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Abstract— We present a framework for random access that is
based on three elements: physical-layer network coding (PLNC),
signature codes, and tree splitting. In presence of a collision,
physical-layer network coding enables the receiver to decode,
i.e., compute, the sum of the packets that were transmitted by
the individual users. For each user, the packet consists of the
user’s signature, as well as the data that the user wants to
communicate. As long as no more than K users collide, their
identities can be recovered from the sum of their signatures. This
framework for creating and transmitting packets can be used
as a fundamental building block in random access algorithms,
since it helps to deal efficiently with the uncertainty of the set
of contending terminals. In this paper, we show how to apply
the framework in conjunction with a tree-splitting algorithm,
which is required to deal with the case that more than K users
collide. We demonstrate that our approach achieves throughput
that tends to 1 rapidly as K increases. We also present results on
net data-rate of the system, showing the impact of the overheads
of the constituent elements of the proposed protocol. We compare
the performance of our scheme with an upper bound that is
obtained under the assumption that the active users are a priori
known. Also, we consider an upper bound on the net data-rate
for any PLNC-based strategy in which one linear equation per
slot is decoded. We show that already at modest packet lengths,
the net data-rate of our scheme becomes close to the second upper
bound, i.e., the overhead of the contention resolution algorithm
and the signature codes vanishes.

Index Terms— Access protocols, multiaccess communication,
wireless communication, compute-and-forward, physical-layer
network coding.

I. INTRODUCTION

UNCERTAINTY is the essential element of communi-
cation systems, caused by noise, errors, and random

traffic (packet) arrivals at user(s). A canonical example of the

Manuscript received February 2, 2016; revised April 20, 2018; accepted
April 29, 2018. Date of publication May 21, 2018; date of current
version June 20, 2018. J. Goseling was supported by the Netherlands
Organization for Scientific Research under Grant 612.001.107. Č. Stefanović
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latter is seen in random access protocols, used for handling
transmissions of users to a common receiver, e.g., a base
station, over a shared wireless medium. Random access is
necessary when the total number of users associated with the
base station is large, but within a given short time interval,
the number of active users that have packets to transmit
is small and unknown a priori. Such is the case in, for
instance, wide-area networks of sensors, where each sensor has
a sporadic traffic pattern. The goal of random access protocols
is to enable each of the active users to eventually send its
packet successfully.

Traditionally, random access protocols have been designed
under the collision model: when two or more users transmit at
the same time, a collision occurs and all involved transmissions
are lost. In other words, collisions are considered as destructive
and the information contained in them as irrecoverable. There-
fore, the objective of classical random access protocols, such
as ALOHA [1] or tree splitting [2], is to ensure that each user
gets the opportunity to send its packet without collision. On
the other hand, the recent inclusion of elaborate physical layer
techniques in random access protocols allows for the extension
of the design space beyond the collision model [3]–[7], such
that collisions are treated as sums of packets and, instead of
being discarded, they are buffered and reused. We motivate
the benefits of such an approach through a simple example,
where the received signals in the first two slots are

Y1 = X1 + X2 + Z1,

Y2 = X2 + Z2, (1)

where X1 and X2 are the user signals (packets) and Z1 and
Z2 represent the noise. The received signal Y1 is buffered,
and, if X2 is successfully decoded from slot Y2, it can be
subtracted (i.e., cancelled) from Y1. The receiver proceeds by
attempting to decode X1 from the noisy signal Y1−X2 = X1+
Z . Obviously, the exploitation of the information contained in
the collision slot Y1 boosts the protocol performance.

The motivating example also demonstrates that, in the gen-
eral framework, the impact of the noise cannot be neglected.
This is fundamentally changed by applying reliable physical
layer network coding (PLNC) to the problem of random
access. The key idea in PLNC is to decode a function of
multiple received signals, rather than decoding the individual
signals. Such operation is termed denoise-and-forward [8], [9],
or compute-and-forward [10], the latter being the motivation
for part of the name of the scheme proposed in the paper.
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Assume that W1 and W2 represent the data as a sequence
of symbols from finite field Fq that are mapped to the
baseband signals X1 and X2, respectively, in example (1).
Upon receiving Y1 from (1), the base station stores W1 + W2.
If X2 (i.e., W2) is decoded from Y2, then W1 can be obtained
from the stored signal W1 + W2, i.e., the sum in Fq of W1 and
W2. In brief, the use of PLNC removes the uncertainty of the
noise, leaving the receiver only with the uncertainty about the
contending set of users.

One of the main challenges in the application of PLNC in
random access protocols is for the receiver to learn the set of
transmitting users [6]. In (1), for instance, the receiver does not
know that X1 is sent in slots 1 and 2, and X2 in slot 2. This sets
the motivation to introduce PLNC-based random access with
signatures in [11] and [12], where the users prepend to their
messages a codeword of a K -out-of-N code [13]–[15]. More
precisely, the �−th user applies the following communication
strategy: it prepends a signature W s

� , consisting of predefined
number of symbols, to the message W d

� in order to obtain
W�. The signature is based on a code that has the following
property: if at most K users transmit in a given slot, then from
the sum of the signatures the receiver knows exactly which
transmitters have contributed to the data stored in the present
slot. In other words, the sum

L�

�=1

W s
� (2)

is uniquely decodable if L ≤ K , where L denotes the collision
multiplicity.

The addition of signatures to packets and its combination
with PLNC brings a conceptual novelty in the design of ran-
dom access algorithms. The reason is that, when the number
of colliding terminals is at most K , then the receiver can find
out the identities of those terminals, but it cannot decode
the data of all of them. This means that from a collision
with K or less contenders, the receiver can extract protocol-
related information, but not the data. This is a generalization
of the common case when K = 1, where a single-user
transmission is required to decode both protocol information
and data. The efficiency of this approach is shown in the
context of a tree-splitting algorithm for contention resolution.
We emphasize that the mechanisms enabled by the signatures
and PLNC are not limited to tree-splitting algorithms, but
we have selected the tree-splitting framework as it is known
to provide the highest possible throughput for the traditional
collision model [16]. In fact, these mechanisms can be applied
in any framework of multiple access protocols in which the
collisions are not wasted, but used in decoding, as in e.g.,
coded random access [7]. The use of PLNC transforms the
multiple access channel into an Fq adder channel, i.e., it
removes the uncertainty due to noise. The addition of signature
coding facilitates the generalization of the concept of collision,
which is a conceptual shift away from the standard tree
splitting context. Specifically, it allows the receiver to obtain
(i) the knowledge of the collision multiplicity L, i.e., the
number of the collided user signals in the slot, and (ii) the
resolution of collided user identities, if L ≤ K , where K is

a design parameter. These features lead to a revision of the
objective of contention resolution as compared to the standard
schemes: to drive the contending users in a state in which the
collision multiplicity becomes resolvable and the receiver is
able to get a sufficient number of equations in the finite field
in order to be able to decode the users’ data. We analyze the
proposed scheme and provide results related to the expected
duration of the contention resolution interval, the expected
number of resolved users per slot (i.e., throughput) and the
net rate of information transmission, which takes into account
the overhead related to PLNC and signatures. We show that
the use of signatures is significantly reducing the average
time required to extract useful information from the colli-
sions, therefore improving the overall throughput performance.
On the other hand, the assessment of the net rate provides
insights in the basic tradeoffs and mechanisms that need to
be considered for a contention resolution based on PLNC and
signatures. To the best of our knowledge, this type of analysis
is typically omitted in the literature on tree-splitting algo-
rithms. The reason is that in random access literature a packet
is the atomic unit of communication, such that the overhead
related to the contention identifiers and channel coding are not
modeled and throughput is the primary performance parameter.
We compare the net rate of our scheme with upper bounds on
the net rate. We also extend the scheme to include successive
interference cancellation (SIC), enabling the use of collisions
with multiplicities larger than K , and we provide the accom-
panying analysis and performance assessment. Note that SIC
can be seamlessly incorporated into the proposed framework,
as the PLNC reduces the interference cancellation to simple
operations in Fq . Finally, we note that the proposed scheme
is simple to implement at the transmitter side, requiring use
of a linear code and a unique signature. This is an important
criterion for scenarios in which a massive number of sensors
(or other small devices) transmit information to a common
receiver. Our analysis of the achieved net rate, including the
upper bounds, demonstrate that keeping the complexity low
results only in a small penalty.

