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Abstract

Lossy coding of correlated sources over a multiple access channel (MAC) is studied. First, a joint

source-channel coding scheme is presented when the decoder has correlated side information. Next,

the optimality of separate source and channel coding, that emerges from the availability of a common

observation at the encoders, or side information at the encoders and the decoder, is investigated. It is

shown that separation is optimal when the encoders have access to a common observation whose lossless

recovery is required at the decoder, and the two sources are independent conditioned on this common

observation. Optimality of separation is also proved when the encoder and the decoder have access to

shared side information conditioned on which the two sources are independent. These separation results

obtained in the presence of side information are then utilized to provide a set of necessary conditions

for the transmission of correlated sources over a MAC without side information. Finally, by specializing

the obtained necessary conditions to the transmission of binary and Gaussian sources over a MAC, it

is shown that they can potentially be tighter than the existing results in the literature, providing a novel

converse for this fundamental problem.
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I. INTRODUCTION

This paper considers the lossy coding of correlated discrete memoryless (DM) sources over

a DM multiple access channel (MAC). Separate source and channel coding is known to be

suboptimal for this setup in general, even when the lossless reconstruction of the sources is

required [1]. This is in contrast to the point-to-point scenario for which the separation of source

and channel coding is optimal, also known as the separation theorem [2]. The characterization of

the achievable distortion region when transmitting correlated sources over a MAC is one of the

fundamental open problems in network information theory, solved only for some special cases.

This problem is also related to another long-standing open problem, namely the multi-terminal

lossy source-coding problem, which refers to the scenario when the underlying MAC consists

of two orthogonal finite-capacity error-free links. Despite the lack of a general single-letter

characterization for the multi-terminal source coding problem, separate source and channel

coding is optimal when the underlying MAC is orthogonal [3]. Separation is also optimal when

one of the sources is shared between the two encoders [4], or for the lossless case, when the

decoder has access to side information conditioned on which the two sources are independent

[5]. However, due to the lack of a general separation result, the achievable distortion region is

unknown even in scenarios for which the corresponding source coding problem can be solved.

In the absence of single-letter necessary and sufficient conditions, the goal is to obtain

computable inner and outer bounds. A fairly general joint source-channel coding scheme was

introduced in [6] by leveraging hybrid coding. This scheme subsumes most other known coding

schemes. A novel outer bound was presented in [7] for the Gaussian setting, which uses the fact

that the correlation among channel inputs is limited by the correlation available among source

sequences. Other bounds were proposed in [8], [9], and more recently in [10], [11]. Optimality

of source-channel separation was studied in [5], [12], and the optimality of uncoded transmission

was investigated for Gaussian sources over multi-terminal Gaussian channels in [13].

This paper studies the achievable distortion region for sending correlated sources over a MAC.

In the first part of the paper, it is assumed that the encoders and/or the decoder may have access

to side information correlated with the sources (see Fig. 1). Initially, a joint source-channel

coding scheme is proposed when side information is available only at the decoder. Then, we

investigate separation theorems that emerge from the availability of a common observation at

the encoders, or from the availability of side information at the encoders and the decoder. In
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doing so, we first focus on the scenario in which the encoders share a common observation

conditioned on which the two sources are independent. For this setup, we show that separation

is optimal when the decoder is required to recover the common observation losslessly, but can

tolerate some distortion for the parts known only at a single encoder. Corresponding necessary

and sufficient conditions are identified for the optimality of separation. Next, we consider the

scenario in which the encoders and the decoder have access to shared side information, and

show that separation is again optimal if the two sources are conditionally independent given the

side information.

In the second part of the paper, we leverage the separation theorems derived in the first

part to obtain a new set of necessary conditions for the achievability of a distortion pair when

transmitting correlated sources over a MAC without any side information. In particular, we obtain

our computable necessary conditions by providing particular side information sequences to the

encoders and the decoder to induce the optimality of separation. Based on the results of the

first part, this can be achieved when the two sources are conditionally independent given the

side information. Optimality of separation conditioned on the provided side information allows

us to characterize the corresponding necessary conditions explicitly. Conditional independence

inducing side information sequences have previously been used to obtain converse results in some

multi-terminal source coding problems [14], [15]. In this paper, they are used to obtain converse

results in a multi-terminal joint source-channel coding problem. The necessary conditions are

then specialized to the case of bivariate Gaussian sources over a Gaussian MAC as well as

doubly symmetric binary sources (DSBS) over a Gaussian MAC. By providing comparisons

between the new necessary conditions and the known bounds in the literature, we show that the

proposed technique can potentially provide tighter converse bounds than the previous results in

the literature.

In the remainder of the paper, X represents a random variable, and x is its realization. Xn =

(X1, . . . , Xn) is a random vector of length n, and xn = (x1, . . . , xn) denotes its realization. X
is a set with cardinality |X |. E[X ] is the expected value and var(X) is the variance of X .

II. SYSTEM MODEL

We consider the transmission of DM sources S1 and S2 over a DM MAC as illustrated in Fig.1.

Encoder 1 observes Sn
1 = (S11, . . . , S1n), whereas encoder 2 observes Sn

2 = (S21, . . . , S2n). If

switch SW2 in Fig. 1 is closed, the two encoders also have access to a common observation Zn
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, Ŝn

2
, Ẑn)

Fig. 1. Communication of correlated sources over a MAC.

correlated with Sn
1 and Sn

2 . Encoders 1 and 2 map their observations to the channel inputs Xn
1

and Xn
2 , respectively. The channel is characterized by the conditional distribution p(y|x1, x2). If

switch SW1 in Fig. 1 is closed, the decoder has access to side information Zn. Upon observing

the channel output Y n and side information Zn whenever it is available, the decoder constructs

the estimates Ŝn
1 , Ŝn

2 , and Ẑn. Corresponding average distortion values for the source sequence

Ŝn
j , j = 1, 2, is given by

∆
(n)
j =

1

n

n
∑

i=1

E[dj(Sji, Ŝji)], (1)

where dj(·, ·) < ∞ is the distortion measure for source Sn
j . A distortion pair (D1, D2) is

achievable for the source pair (S1, S2) and channel p(y|x1, x2) if there exists a sequence of

encoding and decoding functions such that

lim sup
n→∞

∆
(n)
j ≤ Dj, j = 1, 2, (2)

and P (Zn 6= Ẑn)→ 0 as n→∞ when at least one of the switches is closed. Random variables

S1, S2, Z, X1, X2, Y , Ŝ1, Ŝ2, Ẑ are defined over the corresponding alphabets S1, S2, Z , X1, X2,

Y , Ŝ1, Ŝ2, Ẑ . Note that, when switch SW1 is closed, error probability in decoding Zn becomes

irrelevant since it is readily available at the decoder, and serves as side information.

Throughout the paper, we use the following definitions extensively.

Definition 1. (Conditional rate distortion function) [16] Given correlated random variables S

and U , define the minimum average distortion for S given U as [4], [17]:

E(S|U) = inf
f :U→Ŝ

E[d(S, f(U))], (3)

where the minimum is over all functions f(·) from U to the reconstruction alphabet Ŝ . Then, the

conditional rate distortion function for source S when correlated side information Z is shared
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between the encoder and the decoder is given by,

RS|Z(D) = min
p(u|s,z):

E(S|U,Z)≤D

I(S;U |Z), (4)

where the minimum is over all conditional distributions p(u|s, z) such that the minimum average

distortion for S given U and Z is less than or equal to D.

Definition 2. (Gács-Körner common information) [18] Define the function fj : Sj → {1, . . . , k}
for j = 1, 2, with the largest integer k such that P (fj(Sj) = u0) > 0 for u0 ∈ {1, . . . , k},
j = 1, 2, and P (f1(S1) = f2(S2)) = 1. Then, U0 = f1(S1) = f2(S2) is defined as the common

part between S1 and S2, and the Gács-Körner common information is given by

CGK(S1, S2) = H(U0). (5)

Definition 3. (Wyner’s common information) [19] Wyner’s common information between S1 and

S2 is defined as,

CW (S1, S2) = min
p(v|s1,s2)
S1−V−S2

I(S1, S2;V ). (6)

III. JOINT SOURCE-CHANNEL CODING WITH DECODER SIDE INFORMATION

We first assume that only SW1 is closed in Fig. 1, and present a general achievable scheme

for the lossy coding of correlated sources in the presence of decoder side information.

Theorem 1. When sending correlated DM sources S1 and S2 over a DM MAC with p(y|x1, x2)

and decoder side information Z, distortion pair (D1, D2) is achievable if there exists a joint dis-

tribution p(u1, u2, s1, s2, z) = p(u1|s1)p(u2|s2)p(s1, s2, z), and functions xj(uj, sj), gj(u1, u2, y, z)

for j = 1, 2, such that

I(U1;S1|U2, Z) < I(U1; Y |U2, Z) (7)

I(U2;S2|U1, Z) < I(U2; Y |U1, Z) (8)

I(U1, U2;S1, S2|Z) < I(U1, U2; Y |Z) (9)

and E[dj(Sj, gj(U1, U2, Y, Z))] ≤ Dj for j = 1, 2.

Proof. Our achievable scheme builds upon the hybrid coding framework of [6], by generalizing

it to the case with decoder side information. The detailed proof is available in Appendix A.
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IV. SEPARATION THEOREMS

We now focus on the conditions under which separation is optimal for lossy coding of

correlated sources over a MAC. For the remainder of this section, we assume that S1 and

S2 are independent conditioned on Z, i.e., the Markov condition S1 − Z − S2 holds.

1) Separation in the Presence of Common Observation: Here, we assume that only switch

SW2 in Fig. 1 is closed, and show the optimality of separation if the lossless reconstruction of

the common observation Z is required.

