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Abstract

Networked systems often relies on distributed algorithms to achieve a global computation goal with

iterative local information exchanges between neighbor nodes. To preserve data privacy, a node may add

a random noise to its original data for information exchange at each iteration. Nevertheless, a neighbor

node can estimate other’s original data based on the information it received. The estimation accuracy

and data privacy can be measured in terms of (ε, δ)-data-privacy, defined as the probability of ε-accurate

estimation (the difference of an estimation and the original data is within ε) is no larger than δ (the

disclosure probability). How to optimize the estimation and analyze data privacy is a critical and open

issue. In this paper, a theoretical framework is developed to investigate how to optimize the estimation

of neighbor’s original data using the local information received, named optimal distributed estimation.

Then, we study the disclosure probability under the optimal estimation for data privacy analysis. We

further apply the developed framework to analyze the data privacy of the privacy-preserving average

consensus algorithm and identify the optimal noises for the algorithm.
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I. INTRODUCTION

Without relying on a central controller, distributed algorithms are robust and scalable, so they

have been widely adopted in networked systems to achieve global computation goals (e.g., mean

and variance of the distributed data) with iterative local information exchanges between neighbor

nodes [1]–[3]. In many scenarios, e.g., social networks, the nodes’ original data may include

users’ private or sensitive information, e.g., age, income, daily activities, and opinions. With the

privacy concern, nodes in the network may not be willing to share their real data with others.

To preserve data privacy, a typical method is adding random noises to the data to be released

in each iteration. With the noise adding procedure, the goal of privacy-preserving distributed

algorithms is to ensure data privacy while achieving the global computation goal [4]–[6].

Consensus, an efficient distributed computing and control algorithm, has been heavily inves-

tigated and widely applied, e.g., in distributed estimation and optimization [8], [9], distributed

energy management and scheduling [10], [11], and time synchronization in sensor networks [12]–

[14]. Recently, the privacy-preserving average consensus problem has attracted attention, aiming

to guarantee that the privacy of the initial states is preserved while an average consensus can

still be achieved [15]–[19]. The main solution is to add variance decaying and zero-sum random

noises during each iteration of the consensus process.

In the literature, differential privacy, a formal mathematical standard, has been defined and

applied for quantifying to what extent individual privacy in a statistical database is preserved [20].

It aims to provide means to maximize the accuracy of queries from statistical databases while

maintaining indistinguishability of its transcripts. To guarantee the differential privacy, a com-

monly used noise is Laplacian noise [21], [22].

Different from the database query problems, for many distributed computing algorithms such

as consensus, the key privacy concern is to ensure that other nodes cannot accurately estimate

the original data, instead of the indistinguishability. No matter what type of noise distribution

is used, there is a chance that an estimated value of the original data is close to the real

data, such a probability cannot be directly measured by differential privacy. To quantify the

estimation accuracy and data privacy, we first define ε-accurate estimation, i.e., the difference

of the estimated value and the original data is no larger than ε. We then define (ε, δ)-data-

privacy in [6] as that the probability of ε-accurate estimation is no larger than δ. Using the
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(ε, δ)-data-privacy definition, in this paper, we develop a theoretical framework to investigate

how to optimize the estimation of neighbor’s original data using the local information received,

named optimal distributed estimation. Then, we study the disclosure probability under the optimal

estimation for data privacy analysis. The main contributions of this work are summarized as

follows.

1) To the best of our knowledge, this is the first work to mathematically formulate and solve

the optimal distributed estimation problem and data privacy problem for the distributed

algorithm with a general noise adding mechanism. The optimal distributed estimation is

defined as the estimation that can achieve the highest disclosure probability, δ, of ε-accurate

estimation, given the available information set.

2) A theoretical framework is developed to analyze the optimal distributed estimation and data

privacy by considering the distributed algorithm with a noise adding procedure, where the

closed-form solutions of both the optimal distributed estimation and the privacy parameter

are obtained. The obtained results show that how the iteration process and the noise adding

sequence affect the estimation accuracy and data privacy, which reveals the relationship

among noise distribution, estimation and data privacy.

3) We apply the obtained theoretical framework to analyze the privacy of a general privacy-

preserving average consensus algorithm (PACA), and quantify the (ε, δ)-data-privacy of

PACA. We also identify the condition that the data privacy may be compromised. We fur-

ther obtain the optimal noise distribution for PACA under which the disclosure probability

of ε-accurate estimation is minimized, i.e., the highest data privacy is achieved.

The rest of this paper is organized as follows. Section II provides preliminaries and formulates

the problem. The optimal distributed estimation and the privacy analysis under different available

information set are discussed in Sections III and IV, respectively. In Section V, we apply the

framework to analyze the data privacy of PACA. Concluding remarks and further research issues

are given in Section VI.

II. PRELIMINARIES PROBLEM FORMULATION

A networked system is abstracted as an undirected and connected graph, denoted by G =

(V,E), where V is the set of nodes and E is the set of edges. An edge (i, j) ∈ E exists if

and only if (iff) nodes i can exchange information with node j. Let Ni = {j|(i, j) ∈ E} be the
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TABLE I

IMPORTANT NOTATIONS

Symbol Definition

G the network graph

xi(0) node i’s initial state

x(0) the initial state vector of all nodes

fi(·) the distributed iteration algorithm

Θi the domain of random variable θi

fθi(·) the PDF of random variable θi

Iini (k) the noise input of node i until iteration k

Iouti (k) the information output of node i until iteration k

x̂∗i (k) the optimal distributed estimation of xi(0) until iteration k

ε the measure on estimation accuracy

δ the disclosure probability

Ioutν the possible output when the initial input is ν

Iij(k) the information available to node j to estimate

xi(0) until iteration k

neighbor set of node i (i /∈ Ni). Let n = |V | be the total number of nodes and n ≥ 3. Each node

i in the network has an initial scalar state xi(0) ∈ R, which can be any type of data, e.g., the

sensed or measured data of the node. Let x(0) = [x1(0), ...., xn(0)]T ∈ Rn be the initial state

vector.

A. Privacy-Preserving Distributed Algorithm

The goal of a distributed algorithm is to obtain the statistics of all nodes’ initial states (e.g.,

the average, maximum, or minimum value, variance, etc.) in a distributed manner. Nodes in

the network use the local information exchange to achieve the goal, and thus each node will

communicate with its neighbor nodes periodically for data exchange and state update. With the

privacy concerns, each node is not willing to release its real initial state to its neighbor nodes.

A widely used approach for the privacy preservation is adding random noises at each iteration

for local data exchange.

Define x+
i (k) the data being sent out by node i in iteration k, given by

x+
i (k) = xi(k) + θi(k), (1)
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where θi(k) ∈ Θi is a random variable. When node i receives the information from its neighbor

nodes, it updates its state using the following function,

xi(k + 1) = fi(x
+
i (k), x+

j (k) : j ∈ Ni), (2)

where the state-transition function, fi : R×R× ...×R → R, depends on x+
i (k) and x+

j (k) for

j ∈ Ni only. The above equation defines a distributed iteration algorithm with privacy preserving

since only the neighbor nodes’ information is used for state update in each iteration and the data

exchanged have been mixed with random noises to preserve privacy. Hence, (2) is named as a

privacy-preserving distributed algorithm. Since the initial state is most important for each node

in the sense of privacy, in this paper, we focus on the estimation and privacy analysis of nodes’

initial states.

B. Important Notations and Definitions

Define the noise input and state/information output sequences of node i in the privacy-

preserving distributed algorithm until iteration k by

I ini (k) = {θi(0), ..., θi(k)}, (3)

and

Iouti (k) = {x+
i (0), ..., x+

i (k)}, (4)

respectively. Note that for any neighbor node j, it can not only receive the information output

Iouti (k) of node i, but also eavesdrop the information output of all their common neighbor

nodes, which means that there may be more information available for node j to estimate xi(0)

at iteration k ≥ 1. Hence, we define

I ij(k) ={x+
i (0), x+

` (0), ...., x+
i (k), x+

` (k) |

` = j or ` ∈ Ni ∩Nj},

as the available information set/outputs for node j to estimate xi(0) of node i at iteration k.

Clearly, we have Iouti (0) = I ij(0) and Iouti (k) ⊆ I ij(k).