The paper is organized as follows. In Section II we dis-
cuss related work. In Section III we introduce the model.
In Section IV we present results on PLNC, signature codes
and tree splitting that will be used in the remainder of the
paper. The proposed strategy is presented in Section V and
its performance analyzed in Section VI. An extension of the
strategy that involves successive interference cancellation is
presented in Section VII. Finally, a discussion and concluding
remarks are given in Section VIII.

II. RELATED WORK

The use of PLNC for random access was studied in [5]
and [17]–[21], where it was assumed that the receiver knows
which users are active in each slot. Other ways to relax this
assumption that do not involve signatures are to rely on the
successful decoding of signals from singleton slots [4], [7],
as suggested in example (1), or to rely on complex signal
separation techniques [3].

The use of PLNC and signature codes was considered
in [22] for broadcast in networks. The combination of PLNC
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and signature codes for random access was introduced in [11].
Both in [11] and [22] it is assumed that the number of
contending users is bounded. In this work we set aside this
assumption and design a contention resolution algorithm that
deals with any number of contending users.

A comprehensive review of signature coding and its appli-
cation to multiple access can be found in [23]. The reviewed
results mainly involve existence proofs of certain types of sig-
nature codes, leaving the contention resolution and, in general,
random access protocol operation out of focus. Two exceptions
can be found in [24] and [25], where the authors consider a
tree-splitting and an ALOHA based random access solution,
respectively, which exploit K -out-of-M multiple access codes
proposed in [13]. The approach suggested in [24] resembles
the one proposed in the paper, however, the authors neglect
the impact of noise, conclude that a choice of K = 3 is
optimal for the code construction from [13], and also show
that the conventional tree splitting actually outperforms their
solution in terms of user resolution rate in the case of blocked
access, due to the fact that the code length is equal to M .
On the contrary, our approach is based on much shorter
codes, whose length scales roughly as K log M , the impact
of noise is explicitly taken into account, and the performance
is thoroughly characterized in terms of K , including insights
in the choice of optimal values.

The scheme employed in the paper provides the receiver
with the knowledge of the collision multiplicity. Pippenger
showed in a non-constructive way that this knowledge could
be used to achieve throughputs that asymptotically tend to
one under the collision channel model [26]. The construction
of the protocol which leverages on these ideas was done
in [27], however, the proposed solution involves exponential
computational complexity. On the other hand, the scheme
employed in this paper achieves comparable performance,
albeit using much simpler operating principles.

The analysis of the tree-splitting algorithm presented in this
paper is based on the approach pioneered by Massey [16].
The use of SIC in the contention resolution framework was
first investigated in [4], where it was shown that throughput
performance can be pushed to 0.693. Another approach was
suggested in [28], where SIC is employed over a set of
partially split trees, and optimization was performed over the
splitting strategy that favors fast SIC evolution. The reported
throughputs for the presented design example in [28] are close
to 0.8. The part of this paper that deals with SIC can be
perceived as a generalization of the ideas presented in [4], with
the important difference that SIC in the proposed framework
is performed in the digital domain, effectively removing the
memory constraints [29] and potential imperfections of the
interference cancellation in the analog domain [30].

III. MODEL AND PROBLEM STATEMENT

We consider a large set of potential transmitters (users)
1, . . . , M , with M � 1. A small number of users are active
and have a message of D bits that should be sent to a
common receiver (base station). Messages are independent
and drawn uniformly at random from {1, . . . , 2D}. We model

the user activity by a single batch arrival, where each user,
independently of all other users becomes active (i.e., arrives
in the batch) with probability p before the protocol that
is described below is initiated. After the protocol has been
initiated, we assume that no user arrival occurs; this simpli-
fying assumption allows us to focus on the basic analysis
of the protocol operation, similar to other works on tree
splitting, c.f. [16]. In Section VIII, we provide comments on
more general models of the user activation and the protocol
operation.

We denote by L the set of active users, and by L = |L|
the number of active users. Neither the receiver nor the users
know L or L. Hence, L has a binomial distribution, where
the probability that L users are contending is denoted by
q(L) = �M

L

�
pL(1 − p)M−L . For notational convenience, let

q0 = q(0) = (1 − p)M . We denote by q̂(L) the probability of
having L contending users conditioned on the fact there is at
least one, i.e., q̂(L) = q(L)/(1 − q0).

The symbol transmitted by the m−th user in the τ−th
channel use, τ ∈ N, is denoted by Xm(τ ). We assume unit
channel gains, i.e., at the τ−th channel use the receiver
observes

Y (τ ) =
�

m∈L
Xm(τ ) + Z(τ ), (3)

where {Z(τ )}∞τ=1 is white Gaussian noise with unit variance.
The goal of this paper is to devise a protocol that allows

the receiver to retrieve both the identities and the messages of
all contending users. In particular, we consider protocol that
uses multiple blocks of N channel uses. In line with other
literature on random access, we refer to blocks of channel
uses as slots. In each slot the receiver attempts to decode a
linear combination of messages transmitted by the users. We
restrict our attention to strategies in which the rate (in bits per
channel use) is the same for all users and constant over slots.
At the end of each slot, the receiver provides feedback to the
users and, unless all messages are resolved at the receiver,
a new slot is started. Feedback is instantaneous, error free and
received by all users. We do not impose any constraints on
the amount of feedback that can be provided and explicitly
specify how feedback is used later in the paper.

Rephrasing the above, the constituent elements of the pro-
tocol are the use of a contention resolution mechanism across
slots, dealing with randomness of the user activity pattern, and
use of forward error correcting code within slots, dealing with
noise. With respect to the latter, we ignore finite block length
effects and assume that forward error correcting codes operate
with vanishing error probability at any rate up to capacity. As a
consequence, the task for the receiver is to recover all packets
with arbitrarily small error probability.

The signal of each user needs to satisfy an average power
constraint in each slot, i.e.,

1

N

N�

τ=1

|Xm(τ )|2 ≤ P, (4)

for all m ∈ {1, . . . , M}. We will assume that P > 1, such that
a positive computation rate over the multiple access channel
can be achieved, as seen in the next section.
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We are interested in the following performance parame-
ters. By S(L) we denote the expected number of slots that
the strategy uses to resolve L contending users, where the
expectation in S(L) is w.r.t. the randomness in the contention
resolution mechanism. By Rres(L) = L/S(L) we denote the
expected number of users that is resolved per slot, commonly
referred to as throughput in random access literature. We are
also interested in Rres, obtained by averaging Rres(L) over L,
i.e.,

Rres = E[Rres(L)|L > 0] =
M�

L=1

L

S(L)
q̂(L). (5)

In addition to Rres, which is obtained under a binomially
distributed number of active users as specified above, we also
consider the worst-case scenario, i.e., we analyze R∗

res =
inf L Rres(L) under any model with batch arrivals.

