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Abstract: In the 1960s, Shiryaev developed a Bayesian theory of change-point detection

in the i.i.d. case, which was generalized in the beginning of the 2000s by Tartakovsky and

Veeravalli for general stochastic models assuming a certain stability of the log-likelihood ra-

tio process. Hidden Markov models represent a wide class of stochastic processes that are

very useful in a variety of applications. In this paper, we investigate the performance of the

Bayesian Shiryaev change-point detection rule for hidden Markov models. We propose a set

of regularity conditions under which the Shiryaev procedure is first-order asymptotically op-

timal in a Bayesian context, minimizing moments of the detection delay up to certain order

asymptotically as the probability of false alarm goes to zero. The developed theory for hidden

Markov models is based on Markov chain representation for the likelihood ratio and r-quick

convergence for Markov random walks. In addition, applying Markov nonlinear renewal theory,

we present a high-order asymptotic approximation for the expected delay to detection of the

Shiryaev detection rule. Asymptotic properties of another popular change detection rule, the

Shiryaev–Roberts rule, is studied as well. Some interesting examples are given for illustration.

Keywords and phrases: Bayesian Change Detection Theory, Hidden Markov Models, Quick-

est Change-point Detection, Shiryaev Procedure, Shiryaev–Roberts Rule.

1. Introduction

Sequential change-point detection problems deal with detecting changes in a state of a random
process via observations which are obtained sequentially one at a time. If the state is normal,
then one wants to continue the observations. If the state changes and becomes abnormal, one is
interested in detecting this change as rapidly as possible. In such a problem, it is always a tradeoff
between false alarms and a speed of detection, which have to be balanced in a reasonable way.
A conventional criterion is to minimize the expected delay to detection while controlling a risk
associated with false detections. An optimality criterion and a solution depend heavily on what is
known about the models for the observations and for the change point.

As suggested by Tartakovsky et al. [27], there are four main problem formulations of a sequential
change-point detection problem that differ by assumptions on the point of change and optimality
criteria. In this paper, we are interested in a Bayesian criterion assuming that the change point is
random with a given prior distribution. We would like to find a detection rule that minimizes an
average delay to detection, or more generally, higher moments of the detection delay in the class of
rules with a given false alarm probability. At the beginning of the 1960s, Shiryaev [23] developed a
Bayesian change-point detection theory in the i.i.d. case when the observations are independent with
one distribution before the change and with another distribution after the change and when the prior
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distribution of the change point is geometric. Shiryaev found an optimal Bayesian detection rule,
which prescribes comparing the posterior probability of the change point to a constant threshold.
Throughout the paper, we refer to this detection rule as the Shiryaev rule even in a more general
non-i.i.d. case. Unfortunately, finding an optimal rule in a general case of dependent data does not
seem feasible. The only known generalization, due to the work of Yakir [32], is for the homogeneous
finite-state Markov chain. Yakir [32] proved that the rule, based on thresholding the posterior
probability of the change point with a random threshold that depends on the current state of
the chain, is optimal. Since in general developing a strictly optimal detection rule is problematic,
Tartakovsky and Veeravalli [29] considered the asymptotic problem of minimizing the average delay
to detection as the probability of a false alarm becomes small and proved that the Shiryaev rule is
asymptotically optimal as long as the log-likelihood ratio process (between the “change” and “no
change” hypotheses) has certain stability properties expressed via the strong law of large numbers
and its strengthening into r-quick convergence. A general Bayesian asymptotic theory of change
detection in continuous time was developed by Baron and Tartakovsky [2].

While several examples related to Markov and hidden Markov models were considered in [2, 29],
these are only very particular cases where the main condition on the r-quick convergence of the
normalized log-likelihood ratio was verified. Moreover, even these particular examples show that
the verification of this condition typically represents a hard task. At the same time, there is a class
of very important stochastic models – hidden Markov models (HMM) – that find extraordinary
applications in a wide variety of fields such as speech recognition [13, 20]; handwritten recognition
[12, 14]; computational molecular biology and bioinformatics, including DNA and protein modeling
[4]; human activity recognition [33]; target detection and tracking [3, 30, 31]; and modeling, rapid
detection and tracking of malicious activity of terrorist groups [21, 22], to name a few. Our first goal
is to focus on this class of models and specify the general results of Tartakovsky and Veeravalli [29]
for HMMs, finding a set of general conditions under which the Shiryaev change-point detection
procedure is asymptotically optimal as the probability of false alarm goes to zero. Our approach for
hidden Markov models is based on Markov chain representation of the likelihood ratio, proposed by
Fuh [5], and r-quick convergence for Markov random walks (cf. Fuh and Zhang [11]). In addition,
by making use uniform Markov renewal theory and Markov nonlinear renewal theory developed
in [6, 7], we achieve our second goal by providing a high-order asymptotic approximation to the
expected delay to detection of the Shiryaev detection rule. We also study asymptotic operating
characteristics of the (generalized) Shiryaev–Roberts procedure in the Bayesian context.

The remainder of the paper is organized as follows. In Section 2, we provide a detailed overview of
previous results in change-point detection and give some basic results in the general change detection
theory for dependent data that are used in subsequent sections for developing a theory for HMMs.
In Section 3, a formulation of the problem for finite state HMMs is given. We develop a change-point
detection theory for HMMs in Section 4, where we prove that under a set of quite general conditions
on the finite-state HMM, the Shiryaev rule is asymptotically optimal (as the probability of false
alarm vanishes), minimizing moments of the detection delay up to a certain order r > 1. Section 5
studies the asymptotic performance of the generalized Shiryaev–Roberts procedure. In Section 6,
using Markov nonlinear renewal theory, we provide higher order asymptotic approximations to
the average detection delay of the Shiryaev and Shiryaev–Roberts detection procedures. Section 7
includes a number of interesting examples that illustrate the general theory. Certain useful auxiliary
results are given in the Appendix where we also present a simplified version of the Markov nonlinear
renewal theory that helps solve our problem.
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2. Overview of the Previous Work and Preliminaries

Let {Yn}n>1 denote the series of random observations defined on the complete probability space
(Ω,F ,P), F = ∨n>1Fn, where Fn = σ(Y1, . . . , Yn) is the σ-algebra generated by the observations.
Let P∞ and P0 be two probability measures defined on this probability space. We assume that
these measures are mutually locally absolutely continuous, i.e., the restrictions of the measures

P
(n)
0 and P

(n)
∞ to the σ-algebras Fn, n > 1 are absolutely continuous with respect to each other. Let

Yn
0 = (Y0, Y1, . . . , Yn) denote the vector of the n observations (Y1, . . . , Yn) with an attached initial

value Y0 which is not a real observation but rather an initialization generated by a “system” in
order to guarantee some desired property of the observed sequence {Yn}n>1. Since we will consider
asymptotic behavior, this assumption will not affect our resuts. Let pj(Y

n
0 ), j = ∞, 0 denote

densities of P
(n)
j with respect to a σ-finite measure. Suppose now that the observations {Yn}n>0

initially follow the measure P∞ (normal regime) and at some point in time ν = 0, 1, . . . something
happens and they switch to P0 (abnormal regime). For a fixed ν, the change induces a probability
measure Pν with density pν(Y

n
0 ) = p∞(Yν−1

0 ) · p0(Yn
ν |Yν−1

0 ), which can also be written as

pν(Y
n
0 ) =

(
ν−1∏

i=0

p∞(Yi|Yi−1
0 )

)
×
(

n∏

i=ν

p0(Yi|Yi−1
0 )

)
, (2.1)

where pj(Yn|Yn−1
0 ) stands for the conditional density of Yn given the past history Yn−1

0 . Note that
in general the conditional densities p0(Yi|Yi−1

0 ), i = ν, . . . , n may depend on the change point ν,
which is often the case for hidden Markov models. Model (2.1) can cover this case as well, allowing

p
(ν)
0 (Yi|Yi−1

0 ) to depend on ν for i > ν. Of course the densities pj(Yi|Yi−1
0 ) may depend on i.

In the present paper, we are interested in the Bayesian setting where ν is a random variable.
In general, ν may be dependent on the observations. This situation was discussed in Tartakovsky
and Moustakides [26] and Tartakovsky et al. [27, Sec 6.2.2] in detail, and we only summarize the
idea here. Let ωk, k = 1, 2, . . . be probabilities that depend on the observations up to time k, i.e.,
ωk = P(ν = k|Yk

1 ) for k > 1, so that the sequence {ωk} is {Fk}-adapted. This allows for a very
general modeling of the change-point mechanisms, including the case where ν is a stopping time
adapted to the filtration {Fn}n>1 generated by the observations (see Moustakides [17]). However,
in the rest of this paper, we limit ourselves to the case where ωk is deterministic and known. In
other words, we follow the Bayesian approach proposed by Shiryaev [23] assuming that ν is a
random variable independent of the observations with a known prior distribution ωk = P(ν = k),∑∞

k=0 ωk = 1.
A sequential change-point detection rule is a stopping time T adapted to the filtration {Fn}n>1,

i.e., {T 6 n} ∈ Fn, n > 1. To avoid triviality we always assume that T > 1 with probability 1.
Define the probability measure P

ω(A) =
∑∞

k=0 ωk Pk(A) and let E
ω stand for the expectation

with respect to P
ω. The false alarm risk is usually measured by the (weighted) probability of false

alarm PFA(T ) = P
ω(T < ν). Taking into account that T > 0 with probability 1 and {T < k} ∈

Fk−1, we obtain

PFA(T ) =
∞∑

k=0

ωkPk(T < k) =
∞∑

k=1

ωkP∞(T < k). (2.2)

Usually the speed of detection is expressed by the average detection delay (ADD)

ADD(T ) = E
ω(T − ν|T > ν) =

E
ω(T − ν)+

Pω(T > ν)
=

∑∞
k=0 ωkP∞(T > k)Ek(T − k|T > k)∑∞

k=0 ωkP∞(T > k)
. (2.3)
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Since for any finite with probability 1 stopping time,
∑∞

k=0 ωkP∞(T > k) = 1 − P
ω(T < ν), it

follows from (2.3) that

ADD(T ) =

∑∞
k=0 ωkP∞(T > k)Ek(T − k|T > k)

1− PFA(T )
.

An optimal Bayesian detection scheme is a rule for which the ADD is minimized in the class of
rules Cα = {T : PFA(T ) 6 α} with the PFA constrained to be below a given level α ∈ (0, 1), i.e., the
optimal change-point detection rule is the stopping time Topt = arg infT∈Cα

ADD(T ). Shiryaev [23]
considered the case of ν with a zero-modified geometric distribution

P(ν = 0) = ω0, P(ν = k) = (1− ω0)ρ(1− ρ)k−1, k > 1, (2.4)

where ω0 ∈ [0, 1), ρ ∈ (0, 1). Note that when α > 1 − ω0, there is a trivial solution since we can
stop at 0. Thus, in the following, we assume that α < 1− ω0. Shiryaev [23, 24] proved that in the
i.i.d. case (i.e., when pj(Yn|Yn−1

0 ) = pj(Yn) for j = 0,∞ in (2.1)) the optimal Bayesian detection
procedure Topt = Ts(h) exists and has the form

Ts(h) = inf{n > 1 : P(ν 6 n|Fn) > h}, (2.5)

where threshold h = hα is chosen to satisfy PFA(Ts(hα)) = α.
Consider a general non-i.i.d. model (2.1) and a general, not necessarily geometric prior distri-

bution P(ν = 0) = ω0, P(ν = k) = ωk = (1 − ω0)ω̃k for k > 1, where ω̃k = P(ν = k|ν > 0),∑∞
k=1 ω̃k = 1. Write Λi = p0(Yi|Yi−1

0 )/p∞(Yi|Yi−1
0 ) as the conditional likelihood ratio for the i-th

sample. We take a convention that Λ0 can be any random or deterministic number, in particular
1 if the initial value Y0 is not available, i.e., before the observations become available we have no
information except for the prior probability ω0.

