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Inexact Gradient Projection and Fast Data
Driven Compressed Sensing
Mohammad Golbabaee, Mike E. Davies, Fellow, IEEE,

Abstract

We study convergence of the iterative projected gradient (IPG) algorithm for arbitrary (possibly non-
convex) sets and when both the gradient and projection oracles are computed approximately. We consider
different notions of approximation of which we show that the Progressive Fixed Precision (PFP) and the
(1 + ε)-optimal oracles can achieve the same accuracy as for the exact IPG algorithm. We show that the
former scheme is also able to maintain the (linear) rate of convergence of the exact algorithm, under the
same embedding assumption. In contrast, the (1 + ε)-approximate oracle requires a stronger embedding
condition, moderate compression ratios and it typically slows down the convergence.

We apply our results to accelerate solving a class of data driven compressed sensing problems,
where we replace iterative exhaustive searches over large datasets by fast approximate nearest neighbour
search strategies based on the cover tree data structure. For datasets with low intrinsic dimensions our
proposed algorithm achieves a complexity logarithmic in terms of the dataset population as opposed to
the linear complexity of a brute force search. By running several numerical experiments we conclude
similar observations as predicted by our theoretical analysis.

Index Terms

Iterative projected gradient, approximate updates, linear convergence, compressed sensing, con-
strained least squares, data driven models, cover trees, approximate nearest neighbour search.

I. INTRODUCTION

Signal inference under limited and noisy observations is a major line of research in signal processing,
machine learning and statistics and it has a wide application ranging from biomedical imaging, astro-
physics, remote sensing to data mining. Incorporating the structure of signals is proven to significantly
help with an accurate inference since natural datasets often have limited degrees of freedom as compared
to their original ambient dimensionality. This fact has been invoked in Compressed sensing (CS) literature
by adopting efficient signal models to achieve accurate signal reconstruction given near-minimal number
of measurements i.e. much smaller than the signal ambient dimension (see [1, 2, 3, 4, 5, 6] and e.g. [7]
for an overview on different CS models). CS consists of a linear sampling protocol:

y ≈ Ax∗, (1)

where a linear mapping A samples an m-dimensional vector y of noisy measurements from a ground
truth signal x∗ which typically lives in a high ambient dimension n � m. Natural signals often have
efficient compact representations using nonlinear models such as low dimensional smooth manifolds, low-
rank matrices or the Union of Subspaces (UoS) that itself includes sparse (unstructured) or structured
sparse (e.g. group, tree or analysis sparsity) representations in properly chosen orthobases or redundant
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dictionaries [7]. CS reconstruction algorithms for estimating x∗ from y are in general more computa-
tionally complex (as opposed to the simple linear acquisition of CS) as they typically require solving a
nonlinear optimization problem based around a prior signal model. A proper model should be carefully
chosen in order to efficiently promote the low-dimensional structure of signal while not bringing a huge
computational burden to the reconstruction algorithm.

Consider the following constrained least square problem for CS reconstruction:

min
x∈C
{f(x) :=

1

2
||y −Ax||2}, (2)

where, the constraint set C ∈ Rn represents the signal model. First order algorithms in the form of
projected Landweber iteration a.k.a. iterative projected gradient (IPG) descent or Forward-Backward are
very popular for solving (2). Interesting features of IPG include flexibility of handling various and often
complicated signal models, e.g. C might be convex, nonconvex or/and semi-algebraic such as sparsity or
rank constraints (these last models result in challenging combinatorial optimization problems but with
tractable projection operators). Also IPG (and more generally the proximal-gradient methods) has been
considered to be particularly useful for big data applications [8]. It is memory efficient due to using
only first order local oracles e.g., the gradient and the projection onto C, it can be implemented in a
distributed/parallel fashion, and it is also robust to using cheap statistical estimates e.g. in stochastic
descend methods [9] to shortcut heavy gradient computations.

In this regard a major challenge that IPG may encounter is the computational burden of performing an
exact projection step onto certain complex models (or equivalently, performing an exact but complicated
gradient step). In many interesting inverse problems the model projection amounts to solving another
optimization within each iteration of IPG. This includes important cases in practice such as the total
variation penalized least squares [10, 11], low-rank matrix completion [12] or tree sparse model-based
CS [6]. Another example is the convex inclusion constraints C =

⋂
i Ci, appearing in multi constrained

problems e.g. [13, 14], where one might be required to perform a Dykstra type feasibility algorithm at
each iteration [15, 16]. Also, for data driven signal models the projection will typically involve some
form of search through potentially large datasets. In all these cases accessing an exact oracle could be
either computationally inefficient or even not possible (e.g. in analysis sparse recovery [17] or tensor
rank minimization [18] where the exact projection is NP hard), and therefore a natural line of thought is
to carry those steps with cheaper approximate oracles.

A. Contributions

In this paper we feature an important property of the IPG algorithm; that it is robust against bounded
adversarial (worst-case) errors in calculation of the projection and gradient steps. We cover different
types of oracles: i) A fixed precision (FP) oracle which compared to the exact one has an additive
bounded approximation error. ii) A progressive fixed precision (PFP) oracle which allows for larger
(additive) approximations in the earlier iterations and refines the precision as the algorithm progresses.
iii) A (1 + ε)-approximate oracle which introduces a notion of relatively optimal approximation with a
multiplicative error (as compared to the exact oracle).

Our analysis uses a notion of model-restricted bi-Lipschitz embedding similar to e.g. [19], however in
a more local form and with an improved conditioning (we discuss this in more details in Section IV).
With that respect, our analysis differs from the previous related works in the convex settings as the
embedding enables us for instance to prove a globally optimal recovery result for nonconvex models,
as well as establishing linear rate of convergences for the inexact IPG applied for solving CS problems
(e.g. results of [20] on linear convergence of the inexact IPG assumes strong convexity which does not
hold in solving underdetermined least squares such as CS).

In summary, we show that the FP type oracles restrict the final accuracy of the main reconstruction
problem. This limitation can be overcome by increasing the precision at an appropriate rate using the PFP
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type oracles where one could achieve the same solution accuracy as for the exact IPG algorithm under the
same embedding assumptions (and even with the convergence rate). We show that the (1+ε)-approximate
projection can also achieve the accuracy of exact IPG however under a stronger embedding assumption,
moderate compression ratios and using possibly more iterations (since using this type of oracle typically
decreases the rate of convergence). In all the cases above we study conditions that provide us with linear
convergence results.

Finally we apply this theory to a stylized data driven compressed sensing application that requires a
nearest neighbour search order to calculate the model projection. We shortcut the computations involved,
(iteratively) performing exhaustive searches over large datasets, by using approximate nearest neighbour
search strategies corresponding to the aforementioned oracles and motivated by the cover tree structure
introduced in [21]. Our proposed algorithm achieves a complexity logarithmic in terms of the dataset
population (as opposed to the linear complexity of a brute force search). By running several numerical
experiments on different datasets we conclude similar observations as predicted by our theoretical results.

B. Paper organization

The rest of this paper is organized as follows: In Section II we review and compare our results
to the previous related works on inexact IPG. In Section III we define the inexact IPG algorithm for
three types of approximate oracles. Section IV includes our main theoretical results on robustness and
linear convergence of the inexact IPG for solving CS reconstruction problem. In Section VI we discuss
an application of the proposed inexact algorithms to accelerate solving data driven CS problems. We
also briefly discuss the cover tree data structure and the associated exact/approximate search strategies.
Section VII is dedicated to the numerical experiments on using inexact IPG for data driven CS. And
finally we discuss and conclude our results in Section VIII.