Let fθi(k)(z) be the probability density function (PDF) of random variable θi(k). Let Xi ⊆ R

be the set of the possible values of xi(0). Clearly, if Xi = R, it means that xi(0) can be any
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value in R. Given any function f(y), we define the function f(y, ε) as

f(y, ε) = f(y + ε)− f(y − ε), (5)

and let

Ω0
f = {y|f(y, ε) = 0} (6)

be the zero-point set of f(y, ε) = 0. Let {◦}b be the boundary point set of a given set {◦}, e.g.,

(0, 1]b = {0, 1}.

Note that each node can estimate its neighbor nodes’ initial states based on all the information

it knows, i.e., the available information set of the node. For example, based on I ij(0) = x+
i (0),

node j can take the probability over the space of noise θi(0) (where the space is denoted by

Θi(0)) to estimate the values of the added noises, and then infer the initial state of node i using

the difference between x+
i (0) and the real initial state xi(0), i.e., x̂i(0) = x+

i (0)− θ̂i(0). Hence,

we give two definitions for the estimation as follows.

Definition 2.1: Let x̂i be an estimation of variable xi. If |xi− x̂i| ≤ ε, where ε ≥ 0 is a small

constant, then we say x̂i is an ε-accurate estimation.

Note that Iouti (k) is the information output sequence of node i, which is related to xi(0)

directly, and this should be considered in the estimation. Since only the local information is

available to the estimation, we define the optimal distributed estimation of xi(0) as follows.

Definition 2.2: Let Ioutν (k) be the possible output given the condition that xi(0) = ν at

iteration k. Considering ε-accurate estimation, under I ij(k),

x̂∗i (k) = arg max
x̂i∈Xi

Pr
{
Ioutν (k) = Iouti (k) | ∀|ν − x̂i| ≤ ε

}
,

is named the optimal distributed estimation of xi(0) at iteration k. Then, x̂∗i = limk→∞ x̂
∗
i (k) is

named the optimal distributed estimation of xi(0).

In order to quantify the degree of the privacy protection of the privacy-preserving distributed

algorithm and construct a relationship between estimation accuracy and the privacy, we introduce

the following (ε, δ)-data-privacy definition.

Definition 2.3: A distributed randomized algorithm is (ε, δ)-data-private, iff

δ = Pr{|x̂∗i − xi(0)| ≤ ε}, (7)
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where δ is the disclosure probability that the initial state xi(0) can be successfully estimated by

others using the optimal distributed estimation in a given interval [xi(0)− ε, xi(0) + ε].

In the above definition, x̂∗i depends on the output sequences, Iouti (k), which are the functions

of random noise inputs I ini (k) and its neighbors’ output Ioutj (k), j ∈ Ni. All the possible outputs

of Iouti (k) under a privacy-preserving distributed algorithm should be considered to calculate δ,

and thus x̂∗i is a random variable in (7). There are two important parameters in the privacy

definition, ε and δ, where ε denotes the estimation accuracy and δ is the disclosure probability

(δ ≤ 1) denoting the degree of the privacy protection. A smaller value of ε corresponds to a

higher accuracy, and a smaller value of δ corresponds to a lower maximum disclosure probability.

C. Problem of Interests

We have the following basic assumptions, i) if there is no information of any variable y

in estimation, then the domain of y is viewed as R, ii) unless specified, the global topology

information is unknown to each node, iii) the initial states of nodes in the network are independent

of each other, i.e., each node cannot estimate the other nodes’ state directly based on its own

state or the estimation is of low accuracy.

In this paper, we aim to provide a theoretical framework of the optimal distributed estimation

and data privacy analysis for the privacy-preserving distributed algorithm (2). Specifically, we are

interesting in the following three issues: i) how to obtain the optimal distributed estimation and its

closed-form expression considering the distributed algorithm (2); ii) using the (ε, δ)-data-private

definition to analyze the privacy of the distributed algorithm (2), i.e., obtaining the closed-form

expression of the disclosure probability δ and its properties; and iii) using the obtained theoretical

results to analyze the privacy of the existing privacy-preserving average consensus algorithm,

and finding the optimal noise adding process to the algorithm, i.e.,

min
Iini (∞)

δ.

s.t. lim
k→∞

xi(k) = x̄,

(8)

where x̄ =
∑n
i=1 xi(0)

n
is the statistic goal, aiming at minimizing the disclosure probability while

obtaining the average value of all initial states.

To solve the above issues, in the following, we first consider the case that only the one-

step information output (Iouti (0) = I ij(0)), which depends on the initial state (xi(0)) and the
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one-step noise (θi(0)), is available, and obtain the optimal distributed estimation and privacy

properties. This case is suitable for the general one-step random mechanism (e.g., [23], [26]),

and the theoretical results provide the foundations of the following analysis. Then, we consider

the optimal distributed estimation under the information set I ij(1), which reveals that how the

iteration process affects the estimation and helps to understand the optimal distributed estimation

under the information set I ij(k) (k ≥ 1). Based on the observations, we extend the results to the

general case that I ij(k) (∀k ≥ 0) is available for the estimation. Lastly, we apply the obtained

results to the general PACA algorithm for privacy analysis, and discuss the optimal noises for

preserving the data privacy.

III. OPTIMAL DISTRIBUTED ESTIMATION AND PRIVACY ANALYSIS UNDER I ij(0)

In this section, the optimal distributed estimation of xi(0) using the information I ij(0) only is

investigated, and the disclosure probability δ under the optimal estimation is derived.

A. Optimal Distributed Estimation under I ij0)

Let eθi(0) be the estimation of θi(0) under I ij(0). The optimal distributed estimation of xi(0)

under I ij(0) and its closed-form expression are given in the following theorem.

Theorem 3.1: Considering the distributed algorithm (2), under I ij(0), the optimal distributed

estimation of xi(0) satisfies

x̂∗i (0) = x+
i (0)− eθi(0)(x

+
i (0)), (9)

where

eθi(0)(x
+
i (0)) = arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(0)(z)dz; (10)

Specifically, if Xi = R, then

x̂∗i (0) = x+
i (0)− eθi(0), (11)

where

eθi(0) = arg max
y∈R

∫ y+ε

y−ε
fθi(0)(z)dz, (12)

which is independent of x+
i (0).
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Proof: Given Iouti (0) and an estimation x̂i(0), we have

Pr
{
Ioutν (0) = Iouti (0) | ∀|ν − x̂i(0)| ≤ ε

}
= Pr

{
ν + θi(0) = x+

i (0) | ∀|ν − x̂i(0)| ≤ ε
}

=

∫ x+i (0)−x̂i(0)+ε

x+i (0)−x̂i(0)−ε
fθi(0)(z)dz. (13)

From Definition 2.2, it follows that

x̂∗i (0) = arg max
x̂i(0)∈Xi

Pr
{
Ioutν (0) = Iouti (0) | ∀|ν − x̂i(0)| ≤ ε

}
= arg max

x̂i(0)∈Xi

∫ x+i (0)−x̂i(0)+ε

x+i (0)−x̂i(0)−ε
fθi(0)(z)dz

= x+
i (0)− arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(0)(z)dz

= x+
i (0)− eθi(0)(x

+
i (0)), (14)

which concludes that (9) holds.

If Xi = R, for any real number output of x+
i (0), we have

{x+
i (0)−Xi} = {x+

i (0)−R} = R.

In this case, we have

arg max
y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(0)(z)dz

= arg max
y∈R

∫ y+ε

y−ε
fθi(0)(z)dz. (15)

Substituting (15) into (14) gives

x̂∗i (0) = x+
i (0)− arg max

y∈R

∫ y+ε

y−ε
fθi(0)(z)dz

= x+
i (0)− eθi(0),

i.e., (11) holds. Thus, we have completed the proof.

In (9), eθi(0)(x
+
i (0)) can be viewed as the estimation of the noise θi(0), i.e., θ̂i(0) = eθi(0)(x

+
i (0)).

Thus, (9) can be written as

x̂∗i (0) = x+
i (0)− θ̂i(0),



10

(0)ix

i (0)i ix 

(0) ( )
i

f z

(0)

*

( (0)) (0)

(0) 0

i i i

i

e x x

x



 
 



a

+

(0)
-{ (0) }

max ( )dz
i

ii

y

yy x
f z




 



(0)i ax 0 z

(a) Xi ⊂ R

=i R (0) =i i Rx 

(0) ( )
i

f z

(0)

*

=0

(0) (0)

i

i i

e

x x






 



+

(0)
-

max ( )dz
i

y

yy R
f z




 

0 z

(b) Xi = R

Fig. 1. Two examples of the optimal distributed estimation under Iouti (0) considering Xi ⊂ R and Xi = R, respectively.

which means that the estimation problem is equivalent to estimating the value of the added noise.