Applying the Bayes formula, it is easy to see that

P(ν 6 n|Fn) =
Rn,ω

Rn,ω + 1
, (2.6)

where

Rn,ω =
ω0
∏n

i=1Λi +
∑n

k=1 ωk
∏n

i=k Λi

P(ν > n)
=

n∑

k=0

ωk,n

n∏

i=k

Λi, (2.7)

with

ωk,n =
ωk∑∞

j=n+1 ωj
=





ω̃k∑
∞

j=n+1
ω̃j

for k > 1,

ω0

(1−ω0)
∑

∞

j=n+1
ω̃j

for k = 0.
(2.8)

If Λ0 = 1, then R0,ω = ω0,0 = ω0/(1 − ω0).
It is more convenient to rewrite the stopping time (2.5) in terms of the statistic Rn,ω, i.e.,

TA = inf {n > 1 : Rn,ω > A} , (2.9)

where A = h/(1−h) > ω0/(1− ω0). Note that
∏n

i=k Λi is the likelihood ratio between the hypothe-
ses Hk : ν = k that a change occurs at the point k and H∞ : ν = ∞ (no-change). Therefore, Rn,ω

can be interpreted as an average (weighted) likelihood ratio.
Although for general non-i.i.d. models no exact optimality properties are available (similar to

the i.i.d. case), there exist asymptotic results. Define the exponential rate of convergence c of the
prior distribution,

c = − lim
k→∞

logP(ν > k)

k
, c > 0, (2.10)
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assuming that the corresponding limit exists. If c > 0, then the prior distribution has (asymptoti-
cally) exponential right tail. If c = 0, then this amounts to a heavy tailed distribution. Note that
for the geometric distribution (2.4), c = − log(1− ρ).

To study asymptotic properties of change-point detection rules we need the following definition.

Definition 2.1. Let, for ε > 0,

τε = sup{n > 1 : |ξn| > ε} (sup{∅} = 0)

be the last entry time of a sequence {ξn}n>1 into the region (−∞,−ε] ∪ [ε,∞), i.e., the last time
after which ξn leaves the interval [−ε, ε]. It is said that ξn converges r−quickly to 0 as n → ∞ if
E(τε)

r < ∞ for all ε > 0 and some r > 0 (cf. [15, 27]).

The last entry time τε plays an important role in the strong law of large numbers (SLLN). Indeed,
P(τε < ∞) = 1 for all ε > 0 implies that ξn → 0 P-a.s. as n → ∞. Also, by Lemma 2.2 in [25],
E(τε)

r < ∞ for all ε > 0 and some r > 0 implies

∞∑

n=1

nr−1
P(|ξn| > ε) < ∞,

which defines the rate of convergence in the strong law. If ξn = (Y1 + · · · + Yn)/n and Y1, . . . , Yn

are i.i.d. zero-mean, then the necessary and sufficient condition for the r−quick convergence is the
finiteness of the (r + 1)th moment, E|Y1|r+1 < ∞. To study the first order asymptotic optimality
of the Shiryaev change-point detection rule in HMM, we will extend this idea to Markov chains.

Let Sk
n denote the log-likelihood ratio between the hypotheses Hk and H∞,

Sk
n = log

(
n∏

i=k

Λi

)
=

n∑

i=k

log
p0(Yi|Yi−1

0 )

p∞(Yi|Yi−1
0 )

, k 6 n. (2.11)

Assuming, for every k > 0, the validity of a strong law of large numbers, i.e., convergence of
n−1Sk

k+n−1 to a constant K > 0 as n → ∞, with a suitable rate, Tartakovsky and Veeravalli [29]
proved that the Shiryaev procedure (2.9) with threshold A = (1−α)/α is first-order asymptotically
(as α → 0) optimal. Specifically, they proved that the Shiryaev procedure minimizes asymptotically
as α → 0 in class Cα the moments of the detection delay E[(T − ν)m|T > ν] for m 6 r whenever
n−1Sk

k+n−1 converges to K r−quickly. Since this result is fundamental in the following study for
HMMs, we now present an exact statement that summarizes the general asymptotic Bayesian
theory. Recall that TA denotes the Shiryaev change-point detection rule defined in (2.9). It is easy
to show that for an arbitrary general model, PFA(TA) 6 1/(1 + A) (cf. [29]). Hence, selecting
A = Aα = (1 − α)/α implies that PFA(TAα) 6 α (i.e., TAα ∈ Cα) for any α < 1 − ω0. For ε > 0,
define the last entry time

τε,k = sup

{
n > 1 :

∣∣∣∣
1

n
Sk
k+n−1 −K

∣∣∣∣ > ε

}
(sup{∅} = 0). (2.12)

Theorem 2.1 (Tartakovsky and Veeravalli [29]). Let r > 1. Let the prior distribution of the change
point satisfy condition (2.10) and, in the case of c = 0, let in addition

∑∞
k=0 | log ωk|rωk < ∞.

Assume that n−1Sk
k+n−1 converges r−quickly as n → ∞ under Pk to some positive and finite

number K, i.e., Ek(τε,k)
r < ∞ for all ε > 0 and all k > 1, and that

∞∑

k=0

ωkEk(τε,k)
r < ∞ for all ε > 0. (2.13)
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(i) Then for all m 6 r

lim
A→∞

E
ω[(TA − ν)m|TA > ν]

(logA)m
=

1

(K + c)m
. (2.14)

(ii) If threshold A = Aα is selected so that PFA(TAα) 6 α and logAα ∼ | log α| as α → 0, in
particular Aα = (1 − α)/α, then the Shiryaev rule is asymptotically optimal as α → 0 in class Cα

with respect to moments of the detection delay up to order r, i.e., for all 0 < m 6 r,

E
ω[(TAα − ν)m|TAα > ν] ∼

( | log α|
K + c

)m

∼ inf
T∈Cα

E
ω[(T − ν)m|T > ν] as α → 0. (2.15)

Remark 2.1. The assertions of Theorem 2.1 also hold true if the r−quick convergence condition
(2.13) is replaced by the following two conditions:

lim
M→∞

Pk

(
1

M
max

16n6M
Sk
k+n−1 > (1 + ε)K

)
= 0 for all ε > 0 and all k > 1

and ∞∑

k=0

ωkEk(τ̂ε,k)
r < ∞ for all ε > 0,

where τ̂ε,k = sup
{
n > 1 : n−1Sk

k+n−1 < K − ε
}

(sup{∅} = 0). Condition (2.13) guarantees both
these conditions.

The first goal of the present paper is to specify these results for hidden Markov models. That is,
we prove that the assertions of the above theorem hold for HMMs under some regularity conditions.
Moreover, by making use the specific structure of HMM and Markov nonlinear renewal theory, we
also give the higher order asymptotic approximation to ADD(T ). This is also our second goal.

3. Problem Formulation for Hidden Markov Models

In this section, we define a finite state hidden Markov model as a Markov chain in a Markovian
random environment, in which the underlying environmental Markov chain can be viewed as latent
variables. To be more precise, let X = {Xn, n ≥ 0} be an ergodic (positive recurrent, irreducible
and aperiodic) Markov chain on a finite state space D = {1, 2, · · · , d} with transition probability
matrix [p(x, x′)]x,x′=1,··· ,d and stationary distribution π = (π(x))x=1,··· ,d. Suppose that a random
sequence {Yn}∞n=0, taking values in Rm, is adjoined to the chain such that {(Xn, Yn), n ≥ 0} is
a Markov chain on D × Rm satisfying P{X1 ∈ A|X0 = x, Y0 = y0} = P{X1 ∈ A|X0 = x} for
A ∈ B(D), the Borel σ-algebra of D. Moreover, conditioning on the full X sequence, we have

P{Yn+1 ∈ B|X0,X1, . . . ;Y0, Y1, . . . , Yn} = P{Yn+1 ∈ B|Xn+1, Yn} (3.1)

for each n and B ∈ B(Rm), the Borel σ-algebra of Rm. Furthermore, let f(·|Xk, Yk−1) be the
transition probability density of Yk given Xk and Yk−1 with respect to a σ-finite measure Q on Rm,
such that

P{X1 ∈ A,Y1 ∈ B|X0 = x, Y0 = y} =
∑

x′∈A

∫

y′∈B
p(x, x′)f(y′|x′, y)Q(dy′), (3.2)

for B ∈ B(Rm). We also assume that the Markov chain {(Xn, Yn), n > 0} has a stationary proba-
bility Γ with probability density function π(x)f(·|x).

Now we give a formal definition of the hidden Markov model.
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Definition 3.1. The sequence {Yn, n > 0} is called a finite state hidden Markov model (HMM) if
there is an unobserved Markov chain {Xn, n > 0} such that the process {(Xn, Yn), n > 0} satisfies
(3.1) and (3.2).

We are interested in the change-point detection problem for the HMM, which is of course a
particular case of the general stochastic model described in (2.1). In other words, for j = ∞, 0,
let pj(x, x

′) be the transition probability, πj(x) be the stationary probability, and fj(y
′|x, y) be

the transition probability density of the HMM in Definition 3.1. In the change-point problem, we
suppose that the conditional density f(y′|x, y) and the transition probability p(x, x′) change at an
unknown time ν from (p∞, f∞) to (p0, f0).

Let Yn
0 = (Y0, Y1, . . . , Yn) be the sample obtained from the HMM {Yn, n > 0} and denote

LRn :=
p0(Y0, Y1, · · · , Yn)

p∞(Y0, Y1, · · · , Yn)
(3.3)

=

∑
x0∈D,...,xn∈D π0(x0)f0(Y0|x0)

∏n
l=1 p0(xl−1, xl)f0(Yl|xl, Yl−1)∑

x0∈D,...,xn∈D π∞(x0)f∞(Y0|x0)
∏n

l=1 p∞(xl−1, xl)f∞(Yl|xl, Yl−1)

as the likelihood ratio. By (2.1), for 0 6 k 6 n, the likelihood ratio of the hypothesis Hk : ν = k
against H∞ : ν = ∞ for the sample Yn

0 is given by

LRk
n :=

pk(Y
n
0 )

p∞(Yn
0 )

=
p0(Y

n
k |Yk−1

0 )

p∞(Yn
k |Yk−1

0 )
=

n∏

i=k

Λi, (3.4)

where Λi = p0(Yi|Yi−1
0 )/p∞(Yi|Yi−1

0 ).
Recall that in Section 2 we assumed that only the sample Yn

1 = (Y1, . . . , Yn) can be observed and
the initial value Y0 is used for producing the observed sequence {Yn, n = 1, 2, . . . } with the desirable
property. The initialization Y0 affects the initial value of the likelihood ratio, LR0 = Λ0, which can
be either random or deterministic. In turn, this influences the behavior of LRn for n > 1. Using the
sample Yn

0 in (3.3) and (3.4) is convenient for Markov and hidden Markov models which can be
initialized either randomly or deterministically. If Y0 cannot be observed (or properly generated),
then we assume Λ0 = LR0 = 1, which is equivalent to f0(Y0|x)/f∞(Y0|x) = 1 for all x ∈ D in (3.3).
This is also the case when the change cannot occur before the observations become available, i.e.,
when ω0 = 0.

Of course, the probability measure (likelihood ratio) defined in (3.4) is one of several possible
ways of representing the LR, when the change occurs at time ν = k. For instance, when the
post-change hidden state Xk comes from the pre-change hidden state Xk−1 with new transition
probability, then the joint marginal Pk-distribution of Yn

0 (with n > k) becomes

LRk
n :=

p0(Y
n
0 )/p0(Y

k−1
0 )

p∞(Yn
0 )/p∞(Yk−1

0 )

≈
∑

xk∈D,...,xn∈D π0(xk)f0(Yk|xk)
∏n

l=k+1 p0(xl−1, xl)f0(Yl|xl, Yl−1)∑
xk∈D,...,xn∈D π∞(xk)f∞(Yk|xk)

∏n
l=k+1 p∞(xl−1, xl)f∞(Yl|xl, Yl−1)

. (3.5)

Note that the first equation in (3.5), the joint marginal distributions formulation, is an alternative
expression of (3.4). In the second equation of (3.5), we approximate pj(xk−1, xk)fj(Yk|xk, Yk−1) by
the associated stationary distribution πj(xk)fj(Yk|xk) for j = ∞, 0.

Remark 3.1. As noted in Section 1, in this paper, we consider the case of ν independent of the
observed random variables. In the case that ν depends on the observed random variables, a device
of using pseudo-probability measures can be found in Fuh and Mei [10].
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In the following sections, we investigate the Shiryaev change point detection rule defined in (2.7)
and (2.9). We now give certain preliminary results required for this study. Since the detection
statistic Rn,ω involves LRk

n defined in (3.4) and (3.5), we explore the structure of the likelihood
ratio LRn in (3.3) first. For this purpose, we represent (3.3) as the ratio of L1-norms of products of
Markovian random matrices. This device has been proposed by Fuh [5] to study a recursive CUSUM
change-point detection procedure in HMM. Here we carry out the same idea to have a representation
of the likelihood ratio LRn. Specifically, given a column vector u = (u1, · · · , ud)t ∈ Rd, where t
denotes the transpose of the underlying vector in Rd, define the L1-norm of u as ‖u‖ =

∑d
i=1 |ui|.