II. RELATED WORKS

Inexact proximal-gradient methods (in particular IPG) and their Nesterov accelerated variants have
been the subject of a substantial amount of work in convex optimization [20, 22, 23, 24, 25]. Here we
review some highlights and refer the reader for a comprehensive literature review to [20]. Fixed precision
approximates have been studied for the gradient step e.g. for using the smoothing techniques where the
gradient is not explicit and requires solving an auxiliary optimization, see for more details [22] and [23]
for a semi-definite programming example in solving sparse PCA. A similar approach has been extensively
applied for carrying out the projection (or the proximity operator) approximately in cases where it does
not have an analytical expression and requires solving another optimization within each iteration e.g.
in total variation constrained inverse problems [10, 11] or the overlapping group Lasso problem [26].
Fortunately in convex settings one can stop the inner optimization when its duality gap falls below a
certain threshold and achieve a fixed precision approximate projection. In this case the solution accuracy
of the main problem is proportional to the approximation level introduced within each iteration. Recently
[20] studied the progressive fixed precision (PFP) type approximations for solving convex problems, e.g.
a sparse CUR type factorization, via gradient-proximal (and its accelerated variant) methods. The authors
show that IPG can afford larger approximation errors (in both gradient and projection/proximal steps) in
the earlier stages of the algorithm and by increasing the approximation accuracy at an appropriate rate
one can attain a similar convergence rate and accuracy as for the exact IPG however with significantly
less computation.

A part of our results draws a similar conclusion for solving nonconvex constrained least squares that
appears in CS problems by using inexact IPG. Note that an FP type approximation has been previously
considered for the nonconvex IPG e.g. for the UoS [19] or the manifold [27] CS models, however
these works only assume inexact projections whereas our result covers an approximate gradient step as
well. Of more importance and to the best of our knowledge, our results on incorporating the PFP type
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approximation in nonconvex IPGs and analysing the associated rate of (global) convergence is the first
result of its kind. We also note that the results in [20] are mainly about minimizing convex cost functions
(i.e. not necessarily recovery guarantees) and that the corresponding linear convergence results only hold
for uniformly strong convex objectives. We instead cover cases with local (and not uniform) strong
convexity and establish the linear convergence of IPG for solving underdetermined inverse problems
such as CS.

Using relative (1 + ε)-approximate projections (described in Section IV-D) for CS recovery has been
subject of more recent research activities (and mainly for nonconvex models). In [17] the authors studied
this type of approximation for an IPG sparse recovery algorithm under the UoS model in redundant
dictionaries. Our result encompasses this as a particular choice of model and additionally allows for
inexactness in the gradient step. The work of [28] studied similar inexact oracles for a stochastic gradient-
projection type algorithm customized for sparse UoS and low-rank models (see also [29] for low-rank
CS using an accelerated variant of IPG). We share a similar conclusion with those works; for a large ε
more measurements are required for CS recovery and the convergence becomes slow. Hegde et al. [30]
proposed such projection oracle for tree-sparse signals and use it for the related model-based CS problem
using a CoSamp type algorithm (see also [31, 32] for related works on inexact CoSamp type algorithms).
In a later work [33] the authors consider a modified variant of IPG with (1 + ε)-approximate projections
for application to structured sparse reconstruction problems (specifically tree-sparse and earth-mover’s
distance CS models). For this scenario they are able to introduce a modified gradient estimate (called
the Head approximation oracle) to strengthen the recovery guarantees by removing the dependency on
ε, albeit with a more conservative Restricted Isometry Property. Unfortunately, this technique does not
immediately generalize to arbitrary signal models and we therefore do not pursue this line of research
here.

III. PRELIMINARIES

Iterative projected gradient iterates between calculating the gradient and projection onto the model i.e.
for positive integers k the exact form of IPG follows:

xk = PC
(
xk−1 − µ∇f(xk−1)

)
(3)

where, µ is the step size, ∇f(x) = AT (Ax − y) and PC denote the exact gradient and the Euclidean
projection oracles, respectively. The exact IPG requires the constraint set C to have a well defined, not
necessarily unique but computationally tractable Euclidean projection PC : Rn → C

PC(x) ∈ argminu∈C ||u− x||.

Throughout we use ||.|| as a shorthand for the Euclidean norm ||.||`2 .
In the following we define three types of approximate oracles which frequently appear in the literature

and could be incorporated within the IPG iterations. We also briefly discuss their applications. Each of
these approximations are applicable to the data driven problem we will consider in Section VI.

A. Fixed Precision (FP) approximate oracles

We first consider approximate oracles with additive bounded-norm errors, namely the fixed precision
gradient oracle ∇̃νgf(x) : Rn → Rn where:

||∇̃νgf(x)−∇f(x)|| 6 νg, (4)

and the fixed precision projection oracle PνpC : Rn → C where:

PνpC (x) ∈
{
u ∈ C : ||u− x||2 6 inf

u′∈C
||u′ − x||2 + ν2p

}
. (5)
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The values of νg, νp denote the levels of inaccuracy in calculating the gradient and projection steps
respectively.1 The corresponding inexact IPG iterates as follows:

xk = Pν
k
p

C

(
xk−1 − µ∇̃νk

g f(xk−1)
)
. (6)

Note that, unlike [19, 27] in this formulation we allow for variations in the inexactness levels at different
stages of IPG. The case where the accuracy levels are bounded by a constant threshold νkp = νp and
νkg = νg, ∀k, refers to an inexact IPG algorithm with fixed precision (FP) approximate oracles.

Examples: Such errors may occur for instance in distributed network optimizations where the gradient
calculations could be noisy during the communication on the network, or in CS under certain UoS models
with infinite subspaces [19] where an exact projection might not exist by definition (e.g. when C is an
open set) however an FP type approximation could be achievable. It also has application in finite (discrete)
super resolution [34], source localization and separation [35, 36] and data driven CS problems e.g., in
Magnetic Resonance Fingerprinting [37, 38], where typically a continuous manifold is discretized and
approximated by a large dictionary for e.g. sparse recovery tasks.

B. Progressive Fixed Precision (PFP) approximate oracles

One obtains a Progressive Fixed Precision (PFP) approximate IPG by refining the FP type precisions
thorough the course of iterations. Therefore any FP gradient or projection oracle which has control on
tuning the accuracy parameter could be used in this setting and follows (6) with decaying sequences
νkp , ν

k
g .

Examples: For instance this case includes projection schemes that require iteratively solving an auxil-
iary optimization (e.g. the total variation ball [11], sparse CUR factorization [20] or the multi-constraint
inclusions [15, 16], etc) and can progress (at an appropriate rate) on the accuracy of their solutions
by adding more subiterations. We also discuss in Section VI-C another example of this form which
is customized for fast approximate nearest neighbour searches with application to the data driven CS
framework.

C. (1 + ε)-approximate projection

Obtaining a fixed precision (and thus PFP) accuracy in projections onto certain constraints might be still
computationally exhaustive, whereas a notion of relative optimality could be more efficient to implement.
The (1 + ε)-approximate projection is defined as follows: for a given ε > 0,

PεC(x) ∈
{
u ∈ C : ||u− x|| 6 (1 + ε) inf

u′∈C
||u′ − x||

}
. (7)

We note that PεC(x) might not be unique. In this regard, the inexact IPG algorithm with a (1 + ε)-
approximate projection takes the following form:

xk = PεC
(
xk−1 − µ∇̃νk

g f(xk−1)
)
. (8)

Note that we still assume a fixed precision gradient oracle with flexible accuracies νkg . One could also
consider a (1 + ε)-approximate gradient oracle and in combination with those aforementioned inexact
projections however for brevity and since the analysis would be quite similar to the relative approximate
projection we decide to skip more details on this case.

1Note that our fixed precision projection (5) is defined on the squared norms in a same way as in e.g. [19, 27].
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Examples: The tree s-sparse projection in Rn and in the exact form requires solving a dynamical
programming problem with O(ns) running time [39] whereas solving this problem approximately with
1 + ε accuracy requires the time complexity O(n log(n)) [30] which better suits imaging problems in
practice with a typical Wavelet sparsity level s = Ω(log(n)). Also [28, 29] show that one can reduce
the cost of low-rank matrix completion problem by using randomized linear algebra methods, e.g. see
[40, 41], and carry out fast low-rank factorizations with a 1 + ε type approximation. In a recent work
on low-rank tensor CS [18] authors consider using a 1 + ε approximation (within an IPG algorithm) for
low-rank tensor factorization since the exact problem is generally NP hard [42]. Also in Section VI-C we
discuss a data driven CS recovery algorithm which uses 1 + ε approximate nearest neighbour searches
in order to break down the complexity of the projections from O(d) (using an exhaustive search) to
O(log(d)), for d denoting a large number of data points with low intrinsic dimensionality.