From (10), it is noted that eθi(0)(x
+
i (0)) depends on ε, x+

i (0), fθi(0) and Xi. We use Fig. 1(a)

as an example to illustrate how to obtain eθi(0)(x
+
i (0)) and x̂∗i (0) when Xi ⊂ R. Let the blue

curve be the fθi(0)(z) (it follows the Gaussian distribution in this example) and Xi = [−a, 0],

and x+
i (0) is the fixed initial output. We then have

x+
i (0)−Xi = [x+

i (0), x+
i (0) + a].

Given an ε and y ∈ [x+
i (0), x+

i (0) + a],
∫ y+ε

y−ε fθi(0)(z)dz denotes the shaded area of fθi(0)(z) in

the interval [y−ε, y+ε], which is named as the ε-shaded area of fθi(0)(z) at point y. Clearly, when

y = x+
i (0), fθi(0)(z) has the largest ε-shaded area. It follows that eθi(0)(x

+
i (0)) = x+

i (0), and thus

x̂∗i (0) = 0. Meanwhile, we consider the case that Xi = R or Xi is not available to the other nodes,

and use Fig. 1(b) as an example for illustration. In this case, we have Xi = x+
i (0)−Xi = R for

any output x+
i (0). From the above theorem, we have

eθi(0)(x
+
i (0)) = eθi(0) = arg max

y∈R

∫ y+ε

y−ε
fθi(0)(z)dz = 0.

Then, the optimal distributed estimation x̂∗i (0) = x+
i (0)− 0 = x+

i (0) given any output x+
i (0).

Next, a general approach is introduced to calculate the value of eθi(0)(x
+
i (0)). Note that

∂(
∫ y+ε

y−ε fθi(0)(z)dz)

∂y
= Fθi(0)(y + ε)− Fθi(0)(y + ε)

= Fθi(0)(y, ε).

It is well known that Fθi(0)(y, ε) = 0 is a necessary condition that y is an extreme point of∫ y+ε

y−ε fθi(0)(z)dz. One then follows from (10) that eθi(0)(x
+
i (0)) is either one of the extreme points
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of
∫ y+ε

y−ε fθi(0)(z)dz (i.e., eθi(0)(x
+
i (0)) ∈ Ω0

Fθi(0)
) or one of the boundary points of {x+

i (0)−Xi}

(i.e., eθi(0)(x
+
i (0)) ∈ {x+

i (0)−Xi}b. Let

Xx+i (0) = {x+
i (0)−Xi} ∩ Ω0

Fθi(0)
∪ {x+

i (0)−Xi}b,

we then have

eθi(0)(x
+
i (0)) = arg max

y∈X
x+
i

(0)

∫ y+ε

y−ε
fθi(0)(z)dz. (16)

Applying the above general approach to the example of Fig. 1, one can easily obtain that

Xx+i (0) = {x+
i (0), x+

i (0) + a}

and Xx+i (0) = {0} for the two cases, respectively. Based on (16), we obtain the same optimal

estimations for the two cases.

Remark 3.2: From the above discussion, it is observed that eθi(0)(x
+
i (0)) is the point y that

fθi(0)(z) has the largest ε-shaded area around point y, where y ∈ {x+
i (0) − Xi}. It should be

pointed out that eθi(0)(x
+
i (0)) is in {x+

i (0)−Xi} and depends on ε, and thus it may not be the

point that has the maximum value of fθi(0)(z). However, if ε is sufficiently small and fθi(0)(z)

is continuous, fθi(0)(z) typically has the largest ε-shaded area at point y when fθi(0)(y) has the

maximum value for y ∈ {x+
i (0) − Xi}. Meanwhile, the above examples also show that the

unbiased estimation also may not be the optimal distributed estimation of xi(0).

B. Privacy Analysis under I ij(0)

In the above subsection, we have obtained the optimal distributed estimation when Iouti (0) is

fixed. Note that

|x̂∗i (0)− xi(0)| ≤ ε

⇔|x+
i (0)− xi(0)− eθi(0)(x

+
i (0))| ≤ ε

⇔|θi(0)− eθi(0)(x
+
i (0))| ≤ ε (17)

when x+
i (0) is fixed. To analyze the privacy of distributed algorithm (2) with the (ε, δ)-data-

privacy definition, the main goal is to calculate the disclosure probability δ, so that all the possible

initial output x+
i (0) and its corresponding optimal distributed estimation should be considered.
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Considering the outputs which can make an ε-accurate estimations of xi(0) to be obtained, we

define all the corresponding noises by

Si(0) = {θi(0) | |eθi(0)(x
+
i (0))− θi(0)| ≤ ε}. (18)

For each θi(0) ∈ Si(0), we have x+
i (0) = xi(0) + θi(0) and |eθi(0)(x

+
i (0)) − θi(0)| ≤ ε, i.e., an

ε-accurate estimation is obtained when θi(0) ∈ Si(0).

Theorem 3.3: Considering the distributed algorithm (2), under I ij(0), the disclosure probability

δ satisfies

δ =

∮
Si(0)

fθi(0)(z)dz; (19)

Specifically, if Xi = R, then

δ = max
y∈R

∫ y+ε

y−ε
fθi(0)(z)dz. (20)

Proof: From (17) and the definition of δ, we have

δ = Pr{|x̂∗i (0)− xi(0)| ≤ ε}

= Pr{|θi(0)− eθi(0)(x
+
i (0))| ≤ ε}

= Pr{θi(0) ∈ Si(0)}

=

∮
Si(0)

fθi(0)(z)dz. (21)

From Theorem 3.1, if Xi = R, then eθi(0)(x
+
i (0)) = eθi(0) which is independent of x+

i (0). In

this case, we have

Si(0) = {θi(0) | |eθi(0) − θi(0)| ≤ ε}

= [eθi(0) − ε, eθi(0) + ε], (22)

i.e., only if θi(0) ∈ [eθi(0)− ε, eθi(0) + ε], we can obtain the ε-accurate estimation of xi(0). Then,

δ =

∮
Si(0)

fθi(0)(z)dz

=

∫ eθi(0)+ε

eθi(0)−ε
fθi(0)(z)dz. (23)
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Since eθi(0) satisfies (12), eθi(0) is the point y that fθi(0)(z) has the largest ε-shaded area around

it, and the domain of y is R. It follows that

δ =

∫ eθi(0)+ε

eθi(0)−ε
fθi(0)(z)dz

= max
y∈R

∫ y+ε

y−ε
fθi(0)(z)dz. (24)

We thus have completed the proof.

From the above theorem, we obtain that (19) provides the expression of the disclosure proba-

bility δ under Iouti (0). Using (19), the main challenge to calculate δ is that how to obtain the set

of Si(0). Although based on the definition of Si(0), the elements of Si(0) can be obtained by

comparing all possible values of θi(0) and their corresponding eθi(0)(x
+
i (0)) (how to obtain the

value of eθi(0)(x
+
i (0)) is discussed in the previous subsection), this approach is infeasible due

to the infinite possible values of θi(0). Fortunately, we can apply the properties of fθi(0) to fast

obtain Si(0) in many cases of practical importance. For the example given in Fig. 1(a), since

fθi(0) is continuous and concave, it is straight-forward to obtain that

eθi(0)(x
+
i (0)) =


x+
i (0), x+

i (0) ≥ 0;

0, x+
i (0) ∈ [−a, 0];

x+
i (0) + a, x+

i (0) ≤ −a.

Using the facts that x̂∗i (0) = x+
i (0)− eθi(0)(x

+
i (0)) and x+

i (0) = xi(0) + θi(0), we then obtain

x̂∗i (0)− xi(0) =


− xi(0), xi(0) + θi(0) ≥ 0;

θi(0), xi(0) + θi(0) ∈ [−a, 0];

− a− xi(0), xi(0) + θi(0) ≤ −a.

Based on the above equation, for any given xi(0) and ε, we obtain all the θi(0) in Si(0) by

solving |x̂∗i (0)− xi(0)| ≤ ε, and thus Si(0) is obtained.