The likelihood ratio LRn then can be represented as

LRn =
p0(Y0, Y1, · · · , Yn)

p∞(Y0, Y1, · · · , Yn)
=

‖M0
n · · ·M0

1M
0
0π0‖

‖M∞
n · · ·M∞

1 M∞
0 π∞‖ , (3.6)

where

M j
0 =




fj(Y0|X0 = 1) 0 · · · 0
...

. . .
...

...
0 0 · · · fj(Y0|X0 = d)


 , (3.7)

M j
k =




pj(1, 1)fj(Yk|Xk = 1, Yk−1) · · · pj(d, 1)fj(Yk|Xk = 1, Yk−1)
...

. . .
...

pj(1, d)fj(Yk|Xk = d, Yk−1) · · · pj(d, d)fj(Yk|Xk = d, Yk−1)


 (3.8)

for j = 0,∞, k = 1, · · · , n, and

πj =
(
πj(1), · · · , πj(d)

)t
. (3.9)

Note that each component pj(x, x
′)fj(Yk|Xk = x′, Yk−1) inM j

k representsXk−1 = x andXk = x′,
and Yk is a random variable with transition probability density fj(Yk|x′, Yk−1) for j = 0,∞ and

k = 1, · · · , n. Therefore the M j
k are random matrices. Since {(Xn, Yn), n > 0} is a Markov chain

by definition (3.1) and (3.2), this implies that {M j
k , k = 1, · · · , n} is a sequence of Markov random

matrices for j = 0,∞. Hence, LRn is the ratio of the L1-norm of the products of Markov random
matrices via representation (3.6). Note that πj(·) is fixed in (3.6).

Let {(Xn, Yn), n > 0} be the Markov chain defined in (3.1) and (3.2). Denote Zn := (Xn, Yn) and
D̄ := D ×Rm. Define Gl(d,R) as the set of invertible d × d matrices with real entries. For given
k = 0, 1, · · · , n and j = ∞, 0, let M j

k be the random matrix from D̄ × D̄ to Gl(d,R), as defined in
(3.7) and (3.8). For each n, let

Mn = (M∞
n ,M0

n) =
(
M∞

n ◦ · · · ◦M∞
1 ◦M∞

0 ,M0
n ◦ · · · ◦M0

1 ◦M0
0

)
. (3.10)

Then the system {(Zn,Mn), n > 0} is called a product of Markov randommatrices on D̄×Gl(d,R)×
Gl(d,R). Denote P

z as the probability distribution of {(Zn,Mn), n > 0} with Z0 = z, and E
z as

the expectation under Pz.
Let u ∈ Rd be a d-dimensional vector, u := u/||u|| the normalization of u (||u|| 6= 0), and denote

P (Rd) as the projection space of Rd which contains all elements u. For given u ∈ P (Rd) and

M ∈ Gl(d,R), denote M · u = Mu and Mku =
(
M∞

k u,M0
ku
)
, for k = 0, · · · , n. Let

W0 = (Z0,M0u), W1 = (Z1,M1u), · · · ,Wn = (Zn,Mnu). (3.11)

Then, {Wn, n > 0} is a Markov chain on the state space D̄ × P (Rd) × P (Rd) with the transition
kernel

P((z, u), A×B) := E
z(IA×B(Z1,M1u)) (3.12)
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for all z ∈ D̄, u := (u, u) ∈ P (Rd)×P (Rd), A ∈ B(D̄), and B ∈ B(P (Rd)×P (Rd)), the σ-algebra
of P (Rd)×P (Rd). For simplicity, we let P(z,u) := P(·, ·) and denote E(z,u) as the expectation under
P
(z,u). Since the Markov chain {(Xn, Yn), n > 0} has transition probability density and the random

matrix M1(θ) is driven by {(Xn, Yn), n > 0}, it implies that the induced transition probability
P(·, ·) has a density with respect to m × Q. Denote the density as p for simplicity. According to
Theorem 1(iii) in Fuh [5], under conditions C1 and C2 given below, the stationary distribution of
{Wn, n > 0} exists. Denote it by Π.

The crucial observation is that the log-likelihood ratio can now be written as an additive func-
tional of the Markov chain {Wn, n > 0}. That is,

Sn = logLRn =

n∑

k=1

g(Wk−1,Wk), (3.13)

where

g(Wk−1,Wk) := log
||M0

k ◦ · · · ◦M0
1M

0
0π0||/||M0

k−1 ◦ · · · ◦M0
1M

0
0π0||

||M∞
k ◦ · · · ◦M∞

1 M∞
0 π∞||/||M∞

k−1 ◦ · · · ◦M∞
1 M∞

0 π∞|| . (3.14)

In the following sections, we show that the Shiryaev procedure with a certain threshold A = Aα

is asymptotically first-order optimal as α → 0 for a large class of prior distributions and provide a
higher order approximation to the average detection delay for the geometric prior.

Regarding prior distributions ωk = P(ν = k), we will assume throughout that condition (2.10)
holds for some c > 0. A case where a fixed positive c is replaced with the value of cα that depends
on α and vanishes when α → 0 with a certain appropriate rate will also be handled.

4. First Order Asymptotic Optimality

For ease of notation, let X := D̄×P (Rd)×P (Rd) be the state space of the Markov chain {Wn, n >

0}. Denote w := (z, ū, ū) and w̄ := (z0, π∞, π0), where z0 is the initial state of Z0 taken from
π∞f∞(·|x). To prove first-order asymptotic optimality of the Shiryaev rule and to derive a high-
order asymptotic approximation to the average detection delay for HMMs, the conditions C1–C2
set below are assumed throughout this paper. Before that we need the following definitions and
notations.

Abusing the notation a little bit, a Markov chain {Xn, n > 0} on a general state space X is called
V -uniformly ergodic if there exists a measurable function V : X → [1,∞), with

∫
V (x)m(dx) < ∞,

such that

lim
n→∞

sup
x∈X

{∣∣E[h(Xn)|X0 = x]−
∫
h(y)m(dy)

∣∣
V (x)

: |h| 6 V

}
= 0. (4.1)

Under irreducibility and aperiodicity assumption, V -uniform ergodicity implies that {Xn, n > 0}
is Harris recurrent in the sense that there exist a recurrent set A ∈ B(X ), a probability measure ϕ
on A and an integer n0 such that P{Xn ∈ A for some n > n0|X0 = x} = 1 for all x ∈ X , and there
exists λ > 0 such that

P{Xn ∈ A|X0 = x} > λϕ(A) (4.2)

for all x ∈ A and A ⊂ A. Under (4.2), Athreya and Ney [1] proved that Xn admits a regenerative
scheme with i.i.d. inter-regeneration times for an augmented Markov chain, which is called the “split
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chain”. Recall that Sn = logLRn is defined in (3.13). Let ̺ be the first time (> 0) to reach the
atom of the split chain, and define u(α, ζ) = E

µeαS̺−ζ̺ for ζ ∈ R, where µ is an initial distribution
on X . Assume that

{(α, ζ) : u(α, ζ) < ∞} is an open subset on R2. (4.3)

Ney and Nummelin [19] showed that D = {α : u(α, ζ) < ∞ for some ζ} is an open set and that
for α ∈ D the transition kernel P̂α(x,A) = E

x{eαS1I{X1∈A}} has a maximal simple real eigenvalue

eΨ(α), where Ψ(α) is the unique solution of the equation u(α,Ψ(α)) = 1 with the corresponding
eigenfunction r∗(x;α) := E

x exp{αS̺ −Ψ(α)̺}. Here Ex(·) = E(·|X0 = x). For a measurable subset
A ∈ B(X ) and x ∈ X , define

L(A;α) = E
µ

[ ̺−1∑

n=0

eαSn−nΨ(α)I{Xn∈A}

]
, Lx(A;α) = E

x

[ ̺−1∑

n=0

eαSn−nΨ(α)I{Xn∈A}

]
. (4.4)

Note that the finiteness of the state space ensures the finiteness of the eigenfunction r(x;α) and
the eigenmeasure L(A;α).

For given P∞ and P0, define the Kullback–Leibler information number as

K := K(P0,P∞) = E
Π
P0

(
log

‖M0
1M

0
0π0‖

‖M∞
1 M∞

0 π∞‖

)
, (4.5)

where P∞ (P0) denotes the probability of the Markov chain {W∞
n , n > 0} ({W 0

n , n > 0}), and E
Π
P∞

(EΠ
P0
) refers to the expectation for P∞ (P0) under the invariant probability Π.

The following conditions C are assumed throughout this paper.
C1. For each j = ∞, 0, the Markov chain {Xn, n > 0} defined in (3.1) and (3.2) is ergodic

(positive recurrent, irreducible and aperiodic) on a finite state space D = {1, · · · , d}. Moreover, the
Markov chain {(Xn, Yn), n > 0} is irreducible, aperiodic and V -uniformly ergodic for some V on D̄
with

sup
(x,y)∈D×Rm

{
E
(x,y)[V ((X1, Y1))]

V ((x, y))

}
< ∞.

We also assume that the Markov chain {(Xn, Yn), n > 0} has stationary probability Γ with proba-
bility density πxf(·|x) with respect to a σ-finite measure.

C2. Assume that 0 < K < ∞. For each j = ∞, 0, assume that the random matrices M j
0 and M j

1 ,
defined in (3.7) and (3.8), are invertible Pj almost surely and for some r > 1

sup
(x,y)∈D×Rm

E
(x,y)

∣∣∣∣
|Y1|rV ((X1, Y1))

V ((x, y))

∣∣∣∣ < ∞. (4.6)

Remark 4.1. The ergodicity condition C1 for Markov chains is quite general and covers several
interesting examples of HMMs in Section 7. Condition C2 is a standard constraint imposed on
the Kullback–Leibler information number and a moment condition under the variation norm. Note
that positiveness of the Kullback–Leibler information number is not at all restrictive since it holds
whenever the probability density functions of P0 and P∞ do not coincide almost everywhere. The
finiteness condition is quite natural and holds in most cases. Moreover, the cases where it is infinite
are easy to handle and can be viewed as degenerate from the asymptotic theory standpoint.

Recall that the Markov chain {Wn, n > 0} on X := D̄×P (Rd)×P (Rd) is induced by the products
of random matrices. A positivity hypothesis of the elements of M j

k , which implies the positivity
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on the functions in the support of the Markov chain, leads to contraction properties which are the
basis of the spectral theory developed by Fuh [5]. Another natural assumption is that the transition
probability possesses a density. This leads to a classical situation in the context of the so-called
“Doeblin condition” for Markov chains. It also leads to precise results of the limiting theory and
has been used to develop a nonlinear renewal theory in Section 3 of Fuh [7]. We summarize the
properties of {Wn, n > 0} in the following proposition. Since the proof is the same as Proposition 2
of Fuh [7], it is omitted. Denote χ(M) = sup(log ‖M‖, log ‖M−1‖).
Proposition 4.1. Consider a given HMM as in (3.1) and (3.2) satisfying C1–C2. Then the induced
Markov chain {Wn, n > 0}, defined in (3.11) and (3.12), is an aperiodic, irreducible and Harris
recurrent Markov chain under P∞. Moreover, it is also a V -uniformly ergodic Markov chain for
some V on X . We have supw{E∞[V (W1)|W0 = w]/V (w)} < ∞, and there exist a,C > 0 such that
E∞(exp{aχ(M1)}|W0 = w) 6 C for all w = (x0, π, π) ∈ X .

Recall (see (2.11)) that by Sk
n = logLRk

n, k 6 n (Sk
0 = 0, Sn+j

n = 0), we denote the log-
likelihood ratio (LLR) of the hypotheses that the change takes place at ν = k and there is never
a change (ν = ∞). By Theorem 2.1(ii), the r−quick convergence of the normalized LLR processes
n−1Sk

k+n−1, k = 1, 2, . . . , to the Kullback–Leibler information number K (see (2.13)) is sufficient
for asymptotic optimality of the Shiryaev procedure. Thus, to establish asymptotic optimality for
HMMs, it suffices to show that condition (2.13) is satisfied under conditions C1–C2. This is the
subject of the next lemma, which is then used for proving asymptotic optimality of Shiryaev’s
procedure for HMMs.

