

δσnu(w)

é
− πS+v(µ)

∥∥∥∥∥∥∥
TV

=
1
|Fd

n |
∑
v∈Fd

n

∥∥∥∥πS+v(f̂r
Fd

n
w )− πS+v(µ)

∥∥∥∥
TV

(d)
6

1
|Fd

n |
∑
v∈Fd

n

∥∥∥∥f̂r
Fd

n
w − µ

∥∥∥∥
TV

=

∥∥∥∥f̂r
Fd

n
w − µ

∥∥∥∥
TV

where:
• (a) follows since πS(δσv(w)) = πS+v(δw).
• (b) follows by the triangle inequality.
• (c) follows since πS is an affine map.
• (d) follows by Lemma 25.

Thus, for ε > δ, if ‖f̂rFd
n

w − µ‖TV < ε− δ then ‖ frS
w−πS(µ

m)‖TV < ε− δ. Therefore,{
w ∈ ΣFd

nm :
∥∥∥frS

w−πS(µ)
∥∥∥

TV
> ε− δ

}
⊆
ß

w ∈ ΣFd
nm :

∥∥∥∥f̂r
Fd

n
w − µ

∥∥∥∥
TV
> ε− δ

™
.

Using the fact that πS(µ) ∈ Bδ(Γ), it follows that{
w ∈ ΣFd

nm : frS
w /∈ int (Bε(Γ))

}
⊆
ß

w ∈ ΣFd
nm :

∥∥∥∥f̂r
Fd

n
w − µ

∥∥∥∥
TV
> ε− δ

™
, (4)

where int(·) denotes the interior of a set, i.e., int(Bε(Γ)) =
{

ν ∈ P(ΣS) : infµ∈Γ ‖ν− µ‖TV < ε
}

.

If w ∈ ΣFd
nm was randomly drawn according to µm, the non-overlapping Fd

n -tuples are distributed i.i.d. according to µ. Apply
Cramer’s Theorem (as in [7, Theorem 2.2.3 remark c]) to deduce that for ε > δ and for every m,

µm
Åß

w ∈ ΣFd
nm :

∥∥∥∥f̂r
Fd

n
w − µ

∥∥∥∥
TV
> ε− δ

™ã
6 2 exp

Ñ
−m inf

ν∈P(ΣFd
n ): ‖ν−µ‖TV>ε−δ

H(ν|µ)

é
.
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Note that the function ν× µ 7→ H(ν|µ) is continuous and strictly positive off the diagonal. Thus, for every ε > δ we have

cµ(ε) , inf
ν∈P(ΣFd

n ): ‖ν−µ‖TV>ε−δ

H(ν|µ) > 0.

Hence

µm
Åß

w ∈ ΣFd
nm :

∥∥∥∥f̂r
Fd

n
w − µ

∥∥∥∥
TV
> ε− δ

™ã
6 2 exp

(
−mcµ(ε)

)
. (5)

Recall that Bnm(int(Bε(Γ))) =
¶

w ∈ ΣFd
nm : frS

w ∈ int(Bε(Γ))
©

. By (4), we have

µm
(

ΣFd
nm \ Bnm(int(Bε(Γ)))

)
(6)

= µm
({

w ∈ ΣFd
nm : frS

w /∈ int(Bε(Γ))
})

6 µm
Åß

w ∈ ΣFd
nm :

∥∥∥∥f̂r
Fd

n
w − µ

∥∥∥∥
TV
> ε− δ

™ã
.

Combining (5) and (6) we have,

ξ , µm
(

ΣFd
nm \ Bnm (int(Bε(Γ)))

)
6 2 exp

(
−mcµ(ε)

)
.

It now follows that,

1
nd H(µ) =

1
(nm)d H(µm)

= − 1
(nm)d

∑
w∈ΣFd

nm

µm(w) log2 µm(w)

= − 1
(nm)d

∑
w∈Bnm(int(Bε(Γ)))

µm(w) log2 µm(w)

− 1
(nm)d

∑
w/∈Bnm(int(Bε(Γ)))

µm(w) log2 µm(w)

(a)
6 (1− ξ) ·

log2 |Bnm(int(Bε(Γ)))|
(nm)d + ξ ·

log2

∣∣∣ΣFd
nm \ Bnm(int(Bε(Γ)))

∣∣∣
(nm)d + H2(ξ)

6
log2 |Bnm(int(Bε(Γ)))|

(nm)d + 2e−mcµ(ε)
log2 |Σ|

(nm)d

(nm)d + H2(ξ)

6
1

(nm)d log2 |Bnm(int(Bε(Γ)))|+ 2e−mcµ(ε) 1
(nm)d log2 |Σ|

(nm)d
+ H2(ξ).

where (a) follows from standard maximization of entropy arguments, and where H2(ξ) , −ξ log2 ξ − (1− ξ) log2(1− ξ)
is the binary entropy function. This implies

1
nd H(µ) = lim sup

m→∞

1
nd H(µ)

6 lim sup
m→∞

1
(nm)d log2 |Bnm(int(Bε(Γ)))|

6 lim sup
m→∞

1
(nm)d log2 |Bnm(Bε(Γ))|

6 ”cap (Bε(Γ)) ,

This is true for every µ ∈ Pn(Bδ(Γ)) and hence

sup
µ∈Pn(Bδ(Γ))

1
nd H(µ) 6 ”cap (Bε(Γ)) .

Since this holds for every n we have that for every ε > δ > 0,‘hind(Bδ(Γ)) 6 ”cap(Bε(Γ)).
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Taking the limit as δ→ 0, this implies that for every ε > 0,

hind(Γ) 6 ”cap(Bε(Γ)).

Finally, taking the limit as ε→ 0, it follows that

hind(Γ) 6 cap(Γ).

We summarize our results thus far by noting that for a SCS Γ ⊆ P(Σk), since ‘hind(Γ) 6‘hind(Γ⊗d), Theorem 26 together
with (3) show that ‘hind(Γ) 6‘hind(Γ

⊗d) 6 hind(Γ
⊗d) 6 cap(Γ⊗d), (7)‘hind(Γ) 6‘hind(Γ

⊗d) 6 hind(Γ
⊗d) = hind(Γ) 6 cap(Γ). (8)

V. UPPER BOUND ON LIMITING CAPACITY

In this section we prove that if Γ ⊆ P(Σk) is a convex one-dimensional SCS and Γ⊗d its d-axial product, then

lim sup
d→∞

cap(Γ⊗d) 6 hind(Γ
⊗d).

The main idea is to show that for any ε > 0 we are able to find d large enough for which the independence entropy is ε-close
to cap(Γ⊗d). This is the main result of [23] and the proof here is an adaptation of it.

Before going into details we introduce a different form of d-axial product which we call the weak d-axial product. For a
one dimensional SCS, Γ ⊆ P(Σk), define

Γ�d ,

µ ∈ P(ΣFd
k ) :

1
d

∑
i∈[d]

π[k]ei
(µ) ∈ Γ

 ,

and thus

Bn
Ä

Γ�d
ä
=

w ∈ Fd
n :

1
d

∑
i∈[d]

fr[k]ei
w ∈ Γ

 .

For the weak d-axial product we define,

Pn(Γ�d) ,

µ ∈ (P(Σ))Fd
n :

1
d

∑
i∈[d]

π[k]ei
(µ) ∈ Γ

 .

This last definition is a relaxed version of Γ⊗d, since Pn(Γ⊗d) is the set of all independent measures for which the average
of the k-marginals in each direction (separately) belongs to Γ, whereas Pn(Γ�d) is the set of all independent measures for
which the average of k-marginals (over all directions) belongs to Γ.

Correspondingly, we have,

hind(Γ
�d) , lim

ε→0+
lim sup

n→∞
sup

µ∈Pn(Bε(Γ)�d)

1
nd H(µ),

where H(µ) , −∑
w∈ΣFd

n
µ(w) log2 µ(w) is the entropy of µ.

As will become clearer later on, it will be somewhat easier to use hind(Γ�d) than hind(Γ⊗d) in this section. First, the
following lemma shows that the relaxation leading to hind(Γ�d) does not affect the independence entropy.