IV. OPTIMAL DISTRIBUTED ESTIMATION AND PRIVACY UNDER I ij(k)

In this section, we investigate the optimal distributed estimation and privacy under I ij(1), and

then extent the results to the general case that I ij(k) is available to the estimation. Let eθi(0)|Iij(k)

be the estimation of θi(0) under I ij(k).
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A. Optimal Distributed Estimation under I ij(1)

Under I ij(1), there are two outputs, x+
i (0) and x+

i (1), of node i, which can be used for initial

state estimation or inference attack. Note that x+
i (1) = fi(x

+
i (0), x+

j (0) : j ∈ Ni), which means

that x+
i (1) has involved the outputs of node i’s neighbors. Hence, under I ij(1), both the optimal

distributed estimation and privacy analysis depend on the output of both node i and its neighbor

nodes. Suppose that fi in (2) is available to the estimation in the remainder parts of this paper.

The following theorem provides the optimal distributed estimation of xi(0) under I ij(1), which

reveals the relationship between the information outputs (which are available to the node j for

estimation) and the optimal estimation.

Theorem 4.1: Considering the distributed algorithm (2), under I ij(1), the optimal distributed

estimation of xi(0) satisfies

x̂∗i (1) = x+
i (0)− eθi(0)|Iij(1)(x

+
i (0)), (25)

where

eθi(0)|Iij(1)(x
+
i (0)) = arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε

fθi(1)(θ
′
i(1))fθi(0)|θi(1)=θ′i(1)(z)dz, (26)

in which θ′i(1) = x+
i (1)− fi(x+

i (0), x+
j (0) : j ∈ Ni); Then, if Xi = R, we have

eθi(0)|Iij(1)(x
+
i (0)) = arg max

y∈R

∫ y+ε

y−ε

fθi(1)(θ
′
i(1))fθi(0)|θi(1)=θ′i(1)(z)dz. (27)

Proof: Let x̂i(1) be an estimation of xi(0) under I ij(1) at iteration k = 1. Given Iouti (1),

and we have

Pr{Ioutν (1) = Iouti (1) | ∀|ν − x̂i(1)| ≤ ε, I ij(1)}

= Pr{Ioutν (1) = {x+
i (0), x+

i (1)} | ∀ |ν − x̂i(1)| ≤ ε, I ij(1)}.

Note that x+
i (0) depends on xi(0) and θi(0) only, while x+

i (1) depends on x+
i (0), x+

j (0) : j ∈ Ni
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and θi(1), where θi(0) and θi(1) are two random variables. It follows that

Pr{Ioutν (1) = {x+
i (0), x+

i (1)} | ∀ |ν − x̂i(1)| ≤ ε, I ij(1)}

= Pr{Ioutν (0, 0) = x+
i (0), Iouti (0, 1) = x+

i (1) |

∀ |ν − x̂i(1)| ≤ ε, I ij(1)}

=

∫ x̂i(1)+ε

x̂i(1)−ε
fθi(0),θi(1)(x

+
i (0)− ν, θ′i(1))dν, (28)

where

θ′i(1) = x+
i (1)− fi(x+

i (0), x+
j (0) : j ∈ Ni).

Using the relationship between the joint distribution and the conditional distribution, one infers

that ∫ x̂i(1)+ε

x̂i(1)−ε
fθi(0),θi(1)(x

+
i (0)− ν, θ′i(1))dν

=

∫ x+i (0)−x̂i(1)+ε

x+i (0)−x̂i(1)−ε
fθi(1)(θ

′
i(1))fθi(0)|θi(1)(z|θi(1) = θ′i(1))dz

=

∫ x+i (0)−x̂i(1)+ε

x+i (0)−x̂i(1)−ε
fθi(1)(θ

′
i(1))fθi(0)|θi(1)=θ′i(1)(z)dz (29)

where fθi(0)|θi(1)=θ′i(1) is the conditional PDF of θi(0) under the condition θi(1) = θ′i(1). Then,

one can obtain that

max
x̂i∈Xi

Pr
{
Ioutν (k) = Iouti (k) | ∀|ν − x̂i| ≤ ε, I ij(1)

}
= max

x̂i∈Xi

∫ x+i (0)−x̂i(1)+ε

x+i (0)−x̂i(1)−ε
fθi(1)(θ

′
i(1))fθi(0)|θi(1)=θ′i(1)(z)dz. (30)

Hence, we have

x̂∗i (1) = arg max
x̂i∈Xi

∫ x+i (0)−x̂i(1)+ε

x+i (0)−x̂i(1)−ε

fθi(1)(θ
′
i(1))fθi(0)|θi(1)=θ′i(1)(z)dz

=x+
i (0)− eθi(0)|Iij(k)(x

+
i (0)).

When Xi = R, we have x+
i (0) − Xi = R holds for any output x+

i (0) ∈ R. It follows that

(26) is equivalent to (27) in this case. Thus, the proof is completed.
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Note that the joint distribution of any two random variables X and Y satisfies

fX,Y (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x), (31)

and we have ∫ x̂i(1)+ε

x̂i(1)−ε
fθi(0),θi(1)(x

+
i (0)− ν, θ′i(1))dν

=

∫ x+i (0)−x̂i(1)+ε

x+i (0)−x̂i(1)−ε
fθi(1)|θi(0)(θ

′
i(1)|θi(0) = z)fθi(0)(z)dz

=

∫ x+i (0)−x̂i(1)+ε

x+i (0)−x̂i(1)−ε
fθi(1)|θi(0)=z(θ

′
i(1))fθi(0)(z)dz. (32)

It thus follows that eθi(0)|Iij(1)(x
+
i (0)) also satisfies

eθi(0)|Iij(1)(x
+
i (0))

= arg max
y∈R

∫ y+ε

y−ε
fθi(1)|θi(0)=z(θ

′
i(1))fθi(0)(z)dz. (33)

It should be noticed that eθi(0)|Iij(1)(x
+
i (0)) can be viewed as the optimal distributed estimation

of θi(0) under I ij(1), which depends on the distributions of θi(1) and θi(0), the values of x+
i (0)

and θ′i(1), and Xi. Next, we consider how these factors affect the value of eθi(0)|Iij(1)(x
+
i (0)).

Corollary 4.2: Considering the distributed algorithm (2), if θi(0) and θi(1) are independent

of each other, under I ij(1), we have eθi(0)|Iij(1)(x
+
i (0)) = eθi(0)(x

+
i (0)) and the optimal distributed

estimation of xi(0) satisfies

x̂∗i (1) = x̂∗i (0) = x+
i (0)− eθi(0)(x

+
i (0)). (34)

Proof: For eθi(0)|Iij(1)(x
+
i (0)) in (25), since θi(0) and θi(1) are independent of each other,

we have that

fθi(1)|θi(0)(θ
′
i(1)|θi(0) = z) = fθi(1)(θ

′
i(1)) (35)
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holds for ∀z. Then, it follows from (31) that∫ y+ε

y−ε
fθi(1)(θ

′
i(1))fθi(0)|θi(1)=θ′i(1)(z)dz

=

∫ y+ε

y−ε
fθi(1)|θi(0)(θ

′
i(1)|θi(0) = z)fθi(0)(z)dz

=

∫ y+ε

y−ε
fθi(1)(θ

′
i(1))fθi(0)(z)dz

=fθi(1)(θ
′
i(1))

∫ y+ε

y−ε
fθi(0)(z)dz, (36)

where fθi(1)(θ
′
i(1)) is a constant when I ij(1) is fixed. Together with (26), one infers that

eθi(0)|Iij(1)(x
+
i (0))

= arg max
y∈{x+i (0)−Xi}

(
fθi(1)(θ

′
i(1))

∫ y+ε

y−ε
fθi(0)(z)dz

)
= arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(0)(z)dz

=eθi(0)(x
+
i (0)), (37)

where we use the fact that fθi(1)(θ
′
i(1)) is a constant under I ij(1). From Theorem 4.1, we have

known that under I ij(1), x̂∗i (1) satisfies (25). Substituting (37) into (25), one obtains (34), which

completes the proof.

The above corollary shows that when the added noises are independent of each other, the

optimal distributed estimation eθi(0)|Iij(1)(x
+
i (0)) of θi(0) at iteration k = 1 equals the optimal

distributed estimation eθi(0)(x
+
i (0)) of θi(0) at iteration k = 0, and thus we have x̂∗i (1) = x̂∗i (0).

Hence, one concludes that the later outputs cannot increase the estimation accuracy of xi(0)

when the added noise sequence are independent of each other, and more details related to this

conclusion will be provided in the next subsection.