Let τε,k be the last entree time defined in (2.12). Denote P
(π,f)
k as the probability of the Markov

chain {(Xn, Yn), n > 0} starting with initial distribution (π, f), the stationary distribution, and

conditioned on the change point ν = k. Let E
(π,f)
k be the corresponding expectation. For notational

simplicity, we omit (π, f) and simply denote Pk and Ek from now on.

Lemma 4.1. Assume that conditions C1–C2 hold.
(i) As n → ∞,

1

n
Sk
k+n−1 −→ K Pk − a.s. for every k < ∞. (4.7)

(ii) Let E1|S1
1 |r+1 < ∞ for some r > 1. Then Ek(τε,k)

r < ∞ for all ε > 0 and k > 1, i.e., as
n → ∞,

1

n
Sk
k+n−1 −→ K Pk − r − quickly for every k < ∞. (4.8)

Remark 4.2. Since the Markov chain {Wn, n > 0} is stationary if the initial distribution is (π, f),
Lemma 4.1(ii) implies that a stronger uniform version holds, i.e., supk>1 Ek(τε,k)

r < ∞ for all ε > 0.
This implies that

∞∑

k=0

ωkEk(τε,k)
r < ∞ for all ε > 0. (4.9)

Proof. (i) By Proposition 4.1, Proposition 1 in Fuh [5], and the ergodic theorem for Markov chains,
it is easy to see that the upper Lyapunov exponent for the Markov chain {Wn, n > 0} under the
probability P0 is nothing but the relative entropy defined as

H(P0,Pj) = EP0
[log pj(Y1|Y0, Y−1, · · · )]

= EP0

[
log

d∑

x=1

d∑

x′=1

fj(Y1|Y0;X1 = x′)pj(x, x
′)Pj(X0 = x|Y0, Y−1, · · · )

]

= EP0

[
log ‖M j

1Pj(X0 = x|Y0, Y−1, · · · )‖
]
.
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Therefore, the Kullback–Leibler information number can be defined as that in (4.5). Hence (i) is
proved via the standard law of large numbers argument for Markov random walks.

(ii) Note that

Pk(τε,k > n) 6 Pk

{
sup
j>n

∣∣∣∣∣
Sk
k+j−1

j
−K

∣∣∣∣∣ > ε

}
,

so that

Ek(τε,k)
r
6 r

∫ ∞

0
tr−1

Pk

{
sup
j>t

∣∣∣∣∣
Sk
k+j

j
−K

∣∣∣∣∣ > ε

}
dt,

and, therefore, in order to prove (ii) it suffices to prove that

∞∑

k=1

ωk

∞∑

n=1

nr−1
Pk

{
sup
j>n

∣∣∣
Sk
k+j−1

j
−K

∣∣∣ > ε

}
< ∞ for all ε > 0. (4.10)

By Proposition 4.1 above, we can apply Theorem 6 of Fuh and Zhang [11] to obtain that (4.10)
holds whenever E1|S1

1 |2 < ∞ and E1[(S
1
1 −K)+]r+1 < ∞ for some r > 1, and the following Poisson

equation has solution ∆ : X → R

E
w∆(W1)−∆(w) = E

wS1
1 − E

ΠS1
1 (4.11)

for almost every w ∈ X with E
Π∆(W1) = 0, where E

w(·) = E1(·|W0 = w) is the conditional
expectation when the change occurs at ν = 1 conditioned on W0 = w, i.e., when the Markov chain
{Wn}n>0 is initialized from the point w, and E

Π(·) =
∫
E
w(·) dΠ.

To check the validity of (4.11), we first note that using Proposition 4.1 and Theorem 17.4.2 of
Meyn and Tweedie [16], we have the existence of a solution for (4.11). Moreover, supj>0 E

w|∆(Wj)|r <
∞ for some r > 1 follows from the boundedness property in Theorem 17.4.2 of Meyn and Tweedie
[16] under conditions C1–C2. Next, by C2 and the moment assumption E1|S1

1 |r+1 < ∞ in (ii), the
moment conditions E1|S1

1 |2 < ∞ and E1[(S
1
1 − K)+]r+1 < ∞ hold for some r > 1. This completes

the proof.

Remark 4.3. The assertions of Lemma 4.1 hold true even if the Markov chain Wn is initialized
from any deterministic or random point with “nice” distribution. However, the proof in this case
becomes more complicated.

Now everything is prepared to prove the first-order optimality property of the Shiryaev change-
point detection procedure.

Theorem 4.1. Let conditions C1–C2 hold. Furthermore, let r > 1 and assume E1|S1
1 |r+1 < ∞. Let

the prior distribution of the change point satisfy condition (2.10) and, in the case of c = 0, let in
addition

∑∞
k=0 | log ωk|rωk < ∞.

(i) Then for all m 6 r,

E
ω[(TA − ν)m|TA > ν] ∼

(
logA

K+ c

)m

as A → ∞. (4.12)

(ii) Let A = Aα = (1 − α)/α. Then PFA(TAα) 6 α, i.e., the Shiryaev detection procedure TAα

belongs to class Cα, and

inf
T∈Cα

E
ω[(T − ν)m|T > ν] ∼

( | log α|
K + c

)m

∼ E
ω[(TAα − ν)m|TAα > ν] as α → 0. (4.13)

This assertion also holds if threshold Aα is selected so that PFA(TAα) 6 α and − log PFA(TAα) ∼
logAα as α → 0.



Fuh and Tartakovsky/Quickest Change Detection for Hidden Markov Models 13

Proof. Part (i) follows from Theorem 2.1(ii) and (4.8)–(4.9).
(ii) It is straightforward to show that PFA(TAα) 6 α when threshold Aα = (1 − α)/α (see,

e.g., Tartakovsky and Veeravalli [29]). Asymptotic formulas (4.13) follow from Theorem 2.1(ii) and
(4.8)–(4.9).

Theorem 4.1 covers a large class of prior distributions both with exponential tails and heavy
tails. However, condition (2.10) does not include the case with positive exponent which can vanish
(c → 0). Indeed, in this case, the sum

∑∞
k=0 | log ωk|rωk becomes infinitely large and the results of

the theorem are applicable only under an additional restriction on the rate with which this sum
goes to infinity. The following theorem addresses this issue when ωk = ωα

k depends on the PFA(TAα)
and c = cα → 0 as α → 0.

Theorem 4.2. Let the prior distribution {ωα
k }k>0 satisfy condition (2.10) with c = cα → 0 as

α → 0 in such a way that

lim
α→0

∑∞
k=0 | log ωα

k |rωα
k

| log α|r = 0. (4.14)

Assume that conditions C1–C2 are satisfied and that, in addition, E1|S1
1 |r+1 < ∞ for some r >

1. If A = Aα is so selected that PFA(TAα) 6 α and logAα ∼ | log α| as α → 0, in particular
Aα = (1 − α)/α, then the Shiryaev procedure TAα is asymptotically optimal as α → 0 in class Cα,
minimizing moments of the detection delay up to order r: for all 0 < m 6 r

E
ω[(TAα − ν)m|TAα > ν] ∼

( | log α|
K

)m

∼ inf
T∈Cα

E
ω[(T − ν)m|T > ν] as α → 0. (4.15)

The assertion also holds true for heavy-tailed prior distributions, i.e., when c = 0 in (2.10), if
condition (4.14) is satisfied.

Proof. We first establish an asymptotic lower bound for moments of the detection delay in class
Cα. For 0 < ε < 1 and small positive δα, let Nα,ε = (1 − ε)| log α|/(K + cα + δα). By the Markov
inequality, for any stopping time T ,

ADD(T ) > E
ω(T − ν)+ > Nα,ε [P

ω(T − ν > 0)− P
ω(0 6 T − ν < Nα,ε)] .

Since for any T ∈ Cα, P
ω(T > ν) > 1− α, we have

inf
T∈Cα

ADD(T ) > Nα,ε

[
1− α− sup

T∈Cα

P
ω(0 6 T − ν < Nα,ε)

]
. (4.16)

It follows from Lemma 4.1(i) that n−1Sk
k+n−1 converges to K almost surely under Pk, and therefore,

for all ε > 0 and k > 1

Pk

(
1

M
max

16n6M
Sk
k+n−1 > (1 + ε)K

)
→ 0 as M → ∞. (4.17)

So we can apply Lemma A.1 in the Appendix (see Section A), according to which for any ε ∈ (0, 1),

sup
T∈Cα

P
ω(0 6 T − ν < Nα,ε) → 0 as α → 0.

This along with (4.16) yields

inf
T∈Cα

ADD(T ) > (1− ε)
| log α|

K (1 + o(1)) as α → 0.
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Now, by Jensen’s inequality, for any m > 1, Eω[(T − ν)m|T > ν] > [ADD(T )]m, which yields

inf
T∈Cα

E
ω[(T − ν)m|T > ν] > (1− ε)m

( | log α|
K

)m

(1 + o(1)).

Since ε can be arbitrarily small, we obtain the asymptotic lower bound

inf
T∈Cα

E
ω[(T − ν)m|T > ν] >

( | log α|
K

)m

(1 + o(1)) as α → 0, (4.18)

which holds for all m > 0.
We now show that under conditions C1–C2 and E1|S1

1 |r+1 < ∞, the following asymptotic upper
bound holds:

E
ω[(TAα − ν)r|TAα > ν] 6

( | log α|
K

)r

(1 + o(1)) as α → 0 (4.19)

as long as logAα ∼ | log α|. Obviously, this upper bound together with the previous lower bound
proves the assertion of the theorem.

Evidently, for any A > 0 and k > 0,

(TA − k)+ 6 ηA(k) = inf
{
n > 1 : S̃k

k+n−1 > log(A/ωα
k )
}
,

where S̃k
k+n−1 = Sk

k+n−1 − logP(ν > n+ k − 1). Thus,

E
ω[(TAα − ν)m|TAα > ν] 6

∑∞
k=0 ω

α
kEk[ηAα(k)]

m

1− α

and to establish inequality (4.19) it suffices to show that

∞∑

k=0

ωα
kEk[ηAα(k)]

r
6

( | log α|
K

)r

(1 + o(1)) as α → 0. (4.20)

Define the last entry time

τ̃ε,k = sup
{
n > 1 : n−1S̃k

k+n−1 −K− cα < −ε
}

(sup{∅} = 0).

It is easy to see that

(ηAα(k)− 1)(K + cα − ε) 6 S̃k
k+ηAα(k)−2 < log(Aα/ω

α
k ) on {τ̃ε,k + 1 < ηAα(k) < ∞} .

It follows that for every 0 < ε < K+ cα

[ηAα(k)]
r
6

[
1 +

log(Aα/ω
α
k )

K + cα − ε
1l{ηAα (k)>τ̃ε,k+1} + (τ̃ε,k + 1)1l{ηAα (k)6τ̃ε,k}

]r

6

(
log(Aα/ω

α
k )

K + cα − ε
+ τ̃ε,k + 2

)r

.

Since −n−1 logP(ν > k + n− 1) → cα as n → ∞, by (4.8)–(4.9)

∞∑

k=0

ωα
kEk(τ̃ε,k)

r < ∞ for all ε > 0,

and using condition (4.14) and the fact that logAα ∼ | log α|, we finally obtain that for any
0 < ε < K

∞∑

k=0

ωα
kEk[ηAα(k)]

r
6

( | log α|
K − ε

)r

(1 + o(1)) as α → 0.

Since ε is an arbitrary number, the upper bound (4.20) follows and the proof is complete.
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Remark 4.4. If the prior distribution is geometric (2.4), then Theorem 4.2 holds whenever the
parameter ρ = ρα → 0 so that | log ρα|/| log α| → 0 as α → 0. Indeed, in this case,

∞∑

k=0

| log ωk|rωk 6 ω0| log ω0|r + (1− ω0) (| log(1− ω0)|r + | log ρα|r + | log(1− ρα)|r/ρα)

∼ (1− ω0)| log ρα|r.