Further, we are interested in the effective number of bits
that is transmitted across the channel per channel use (i.e., net
rate), denoted by Rnet(L). Taking into account that L users
each transmit D bits in a total of S(L) slots that each consist
of N channel uses, we have

Rnet(L) = L D

S(L)N
= Rres(L)

D

N
. (6)

Finally, we are interested in the average and worst-case net
rate that we denote by Rnet = E[Rnet(L)|L > 0] and R∗

net =
inf L Rnet(L), respectively.

We will express some of our results in terms of Ix (a, b),
the regularized incomplete beta function, which is defined as

Ix(a, b) = Bx(a, b)/B1(a, b), (7)

where Bx(a, b) = � x
0 ta−1(1 − t)b−1dt . We will use the well-

known result that
K�

L=0

q(L) = I1−p(M − K , K + 1) = 1 − Ip(K + 1, M − K ).

(8)

IV. PRELIMINARIES

In this section we introduce the three different tech-
niques that constitute the random access mechanism.
In Section IV-A, we present the physical-layer network coding
strategy that is adopted in this paper. Next, we describe a
signature coding scheme in Section IV-B. Finally, we discuss
the basic idea of tree splitting in Section IV-C.

A. Reliable Physical-Layer Network Coding

The key ingredient of the random access strategy that is
proposed in this paper is to employ physical-layer network
coding (PLNC), i.e., to organize the physical layer in such a
way that the receiver can reliably decode sums of messages
that are simultaneously transmitted by users. This requires
a suitable choice of the forward error correcting codes as
well as the decoding mechanism that is used by the receiver.
In this section we provide a short introduction to physical-
layer network coding and a result from [10] that will be

Fig. 1. Physical-layer network coding (PLNC) results in a noiseless Fq adder
channel. (K = 2 users).

needed later. There are various angles at which physical-
layer network coding can be approached, e.g., denoise-and-
forward [8] or compute-and-forward [10]. A survey of these
and other approaches is given in [31] and [32]. In this paper
we adopt the compute-and-forward framework, as developed
by Nazer and Gastpar in [10].

In order to formulate the result from [10] that we need in the
remainder, we consider an arbitrary number of L transmitters.
User � has data W� to transmit, where

W� = (W�(1), W�(2), . . . , W�(κ)), (9)

with W�( j) ∈ Fq , q prime and κ is the predefined message
length. Each transmitter uses the same linear code F to encode
the data into real-valued channel input of length N (i.e., the
length of a slot) that satisfies an average power constraint
P . Let X� = F(W�) denote the channel input of user �.
The decoder, upon observing Y = �L

�=1 X� + Z attempts to
decode

�
� W� = (

�
� W�(1), . . . ,

�
� W�(κ)). In this sense,

the receiver recovers a function (namely, the sum) of the
original messages, which is why this approach is referred to
as computation coding. In a sense, as illustrated in Figure 1,
we turn the multi-access AWGN channel in a noiseless Fq

adder channel.
We denote by Rplnc the rate of F , i.e., Rplnc = κ N−1 log2 q

bits per channel use. We will refer to Rplnc as the computation
rate and say that it is achievable if the probability of decoding
erroneously can be made arbitrarily small by increasing N .
The next result follows directly from the main result in [10],
using the notation

log+
2 (x) =

�
log2(x), if x ≥ 1,

0, X otherwise.

Theorem 1 (cf. [10], Th. 1): For the standard AWGN
multiple-access channel, the following computation rate is
achievable

Rplnc = 1

2
log+

2 (P) . (10)

The above result does not exactly match the achievable rate
as given in [10, Th. 1], which is 1

2 log+
2

� 1
L + P

�
. Since we will

be dealing with an unknown number of active users, we use
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a computation rate that corresponds to L → ∞ and is thus a
lower bound that is valid for arbitrary number of active users.

The proof of [10, Th. 1] is based on a random coding
argument in which the code F is a lattice that is obtained
through Construction A, cf. [33]. As a consequence, the value
of q is a function of the block length N that satisfies N/q → 0
as N → ∞, see for instance [34]. We will assume that

q = N log2 N (11)

in the remainder.

B. Signature Codes

We are interested in signature codes for the Fq adder
channel, when up to K random users, out of total M users,
are active. So far, there has been a lot of work inves-
tigating the case when the signature symbols are binary,
i.e., q = 2; a summary of the known asymptotic results
has been presented in [35]. However, the case of general
q has been significantly less studied. We mention here the
construction proposed in [13], which can be generalized to
any q . However, this construction results in codewords of
length M , and allows for simultaneous resolution of up to
K = (M−1)/4 signatures when the set of the contending users
is a priori not known. In this paper we adopt a construction
that does not require a fixed relation of K with respect to M
and allows for significantly shorter signatures, as elaborated
below.

1) A Result in Additive Number Theory: In this paper,
we adopt the signature code construction presented by Lind-
ström [36], (see [35, pp. 42 and 43]). The construction
appeared in [36] for the case q = 2, but can be readily
generalized to arbitrary prime q . The construction is designed
for the case that the number of users M is a prime; if M
is not a prime, one could design signatures for the smallest
prime larger than M and use only the first M signatures. The
construction by Lindström is based on the following result in
additive number theory by Bose and Chowla [37], which, for
convenience of the reader, we present in a slightly less general
form than that in [37].

Theorem 2 [37]: Let M be prime. There exist integers si ,
i = 1, . . . , M, 1 ≤ si < M K , such that

�

i∈L1

si 	=
�

i∈L2

si , (12)

for any L1,L2 ⊂ {1, . . . , M}, |L1| ≤ K , |L2| ≤ K and L1 	=
L2.

Before giving the details, we describe the main idea in Lind-
ström’s construction. Each integer si is expressed through a
r−ary representation. These r -ary representations are mapped
to Fq and used as the signatures of the users. The choice of r
and the mapping to Fq are such that, from the summation in
Fq of the signatures, the receiver can recover the sum of the
integers si and thereby the identities of the users. In particular,
we will ensure that K (r − 1) ≤ q − 1. Next, we describe the
details of our construction.

2) Signature Encoder: We assume that a set of integers
s1, . . . , sM , satisfying the conditions of Theorem 2, is given.
The signature of user �, denoted by W s

� , is a sequence of
symbols from Fq . The signature consists of two parts, each of
them with a different functionality. The first part consists of a
single symbol, whose value is fixed to 1 by each of the users.
In this way, the sum of the first symbols of all active users L
will provide to the receiver L = |L|. Note that this requires
that M ≤ q − 1 and hence a sufficiently long block length,
since q = N log2 N . The second part of the signature of user
i consists of the r -ary representation of si , where the symbol
values are mapped from {0, . . . , r −1} to Fq using the natural
mapping.

3) Signature Decoder: The signature decoder receives a
sum

�
�∈L W s

� , where the set L is unknown to the receiver.
The tasks are now the following: i) decide if L ≤ K , and ii) if
L ≤ K compute L; else, treat the received slot as a collision
slot.

The first operation of the decoder is to map the sequence�
�∈L W s

� from Fq to a sequence of integers using a natural
mapping. Through the sum of the first symbols, the receiver
detects the number of active users L.

Next, consider the case when L ≤ K . Since K (r − 1) ≤
q − 1, the addition of at most K symbols {0, . . . , r − 1} in Fq

will be equivalent to the addition over the integers. Therefore,
the decoder can recover the sum of the r -ary representations of
the s�, � ∈ L. More precisely, each symbol in this summation
is an element from {0, . . . , K (r−1)} that is obtained by adding
integers from {0, . . . , r − 1}. The resulting sum immediately
provides

�
i∈L si and, by Theorem 2, also provides L.