IV. MAIN RESULTS

A. Uniform linear embeddings

The success of CS paradigm heavily relies on the embedding property of certain random sampling
matrices which preserves signal information for low dimensional but often complicated/combinatorial
models. It has been shown that IPG can stably predict the true signal x∗ from noisy CS measurements
provided that A satisfies the so called Restricted Isometry Property (RIP):

(1− θ)||x− x′||2 6 ||A(x− x′)||2 6 (1 + θ)||x− x′||2, ∀x, x′ ∈ C (9)

for a small constant 0 < θ < 1. This has been shown for models such as sparse, low-rank and low-
dimensional smooth manifold signals and by using IPG type reconstruction algorithms which in the
nonconvex settings are also known as Iterative Hard Thresholding [6, 12, 27, 43, 44]. Interestingly these
results indicate that under the RIP condition (and without any assumption on the initialization) the first
order IPG algorithms with cheap local oracles can globally solve nonconvex optimization problems.

For instance random orthoprojectors and i.i.d. subgaussian matrices A satisfy RIP when the number of
measurements m is proportional to the intrinsic dimension of the model (i.e. signal sparsity level, rank of a
data matrix or the dimension of a smooth signal manifold, see e.g. [7] for a review on comparing different
CS models and their measurement complexities) and sublinearly scales with the ambient dimension n.

A more recent work generalizes the theory of IPG to arbitrary bi-Lipschitz embeddable models [19],
that is for given C and A it holds

α||x− x′||2 6 ||A(x− x′)||2 6 β||x− x′||2 ∀x, x′ ∈ C.

for some constants α, β > 0. Similar to the RIP these constants are defined uniformly over the constraint
set i.e. ∀x, x′ ∈ C. There Blumensath shows that if

β < 1.5α,

then IPG robustly solves the corresponding noisy CS reconstruction problem for all x∗ ∈ C. This result
also relaxes the RIP requirement to a nonsymmetric and unnormalised notion of linear embedding whose
implication in deriving sharper recovery bounds is previously studied by [45].

B. Hybrid (local-uniform) linear embeddings

Similarly the notion of restricted embedding plays a key role in our analysis. However we adopt a
more local form of embedding and show that it is still able to guarantee stable CS reconstruction.

Main assumption. Given (x0 ∈ C, C, A) there exist constants β, αx0
> 0 for which the following

inequalities hold:
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• Uniform Upper Lipschitz Embedding (ULE)

||A(x− x′)||2 6 β||x− x′||2 ∀x, x′ ∈ C

• Local Lower Lipschitz Embedding (LLE)

||A(x− x0)||2 > αx0
||x− x0||2 ∀x ∈ C

Upon existence, β and αx0
denote respectively the smallest and largest constants for which the inequalities

above hold.

This is a weaker assumption compared to RIP or the uniform bi-Lipschitz embedding. Note that for
any x0 ∈ C we have:

α 6 αx0
6 β 6 |||A|||2

(where |||.||| denotes the matrix spectral norm i.e. the largest singular value). However with such an
assumption one has to sacrifice the universality of the RIP-dependent results for a signal x∗ dependent
analysis. Depending on the study, local analysis could be very useful to avoid e.g. worst-case scenarios
that might unnecessarily restrict the recovery analysis [46]. Similar local assumptions in the convex
settings are shown to improve the measurement bound and the speed of convergence up to very sharp
constants [47, 48].

Unfortunately we are currently unable to make the analysis fully local as we require the uniform
ULE constraint. Nonetheless, one can always plug the stronger bi-Liptchitz assumption into our results
throughout (i.e. replacing αx∗ with α) and regain the universality.

C. Linear convergence of (P)FP inexact IPG for CS recovery

In this section we show that IPG is robust against deterministic (worst case) errors. Moreover, we show
that for certain decaying approximation errors, the IPG solution maintains the same accuracy as for the
approximation-free algorithm.

Theorem 1. Assume (x∗ ∈ C, C, A) satisfy the main Lipschitz assumption with constants β < 2αx∗ . Set
the step size (2αx∗)

−1 < µ 6 β−1. The sequence generated by Algorithm (6) obeys the following bound:

||xk − x∗|| 6 ρk

(
||x∗||+

k∑
i=1

ρ−iei

)
+

2
√
β

αx∗(1− ρ)
w (10)

where

ρ =

√
1

µαx∗
− 1 and ei =

2νig
αx∗

+
νip√
µαx∗

,

and w = ||y −Ax∗||.
Remark 1. Theorem 1 implications for the exact IPG (i.e. νkp = νkg = 0) and inexact FP approximate
IPG (i.e. νkp = νp, ν

k
g = νg, ∀k) improve [19, Theorem 2] in three ways: first by relaxing the uniform

lower Lipschitz constant α to a local form αx∗ > α with the possibility of conducting a local recov-
ery/convergence analysis. Second, by improving the embedding condition for CS stable recovery to

β < 2αx∗ , (11)

or β < 2α for a uniform recovery ∀x∗ ∈ C (c.f. β < 1.5α in [19]). And third, by improving the rate ρ
of convergence.

The following corollary is an immediate consequence of the linear convergence result established in
Theorem 1 for which we do not provide a proof:
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Corollary 1. With assumptions as in Theorem 1 the IPG algorithm with FP approximate oracles achieves
the solution accuracy

||xK − x∗|| 6 1

1− ρ

(
2νg
αx∗

+
νp√
µαx∗

+
2
√
β

αx∗
w

)
+ τ

for any τ > 0 and in a finite number of iterations

K =

⌈
1

log(ρ−1)
log

(
||x∗||
τ

)⌉
As it turns out in our experiments and aligned with the result of Corollary 1, the solution accuracy of

IPG can not exceed the precision level introduced by a FP oracle. In this sense Corollary 1 is tight as
a trivial converse example would be that IPG starts from the optimal solution x∗ but an adversarial FP
scheme projects it to another point within a fixed distance.

Interestingly one can deduce another implication from Theorem 1 and overcome such limitation by
using a PFP type oracle. Remarkably one achieves a linear convergence to a solution with the same
accuracy as for the exact IPG, as long as ek geometrically decays. The following corollary makes this
statement explicit:

Corollary 2. Assume ek 6 Crk for some error decay rate 0 < r < 1 and a constant C. Under the
assumptions of Theorem 1 the solution updates ||xk − x∗|| of the IPG algorithm with PFP approximate
oracles is bounded above by:

max(ρ, r)k

||x∗||+ C

1− min(ρ,r)
max(ρ,r)

+
2
√
β

αx∗(1− ρ)
w, r 6= ρ

ρk
(
||x∗||+ Ck

)
+

2
√
β

αx∗(1− ρ)
w, r = ρ

Which implies a linear convergence at rate

ρ̄ =
{

max(ρ, r) r 6= ρ
ρ+ ξ r = ρ

for an arbitrary small ξ > 0.

Remark 2. Similar to Corollary 1 one can increase the final solution precision of the PFP type IPG
with logarithmically more iterations i.e. in a finite number K = O(log(τ−1)) of iterations one achieves
||xK − x∗|| 6 O(w) + τ . Therefore in contrast with the FP oracles one achieves an accuracy within the
noise level O(w) that is the precision of an approximation-free IPG.

Remark 3. Using the PFP type oracles can also maintain the rate of linear convergence identical as for
the exact IPG. For this the approximation errors suffice to follow a geometric decaying rate of r < ρ.