Corollary 4.3: Considering the distributed algorithm (2), if Ni * Nj for ∀ j ∈ Ni or the other

nodes do not know all the information used for the updating by node i, under I ij(1), the optimal

distributed estimation of xi(0) satisfies

x̂∗i (1) = x+
i (0)− e′θi(0)|Iij(1)(x

+
i (0)), (38)
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where

e′θi(0)|Iij(1)(x
+
i (0)) = arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε

∮
Θ
θ′
i
(1)|Ii

j
(1)

fθi(1)(h)fθi(0)|θi(1)=h(z)dhdz, (39)

and Θθ′i(1)|Iij(1) is the set of all possible values of θ′i(1) under I ij(1). Specifically, if Θθ′i(1)|Iij(1) ⊇

Θi(1), we have e′
θi(0)|Iij(1)

(x+
i (0)) = eθi(0)(x

+
i (0)) and x̂∗i (1) = x̂∗i (0).

Proof: For ∀ j ∈ Ni, since Ni * Nj , there is at least one neighbor node of node i satisfying

l ∈ Ni but l /∈ Nj . It means that node j cannot obtain all the neighbor nodes’ information used

for node i’s state updating. Thus, in the expression of θ′i(1), there is at least one unknown variable

in fi(x
+
i (0), x+

j (0) : j ∈ Ni), which results that the exact value of θ′i(1) cannot be obtained.

Hence, during the estimation, θ′i(1) is no longer a deterministic value but is in a possible value

set. Let Θθ′i(1)|Iij(1) be set of the all possible values of θ′i(1) under I ij(1). During the estimation,

we take all possible values of θ′i(1) into consideration, and then obtain

Pr{Ioutν (1) = {x+
i (0), x+

i (1)} | ∀ |ν − x̂i(1)| ≤ ε, Iji (1)}

=

∫ x+i (0)−x̂i(1)+ε

x+i (0)−x̂i(1)−ε

∮
Θ
θ′
i
(1)|Ii

j
(1)

fθi(1)(h)dhfθi(0)|θi(1)=h(z)dz.

Therefore, we have

x̂∗i (1) = arg max
x̂i∈Xi

Pr{Ioutν (1) = {x+
i (0), x+

i (1)} |

∀ |ν − x̂i(1)| ≤ ε, Iji (1)}

=x+
i (0)− arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε

∮
Θ
θ′
i
(1)|Ii

j
(1)

fθi(1)(h)dhfθi(0)|θi(1)=h(z)dz

=x+
i (0)− e′θi(0)|Iij(k)(x

+
i (0)).
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If Θθ′i(1)|Iij(1) ⊇ Θi(1), we have∫ y+ε

y−ε

∮
Θ
θ′
i
(1)|Ii

j
(1)

fθi(1)(h)dhfθi(0)|θi(1)=h(z)dz

=

∫ y+ε

y−ε

∮
Θi(1)

fθi(1)|θi(0)=z(h)dhfθi(0)(z)dz

=

∫ y+ε

y−ε
fθi(0)(z)dz,

where we have used the fact that ∮
Θi(1)

fθi(1)|θi(0)=z(h)dh ≡ 1

holds for ∀z ∈ R. It thus has

e′θi(0)|Iij(k)(x
+
i (0)) = arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(0)(z)dz

=eθi(0)(x
+
i (0)),

which means that

x̂∗i (1) = x+
i (0)− eθi(0)(x

+
i (0)) = x̂∗i (0).

We thus have completed the proof.

In the above corollary, if the assumption that for an unknown variable, it can be any value in

R for estimation and fi(x
+
i (0), x+

j (0) : j ∈ Ni) with domain R, then we have Θθ′i(1)|Iij(1) = R

since there is at least one unknown variable in fi(x
+
i (0), x+

j (0) : j ∈ Ni). Then, (48) can be

simplified to

e′θi(0)|Iij(1)(x
+
i (0))

= arg max
y∈{x+i (0)−Xi}

∫ y+ε

y−ε

∮
R
fθi(1)(h)fθi(0)|θi(1)=h(z)dhdz

= arg max
y∈{x+i (0)−Xi}

∫ y+ε

y−ε

∮
R
fθi(1)|θi(0)=z(h)dhfθi(0)(z)dz

= arg max
y∈{x+i (0)−Xi}

fθi(0)(z)dz,

where we have used the facts that (31) and∫ y+ε

y−ε

∮
R
fθi(1)|θi(0)=z(h)dh ≡ 1.
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Corollary 4.4: Considering the distributed algorithm (2), if Ni ⊆ Nj and Ni are known to

node j, under I ij(1), the optimal distributed estimation of xi(0) satisfies (25) with

eθi(0)|Iij(1)(x
+
i (0)) = arg max

y∈R

∫ y+ε

y−ε
fθi(0)|θi(1)=θ′i(1)(z)dz.

Proof: When Ni ⊆ Nj and Ni are known to node j, under I ij(1), node j can obtain the

exact value of θ′i(1), since all the information of x+
i (1)− fi(x+

i (0), x+
j (0) : j ∈ Ni) are available

to it. That is, θ′i(1) is fixed when node j makes the estimation, and thus

arg max
y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(1)(θ

′
i(1))fθi(0)|θi(1)=θ′i(1)(z)dz

= arg max
y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(0)|θi(1)=θ′i(1)(z)dz. (40)

Then, from Theorem 4.1, we can obtain the results given in this corollary, which has completed

the proof.

Corollaries 4.3 and 4.4 show the optimal distributed estimation of xi(0) until iteration k,

considering node j can and cannot have all information of the parameters in fi(x
+
i (0), x+

j (0) :

j ∈ Ni) for the estimation, respectively. Therefore, they reveal that how the neighbor nodes’

information outputs affect the optimal distributed estimation according to the iteration process

of the privacy-preserving distributed algorithm (2).

B. Optimal Distributed Estimation under I ij(k)

In this subsection, we consider the optimal distributed estimation of xi(0) under I ij(k). Let

k →∞, and we obtain the optimal distributed estimation under I ij(∞).

We first give the following theorem, which provides the expression of the optimal distributed

estimation under I ij(k).

Theorem 4.5: Considering the distributed algorithm (2), under I ij(k), the optimal distributed

estimation of xi(0) satisfies

x̂∗i (k) = x+
i (0)− eθi(0)|Iij(k)(x

+
i (0)), (41)
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where

eθi(0)|Iij(k)(x
+
i (0))

= arg max
y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(1),...,θi(k)(θ

′
i(1), ..., θ′i(k))

fθi(0)|θi(k)=θ′i(k),...,θi(1)=θ′i(1)(z)dz, (42)

in which θ′i(k) = x+
i (k)− fi(x+

i (k − 1), x+
j (k − 1) : j ∈ Ni).

Proof: From Theorem 4.1, it is proved that (41) holds for k = 1. Now, we prove that it

holds for ∀k ≥ 1, where the basic idea is similar to the proof of Theorem 4.1.

Let x̂i(k) be an estimation of xi(0) under I ij(k). We have the following equation holds,

Pr
{
Ioutν (k) = Iouti (k) | ∀|ν − x̂i(k)| ≤ ε, I ij(k)

}
= Pr{Ioutν (k) = {x+

i (0), ..., x+
i (k)} | ∀ |ν − x̂i(k)| ≤ ε, I ij(k)}

= Pr{Ioutν (0, 0) = x+
i (0), ..., Iouti (k − 1, k) = x+

i (k) |

∀ |ν − x̂i(k)| ≤ ε, I ij(k)}

=

∫ x̂i(k)+ε

x̂i(k)−ε
fθi(0),...,θi(k)(x

+
i (0)− ν, θ′i(1), ...., θ′i(k))dν,

where

θ′i(k) = x+
i (k)− fi(x+

i (k − 1), x+
j (k − 1) : j ∈ Ni).