5. Asymptotic Performance of the Generalized Shiryaev–Roberts Procedure

In the case where the prior distribution of the change point is geometric (2.4) with ω0 = 0, the
statistic Rω,n/ρ converges as ρ → 0 to the so-called Shiryaev–Roberts (SR) statistic

Rn =

n∑

k=1

n∏

i=k

Λi =

n∑

k=1

exp
{
Sk
n

}
, R0 = 0.

More generally, if the prior distribution is zero-modified geometric (2.4) with ω0 = ω0(ρ) > 0 and
limρ→0 ω0(ρ)/ρ = ℓ, then Rω,n/ρ converges as ρ → 0 to the statistic

Rℓ
n = ℓ exp

{
S1
n

}
+

n∑

k=1

exp
{
Sk
n

}
, Rℓ

0 = ℓ (5.1)

that starts from ℓ (ℓ > 0). Therefore, consider a generalized version of the SR procedure assuming
that the SR statistic Rn is being initialized not from zero but from a point R0 = ℓ, which is a
basis for the so-called SR-r procedure introduced in [18, 27]. In the present paper, we refer to this
statistic as the generalized SR statistic and to the corresponding stopping time

T̃ ℓ
B = inf

{
n > 1 : Rℓ

n > B
}
, B > 0 (5.2)

as the generalized SR (GSR) detection procedure. For the sake of brevity, we omit the superscript
ℓ and use the notation Rn and T̃B in the following.

In contrast to the Shiryaev statistic, the GSR statistic mixes the likelihood ratios according to
the uniform improper prior but not to the given prior. So it is intuitively expected that the GSR
procedure is not asymptotically optimal in cases where the exponent c > 0, but is asymptotically
optimal if c → 0. Tartakovsky and Veeravalli [29] proved that this is indeed true for the conventional
SR procedure with ℓ = 0 in the general non-i.i.d. case when the prior distribution is geometric. In
this section, we show that this is true for finite-state HMMs and general prior distributions with
finite mean.

Note that the GSR statistic Rn is a P∞-submartingale with mean E∞Rn = n + ℓ. Thus, using
the Doob submartingale inequality, we obtain

P∞(T̃B < k) = P∞

(
max

16i6k−1
Ri > B

)
6 (k − 1 + ℓ)/B, k > 1,

so that the probability of false alarm of the SR procedure can be upper-bounded as

PFA(T̃B) =

∞∑

k=1

ωkP∞(T̃B < k) 6 (ν̄ − 1 + ℓ)/B, (5.3)

where ν̄ =
∑∞

k=1 k ωk is the mean of the prior distribution. Therefore, assuming that ν̄ < ∞,

we obtain that setting B = Bα = (ν̄ − 1 + ℓ)/α implies T̃Bα ∈ Cα. If the prior distribution is
zero-modified geometric with ω0 = ρ ℓ, then PFA(T̃B) 6 (1− ρ)/ρB.

The following theorem establishes asymptotic operating characteristics of the GSR procedure.
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Theorem 5.1. Let r > 1. Assume that conditions C1–C2 are satisfied and that, in addition,
E1|S1

1 |r+1 < ∞.
(i) Suppose that the mean of the prior distribution is finite, ν̄ < ∞. If B = Bα = (ν̄ − 1 + ℓ)/α,

then T̃Bα ∈ Cα and for all 0 < m 6 r,

lim
α→0

E
ω[(T̃Bα − ν)m|T̃Bα > ν]

| log α|m =
1

Km
. (5.4)

(ii) Let the prior distribution {ωα
k }k>0 satisfy condition (2.10) with c = cα → 0 as α → 0 in such

a way that

lim
α→0

ν̄α
| log α| = 0. (5.5)

Let the initial value ℓ be either fixed or ℓ = ℓα depends on α so that ℓα/| log α| = o(1) as α → 0. If
B = Bα = (ν̄α − 1 + ℓ)/α, then T̃Bα ∈ Cα and for all 0 < m 6 r.

E
ω[(T̃Bα − ν)m|T̃Bα > ν] ∼

( | log α|
K

)m

∼ inf
T∈Cα

E
ω[(T − ν)m|T > ν] as α → 0. (5.6)

Both assertions (i) and (ii) also hold if B = Bα is selected so that PFA(TBα) 6 α and logBα ∼
| log α| as α → 0.

Proof. (i) First, we establish the following lower bound for moments of the detection delay of
arbitrary order m > 1:

E
ω[(T̃Bα − ν)m|T̃Bα > ν] >

( | log α|
K

)m

(1 + o(1)) as α → 0, (5.7)

assuming that logBα ∼ | log α|. In particular, we may select Bα = (ν̄ − 1 + ℓ)/α.
Let Ñα,ε = (1− ε)| log α|/K. Similarly to (4.16) we have

ADD(T̃Bα) > Ñα,ε

[
1− α− P

ω(0 6 T̃Bα − ν < Ñα,ε)
]
. (5.8)

It follows from Lemma 4.1(i) that n−1Sk
k+n−1 → K almost surely under Pk, and therefore, for all

ε > 0 and k > 1

β̃k(α, ε) = Pk

(
1

Ñα,ε

max
16n6Ñα,ε

Sk
k+n−1 > (1 + ε)K

)
→ 0 as α → 0. (5.9)

By analogy with (A.3) in the proof of Lemma A.1 (see the appendix, Section A.1),

Pk

(
0 6 T̃Bα − k < Ñα,ε

)
6 p̃k(α, ε) + β̃k(α, ε), (5.10)

where p̃k(α, ε) can be shown to be upper-bounded as

p̃k(α, ε) 6
k + ℓ+ Ñα,ε

Bε2
α

= e−ε2 logBα

[
k + ℓ+

(1− ε)| log α|
K

]
. (5.11)



Fuh and Tartakovsky/Quickest Change Detection for Hidden Markov Models 17

Let Kα be an integer that goes to infinity as α → 0. Using (5.10) and (5.11), we obtain

P
ω(0 < T̃Bα − ν < Ñα,ε) =

∞∑

k=0

ωkPk

(
0 6 T̃Bα − k < Ñα,ε

)

6 P(ν > Kα) +
Kα∑

k=0

ωkPk

(
0 6 T̃Bα − k < Ñα,ε

)

6 P(ν > Kα) +

Kα∑

k=0

ωkβ̃k(α, ε) + e−ε2 logBα

[
ν̄ + ℓ+

(1− ε)| log α|
K

]
.

The first term goes to zero since ν̄ is finite. The second term goes to zero due to (5.9), and the
third term also goes to zero since limα→0 logBα/| log α| = 1. Therefore,

lim
α→0

P
ω(0 6 T̃Bα − ν < Ñα,ε) = 0,

and using (5.8) and Jensen’s inequality, we obtain

E
ω[(T̃Bα − ν)m|T̃Bα > ν] > (1− ε)m

( | log α|
K

)m

(1 + o(1)).

Since ε can be arbitrarily small, the asymptotic lower bound (5.7) follows.
We now show that if logBα ∼ | log α| (in particular, we may set Bα = (ν̄ − 1 + ℓ)/α), then for

m 6 r

E
ω[(T̃Bα − ν)m|T̃Bα > ν] 6

( | log α|
K

)m

(1 + o(1)) as α → 0 (5.12)

whenever conditions C1–C2 hold and E1|S1
1 |r+1 < ∞. This, obviously, will complete the proof of

(5.4).
Observe that for any B > 0, ℓ > 0, and k > 0,

(T̃B − k)+ 6 η̃B(k) = inf
{
n > 1 : Sk

k+n−1 > logB
}
,

Therefore,

E
ω[(T̃Bα − ν)m|T̃Bα > ν] 6

∑∞
k=0 ωkEk[η̃Bα(k)]

m

1− α
,

so that inequality (5.12) holds whenever

∞∑

k=0

ωkEk[η̃Bα(k)]
r
6

( | log α|
K

)r

(1 + o(1)) as α → 0. (5.13)

Define the last entry time

τ̂ε,k = sup
{
n > 1 : n−1Sk

k+n−1 −K − c < −ε
}

(sup{∅} = 0).

Evidently,

(η̃Bα(k)− 1)(K + c− ε) 6 Sk
k+η̃Bα(k)−2 < logBα on {τ̂ε,k + 1 < η̃Bα(k) < ∞} ,
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so that for every 0 < ε < K + c

[η̃Bα(k)]
r
6

[
1 +

logBα

K + c− ε
1l{η̃Bα (k)>τ̂ε,k+1} + (τ̂ε,k + 1)1l{η̃Bα (k)6τ̂ε,k}

]r

6

(
logBα

K+ c− ε
+ τ̂ε,k + 2

)r

.

(5.14)

By (4.8)–(4.9),
∞∑

k=0

ωkEk(τ̂ε,k)
r < ∞ for all ε > 0,

so using condition (4.14) and the fact that logBα ∼ | log α|, we conclude that for any 0 < ε < K
∞∑

k=0

ωkEk[η̃Bα(k)]
r
6

( | log α|
K − ε

)r

(1 + o(1)) as α → 0.

Since ε can be arbitrarily small, the upper bound (5.13) follows, which implies the upper bound
(5.12).

(ii) Recall first that in the proof of Theorem 4.2 we established the asymptotic lower bound
(4.18), which holds as long as conditions C1 and C2 are satisfied. Therefore, we need only to prove
the asymptotic upper bound (5.12) under conditions postulated in (ii). Similarly to (5.14) we have

[(T̃Bα − k)+]r 6

(
logBα

K+ cα − ε
+ τ̂ε,k + 2

)r

=

(
log[(ν̄α − 1 + ℓ)/α]

K + cα − ε
+ τ̂ε,k + 2

)r

.

Again, by (4.8)–(4.9),
∞∑

k=0

ωα
kEk(τ̂ε,k)

r < ∞ for all ε > 0.

Using condition (5.5) and the fact that limα→0 ℓ/| log α| = 0, we obtain that for any 0 < ε < K
∞∑

k=0

ωα
k [(T̃Bα − k)+]r 6

( | log α|
K − ε

)r

(1 + o(1)) as α → 0.

Since ε can be arbitrarily small, the upper bound (5.12) follows and the proof is complete.

Theorem 5.1 shows that the GSR procedure is asymptotically optimal as α → 0 in class Cα,
minimizing moments of the detection delay up to order r, only for heavy-tailed priors when c = 0 or
for priors with exponential tails (c > 0) when the exponent c = cα vanishes as α → 0. As mentioned
above, this is expected since the GSR procedure exploits the uniform improper prior distribution
of the change point over positive integers.

6. Higher Order Asymptotic Approximations to the Average Detection Delay

Note that when m = 1 in (4.12) and (5.4), we obtain the following first-order asymptotic approxi-
mations to the average detection delay of the Shiryaev and GSR procedures

ADD(TA) =

(
logA

K + c

)
(1 + o(1)), ADD(T̃B) =

(
logB

K

)
(1 + o(1)) as A,B → ∞. (6.1)

These approximations hold as long as conditions C1–C2 and the moment condition E1|S1
1 |2 < ∞

are satisfied.
In this section, we derive high-order approximations to the ADD of these procedures up to

a vanishing term o(1) based on the Markov nonlinear renewal theory, assuming that the prior
distribution of the change point is zero-modified geometric (2.4).
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6.1. The Shiryaev Procedure

Define the statistic Rρ
n = Rn,ω/ρ, which is given by the recursion

Rρ
n = (1 +Rρ

n−1)Λ
ρ
n, n > 1, Rρ

0 = ω0/(1 − ω0)ρ, (6.2)

where

Λρ
n =

eg(Wn−1,Wn)

1− ρ
= egρ(Wn−1,Wn), gρ(Wi−1,Wi) = g(Wi−1,Wi) + | log(1− ρ)|.

Obviously, the Shiryaev procedure can be written as

TA = inf {n > 1 : Rρ
n > A/ρ} .

Note that we have

Rρ
n = (1 +Rρ

0)
n∏

i=1

Λρ
i +

(
n∏

i=1

Λρ
i

)
n−1∑

j=1

j∏

s=1

(Λρ
s)

−1

=


1 +Rρ

0 +

n−1∑

j=1

(1− ρ)je−
∑j

s=1
g(Ws−1,Ws)




n∏

i=1

Λρ
i ,

and hence,

logRρ
n =

n∑

i=1

gρ(Wi−1,Wi) + log (1 +Rρ
0 + Vn) , (6.3)

where

Vn =

n−1∑

j=1

(1− ρ)je−
∑j

s=1
g(Ws−1,Ws).