Remark 4. The embedding condition (11) sufficient to guarantee our stability results is invariant to the
precisions of the FP/PFP oracles and it is the same as for an exact IPG.

D. Linear convergence of inexact IPG with (1 + ε)-approximate projection for CS recovery

In this part we focus on the inexact algorithm (8) with a (1 + ε)-approximate projection. As it turns
out by the following theorem we require a stronger embedding condition to guarantee the CS stability
compared to the previous algorithms.

Theorem 2. Assume (x∗ ∈ C, C, A) satisfy the main Lipschitz assumption and that√
2ε+ ε2 6 δ

√
αx∗

|||A|||
and β < (2− 2δ + δ2)αx∗
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for ε > 0 and some constant δ ∈ [0, 1). Set the step size
(
(2− 2δ + δ2)αx∗

)−1
< µ 6 β−1. The sequence

generated by Algorithm (8) obeys the following bound:

||xk − x∗|| 6 ρk

(
||x∗||+ κg

k∑
i=1

ρ−iνig

)
+

κw
1− ρ

w

where

ρ =

√
1

µαx∗
− 1 + δ, κg =

2

αx∗
+

√
µ

|||A|||
δ,

κw = 2

√
β

αx∗
+
√
µδ, and w = ||y −Ax∗||.

Remark 5. Similar conclusions follow as in Corollaries 1 and 2 on the linear convergence, logarithmic
number of iterations vs. final level of accuracy (depending whether the gradient oracle is exact or FP/PFP)
however with a stronger requirement than (11) on the embedding; increasing ε i.e. consequently δ,
limits the recovery guarantee and slows down the convergence (compare ρ in Theorems 1 and 2). Also
approximations of this type result in amplifying distortions (i.e. constants κw, κg) due to the measurement
noise and gradient errors. For example for an exact or a geometrically decaying PFP gradient updates
and for a fixed ε chosen according to the Theorem 2 assumptions, Algorithm (8) achieves a full precision
accuracy ||xK − x∗|| 6 O(w) + τ (similar to the exact IPG) in a finite number K = O(log(τ−1)) of
iterations.

Remark 6. The assumptions of Theorem 2 impose a stringent requirement on the scaling of the approxi-

mation parameter i.e. ε = O

(√
αx∗

|||A|||

)
which is not purely dependent on the model-restricted embedding

condition but also on the spectral norm |||A|||. In this sense since |||A||| ignores the structure C of the
problem it might scale very differently than the corresponding embedding constants αx∗ , α and β. For
instance an m × n i.i.d. Gaussian matrix has w.h.p. |||A||| = Θ(n) (when m � n) whereas, e.g. for
sparse signals, the embedding constants α, β w.h.p. scale as O(m). A similar gap exists for other low
dimensional signal models and for other compressed sensing matrices e.g. random orthoprojectors. This
indicates that the 1 + ε oracles may be sensitive to the CS sampling ratio i.e. for m � n we may be
limited to use very small approximations ε = O(

√
m
n ).

In the following we show by a deterministic example that this requirement is indeed tight. We also
empirically observe in Section VII that such a limitation indeed holds in randomized settings (e.g. i.i.d.
Gaussian A) and on average. Although it would be desirable to modify the IPG algorithm to avoid such
restriction, as was done in [33] for specific structured sparse models, we note that this is the same term
that appears due to ’noise folding’ when the signal model is not exact or when there is noise in the signal
domain (see the discussion in Section IV-E). As such most practical CS systems will inevitably have to
avoid regimes of extreme undersampling.

A converse example: Consider a noiseless CS recovery problem where n = 2, m = 1 and the sampling
matrix (i.e. here a row vector) is

A = [cos(γ) − sin(γ)]

for some parameter 0 6 γ < π/2. Consider the following one-dimensional signal model along the first
coordinate:

C = {x ∈ R2 : x(1) ∈ R, x(2) = 0}.

We have indeed |||A||| = 1. It is easy to verify that both of the embedding constants w.r.t. to C are

αx∗ = β = cos(γ)2.

Therefore one can tune γ → π/2 to obtain arbitrary small ratios for
√

αx∗

|||A||| = cos(γ).
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Assume the true signal, the corresponding CS measurement, and the initialization point are

x∗ = [1 0]T , y = Ax∗ = cos(γ) and x0 = [0 0]T .

Consider an adversarial (1 + ε)-approximate projection oracle which performs the following step for any
given x ∈ R2:

PεC(x) := [x(1) + εx(2) 0]T .

For simplicity we assume no errors on the gradient step. By setting µ = 1/ cos(γ)2, the corresponding
inexact IPG updates as

xk(1) = 1 + ε tan(γ)
(
xk−1(1)− 1

)
and only along the first dimension (we note that due to the choice of oracle xk(2) = 0,∀k). Therefore
we have

xk(1) = 1− (ε tan(γ))k .

which requires ε < 1/ tan(γ) = O(cos(γ)) for convergence, and it diverges otherwise. As we can see
for γ → π/2 (i.e. where A becomes extremely unstable w.r.t. sampling the first dimension) the range
of admissible ε shrinks, regardless of the fact that the restricted embedding αx∗ = β exhibits a perfect
isometry; which is an ideal situation for solving a noiseless CS (i.e. in this case an exact IPG takes only
one iteration to converge).

E. When the projection is not onto the signal model

One can also make a distinction between the projection set C and the signal model here denoted as C′
(i.e. x∗ ∈ C′) by modifying our earlier definitions (5) and (7) in the following ways: an approximate FP
projection reads,

PνpC (x) ∈
{
u ∈ C : ||u− x||2 6 inf

u′∈C′
||u′ − x||2 + ν2p

}
, (12)

and a (1 + ε)-approximate projection reads

PεC(x) ∈
{
u ∈ C : ||u− x|| 6 (1 + ε) inf

u′∈C′
||u′ − x||

}
. (13)

This enables us to project onto relaxed sets that are explicitly larger than the signal model and may
therefore be achieved with less computation but with slightly weaker recovery and increased distortion
(c.f. the notion of ’algorithmic weakening’ in [49]). Alternatively one could project onto a smaller set
that may not contain x∗. Such a strategy may well improve the embedding conditions but introduce an
intrinsic bias into the reconstruction estimate.

With respect to such a distinction, Theorems 1 and 2 still hold (with the same embedding assump-
tion/constants on the projection set C), conditioned that x∗ ∈ C. Indeed this can be verified by following
identical steps as in the proof of both theorems. This allows our analysis to cover throughout an
approximate projection onto a possibly larger set C including the original signal model C′ i.e. x∗ ∈ C′ ⊆ C,
which for instance finds application in fast tree-sparse signal or low-rank matrix CS recovery [29, 30].
Such an inclusion is also important to derive a uniform recovery result for all x∗ ∈ C′.

The case where x∗ /∈ C can also be bounded in a similar fashion as in [19]. We first consider a
proximity point in C i.e. xo := argminu∈C ||x∗ − u|| and update the noise term to w := ||y − Axo|| 6
||y−Ax∗||+ ||A(x∗ − xo)||. We then use Theorems 1 and 2 to derive an error bound, here on ||xk − xo||.
For this we assume the embedding condition uniformly holds over the projection set C (which includes
xo). As a result we get a bound on the error ||xk − x∗|| 6 ||x∗ − xo||+ ||xk − xo|| which includes a bias
term with respect to the distance of x∗ to C. Note that since here w also includes a signal (and not only
measurement) noise term introduced by ||A(x∗ − xo)||, the results are subjected to noise folding i.e. a
noise amplification with a similar unfavourable scaling (when m � n) to our discussion in Remark 6
(for more details on CS noise folding see e.g. [50, 51]).
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V. PROOFS

A. Proof of Theorem 1

We start from a similar argument as in [19, proof of Therorem 2]. Set g := 2∇f(xk−1) = 2AT (Axk−1−
y) and g̃ := 2∇̃νgf(xk−1) = g + 2ekg for some vector ekg which by definition (4) is bounded ||ekg || 6 νkg .
It follows that

||y −Axk||2 − ||y −Axk−1||2 = 〈xk − xk−1, g〉+ ||A(xk − xk−1)||2

6 〈xk − xk−1, g〉+ β||xk − xk−1||2,
where the last inequality follows from the ULE property in Definition IV-B. Assuming β 6 1/µ, we
have

〈xk − xk−1, g〉+ β||xk − xk−1||2 6 〈xk − xk−1, g〉+
1

µ
||xk − xk−1||2

= 〈xk − xk−1, g̃〉+
1

µ
||xk − xk−1||2 − 〈xk − xk−1, 2ekg〉

=
1

µ
||xk − xk−1 +

µ

2
g̃||2 − µ

4
||g̃||2 − 〈xk − xk−1, 2ekg〉.