Lemma 27. Let k ∈N, and let Γ ⊆ P(Σk) be a convex one-dimensional SCS, then

hind(Γ) = hind(Γ
⊗d) = hind(Γ

�d).

Proof: By Theorem 24 we already know that hind(Γ⊗d) = hind(Γ). Thus, we are left with proving the last equality. Since
Γ is convex, for every δ > 0,

Pn(Bδ(Γ⊗d)) ⊆ Pn(Bδ(Γ)⊗d) ⊆ Pn(Bδ(Γ)�d).

Hence,
hind(Γ

⊗d) 6 hind(Γ
�d).
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The other direction follows essentially by using the same method as in the proof of Theorem 24, as we now describe. Let
(vj

i)i∈[nd−1] be an enumeration of Fj−1
n × {0} × Fd−j

n , i.e.,¶
vj

0, . . . , vj
nd−1−1

©
= Fj−1

n × {0} × Fd−j
n .

Fix δ > 0 and µ ∈ Pn(Bδ(Γ)�d). For i ∈ [nd−1] and j ∈ [d], define µ
j
i ∈ P(Σ

n) by µ
j
i , π

[n]ej+vj
i
(µ). Now let µ̂ ∈ P(Σdnd

)

be the product measure satisfying

µ̂({a}) =
∏
j∈[d]

∏
i∈[nd−1]

µ
j
i(ain+jnd . . . a(i+1)n+jnd−1)

for every word a = a0 . . . adnd−1 ∈ Σdnd
. It is clear that µ̂ is indeed a product measure, because every µ

j
i is also a product

measure. Now,

π[k](µ̂) =
1

dnd

∑
i∈[dnd ]

πi+[k](µ̂)

=
1

dnd

∑
j∈[d]

∑
i∈[nd−1]

∑
`∈[n]

π[k]+in+`+jnd(µ̂)

=
1

dnd

∑
j∈[d]

∑
i∈[nd−1]

Ñ ∑
`∈[n−k]

π[k]+in+`+jnd(µ̂) +
n−1∑

`=n−k

π[k]+in+`+jnd(µ̂)

é
=

1
dnd

∑
j∈[d]

∑
i∈[nd−1]

Ñ ∑
`∈[n−k]

π[k]+`(µ
j
i) +

n−1∑
`=n−k

π[k]+in+`+jnd(µ̂)

é
=

1
dnd

∑
j∈[d]

∑
i∈[nd−1]

Ñ∑
`∈[n]

π[k]+`(µ
j
i)−

n−1∑
`=n−k

π[k]+`(µ
j
i) +

n−1∑
`=n−k

π[k]+in+`+jnd(µ̂)

é
(a)
=

1
d

∑
j∈[d]

π[k]ej
(µ)− 1

dnd

∑
j∈[d]

∑
i∈[nd−1]

n−1∑
`=n−k

Ä
π[k]+`(µ

j
i)− π[k]+in+`+jnd(µ̂)

ä
.

Recall that from the definition of Pn(Bδ(Γ)�d), we have

1
d

∑
j∈[d]

π[k]ej
(µ) ∈ Bδ(Γ).

Since
Ä

π[k]+`(µ
j
i)− π[k]+in+`+jnd(µ̂)

ä
is a signed measure of total variation norm at most 2, it follows that π[k](µ̂) ∈

B 2k
n +δ

(Γ), so µ̂ ∈ Pdnd

(
B 2k

n +δ
(Γ)
)

. Hence, for every ε > δ > 0, and every µ ∈ Pn(Bδ(Γ)�d), we can find n0 ∈ N such

that for every n > n0, µ̂ ∈ Pdnd (Bε(Γ)), and therefore,

lim sup
n→∞

sup
µ∈Pn(Bδ(Γ)�d)

1
nd H(µ) 6 lim sup

n→∞
sup

µ∈Pdnd (Bε(Γ))

1
dnd H(µ).

Thus, we obtain hind(Γ�d) 6‘hind(Bε(Γ)) for every ε > 0, and by definition it follows that

hind(Γ
�d) 6 hind(Γ).

Given a probability space (X ,F , P), denote by L2(X ,F , P, Cn) the Hilbert space of F -measurable functions f : X → Cn

satisfying

‖ f ‖2
L2 ,

∫
〈 f , f 〉dP < ∞,

where 〈·, ·〉 is the standard inner product on Cn.
The following lemma is based on Dirichlet’s “pigeon hole principle” and different versions of it are used in many de-Finetti

type proofs (see, for example, [8] [21, Lemma 4.1]).
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Lemma 28. Let (X ,F , P) be a probability space and let F0 ⊆ F1 ⊆ · · · ⊆ Fm ⊆ F be a sequence of sub-σ-algebras. Let
f ∈ L2(X ,F , P, Cn), and denote f j , E[ f |Fj], the conditional expectation of f with respect to the sub-σ-algebra Fj. Then,
there exists t ∈ [m] such that

‖ ft+1 − ft‖2
L2 6

1
m
‖ f ‖2

L2

Proof: For every `, let V` , L2(X ,F`, P, Cn) denote the corresponding sub-space of the Hilbert space V , L2(X ,F , P, Cn).
Then f` is an orthogonal projection of f onto V`. Thus, 〈 f − f`, g〉L2 = 0 for every g ∈ V. Therefore,

‖ fm‖2
L2 =

∑
`∈[m]

‖ f`+1 − f`‖2
L2 + ‖ f0‖2

L2 .

Additionally, 0 6 ‖ fm‖2
L2 6 ‖ f ‖2

L2 . The result follows by noticing that if m non-negative real numbers sum to at most ‖ f ‖2
L2

then the value of at least one element is at most 1
m‖ f ‖2

L2 .
Before stating the lemmas, we need the following notation. Recall that for k ∈ N, we defined [k] , {0, . . . , k− 1}. We

now define [−k] , {−1, . . . ,−k}.

Lemma 29. For every ε > 0, and any m ∈ N, there exists d0 ∈ N such that for every d > d0, and every n, j ∈ N, n > j + 2,
there exists a sequence of m + 1 random subsets X0, X1, . . . , Xm ⊆ Fd

n , and random variables It,v ∈ [d], for all t ∈ [m], v ∈ Fd
n ,

all defined on an appropriate probability space (X , 2X , P), such that all the following hold:

1) P(Xi ⊆ Xi+1) = 1 for all i ∈ [m].
2) P(|Xm| 6 ε|Fd

n |) > 1− ε.
3) For all v ∈ Fd

n and t ∈ [m], It,v is distributed uniformly on [d] and is independent of Xt. Furthermore, for every value of Xt,

P
(
Xt ∪ ([−(j + 1)]eIt,v + v) ⊆ Xt+1

∣∣∣ Xt
)
> 1− ε.

Proof: Choose 0 < p < 1 small enough so that 1− (1− p)m+1 6 ε
2 , and conveniently denote pi , 1− (1− p)i+1. For

all i ∈ [m + 1], consider random subsets Ai ⊆ Fd
n whose coordinates are chosen i.i.d. Bernoulli(p), i.e., P(v ∈ Ai) = p for

all v ∈ Fd
n , independently of Fd

n \ {v}. Define X−1 , ∅, and for all i ∈ [m + 1], define

Xi , Xi−i ∪ Ai.

Thus, P(v ∈ Xi) = pi for all v ∈ Fd
n , independently of Fd

n \ {v}. We contend that for large enough d, the claims hold.
First, it is clear that P(Xi ⊆ Xi+1) = 1 for i ∈ [m + 1] by construction. Second, we have

P
(
|Xm| 6 ε

∣∣∣Fd
n

∣∣∣) > P
(
|Xm| < 2pm

∣∣∣Fd
n

∣∣∣) > 1− e−2p2
mnd

,

where the last inequality follows from Hoeffding’s inequality. Since the right-hand side approaches 1 when n > 2 and d→ ∞,
claim 2 holds for large enough d.