Using the properties of the joint distribution of multiple random variables, one infers that∫ x̂i(k)+ε

x̂i(k)−ε
fθi(0),...,θi(k)(x

+
i (0)− ν, θ′i(1), ...., θ′i(k))dν

=

∫ x+i (0)−x̂i(k)+ε

x+i (0)−x̂i(k)−ε
fθi(1),...,θi(k)(θ

′
i(1), ..., θ′i(k))

fθi(0)|{θi(1),...,θi(k)}(z|θ′i(1), ..., θ′i(k))dz

=

∫ x+i (0)−x̂i(k)+ε

x+i (0)−x̂i(k)−ε
fθi(1),...,θi(k)(θ

′
i(1), ..., θ′i(k))

fθi(0)|θi(k)=θ′i(k),...,θi(1)=θ′i(1)(z)dz (43)
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where fθi(0)|θi(k)=θ′i(k),...,θi(1)=θ′i(1)(z) is the conditional PDF of θi(0) under the condition that

{θi(k) = θ′i(k), ..., θi(1) = θ′i(1)}. Then, one obtains that

x̂∗i (1) = arg max
x̂i∈Xi

Pr{Ioutν (k) = Iouti (k) |

∀|ν − x̂i(k)| ≤ ε, I ij(k)}

= arg max
x̂i∈Xi

∫ x+i (0)−x̂i(k)+ε

x+i (0)−x̂i(k)−ε
fθi(1),...,θi(k)(θ

′
i(1), ..., θ′i(k))

fθi(0)|θi(k)=θ′i(k),...,θi(1)=θ′i(1)(z)dz

= x+
i (0)− arg max

y∈{x+i (0)−Xi}
fθi(1),...,θi(k)(θ

′
i(1), ..., θ′i(k))

fθi(0)|θi(k)=θ′i(k),...,θi(1)=θ′i(1)(z)dz

= x+
i (0)− eθi(0)|Iij(k)(x

+
i (0)). (44)

Thus, the proof is completed.

Then, we study the optimal distributed estimation of xi(0) under I ij(k) and some other

conditions, and provide three corollaries, respectively, as follows.

Corollary 4.6: Considering the distributed algorithm (2), if the added noises θi(0), ..., θi(k)

are independent of each other, under I ij(k), eθi(0)|Iij(k)(x
+
i (0)) = eθi(0)(x

+
i (0)) and the optimal

distributed estimation of xi(0) satisfies

x̂∗i (k) = x̂∗i (0) = x+
i (0)− eθi(0)(x

+
i (0)). (45)

Proof: We only need to prove eθi(0)|Iij(k)(x
+
i (0)) = eθi(0)(x

+
i (0)), then (45) can be inferred

from Theorem 4.5 directly. Since the added noises are independent of each other, we have

fθi(0)|θi(k)=θ′i(k),...,θi(1)=θ′i(1)(z) = fθi(0)(z).
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Then, (42) can be simplified

eθi(0)|Iij(k)(x
+
i (0))

= arg max
y∈{x+i (0)−Xi}

fθi(1),...,θi(k)(θ
′
i(1), ..., θ′i(k))∫ y+ε

y−ε
fθi(0)(z)dz

= arg max
y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(0)(z)dz

=eθi(0)(x
+
i (0)), (46)

which completes the proof.

Corollary 4.7: Considering the distributed algorithm (2), if Ni * Nj for ∀ j ∈ Ni or the other

nodes do not know all the information used for the updating by node i, under I ij(k), the optimal

distributed estimation of xi(0) satisfies

x̂∗i (k) = x+
i (0)− e′θi(0)|Iij(k)(x

+
i (0)), (47)

where

e′θi(0)|Iij(k)(x
+
i (0))

= arg max
y∈{x+i (0)−Xi}

∫ y+ε

y−ε

∮
Θ
θ′
i
(1)|Ii

j
(1)

· · ·
∮

Θ
θ′
i
(k)|Ii

j
(k)

fθi(1),...,θi(k)(zk, ..., z1)fθi(0)|θi(k)=zk,...,θi(1)=z1(z0)

dzk · · · dz1dz0, (48)

Θθ′i(k)|Iij(k) is the set of all possible values of θ′i(0) under I ij(k). Specifically, if Θθ′i(`)|Iij(`) ⊇ Θi

holds for ` = 1, ..., k, e′
θi(0)|Iij(k)

(x+
i (0)) = eθi(0)(x

+
i (0)) and x̂∗i (k) = x̂∗i (0).

Proof: Similar to the proof of Corollary 4.3, if Ni * Nj for ∀ j ∈ Ni, there always exists

unknown variables in the calculation of θ′i(1), ..., θ′i(k). Hence, under I ij(k), in (42), θ′i(1), ..., θ′i(k)

cannot be fixed as constants during the estimation. Taking all the possible values of θ′i(1), ..., θ′i(k)

into consideration for the estimation, (42) is written as (48).
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When Θθ′i(`)|Iij(`) ⊇ Θ` holds for ` = 1, ..., k, we have the following equation∮
Θ
θ′
i
(1)|Ii

j
(1)

· · ·
∮

Θ
θ′
i
(k)|Ii

j
(k)

fθi(1),...,θi(k)|θi(0)

(zk, ..., z1|θi(0) = z0)dzk · · · dz1

=

∮
Θ1

· · ·
∮

Θk

fθi(1),...,θi(k)|θi(0)

(zk, ..., z1|θi(0) = z0)dzk · · · dz1 ≡ 1, (49)

holds for ∀z0. It follows that∫ y+ε

y−ε

∮
Θ
θ′
i
(1)|Ii

j
(1)

· · ·
∮

Θ
θ′
i
(k)|Ii

j
(k)

fθi(1),...,θi(k)(zk, ..., z1)

fθi(0)|θi(k)=zk,...,θi(1)=z1(z0)dzk · · · dz1dz0

=

∫ y+ε

y−ε

∮
Θ
θ′
i
(1)|Ii

j
(1)

· · ·
∮

Θ
θ′
i
(k)|Ii

j
(k)

fθi(0)(z0)

fθi(1),...,θi(k)|θi(0)(zk, ..., z1|θi(0) = z0)dzk · · · dz1dz0

=

∫ y+ε

y−ε
fθi(0)(z0)dz0. (50)

Thus, (48) is equivalent to

e′θi(0)|Iij(k)(x
+
i (0)) = arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε
fθi(0)(z0)dz0

= e′θi(0)(x
+
i (0)), (51)

which completes the proof.

Note that if all the information used in (2) is available to node j for estimation, then values

of θ′i(1), ..., θ′i(k) are fixed and known to node j. From Theorem 4.5, we obtain the following

corollary directly.

Corollary 4.8: Considering the distributed algorithm (2), if Ni ⊆ Nj and Ni is known to node

j, under I ij(k), then the optimal distributed estimation of xi(0) satisfies (41) with

eθi(0)|Iij(k)(x
+
i (0)) = arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε

fθi(0)|θi(1)=θ′i(1),...,θi(k)=θ′i(k)(z)dz.

The above three corollaries are correspondingly similar to Corollarys 4.2 to 4.4, respectively.
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C. Disclosure Probability under I ij(k)

The information set that can ensure an accurate estimation is defined by

Si(k) ={I ij(k) | |eθi(0)|Iij(k)(x
+
i (0))− θi(0)| ≤ ε}. (52)

Then, define S1
i (k) be the set of the first element in Si(k), i.e., all the possible x+

i (0) included

in Si(k).

S0
i (k) ={θi(0) | x+

i (0) ∈ S1
i (k)}. (53)

Clearly, we have S1
i (k) = xi(0) + S0

i (k)

The following theorem provides an upper bounded of the disclosure probability under I ij(k),

which is denoted by δ(k).

Theorem 4.9: Considering the distributed algorithm (2), the disclosure probability δ at iteration

k satisfies

δ(k) ≤
∮
S0i (k)

fθi(0)(z)dz. (54)

Proof: Given an I ij(k), the optimal distributed estimation x̂∗i (k) satisfies (41). Then,

|x̂∗i (k)− xi(0)| ≤ ε

⇔|x+
i (0)− xi(0)− eθi(0)|Iij(k)(x

+
i (0))| ≤ ε

⇔|θi(0)− eθi(0)|Iij(k)(x
+
i (0))| ≤ ε. (55)

From the definition of δ, we have

δ(k) = Pr{|x̂∗i (k)− xi(0)| ≤ ε}

= Pr{|θi(0)− eθi(0)|Iij(k)(x
+
i (0))| ≤ ε}

=

∮
Si(k)

fIij(k)(z)dz, (56)

where fIij(k)(z) is the PDF of I ij(k) (since I ij(k) is random under the distributed algorithm). From

the above function, it is hard to calculate the value of δ, since fIij(k)(z) is unknown and difficult

to obtain due to the coupled input random variables. However, note that for each I ij(k) ∈ Si(k),
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its element x+
i (0) should satisfy x+

i (0)− xi(0) = θi(0) and θi(0) ∈ S0
i (k). It means that only if

θi(0) ∈ S0
i (k), |θi(0)− eθi(0)|Iij(k)(x

+
i (0))| ≤ ε can be true. Thus,

δ(k) =

∮
Si(k)

fIij(k)(z)dz

≤
∮
S0i (k)

fθi(0)(z)dz, (57)

which completes the proof.