In case a collision is detected and L > K , the receiver
can reliably compute the sum of the data of the active users,
but cannot decode the identities of the active users, i.e., who
contributed to the sum. The resolution of the active user
identities and their data packets in this case is addressed by
the proposed scheme, as introduced in Section V.

4) Analysis of Signature Length: We now fix the value of
r to

r =
�

q − 1

K

	
, (13)

such that K (r − 1) ≤ q − 1 is satisfied. This leads to
the following upper bound on the lengths of the signatures.
We express the length in the number of q-ary symbols that
are used. The reason is that this number will determine the
overhead of the signatures in the overall scheme as introduced
in Section V.

Theorem 3: There exist signatures of length

Nw =



K log2 M

log2(q − 1) − log2 K

�
+ 1, (14)

r-ary symbols, where r = �(q − 1)/K � . These r-ary symbols
can be represented by an equal number of q-ary symbols.

Proof: The length of the signatures follows from The-
orem 2. In particular, the signatures are represented by
K logr M+1 long strings of r -ary symbols. The representation
in q-ary symbols follows because r ≤ q .
In the proposed random access strategy we will concatenate
our signatures with a message. We will achieve reliable
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communication by considering asymptotically long messages,
i.e., we let N → ∞. This implies that q → ∞, since
q = N log2 N . The influence of the signatures on the rate
is negligible, i.e., the ratio Nw/N is vanishing.

C. Tree Splitting

We briefly outline the basic binary tree-splitting algorithm
under a collision model [2]. Again, L denotes the set of active
users and L = |L|, 1 ≤ L ≤ M , denotes the number of
active users. In the first slot all L users transmit a packet. If
L = 1, the receiver successfully decodes the packet of the
user and the contention period ends. If L ≥ 2, a collision
occurs and the receiver cannot decode the packets. The users
then probabilistically split into two groups L1 and L2. The
splitting is uniform at random and independent over users,
i.e., each user flips a fair coin to decide on the group to join.
Both groups then contend for the medium in the same fashion:
first the users from L1, then the users from L2. The splitting
is done recursively, eventually leading to an instance in which
only a single user is active and the corresponding transmission
is successfully received. The algorithm continues until the
transmissions of all active users from L are successfully
received. By means of feedback, after each slot the receiver
informs the users whether there was a collision, a single
transmission, or no transmission present, directing the future
actions of the active users.

The above described algorithm and its variations were
thoroughly analyzed in the literature, assessing the perfor-
mance parameters such as throughput, delay and stability. The
work closest to ours is presented in [16], the most important
difference being that we investigate a generalized case in
which collisions occur when L > K , where K ≥ 1. The
related analysis, which also covers the special case K = 1,
is presented in Section V.

V. THE PROPOSED STRATEGY

We start with an overview of the proposed random access
strategy. The strategy operates in rounds, where a round
includes (i) a slot in which the active users transmit the PLNC
encoded concatenation of their signatures and payloads, and
(ii) the corresponding feedback from the common receiver.
The use of PLNC enables the receiver to reliably obtain the
q−ary sums of the user transmissions. As long as there are at
most K active users, the receiver is able to uniquely decode
their signatures, detect which users are active and direct them
towards solving the linear combination of their payloads.

The receiver is also able to detect when more than K users
are active via the sum of indicator symbols contained in the
signatures. In this case, the receiver instructs the users to
randomly split in two groups and the strategy is then executed
in a recursive fashion for each of these groups. We proceed
by presentation of the details.

A. Encoder

Let W s
� and W d

� denote the strings representing the signature
and the data payload, respectively, of the active user �. The

Fig. 2. Illustration of the encoder for user � in a slot.

concatenation of signature and payload W� = W s
� W d

� is used
as the input of a PLNC encoder. Recall from Section IV-A that
the PLNC encoder applies a linear forward error correcting
code, the same code F for all users. The output of the PLNC
encoder, denoted by X� = F(W�) = F(W s

� W d
� ), is a channel

input of user �. The operation of the encoder of a single user
in a slot is illustrated in Figure 2.

B. Decoder

The receiver observes Y , which is a real sum of X�, � ∈ L,
and additive noise Z ,

Y =
�

�∈L
X� + Z =

�

�∈L
F(W�) + Z . (15)

It uses a PLNC decoder to decode Y and obtain
�

�∈L
W�, (16)

which decomposes into the sums of the signatures
�

�∈L W s
�

and the sums of the codewords
�

�∈L W d
� . This is illustrated

in Figure 3. As explained in Section IV-A, since the first
symbol in the signatures of all users is 1, the receiver directly
obtains the number of active users L = |L|,

C. User Resolution for L ≤ K

It follows from the properties of the signature code, that
if L ≤ K , the receiver obtains L. Moreover, it also has
the sum of the messages

�
�∈L W d

� . By making use of the
feedback mechanism to the users, the receiver ensures that in
the next L − 1 rounds L − 1 of the users in L are individually
transmitting their messages. This can be achieved by, e.g.,
polling the users through the feedback at the end of a round
and requesting them to transmit in the next slot. In that case the
feedback acts as an ACK as well as a scheduling mechanism.
Note that such a polling mechanism is not possible in the
case when L > K , since the receiver then does not know the
identities of the users.
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Fig. 3. Illustration of the decoder in a slot. (L = 3 users).

Fig. 4. Illustration of tree splitting, K = 3. Each node represents
a transmission. The label above a node indicates the slot in which the
transmission takes place and the number inside a node indicates the number of
transmitting users. The dashed nodes (and corresponding edges) are obtained
through polling/scheduling instead of splitting.

D. User Resolution for L > K

When the receiver observes L > K , then this is a “collision”
in our generalized setting and the receiver signals this fact
via feedback. All users in L now participate in a splitting
protocol with uniform splits into two groups. Each user

independently of the other users draws a uniformly distributed
random number from {1, 2}. All users with value 1 enter a
new contention resolution phase. The users with value 2 wait
until this phase ends and start another contention resolution
phase afterwards. If there are more than K users in one of
these groups the splitting procedure is applied recursively. The
splitting protocol is illustrated in Figure 4.

In the next section we analyze the proposed strategy, para-
meterized on the values of K . Note that case K = 1 reduces
the scheme to the traditional tree splitting protocol that was
discussed in Section IV-C.

VI. ANALYSIS

A. Expected Length of the Contention Resolution Phase and
Expected Throughput

We provide an analysis in terms of a recursive expression
for the expected number of slots in a contention resolution
period given the number of active users L, denoted as S(L).
The analysis is similar to the one by Massey [16] that deals
with the case K = 1. Let

α∗ = 1 + 1

K
, (17)

β∗ = 1 + 2

(K + 1)(1 − 2−K )
. (18)

We will show that

α∗L − 1 ≤ S(L) ≤ β∗L − 1. (19)

Let pL(�) denote the probability that a group of L users
split into two groups where one of the groups has size �. We
have

pL(�) =
�

L

�


2−L . (20)

Note that pL(0) > 0, i.e., it is possible that there are groups
with no users, thus we also include the case that L = 0. We
start by stating the recursion:

Lemma 1:

S(L) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if L = 0,

L, if 1 ≤ L ≤ K ,

1 + 2
�L−1

i=0 pL(i)S(i)

1 − 2 pL(L)
, if L > K .