Theorem 2. Consider the communication of correlated sources S1, S2, and Z, where Z is

observed by both encoders. If S1 − Z − S2 holds, then separation is optimal, and (D1, D2) is

achievable if

RS1|Z(D1) < I(X1; Y |X2,W ) (10)

RS2|Z(D2) < I(X2; Y |X1,W ) (11)

RS1|Z(D1) +RS2|Z(D2) < I(X1, X2; Y |W ) (12)

H(Z) +RS1|Z(D1) +RS2|Z(D2) < I(X1, X2; Y ) (13)

for some p(x1, x2, y, w) = p(y|x1, x2)p(x1|w)p(x2|w)p(w).
Conversely, if a distortion pair (D1, D2) is achievable, then (10)-(13) must hold with <

replaced with ≤.

Proof. We provide a detailed proof in Appendix B.

Corollary 1. A special case of Theorem 2 is the transmission of two correlated sources over a

MAC with one distortion criterion, when one source is available at both encoders as considered

in [4], which corresponds to S2 being a constant in Theorem 2.

A related scenario is when the two sources share a common part in the sense of of Gács-

Körner. The following result states that, in accordance with Theorem 2, if the two sources

are independent when conditioned on the Gács-Körner common part, then separate source and

channel coding is optimal if lossless reconstruction of the common part is required.

Corollary 2. Consider the transmission of correlated sources S1 and S2 with a common part

U0 = f1(S1) = f2(S2) from Definition 2. If S1−U0−S2 and the common part U0 of S1 and S2
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is to be recovered losslessly, then, separate source and channel coding is optimal.

Proof. From Definition 2, the two encoders can separately reconstruct U0. The result then follows

by letting Z ← U0 in Theorem 2.

2) Separation in the Presence of Shared Encoder-Decoder Side Information: We next assume

that both switches in Fig. 1 are closed, and show the optimality of separation if the two sources

are independent given the side information that is shared between the encoders and the decoder.

Theorem 3. Consider communication of two correlated sources S1 and S2 with side information

Z shared between the encoders and the decoder. If S1−Z−S2 holds, then separation is optimal,

and (D1, D2) is achievable if

RS1|Z(D1) < I(X1; Y |X2, Q) (14)

RS2|Z(D2) < I(X2; Y |X1, Q) (15)

RS1|Z(D1) +RS2|Z(D2) < I(X1, X2; Y |Q) (16)

for some p(x1, x2, y, q) = p(y|x1, x2)p(x1|q)p(x2|q)p(q).
Conversely, for any achievable (D1, D2) pair, (14)-(16) must hold with < replaced with ≤.

Proof. See Appendix C.

When side information Z is available only at the decoder, i.e., when only switch SW1 is

closed, separation is known to be optimal for the lossless transmission of sources S1 and S2

whenever S1−Z−S2 [5]. In light of Theorem 3, we show that a similar result holds for the lossy

case whenever the Wyner-Ziv rate distortion function of each source is equal to its conditional

rate distortion function.

Corollary 3. Consider the communication of correlated sources S1 and S2 with decoder only

side information Z. If

RSj |Z(Dj) = RWZ
Sj |Z

(Dj), (17)

where

RWZ
Sj |Z

(Dj) , min
p(uj |sj),g(uj ,z):

E[dj(Sj ,g(Uj ,Z))]≤Dj

Uj−Sj−Z

I(Sj ;Uj|Z) for j = 1, 2,
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is the (Wyner-Ziv) rate distortion function of Sj with decoder-only side information Z [20], and

S1−Z −S2 form a Markov chain, then separation is optimal, with the necessary and sufficient

conditions in (14)-(16).

Proof. Corollary 3 follows from the fact that whenever (17) holds, conditional rate distortion

functions in Theorem 3 are achievable by relying on decoder side information only.

We note that Gaussian sources are an example for (17).

Remark 1. We would like to note that the optimality/sub-optimality of separation for the case

of decoder-only side information conditioned on which the two sources are independent is open

in general. In addition to the setting in Corollary 3, the optimality of separation holds also for

lossless reconstruction [5].

Lastly, we consider the transmissibility of correlated sources with a common part when the

common part is available at the decoder. The following result states that if the two sources are

independent when conditioned on the Gács-Körner common part, separation is again optimal if

the decoder has access to the common part.

Corollary 4. Consider the transmission of sources S1 and S2 with a common part U0 = f1(S1) =

f2(S2) from Definition 2. Then, separation is optimal if S1 − U0 − S2 and the common part U0

is available at the decoder.

Proof. Since both encoders can extract U0 individually, each source can achieve the correspond-

ing conditional rate distortion function. Corollary 4 then follows from Theorem 3 by letting

Z ← U0.

In the following, we leverage these separation results to obtain necessary conditions for the

lossy coding of correlated sources over a MAC without side information.

V. NECESSARY CONDITIONS FOR TRANSMITTING CORRELATED SOURCES OVER A MAC

We consider in this section the lossy coding of correlated sources over a MAC when both

switches in Fig. 1 are open; see Fig. 2. We provide necessary conditions for the achievability

of a distortion pair (D1, D2) using our results from Section IV. This will be achieved by

providing correlated side information to the encoders and the decoder, conditioned on which

the two sources are independent. From Theorem 3, separation is optimal in this setting, and
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Fig. 2. Correlated sources over a MAC.

the corresponding necessary and sufficient conditions for the achievability of a distortion pair

serve as necessary conditions for the original problem. Corresponding necessary conditions are

presented in Theorem 4 below.

Theorem 4. Consider the communication of correlated sources S1 and S2 over a MAC. If a

distortion pair (D1, D2) is achievable, then for every Z satisfying the Markov condition S1 −
Z − S2, we have

RS1|Z(D1) ≤ I(X1; Y |X2, Q), (18)

RS2|Z(D2) ≤ I(X2; Y |X1, Q), (19)

RS1|Z(D1) +RS2|Z(D2) ≤ I(X1, X2; Y |Q), (20)

RS1S2(D1, D2) ≤ I(X1, X2; Y ), (21)

for some Q for which X1 −Q−X2 form a Markov chain, where

RS1S2(D1, D2) = min
p(ŝ1,ŝ2|s1,s2)

E[d1(S1,Ŝ1)]≤D1

E[d2(S2,Ŝ2)]≤D2

I(S1, S2; Ŝ1, Ŝ2)

is the rate distortion function of the joint source (S1, S2) with target distortions D1 and D2 for

sources S1 and S2, respectively.

Proof. For any Z that satisfies the Markov condition S1 −Z − S2, we consider the genie-aided

setting in which Zn is provided to the encoders and the decoder. Then, we obtain the setting in

Theorem 3. Conditions (18)-(20) follow from Theorem 3, whereas condition (21) follows from

the cut-set bound.
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A. Correlated Sources over a Gaussian MAC

In this section, we focus on a memoryless MAC with additive Gaussian noise:

Y = X1 +X2 +N, (22)

where N is a standard Gaussian random variable. We impose the input power constraints

1
n

∑n
i=1E[X

2
ji] ≤ P , j = 1, 2. In the following, we specialize the necessary conditions of

Theorem 4 to a Gaussian MAC.

Corollary 5. If a distortion pair (D1, D2) is achievable for sources (S1, S2) over the Gaussian

MAC in (22), then for every Z that forms a Markov chain S1 − Z − S2, we have

RS1|Z(D1) +RS2|Z(D2) ≤
1

2
log(1 + β1P + β2P ) (23)

RS1S2(D1, D2) ≤
1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)) (24)

for some 0 ≤ β1, β2 ≤ 1.

Proof. The corollary follows by considering only (20)-(21), and from the fact that the right hand

sides (RHSs) of these inequalities are maximized by Gaussian Q, X1, and X2 [21].

1) Gaussian Sources over a Gaussian MAC: This section studies the necessary conditions for

transmitting correlated Gaussian sources over a Gaussian MAC. Consider a bivariate Gaussian

source (S1, S2) such that




S1

S2



 ∼ N









0

0



 ,





1 ρ

ρ 1







 , (25)

transmitted over the DM Gaussian MAC in (22), under the squared error distortion measures

dj(Sj , Ŝj) = (Sj − Ŝj)
2 for j = 1, 2.

For this setup, various notable results exist, each presenting different sets of necessary condi-

tions. The following necessary condition is obtained in [7, Theorem IV.1]:

RS1S2(D1, D2) ≤
1

2
log(1 + 2P (1 + ρ)). (26)

Another set of necessary conditions is proposed in [8, Theorem 2]. By substituting σ2
Z = σ2

1 =

σ2
2 = 1 and E1 = E2 = P in [8, Theorem 2], these conditions can be stated as follows:

1

(1− ρ̂)2
ln

(

1− ρ2

Dk

)

≤ P, k = 1, 2, (27)
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(ln 2)RS1S2(D1, D2) ≤ P (1 + ρ̂), (28)

for some 0 ≤ ρ̂ ≤ |ρ|.
Other sets of necessary conditions have recently been presented in [10, Theorem 1], [13,

Proposition 2], and [11, Theorems 1 and 4], all incorporating various auxiliary random variables.

It is not possible in general to compare Theorem 4 over the full set of conditions presented in

these results, since this involves optimization of auxiliary random variables and a large number

of parameters. For this reason, here we compare Corollary 5 with (26), (27)-(28), along with the

conditions from [10, Corollary 1.1], which is a relaxed version of [10, Theorem 1]. Note that

Corollary 5 is also a weaker version of Theorem 4, where, for fairness, the first two single rate

conditions are removed as in [10, Corollary 1.1].

The set of necessary conditions from [10, Corollary 1.1] can be stated as:

RS1S2(D1, D2)−
1

2
log

1 + ρ

1− ρ
≤ 1

2
log(1 + β1P + β2P ) (29)

RS1S2(D1, D2) ≤
1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)) (30)

for some 0 ≤ β1, β2 ≤ 1.

For the necessary conditions in Corollary 5, we let Z be the common part of (S1, S2) with

respect to Wyner’s common information from (6). The common part can be characterized as

follows [22, Proposition 1]. Let Z, N1, and N2 be standard random variables. Then, S1, and S2

can be expressed as

Si =
√
ρZ +

√

1− ρNi, i = 1, 2, (31)

where I(S1, S2;Z) =
1
2
log 1+ρ

1−ρ
and I(S1, S2;Z

′) > 1
2
log 1+ρ

1−ρ
for all S1 − Z ′ − S2 with Z ′ 6= Z.