Let a = log(A/ρ). Clearly, the stopping time TA = Ta can be equivalently written as

Ta = inf {n > 1 : logRρ
n > a} ,

which by (6.3) can be also written as

Ta = inf{n > 1 : S̃ρ
n + ηn > a}, (6.4)

where ηn = log (1 +Rρ
0 + Vn) and S̃ρ

n =
∑n

i=1 gρ(Wi−1,Wi) = Sn + n| log(1 − ρ)|, n > 1. Here
Sn denotes the partial sums

∑n
i=1 g(Wi−1,Wi), n > 1. Note that in (6.4) the initial condition W0

can be an arbitrary fixed number or a random variable. Obviously, {S̃ρ
n}n>1 is a Markov random

walk with stationary mean E
ΠS̃ρ

1 = K+ | log(1− ρ)|, where E
Π(·) =

∫
E1(·|W0 = w)dΠ(w) denotes

the expectation of the extended Markov chain {Wn}n>0 under the invariant measure Π. Let χa =
S̃ρ
n + ηTa − a be a corresponding overshoot. Then we have

E1[S̃
ρ
Ta
|W0 = w] = a+ E1[χ(a)|W0 = w]− E1[ηTa |W0 = w]. (6.5)

For b > 0, define
Nb = inf{n > 1 : S̃ρ

n > b}, (6.6)
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and let κb = S̃ρ
n − b (on {Nb < ∞}) denote the overshoot of the statistic S̃ρ

n crossing the threshold
b at time n = Nb. When b = 0, we denote Nb in (6.6) as N+. For a given w ∈ X , let

G(y, ρ,K) = lim
b→∞

P1{κb 6 y|W0 = w} (6.7)

be the limiting distribution of the overshoot. Note that this distribution does not depend on w.
To approximate the expected value of κb, we need the following notation first. Let P1,+(w,B) =

P1,+{WNb
∈ B|W0 = w} denote the transition probability associated with the Markov chain

{Wn, n > 0} generated by the ascending ladder variable S̃ρ
n. Under the V -uniform ergodicity con-

dition (to be proved in the appendix) and E
πY1 > 0, a similar argument as on page 255 of Fuh

and Lai [9] yields that the transition probability P1,+(w, ·) has an invariant measure Π+. Let E
Π+

denote expectation under W0 having the distribution Π+.
It is known that

lim
b→∞

E1(κb|W0 = w) =

∫ ∞

0
y dG(y, ρ,K) =

E
Π+(S̃ρ

N+
)2

2EΠ+ S̃ρ
N+

.

(cf. Theorem 1 of Fuh [7] and Proposition A.1 in the appendix).
Let us also define

ζ(ρ,K) = lim
b→∞

E1(e
−κb |W0 = w) =

∫ ∞

0
e−y dG(y, ρ,K),

and

C(ρ,K) = E1

{
log

[
1 +Rρ

0 +
∞∑

k=1

(1− ρ)ke−Sk

]}
. (6.8)

Note that by (6.4),
S̃ρ
Ta

= a− ηTa + χa on {Ta < ∞},

where χa = S̃ρ
Ta

+ ηTa − a is the overshoot of S̃ρ
n + ηn crossing the boundary a at time Ta. Taking

the expectations on both sides, using (6.5) and applying Wald’s identity for products of Markovian
random matrices (cf. Theorem 2 of Fuh [5]), we obtain

(K + | log(1− ρ)|)E1(Ta|W0 = w) +

∫

X
∆(w′) dΠ+(w

′)−∆(w) (6.9)

= E1(S
ρ
Ta
|W0 = w) = a− E1(ηTa |W0 = w) + E1(χa|W0 = w),

where ∆ : X → R solves the Poisson equation

E1 [∆(W1)|W0 = w]−∆(w) = E1 [S
ρ
1 |W0 = w]− E

ΠSρ
1 (6.10)

for almost every w ∈ X with E
Π∆(W1) = 0.

The crucial observations are that the sequence {ηn, n > 1} is slowly changing and that ηn
converges P1-a.s. as n → ∞ to the random variable

η = log

{
1 +Rρ

0 +
∞∑

k=1

(1− ρ)ke−Sk

}
(6.11)

with finite expectation E
Π+η = C(ρ,K), where C(ρ,K) is defined in (6.8). An important conse-

quence of the slowly changing property is that, under mild conditions, the limiting distribution of
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the overshoot of a Markov random walk over a fixed threshold does not change by the addition of
a slowly changing nonlinear term (see Theorem 1 in Fuh [7]).

The mathematical details are given in Theorem 6.1 below. More importantly, Markov nonlinear
renewal theory allows us to obtain an approximation to PFA(TA), the probability of false alarm,
that takes the overshoot into account. This approximation is useful for practical applications where
the value of K is moderate. (For small values of ρ and K the overshoot can be neglected.)

Theorem 6.1. Let Y0, Y1, · · · , Yn be a sequence of random variables from a hidden Markov model
{Yn, n > 0}. Assume C1–C2 hold. Let the prior distribution of the change point ν be the zero-
modified geometric distribution (2.4), and assume that S1 is nonarithmetic with respect to P∞ and
P1.

(i) If 0 < K < ∞, then as A → ∞

PFA(TA) =
ζ(ρ,K)

A
(1 + o(1)). (6.12)

(ii) If, in addition, the second moment of the log-likelihood ratio is finite, E1|S1|2 < ∞, then for
w ∈ X , as A → ∞

E1(TA|W0 = w) =
1

K + | log(1− ρ)|

(
log

A

ρ
− E

Π+η +
E
Π+(S̃ρ

N+
)2

2EΠ+ S̃ρ
N+

−
∫

S
∆(w̃) dΠ+(w̃) + ∆(w)

)
+ o(1).

(6.13)

Remark 6.1. The constants E
Π+(S̃ρ

N+
)2/2EΠ+ S̃ρ

N+
and E

Π+η = C(ρ,K) are the subject of the

Markov nonlinear renewal theory. The constant −
∫
S ∆(w̃)dΠ+(w̃) + ∆(w) is due to Markovian

dependence via Poisson equation (6.9).

Proof. (i) By (2.6), 1− P(ν 6 TA|FTA
) = (1 +RTA,ω)

−1 = (1 + ρRρ
TA

)−1 and we have

PFA(TA) = E
ω[1− P(ν 6 TA|FTA

)] = E
ω
[
1 + ρA(Rρ

TA
/A)
]
=

1

ρA
E
ω
[
e−χa

]
(1 + o(1))

as A → ∞, where χa = Sρ
Ta

+ ηTa − a. Since χa > 0 and PFA(TA) < 1/A, it follows that

E
ω
[
e−χa

]
= E

ω
(
e−χa |TA < ν

)
PFA(TA) + E

ω
(
e−χa |TA > ν

)
(1− PFA(TA))

= E
ω
(
e−χa |TA > ν

)
+O(1/A)

as A → ∞. Therefore, it suffices to evaluate the value of

E
ω
(
e−χa |TA > ν

)
=

∞∑

k=1

P{ν = k|TA > k}Eω
(
e−χa |TA > k

)
.

To this end, we recall that, by (6.4)

Ta = {n ≥ 1 : S̃ρ
n + ηn > a},

where S̃ρ
n = Sn + n| log(1 − ρ)| is a Markov random walk with the expectation K + | log(1 − ρ)|

and ηn, n > 1 are slowly changing under P1. Since, by conditions C1, 0 < K < ∞, we can apply
Theorem 1 of [7], see also Proposition A.1 in the appendix, to obtain

lim
A→∞

E1

(
e−χa |TA > k

)
=

∫ ∞

0
e−y dG(y, ρ,K) = ζ(ρ,K).
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Also,

lim
A→∞

P (ν = k|TA > k) = lim
A→∞

ωkP∞(TA > k)

Pω(TA > ν)
= ωk,

so that
lim
A→∞

Ek

(
e−χa |TA > ν

)
= lim

A→∞
Eke

−χa = ζ(ρ,K),

which completes the proof of (6.12).
(ii) The probability P1 and expectation E1 in the proof below are taken under W0 = w, i.e.,

P1(·|W0 = w) and E1(·|W0 = w). We omit conditioning on W0 = w for brevity. The proof of (6.13)
is based on the Markov nonlinear renewal theory (see Theorem 3 and Corollary 1 in Fuh [7]). A
simplified version suitable in our case is given in the appendix (see Proposition A.2).

By (6.4), the stopping time TA = Ta is based on thresholding the sum of the Markov random
walk Sρ

n and the nonlinear term ηn. Note that

ηn −→n→∞ η P1-a.s. and E1ηn −→n→∞ E1η,

and ηn, n > 1 are slowly changing under P1. In order to apply Proposition A.2 (see appendix) in
our case, we have to check the following three conditions:

∞∑

n=1

P1{ηn 6 −εn} < ∞ for some 0 < ε < K; (6.14)

max
06k6n

|ηn+k|, n > 1, are P1-uniformly integrable; (6.15)

lim
A→∞

(logA) P1

{
TA 6

ε logA

K + | log(1− ρ)|

}
= 0 for some 0 < ε < 1. (6.16)

Condition (6.14) obviously holds because ηn > 0. Condition (6.15) holds because η2n, n > 1 are
P1-uniformly integrable since η2n 6 η and E1η < ∞ and max06k6n |ηn+k| = η2n (ηn, n = 1, 2 · · ·
are nondecreasing).

To verify condition (6.16) we now prove that for all A > 0 and 0 < ε < 1

P1 (TA 6 NA,ε) 6
1

1− ρ
exp

{
− K ε2

K+ | log(1− ρ)
logA

}
+ β(A, ε), (6.17)

where

NA,ε =
(1− ε) logA

K+ log(1− ρ)
and β(A, ε) = P1

(
1

NA,ε
max

16n6NA,ε

Sn > (1 + ε)K
)
.

Moreover, we will establish that under the second moment condition E1|S1|2 < ∞, the probability
β(A, ε) vanishes as A → ∞ faster than 1/ logA. This implies that P1 (TA 6 NA,ε) = o(1/ logA) as
A → ∞, i.e., condition (6.16).

To obtain the inequality (6.17) we follow the proof of Lemma A.1 in the appendix, replacing
| log α| by logA, setting k = 1 and δα = 0, and noting that for the zero-modified geometric prior
log P(ν > NA,ε) = NA,ε log(1 − ρ). Then using (A.3)–(A.5), we obtain that the inequality (6.17)
holds for all A > 0 and 0 < ε < 1. Thus, it remains to prove that limA→∞[β(A, ε) logA] = 0. By
Proposition 4.1, we can apply Theorem 6 of Fuh and Zhang [11], which yields that if E1|S1|2 < ∞,
then for all ε > 0 ∞∑

n=1

P1

{
max
16k6n

(Sk − kK) > εn

}
< ∞.
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This implies that the summand is o(1/n) for a large n. Since

β(A, ε) = P1

(
max

16n6NA,ε

(Sn −NA,εK) > εKNA,ε

)
6 P1

(
max

16n6NA,ε

(Sn − nK) > εKNA,ε

)

it follows that β(A, ε) = o(1/ logA) as A → ∞. This implies condition (6.16).
Applying Proposition A.2 (see Appendix) completes the proof.

6.2. The Generalized Shiryaev–Roberts Procedure

Since the GSR procedure T̃B defined in (5.1) and (5.2) is a limit of the Shiryaev procedure as the
parameter of the geometric prior distribution ρ goes to zero, it is intuitively obvious that the higher
order approximation to the conditional average detection delay E1(T̃B |W0 = w) is given by (6.13)
with ρ = 0 and A/ρ = B. This is indeed the case as the following theorem shows. The proof of this
theorem is essentially similar to the proof of Theorem 6.1(ii) and for this reason, it is omitted.

Theorem 6.2. Let {Yn, n > 0} be a hidden Markov model. Assume conditions C1–C2 hold. Let
the prior distribution of the change point be the zero-modified geometric distribution (2.4). Assume
that S1 is nonarithmetic with respect to P∞ and P1 and that E1|S1|2 < ∞. Then for w ∈ X , as
B → ∞

E1(T̃B |W0 = w) =
1

K

(
logB − E

Π+ η̃ +
E
Π+(S̃ρ

N+
)2

2EΠ+ S̃ρ
N+

−
∫

S
∆(w̃) dΠ+(w̃) + ∆(w)

)
+ o(1),

(6.18)

where η̃ = log(1 + ℓ+
∑∞

j=1 e
−Sj ) and ℓ = limρ→∞w0(ρ)/ρ.