If there exist other conditions for estimation, e.g., independent noise inputs, we obtain the

closed-form expression of δ, and thus we have the following theorem.

Theorem 4.10: Considering the distributed algorithm (2), under I ij(k), if one of the following

conditions holds,

1) the added noise sequence θi(0), ..., θi(k) are independent of each other;

2) Θθ′i(`)|Iij(`) ⊇ Θi or Θθ′i(`)|Iij(`) = R holds for ` = 1, ..., k and ∀k ≥ 1;

then δ(k) = δ holds for ∀k ≥ 0 and δ satisfies (19). Furthermore, if Xi = R, δ satisfies (20).

The above theorem can be obtained from Corollaries 4.6 and 4.7 and Theorem 3.3, so we

omit its proof.

D. Calculation of the Optimal Estimation

From the discussions in the above subsections, the optimal distributed estimation of xi(0)

is the most important factor for the privacy analysis. We design an algorithm to calculate the

optimal distributed estimation of xi(0) under I ij(k) for ∀k ≥ 0. From Theorem 4.5, one infers

that the key challenge to obtain x̂∗i (k) is to calculate eθi(0)|Iij(k)(x
+
i (0)). Similar to the general

approach given in Sec. III-A, we design Algorithm 1 to calculate eθi(0)|Iij(k)(x
+
i (0)).

V. CASE STUDIES AND OPTIMAL NOISES

Privacy-preserving average consensus algorithm (PACA) is a typical privacy-preserving dis-

tributed algorithm, which aims to guarantee that the privacy of the initial state is preserved and

at the same time the average consensus can still be achieved [15], [17], [19]. The basic idea of

PACA is adding and subtracting variance decaying and zero-sum random noises to the traditional

consensus process. Differential privacy of PACA has been studied in [17]. In this section, we

focus on data privacy analysis of PACA. We adopt the developed theories in the above section
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Algorithm 1 : Calculation of eθi(0)|Iij(k)(x
+
i (0))

1: Input: the information Iij(k), the PDFs fθi(0)(z), ..., fθi(k).

2: Calculation: Using the correlation among θi(0), ..., θi(k) to obtain joint PDF fθi(1),...,θi(k)(θ
′
i(1), ..., θ′i(k)) and

the conditional PDFfθi(0)|θi(k)=θ′i(k),...,θi(1)=θ′i(1).

3: Computing the following derivative to obtain f ′θ(y, ε),

∂
∫ y+ε
y−ε f

′
θ(z)dz

∂y
= F ′θ(y, ε) (58)

where

f ′θ(z) =fθi(1),...,θi(k)(θ
′
i(1), ..., θ′i(k))

fθi(0)|θi(k)=θ′i(k),...,θi(1)=θ′i(1)(z) (59)

4: Solving the following equation to obtain the zero point set, Ω0
Fθ

,

F ′θ(y, ε) = 0. (60)

5: Calculating the set of

Xx+
i (0) = {x+i (0)−Xi} ∩ Ω0

f ′
θi

∪ {x+i (0)−Xi}b.

6: Obtaining the estimation by

eθi(0)|Iij(k)(x
+
i (0)) = arg max

y∈X
x
+
i

(0)

∫ y+ε

y−ε
f ′θ(z)dz. (61)

7: Output: the estimation of eθi(0)|Iij(k)(x
+
i (0)).

to analyze the (ε, δ)-data-privacy of the PACA algorithm, and then find the optimal noises for

the algorithm to achieve the highest data privacy.
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A. Privacy of PACA

Referring to the existing algorithms, we describe the PACA algorithm as follows:

xi(k + 1) = fi(x
+
i (k), x+

j (k) : j ∈ Ni)

= wii(xi(k) + θi(k)) +
∑
j∈Ni

wij(xj(k) + θj(k)), (62)

for ∀i ∈ V and k ≥ 0, where wii and wij are weights, and its matrix form is given by

x(k + 1) = W (x(k) + θ(k)), k ≥ 0, (63)

where W ≥ 0 ∈ Rn×n is a doubly stochastic matrix satisfying wii > 0 and wij > 0 for

(i, j) ∈ E; and each θi(k) ∈ θ(k) satisfies Var{θi(k)} < %Var{θi(k − 1)} (where 0 < % < 1)

and
∑∞

k=0 θi(k) = 0. When θ(k) = 0 for k ≥ 0, it is proved in [24] that an average consensus

is achieved by (63), i.e.,

lim
k→∞

x(k) =

∑n
`=1 x`(0)

n
1 = x̄. (64)

When θ(k) 6= 0 for k ≥ 0, it is proved in [19] that an average consensus is achieved by (63) in

the mean-square sense.

The following two theorems analyze the data privacy of the PACA algorithm under the

conditions that node j can and cannot have all the information used in the iteration process

for the estimation, respectively.

Theorem 5.1: If Ni ⊆ Nj and Ni is known to node j for j ∈ Ni, using PACA, we have δ = 1

holds for ∀ε > 0, i.e., xi(0) is perfectly inferred.

Proof: When Ni ⊆ Nj and Ni is known to node j for j ∈ Ni, then the values of

θ′i(1), ..., θ′i(∞) are fixed and released to node j under I ij(∞). From Corollary 4.8, it follows

that

eθi(0)|Iij(∞)(x
+
i (0)) = arg max

y∈{x+i (0)−Xi}

∫ y+ε

y−ε

fθi(0)|θi(1)=θ′i(1),...,θi(∞)=θ′i(∞)(z)dz. (65)

Meanwhile, from
∑∞

k=0 θi(k) = 0, it follows that θi(0) = −
∑∞

k=1 θi(k). Hence, in the right side

of (65), the maximum value of the integral is achieved when y = −
∑∞

k=1 θi(k), i.e.,

eθi(0)|Iij(∞)(x
+
i (0)) = −

∞∑
k=1

θ′i(k) = θi(0).
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Then, we have

x̂∗i (∞) = x+
i (0)− eθi(0)|Iij(∞)(x

+
i (0))

= x+
i (0)− θi(0) = xi(0),

i.e., xi(0) is perfectly inferred, and thus δ = 1.

In the above proof, Corollary 4.8 is adopted to prove the theorem. Actually, if θ′i(1), ..., θ′i(∞)

are fixed and released, the values of θi(1), ..., θi(∞) are released to node j. Then, using the

condition
∑∞

k=0 θi(k) = 0, we can obtain θi(0), and thus xi(0) is obtained from using x+
i (0)−

θi(0) = xi(0). It obtains the same results as Theorem 5.1, and thus verifies the results of Corollary

4.8.

Theorem 5.2: If Ni * Nj for ∀ j ∈ Ni and Θi(k) = R for ∀i ∈ V , then the PACA algorithm

achieves (ε, δ)-data-privacy, where δ satisfies (19), and then if Xi = R, δ satisfies (20).

Proof: Since the conclusion in this theorem are the same as Theorem 4.10, we prove it by

showing that one of the conditions in Theorem 4.10 holds. Since Ni * Nj for ∀ j ∈ Ni, which

means that any neighbor node j cannot obtain all the information using in the right-hand side of

(62) at each iteration k. Hence, there exists at least one x+
j0

(k − 1) (j0 6= j and j0 ∈ Ni) which

is not available to node j for estimation. Note that under the PACA algorithm,

θ′i(k) = x+
i (k)− (wiix

+
i (k − 1) +

∑
j∈Ni

wijx
+
j (k − 1)).

Since x+
j0

(k−1) = xj0(k−1) + θj0(k−1) and θj0(k−1) ∈ Θj0(k−1) = R, we have θ′i(k) ∈ R

during the estimation, i.e., Θθ′i(k)|Iij(k) = R. Therefore, the second condition in Theorem 4.10

holds, and we thus have completed the proof.

With the above theorem, it is not difficult to prove that the algorithms proposed in both [19]

and [6] provide (ε, δ)-data-privacy and δ satisfies (20).