We now address claim 3. Fix t ∈ [m] and consider At+1. For a coordinate v ∈ Fd
n , denote by D(t, v) the set

D(t, v) , {i ∈ [d] : v + [−(j + 1)]ei ⊆ At+1} .

If D(t, v) 6= ∅ then draw It,v uniformly from D(t, v). Otherwise, draw It,v uniformly from [d]. Note that It,v is distributed
uniformly on [d] since the distribution of At+1 is invariant under coordinate permutation. Since the coordinates in At+1 are
chosen independently of At, At−1, . . . , A0 we obtain that It,v is independent of Xt. Finally, we have

P
(
Xt ∪ ([−(j + 1)]eIt,v + v) ⊆ Xt+1

∣∣∣ Xt
)
> P(D(t, v) 6= ∅) = 1− (1− pj+1)d.

Since the right-hand side approaches 1 as d→ ∞, claim 3 holds for large enough d.
If X is a random variable over some probability space, we use PX to denote its distribution. Let X0, . . . , Xk−1 be random

variables over the same probability space (X , 2X , P). We denote by (X0, . . . , Xk−1) the vector distributed according to their
joint probability, PX0,...,Xk−1 , and denote by (X0 × · · · × Xk−1) the vector distributed according to their product probability,
i.e., PX0×···×Xk−1 ,

∏
i∈[k] PXi .

Lemma 30. Let X be a finite set, and X0, . . . , Xk−1 be k random variables defined over the same probability space (X , 2X , P).
Then ∥∥∥PX0,...,Xk−1 −PX0×···×Xk−1

∥∥∥
TV
6

k−2∑
i=0

EX0,...,Xi

[∥∥∥PXi+1|X0,...,Xi
−PXi+1

∥∥∥
TV

]
.
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Proof: We prove this by induction on k. The case of k = 1 is trivially true. In the base case of k = 2 we have,∥∥PX0,X1 −PX0×X1

∥∥
TV =

1
2

∑
x0,x1

∣∣PX0,X1(x0, x1)−PX0(x0)PX1(x1)
∣∣ (9)

=
1
2

∑
x0,x1

∣∣∣PX0(x0)PX1|X0
(x1|x0)−PX0(x0)PX1(x1)

∣∣∣
where the sum of x0 and x1 is over the support of X0 and X1, respectively. Since PX0(x0) > 0 we have

1
2

∑
x0,x1∈X

∣∣∣PX0(x0)PX1|X0
(x1|x0)−PX0(x0)PX1(x1)

∣∣∣ = ∑
x0∈X

PX0(x0)

Ñ
1
2

∑
x1∈X

∣∣∣PX1|X0
(x1|x0)−PX1(x1)

∣∣∣
é

. (10)

Combining (9) and (10) and using the total variation distance definition we obtain∥∥PX0,X1 −PX0×X1

∥∥
TV = EX0

[∥∥∥PX1|X0
−PX1

∥∥∥
TV

]
.

Now assume the statement is correct for k− 1 random variables and we show it is correct for k random variables. We write∥∥∥PX0,...,Xk−1 −PX0×···×Xk−1

∥∥∥
TV

=
∥∥∥PX0,...,Xk−1 −P(X0,...,Xk−2)×Xk−1

+ P(X0,...,Xk−2)×Xk−1
−PX0×···×Xk−1

∥∥∥
TV

.

By applying the triangle inequality we obtain∥∥∥PX0,...,Xk−1 −PX0×···×Xk−1

∥∥∥
TV
6
∥∥∥PX0,...,Xk−1 −P(X0,...,Xk−2)×Xk−1

∥∥∥
TV

+
∥∥∥P(X0,...,Xk−2)×Xk−1

−PX0×···×Xk−1

∥∥∥
TV

. (11)

Considering Y = (X0, . . . , Xk−2) as a tuple-valued radom variable, and applying the case k = 2 on the pair of random variables
(Y, Xk−1) we have: ∥∥∥PX0,...,Xk−1 −P(X0,...,Xk−2)×Xk−1

∥∥∥
TV
6 EX0,...,Xk−2

[∥∥∥PXk−1|(X0,...,Xk−2)
−PXk−1

∥∥∥
TV

]
(12)

It is easy to check that ∥∥∥P(X0,...,Xk−2)×Xk−1
−PX0×···×Xk−1

∥∥∥
TV

=
∥∥∥PX0,...,Xk−2 −PX0×···×Xk−2

∥∥∥
TV

(13)

By the induction hypothesis we have∥∥∥PX0,...,Xk−2 −PX0×···×Xk−2

∥∥∥
TV
6

k−3∑
i=0

EX0,...,Xi

[∥∥∥PXi+1|X0,...,Xi
−PXi+1

∥∥∥
TV

]
.

Combining this with (11), (12) and (13) completes the proof.

For A ⊆ Fd
n , let FA ⊆ 2ΣFd

n denote the σ-algebra generated by the coordinates in A, namely,

FA ,
{{

x ∈ ΣFd
n : πA(x) ∈W

}
: W ⊆ ΣA

}
.

Definition 31. Let d, k, n ∈ N, A ⊆ Fd
n , and let y ∈ ΣFd

n . For a one-dimensional SCS, Γ ⊆ P(Σk), and its d-axial-product SCS,
Γ⊗d, we define the following:

µn,d is the uniform measure over Bn(Γ⊗d),

µy,A , µn,d (· | FA) (y),

ηy,A ,
∏

v∈Fd
n

π{v}
(
µy,A

)
.

2

In other words, µy,A is the uniform distribution on Bn(Γ⊗d) given whose positions in A agree with yA. Moreover, ηy,A is
the independent version of µy,A. The following statement is a particular application of Lemma 30 above.

Lemma 32. For every d, n ∈N, i ∈ [d], and A ⊆ Fd
n , we have∑

v∈Fd
n

E
[∥∥∥π[k]ei+v(ηy,A)− π[k]ei+v(µy,A)

∥∥∥
TV

]
6
∑
v∈Fd

n

∑
j∈[k]

E
[∥∥∥π{v}(ηy,A)− π{v}(µy,(A∪([−j]ei+v))

∥∥∥
TV

]
.

Proof: First note that if k = 1 the result is immediate since all the summands on the left-hand side are 0. We now
examine the case of k > 2. For the time being, let us fix v ∈ Fd

n and y ∈ ΣFd
n . We define the random variables Xj, j ∈ [k],
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where X0, . . . , Xk−1 is distributed according to P
y
X0,...,Xk−1

, π[k]ei+v(µy,A). In particular, each Xj is distributed according

to P
y
Xj
, πjei+v(µy,A) = πjei+v(ηy,A). Additionally, P

y
X0×···×Xk−1

= π[k]ei+v(ηy,A). We use the superscript y to emphasize

that these distributions depend y. Also for z ∈ ΣFd
n such that zA = yA , the conditional probability P

y
Xj+1|X0,...,Xj

evaluated at

z is equal to the measure π(j+1)ei+v(µz,A∪([j+1]ei+v)). By Lemma 30, we have

∥∥∥P
y
X0,...,Xk−1

−P
y
X0×···×Xk−1

∥∥∥
TV
6

k−2∑
j=0

E
ï∥∥∥∥P

y
Xj+1|X0,...,Xj

−P
y
Xi+1

∥∥∥∥
TV

ò
. (14)

The expectations in the right-hand side are with respect to the conditioning on the random variables X0, . . . , Xj. We can rewrite
the above equation as follows:∥∥∥π[k]ei+v(µy,A)− π[k]ei+v(ηy,A)

∥∥∥
TV
6

k−2∑
j=0

∫ ∥∥∥π(j+1)ei+v(µz,A∪([j+1]ei+v))− π(j+1)ei+v(ηz,A)
∥∥∥

TV
dµy,A(z) (15)

Integrating the above inequality over y with respect to µn,d we have:∫ ∥∥∥π[k]ei+v(µy,A)− π[k]ei+v(ηy,A)
∥∥∥

TV
dµn,d(y)

6
k−2∑
j=0

∫∫ ∥∥∥π(j+1)ei+v(µz,A∪([j+1]ei+v))− π(j+1)ei+v(ηz,A)
∥∥∥

TV
dµy,A(z)dµn,d(y).