(21)

Proof: Since we have a K out of M signature code,
we have S(0) = 1, S(1) = 1, S(2) = 2, . . . , S(K ) = K .
For L > K we have the following recursion

S(L) = 1 +
L�

i=0

pL(i) {S(i) + S(L − i)} (22)

= 1 +
L�

i=0

{pL(i)S(i) + pL(L − i)S(L − i)} (23)

= 1 + 2
L�

i=0

pL(i)S(i), (24)

which can be rewritten as

S(L) = 1 + 2
�L−1

i=0 pL(i)S(i)

1 − 2 pL(L)
, (25)
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by making use of
� L

L−i

� = �L
i

�
and

�L
i=1 pL(i)S(L − i) =�L

i=1 pL(i)S(i).
For notational convenience, let γ (L), L > K , be defined as

γ (L) =
�K

i=0 (S(i) + 1) pL(i)
�K

i=0 pL(i)i
= 1 + 1 + �K

i=0

�L
i

�
�K

i=0

�L
i

�
i

. (26)

The reason for introducing γ (L) is that it can be used to
express bounds on S(L), as demonstrated next.

Lemma 2: If α and β satisfy

α ≤ γ (L) ≤ β (27)

for all L > K , then

αL − 1 ≤ S(L) ≤ βL − 1 (28)

for all L > K .
Proof: For all L ≤ K we have

S(L) ≤ βL − 1 +
K�

i=0

δi L(S(L) − βL + 1), (29)

where δi j is the Kronecker delta, defined to be 1 if i = j and
0 otherwise. We now induction on L to show that (29) holds
for all L, thereby providing the proof for the upper bound
in (28).

As an induction hypothesis, assume that (29) holds for
S(K +1), S(K +2), . . . , S(L −1), L > K +1. Then, we have
the following bound for S(L)

S(L) = 1 + 2
�L−1

i=0 pL(i)S(i)

1 − 2 pL(L)
(30)

≤ 1 + 2
�L−1

i=0 pL(i)(βi − 1)

1 − 2 pL(L)

+ 2
�K

i=0 pL(i)(S(i) − βi + 1)

1 − 2 pL(L)
(31)

= 1 + 2
�L−1

i=0 pL(i)(βi − 1)

1 − 2 pL(L)

+ 2(γ (L) − β)
�K

i=0 pL(i)i

1 − 2 pL(L)
(32)

≤ 1 + 2
�L−1

i=0 pL(i)(βi − 1)

1 − 2 pL(L)
(33)

= βL − 1, (34)

where (30) follows from Lemma 1, (31) from the induction
hypothesis, (32) from the definition of γ (L) in (26), (33) from
condition (27), and finally, (34) from

L−1�

i=0

pL(i)i =
L�

i=0

pL(i)i − pL(L)L = L

2
(1 − 2 pL(L)), (35)

L−1�

i=0

pL(i) = 1 − pL(L). (36)

The establishes the upper bound on S(L). The proof of the
lower bound follows in entirely analogous fashion.

Next, we provide an upper and a lower bound on γ (L).

Lemma 3:

1 + 1

K
≤ γ (L) ≤ 1 + 2

(K + 1)(1 − 2−K )
. (37)

Proof: For the lower bound we have

γ (L) = 1 + 1 + �K
i=0

�L
i

�
�K

i=0

�L
i

�
i

(38)

≥ 1 +
�K

i=0

�L
i

�

K
�K

i=0

�L
i

� (39)

= 1 + 1

K
= α∗. (40)

In order to prove the upper bound, we first show that γ (L) is
decreasing in L, i.e., that γ (L)−γ (L +1) ≥ 0. It immediately
follows from (26) that γ (L) − γ (L + 1) ≥ 0 if

K�

i=0

�
L + 1

i


i +

K�

i=0

�
L

i

 K�

j=0

�
L + 1

j


j

−
K�

i=0

�
L

i


i −

K�

i=0

�
L + 1

i

 K�

j=0

�
L

j


j ≥ 0. (41)

Since
�L+1

i

� ≥ �L
i

�
for all 0 ≤ i ≤ K < L, it is sufficient to

show that
K�

i=0

�
L

i

 K�

j=0

�
L + 1

j


j −

K�

i=0

�
L + 1

i

 K�

j=0

�
L

j


j (42)

is non-negative. Using
�L+1

i

� = L+1
L+1−i

�L
i

�
we rewrite (42) as

K�

i, j=0

�
L + 1

L + 1 − j
− L + 1

L + 1 − i


j

�
L

i

�
L

j


. (43)

Now, (41) follows from the observation that negative terms
occur in (43) for i > j , in which case, by symmetry
considerations, there are corresponding positive j > i terms
that are j−i times larger by absolute values than their negative
counterparts. The upper bound now follows directly from the
value of γ (L) at L = K + 1, i.e.,

γ (K + 1) = 1 + 1 + �K
i=0

�K+1
i

�
�K

i=0

�K+1
i

�
i

(44)

= 1 + 1 + (2K+1 − 1)

2K (K + 1) − (K + 1)
(45)

= 1 + 2

(K + 1)(1 − 2−K )
= β∗. (46)

We are now ready to state the main result of this
section.

Theorem 4: S(L) = L if 1 ≤ L ≤ K , and, for L > K

α∗L − 1 ≤ S(L) ≤ β∗L − 1. (47)

Proof: Directly from Lemmas 2 and 3.
In Table I we provide a numerical evaluation of α∗ and β∗.

Also, in Figure 5 we illustrate S(L), as well as its lower and
upper bounds for various values of K . Finally, in Figure 6 we
illustrate the expected number of users that is resolved per
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TABLE I

VALUES FOR α∗ AND β∗ THAT SERVE IN THE BOUNDS ON S(L)

Fig. 5. S(L) and its bounds for various values of K . Upper and lower bounds
in dotted and dashed lines, respectively. Exact values of S(L) in solid lines.

Fig. 6. Rres (L) and its bounds for various values of K . Upper and lower
bounds in dotted and dashed lines, respectively. Exact values of Rres (L) in
solid lines.

slot given that L users are active, Rres(L) = L/S(L),
including its upper and lower bounds derived from the bounds
on S(L).

From Theorem 4, we derive results on the expected number
of users that is resolved per slot Rres, i.e., the expected
throughput.

Fig. 7. Lower bounds on R̄res , the expected number of users that is resolved
per slot. (M = 1031).

Theorem 5: The expected number of users that is resolved
per slot is lower bounded as

Rres ≥ 1 − β∗ − 1

β∗(1 − q0)
Ip(K + 1, M − K ). (48)

Proof: We have

Rres =
M�

L=1

L

S(L)
q̂(L) (49)

≥
K�

L=1

q̂(L) +
M�

L=K+1

L

β∗L − 1
q̂(L) (50)

≥ (1 − q0)
−1

�
K�

L=0

q(L) + 1

β∗
M�

L=K+1

q(L) − q0

�
(51)

= 1 − β∗ − 1

β∗(1 − q0)
Ip(K + 1, M − K ), (52)

where q̂(L) is the probability of having L ≥ 1 active users and
Ip(K +1, M − K ) is the regularized incomplete beta function,
see (7).
The result is illustrated in Figure 7 as a function of K for
various values of p.

In addition to the expected throughput Rres, we are also
interested in the worst-case behavior, i.e., we analyze R∗

res =
inf L Rres(L). The next result is an immediate corollary of
Theorem 4.

Corollary 1:

R∗
res ≥ 1

β∗ . (53)

We illustrate Corollary 1 in Figure 8, depicting both R∗
res as

well as Rres for various values of K . The value of Rres is
given as a function of pM , which is the average number of
active users.