Due to the update rule of Algorithm (6) and the inexact (fixed-precision) projection step, we have

||xk − xk−1 +
µ

2
g̃||2 6 ||PC(xk−1 −

µ

2
g̃)− xk−1 +

µ

2
g̃||2 + (νkp )2

6 ||x∗ − xk−1 +
µ

2
g̃||2 + (νkp )2. (14)

The last inequality holds for any member of C and thus here for x∗. Therefore we can write

||y −Axk||2 − ||y −Axk−1||2 6 1

µ
||x∗ − xk−1 +

µ

2
g̃||2 − µ

4
||g̃||2 − 〈xk − xk−1, 2ekg〉+ (

νkp√
µ

)2

= 〈x∗ − xk−1, g̃〉+
1

µ
||x∗ − xk−1||2 − 〈xk − xk−1, 2ekg〉+ (

νkp√
µ

)2

6 〈x∗ − xk−1, g〉+
1

µ
||x∗ − xk−1||2 + 2νkg ||xk − x∗||+ (

νkp√
µ

)2. (15)

The last line replaces g̃ = g + 2ekg and uses the Cauchy-Schwartz inequality.
Similarly we use the LLE property in Definition IV-B to obtain an upper bound on 〈x∗ − xk−1, g〉:

〈x∗ − xk−1, g〉 = w2 − ||y −Axk−1||2 − ||A(x∗ − xk−1)||2

6 w2 − ||y −Axk−1||2 − αx∗ ||x∗ − xk−1||2,
where w = ||y − Ax∗||. Replacing this bound in (15) and cancelling −||y − Axk−1||2 from both sides of
the inequality yields

||y −Axk||2 − 2νkg ||xk − x∗|| 6
(

1

µ
− αx∗

)
||xk−1 − x∗||2 + (

νkp√
µ

)2 + w2. (16)

We continue by lower-bounding the left-hand side of this inequality:

||y −Axk||2 − 2νkg ||xk − x∗|| = ||A(xk − x∗)||2 + w2 − 2〈y −Ax∗, A(xk − x∗)〉 − 2νkg ||xk − x∗||

> ||A(xk − x∗)||2 + w2 − 2w||A(xk − x∗)|| − 2νkg ||xk − x∗||

> αx∗ ||xk − x∗||2 + w2 − 2(w
√
β + νkg )||xk − x∗||

=

(
√
αx∗ ||xk − x∗|| −

νkg√
αx∗
−
√

β

αx∗
w

)2

−

(
νkg√
αx∗

+

√
β

αx∗
w

)2

+ w2.
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The first inequality uses the Cauchy-Schwartz’s and the second inequality follows from the ULE and
LLE properties. Using this bound together with (16) we get(
√
αx∗ ||xk − x∗|| −

νkg√
αx∗
−
√

β

αx∗
w

)2

6

(
1

µ
− αx∗

)
||xk−1 − x∗||2 + (

νkp√
µ

)2 +

(
νkg√
αx∗

+

√
β

αx∗
w

)2

6

(√
1

µ
− αx∗ ||xk−1 − x∗||+

νkg√
αx∗

+
νkp√
µ

+

√
β

αx∗
w

)2

.

The last inequality assumes µ 6 α−1x∗ which holds since we previously assumed µ 6 β−1 (and by
definition αx∗ 6 β). As a result we deduce that

||xk − x∗|| 6 ρ||xk−1 − x∗||+ ek + 2

√
β

αx∗
w (17)

for ρ and ek defined in Theorem 1. Applying this bound recursively (and setting x0 = 0) completes the
proof:

||xk − x∗|| 6 ρk||x∗||+
k∑
i=1

ρk−iei +
2
√
β

αx∗(1− ρ)
w.

Note that for convergence we require ρ < 1 and therefore, a lower bound on the step size which is
µ > (2αx∗)

−1.

B. Proof of Corollary 2

Following the error bound (10) derived in Theorem 1 and by setting ek 6 Crk we obtain:

||xk − x∗|| 6 ρk

(
||x∗||+ C

k∑
i=1

(r/ρ)i

)
+

2
√
β

αx∗(1− ρ)
w,

which for r < ρ implies

||xk − x∗|| 6 ρk
(
||x∗||+ C

1− r/ρ

)
+

2
√
β

αx∗(1− ρ)
w,

and for r > ρ implies

||xk − x∗|| 6 ρk||x∗||+ Crk
k∑
i=1

(ρ/r)k−i +
2
√
β

αx∗(1− ρ)
w

6 rk
(
||x∗||+ C

1− ρ/r

)
+

2
√
β

αx∗(1− ρ)
w,

and for r = ρ we immediately get

||xk − x∗|| 6 ρk||x∗||+ Ckρk +
2
√
β

αx∗(1− ρ)
w.

Note that there exists a constant c such that for an arbitrary small ξ > 0 it holds kρk 6 c(ρ + ξ)k.
Therefore we also achieve a linear convergence for the case r = ρ.
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C. Proof of Theorem 2

As before set g = 2AT (Axk−1 − y) and g̃ = g + 2ekg for some bounded gradient error vector ekg i.e.
||ekg || 6 νkg . Note that here the update rule of Algorithm (8) uses the (1+ε)-approximate projection which
by definition (7) implies

||xk − xk−1 +
µ

2
g̃||2 = ||PεC(xk−1 −

µ

2
g̃)− xk−1 +

µ

2
g̃||2

6 (1 + ε)2 inf
u∈C
||u− xk−1 +

µ

2
g̃||2

6 ||x∗ − xk−1 +
µ

2
g̃||2 + ϕ(ε)2

µ2

4
||g̃||2

where ϕ(ε) :=
√

2ε+ ε2. For the last inequality we replace u with two feasible points x∗, xk−1 ∈ C.
As a result by only replacing νkg with µϕ(ε)||g̃||/2 in expression (14), we can follow identical steps as

for the proof of Theorem 1 up to (17), revise the definition of ek := 2νkg /αx∗ +
√
µϕ(ε)||g̃||/(2√αx∗)

and write

||xk − x∗|| 6
√

1

µαx∗
− 1||xk−1 − x∗||+

2νkg
αx∗

+
ϕ(ε)

2

√
µ

αx∗
||g̃||+ 2

√
β

αx∗
w.

Note that so far we only assumed µ 6 β−1.
On the other hand by triangle inequality we have

||g̃|| 6 ||g||+ 2νkg

6 2||ATA(xk−1 − x∗)||+ 2||AT (y −Ax∗)||+ 2νkg

6 2
√
β|||A|||||(xk−1 − x∗)||+ 2|||A|||w + 2νkg

6 2
√

1/µ|||A|||||(xk−1 − x∗)||+ 2|||A|||w + 2νkg .

The third inequality uses the ULE property and the last one holds since µ 6 β−1. Therefore, we get

||xk − x∗|| 6
(√

1

µαx∗
− 1 + ϕ(ε)

|||A|||
√
αx∗

)
||xk−1 − x∗||

+

(
2

αx∗
+ ϕ(ε)

√
µ

αx∗

)
νkg +

(
2

√
β

αx∗
+ ϕ(ε)

√
µ

αx∗
|||A|||

)
w.