By definition of µy,A as the conditional measure, for every f : ΣFd
n → R we have∫∫

f (z)dµy,A(z)dµn,d(y) =
∫

f (y)dµn,d(y).

Writing the integeral with repect to µn,d as E [·], we thus have

E
[∥∥∥π[k]ei+v(µy,A)− π[k]ei+v(ηy,A)

∥∥∥
TV

]
6

k−2∑
j=0

E
[∥∥∥π(j+1)ei+v(µy,A∪([j+1]ei+v))− π(j+1)ei+v(ηy,A)

∥∥∥
TV

]
.

Summing over all v ∈ Fd
n we obtain∑

v∈Fd
n

E
[∥∥∥π[k]ei+v(µy,A)− π[k]ei+v(ηy,A)

∥∥∥
TV

]
6
∑
v∈Fd

n

k−2∑
j=0

E
[∥∥∥π(j+1)ei+v(µy,A∪([j+1]ei+v))− π(j+1)ei+v(ηy,A)

∥∥∥
TV

]
. (16)

Recall that [−j] , {−1, . . . ,−j}, hence

[j + 1]ei = (j + 1)ei + [−(j + 1)]ei.

Thus, (16) can be written as∑
v∈Fd

n

E
[∥∥∥π[k]ei+v(µy,A)− π[k]ei+v(ηy,A)

∥∥∥
TV

]
(17)

6
∑
v∈Fd

n

k−2∑
j=0

E
[∥∥∥π(j+1)ei+v(µy,A∪((j+1)ei+v+[−(j+1)]ei)

)− π(j+1)ei+v(ηy,A)
∥∥∥

TV

]
.

Since we are summing over all v ∈ Fd
n , and since coordinates are taken modulo n, we may write (17) as follows,∑

v∈Fd
n

E
[∥∥∥π[k]ei+v(µy,A)− π[k]ei+v(ηy,A)

∥∥∥
TV

]
6
∑
v∈Fd

n

k−2∑
j=0

E
[∥∥∥π{v}(µy,A∪(v+[−(j+1)]ei)

)− π{v}(ηy,A)
∥∥∥

TV

]
. (18)

Since the total variation distance is non-negative, (18) implies the lemma.
The following proposition, which is used to prove the main result of this section, considers the following scenario. Assume

y ∈ ΣFd
n is randomly drawn using the measure µn,d, i.e., it is drawn uniformly at random from the set of admissible words

Bn(Γ⊗d). We then study the random variable ηy,A (a measure in itself), and ask what is the probability that it resides within
the set of measures Pn

Ä
(Bε(Γ))�d

ä
. For convex SCSs, we prove this probability is ε-close to 1, assuming d is sufficiently

large.
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Proposition 33. Let k ∈ N, and let Γ ⊆ P(Σk) be a convex SCS. For any ε > 0, there exists d0 ∈ N, such that for all d ∈ N,
d > d0, n ∈N, n > k + 2, there exists A ⊆ Fd

n , |A| 6 εnd, such that for y ∈ ΣFd
n drawn randomly using the measure µn,d,

µn,d
Ä

ηy,A ∈ Pn
Ä
(Bε(Γ))�d

ää
> 1− ε.

Proof: Recall that by Definition 31, ηy,A is a product measure, while µy,A is not necessarily so. Additionally, we contend
that π[k]ei

(µy,A) ∈ Γ for all y ∈ Bn(Γ⊗d), A ⊆ Fd
n and i ∈ [d]. Indeed,

π[k]ei
(µy,A) =

1
|Fd

n |
∑
v∈Fd

n

π[k]ei+v(µy,A)

=
1
|Fd

n |
∑
v∈Fd

n

1
|π−1

A (yA)|
∑

x∈π−1
A (yA)

π[k]ei+v(δx̂)

=
1

|π−1
A (yA)|

∑
x∈π−1

A (yA)

1
|Fd

n |
∑
v∈Fd

n

π[k]ei+v(δx̂)

=
1

|π−1
A (yA)|

∑
x∈π−1

A (yA)

π[k]ei

Ñ
1
|Fd

n |
∑
v∈Fd

n

δσv(x̂)

é
=

1
|π−1

A (yA)|
∑

x∈π−1
A (yA)

fr[k]ei
x ,

where we recall that π−1
A (yA) =

¶
x ∈ Bn(Γ⊗d) : xA = yA

©
. Since fr[k]ei

x ∈ Γ for every x ∈ π−1
A (yA) and since Γ is

convex the contention is proved. Additionally, by the convexity of Γ, π[k]ei
(µy,A) ∈ Γ implies

1
d

∑
i∈[d]

π[k]ei
(µy,A) ∈ Γ.

Draw y ∈ ΣFd
n randomly using the measure µn,d. For any A ⊆ Fd

n , let us denote

DA,y ,

∥∥∥∥∥∥1
d

∑
i∈[d]

π[k]ei
(ηy,A)−

1
d

∑
i∈[d]

π[k]ei
(µy,A)

∥∥∥∥∥∥
TV

.

We will use Ey[·] to denote expectation with respect to the random variable y which is randomly drawn using the measure
µn,d. Denote

DA , Ey[DA,y].

To prove the theorem, it suffices to show that for any ε > 0, if d is large enough there exists A ⊆ Fd
n , |A| 6 εnd, and with

probability at least 1− ε (with respect to µn,d) we have DA,y 6 ε. By a standard application of the Markov inequality, it is
sufficient to show that (under the above conditions) DA 6 ε2.

By definition, for any A ⊆ Fd
n and any y ∈ ΣFd

n we have

DA,y =

∥∥∥∥∥∥∥
1

d|Fd
n |
∑
i∈[d]

∑
v∈Fd

n

Ä
π[k]ei+v(ηy,A)− π[k]ei+v(µy,A)

ä∥∥∥∥∥∥∥
TV

.

Applying the triangle inequality we obtain

DA,y 6
1

d|Fd
n |
∑
i∈[d]

∑
v∈Fd

n

∥∥∥π[k]ei+v(ηy,A)− π[k]ei+v(µy,A)
∥∥∥

TV
.

Taking the expectation, Ey, on both sides and using its linearity we get

DA 6
1

d|Fd
n |
∑
i∈[d]

∑
v∈Fd

n

Ey

[∥∥∥π[k]ei+v(ηy,A)− π[k]ei+v(µy,A)
∥∥∥

TV

]
.

By Lemma 32 and the linearity of the expectation we obtain

DA 6
∑
j∈[k]

1
d|Fd

n |
∑
i∈[d]

∑
v∈Fd

n

Ey

[∥∥∥π{v}(ηy,A)− π{v}(µy,A∪([−(j+1)]ei+v))
∥∥∥

TV

]
.
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Consider another random variable x ∈ ΣFd
n , also randomly drawn using the measure µn,d. Now define f : ΣFd

n → {0, 1}Fd
n×Σ

by

f (x)(v,a) ,

®
1 xv = a,
0 otherwise,

for all v ∈ Fd
n and a ∈ Σ. Thus, by definition we have that

π{v}(ηy,A)(a) = π{v}(µy,A)(a) = Ex
î

f (x)(v,a)

∣∣∣ FA
ó
(y).

Since Σ is finite we can write the total variation distance as a sum, and then apply the triangle inequality, which results in

DA 6
1
2

∑
j∈[k]

1
d|Fd

n |
∑
i∈[d]

∑
v∈Fd

n

∑
a∈Σ

Ey

[∣∣∣Ex
î

f (x)(v,a)

∣∣∣ FA
ó
(y)− Ex

î
f (x)(v,a)

∣∣∣ FA∪([−(j+1)]ei+v)

ó
(y)
∣∣∣] . (19)
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Thus, combining (19) and (20) we have
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Using the fact that (E[|X|])2 6 E[X2] (again, by C.S), we have
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Choose m large enough such that 1√
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k
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and denote ε0 = ε2

k|Σ| . Now let P, It,v, X0, X1, . . . , Xm be as given by Lemma

29 with n > k + 2 and with ε0 and obtain d0. From here on, assume d > d0. Let E denote the expectation with respect to P.
First, from (21) we may bound DXt , for any t ∈ [m + 1], by
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By the properties of Xt and Xt+1 given in Lemma 29, for every v ∈ Fd
n there is a random variable It,v independent of Xt and

distributed uniformly on [d] so that P(Xt ∪ ([−(j + 1)]eIt,v + v) ⊆ Xt+1 | Xt) > 1− ε0. Denote

Xt,v , Xt ∪ ([−(j + 1)]eIt,v + v).