7. Examples

Below we consider several examples that are of interest in certain applications (see, e.g., [3, 21, 22]).
While our main concern in this paper is checking conditions under which the Shiryaev detection
procedure is asymptotically optimal, another important issue is the feasibility of its implementation,
i.e., computing the Shiryaev decision statistic. We address both issues in each example.

In many applications, including Examples 1 and 2 considered below, one is interested in a sim-
plified HMM where the observations Yn, n = 1, 2, . . . are conditionally independent, conditioned
on the Markov chain Xn, i.e., fj(Yn|Xn, Yn−1) = fj(Yn|Xn). In this particular case, the conditions
C1 and C2 in the above theorems can be simplified to the following conditions.

C1
′

. For each j = ∞, 0, the Markov chain {Xn, n > 0} defined in (3.1) and (3.2) is ergodic
(positive recurrent, irreducible and aperiodic) on a finite state space X = {1, · · · , d} and has
stationary probability π.

C2
′

. The Kullback–Leibler information number is positive and finite, 0 < K < ∞. For each
j = ∞, 0, the random matrices M j

0 and M j
1 , defined in (3.7) and (3.8), are invertible Pj almost

surely and for some r > 0,

∣∣∣∣∣∣

∑

x0,x1∈X

∫

y∈Rd

πj(x0)pj(x0, x1)y
r+1fj(y|x1)Q(dy)

∣∣∣∣∣∣
< ∞. (7.1)
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7.1. Example 1: Target Track Management Application

We begin with an example which is motivated by certain multisensor target track management
applications [3] that are discussed later on at the end of this subsection.

Let Xn ∈ {1, 2} be a two-state (hidden, unobserved) Markov chain with transition probabilities
Pj(Xn = 1|Xn−1 = 2) = pj(2, 1) = p and Pj(Xn = 2|Xn−1 = 1) = pj(1, 2) = q, n > 1 and initial
stationary distribution Pj(X0 = 1) = πj(1) = p/(p + q) for both j = ∞ and j = 0. Under the
pre-change hypothesis H∞ : ν = ∞, the conditional density of the observation Yn is

p(Yn|Yn−1
0 ,Xn = l,H∞) = gl(Yn) for l = 1, 2,

and under the hypothesis Hk : ν = k, the observations Yk, Yk+1, . . . are i.i.d. with density f(y).
The pre-change joint density of the vector Yn

0 is

p∞(Yn
0 ) =

n∏

i=1

p∞(Yi|Yi−1
0 ),

where

p∞(Yi|Yi−1
0 ) =

2∑

l=1

gl(Yi)P(Xi = l|Yi−1
0 ), i > 1 (7.2)

and the posterior probability P(Xi = l|Yi−1
0 ) = Pi|i−1(l) is obtained by a Bayesian update as

follows. By the Bayes rule, the posterior probability P(Xi = l|Yi
0) := Pi(l) is given by

Pi(l) =
gl(Yi)Pi|i−1(l)∑2

s=1 gs(Yi)Pi|i−1(s)
. (7.3)

The probability Pi|i−1(Xi) is used as the prior probability for the update (prediction term) and can
be computed as

Pi|i−1(2) = Pi−1(2)(1 − p) + Pi−1(1)q, Pi|i−1(1) = Pi−1(1)(1 − q) + Pi−1(2)p. (7.4)

The statistic Rn,ω defined in (2.7) can be computed recursively as

Rn,ω = (Rn−1,ω + ωn,n)Λn, n > 1, R0,ω = ω0/(1 − ω0), (7.5)

where the likelihood ratio “increment” Λn = f(Yn)/p∞(Yn|Yn−1
0 ) can be effectively computed using

(7.2), (7.3), and (7.4). Here ωk,n is defined in (2.8). Therefore, in this example, the computational
cost of the Shiryaev rule is small, and it can be easily implemented on-line.

Condition C1
′

obviously holds. Condition (7.1) in C2
′

holds if

∫ ∞

−∞
|y|r+1f(y) dQ(y) < ∞ and

∫ ∞

−∞
|y|r+1gl(y) dQ(y) < ∞ for l = 1, 2

since
∣∣∣∣∣∣

∑

i,l=1,2

∫ ∞

−∞
π0(i)p0(i, l)y

r+1f(y) dQ(y)

∣∣∣∣∣∣
6

∫ ∞

−∞
|y|r+1f(y) dQ(y)



Fuh and Tartakovsky/Quickest Change Detection for Hidden Markov Models 25

and
∣∣∣∣∣∣

∑

i,l=1,2

∫ ∞

−∞
π∞(i)p∞(i, l)yr+1gl(y) dQ(y)

∣∣∣∣∣∣
6
∑

i,l=1,2

π∞(i)p∞(i, l)

∫ ∞

−∞
|y|r+1gl(y) dQ(y).

In this case, the Kullback–Leibler number K is obviously finite. Therefore, the Shiryaev detection
rule is nearly optimal, minimizing asymptotically moments of the detection delay up to order r.
In particular, if f(y) and gl(y) are Gaussian densities, then the Shiryaev procedure minimizes all
positive moments of the delay to detection.

In [3], this problem was considered in the context of target track management, specifically for
termination of tracks from targets with drastically fluctuating signal-to-noise ratios in active sonar
systems. This drastic fluctuation was proposed to model as Markovian switches between low and
high intensity signals, which lead to low and high probabilities of detection. In this scenario, one is
particularly interested in the Bernoulli model where Yn = 0, 1 and

gl(Yn) = (P l
d)

Yn(1− P l
d)

1−Yn , l = 1, 2; f(Yn) = (Pfa)
Yn(1− Pfa)

1−Yn ,

where P 1
d = PHigh

d and P 2
d = PLow

d are local probabilities of detection (in single scans) for high
and low intensity signals, respectively, and Pfa is the probability of a false alarm that satisfy
inequalities P 1

d > P 2
d > Pfa. The target track is terminated at the first time the statistic Rn,ω

exceeds threshold A. Note that in this application area, the results of simulations presented in
[3] show that the Shiryaev procedure performs very well while popular Page’s CUSUM procedure
performs poorly. Also, since for the Bernoulli model all moments are finite, the Shiryaev procedure
minimizes asymptotically all positive moments of the detection delay.

7.2. Example 2: A two-state HMM with i.i.d. observations

Consider a binary-state case with i.i.d. observations in each state. Specifically, let θ be a parameter
taking two possible values θ0 and θ1 and let Xn ∈ {1, 2} be a two-state ergodic Markov chain with
the transition matrix

[pθ(i, l)] =

[
1− pθ pθ
qθ 1− qθ

]

and stationary initial distribution Pθ(X0 = 2) = 1 − Pθ(X0 = 1) = πθ(2) = qθ/(pθ + qθ) for some
{pθ, qθ} ∈ [0, 1]. Further, assume that conditioned on Xn the observations Yn are i.i.d. with densities

fθ(y|Xn = l) = f
(l)
θ (y) (l = 1, 2), where the parameter θ = θ0 pre-change and θ = θ1 post-change.

In other words, in this scenario, the conditional density

p(Yn|Yn−1
0 ) =

{
pθ0(Yn|Yn−1

0 ) if n 6 ν − 1

pθ1(Yn|Yn−1
0 ) if n > ν

,

which in terms of the joint density of Yn
0 yields

p(Yn
0 ) =




pθ0(Y

n
0 ) if n 6 ν − 1

pθ1(Y
n
0 ) ·

pθ0 (Y
ν−1

0
)

pθ1 (Y
ν−1

0
)

if n > ν
.

Thus, the increment of the likelihood ratio Λn = LRn/LRn−1 does not depend on the change
point and, as a result, the Shiryaev detection statistic obeys the recursion (7.5), so that in order to
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implement the Shiryaev procedure it suffices to develop an efficient computational scheme for the
likelihood ratio LRn = pθ1(Y

n
0 )/pθ0(Y

n
0 ). To obtain a recursion for LRn, define the probabilities

Pθ,n := Pθ(Y
n
0 ,Xn = 2) and P̃θ,n := Pθ(Y

n
0 ,Xn = 1). Straightforward argument shows that for

n > 1

Pθ,n =
[
Pθ,n−1 pθ(2, 2) + P̃θ,n−1 pθ(1, 2)

]
f
(2)
θ (Yn); (7.6)

P̃θ,n =
[
Pθ,n−1 pθ(2, 1) + P̃θ,n−1 pθ(1, 1)

]
f
(1)
θ (Yn) (7.7)

with Pθ,0 = πθ(2) and P̃θ,0 = πθ(1) = 1− πθ(2). Since pθ(Y
n
0 ) = Pθ,n + P̃θ,n we obtain that

LRn =
Pθ1,n + P̃θ1,n

Pθ0,n + P̃θ0,n

.

Therefore, to implement the Shiryaev (or the SR) procedure we have to update and store Pθ,n and

P̃θ,n for the two parameters values θ0 and θ1 using simple recursions (7.6) and (7.7).
Condition C1

′

obviously holds. Assume that the observations are Gaussian with unit variance and

different mean values in pre- and post-change regimes as well as for different states, i.e., f
(l)
θ (y) =

ϕ(y − µ
(l)
θ ) (θ = θ0, θ1, l = 1, 2), where ϕ(y) = (2π)−1/2 exp {−y/2} is density of the standard

normal distribution. It is easily verified that the Kullback–Leibler number is finite. Condition (7.1)
in C2

′

has the form
∣∣∣∣∣∣

∑

i,l=1,2

πθ(i)pθ(i, l)

∫ ∞

−∞
yr+1ϕ(y − µ

(l)
θ ) dy

∣∣∣∣∣∣
< ∞ for θ = θ0, θ1,

which holds for all r > 1 due to the finiteness of all absolute positive moments of the normal
distribution and the fact that

∣∣∣∣∣∣

∑

i,l=1,2

πθ(i)pθ(i, l)

∫ ∞

−∞
yr+1ϕ(y − µ

(l)
θ ) dy

∣∣∣∣∣∣
6
∑

i,l=1,2

πθ(i)pθ(i, l)

∫ ∞

−∞
|y|r+1ϕ(y − µ

(l)
θ ) dy.

Therefore, the Shiryaev detection rule is nearly optimal, minimizing asymptotically all positive
moments of the detection delay.

7.3. Example 3: Change of correlation in autoregression

Consider the change of the correlation coefficient in the first-order autoregressive (AR) model

Yn = (a01l{n<ν} + a(Xn)1l{n>ν})Yn−1 + ξn, n > 1, (7.8)

where Xn ∈ {1, . . . , d} is a d-state unobservable ergodic Markov chain and, conditioned on Xn = l,
a(Xn = l) = al, l = 1, . . . , d. The noise sequence {ξn} is the i.i.d. standard Gaussian sequence,
ξn ∼ N (0, 1). Thus, the problem is to detect a change in the correlation coefficient of the Gaussian
first-order AR process from the known value a0 to a random value a(Xn) ∈ {a1, . . . , ad} with
possible switches between the given levels a1, . . . , ad for n > ν.

We assume that the transition matrix [p(i, l)] is positive definite, i.e., det[p(i, l)] > 0 (evidently,
it does not depend on j = 0,∞) and that |ai| < 1 for i = 0, 1, . . . , d. The likelihood ratio for Yn

given Yn−1
0 and Xn = l between the hypotheses Hk and H∞ is

p(Yn|Yn−1
0 ,Xn = l,Hk)

p(Yn|Yn−1
0 ,H∞)

= exp

{
1

2

[
(Yn − a0Yn−1)

2 − (Yn − alYn−1)
2
]}

, n > k,
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so that the likelihood ratio Λn = p0(Yn|Yn−1
0 )/p∞(Yn|Yn−1

0 ) can be computed as

Λn =

d∑

l=1

exp

{
1

2

[
(Yn − a0Yn−1)

2 − (Yn − alYn−1)
2
]}

P(Xn = l|Yn−1
0 ),

where using the Bayes rule, we obtain

P(Xn = l|Yn−1
0 ) =

d∑

i=1

p(i, l)P(Xn−1 = i|Yn−1
0 ),

P(Xn = l|Yn
0 ) =

P(Xn = l|Yn−1
0 ) exp

{
−1

2(Yn − alYn−1)
2
}

∑d
i=1 P(Xn = i|Yn−1

0 ) exp
{
−1

2(Yn − aiYn−1)2
} .