Based on assumption ϕ(ε) |||A|||√
αx∗

6 δ of the theorem we can deduce

||xk − x∗|| 6 ρ||xk−1 − x∗||+
(

2

αx∗
+

√
µ

|||A|||
δ

)
νkg +

(
2

√
β

αx∗
+
√
µδ

)
w

where ρ =
√

1
µαx∗

− 1 + δ.
Applying this bound recursively (and setting x0 = 0) completes the proof:

||xk − x∗|| 6 ρk||x∗||+ κg

k∑
i=1

ρk−iνig +
κw

1− ρ
w

for κg, κw defined in Theorem 2. The condition for convergence is ρ < 1 which implies δ < 1 and a
lower bound on the step size which is µ > (αx∗ + (1− δ)2αx∗)−1.
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VI. APPLICATION IN DATA DRIVEN COMPRESSED SENSING

Many CS reconstruction programs resort to signal models promoted by certain (semi) algebraic func-
tions h(x) : Rn → R+ ∪ {0}. For example we can have

C :=
{
x ∈ Rn : h(x) 6 ζ

}
,

where h(x) may be chosen as the `0 or `0−2 semi-norms or as the rank(x) which promotes sparse, group-
sparse or low-rank (for matrix spaces) solutions, respectively. One might also replace those penalties with
their corresponding convex relaxations namely, the `1, `1−2 norms or the nuclear norm.

Data driven compressed sensing however corresponds to cases where in the absence of an algebraic
physical model one resorts to collect a large number of data samples in a dictionary and use it as a point
cloud model for CS reconstruction [7]. Data driven CS finds numerous applications e.g. in Hyperspectral
imagery [52], Mass spectroscopy (MALDI imaging) [53], Raman Imaging [54] and Magnetic Resonance
Fingerprinting (MRF) [37, 38] just to name a few. For instance the USGS Hyperspectral library 2 contains
the spectral signatures (reflectance) of thousands of substances measured across a few hundred frequency
bands. This side information is shown to be useful for CS reconstruction and classification in both
convex and nonconvex settings (see e.g. [52] for more details and relations to sparse approximation in
redundant dictionaries). Data driven CS may also apply to algebraic models with non trivial projections.
For example in the MRF reconstruction problem one first constructs a huge dictionary of fingerprints
i.e. the magnetization responses (across the readout times) for many T1, T2 relaxation values (i.e. spin-
spin and spin-echo) presented in normal tissues [37]. This corresponds to sampling a two-dimensional
manifold associated with the solutions of the dynamic Bloch equations [38], which in the MRF settings
neither the response nor the projection has an analytic closed-form solution.

A. A data driven CS in product space

To explore how our theoretical results can be used to accelerate CS reconstruction we consider a
stylized data driven application for which we explain how one can obtain each of the aforementioned
approximate projections. Consider a multi-dimensional image such as HSI, MALDI or MRF that can be
represented by a ñ× J matrix X , where n = ñJ is the total number of spatio-spectral pixels, J is the
spatial resolution and ñ is the number of spectral bands e.g. ñ = 3 for an RGB image, ñ ≈ 400 for
an HSI acquired by NASA’s AVIRIS spectrometer, ñ ≈ 5000 for a MALDI image [53]. In the simplest
form we assume that each spatial pixel corresponds to a certain material with a specific signature, i.e.

Xj ∈ C̃, ∀j = 1, . . . , J,

where Xj denotes the jth column of X and

C̃ :=

d⋃
i=1

{ψi} ∈ Rñ

is the point cloud of a large number d of signatures ψi e.g. in a customized spectral library for HSI or
MALDI data.

The CS sampling model follows (1) by setting x∗ := Xvec, where by Xvec ∈ Rn we denote the
vector-rearranged form of the matrix X . The CS reconstruction reads

min
Xj∈C̃,
∀j=1,...,J

{
f(X) :=

1

2
||y −AXvec||2

}
. (18)

2http://speclab.cr.usgs.gov
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or equivalently and similar to problem (2)

min
x∈

∏J
j=1 C̃

{
f(x) :=

1

2
||y −Ax||2

}
.

The only update w.r.t. problem (2) is the fact that now the solution(s) x lives in a product space of the
same model i.e.

C :=

J∏
j=1

C̃ (19)

(see also [55] on product/Kronecker space CS however using a sparsity inducing semi-algebraic model).
We note that solving directly this problem for a general A (e.g. sampling models which non trivially
combine columns/spatial pixels of X) is exponentially hard O(dJ) because of the combinatorial nature
of the product space constraints. In this regard, a tractable scheme which has been frequently considered
for this problem e.g. in [38] would be the application of an IPG type algorithm in order to break down
the cost into the gradient and projection computations (here the projection requires O(Jd) computations
to search the closest signatures to the current solution) to locally solve the problem at each iteration.

B. Measurement bound

The classic Johnson-Lindenstrauss lemma says that one can use random linear transforms to stably
embed point clouds into a lower dimension of size O(log(#C̃)) where # stands for the set cardinality [56]:

Theorem 3. Let C̃ be a finite set of points in Rñ. For A drawn at random from the i.i.d. normal distribution
and a positive constant θ̃, with very high probability one has

(1− θ̃)||(x− x′)|| 6 ||A(x− x′)|| 6 (1 + θ̃)||(x− x′)||, ∀x, x′ ∈ C̃

provided m = O(log(#C̃)/θ̃2).
Note that this definition implies an RIP embedding for the point cloud model according to (9) with a

constant θ < 3θ̃ which in turn (and for small enough θ̃) implies the sufficient embedding condition for
a stable CS recovery using the exact or approximate IPG. This bound considers an arbitrary point cloud
and could be improved when data points C̃ ⊆ M are derived from a low-dimensional structure, e.g. a
smooth manifoldM (such as the MR Fingerprints) for which one can alternatively use the corresponding
RIP measurement complexity i.e. m = O(dim(M)/θ̃2) where dim(M)� ñ is the intrinsic topological
dimension of the manifold [57].

We note that such a measurement bound for a product space model (19) without considering any
structure between spaces turns into

m = O (J min {log(d), dim(M)}) .

C. Cover tree for fast nearest neighbour search

With the data driven CS formalism and discretization of the model the projection step of IPG reduces
to searching for the nearest signature in each of the product spaces, however in a dictionary of potentially
very large cardinality d. And thus search strategies with linear complexity in d e.g. an exhaustive search,
can be a serious bottleneck for solving such problems. A very well-established approach to overcome the
complexity of an exhaustive nearest neighbour (NN) search on a large dataset consists of hierarchically
partitioning the solution space and forming a tree whose nodes represents those partitions, and then
using branch-and-bound methods on the resulting tree for a fast Approximate NN (ANN) search with
o(d) complexity e.g. see [21, 58].

In this regard, we address the computational shortcoming of the projection step in the exact IPG by
preprocessing C̃ and forming a cover tree structure suitable for fast ANN searches [21]. A cover tree is
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a levelled tree whose nodes at different scales form covering nets for data points at multiple resolutions;
if σ := maxψ∈C̃ ||ψroot − ψ|| corresponds to the maximal coverage by the root, then nodes appearing at
any finer scale l > 0 form a (σ2−l)-covering net for their descendants i.e. as we descend down the tree
the covering resolution refines in a dyadic coarse-to-fine fashion.

We consider three possible search strategies using such a tree structure:
• Exact NN: which is based on the branch-and-bound algorithm proposed in [21, Section 3.2]. Note

that we should distinguish between this strategy and performing a brute force search. Although they
both perform an exact NN search, the complexity of the proposed algorithm in [21] is shown to be
way less in practical datasets.

• (1 + ε)-ANN: this search is also based on the branch-and-bound algorithm proposed in [21, Section
3.2] which includes an early search termination criteria (depending on the accuracy level ε) for
which one obtains an approximate oracle of the type defined by (7). Note that the case ε = 0 refers
to the exact tree NN search described above.