20

Since It,v is independent of Xt we have
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From (22) and (23) we obtain
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By the properties of Xt given in Lemma 29, we have that

P(Xt,v ⊆ Xt+1 | Xt) > 1− ε0.

Thus,
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From (24) and (25) we obtain
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Observe that viewing f as a random variable with respect to µn,d we have ‖ f ‖2 =
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From (26) and (27) we obtain that for every t ∈ [m],
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Note that the probability that a random variable is greater or equal to its expectation is always strictly positive. Because Xt
takes only finitely many values, this means that for every t ∈ [m], for every realization of Xt, denoted as χt, there exists a
realization of Xt+1, denoted as χt+1 = χt+1(χt) such that P (Xt+1 = χt+1 | Xt) > 0 and

E
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Together with (28) we obtain
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Since (29) holds for every t, we obtain that there exists a sequence (χt)t∈[m+1] of realizations of (Xt)t∈[m+1] with positive
probabilities, such that for every t ∈ [m],
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From Lemma 28, there exists t ∈ [m] such that∥∥E [ f | Fχt ]− E
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Combining (31) with (30) we obtain that there exists t ∈ [m] such that
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Taking A = χt, and recalling our choice of ε0 = ε2

k|Σ| and 1√
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, we obtain that
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which completes the proof.
We have reached the main result of this section. We show that capacity of a convex d-axial product is arbitrarily close to

the independence entropy, as the dimension grows.

Theorem 34. Let k ∈N, and let Γ ⊆ P(Σk) be a convex one-dimensional SCS. Then

lim sup
d→∞

cap(Γ⊗d) = hind(Γ).

Proof: First note that lim supd→∞ cap(Γ⊗d) > hind(Γ) by applying Theorem 26 to Γ⊗d for every d and taking d → ∞
on both sides. For the other direction, fix ε0 > 0 and choose

0 < ε < min
ß

ε0

2 log2 |Σ|
, 1
™

, 0 < δ <
ε

2
.

Replace Γ by Bδ(Γ) in Definition 31 and denote the resulting measures by µn,d
δ , µδ

y,A, and ηδ
y,A.

Recall that for a measure µ and a σ-algebra F ,

H (µ | F ) , E [H(µ (· | F ))] =
∫

H (µ (· | F )) (x)dµ(x). (32)

In other words, H(µ | F ) is the expected entropy of the conditional measure µ (· | F ). Also recall that for A ⊆ Fd
n , πA(µ

n,d
δ )

denotes the A-marginal of µn,d
δ , and that FA denotes the σ-algebra generated by the coordinates in A. We have that

H(µn,d
δ ) = H(πA(µ

n,d
δ )) + H

Ä
µn,d

δ

∣∣∣ FA
ä

.
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By Proposition 33, for any n ∈ N, n > k + 2, there exists d0 ∈ N, such that for every d > d0, there exists A ⊆ ΣFd
n ,
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n such that ηy,A ∈ Pn

Ä
(Bε(Bδ(Γ)))�d

ä
. Since clearly

H(πA(µ
n,d
δ )) 6 log2

∣∣∣ΣA
∣∣∣ ,

by combining the above we have
H(µn,d

δ ) 6 H
Ä

µn,d
δ

∣∣∣ FA
ä
+ εnd log2 |Σ| . (33)

Because the joint entropy of a finite set of random variables is bounded from above by the sum of their entropies (and the
same statement holds for conditional entropy), we have:
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By definition of the random measure ηδ
y,A and from (32), we have
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Now, since ηy,A is a product measure, we have

H(ηδ
y,A) =

∑
v∈Fd

n

H
Ä

π{v}(η
δ
y,A)
ä

.

It follows that,
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Let us conveniently use p to denote the value

p , µn,d
δ

Ä
ηδ

y,A ∈ Pn
Ä
(Bε(Bδ(Γ)))�d

ää
,

and recall that p > 1− ε > 0. Then∑
y∈ΣFd

n

H(ηδ
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Using the fact that p > 1− ε > 0 combined with (34) and (35), it follows that
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H(η) + (1− p)nd · log2 |Σ| (36)
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H(η) + εnd log2 |Σ| .

Combining (36) with (33) we obtain
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H(η) + 2ε log2 |Σ| .

By our choice of ε, we have ε + δ 6 ε0, hence (Bε(Bδ(Γ)))⊗d ⊆ (Bε0(Γ))
⊗d, as well as
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Since µn,d
δ is the uniform measure on Bn(Bδ(Γ)⊗d),

H(µn,d
δ ) = log2

∣∣∣Bn(Bδ(Γ)⊗d)
∣∣∣ .
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Thus,
1

nd log2
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ä∣∣∣ 6 1
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η∈Pn((Bε0 (Γ))
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Taking lim supn→∞ we obtain ”cap Ä(Bδ(Γ))⊗d
ä
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1
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Since
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we have ”cap ÄBδ
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Taking limδ→0+ , we get
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�d)

H(η) + ε0. (38)

At this point we take a slight detour. For ξ > 0, Bε0(Γ) ⊆ Bξ (Bε0(Γ)) and hence we have

lim sup
n→∞

1
nd sup
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�d)

H(η) + ε0 6 lim sup
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�d)

H(η) + ε0

(a)
= hind

Ä
(Bε0(Γ))

�d
ä
+ ε0

(b)
= hind ((Bε0(Γ))) + ε0,

where (a) follows by definition, and (b) follows by Lemma 27. Substituting this in (38) and taking d→ ∞ we obtain

lim sup
d→∞

cap
Ä

Γ⊗d
ä
6 hind ((Bε0(Γ))) + ε0. (39)

Note that since Γ is convex we have that for ε1 > 0, Bε1 (Bε0(Γ)) = Bε1+ε0(Γ). Therefore, by the definition of limit we have

lim sup
ε0→0+

lim sup
ε1→0+

lim sup
n→∞

1
n

sup
η∈Pn((Bε1 (Bε0 (Γ))))

H(η) = lim sup
ε0→0+

lim sup
n→∞

1
n

sup
η∈Pn((Bε0 (Γ)))

H(η).

Therefore, taking the limit as ε0 → 0 in (39) we obtain

lim sup
d→∞

cap
Ä

Γ⊗d
ä
6 hind(Γ).

VI. DISCUSSION

Our initial motivation behind this work is to approximate the capacity of multidimensional SCSs using “meaningful”
expressions. The main challenges were defining exactly what is the capacity of multidimensional SCSs, and obtaining the
connections between the capacity and the independence entropy. Our approach, which uses the independence entropy, extends
previous combinatorial works [19], [23], [26], which apply only to fully constrained systems. At the core of our results, for
Γ ⊆ P(Σk) and its axial product Γ⊗d, by Theorem 24 and Theorem 26 that

hind(Γ) 6 cap(Γ⊗d).

Thus, the problem of bounding the capacity of a d-dimensional axial-product SCS is simplified by having to consider only
product measures, which are much easier to handle. Moreover, any number of dimensions d, may be reduced via this bound
to the one-dimensional case. This bound is asymptotically tight, as together with Theorem 34, for convex Γ,

lim sup
d→∞

cap(Γ⊗d) = hind(Γ).