The rate distortion function for Si with encoder and decoder side information Z is [23]:

RSi|Z(Di) =







1
2
log 1−ρ

Di
if 0 < Di < 1− ρ

0 if Di ≥ 1− ρ
(32)

for i = 1, 2. We also have, from [7], [24], that,

RS1S2(D1, D2) =



























1
2
log
(

1
min(D1,D2)

)

if (D1, D2) ∈ D1

1
2
log+

(

1−ρ2

D1D2

)

if (D1, D2) ∈ D2

1
2
log+

(

1−ρ2

D1D2−
(

ρ−
√

(1−D1)(1−D2)
)2

)

if (D1, D2) ∈ D3

, (33)
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2 11− ρ
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2

1
D1
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(a)

1− ρ
2 11− ρ

1− ρ

1− ρ
2

1

A

B

C

D E

F

G
H

I

J

D1

D2

(b)

Fig. 3. (a) Regions D1, D2, and D3. (b) Partitioned distortion regions for (D1, D2).

where log+(x) = max{0, log(x)}, and

D1 =

{

(D1, D2) : (0 ≤ D1 ≤ 1− ρ2, D2 ≥ 1− ρ2 + ρ2D1) or

(

1− ρ2 < D1 ≤ 1, D2 ≥ 1− ρ2 + ρ2D1, D2 ≤
D1 − (1− ρ2)

ρ2

)

}

(34)

D2 =

{

(D1, D2) : 0 ≤ D1 ≤ 1− ρ2, 0 ≤ D2 < (1− ρ2 −D1)
1

1−D1

}

(35)

D3 =

{

(D1, D2) :
(

0 ≤ D1 ≤ 1− ρ2, (1− ρ2 −D1)
1

1−D1
≤ D2 < 1− ρ2 + ρ2D1

)

or

(

1− ρ2 < D1 ≤ 1,
D1 − (1− ρ2)

ρ2
< D2 < 1− ρ2 +ρ2D1

)

}

. (36)

Fig. 3a illustrates the regions D1, D2, and D3 as in [7].

By analyzing the corresponding expressions from Corollary 5, (26), (27)-(28), and (29)-(30),

the next proposition shows that there exist (D1, D2) values for which Corollary 5 is tighter; that

is, while other results cannot make any judgement on the achievability of such (D1, D2) pairs,

they are shown not to be achievable thanks to Corollary 5.

Proposition 1. There exist distortion pairs that are included in the outer bounds of [7, Theorem

IV.1], [8, Theorem 2], and [10, Corollary 1.1], but not in the outer bound of Corollary 5.

Proof. The details are given in Appendix D.

A graphical illustration of the bounds from Corollary 5, [7, Theorem IV.1], and [10, Corollary
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1.1] can be provided as follows. Define

r1(β1, β2) ,
1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)), (37)

r2(β1, β2) ,
1

2
log(1 + β1P + β2P ), (38)

and consider the region

R =
⋃

0≤β1,β2≤1

{(R1, R2) : R1 ≤ r1(β1, β2), R2 ≤ r2(β1, β2)} . (39)

The necessary conditions in Corollary 5 state that, if a (D1, D2) pair is achievable, then

(

RS1S2(D1, D2), RS1|Z(D1) + RS2|Z(D2)
)

∈ R. (40)

The necessary conditions in (29)-(30) state that, if a (D1, D2) pair is achievable, then

(

RS1S2(D1, D2), RS1S2(D1, D2)−
1

2
log

1 + ρ

1− ρ

)

∈ R. (41)

Let D1 = 0.145 < 1 − ρ. Consider first Region B, for which D1 ≤ 1 − ρ and 1 − ρ ≤ D2 ≤
1−ρ2−D1

1−D1
. For a (D1, D2) pair in Region B, i.e., D1 = 0.145 and 1 − ρ ≤ D2 ≤ 1−ρ2−D1

1−D1
, we

have from (32) and (33) that

(

RS1S2(D1, D2), RS1|Z(D1) +RS2|Z(D2)
)

=

(

1

2
log

1− ρ2

D1D2

,
1

2
log

1− ρ

D1

)

. (42)

The (RS1S2(D1, D2), RS1|Z(D1)+RS2|Z(D2)) pairs obtained from (42) for increasing D2 values

within Region B are illustrated with a green “+” sign in Fig. 4a. The region R from (39) is the

region shaded in blue in the same figure. Whenever a point from (42) falls outside of R, we

conclude that the corresponding (D1, D2) pair is not achievable according to Corollary 5. We

also evaluate

(

RS1S2(D1, D2), RS1S2(D1, D2)−
1

2
log

1 + ρ

1− ρ

)

=

(

1

2
log

1− ρ2

D1D2
,
1

2
log

(1− ρ)2

D1D2

)

(43)

for points (0.145, D2) in Region B, using (33). The points corresponding to (43) for different D2

values are marked with a dark blue “*” in Fig. 4a. Whenever a point from (43) is not contained

within R, then the corresponding (D1, D2) pair is not achievable according to (29)-(30).

Next, we consider (D1, D2) pairs from Region D, for which D1 ≤ 1−ρ and 1−ρ2−D1

1−D1
≤ D2 ≤
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(b)

Fig. 4. Comparison of the necessary conditions from Corollary 5 with the necessary conditions from (26) and (29)-(30),

respectively, for P = 2, ρ = 0.5, and (a) D1 = 0.145, (b) D1 = 0.16.

1− ρ2 + ρ2D1. We evaluate

(

RS1S2(D1,D2), RS1|Z(D1)+RS2|Z(D2)
)

=

(

1

2
log+

(

1−ρ2

D1D2−
(

ρ−
√

(1−D1)(1−D2)
)2

)

,
1

2
log

1−ρ
D1

)

(44)

from (32)-(33). The values obtained for D1 = 0.145 and D2 ∈
(

1−ρ2−D1

1−D1
, 1− ρ2 + ρ2D1

)

are

marked with a purple “+” in Fig. 4a. Similarly, from (33), for (D1, D2) ∈ Region D,
(

RS1S2(D1, D2), RS1S2(D1, D2)−
1

2
log

1 + ρ

1− ρ

)

=

(

1

2
log+

(

1−ρ2

D1D2−
(

ρ−
√

(1−D1)(1−D2)
)2

)

,
1

2
log+

(

(1−ρ)2

D1D2−
(

ρ−
√

(1−D1)(1−D2)
)2

))

. (45)

Corresponding points for D1 = 0.145 and increasing D2 values in Region D are illustrated with

a red “x” marking in Fig. 4a.

Finally, we consider (D1, D2) ∈ Region G, where D1 ≤ 1− ρ, 1− ρ2 + ρ2D1 ≤ D2 ≤ 1, and

(

RS1S2(D1, D2), RS1|Z(D1) +RS2|Z(D2)
)

=

(

1

2
log

1

D1
,
1

2
log

1− ρ

D1

)

. (46)

Corresponding points are marked with a pink “+” in Fig. 4a. Note that since (46) depends only
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on D1, these points appear as a single point. We also evaluate

(

RS1S2(D1, D2), RS1S2(D1, D2)−
1

2
log

1 + ρ

1− ρ

)

=

(

1

2
log

1

D1
,
1

2
log

1− ρ

D1(1 + ρ)

)

(47)

for 1− ρ2 + ρ2D1 ≤ D2 ≤ 1 from (33). This is marked with a black “*” in Fig. 4a. Since (47)

also depends only on D1, they appear as a single point. One can observe from (42)-(43), as

well as from (44)-(45) and (46)-(47), that the points that share the same value on the horizontal

axis in Fig. 4a correspond to the same (D1, D2) pairs, as the first terms of both (42)-(43) and

(44)-(45) as well as (46)-(47) are equal.

Lastly, we illustrate the RHS of (26) with a straight line in Fig. 4a. The points on the RHS of

this line correspond to (D1, D2) pairs that are not achievable according to (26), since for these

points one has

RS1S2(D1, D2) >
1

2
log(1 + 2P (1 + ρ)). (48)

In order to compare the three bounds, we investigate the (D1, D2) pairs that cannot be achieved

by Corollary 5, (26), and (29)-(30), respectively. From Fig. 4a, we find that when D1 = 0.145,

some (D1, D2) pairs in Regions G and D (from Fig. 3b) satisfy both (26) and (29)-(30), but

not Corollary 5, as can be observed from the pink and purple points marked with the “+” sign

that are on the left hand side (LHS) of the straight line, but outside of R. Therefore, we can

conclude that there exist distortion pairs for which Corollary 5 provides tighter conditions than

both (26) and (29)-(30) in Regions G and D.

We also compare the corresponding bounds when D1 = 0.16 in Fig. 4b. From the green

points marked with the “+” sign that are on the LHS of the straight line but are outside of R,

we observe that there exist distortion pairs in Region B for which Corollary 5 provides tighter

conditions than both (26) and (29)-(30).

We note, however, that Corollary 5 is not necessarily strictly tighter for all (D1, D2) pairs. The

next proposition states that there exist (D1, D2) pairs for which (26) is tighter than Corollary 5.

Proposition 2. There exist distortion pairs that are in the outer bound of Corollary 5, but not

in the outer bound of [7, Theorem IV.1].

Proof. The details are available in Appendix E.

2) Binary Sources over a Gaussian MAC: We next study the transmission of a doubly

symmetric binary source (DSBS) over a Gaussian MAC. Consider a DSBS with joint distribution
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Fig. 5. (a) Z-channel structure. (b) p(Si, Z) for i = 1, 2.

p(S1=s1, S2=s2) =
1−α
2

(1−|s1−s2|) +
α

2
|s1−s2|, (49)

a memoryless Gaussian MAC from (22), and Hamming distortion dj(Sj, Ŝj) = |Sj−Ŝj | where

Ŝj=Sj={0, 1} for j = 1, 2.