B. Net Rate in Bits Per Channel Use

Here we consider the net rate Rnet(L), i.e., the overall
throughput in bits per channel use that is effectively trans-
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Fig. 8. Average and worst case number of users that is resolved per slot
(M = 1031). R∗

res in dashed lines, R̄res in solid lines.

mitted. This performance parameter takes into account the
overhead that is generated by the physical-layer network
coding, signatures and the tree-splitting. In this section we
ignore finite block length effects and assume that PLNC can
achieve rate Rplnc = 1

2 log+
2 (P) (as given by Theorem 1) with

arbitrarily small error probability at a finite block length.
First, we analyze the number of message bits D that can be

transmitted within a block of N channel uses. Let k denote
the number of q-ary symbols that can be transmitted. We have

k

N
log2 q = Rplnc. (54)

Combining the message bits and the signature we have

k = D

log2 q
+ Nw, (55)

where q = N log2 N and Nw is given by Theorem 3. From
this we can solve for D as a function of N and evaluate
Rnet(L) = D

N Rres(L). We obtain

D = N

2
log+

2 (P) − Nw log2(N log2 N). (56)

For completeness, we give the full result in the following
corollary.

Corollary 2: The expected number of bits per channel use
Rnet is at least

Rnet ≥
�

1

2
log+

2 (P) − Nw

N
log2(N log2 N)



·
�

1 − β∗ − 1

β∗(1 − q0)
Ip(K + 1, M − K )


, (57)

where Nw =
�

K log2 M
log2(N log N−1)−log2 K

�
+ 1 and N is the block

length.
In the next result we consider the case that D, N → ∞ and

consider the maximum of Rnet over K . The result states that
the resulting net rate is 1

2 log+
2 (P).

Theorem 6: As D increases, the value of Rnet optimized
over K is 1

2 log+
2 (P), i.e.,

max
K

lim
D→∞ Rnet = 1

2
log+

2 (P). (58)

Proof: First,

lim
D→∞ Rnet

= 1

2
log+

2 (P)

�
1 − β∗ − 1

β∗(1 − q0)
Ip(K + 1, M − K )


. (59)

Now, for K = M , the regularized incomplete beta function is
at its minimum value Ip(M +1, 0) = 0 and (β∗ −1)/β∗/(1−
q0) is finite. Therefore, the maximum on the right-hand side
in the above expression is obtained for K = M and equals
1
2 log+

2 (P).

C. Upper Bound

We consider an upper bound on Rnet that must be satisfied
by any multiple access protocol that serves a batch of arrived
packets, each at a different user:

Theorem 7:

Rnet ≤
M�

L=1

�
M

L


pL(1 − p)M−L 1

2
log2 (1 + L P) . (60)

Proof: The bound is obtained by assuming that all users
and the receiver have complete knowledge about which users
are active. Under these assumptions, the problem reduces to
a standard Gaussian multi-access channel. The sum rate that
can be used by L active users is

Rnet(L) ≤ 1

2
log2 (1 + L P) . (61)

This immediately leads to (60) by taking the expectation
over L.
The following corollary follows directly from Theorem 7 by
an application of Jensen’s inequality.

Corollary 3:

lim
M→∞ Rnet ≤ 1

2
log2(1 + pM P). (62)

In the next subsection we will interpret the upper bound from
this section and relate it to the value of Rnet achieved by the
proposed scheme.

D. Evaluation

Figure 7 shows that as a function of K , Rres quickly
approaches the maximum value of 1. This performance para-
meter is a baseline measure of the efficiency of the random
access protocols from the system perspective. Our results
clearly demonstrate the potential of the proposed strategy.
Figure 7 also shows that K should increase as the expected
number of the active users pM increases, in order to achieve
high throughput. Conversely, if K is fixed, the expected
throughput drops with p to its lower bound, as shown
in Figure 8.

In Figure 9 we have illustrated our lower bound on Rnet
from Corollary 2 as a function of D, the size of a message
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transmitted by a user. Note that the lowest value for D in
the figure is D = 500, for which at K = 1 and P = 100,
N ≈ 156 and we satisfy the required constraint M ≤ q − 1 =
N log2 N − 1 for M = 1031. The non-smooth behavior
of Rnet is a result of the ceiling operation in the length of
the signatures. In addition to Rnet, Figure 9 depicts in a
dashed line the upper bound from Theorem 7, demonstrating
what is the price to pay in information bits per channel use
due to: (i) using physical-layer network coding to decode a
linear combination of messages in each slot, (ii) the overhead
related to the use of signatures, and (iii) the loss caused by
the occurrence of collision and empty slots, compared to the
ideal scenario of beforehand knowing the set of active users
and using the optimal multi-user code. Figure 9 also depicts
in a dotted line the value 1/2 log+

2 (P). From Theorem 6 it
follows that 1/2 log+

2 (P) is the limiting value for Rnet of our
scheme for D → ∞ and M → ∞. It is clear that no scheme
in which one linear combination of messages is decoded
at the receiver per slot will be able to achieve a net rate
larger than 1/2 log+

2 (P). Therefore, Figure 9 illustrates that
the performance degradation due to (ii) and (iii) diminishes
as D increases, such that for already modest values of D in
practice, the degradation is mainly due to the way in which
physical-layer network coding is applied in our approach.

This is also illustrated by considering the upper bound from
Corollary 3, which gives 1

2 log2(1 + pM P), where pM is
the expected number of active users, whereas our scheme
achieves 1/2 log+

2 (P). A similar behavior was observed in [6],
in which the PLNC strategy was extended to allow for several
linear combinations to be decoded per slot. Even though
this provided a slight improvement, the performance of the
resulting strategy did not match the upper bound. Also, using
Theorem 7 itself, instead of Corollary 3, will not close this
gap. It is an open problem to determine whether the gap to
optimality observed in this work and in [6] can be reduced by
modifying our approach.

Figure 9 also shows that there is an optimal value of K
that minimizes the combined overhead of (ii) and (iii), i.e.,
maximizes Rnet with respect to D; the maximum value of Rnet
for the optimal K , denoted by K ∗, is also depicted in Figure 9.
Finally, Figure 10 shows K ∗ as function of payload length
D and the expected number of active users. We note that
finding analytical expressions for K ∗ involves dealing with
partial derivatives of the regularized incomplete beta function
and is out of the scope of the paper.

VII. INCORPORATING SUCCESSIVE

INTERFERENCE CANCELLATION

In this section we consider an extension of the proposed
scheme that includes successive interference cancellation.
Specifically, in Section V, any computed sum of the received
signals in the slot that involves more than K users is con-
sidered a collision and discarded. The rationale is that in this
case the receiver is not able to determine the set of active
users L that contribute to the sum. However, as indicated in
Section IV-A, due to the PLNC properties the receiver can
successfully receive a linear combination of the packets of all

Fig. 9. The lower bound on R̄net from Corollary 2. In dotted line the value
1/2 log+

2 (P) as given by Theorem 6. (M = 1031, pM = 3, P = 102).

Fig. 10. Value of K that optimizes R̄net , denoted by K∗ . (M = 1031,
P = 102).

active users. We show in this section how the receiver can
efficiently make use of these collision slots by storing these
sums of packets for later use. In the further text, we refer to
this scheme as the SIC-enabled scheme.

A. Description of the SIC-Enabled Scheme

The encoder and decoder that are used in each slot are the
same as in the proposed scheme of Section V, i.e., encoding is
performed as in Section V-A and decoding as in Section V-B.
The difference is in the action taken by the receiver in case
L > K , i.e., the difference is in the splitting procedure that
takes place when more than K users are transmitting. We
proceed by describing the details.