It also appears that the capacity cap, and independence entropy hind, are robust generalizations of their one-dimensional
combinatorial counterparts.
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cap(Γ)

”cap(Γ) hind(Γ)

‘hind(Γ)

(a) (b)

(c)

Figure 1: The Hasse diagram for a general d-dimensional SCS Γ ⊆ P(ΣFd
k ), where (a) follows from (1), (b) follows from

Theorem 26, and (c) follows from (2).

hind(Γ) = hind(Γ⊗d) = hind(Γ�d)

cap(Γ)”cap(Γ) cap(Γ⊗d) ”cap(Γ⊗d)

‘hind(Γ⊗d)

‘hind(Γ)

(a) (b) (c) (d)

(e)

(f)

Figure 2: The Hasse diagram for a convex one-dimensional Γ ⊆ P(Σk) and its d-axial-product SCS Γ⊗d, where (a) and (d)
follow from (1), (b) and (c) follow from Theorem 26, (e) follows from (2), and (f) follows from Lemma 23.

The paper contains many connections between the various capacities and entropies. Figure 1 shows the Hasse diagram for
the bounds pertaining to general d-dimensional Γ ⊆ P(ΣFd

k ). In the case of a convex one-dimensional Γ ⊆ P(Σk) and its
d-axial-product SCS Γ⊗d, a more elaborate Hasse diagram emerges, which is shown in Figure 2.

We note here that following the same arguments used in the proof of Theorem 24 would show that cap(Γ⊗d) > cap(Γ⊗d+1)
which means that in lim supd→∞ cap(Γ⊗d) the limit actually exists and equals to infd cap(Γ⊗d).

We would also like to compare our results, as they apply to a specific case study described in [10]. Let Γ ⊆ P(Σk) be a
convex one-dimensional SCS, and recall that the axial product Γ⊗d is defined as

Γ⊗d ,
{

µ ∈ P(ΣFd
k ) : ∀i ∈ [d], π[k]ei

(µ) ∈ Γ
}

,

and thus
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.

The SCSs studied in [10] were an averaged version of the axial product, namely,
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π[k]ei
(µ) ∈ Γ

 ,

and thus

Bn
Ä

Γ�d
ä
=

w ∈ Fd
n :

1
d

∑
i∈[d]

fr[k]ei
w ∈ Γ

 .
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By convexity, it easily follows that
Bn
Ä

Γ⊗d
ä
⊆ Bn

Ä
Γ�d
ä

,

and thus
cap(Γ⊗d) 6 cap(Γ�d).

We now focus on the simple example known as the (0, k, p)-RLL SCS over the binary alphabet Σ = {0, 1}, which was the
case study of [10]. The one-dimensional (0, k, p)-RLL SCS, 0 6 p 6 1, is defined by

Γk,p ,
¶

µ ∈ P(Σk+1) : µ(1k+1) 6 p
©

, (40)

where 1k+1 denotes the all-ones string of length k + 1. This example is a generalization of the well known inverted (0, k)-RLL
fully constrained system, since if we take p = 0 we obtain the inverted (0, k)-RLL. In [10], the authors found lower and upper
bounds on the internal capacity of Γ�d

k,p . We recall the relevant lower bound here.

Theorem 35. [10, Th. 20] Let Γk,p denote the one-dimensional (0, k, p)-RLL SCS given in (40). Then, for all 0 6 p 6 1
2k+1 ,”cap(Γ�d

k,p) > 1 + d (”cap(Γ)− 1) ,

whereas for all 1
2k+1 6 p 6 1, ”cap(Γ�d

k,p) = 1.

We first note that this theorem implies a lower bound on cap(Γ�d
k,p),

cap(Γ�d
k,p) > ”cap(Γ�d

k,p) > 1 + d (”cap(Γ)− 1) .

The lower bound of [10] eventually becomes negative, as the dimension d grows, and therefore, degenerate. However, using
the results of this paper,

cap(Γ�d
k,p) >

‘hind(Γk,p),

and this bound does not depend on the dimension, and therefore, does not degenerate. We provide an explicit numerical
example:
Example 36. Let us take k = 2, and p = 0.05, meaning that we restrict the frequency of the pattern 111 to be at most 0.05. Fix
d = 3. The lower bound on cap(Γ�d

k,p) from [10] uses ”cap(Γk,p). The latter can be calculated by solving an optimization problem
using a computer. We obtain that ”cap(Γk,p) ≈ 0.976 which means that

cap(Γ�d
k,p) > 1 + 3 · (0.976− 1) ≈ 0.928.

Using the results of this paper, we use‘hind(Γk,p) as a lower bound to cap(Γ�d
k,p). Finding the supremum involved in the definition

of‘hind(Γk,p) is also not easy, and we lower bound it by guessing a specific measure. We take each coordinate to be i.i.d. Bernoulli
3
√

0.05, and we get
cap(Γ�d

k,p) >
‘hind(Γk,p) > H2(

3
√

0.05) ≈ 0.949,

which is a better lower bound than that of [10]. Note that the upper bound gives ”cap(Γ′) 6 0.983. We further mention that the
lower bound of [10] gets increasingly worse as the dimension grows. For example, when d = 10 we obtain by Theorem 35 that
cap(Γ�d

k,p) > 0.76 whereas using the independence entropy, the bound stays the same, i.e., cap(Γ�d) > 0.949. Finally, for all
d > 42, the lower bound of [10] becomes degenerate. 2

We present another example for (0, 1, p) with a more elaborate lower bound.
Example 37. Take k = 1 and consider Γk,p. From the results of this paper,

lim sup
d→∞

cap(Γ�d
1,p) > lim sup

d→∞
cap(Γ⊗d

1,p) = hind(Γ1,p) >‘hind(Γ1,p).

We lower bound ‘hind(Γ1,p) by devising a product measure µ2n ∈ (P(Σ))2n, for all n ∈ N. The measures use two parameters
0 6 x, y 6 1, using a Bernoulli(x) distribution for positions with odd indices, and a Bernoulli(y) for positions with even
indices. Thus, ‘hind(Γ1,p) > max

x,y

1
2n

H(µ2n) = max
ß

1
2
(H2(x) + H2(y)) : 0 6 x, y 6 1, xy 6 p

™
.

Due to monotonicity, the maximization problem always has a solution on the curve xy = p, which in the high range is unique x =
y =
√

p, and in the lower range has two symmetric solutions. For example, for p = 0.2 the optimal solution is x = y =
√

0.2.
However, for p = 0.01, the first optimal solution is x ≈ 0.454, y ≈ 0.022, and the symmetric solution is x ≈ 0.022, y ≈ 0.454.
This is depicted in Figure 3.

We note that this bound agrees with the solution for the fully constrained case, lim supd→∞ cap(Γ�d
k,0 ) =

1
2 which was solved

in [23]. We conjecture that Figure 3(a) indeed shows the exact limiting capacity. 2
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Figure 3: A lower bound on lim supd→∞ cap(Γ�d
1,p) is shown in (a), where (b) shows a contour plot of 1

2 (H2(x) + H2(y)) as
well as the curves xy = p for p = 0.01, 0.05, 0.1, 0.2.

APPENDIX A
CYCLIC AND NON-CYCLIC CAPACITIES

The goal of this appendix is to show that the capacity, as we defined it cyclically, equals the (traditionally non-cyclic)
capacity in the case of fully constrained systems.

Definition 38. Let d, k ∈N. A (traditional) fully constrained system is a set Φ ⊆ ΣFd
k of d-dimensional words, called forbidden

patterns. The set of all admissible words in ΣFd
n is defined as

Bcom
n (Φ) ,

{
x ∈ ΣFd

n : ∀v ∈ Fd
n−k, xv+Fd

k
/∈ Φ

}
.

The (combinatorial) capacity of Φ is defined by

capcom(Φ) , lim sup
n→∞

1
|Fd

n |
log2 |B

com
n (Φ)| .