• FP-ANN: that is traversing down the tree up to a scale l = dlog(νpσ )e for which the covering
resolution falls below a threshold νp on the search accuracy. This search results in a fixed precision
type approximate oracle as described in Section III-A and in a sense it is similar to performing the
former search with ε = 0, however on a truncated (low-resolution) cover tree.

All strategies could be applied to accelerate the projection step of an exact or inexact IPG (with variations
discussed in Sections III-C and III-A) to tackle the data driven CS problem (18). In addition one can
iteratively refine the accuracy of the FP-ANN search (e.g. νkp = rk for a certain decay rate r < 1 and
IPG iteration number k) and obtain a PFP type approximate IPG discussed in Section III-B.

Note that while the cover tree construction is blind to the explicit structure of the data, several key
growth properties such as the tree’s explicit depth, the number of children per node, and importantly the
overall search complexity are characterized by the intrinsic dimension of the model, called the doubling
dimension, and defined as follows [59, 60]:

Definition 1. Let B(q, r) denotes a ball of radius r centred at a point q in some metric space. The
doubling dimension dimD(M) of a setM is the smallest integer such that every ball ofM (i.e. ∀r > 0,
∀q ∈M, B(q, 2r) ∩M) can be covered by 2dimD(M) balls of half radius i.e. B(q′, r) ∩M, q′ ∈M.

The doubling dimension has several appealing properties e.g. dimD(Rn) = Θ(n), dimD(M1) 6
dimD(M2) when M1 is a subspace of M2, and dim(∪Ii=1Mi) 6 maxi dimD(Mi) + log(I) [58, 60].
Practical datasets are often assumed to have small doubling dimensions e.g. when C̃ ⊆ M samples a
low-dimensional manifold M with certain smoothness and regularity one has dimD(C̃) 6 dimD(M) =
O(dim(M)) [61] (where dim(M) denotes the topological manifold dimension).3

Equipped with such a notion of dimensionality, the following theorem bounds the complexity of a
(1 + ε)-ANN cover tree search [21, 58]:

Theorem 4. Given a query which might not belong to C̃, the approximate (1+ε)-ANN search on a cover
tree takes at most

2O(dimD(C̃)) log ∆ + (1/ε)O(dimD(C̃)) (20)

computations in time with O(#C̃) memory requirement, where ∆ is the aspect ratio of C̃.
For most applications log(∆) = O(log(d)) [58] and thus for datasets with low dimensional structures

i.e. dimD = O(1) and by using approximations one achieves a logarithmic search complexity in d, as
opposed to the linear complexity of a brute force search.

3 Although the doubling dimension dimD scales similar to the RIP measurement complexity for certain sets e.g. linear
subspaces, UoS, smooth manifolds..., this does not generally hold in Rn and one needs to distinguish between these notions,
see for more discussions [62, 63].
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Dataset Population (d) Ambient dim. (ñ) CT depth CT res.

S-Manifold 5000 200 14 2.43E-4
Swiss roll 5000 200 14 1.70E-4

Oscillating wave 5000 200 14 1.86E-4
MR Fingerprints 29760 512 13 3.44E-4

TABLE I: Datasets for data-driven CS evaluations; a cover tree (CT) structure is formed for each dataset.
The last two columns respectively report the number of scales and the finest covering resolution of each
tree.

(a) S-Manifold (b) Swiss roll

(c) Oscillating wave (d) MR Fingerprints

Fig. 1: Illustration of the low dimensional structures of datasets presented in Table I. Points are depicted
along the first three principal components of each dataset.

Note that the complexity of an exact cover tree search could be arbitrarily high and thus the same
applies to the FP and PFP type ANN searches since they are also based on performing exact NN (on a
truncated tree). However in the next section we empirically observe that the complexity of an exact cover
tree NN (and also the FP and PFP type ANN) is much lower than performing an exhaustive search.

VII. NUMERICAL EXPERIMENTS

We test the performance of the exact/inexact IPG algorithm for our product-space data driven CS
reconstruction using the four datasets described in Table I. The datasets are uniformly sampled (populated)
from 2-dimensional continuous manifolds embedded in a higher ambient dimension, see also Figure 14.

4The S-manifold, Swiss roll and Oscillating wave are synthetic machine learning datasets available e.g. in [64]. The Magnetic
Resonance Fingerprints (MRF) is generated by solving the Bloch dynamic equation for a uniform grid of relaxation times T1, T2
and for an external magnetic excitation pattern, discussed and implemented in [37].
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(a) Scale 2 (b) Scale 3

(c) Scale 4 (d) Scale 5

Fig. 2: A cover tree is built on MR Fingerprints dataset: (a-d) data partitions covered by distinct
parent/ancestor nodes appearing at scales 2-5 are highlighted in different colours. The coverage resolution
refines by increasing the scale.

To proceed with fast ANN searches within IPG, we separately build a cover tree structure per dataset
i.e. a preprocessing step. As illustrated for the MRF manifold in Figure 2 the coverage levels decrease
in a coarse-to-fine manner as we traverse down the tree i.e. increasing the scale.

Along with a brute-force exact search, three cover tree based ANN search strategies are investigated
as described in the previous section:
• FP-ANN for precision parameters νp = {0.1, 0.05, .01, 0.001}.
• PFP-ANN for varying precision errors νkp = rk decaying at rates r = {0.05, 0.1, 0.15, . . . , 0.95}.
• (1 + ε)-ANN for near optimality parameters ε = {0, 0.2, 0.4, . . . , 4}. The case ε = 0 corresponds to

an exact NN search, however by using the branch-and-bound algorithm on the cover tree proposed
in [21].

Gaussian CS sampling: From each dataset we select J = 50 points at random and populate our signal
matrix X ∈ Rñ×J . We then subsample the signal using the linear noiseless model discussed in (18),
where the sampling matrix A ∈ Rm×ñJ is drawn at random from the i.i.d. normal distribution. We denote
by m

n 6 1 (where, n = ñJ) as the subsampling ratio used in each experiment.
Throughout we set the maximum number of IPG iterations to 30. The step size is set to µ = 1/m ≈ 1/β

which is a theoretical value satisfying the restricted Lipschitz smoothness condition for the i.i.d. Normal
sampling ensembles in our theorems and related works on iterative hard thresholding algorithms e.g.
see [27, 43, 44].

Figure 3 shows the normalized solution MSE measured by ||xk−x∗||
||x∗|| at each iteration of the exact

and inexact IPG algorithms, and for a given random realization of the sampling matrix A and selected
signals X . For the FP-ANN IPG the convergence rate is unchanged from the exact IPG algorithm but the
reconstruction accuracy depends on the chosen precision parameter and for lower precisions the algorithm
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Fig. 3: Convergence of the exact/inexact IPG for subsampling ratio m
n = 0.2. Columns from left to right

correspond to inexact algorithms with FP, PFP and 1 + ε ANN searches, respectively (legends for the
plots in each column are identical and included in the last row). Rows from top to bottom correspond to
S-Manifold, Swiss roll, Oscillating wave and MR Fingerprints datasets, respectively.

stops at an earlier iteration with reduced accuracy, but with the benefit of requiring a smaller search tree.
The PFP-ANN IPG ultimately achieves the same accuracy of the exact algorithm. Refining the ap-

proximations at a slow rate slows down the convergence of the algorithm (i.e. the staircase effect visible
in the plots correspond to r = {0.7, 0.9}), whereas choosing too fast error decays, e.g. r = 0.1, does
not improve the convergence rate beyond the exact algorithm and thus potentially leads to computational
inefficiency. The (1 + ε)-ANN IPG algorithm can also achieve the precision of an exact recovery for
moderately chosen approximation parameters. The case ε = 0 (unsurprisingly) iterates the same steps

March 22, 2018 DRAFT



20

Fig. 4: Recovery phase transitions for IPG with approximate projection (i.e. ANN search). Image
intensities correspond to the normalized solution MSE for a search parameter and a given subsampling
ratio (ranging between 5-100%). Intensities in all plots are identically set with a logarithmic scale: black
pixels correspond to accurate points with MSE 6 10−6, white pixels represent points with MSE > 1, and
the region below the red curve is defined as the exact recovery region with MSE 6 10−4. Rows from
top to bottom correspond to the phase transitions of S-Manifold, Swiss roll, Oscillating wave and MR
Fingerprints datasets. The left and the right columns correspond to two cover tree based ANN searches
namely, the (1 + ε)-ANN and the PFP-ANN with decay parameter r.
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as for the IPG with brute-force search. Increasing ε slows down the convergence and for a very large
parameter, e.g. ε = {3, 4}, the algorithm diverges.