For the conditions in Corollary 5, we choose the variable Z as illustrated in Fig. 5a. Then the

joint distribution for (Si, Z) is as given in Fig. 5b for i = 1, 2. Note that Z forms a Z-channel

both with S1 and S2 while satisfying S1−Z −S2. Using the conditional rate-distortion function

for the Z-channel setting from [25], one can evaluate Corollary 5.

We compare Corollary 5 first with the set of necessary conditions from [7, Remark IV.1],

RS1S2(D1, D2) ≤
1

2
log(1 + 2P (1 + ρmax)), (50)

where RS1S2(D1, D2) is as in [26, Theorem 2], and ρmax is the Hirschfield-Gebelin-Rényi

maximal correlation for DSBS given by [27]:

ρmax =
√

2(α2 + (1− α)2)− 1. (51)

We next consider the necessary conditions from [10, Corollary 1.1],

RS1S2(D1, D2)− 1− h(α) + 2h(θ) ≤ 1

2
log(1 + β1P + β2P ) (52)

RS1S2(D1, D2) ≤
1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)) (53)

for some 0 ≤ β1, β2 ≤ 1, where θ = (1/2)(1−
√
1− 2α) and h(λ) = −λ log λ−(1−λ) log(1−λ)

is the binary entropy function, and CW (S1, S2) from (6) is as in [19].

The last set of necessary conditions we consider is obtained from [10, Theorem 1] by removing
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(9a) and (9b) and letting W ← Z, where Z is as defined in Fig. 5,

RS1S2(D1, D2)− 1 +
α

1− α
h(α) ≤ 1

2
log(1 + β1P + β2P ), (54)

RS1S2(D1, D2) ≤
1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)), (55)

for some 0 ≤ β1, β2 ≤ 1. In the following, we compare Corollary 5 with the necessary conditions

from (50) and (52)-(53) as well as from (54)-(55).

Proposition 3. There exist distortion pairs that satisfy the outer bounds of [7, Remark IV.1],

[10, Corollary 1.1], and (54)-(55) but not the outer bound of Corollary 5 for the binary setup.

Proof. The details are provided in Appendix F.

VI. CONCLUSIONS

We have considered the lossy coding of correlated sources over a MAC. We have provided

an achievable scheme for the transmission of correlated sources in the presence of decoder side

information, and investigated the conditions under which separate source and channel coding

is optimal when the encoder and/or decoder has access to side information. By leveraging the

obtained separation theorem in the presence of a common side information conditioned on

which the two sources are independent, we derived a simple and computable set of necessary

conditions for the lossy coding of correlated sources over a MAC. The comparison of the new

necessary conditions with the known results from the literature are provided for the Gaussian

setting, i.e., Gaussian sources transmitted over a Gaussian MAC, as well as for a DSBS over

a Gaussian MAC. Identifying necessary conditions for the transmissibility of correlated sources

is an active open research direction. A direct comparison of the proposed necessary conditions

appear to be difficult analytically, and, due to the dimensionality of the search space, numerically.

Accordingly, we point to this problem as an interesting future direction. Another interesting

open problem is the optimality/suboptimality of separation in the presence of decoder-only side

information, conditioned on which the two sources are independent. Other future directions

include the (sub)optimality of separation in other multi-terminal scenarios with side information.
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APPENDIX A

PROOF OF THEOREM 1

Our achievable scheme is along the lines of [6]. For completeness, we provide the details in

the sequel.

Generation of the codebook: Choose ǫ > ǫ′ > 0. Fix p(u1|s1), p(u2|s2), x1(u1, s1), x2(u2, s2),

ŝ1(u1, u2, y, z) and ŝ2(u1, u2, y, z) with E[dj(Sj, Ŝj)] ≤ Dj

1+ǫ
for j = 1, 2.

For each j = 1, 2, generate 2nRj sequences un
j (mj) for mj ∈ {1, . . . , 2nRj} independently

at random conditioned on the distribution
∏n

i=1 pUj
(uji). The codebook is known by the two

encoders and the decoder.

Encoding: Encoder j = 1, 2 observes a sequence snj and tries to find an index mj ∈ {1, . . . , 2nRj}
such that the corresponding un

j (mj) is jointly typical with snj , i.e., (snj , u
n
j (mj)) ∈ T (n)

ǫ′ . If

more than one index exist, the encoder selects one of them uniformly at random. If no such

index exists, it selects a random index uniformly. Upon selecting the index, encoder j sends

xji = xj(uji(mj), sji) for i = 1, . . . , n to the decoder.

Decoding: The decoder observes the channel output yn and side information zn, and tries

to find a unique pair of indices (m̂1, m̂2) such that (un
1(m̂1), u

n
2(m̂2), y

n, zn) ∈ T (n)
ǫ and sets

ŝji = ŝj(u1i(m1), u2i(m2), yi, zi) for i = 1, . . . , n for j = 1, 2.

Expected Distortion Analysis: Let M1 and M2 denote the indices selected by encoder 1 and

encoder 2. Define

E{(Sn
1 , S

n
2 , U

n
1 (M̂1), U

n
2 (M̂2), Y

n, Zn) /∈ T (n)
ǫ } (56)

such that the distortion pair (D1, D2) is satisfied if P (E)→ 0 as n→∞. Let

Ej = {(Sn
j , U

n
j (mj)) /∈ T (n)

ǫ′ ∀mj}, j = 1, 2 (57)

E3 = {(Sn
1 , S

n
2 , U

n
1 (M1), U

n
2 (M2), Y

n, Zn) /∈ T (n)
ǫ } (58)

E4 = {(Un
1 (m1), U

n
2 (m2), Y

n, Zn) ∈ T (n)
ǫ for some m1 6= M1, m2 6= M2} (59)

E5 = {(Un
1 (m1), U

n
2 (M2), Y

n, Zn) ∈ T (n)
ǫ for some m1 6= M1} (60)

E6 = {(Un
1 (M1), U

n
2 (m2), Y

n, Zn) ∈ T (n)
ǫ for some m2 6= M2} (61)

Then,

P (E) ≤ P (E1) + P (E2) + P (E3 ∩ E c1 ∩ E c2) + P (E4) + P (E5) + P (E6). (62)
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Fig. 6. Distributed source coding for correlated sources (Y0, Y1, Y2) where Yj is observed by encoder j = 0, 1, 2. The decoder

reconstructs Y0 losslessly, while Y1 and Y2 are reconstructed in a lossy manner, with respect to the distortion criterion in (63).

Through standard techniques based on joint typicality coding, it can be shown that P (E) → 0

as n → ∞ and one can bound the expected distortions for E c for the two sources S1 and S2,

when the sufficient conditions in (7)-(9) are satisfied.

APPENDIX B

PROOF OF THEOREM 2

A. Achievability

Our source coding part is based on the distributed source coding scheme with a common

part from [28]. For completeness, we briefly outline the problem setup in [28], also depicted

in Fig. 6. This problem considers the transmission of correlated DM sources (Y0, Y1, Y2) such

that Yj is observed by encoder j = 0, 1, 2. Lossless reconstruction of source Y0 is required at

the decoder, while the remaining two sources, Y1 and Y2, are recovered in a lossy manner, with

respect to corresponding per-letter distortion constraints. In other words, we have

lim sup
n→∞

1

n

n
∑

i=1

E[dj(Yji, Ŷji)] ≤ Dj, j = 1, 2. (63)

and P (Y n
0 6= Ŷ n

0 )→ 0 as n→∞. Sources Y1 and Y2 also have a common component X such

that, for a pair of deterministic functions f and g, X = f(Y1) = g(Y2) and H(X) > 0. An

achievable rate-distortion region for the distributed source coding system in Fig. 6 is given in

[28, Theorem 1].

By letting Y0 ← Z, Yj ← (Sj, Z) for j = 1, 2, and X ← Z in Fig. 6, we observe for this

setup that any achievable rate pair for the system in Fig. 6 is also achievable for our system.
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This follows from the fact that in our setup Z is available to both encoders, as a result, the

encoders can cooperate to send it to the decoder and realize any achievable scheme in [28].

Letting U = X in [28, Theorem 1] and substituting X ← Z, Y0 ← Z, Ŷ0 ← Ẑ, Yj ← (Sj , Z),

Vj ← Uj , Ŷj ← Ŝj , and dj(Yj, Ŷj) ← dj(Sj , Ŝj) for j = 1, 2, we find that a distortion pair

(D1, D2) is achievable for the rate triplet (R0, R1, R2) if

R0 ≥ H(Z|Z, U1, U2) (64)

R1 ≥ I(S1, Z;U1|Z, U2) (65)

R2 ≥ I(S2, Z;U2|Z, U1) (66)

R0 +R1 ≥ H(Z|Z, U2) + I(S1, Z;U1|Z, U2) (67)

R0 +R2 ≥ H(Z|Z, U1) + I(S2, Z;U2|Z, U1) (68)

R1 +R2 ≥ I(S1, S2, Z;U1, U2, Z|Z) (69)

R0 +R1 +R2 ≥ H(Z) + I(S1, S2, Z;U1, U2, Z|Z) (70)

and E[dj(Sj , Ŝj)] ≤ Dj for j = 1, 2, for some distribution

p(z, s1, s2, u1, u2, ŝ1, ŝ2) = p(z, s1, s2)p(u1|s1, z)p(u2|s2, z)p(ŝ1, ŝ2|z, u1, u2). (71)

Condition (64) can be removed without loss of generality. We can write (65) as,

R1 ≥ I(S1, Z;U1|Z, U2) (72)

= H(U1|Z, U2)−H(U1|S1, Z, U2) (73)

= H(U1|Z)−H(U1|S1, Z) (74)

= I(S1;U1|Z) (75)

where (74) is from U1 − S1Z − U2 and U1 − Z − U2 since

p(u1, u2|z) =
∑

s1,s2

p(u1|s1, z)p(u2|s2, z)p(s1|z)p(s2|z) (76)

=
∑

s1,s2

p(u1, s1|z)p(u2, s2|z) (77)

= p(u1|z)p(u2|z) (78)
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where (76) is from U1 − S1Z − S2U2 and U2 − S2Z − S1 as well as S1 − Z − S2.