2

Intuitively, a traditional fully constrained system is a set of words that do not contain any forbidden pattern non-cyclically.
Given a (traditional) fully constrained system Φ ⊆ ΣFd

k , we can construct a set of measures ΓΦ defined as follows,

ΓΦ ,
{

µ ∈ P(ΣFd
k ) : µ(ΣFd

k \Φ) = 1
}

. (41)

Thus, ΓΦ is a SCS which is fully constrained in the sense of Definition 10. Since Definition 10 is more restrictive, by requiring
forbidden patterns to not appear in admissible words cyclically, we immediately have

Bn(ΓΦ) ⊆ Bcom
n (Φ),

implying also ”cap(ΓΦ) 6 capcom(Φ).

However, we now prove that the capacity of ΓΦ does equal the (combinatorial) capacity of Φ.

Proposition 39 Let d, k ∈ N. Let Φ ⊆ ΣFd
k be a fully constrained system as in Definition 38, and let ΓΦ ⊆ P(ΣFd

k ) be its
corresponding fully constrained system as in Definition 10. If Bcom

n (Φ) 6= ∅ for all large enough n ∈N, then

cap(ΓΦ) = capcom(Φ).

Proof: We first show that capcom(Φ) 6 cap(ΓΦ). Fix ε > 0, and for n ∈N, n > k, consider the k-boundary of Fd
n which

is defined as Fd
n \ Fd

n−k. Note that |Fd
n \ Fd

n−k| = nd − (n− k)d. Let w ∈ Bcom
n (Φ). While w does not contain any forbidden

pattern when considering the coordinates non-cyclically, it may contain some when considering the coordinates cyclically. The
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number of occurrences of forbidden patterns (cyclically) in w is at most |Fd
n \ Fd

n−k| = nd − (n− k)d. For all large enough n

we have nd−(n−k)d

nd 6 ε, hence

Bcom
n (Φ) ⊆ Bn(Bε(ΓΦ)).

Thus, for every ε > 0,

capcom(Φ) 6 ”cap(Bε(ΓΦ)).

Taking the limit as ε→ 0 we obtain

capcom(Φ) 6 cap(ΓΦ).

In the other direction, we now show that cap(ΓΦ) 6 capcom(Φ). Let δ0 > 0 and take n0 ∈N large enough such that

1
nd

0
log2

∣∣∣Bcom
n0

(Φ)
∣∣∣ 6 capcom(Φ) +

1
3

δ0.

Denote the number of forbidden patterns by t , |Φ|. Take δ > 0 small enough such that both

t(1 + δ)

nd
0

H2

Å
δ

1 + δ

ã
6

1
3

δ0, and tδ log2 |Σ| 6
1
3

δ0,

where H2(·) is the binary entropy function. Finally, for every n > n0, denote m , bn/n0c, and choose any 0 < ε 6 δ/nd
0.

Consider a word w ∈ Bn(Bε(ΓΦ)). We say w is made up a concatenation of md Fd
n0

-blocks, namely, a block is a set of
positions n0v + Fd

n0
, where v ∈ Fd

m, as well a boundary, namely, the set of positions Fd
n \ Fd

mn0
. By our choice of parameters,

the number of occurrences (perhaps cyclically) of any forbidden pattern from Φ is at most

ε|Fd
n | 6 ε(m + 1)dnd

0 6 δ(m + 1)d.

This serves also as an upper bound on the number of blocks fully containing (non-cyclically) this forbidden pattern. Since
there are t forbidden patterns, the number of blocks that are devoid (non-cyclically) of any forbidden pattern, is at least
md − tδ(m + 1)d. Such blocks are in fact words from Bcom

n0
(Φ).

Fixing a specific type of forbidden pattern, and considering each occurrence of it as a ball, we have at most δ(m + 1)d

balls, which we throw into md + 1 bins (md blocks, and another “virtual” bin for patterns that are not fully contained within
a single block). The total number of ways to throw these ball into bins is exactly (

md+1+δ(m+1)d

δ(m+1)d ). Raising this to the power
of t gives an upper bound on the number of ways the t forbidden patterns are dispersed among the blocks. In total we have,

|Bn(Bε(ΓΦ))| 6
Ç

md + 1 + δ(m + 1)d

δ(m + 1)d

åt ∣∣∣Bcom
n0

(Φ)
∣∣∣md−t(m+1)dδ

|Σ|tδ(m+1)dnd
0 |Σ|n

d−(mn0)
d

,

where the binomial coefficient follows from upper bounding the way forbidden patterns are dispersed among blocks, the
following term counts the number of ways to fill blocks that do not contain (non-cyclically) any forbidden word, and the last
term counts the ways to arbitrarily fill in the rest of the positions. Thus,”cap(Bε(ΓΦ)) = lim sup

n→∞

1
nd log2 |Bn(Bε(ΓΦ))|

6
t(1 + δ)

nd
0

H2

Å
δ

1 + δ

ã
+

1
nd

0
log2

∣∣∣Bcom
n0

(Φ)
∣∣∣+ tδ log2 |Σ|

6 δ0 + capcom(Φ).

Taking the limit as ε→ 0, we get

cap(ΓΦ) 6 δ0 + capcom(Φ).

Finally, since this holds for any δ0 > 0, we get the desired result,

cap(ΓΦ) 6 capcom(Φ).
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APPENDIX B
INDEPENDENCE ENTROPY FOR FULLY CONSTRAINED SYSTEMS

Here we Prove Theorem 22. We begin by recalling relevant definitions from [19]. A Zd shift space X, is a subset X ⊆ ΣZd

that is closed under shifts, i.e., for all v ∈ Zd, and all x ∈ X, σv(x) ∈ X.

Definition 40. Let d, k ∈N. Given a set of forbidden words Φ ⊆ ΣFd
k , the Zd shift space over Σ defined by Φ is

XΦ ,
{

x ∈ ΣZd
: ∀v ∈ Zd, xv+Fd

k
/∈ Φ

}
.

2

Given a finite alphabet Σ, let Σ̃ denote the set of all non-empty subset of Σ, i.e.,

Σ̃ , {A ⊆ Σ : A 6= ∅} .

Definition 41. Let d ∈N, S ⊆ Zd, and let x̃ be a configuration on S over Σ̃, i.e., x̃ ∈ Σ̃S. Denote by ϕ(x̃) the set of fillings of x̃,

ϕ(x̃) ,
¶

x ∈ ΣS : ∀v ∈ S, x{v} ∈ x̃{v}
©

.

2

Definition 42. Let d ∈N, and let X be a Zd shift space over Σ. We denote by X̃ the multi-choice shift space corresponding to X,

X̃ ,
{

x̃ ∈ Σ̃Zd
: ϕ(x̃) ⊆ X

}
.

We also denote by Bn(X̃) the set of all eligible configurations on Fd
n in X̃, i.e.,

Bn(X̃) ,
¶

x̃Fd
n

: x̃ ∈ X̃
©

.

2

Definition 43. Let d ∈ N, and let X be a Zd shift space. We define the combinatorial independence entropy of X, denoted as
hcom

ind (X), by

hcom
ind (X) , lim sup

n→∞

1
nd max

{
log2 |ϕ(w̃)| : w̃ ∈ Bn(X̃)

}
.

2

Note that in [19] the definition of combinatorial independence entropy is slightly more general and defined over all shapes
and not only on the shapes Fd

n . Finally, given a fully constrained system Φ ⊆ ΣFn
k (see Definition 38), its representation as a

SCS is given by ΓΦ in (41). We are now ready to prove Theorem 22.
Proof of Theorem 22: Let d, k ∈ N, and let Φ ⊆ ΣFd

k be a fully constrained system, with its SCS representation ΓΦ
from (41). The claim we want to prove is that

hcom
ind (XΦ) = hind(ΓΦ).