B. Optimal Noises

In this subsection, we consider the optimization problem (8). It is known that the noise adding

process given in PACA can ensure that the average consensus can be achieved by the algorithm,

which means that the constraint in (8) is satisfied. Meanwhile, from Theorem 5.2, it follows that

δ satisfies (19), when node j cannot know all the information using in the consensus process at
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each iteration. Thus, under PACA, problem (8) is equivalent to an unconstrained minimization

problem as follows,

min
fθi(0)(y)

δ =

∮
Si(0)

fθi(0)(y)dy. (66)

In problem (66), there is no constraint on fθi(0)(y) and it can be a PDF of any distribution

of noises. Hence, we can find a fθi(0)(y) with a large variance such that δ is smaller than

any given small value since Si(0) is a bounded set. For example, when Xi = R, we have

Si(0) = [eθi(0)− ε, eθi(0) + ε]. Then, a uniform distribution with fθi(0)(y) ≤ 1
M

(M is a constant)

can ensure that

δ =

∮
Si(0)

fθi(0)(y)dy ≤ 2ε

M
. (67)

which means that δ can be an arbitrarily small value as M can be set arbitrarily large. Hence,

one concludes that, by adding uniformly distributed noises, PACA can provide (ε, δ)-data-privacy

with any small δ.

Then, we consider the case that the variance of θi(0) is a constant. Note that a smaller ε

means a higher accuracy estimation. It means that when ε becomes smaller, the value of δ is

more important for the privacy preservation. Hence, we define the optimal distribution in the

sense of the data-privacy as follows.

Definition 5.3: We say f ∗θi(0)(y) is the optimal distribution of θi(0) for a PACA. If, for any

given distribution f 1
θi(0)(y), there exists an ε1 such that δ(f ∗θi(0)(y), ε) < δ(f 1

θi(0)(y), ε) holds for

∀ε ∈ (0, ε1].

Based on Definition 5.3, we formulate the following minimization problem,

min
fθi(0)(y)

δ,

s.t. Var{θi(0)} = σ2.

(68)

From our previous research on this optimization problem [25], the optimal solution is that the

noise θi(0) should follow a uniform distribution given ε ≤ σ.

VI. CONCLUSIONS

In this paper, we have investigated the optimal distributed estimation and privacy problem for

privacy-preserving distributed algorithm. We introduced the definition of the optimal distributed
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estimation and the (ε, δ)-data-privacy definition, which reveals the relationship between the

privacy and the estimation accuracy. A theoretical framework was provided for the optimal

distributed estimation and the privacy analysis, where both the closed-form expressions of the

optimal distributed estimation and the privacy parameters were obtained. With the obtained

framework, we proved that the existing PACA algorithm is (ε, δ)-data-private and the optimal

noises, which guarantees the minimized disclosure probability, was obtained. The applications

of the proposed framework will be considered in our future work.

REFERENCES

[1] S. Kar and J. M. Moura. “Asymptotically efficient distributed estimation with exponential family statistics,” IEEE Trans.

on Information Theory, 60(8): 4811–4831, 2014.

[2] A. Nedic, and A. Olshevsky. “Distributed optimization over time-varying directed graphs,” IEEE Trans. on Automatic

Control, 60(3): 601-615, 2015.

[3] M. Andreasson, D. Dimarogonas, H. Sandberg, and K. H. Johansson. “Distributed control of networked dynamical systems:

Static feedback, integral action and consensus,” IEEE Trans. on Automatic Control, 59(7): 1750-1764, 2014.

[4] V. Gulisano, V. Tudor, M. Almgren, and M. Papatriantafilou. “BES: Differentially private and distributed event aggregation

in advanced metering infrastructures,” in Proc. of ACM IWCPSS, 2016.

[5] Z. Huang, S. Mitra, and N. Vaidya. “Differentially private distributed optimization,” in Proc. of ACM ICDCN, 2015.

[6] J. He, L. Cai, P. Cheng, M. Xing, J. Pan and L. Shi. Private and accurate data aggregation against dishonest nodes.

https://arxiv.org/pdf/1609.06381v2.pdf, 2016.

[7] R. Olfati-Saber, J. A. Fax, and R. M. Murray. “Consensus and cooperation in networked multi-agent systems,” Proceedings

of the IEEE, 95(1): 215–233, 2007.

[8] F. Pasqualetti, R. Carli, A. Bicchi, and F. Bullo. “Distributed estimation and detection under local information,” in Proc.

of IFAC, 2010.

[9] G. Mateos, I. Schizas and G. Giannakis. “Distributed recursive least-squares for consensus-based in-network adaptive

estimation,” IEEE Trans. Signal Processing, 57(11): 4583–4588, 2009.

[10] C. Zhao, J. He, P. Cheng and J. Chen. “Consensus-based energy management in smart grid with transmission losses and

directed communication,” IEEE Trans. Smart Grid, DOI: 10.1109/TSG.2015.2513772.

[11] J. He, L. Duan, F. Hou, P. Cheng, and J. Chen. “Multi-period scheduling for wireless sensor networks: A distributed

consensus approach,” IEEE Trans. Signal Processing, 63(7): 1651-1663, 2015.

[12] L. Schenato and F. Fiorentin. “Average timesynch: A consensus-based protocol for clock synchronization in wireless sensor

networks,” Automatica, 47(9): 1878–1886, 2011.

[13] R. Carli, and S. Zampieri. “Network clock synchronization based on the second order linear consensus algorithm,” IEEE

Trans Automat. Contr., 59(2): 409–422, 2014.

[14] J. He, P. Cheng, L. Shi, and J. Chen. “Time synchronization in WSNs: A maximum value based consensus approach,”

IEEE Trans Automat. Contr., 59(3): 660–674, 2014.

[15] J. Le Ny and G. Pappas. “Differentially private filtering,” IEEE Trans Automat. Contr., 59(2): 341–354, 2014.

https://arxiv.org/pdf/1609.06381v2.pdf


32

[16] Z. Huang, S. Mitra, and G. Dullerud. “Differentially private iterative synchronous consensus.” in Proc. ACM Workshop on

Privacy in the Electronic Society, 2012.

[17] E. Nozari, P. Tallapragada, and J. Cortes. “Differentially private average consensus: Obstructions, trade-offs, and optimal

algorithm design.” arXiv preprint arXiv:1512.09039, 2016.

[18] N. Manitara and C. Hadjicostis. “Privacy-preserving asymptotic average consensus.” in Proc. IEEE ECC, 2013.

[19] Y. Mo, and R. Murray. “Privacy preserving average consensus,” IEEE Trans. Automat Contr., 62(2): 753–765, 2017.

[20] C. Dwork. “Differential privacy,” in Automata, languages and programming, Springer, 1-12, 2006.

[21] Q. Geng and P. Viswanath. “The optimal noise-adding mechanism in differential privacy,” IEEE Trans. on Information

Theory, 62(2): 925-951, 2016.

[22] Q. Geng and P. Viswanath. “Optimal noise adding mechanisms for approximate differential privacy,” IEEE Trans. on

Information Theory, 62(2): 952-969, 2016.

[23] J. He and L. Cai. Differential private noise adding mechanism: Conditions and its application on consensus. https:

//arxiv.org/abs/1611.08936, 2016.

[24] A. Olshevsky and J. Tsitsiklis. “Convergence speed in distributed consensus and averaging,” SIAM Review, 53(4): 747–772,

2011.

[25] J. He, L. Cai, C. Zhao, P. Cheng, and X. Guan. Privacy-preserving average consensus: privacy analysis and optimal

algorithm design. https://arxiv.org/pdf/1609.06368.pdf, 2017.

[26] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving properties of random data perturbation

techniques. In Proc. IEEE ICDM, 2003.

http://arxiv.org/abs/1512.09039
https://arxiv.org/abs/1611.08936
https://arxiv.org/abs/1611.08936
https://arxiv.org/pdf/1609.06368.pdf

	I Introduction
	II Preliminaries Problem Formulation
	II-A Privacy-Preserving Distributed Algorithm
	II-B Important Notations and Definitions
	II-C Problem of Interests

	III Optimal Distributed Estimation and Privacy Analysis under Iji(0)
	III-A Optimal Distributed Estimation under Iji0)
	III-B Privacy Analysis under Iji(0)

	IV Optimal Distributed Estimation and Privacy under Iji(k)
	IV-A Optimal Distributed Estimation under Iji(1)
	IV-B Optimal Distributed Estimation under Iji(k)
	IV-C Disclosure Probability under Iji(k)
	IV-D Calculation of the Optimal Estimation

	V Case Studies and Optimal Noises
	V-A Privacy of PACA
	V-B Optimal Noises

	VI Conclusions
	References