The Markov chain (Xn, Yn) is V -uniformly ergodic with the Lyapunov function V (y) = q(1+y2),
where q > 1, so condition C1 is satisfied. The condition C2 also holds. Indeed, if the change occurs
from a0 to the i-th component with probability 1, i.e., P(Xn = i) = 1 for n > ν, then the Kullback–
Leibler information number is equal to

∫ ∞

−∞

[∫ ∞

−∞
[(y − a0x)

2 − (y − aix)
2]

1√
2π

exp

{
−1

2
(y − xai)

2

}
dy

]√
1− a2i
2π

exp

{
−1− a2i

2
x2
}

dx

=
(ai − a0)

2

2(1 − a2i )
.

Hence,

0 < K <
(max16i6d ai − a0)

2

2(1−max16i6d a
2
i )

< ∞.

The condition (4.6) in C2 holds for all r > 1 with V (y) = q(1 + y2) since all moments of the
Gaussian distribution are finite.

Appendix A: Auxiliary Results

A.1. A useful lemma

By ⌊x⌋ we denote, as usual, the largest integer that is less than or equal to x.

Lemma A.1. For 0 < ε < 1 and a small positive δ, let Nα,ε = (1 − ε)| log α|/(K + cα + δ). Let
the prior distribution {ωα

k }k>0 satisfy condition (2.10) with c = cα → 0 as α → 0. Assume that the
following condition holds

lim
M→∞

Pk

(
1

M
max

16n6M
Sk
k+n−1 > (1 + ε)K

)
= 0 for all ε > 0 and all k > 1. (A.1)

Then
lim
α→0

sup
T∈Cα

P
ω(0 6 T − ν < Nα,ε) = 0. (A.2)

Proof. Using an argument similar to that in the proof of Theorem 1 in [29] that has lead to the
inequality (3.11) in [29], we obtain that for any T ∈ Cα

Pk (0 6 T − k < Nα,ε) 6 pk(α, ε) + βk(α, ε), (A.3)
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where

βk(α, ε) = Pk

(
1

Nα,ε
max

16n6Nα,ε

Sk
k+n−1 > (1 + ε)K

)

and

pk(α, ε) 6 exp

{
(1 + ε)KNα,ε − | log α| − logP(ν > k +Nα,ε)

k +Nα,ε
(k +Nα,ε)

}
. (A.4)

Condition (2.10) implies that for all sufficiently large Nα,ε (small α), there is an arbitrary small
δ = δα such that

− logP(ν > k +Nα,ε)

k +Nα,ε
6 cα + δα,

where cα, δα → 0 as α → 0. Using this inequality after simple algebra we obtain

(1 + ε)KNα,ε − | log α| − log P(ν > k +Nα,ε)

k +Nα,ε
(k +Nα,ε) 6 − K

K + cα + δα
ε2| log α|+ k(dα + δα)

Hence, for all small α, the following inequality holds:

pk(α, ε) 6 exp

{
− K
K + cα + δα

ε2| log α|+ (cα + δα)k

}
, (A.5)

where the right-hand side approaches zero as α → 0 for

k 6 Kα,ε =

⌊ K ε3| log α|
(K + cα + δα)(cα + δα)

⌋
.

Thus,

sup
T∈Cα

P
ω(0 < T − ν < Nα,ε) =

∞∑

k=0

ωα
k sup

T∈Cα

Pk (0 6 T − k < Nα,ε)

6 P(ν > Kα,ε) +

Kα,ε∑

k=0

ωα
k sup

T∈Cα

Pk (0 6 T − k < Nα,ε)

6 P(ν > Kα,ε) +

Kα,ε∑

k=0

ωα
kβk(α, ε) + exp

{
− K
K+ cα + δα

ε2| log α|+ (dα + δα)Kα,ε

}

6 P(ν > Kα,ε) +

Kα,ε∑

k=0

ωα
kβk(α, ε) + exp

{
− K
K+ cα + δα

ε2(1− ε)| log α|
}
.

By condition (2.10),
− logP(ν > Kα,ε) = O(| log α|) → ∞ as α → 0,

so P(ν > Kα,ε) → 0 as α → 0. By condition (A.1), the second term goes to zero. The last term
also vanishes as α → 0 for all 0 < ε < 1. Therefore, all three terms go to zero for all 0 < ε < 1 and
(A.2) follows.
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A.2. A Markov nonlinear renewal theory

In this subsection, we give a brief summary of the Markov nonlinear renewal theory developed in
Fuh [7]. For the application of these results in this paper, we provide a simpler version which is more
transparent. Note that here there is no description for the change point, we use typical notations
in Markov chains.

Abusing the notation a little bit we let {Xn, n > 0} be a Markov chain on a general state space X
with σ-algebra A, which is irreducible with respect to a maximal irreducibility measure on (X ,A)
and is aperiodic. Let Sn =

∑n
k=1 Yk be the additive component, taking values on the real line R,

such that {(Xn, Sn), n > 0} is a Markov chain on X ×R with transition probability

P{(Xn+1, Sn+1) ∈ A× (B + s)|(Xn, Sn) = (x, s)}
= P{(X1, S1) ∈ A×B|(X0, S0) = (x, 0)} = P(x,A×B),

(A.6)

for all x ∈ X , A ∈ A and B ∈ B(R) (Borel σ-algebra on R). The chain {(Xn, Sn), n > 0} is called a
Markov random walk. In this subsection, let Pµ (Eµ) denote the probability (expectation) under the
initial distribution of X0 being µ. If µ is degenerate at x, we shall simply write Px (Ex) instead of
Pµ (Eµ). We assume throughout this section that there exists a stationary probability distribution
π, π(A) =

∫
P(x,A) dπ(x) for all A ∈ A and EπY1 > 0.

Let {Zn = Sn + ηn, n > 0} be a perturbed Markov random walk in the following sense: Sn is a
Markov random walk, ηn is Fn-measurable, where Fn is the σ-algebra generated by {(Xk, Sk), 0 6

k 6 n}, and ηn is slowly changing, that is, max16t6n |ηt|/n → 0 in probability. For λ > 0 define

T = Tλ = inf{n > 1 : Zn > λ}, inf ∅ = ∞. (A.7)

It is easy to see that for all λ > 0, Tλ < ∞ with probability 1. This section concerns the approxi-
mations to the distribution of the overshoot and the expected stopping time EµT as the boundary
tends to infinity.

We assume that the Markov chain {Xn, n > 0} on a state space X is V -uniformly ergodic defined
as (4.1). The following assumptions for Markov chains are used in this subsection.

A1. supx
{
E(V (X1))

V (x)

}
< ∞,

A2. supx Ex|Y1|2 < ∞ and supx
{
E(|Y1|rV (X1))

V (x)

}
< ∞ for some r > 1.

A3. Let µ be an initial distribution of the Markov chain {Xn, n > 0}. For some r > 1,

sup
||h||V 61

∣∣∣∣
∫

x∈X
h(x)Ex|Y1|r dµ(x)

∣∣∣∣ < ∞. (A.8)

A Markov random walk is called lattice with span d > 0 if d is the maximal number for which there
exists a measurable function γ : X → [0,∞) called the shift function, such that P{Y1−γ(x)+γ(y) ∈
{· · · ,−2d,−d, 0, d, 2d, · · · }|X0 = x,X1 = y} = 1 for almost all x, y ∈ X . If no such d exists, the
Markov random walk is called nonlattice. A lattice random walk whose shift function γ is identically
0 is called arithmetic.

To establish the Markov nonlinear renewal theorem, we shall make use of (A.6) in conjunction
with the following extension of Cramer’s (strongly nonlattice) condition: There exists δ > 0 such
that for all m,n = 1, 2, · · · , δ−1 < m < n, and all θ ∈ R with |θ| > δ

Eπ|E{exp(iθ(Yn−m + · · ·+ Yn+m))|Xn−m, · · · ,Xn−1,Xn+1, · · · ,Xn+m,Xn+m+1}| 6 e−δ.

Let Pu
+(x,B ×R) = Px{Xτ(0,u) ∈ B} for u 6 EπY1, denote the transition probability associated

with the Markov random walk generated by the ascending ladder variable Sτ(0,u). Here τ(0, u) :=
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inf{n : Sn > 0}. Under the V -uniform ergodicity condition and EπY1 > 0, a similar argument as
on page 255 of Fuh and Lai [9] yields that the transition probability P

u
+(x, · ×R) has an invariant

measure πu
+. Let E

u
+ denote expectation when X0 has the initial distribution πu

+. When u = EπY1,

we denote P
EπY1

+ as P+, and τ+ = τ(0,EπY1). Define

κ = κλ = ZT − λ, (A.9)

κ+ = E+S
2
τ+/2E+

Sτ+ , (A.10)

G(y) =
1

E+Sτ+

∫ ∞

y
P+{Sτ+ > s}ds, y > 0. (A.11)

Proposition A.1. Assume A1 holds, and A2, A3 hold with r = 1 and EπY1 ∈ (0,∞). Let µ be an
initial distribution of X0. Suppose for every ε > 0 there is δ > 0 such that

lim
n→∞

Pµ

(
max

16j6nδ
|ηn+j − ηn| > ε

)
= 0. (A.12)

If Y1 does not have an arithmetic distribution under Pµ, then for any y > 0

Pµ{XT ∈ B,κλ > y} =
1

E+Sτ+

∫

x∈B
dπ+(x)

∫ ∞

y
P+{Sτ+ > s}ds+ o(1) as λ → ∞. (A.13)

In particular, Pµ{κλ > y} = G(y) + o(1) as λ → ∞ for any r > 0. If, in addition, (T − λ)/
√
λ

converges in distribution to a random variable W as λ → ∞, then

lim
bλ→∞

Pµ{κλ > y, Tλ > λ+ t
√
λ} = G(y)P+{W > t}, (A.14)

for every real number t with P+{W = t} = 0.

To study the expected value of the nonlinear stopping times, we shall first give the regularity
conditions on the nonlinear perturbation η = {ηn, n > 1}. The process η is said to be regular if
there exists a random variable L, a function f(·) and a sequence of random variables Un, n > 1,
such that

ηn = f(n) + Un for n > L and sup
x∈X

ExL < ∞, (A.15)

max
16j6

√
n
|f(n+ j)− f(n)| 6 K, K < ∞, (A.16)

{
max
16j6n

|Un+j|, n > 1
}
is uniformly integrable, (A.17)

n sup
x∈X

Px

{
max
06j6n

Un+j > θn
}
→ 0 as n → ∞ for all θ > 0, (A.18)

∞∑

n=1

sup
x∈X

Px{−Un > wn} < ∞ for some 0 < w < EπY1, (A.19)

and there exists 0 < ε < 1 such that

sup
x∈X

Px

(
Tλ ≤ ελ

EmY1

)
= o(1/λ) as λ → ∞. (A.20)

We need the following notation and definitions before we formulate the Markov Nonlinear Re-
newal Theorem (MNRT). For a given Markov random walk {(Xn, Sn), n > 0}, let µ be an ini-
tial distribution of X0 and define µ∗(B) =

∑∞
n=0 Pµ

(
Xn ∈ B

)
on A. Let g = E(Y1|X0,X1) and
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Eπ|g| < ∞. Define operators P and Pπ by (Pg)(x) = Exg(x,X1, Y1) and Pπg = Eπg(X0,X1, Y1)
respectively, and set g = Pg. We shall consider solutions ∆(x) = ∆(x; g) of the Poisson equation

(
I −P

)
∆ =

(
I −Pπ

)
g µ∗-a.s., Pπ∆ = 0, (A.21)

where I is the identity operator. Under conditions A1–A3, it is known (cf. Theorem 17.4.2 of Meyn
and Tweedie [16]) that the solution ∆ of (A.21) exists and is bounded.

Proposition A.2 (MNRT). Assume A1 holds, and A2, A3 hold with r = 2. Let µ be an initial
distribution such that EµV (X0) < ∞. Suppose that conditions (A.15)–(A.20) hold. Then, as λ → ∞,

EµTλ = (EπY1)
−1

(
λ+ Eπ+

S2
τ+/2Eπ+

Sτ+ − f(λ/EπY1)− EπU

−
∫
∆(x) d(π+(x)− µ(x))

)
+ o(1).

(A.22)
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