First, we show that hcom
ind (XΦ) 6 hind(ΓΦ). For every n ∈ N choose w̃n ∈ Bn(X̃Φ) which maximizes |ϕ(w̃n)|. Now

consider the independent measures µn such that π{v}(µn) is the uniform distribution over (w̃n){v}. Note that in Bn(X̃), the
forbidden patterns are considered without modulo while in Bn(ΓΦ) the calculation of the marginals’ average uses modulo n.
Therefore, if a filling ϕ(w̃n) belongs to XΦ, in µn there is perhaps a positive probability to see a forbidden pattern only in
the boundaries. In Fd

n , the k-boundary is the set Fd
n \ Fd

n−k of size nd − (n− k)d. Since (nd − (n− k)d)/nd → 0 as n→ ∞,
we obtain that for every ε > 0, for every n ∈N such that (nd − (n− k)d)/nd 6 ε, we have that µn ∈ Bε(ΓΦ). Thus,‘hind(Bε(ΓΦ)) = lim sup

n→∞
sup

µ∈Pn(Bε(ΓΦ))

1
nd H(µ)

> lim sup
n→∞

1
nd H(µn)

= lim sup
n→∞

1
nd log2 |ϕ(w̃n)|

= hcom
ind (XΦ).

Taking ε→ 0 we obtain
hind(ΓΦ) > hcom

ind (XΦ).
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We now show that hind(ΓΦ) 6 hcom
ind (XΦ). Fix δ > 0 and take δ1 > 0 small enough such that δ1 < 1

3 δ. Take n0 ∈N large
enough such that for all n > n0,

1
nd max

w̃∈Bn(X̃Φ)
{log2 |ϕ(w̃)|} 6 hcom

ind (XΦ) +
1
3

δ. (42)

We now take ε > 0 small enough such that all the following hold,

− |Σ| kd
√

nd
0ε

1
4 log2

kd
√

nd
0ε

1
4 <

1
3

δ, (43)

2dε
3
4 log2 |Σ| <

1
2

δ1, (44)∣∣∣‘hind (Bε(ΓΦ))− hind(ΓΦ)
∣∣∣ 6 1

16
δ1.

By the definition of ‘hind (Bε(ΓΦ)) we may find n > n0 large enough such that all the following hold,

2
Å

1−
(

1− n0

n

)d
ã

log2 |Σ| 6
1
4

δ1, (45)∣∣∣∣∣∣ sup
µ∈Pn(Bε(ΓΦ))

1
nd H(µ)− hind(ΓΦ)

∣∣∣∣∣∣ 6 1
8

δ1,

and there exists µ ∈ Pn(Bε(ΓΦ)) for which ∣∣∣∣ 1
nd H(µ)− hind(ΓΦ)

∣∣∣∣ 6 1
4

δ1.

Since µ ∈ Pn(Bε(ΓΦ)), we have
1

nd

∑
v∈Fd

n

πFd
k +v(µ)(Φ) 6 ε.

Denote m , bn/n0c. We now partition Fd
n into md blocks of shape Fd

n0
in the natural way,

¶
n0v + Fd

n0
: v ∈ Fd

m

©
, as well

as a boundary Fd
n \ Fd

mn0
. Note that

µ ∼=
⊗
v∈Fd

m

πn0v+Fd
n0
(µ)⊗ πFd

n\Fd
mn0

(µ).

Since µ is independent we obtain∣∣∣∣ 1
(mn0)d H(πFd

mn0
(µ))− hind(ΓΦ)

∣∣∣∣ 6 ∣∣∣∣ 1
(mn0)d H(πFd

mn0
(µ))− 1

nd H(µ)

∣∣∣∣+ ∣∣∣∣ 1
nd H(µ)− hind(ΓΦ)

∣∣∣∣
6 (mn0)

d
Å

1
(mn0)d −

1
nd

ã
log2 |Σ|+

nd − (mn0)
d

nd log2 |Σ|+
1
4

δ1

6 2
nd − (mn0)

d

nd log2 |Σ|+
1
4

δ1

6 2
Å

1−
(

1− n0

n

)d
ã

log2 |Σ|+
1
4

δ1

6
1
2

δ1, (46)

where the last inequality holds due to (45). Let Z : Fd
m → R be a function defined by

Z(v) ,
1

nd
0

∑
u∈Fd

n0

πFd
k +n0v+u(µ)(Φ)

(with coordinates taken modulo n). Note that since µ ∈ Pn(Bε(ΓΦ)), we have

1
nd

∑
v∈Fd

n

πFd
k +v(µ)(Φ) 6 ε.

If we now take v to be random uniformly distributed in Fd
m, then

E[Z(v)] =
1

md

∑
v∈Fd

m

1
nd

0

∑
u∈Fd

n0

πFd
k +n0v+u(µ)(Φ) 6

Å
1 +

1
m

ãd
ε.
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By Markov’s inequality we have

Pr
(

Z(v) > ε
1
4

)
6 ε−

1
4 E[Z(v)] 6

Å
1 +

1
m

ãd
ε

3
4 . (47)

Recall that each v ∈ Fd
m may be identified with the Fd

n0
block of Fd

n in coordinates n0v + Fd
n0

. Define,

L ,
{

v ∈ Fd
m : Z(v) > ε

1
4

}
.

Since v was distributed uniformly in Fd
m, by (47) we have,

|L| 6 (m + 1)dε
3
4 . (48)

It now follows that
1

(mn0)d

∑
v∈Fd

m\L

H(πn0v+Fd
n0
(µ)) =

1
(mn0)d H(πFd

mn0
(µ))− 1

(mn0)d

∑
v∈L

H(πn0v+Fd
n0
(µ))

(a)
> hind(ΓΦ)−

1
2

δ1 −
1

(mn0)d

∑
v∈L

H(πn0v+Fd
n0
(µ))

(b)
> hind(ΓΦ)−

1
2

δ1 −
(m + 1)dε

3
4 nd

0
(mn0)d log2 |Σ|

> hind(ΓΦ)−
1
2

δ1 − 2dε
3
4 log2 |Σ|

(c)
> hind(ΓΦ)− δ1

> hind(ΓΦ)−
1
3

δ,

where (a) follows from (46), (b) follows from (48), and (c) follows from (44). Since there are at most md summands on the
left-hand side, there exists v0 ∈ Fd

m \ L such that

1
nd

0
H(πn0v0+Fd

n0
(µ)) > hind(ΓΦ)−

1
3

δ. (49)

We denote by ν the independent measure ν , πFd
n0
+n0v0

(µ).
Note that if we consider ν in a non-cyclic manner, we obtain that

1
(n0 − k + 1)d

∑
u∈Fd

n0−k+1

πu+Fd
k
(ν)(Φ) 6

nd
0

(n0 − k + 1)d ε
1
4 ,

and in particular, for every coordinate u ∈ Fd
n0−k+1, we have that πu+Fd

k
(ν)(Φ) 6 nd

0ε
1
4 . Let us define

p , kd
√

nd
0ε

1
4 .

Hence, since ν is an independent measure, if a ∈ Φ then there must be a coordinate t ∈ Fd
k for which πu+t(ν)(at) 6 p.

We now construct a configuration w̃ ∈ Σ̃Fd
n0 . For every coordinate u ∈ Fd

n0
we take

w̃u =
¶

a ∈ Σ : π{u}(ν)(a) > p
©

.

By our previous observation, w̃ ∈ Bn0(X̃Φ) since any filling of w̃ cannot contain a forbidden word from Φ as it requires at
least one position u such that π{u}(ν) 6 p. Moreover,

log2 |w̃u| > −
∑

a∈w̃u

π{u}(ν)(a) log2(π{u}(ν)(a))

= H(π{u}(ν)) +
∑

a∈Σ\w̃u

π{u}(ν)(a) log2(π{u}(ν)(a))

> H(π{u}(ν)) + |Σ| p log2 p

> H(π{u}(ν))−
1
3

δ
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where the last inequality follows from (43). Hence, using (49),

1
nd

0
log2 |ϕ(w̃)| = 1

nd
0

∑
u∈Fd

n0

log2 |w̃u| =
1

nd
0

∑
u∈Fd

n0

H(π{u}(ν))−
1
3

δ > hind(ΓΦ)−
2
3

δ.

Finally, using (42), this implies that,

hcom
ind (XΦ) >

1
nd

0
max

w̃∈Bn0 (X̃Φ)
{log2 |ϕ(w̃)|} − 1

3
δ > hind(ΓΦ)− δ.

Since this holds for every δ > 0 we have hind(ΓΦ) 6 hcom
ind (XΦ), as claimed.
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