Figure 4 illustrates the recovery phase transitions for the inexact IPG using the PFP-ANN and (1 +ε)-
ANN searches. The normalized MSE is averaged over 10 random realizations of the sampling matrix A
and 20 randomly subselected signal matrices X for a given A. In each image the area below the red
curve has the solution MSE less than 10−4 and is chosen as the recovery region. We can observe that the
PFP-ANN oracle results in a recovery region which is almost invariant to the chosen decay parameter r
(except for the slow converging case r & 0.6, due to the limit on the maximum number of iterations).

In the case of the 1+ε oracle we see a different behaviour; smaller values of ε allow for a larger recovery
region and larger approximations are restricted to work only in high sampling regimes. This observation
is in agreement with our theoretical bounds on recovery and it shows that the (1+ε)-approximate oracles
are sensitive to the compression ratio, even though an exact (or a better-chosen approximate) IPG might
still report recovery in the same sampling regime.

Finally in Table II we report the total cost of projections for each iterative scheme. The cost is measured
as the total number of pairwise distances calculated for performing the NN or ANN searches, and it is
averaged over the same trials as previously described5. For a better evaluation we set the algorithm to
terminate earlier (than 30 iterations) when the objective function does not progress more than a tolerance
level tol = 10−8. For each scheme the reported parameter achieves an average normalized solution
MSE 6 10−4 in the smallest amount of computations. For comparison we also include the cost of exact
IPG implemented with the brute-force and exact (ε = 0) cover tree NN searches. When using a brute-
force NN search the cost per iteration is fixed and it is equal to the whole dataset population; as a
result the corresponding exact IPG reports the highest computation. Replacing the brute-force search
with a cover tree based exact NN search significantly reduces the computations. This is related to
the low dimensionality of the manifolds in our experiments for which a cover tree search, even for
performing an exact NN, turns out to require many fewer pairwise distances evaluations. Remarkably,
the approximate algorithm (1 + ε)-ANN IPG consistently outperforms all other schemes by reporting
4-10 times acceleration compared to the exact algorithm with ε = 0, and about (or sometimes more
than) 2 orders of magnitude acceleration compared to the IPG with an exact brute-force search; in fact
for larger datasets the gap becomes wider as the (1 + ε)-ANN complexity stays relatively invariant to
the population size. The FP-ANN IPG reports similar computations as for the exact tree search (ε = 0)
algorithm because in order to achieve the desired accuracy the (exact) search is performed up to a very
fine level of the tree. A gradual progress along the tree levels by the PFP-ANN IPG however improves
the search time and reports a comparable computation cost to the (1 + ε)-ANN. Also it can be observed
that by taking more samples the overall projection cost reduces which is related to the fast convergence
(i.e. less iterations) of the algorithm once more measurements are available.

VIII. CONCLUSION AND DISCUSSIONS

We studied the robustness of the iterative projected gradient algorithm against inexact gradient and
projection oracles and for solving inverse problems in compressed sensing. We considered fixed precision,
progressive fixed precision and (1 + ε)-approximate oracles. A notion of model information preserving
under a hybrid local-uniform embedding assumption is at the heart of our analysis. We showed that under
the same assumptions, the algorithm with PFP approximate oracles achieves the accuracy of the exact IPG.
For a certain rate of decay of the approximation errors this scheme can also maintain the rate of linear

5In our evaluations, we exclude the computation costs of the gradient updates, i.e. the forward and backward operators,
which can become dominant when datasets are not very large and the sampling matrix is dense e.g. a Gaussian matrix. For
structured embedding matrices such as the fast Johnson-Lindenstrauss transform [65] or randomized orthoprojectors e.g. in MRI
applications the cost of gradient updates becomes a tiny fraction of the search step, particularly when dealing with a large size
dataset.
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Total NN/ANN cost (×104)
Subsampling ratio (m

n
) 10% 20% 30%

Datasets SM SR OW MRF SM SR OW MRF SM SR OW MRF

Brute-force NN 194.23 193.67 215.10 923.34 130.80 127.19 140.89 744.23 113.55 109.34 123.06 699.48

CT’s exact NN (ε = 0) 8.11 8.90 15.47 33.05 4.90 5.19 8.99 24.74 3.87 4.08 7.19 20.91

FP-ANN 8.11 8.90 15.47 - 4.90 5.19 9.00 - 3.88 4.07 7.21 -
Parameter νp 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3

PFP-ANN 2.94 3.50 7.10 3.41 1.96 2.41 3.94 2.84 1.78 1.99 3.38 2.52
Parameter r 4E-1 5E-1 5E-1 4E-1 3E-1 3E-1 4E-1 4E-1 4E-1 3E-1 4E-1 2E-1

(1 + ε)-ANN 2.36 2.77 4.54 2.78 1.54 1.86 2.91 2.21 1.31 1.60 2.46 1.92
Parameter ε 4E-1 4E-1 4E-1 4E-1 4E-1 4E-1 4E-1 4E-1 4E-1 4E-1 6E-1 4E-1

TABLE II: Average computational complexity of the exact/inexact IPG measured by the total number of
pairwise distances (in the ambient dimension) calculated within the NN/ANN steps to achieve an average
solution MSE 6 10−4 (algorithms with less accuracies are marked as ’-’). For each ANN scheme the
lowest cost and the associated parameter is reported. SM, SR, OW and MRF abbreviate S-Manifold,
Swiss roll, Oscillating wave and the MR Fingerprints datasets, respectively.

convergence as for the exact algorithm. We also conclude that choosing too fast decays does not help the
convergence rate beyond the exact algorithm and therefore can result in computational inefficiency. The
(1+ε)-approximate IPG can also achieves the accuracy of the exact algorithm, however under a stronger
embedding condition, slower rate of convergence and possibly more noise amplification compared to the
exact algorithm. We show that this approximation is sensitive to the CS subsampling regime i.e. for high
compression ratios one can not afford too large approximation. We applied our results to a class of data
driven compressed sensing problems, where we replaced exhaustive NN searches over large datasets with
fast and approximate alternatives introduced by the cover tree structure. Our experiments indicate that
the inexact IPG with (1 + ε)-ANN searches (and also comparably the PFP type search) can significantly
accelerate the CS reconstruction.

Our results require a lower bound on the chosen step size which is a critical assumption for globally
solving a nonconvex CS problem, see e.g. [19, 43, 44]. With no lower bound on the step size only
convergence to a local critical point is guaranteed (for the exact algorithm) see e.g. [66, 67]. Recent
studies [48, 68, 69] established fast linear convergence for solving non strongly convex problems such
as CS with the exact IPG, and by assuming a notion of local (model restricted) strong convexity as well
as choosing large enough step sizes. In our future work we would like to make more explicit connection
between these results and our embedding assumptions and extend our approximation robustness study to
the convex CS recovery settings with sharper bounds than e.g. [20].

A limitation of our current method is the dependency on ε for the CS recovery using (1 + ε)-ANN
searches. In future we plan to investigate whether the ideas from [33] can be generalized to include our
data-driven signal models.

Finally we did not provide much discussion or experiments on the applications of the approximate
gradient updates within the IPG. We think such approximations might be related to the sketching
techniques for solving large size inverse problems, see [70, 71]. In our future work we would like
to make explicit connections in this regard as well.
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