Following the steps in (72)-(75), we can write (67) as

R0 +R1 ≥ I(S1;U1|Z), (79)

which, comparing with (75), indicates that (67) can be removed without loss of generality.

Following similar steps, we can write (66) and (68) as

R2 ≥ I(S2;U2|Z) (80)

R0 +R2 ≥ I(S2;U2|Z) (81)

respectively, which show that condition (68) can also be removed. For (69)-(70), we find that

I(S1, S2, Z;U1, U2, Z|Z) = I(S1, S2;U1, U2|Z) (82)

= H(U1|Z) +H(U2|Z, U1)−H(U1|Z, S1)−H(U2|Z, S2) (83)

= H(U1|Z)+H(U2|Z)−H(U1|Z, S1)−H(U2|Z, S2) (84)

= I(S1;U1|Z) + I(S2;U2|Z) (85)

where (83) holds as U1 −ZS1 − S2 and U2 −ZS2 − S1U1; and (84) follows from U1 −Z −U2

shown in (78).

Combining (75), (79), (80), and (81) with (85), we restate (64)-(71) as follows. A distortion

pair (D1, D2) is achievable for the rate triplet (R0, R1, R2) if

R1 ≥ I(S1;U1|Z) (86)

R2 ≥ I(S2;U2|Z) (87)

R1 +R2 ≥ I(S1;U1|Z) + I(S2;U2|Z) (88)

R0 +R1 +R2 ≥ H(Z)+I(S1;U1|Z) + I(S2;U2|Z) (89)

and E[dj(Sj , Ŝj)] ≤ Dj for j = 1, 2, for some distribution

p(z, s1, s2)p(u1|s1, z)p(u2|s2, z)p(ŝ1, ŝ2|z, u1, u2). (90)

We next show that one can set Ŝj = fj(Z, U1, U2) for j = 1, 2 without loss of optimality. To
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do so, we write

E[d1(S1, Ŝ1)] =
∑

s1,ŝ1

p(s1, ŝ1)d1(s1, ŝ1) (91)

=
∑

s1,ŝ1,ŝ2,z,u1,u2

p(ŝ1, ŝ2|z, u1, u2, s1)p(z, u1, u2, s1)d1(s1, ŝ1) (92)

=
∑

s1,ŝ1,ŝ2,z,u1,u2

p(ŝ1, ŝ2|z, u1, u2)p(z, u1, u2, s1)d1(s1, ŝ1) (93)

=
∑

z,u1,u2

∑

ŝ1

∑

s1

p(ŝ1|z, u1, u2)p(z, u1, u2, s1)d1(s1, ŝ1) (94)

≥
∑

z,u1,u2,s1

p(z, u1, u2, s1)d1(s1, f1(z, u1, u2)) (95)

= E[d1(S1, f1(Z, U1, U2))] (96)

where we define a function f1 : Z × U1 × U2 → Ŝ1 in (95) such that,

f1(z, u1, u2) = argmin
ŝ1

∑

s1

p(z, u1, u2, s1)d1(s1, ŝ1) (97)

and set p(ŝ1|z, u1, u2) = 1 for ŝ1 = f1(z, u1, u2) and p(ŝ1|z, u1, u2) = 0 otherwise.

A similar argument follows for S2 by defining a function f2 : Z × U1 × U2 → Ŝ2 leading to

E[d2(S2, Ŝ2)] ≥ E[d2(S2, f2(Z, U1, U2))]. (98)

Therefore, we can set Ŝj = fj(Z, U1, U2) for j = 1, 2.

We next show for j = 1, 2 that whenever there exists a function fj(Z, U1, U2) such that

E[dj(Sj , fj(Z, U1, U2))] ≤ Dj, (99)

then there exists a function gj(Z, Uj) such that

E[dj(Sj, gj(Z, Uj))] ≤E[dj(Sj, fj(Z, U1, U2))]≤Dj . (100)

We show this result along the lines of [29]. Consider a function f1(Z, U1, U2) such that

E[d1(S1, f1(Z, U1, U2))] ≤ D1. From the law of iterated expectations,

E[d1(S1, f1(Z, U1, U2))] = ES2,U2,Z [ES1,U1|S2,U2,Z [d1(S1, f1(Z, U1, U2))]] (101)

= ES2,U2,Z [ES1,U1|Z [d1(S1, f1(Z, U1, U2))]] (102)
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(102) holds due to U1S1 − Z − U2S2, see (76)-(77). Define φ : Z → U2 such that

φ(z) , argmin
u2

ES1,U1|Z=z[d1(S1, f1(z, U1, u2))]. (103)

Then for each Z = z,

ES2,U2|Z=z[ES1,U1|Z=z[d1(S1, f1(z, U1, U2))]] ≥ ES1,U1|Z=z[d1(S1, f1(z, U1, φ(z)))], (104)

and hence,

E[d1(S1, f1(Z, U1, U2))] = EZ [ES2,U2|Z=z[ES1,U1|Z=z[d1(S1, f1(z, U1, U2))]]] (105)

≥ EZ [ES1,U1|Z=z[d1(S1, f1(z, U1, φ(z)))]] (106)

= ES1,U1,Z [d1(S1, f1(Z, U1, φ(Z)))] (107)

= E[d1(S1, g1(Z, U1))] (108)

where g1(Z, U1) = f1(Z, U1, φ(Z)).

Following similar steps, for any f2(Z, U1, U2) that achieves E[d2(S2, f2(Z, U1, U2))] ≤ D2 we

can find a function g2(Z, U2) such that

E[d2(S2, f2(Z, U1, U2))] ≥ E[d2(S2, g2(Z, U2))]. (109)

Combining (96), (98), (108), (109) with (3) and (4), we can state the rate region in (86)-(89)

as follows. A distortion pair (D1, D2) is achievable for the rate triplet (R0, R1, R2) if

R1 ≥ RS1|Z(D1) (110)

R2 ≥ RS2|Z(D2) (111)

R1 +R2 ≥ RS1|Z(D1) +RS2|Z(D2) (112)

R0 +R1 +R2 ≥ H(Z) +RS1|Z(D1) +RS2|Z(D2) (113)

since for any p(sj, uj, z) = p(uj|sj, z)p(sj|z)p(z) and gj(z, uj) with E[dj(Sj , gj(Z, Uj))] ≤ Dj ,

I(Sj;Uj |Z) ≥ RSj |Z(Dj), j = 1, 2, (114)

where RSj |Z(Dj) is defined in (4). This completes the source coding part.

Our channel coding is based on coding for a MAC with a common message [30], for which
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any triplet of rates (R0, R1, R2) is achievable if

R1 ≤ I(X1; Y |X2,W ) (115)

R2 ≤ I(X2; Y |X1,W ) (116)

R1 +R2 ≤ I(X1, X2; Y |W ) (117)

R0 +R1 +R2 ≤ I(X1, X2; Y ) (118)

for some p(x1, x2, y, w) = p(y|x1, x2)p(x1|w)p(x2|w)p(w).

B. Converse

Our proof is along the lines of [17] and [4]. Suppose there exist encoding functions ej :

Sn
j × Zn → X n

j for j = 1, 2, decoding functions gj : Yn → Ŝn
j for j = 1, 2 and g0 : Yn → Ẑn

such that 1
n

∑n
i=1E[dj(Sji, Ŝji)] ≤ Dj + ǫ for j = 1, 2 and P (Zn 6= Ẑn) ≤ Pe where ǫ → 0,

Pe → 0 as n→∞.

Define Uji = (Y n, Si−1
j , Zc

i ) for j = 1, 2 where Zc
i = (Z1, . . . , Z(i−1), Z(i+1), . . . , Zn). Then,

1

n
I(Xn

1 ; Y
n|Xn

2 , Z
n) =

1

n
(H(Y n|Xn

2 , Z
n)−H(Y n|Xn

1 , X
n
2 , Z

n, Sn
1 )) (119)

≥ 1

n
(H(Y n|Xn

2 , Z
n)−H(Y n|Xn

2 , Z
n, Sn

1 )) (120)

=
1

n
I(Sn

1 ; Y
n, Xn

2 |Zn) (121)

≥ 1

n
I(Sn

1 ; Y
n|Zn) =

1

n

n
∑

i=1

I(S1i; Y
n|Si−1

1 , Zn) (122)

=
1

n

n
∑

i=1

I(S1i;U1i|Zi) (123)

≥ 1

n

n
∑

i=1

RS1|Z(E(S1i|U1i, Zi)) (124)

≥ 1

n

n
∑

i=1

RS1|Z(E(S1i|Y n)) (125)

≥ 1

n

n
∑

i=1

RS1|Z(E[d1(S1i, Ŝ1i)]) (126)

≥ RS1|Z(D1 + ǫ) (127)
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(119) is from Y n−Xn
1X

n
2 −ZnSn

1 , (120) holds since conditioning cannot increase entropy, and

(121) is from I(Sn
1 ;X

n
2 |Zn) = 0 since Sn

1 − Zn −Xn
2 as follows.

p(xn
2 , s

n
1 |zn) =

∑

sn2

p(xn
2 , s

n
2 , s

n
1 |zn) (128)

=
∑

sn2

p(xn
2 |sn2 , zn)p(sn2 |zn)p(sn1 |zn) (129)

= p(xn
2 |zn)p(sn1 |zn) (130)

where (129) holds since Xn
2 −Sn

2Z
n−Sn

1 and Sn
1 −Zn−Sn

2 . Equation (123) is from the definition

of U1i and the memoryless property of the sources; (124) is from (3) and (4); (125) is from the

fact that conditioning cannot increase (3); (126) follows as Ŝ1i is a function of Y n and (127) as

RS1|Z(D1) is convex and monotone in D1.