Recall from Section V-B that the receiver obtains
�

�∈L W�,
which consists of the concatenation of the sums of the signa-
tures

�
�∈L W s

� and the sums of the codewords
�

�∈L W d
� .

If L > K then
�

�∈L W s
� cannot be uniquely decoded to learn
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Fig. 11. Tree splitting with SIC, K = 3. A checkmark indicates that this
signal is obtained by SIC and that no slot is used. The transmission labeled ∅
is skipped, since it would not bring new information and users are instructed
to split.

L. The key difference between the scheme of Section V-D and
the SIC-enabled scheme is that the receiver stores

�
�∈L W�

for future use, instead of discarding it. Again, all users in
L participate in a splitting protocol with uniform splits into
two groups. Each user independently of the other users draws
a uniformly distributed random number from {1, 2}. Let Li

denote the users with value i , i = 1, 2. First, all users
with value 1 enter a new contention resolution phase. At
the end of this phase, which might include recursive splitting
steps, the receiver knows L1 and

�
�∈L1

W�. Using the stored
information

�
�∈L W�, the receiver now computes
�

�∈L2

W� =
�

�∈L
W� −

�

�∈L1

W�. (63)

Note that
�

�∈L2
W� is exactly the signal that would occur in

the first slot of the second subtree in the splitting procedure
of Section V-D. Thus, instead of being obtained through an
additional slot,

�
�∈L2

W� it is obtained through (63). The
corresponding slot is omitted and the contention resolution of
users in L2 proceeds in the similar fashion. An overview of
the SIC approach is provided in Figure 11.

An important detail of the scheme that we have not yet
discussed is also illustrated in Figure 11. Specifically, if L1 =
∅, then L2 = L and (63) does not provide new information. In
this case, the first slot in the second subtree can also be omitted
and the users are instructed to immediately split again.1

1A similar modification to the original, K = 1 algorithm when L1 = ∅,
was proposed in [16]. We also note that the immediate split of the second
group, for any value of |L1| and given that |L2| > K , naturally fits into the
SIC framework and is the rule, rather than a modification.

Finally, in case L1 = L, the second phase is (obviously)
omitted completely.

An important difference between our SIC scheme and
other SIC-based contention resolution mechanisms [4], [7],
is that our approach is based on reliable PLNC, whereas other
approaches work on noisy signals. This has the advantage
that it leverages the receiver from the burden to store large
quantities of physical-layer output with a high precision.

B. Analysis

We start with the equivalent of Lemma 1 for the SIC-
enabled scheme. The notation that is used in this section is
same the same as Section VI, with an additional subscript SIC
whenever there is a difference with the scheme of Section V.

Lemma 4:

SSIC(L) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if L = 0,

L, if 1 ≤ L ≤ K ,

2
�L−1

i=0 pL(i)SSIC(i)

1 − 2 pL(L)
, if L > K .

(64)

Proof: We focus on the recursive expression, when L ≥ K
and when a split is performed. We distinguish three cases,
depending on the number of users in the first group after the
split. If there are 1 ≤ i ≤ L − 1 users in the first group, then
we require SSIC(i) slots to resolve this group. For the second
group, the first linear combination of the L−i users is obtained
through SIC and SSIC(L − i)− 1 additional slots are required.
If there are no users in the first group, then SSIC(0) = 1
slot is used for the first group. For the second group of L
users, the first transmission can be omitted, since it is known
in advance that it will not provide a new linear combination.
Therefore, SSIC(L) − 1 additional slots are required. Finally,
if there are L users in the first group, SSIC(L) slots will be
used for this group and no slots will be used for the second
group. Combining all cases leads to

SSIC(L) = 1 +
L−1�

i=0

pL(i)
�

SSIC(i) + SSIC(L − i) − 1
�

+ pL(L)SSIC(L), (65)

when L > K . The proof of the lemma readily follows
from (65), using the facts that SSIC(0) = 1 and pL(i) =
pL(L − i), i = 0, . . . , L.

The following lemma is the equivalent of Lemma 2. The
proof is completely analogous to the proof of Lemma 2 and,
therefore, omitted.

Lemma 5: If αSIC and βSIC satisfy

αSIC ≤ γSIC(L) ≤ βSIC, (66)

for all L > K , where

γSIC(L) =
�K

i=0 SSIC(i)pL(i)
�K

i=0 pL(i)i
, (67)

then

αSIC L ≤ SSIC(L) ≤ βSICL, (68)

for all L > K .
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Fig. 12. Lower bounds on R̄net and R̄net,SIC at the optimal value for K .
In dashed line the upper bound on R̄net from Theorem 7. In dotted line the
value 1/2log+

2 (P) as given by Theorem 6. (M = 1031, pM = 3, P = 102).

Next, we present bounds on γSIC(L).
Lemma 6:

1 ≤ γSIC(L) ≤ 1 + 1

(K + 1)(2K − 1)
. (69)

Proof: Rewrite γSIC as

γSIC(L) = pL(0) + �K
i=1 pL(i)i

�K
i=1 pL(i)i

= 1 + 1
�K

i=1

�L
i

�
i
. (70)

The lower bound trivially holds. Regarding the upper bound,
it should be observed that

�L
i

�
, i = 0, . . . , K , increases with

L. Therefore

γSIC(L) ≤ γSIC(K + 1) (71)

= 1 + 1
�K

i=1

�K+1
i

�
i

(72)

= 1 + 1

(K + 1)(2K − 1)
. (73)

Based on the above lemma we define

α∗
SIC = 1, (74)

β∗
SIC = 1 + 1

(K + 1)(2K − 1)
, (75)

to serve as bounds on SSIC(L) in Lemma 5. In Table II we
list some values for β∗

SIC. Obviously, the upper bound quickly
approaches the lower bound of 1 as K increases, implying
that SSIC(L) also quickly approaches L, which is the minimal
number of slots required to resolve L user transmissions.

We derive results on Rres,SIC, the expected number of users
that is resolved per slot in the SIC-enabled scheme. The next
result is the equivalent of the non-SIC result in Theorem 5
with β∗ replaced by β∗

SIC; the proof is omitted, as it requires
only a minor modification to the proof of Theorem 5.

TABLE II

VALUES FOR β∗ THAT SERVE AS THE UPPER BOUND ON SSIC(L)

Theorem 8: The expected number of users that is resolved
per slot is lower bounded as

Rres,SIC ≥ 1 − β∗
SIC − 1

β∗
SIC(1 − q0)

Ip(K + 1, M − K ). (76)

The result of Theorem 8 immediately leads to a result on
Rnet, SIC, i.e., the net rate in bits per channel use that is achiev-
able with SIC. In Figure 12 we have compared maximum
values for Rnet, SIC and Rnet, both at their individual optimal
values of K . In addition, similar to Figure 9, we have depicted
the upper bound from Theorem 7 and the value 1/2 log+

2 (P)
as given by Theorem 6. We observe from Figure 12 that,
even though SIC has a significant impact on the value of
expected number of slots in a contention period (69) and on the
expected number of users resolved per slot (76), the impact
on the net rate is limited. In other words, reusing collision
slots in the SIC-enabled scheme only modestly improves net-
rate performance. We conclude this section by noting that it is
straightforward to obtain the other results for the SIC-enabled
scheme that correspond to the results in Section VI. Therefore,
these are not presented here.