By defining a discrete random variable Q̃ uniformly distributed over {1, . . . , n} independent

of everything else, we find that

1

n
I(Xn

1 ; Y
n|Xn

2 , Z
n) ≤ 1

n

n
∑

i=1

(H(Yi|X2i, Z
n)−H(Yi|X1i, X2i, Z

n)) (131)

=
1

n

n
∑

i=1

I(X1i; Yi|X2i, Q̃ = i, Zn) (132)

= I(X1Q̃; YQ̃|X2Q̃, Q̃, Zn) (133)

= I(X1; Y |X2,W ) (134)

where we let X1 = X1Q̃, X2 = X2Q̃, Y = YQ̃ and W = (Q̃, Zn). Combining (134) with (119)

and (127) leads to (10). We obtain (11) by following similar steps. Next, we show that

1

n
I(Xn

1 , X
n
2 ; Y

n|Zn) =
1

n
(H(Y n|Zn)−H(Y n|Zn, Xn

1 , X
n
2 )) (135)

=
1

n
(H(Y n|Zn)−H(Y n|Zn, Xn

1 , X
n
2 , S

n
1 , S

n
2 )) (136)

≥ 1

n
(H(Y n|Zn)−H(Y n|Zn, Sn

1 , S
n
2 )) (137)

=
1

n
(I(Sn

1 ; Y
n|Zn) +H(Sn

2 |Zn)−H(Sn
2 |Y n, Sn

1 , Z
n)) (138)

≥ 1

n
(I(Sn

1 ; Y
n|Zn) +H(Sn

2 |Zn)−H(Sn
2 |Y n, Zn)) (139)

≥ RS1|Z(D1 + ǫ) +RS2|Z(D2 + ǫ) (140)
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where (136) is from Y n − Xn
1X

n
2 − Sn

1S
n
2Z

n, (137) is from the fact that conditioning cannot

increase entropy, (138) is from Sn
2 −Zn−Sn

1 , (139) is from conditioning cannot increase entropy,

(140) is from following the steps (122)-(127) twice, where the role of Sn
1 and Sn

2 are changed

for the second term. Moreover, we have

1

n
I(Xn

1 , X
n
2 ; Y

n|Zn) ≤ 1

n

n
∑

i=1

(H(Yi|Zn)−H(Yi|X1i, X2i, Z
n)) (141)

=
1

n

n
∑

i=1

I(X1i, X2i; Yi|Q̃ = i, Zn) (142)

≤ I(X1Q̃, X2Q̃; YQ̃|Q̃, Zn) (143)

≤ I(X1, X2; Y |W ) (144)

where X1 = X1Q̃, X2 = X2Q̃, Y = YQ̃ and W = (Q̃, Zn). Combining (144) with (135) and

(140) leads to (12). We lastly show that

1

n
I(Xn

1 , X
n
2 ; Y

n) ≥ 1

n
I(Sn

1 , S
n
2 , Z

n; Y n) (145)

=
1

n
(I(Zn; Y n) + I(Sn

1 ; Y
n|Zn) +H(Sn

2 |Zn)−H(Sn
2 |Y n, Sn

1 , Z
n)) (146)

≥ 1

n
(I(Zn; Y n) + I(Sn

1 ; Y
n|Zn) +H(Sn

2 |Zn)−H(Sn
2 |Y n, Zn)) (147)

≥ 1

n
(H(Zn) + I(Sn

1 ; Y
n|Zn) + I(Sn

2 ; Y
n|Zn)− nδ(Pe)) (148)

≥ H(Z)+RS1|Z(D1+ǫ)+RS2|Z(D2+ǫ)− δ(Pe) (149)

where (145) is from Y n − Xn
1X

n
2 − Sn

1S
n
2Z

n, (146) is from Sn
2 − Zn − Sn

1 , (147) is from the

fact that conditioning cannot increase entropy, (148) is from Fano’s inequality combined with

the data processing inequality, i.e.,

H(Zn|Y n) ≤ H(Zn|Ẑn) ≤ nδ(Pe) (150)

where δ(Pe) → 0 as Pe → 0 [31]. Equation (149) is from the memoryless property of Zn and

from following (122)-(127) twice, the second one is when the role of Sn
1 is replaced with Sn

2 .

Lastly, using random variable Q̃ that has been defined uniformly over {1, . . . , n} and inde-

pendent of everything else, we derive the following.

1

n
I(Xn

1 , X
n
2 ; Y

n) ≤ 1

n

n
∑

i=1

(H(Yi)−H(Yi|X1i, X2i)) (151)
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=
1

n

n
∑

i=1

I(X1i, X2i; Yi|Q̃ = i) (152)

≤ I(X1Q̃, X2Q̃; YQ̃|Q̃) (153)

= I(X1, X2; Y |Q̃) (154)

≤ H(Y )−H(Y |X1, X2) (155)

= I(X1, X2; Y ) (156)

where X1 = X1Q̃, X2 = X2Q̃, Y = YQ̃. Combining (145), (149), (151), and (156) leads to (13).

In order to complete our proof, we demonstrate that p(x1, x2|w) = p(x1|w)p(x2|w) for w =

(i, zn). To this end, we show that

P (X1 = x1, X2 = x2|W = w) = P (X1i = x1, X2i = x2|Q̃ = i, Zn = zn) (157)

= P (X1i=x1|Q̃= i, Zn=zn)P (X2i=x2|Q̃= i, Zn=zn) (158)

= P (X1 = x1|W = w)P (X2 = x2|W = w) (159)

where (158) holds since X1i − Zn −X2i for i = 1, . . . , n as follows.

p(xn
1 , x

n
2 |zn) =

∑

sn1 ,s
n
2

p(xn
1 , x

n
2 , s

n
1 , s

n
2 |zn) (160)

=
∑

sn1 ,s
n
2

p(xn
1 |sn1 , zn)p(xn

2 |sn2 , zn)p(sn1 |zn)p(sn2 |zn) (161)

= p(xn
1 |zn)p(xn

2 |zn) (162)

where (161) is from Xn
1 −Sn

1Z
n−Sn

2X
n
2 and Xn

2 −Sn
2Z

n−Sn
1 as well as Sn

1 −Zn−Sn
2 . From

(162), we observe that Xn
1 − Zn −Xn

2 , which implies X1i − Zn −X2i.

APPENDIX C

PROOF OF THEOREM 3

A. Achievability

The source coding part is based on lossy source coding at the two encoders conditioned on

the side information Z shared between the encoder and decoder [16], after which the conditional

rate distortion functions given in (4) can be achieved for S1 and S2, respectively. Channel coding

part is based on coding for a classical MAC with independent channel inputs [31].
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B. Converse

Suppose there exist encoding functions ej : Sn
j ×Zn → X n

j , j = 1, 2, and decoding functions

gj : Yn ×Zn → Ŝn
j such that 1

n

∑n
i=1E[dj(Sji, Ŝji)] ≤ Dj + ǫ, where ǫ→ 0 as n→∞. Then,

1

n
I(Xn

1 ; Y
n|Xn

2 , Z
n) ≥ 1

n
I(Sn

1 ; Y
n|Xn

2 , Z
n) (163)

=
1

n
I(Sn

1 ; Y
n, Xn

2 |Zn) (164)

≥ 1

n
I(Sn

1 ; Y
n|Zn) (165)

=
1

n
H(Sn

1 |Zn)−H(Sn
1 |Y n, Zn, Ŝn

1 ) (166)

≥ 1

n
H(Sn

1 |Zn)−H(Sn
1 |Zn, Ŝn

1 ) (167)

≥ 1

n

n
∑

i=1

(H(S1i|Zi)−H(S1i|Zi, Ŝ1i)) (168)

≥ 1

n

n
∑

i=1

I(S1i; Ŝ1i|Zi) (169)

≥ 1

n

n
∑

i=1

RS1|Z(E[d1(S1i, Ŝ1i)]) (170)

≥ RS1|Z(D1 + ǫ) (171)

(163) is from Y n−Xn
1X

n
2 −Sn

1Z
n and conditioning cannot increase entropy, and (164) is from

Xn
2 − Zn − Sn

1 which holds since

p(xn
2 , s

n
1 |zn)=

∑

sn2

p(xn
2 , s

n
1 , s

n
2 |zn)=

∑

sn2

p(xn
2 |sn2 , zn)p(sn1 |zn)p(sn2 |zn)=p(xn

2 |zn)p(sn1 |zn) (172)

from Xn
2 − Sn

2Z
n − Sn

1 and Sn
1 − Zn − Sn

2 . Equation (165) is due to the nonnegativity of

mutual information; (166) follows from Ŝn
1 = g1(Y

n, Zn); (167) holds since conditioning cannot

increase entropy; (168) is from the memoryless property of the sources and the side information

as well as the chain rule and the fact that conditioning cannot increase entropy; (171) holds as

RS1|Z(D1) is convex and monotone in D1.

By defining a discrete uniform random variable Q̃ over {1, . . . , n} independent of everything

else, and following steps (131)-(134) by W = (Q̃, Zn) replaced with Q = (Q̃, Zn), we find that

1

n
I(Xn

1 ; Y
n|Xn

2 , Z
n) ≤ I(X1; Y |X2, Q) (173)
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where X1 = X1Q̃, X2 = X2Q̃, Y = YQ̃. Combining (163), (171), and (173) yields (14). Following

similar steps we obtain (15),

RS2|Z(D2 + ǫ) ≤ I(X2; Y |X1, Q). (174)

Lastly, we have

1

n
I(Xn

1 , X
n
2 ; Y

n|Zn) =
1

n
I(Xn

1 ; Y
n|Xn

2 , Z
n) +

1

n
I(Xn

2 ; Y
n|Zn) (175)

≥ RS1|Z(D1 + ǫ) +
1

n
I(Sn

2 ; Y
n|Zn) (176)

≥ RS1|Z(D1 + ǫ) +RS2|Z(D2 + ǫ) (177)

where the first term in (176) is from (163)-(171), and (177) follows similarly to (165)-(171). To

obtain the second term in (176), we first show that Y n − ZnXn
2 − Sn

2 :

p(yn, sn2 |zn, xn
2 ) = p(sn2 |zn, xn

2 )p(y
n|sn2 , zn, xn

2 ) (178)

= p(sn2 |zn, xn
2 )
∑

sn1 ,x
n
1

p(yn|xn
1 , x

n
2 )p(x

n
1 |sn1 , zn)p(sn1 |zn) (179)

= p(sn2 |zn, xn
2 )
∑

xn
1

p(yn|xn
1 , x

n
2 )p(x

n
1 |zn) (180)

(179) is from Y n −Xn
1X

n
2 − Sn

1S
n
2Z

n and Xn
1 − Sn

1Z
n − Sn

2X
n
2 as well as Sn

1 − Zn − Sn
2X

n
2 ,

which holds since

p(sn1 , s
n
2 , x

n
2 |zn) = p(xn

2 |sn2 , zn)p(sn2 |zn)p(sn1 |zn) = p(xn
2 , s

n
2 |zn)p(sn1 |zn), (181)

due to Xn
2 − Sn

2Z
n − Sn

1 and Sn
1 − Zn − Sn

2 . Note that

p(yn|zn, xn
2 ) =

∑

sn1 ,x
n
1

p(yn|xn
1 , x

n
2 )p(x

n
1 |sn1 , zn)p(sn1 |zn) =

∑

xn
1

p(yn|xn
1 , x

n
2 )p(x

n
1 |zn), (182)

as Xn
1 − Sn

1Z
n−Xn

2 and Sn
1 −Zn −Xn

2 holds since Sn
1 −Zn − Sn

2X
n
2 . From (182) and (180),

p(yn, sn2 |zn, xn
2 ) = p(sn2 |zn, xn

2 )p(y
n|zn, xn

2 ), (183)

and hence, Y n − ZnXn
2 − Sn

2 . Then, we use the following in (175),

I(Xn
2 ; Y

n|Zn) = H(Y n|Zn)−H(Y n|Xn
2 , Z

n, Sn
2 ) (184)

≥ H(Y n|Zn)−H(Y n|Zn, Sn
2 ) = I(Sn

2 ; Y
n|Zn), (185)
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where (184) is from Y n − ZnXn
2 − Sn

2 , and (185) holds since conditioning cannot increase

entropy, which leads to the second term in (176).

Then, by replacing W = (Q̃, Zn) with Q = (Q̃, Zn) in (141)-(144), we can show by following

the same steps that,
1

n
I(Xn

1 , X
n
2 ; Y

n|Zn) ≤ I(X1, X2; Y |Q) (186)

Combining (175), (177) and (186) recovers (16). Lastly, we show p(x1, x2|q) = p(x1|q)p(x2|q)
along the lines of [5]. For q = (i, zn),

P (X1 = x1, X2 = x2|Q = q) = P (X1i = x1, X2i = x2|Q̃ = i, Zn = zn) (187)

= P (X1i=x1|Q̃= i, Zn=zn)P (X2i=x2|Q̃= i, Zn=zn) (188)

= P (X1 = x1|Q = q)P (X2 = x2|Q = q) (189)

where (188) holds since X1i − Zn −X2i for i = 1, . . . , n.

APPENDIX D

PROOF OF PROPOSITION 1

Let ρ = 0.5 and P = 2. Partition the set of all distortion pairs (D1, D2) for 0 ≤ D1, D2 ≤ 1 as

in Fig. 3b. First, consider D1 = 0.145. For this case, one can observe that (26) is satisfied with

equality when D2 = 0.7476, by noting that (D1, D2) ∈ D for (D1, D2) = (0.145, 0.7476) and

solving the resulting equation. Accordingly, for all distortion pairs (0.145, D2) with 0.7476 ≤
D2 ≤ 1, the necessary condition from (26) is satisfied.

Consider now the necessary conditions from Corollary 5 given in (23)-(24) along with the

distortion pair (D1, D2) = (0.145, 1),

1

2
log

(

1− ρ

D1

)

≤ 1

2
log(1 + β1P + β2P ) (190)

1

2
log

(

1

D1

)

≤ 1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)), (191)

which follows from RS2|Z(D2) = 0 when D2 = 1 ≥ 1− ρ. By rearranging the terms in (190),

β1 ≥

(

1−ρ
D1

)

− 1

P
− β2 (192)
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from which, by combining with (191), we have the condition

(

1−
(

1−ρ
D1
− 1

P
− β2

))

(1− β2) ≥ (1− β1)(1− β2) ≥
(

1
D1
− 1− 2P

2P

)2

, (193)

leading to

− β2
2 +

1−ρ
D1
− 1

P
β2 + 1−

1−ρ
D1
− 1

P
−
(

1
D1
− 1− 2P

2P

)2

≥ 0. (194)

By substituting D1 = 0.145, ρ = 0.5, and P = 2, we find that the left hand side (LHS)

of (194) is a concave quadratic polynomial whose maximum value is −0.0743, attained when

β2 =
1−ρ
D1

−1

2P
= 0.6121. Hence, (194) is not satisfied for any 0 ≤ β2 ≤ 1, and no distortion pair

(0.145, D2) for which 0 ≤ D2 ≤ 1 is achievable according to conditions (23)-(24).

Lastly, consider the necessary conditions (29)-(30). Consider the distortion pair (D1, D2) =

(0.145, 0.7476). Observe that (0.145, 0.7476) ∈ D, as a result, (29)-(30) can be written as

1

2
log

(1− ρ)2

D1D2 −
(

ρ−
√

(1−D1)(1−D2)
)2 ≤

1

2
log(1 + β1P + β2P ) (195)

1

2
log

1− ρ2

D1D2 −
(

ρ−
√

(1−D1)(1−D2)
)2 ≤

1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)). (196)

Define α ,
(1−ρ)2

D1D2−
(

ρ−
√

(1−D1)(1−D2)
)2 , and set β1 =

α−1
P
−β2, which satisfies (195). Then, (196)

can be expressed as

− β2
2 +

α− 1

P
β2 + 1− α− 1

P
− θ ≥ 0, (197)

where θ ,

(

(1−ρ2)/(2P )

D1D2−
(

ρ−
√

(1−D1)(1−D2)
)2 − 1

2P
− 1

)2

. The LHS of (197) is a concave polynomial

whose maximum value is 0.1945, attained when β2 = α−1
2P

= 0.3333, which satisfies (197).

The corresponding β1 can be computed from β1 = α−1
P
− β2 = α−1

2P
= 0.3333. Hence, for all

distortion pairs (0.145, D2) with 0.7476 ≤ D2 ≤ 1, necessary conditions from (29)-(30) are

satisfied. Accordingly, we conclude that there exist distortion pairs (D1, D2) in regions G and

D that satisfy the conditions (26) and (29)-(30) but not (23)-(24).

Next, consider D1 = 0.16. For this case, (26) holds with equality when D2 = 0.6696, by

noting that (0.16, D2) ∈ B for (D1, D2) = (0.16, 0.702) and solving the resulting equation.

The necessary condition from (26) is then satisfied for all distortion pairs (0.16, D2) such that

0.6696 ≤ D2 ≤ 1.
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Consider next the conditions from (23)-(24) for (D1, D2) ∈ B,

1

2
log

(

1− ρ

D1

)

≤ 1

2
log(1 + β1P + β2P ) (198)

1

2
log

(

1− ρ2

D1D2

)

≤ 1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)), (199)

from which, as in (193), we can obtain the condition

(

1−
(

1−ρ
D1
− 1

P
− β2

))

(1− β2) ≥ (1− β1)(1− β2) ≥
(

1−ρ2

D1D2
− 1− 2P

2P

)2

, (200)

and

− β2
2 +

1−ρ
D1
− 1

P
β2 + 1−

1−ρ
D1
− 1

P
−
(

1−ρ2

D1D2
− 1− 2P

2P

)2

≥ 0. (201)

By substituting D1 = 0.16, ρ = 0.5, and P = 2, we observe that the LHS of (201) is a concave

quadratic polynomial whose maximum value occurs at β2 = 0.5312. We note that whenever

D2 < 0.6818, the LHS of (201) is negative for all 0 ≤ β2 ≤ 1, hence the necessary conditions

from Corollary 5 cannot be satisfied.

Consider next conditions (29)-(30) for (D1, D2) = (0.16, 0.6696). Since (0.16, 0.6696) ∈ B,

one can write (29)-(30) as

1

2
log

(1− ρ)2

D1D2
≤ 1

2
log(1 + β1P + β2P ) (202)

1

2
log

(

1− ρ2

D1D2

)

≤ 1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)). (203)

Define ᾱ ,
(1−ρ)2

D1D2
. By letting β1 =

ᾱ−1
P
− β2, which satisfies (202), we restate (203) as

− β2
2 +

ᾱ− 1

P
β2 + 1− ᾱ− 1

P
− θ̄ ≥ 0, (204)

where θ̄ ,

(

1−ρ2

2PD1D2
− 1

2P
− 1
)2

. The LHS of (204) is a concave polynomial with a maximum

value of 0.1943, attained when β2 =
ᾱ−1
2P

= 0.3334, which satisfies (204). The corresponding β1

is computed from β1 =
ᾱ−1
P
− β2 =

ᾱ−1
2P

= 0.3334. Therefore, for all distortion pairs (0.16, D2)

such that 0.6696 ≤ D2 ≤ 1, necessary conditions in (29)-(30) are satisfied. Since (0.16, D2) ∈ B
for all 0.6696 ≤ D2 ≤ 0.6818, we conclude that there exist distortion pairs in Region B that

satisfy the necessary conditions from (26) and from (29)-(30), but not from Corollary 5.

Lastly, consider the conditions from (27)-(28). Note that D1 ≤ D2 in regions B, D, and G,
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therefore (27)-(28) can be stated as,

1

(1− ρ̂)2
ln

(

1− ρ2

D1

)

≤ P (205)

(ln 2)RS1S2(D1, D2) ≤ P (1 + ρ̂) (206)

for some 0 ≤ ρ̂ ≤ |ρ|. Note that, if

RS1S2(D1, D2) ≤
P

ln 2
, (207)

then, (206) is satisfied for any ρ̂. For Region B, we find from (207) that,

1

2
log

(

1− ρ2

D1(1− ρ)

)

≤ P

ln 2
(208)

by letting D2 = 1− ρ, which then leads to

D1 ≥ (1 + ρ)2−
2P
ln 2 . (209)

If (207) is satisfied for some (D1, D2), it will be satisfied for all (D1, D
′
2) such that D′

2 ≥ D2.