VIII. DISCUSSION

In the paper we have assumed a unit channel gain model in
which users are synchronized to the start of a contention reso-
lution period. Here we discuss how the assumption of the unit
channel gains can be relaxed to take into account channels with
fading, as well as how the synchronization can be achieved.
The idea is that the start of a contention resolution period is
marked by a beacon sent by the base station, synchronizing
the users. Upon receiving the beacon, each user that has a
message to send estimates its channel to the base station. This
estimate is also obtained from the beacon, assuming channel
reciprocity. If the channel is sufficiently strong (to be made
precise in the following text), then the user becomes active
for this contention period, i.e., it joins the set of contending
users. The active user inverts the channel and, during the
contention process, precodes its transmission by sending the
signal Xm/hm , where hm is the channel coefficient between
the m−th user and the receiver. This channel, as perceived
by the receiver, has unit channel gains. Note that in this
case the uncertainty about the users that constitute the set
L comes both from the sporadic message arrival per user
as well as the changes in the channel. We assume a quasi-
static fading model, such that hm stays constant during the
contention period, which also implies that the set of active
users L remains invariant until the contention is resolved.
Finally, due to the power constraint, if a user observes a
channel with |hm |2 < 1/P , it does not become active and
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does not join the contention set L. Such a user will wait for
a next contention period in which it has a stronger channel.

It is interesting to note that in standard scenarios with
PLNC, the channel coefficients are assumed to be known at
the receiver [8]–[10], which is consistent with the fact that the
receiver knows a priori the set of transmitting users; in other
words, the only issue is to properly select the codebooks and
the decoders. However, in our scenario there is uncertainty
about the set of transmitting users and it is thus not reasonable
to assume that the receiver would know the channel coeffi-
cients {hm}. Precoding results in a multiple access channel
in which the coefficient of each user, as perceived by the
receiver, is equal to one. Thus, although the receiver does
not know the set of transmitting users, it knows a priori the
channel coefficient by which each user is received. With these
assumptions, the receiver is able to set up the correct decision
regions in order to decode the superposition of the lattice-
based codewords from the transmitters.

The random-access setup considered in the paper can be
categorized as a batch contention resolution, where all users
arrive before the start of the contention resolution procedure,
and the contention resolution is performed by the binary fair-
splitting of collisions with multiplicity larger than K . The
initial collision multiplicity is binomially distributed, as the
user arrivals are modeled by Bernoulli trials. The sporadic
nature of message arrivals is reflected in the fact that p is
small, such that with high probability a user that is already in
L does not get a new message during the contention period.
In order to take into account additional arrivals at users already
in L, we could extend the protocol by allowing a user to
indicate with an additional bit in their message that it has
one more message. Such a user would be granted another
collision-free transmission once it succeeds to send its first
message successfully.

In the paper the focus of the analysis of the proposed
scheme was on the derivation of the bounds on the protocol
performance, characterizing the behavior as K grows, i.e., as
a larger number of users becomes resolvable simultaneously.
The obtained bounds are given in closed form, depend only
on K and provide a direct insight into the scheme’s perfor-
mance. We note that, in principle, one could reuse the results
from [38] and [4], and obtain non-recursive expressions for
the expected duration of the contention resolution period given
that the initial collision multiplicity is L, for the original S(L)
and SIC-enabled variant SSIC(L), respectively. Specifically,
the difference to the analysis carried out in [38] and [4] is
in the generalization in the range of the initial conditions to
L = 0, 1, . . . , K . However, taking into account that these
expressions for S(L)/SSIC(L) will inevitably be in a convolved
form,2 and that the bounds that have been derived in the cur-
rent paper become increasingly tight as K grows, we have not
pursued obtaining non-recursive formulae for S(L)/SSIC(L).

The straightforward generalization of the proposed scheme
is to assume Q-ary splitting and investigate the optimal values
of Q and the optimal splitting probabilities, including the
potential exploitation of the fact that the collision multiplic-

2Cf. [4, eq. (30)] and [38, eq. (3.31)].

ity L is always known. However, our preliminary analysis
shows that the gain that could be achieved by such optimiza-
tion is negligible compared to the gain that is achieved by
optimizing K .

Further extensions could include more elaborate arrival
models, where new users can become active after the start
of the (current) contention resolution period, which can be
handled in the blocked (gated), windowed and free-access
manner [4], [16]. In this regard, we conjecture that, based
on the results from [16], the original variant of the proposed
scheme will experience improvements w.r.t. the worst case
performance, see Figure 8, if the windowed access is used.
On the other hand, we conjecture that the blocked access
for the SIC-enabled variant is optimal. Specifically, in this
variant of the scheme, all non-empty slots that occur during the
contention resolution period are useful, which eliminates the
arguments for ‘bounding’ the initial collision multiplicity that
fosters the windowed access. We also note that the analogous
result is formally derived in [4] for the case K = 1.

We further remark that Figures 9 and 10 clearly illustrate
the performance loss due to the access protocol elements,
i.e., physical layer network coding, signature coding and the
contention resolution mechanism, w.r.t. the ideal scenario
in which set of the active users and their identities are a-
priori known and the optimal multi-user code is used. Such
a comparison is omitted in related work, which consistently
relies on idealized assumptions regarding the physical layer
and does not take the overhead related to user identification
explicitly into account.

As shown in this paper, the dominant loss as the length of
the data portion of user packet grows is due to PLNC; it is
currently an open problem if this loss is an inherent property
of PLNC or an artifact of the computation coding construction
that is developed in [10].

The current work has not addressed the complexity of
decoding the signatures. It would be of interest to design low-
complexity decoding algorithms by basing the construction
of the signature codes on, for instance, BCH codes (instead
of Lindström’s construction) and by using existing decoding
techniques as done in [39] and [40].

As already mentioned in the introduction, the mechanisms
introduced in this paper through signatures and physical-layer
network coding are not limited to tree-splitting algorithms.
In particular, PLNC and signature coding were also applied
in the context of coded random access [41], where the
advantage is that the feedback comes less often compared to
the tree-splitting protocols. However, the proposed protocol
offers several advantages over coded random access. One
advantage is related to the sensitivity of the performance to
the choice of parameters, which in both cases depend on
the number of active users. In this respect, the proposed
protocol can provide meaningful performance without a priori
knowledge of the number of active users and the optimal
selection of K , as demonstrated in Figure 8. On the other
hand, the performance of coded random access is much
more sensitive, with a chance of performing poorly if the
parameters are not selected optimally, c.f. [42, Fig. 5] that
shows that the throughput becomes very low if the frame has
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not been dimensioned properly. Further, the use of feedback,
which drives the resolution process in the proposed scheme,
enables the receiver to start resolving users after a number
of slots that scales logarithmically with the initial collision
multiplicity. On the other hand, in frame-based coded random
access, the resolution process is initiated only at the end of
the frame; similarly, frameless coded random access exhibits
the well known threshold effect in terms of user resolution,
when most of the users become resolved at the end of the
contention period [7]. In this respect, it can be argued that
the proposed protocol provides a more balanced profile of the
user resolution delay. It will be of interest to compare the
performance of our proposed strategy with work on models
in which the user detection problem is related to compressed
sensing, as done in, for instance, [43]. An important difference
between [43] and the current work is that in [43] the number
of users scales with the block length.

One relevant extension of this work is directed to the
practical scenario in which physical-layer network coding is
not carried out using lattices, but rather a practical symbol-by-
symbol modulation combined with error-control coding. This
fact, along with the finite block length, necessarily leads to a
nonzero probability of errors at the receiver, which requires
suitable modification of the protocol. Another problem of
practical relevance is to develop efficient algorithms that
decode sums of signatures. Finally, an interesting extension is
related to the construction of signatures when the assumption
of the equal powers at the point of reception does not hold.
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