Accordingly, if 1− ρ ≥ D1 ≥ (1 + ρ)2−
2P
ln 2 , then condition (206) is satisfied for all D2 ≥ 1− ρ,

irrespective of ρ̂. Next, consider condition (205) and select ρ̂ = 0, from which we have

P ≥ ln

(

1− ρ2

D1

)

, (210)

or equally

D1 ≥ (1− ρ2)e−P . (211)

For P = 2 and ρ = 0.5, (209) becomes D1 ≥ 0.0275 and (211) becomes D1 ≥ 0.1015. Hence,

both (27) and (28) are satisfied when D1 = 0.145 and D1 = 0.16.

These examples demonstrate that there exist distortion pairs in regions B, D, and G, and from

symmetry, in regions C, F , and I, for which the necessary conditions from Corollary 5 is tighter

than both (26), (27)-(28), and (29)-(30).

Lastly, we compare Corollary 5 with the conditions from (29)-(30) by investigating the LHS

of both conditions for various regions in Fig. 3b, as the region defined by the RHS of both

(23)-(24) and (29)-(30) is the same.
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For (D1, D2) ∈ A, we observe from (32) and (33) that,

RS1S2(D1, D2)−CW (S1, S2)=
1

2
log

(

1− ρ2

D1D2

)

−1
2
log

(

1+ρ

1−ρ

)

=RS1|Z(D1)+RS2|Z(D2), (212)

hence, in this region, Corollary 5 and the (29)-(30) bound are equivalent.

For (D1, D2) ∈ B, we find from (32) and (33) that,

RS1S2(D1, D2)− CW (S1, S2) =
1

2
log

(

1− ρ2

D1D2

)

− 1

2
log

(

1 + ρ

1− ρ

)

(213)

≤ 1

2
log

1− ρ

D1

= RS1|Z(D1) +RS2|Z(D2), (214)

since D1 ≤ 1−ρ and D2 ≥ 1−ρ for (D1, D2) ∈ B. Hence, in this region, Corollary 5 is at least

as tight as (29)-(30). By swapping the roles of D1 and D2, we can extend the same argument

to Region C as well.

For (D1, D2) ∈ D, we have from (32) and (33) that,

RS1|Z(D1) +RS2|Z(D2) =
1

2
log

1− ρ

D1
, (215)

whereas

RS1S2(D1, D2)−CW (S1, S2)=
1

2
max

{

log
1−ρ
1+ρ

, log
(1−ρ)2

D1D2−
(

ρ−
√

(1−D1)(1−D2)
)2

}

(216)

=
1

2
log

(1− ρ)2

D1 +D2 − (1 + ρ2) + 2ρ
√

(1−D1)(1−D2)
, (217)

where the last equation follows from

(2−D1 −D2)
2 − 4ρ2(1−D1)(1−D2) = (1− ρ2)(2−D1 −D2)

2 + ρ2(D1 −D2)
2 ≥ 0

(218)

and therefore,

D1 +D2 − (1 + ρ2) + 2ρ
√

(1−D1)(1−D2) ≤ 1− ρ2. (219)

Then, by comparing (217) with (215), we find that, Corollary 5 provides necessary conditions

at least as tight as (29)-(30) if

ρ ∈
{

ρ : τ −
√

D2 − 1 + τ 2 ≤ ρ ≤ τ +
√

D2 − 1 + τ 2, D2 + τ 2 ≥ 1
}

, (220)
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where

τ =
D1

2
+
√

(1−D1)(1−D2). (221)

By symmetry, for region (D1, D2) ∈ F , Corollary 5 is at least as tight as (29)-(30) if

ρ ∈
{

ρ : λ−
√

D1 − 1 + λ2 ≤ ρ ≤ λ+
√

D1 − 1 + λ2, D1 + τ 2 ≥ 1
}

, (222)

where

λ =
D2

2
+
√

(1−D1)(1−D2). (223)

For (D1, D2) ∈ G, we observe from (32) and (33) that,

RS1S2(D1, D2)− CW (S1, S2) =
1

2
log

(

1

D1

)

− 1

2
log

(

1 + ρ

1− ρ

)

(224)

≤ 1

2
log

1− ρ

D1
= RS1|Z(D1) +RS2|Z(D2). (225)

Therefore, Corollary 5 is again at least as tight as (29)-(30). It follows by symmetry that

Corollary 5 is at least as tight as (29)-(30) in Region I as well.

For (D1, D2) ∈ H, we have from (32) and (33) that,

RS1S2(D1, D2)− CW (S1, S2) =
1

2
log

(

1

min(D1, D2)

)

− 1

2
log

(

1 + ρ

1− ρ

)

(226)

=
1

2
log

1− ρ

min(D1, D2)(1 + ρ)
(227)

≤ 0 = RS1|Z(D1) +RS2|Z(D2) (228)

since min(D1, D2) ≥ 1− ρ when (D1, D2) ∈ H . From (228), conditions (23) and (29) are both

trivially satisfied in this region, and therefore Corollary 5 and the conditions from (29)-(30) are

equivalent. Same conclusion follows for Region J .

For region (D1, D2) ∈ E , we have from (32) and (33) that,

RS1|Z(D1) +RS2|Z(D2) = 0, (229)

hence, condition (23) is trivially satisfied, whereas RS1S2(D1, D2) − CW (S1, S2) is as given in

(216) and (217).

If D1 = D2, we have from (216) and D1 ≥ 1− ρ that,

RS1S2(D1, D2)− CW (S1, S2) =
1

2
max

{

log
1− ρ

1 + ρ
, log

(1− ρ)2

D2
1 − (ρ− (1−D1))

2

}

(230)
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≤ 0 = RS1|Z(D1) +RS2|Z(D2), (231)

and (29) is also trivially satisfied. Hence, for all D1 = D2 in Region E , Corollary 5 and the

conditions from (29)-(30) are equivalent.

We next consider the case when ρ ≤ 0.5 for (D1, D2) ∈ E . Without loss of generality, we

assume that D1 ≥ D2. Noting that D2 ≥ 1− ρ, we have

D1 +D2 − (1 + ρ2) + 2ρ
√

(1−D1)(1−D2) ≥ D1 +D2 − (1 + ρ2) + 2ρ(1−D1) (232)

≥ D2(1− 2ρ) +D2 − (1− ρ)2 (233)

≥ (1− ρ)2 (234)

from which, along with (229) and (217), we find that

RS1S2(D1, D2)− CW (S1, S2) ≤ 0 = RS1|Z(D1) +RS2|Z(D2). (235)

Therefore, for all ρ ≤ 0.5, Corollary 5 and the conditions (29)-(30) are equivalent. By comparing

(229) with (217), we can show that, Corollary 5 is equivalent to (29)-(30) if

ρ ∈
{

ρ : ∆−
√

D1 +D2

2
− 1 + ∆2 ≤ ρ ≤ ∆+

√

D1 +D2

2
− 1 + ∆2,

D1 +D2

2
+ ∆2 ≥ 1

}

(236)

where ∆ ,
1+
√

(1−D1)(1−D2)

2
. We therefore find that the necessary conditions from Corollary 5

are at least as tight as conditions (29)-(30) in all regions but E , D, and F .

Remark 2. We note that Corollary 5 is not necessarily strictly tighter in any of these regions,

since the necessary conditions involve also the RHS of (23)-(24) and (29)-(30), which can be

used to claim the impossibility of achieving certain distortion pairs based on the relative value

of the rate distortion functions with respect to the rate region characterized by the RHS. It is

possible that, even though the LHS of Corollary 5 is lower than the LHS of (29)-(30), either

both or none of the necessary conditions may be satisfied, leading exactly to the same conclusion

regarding the achievability of the corresponding distortion pair.

APPENDIX E

PROOF OF PROPOSITION 2

Consider D1 = 0.3, ρ = 0.5, and P = 1. For this case, (26) holds with equality when D2 =

0.625, and (0.3, 0.625) ∈ B. Accordingly, no distortion pair (0.3, D2), with 0.5 ≤ D2 < 0.625,
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satisfies (26). The necessary conditions of Corollary 5 for (D1, D2) ∈ B are given by

1

2
log

(

1− ρ

D1

)

≤ 1

2
log(1 + β1P + β2P ) (237)

1

2
log

(

1− ρ2

D1D2

)

≤ 1

2
log(1 + 2P + 2P

√

(1− β1)(1− β2)). (238)

By defining α̂ ,
1−ρ
D1

, and setting β1 =
α̂−1
P
−β2, which satisfies (237), condition (238) becomes,

− β2
2 +

α̂− 1

P
β2 + 1− α̂− 1

P
− θ̂ ≥ 0, (239)

where θ̂ ,

(

1−ρ2

2PD1D2
− 1

2P
− 1
)2

. The LHS of (204) is concave, and attains its maximum value

at β2 =
α̂−1
2P

= 0.3333. The corresponding β1 is computed from β1 =
α̂−1
P
− β2 = 0.3333. From

(239), it can be shown that Corollary 5 is satisfied whenever D2 ≥ 0.5769. Accordingly, for the

distortion pairs (0.3, D2) with 0.5769 ≤ D2 < 0.625, the necessary conditions of Corollary 5

are satisfied whereas the bound in (26) is not.

APPENDIX F

PROOF OF PROPOSITION 3

Let D1 = 0.25, α = 0.2, P = 0.9, and 0 ≤ D2 ≤ α
2(1−α)

. Consider initially the condition from

(50). Let D2 = 0.003 and observe that for this case RS1S2(D1, D2) = 1− h(D2). Then,

RS1S2(D1, D2) = 0.9705 ≤ 1

2
log(1 + 2P (1 + ρmax)) = 0.978, (240)

hence (50) is satisfied for all D2 ≥ 0.003. Next, consider the conditions from (52)-(53). Let

D2 = 0.003 and β1 =
22(2h(θ)−h(D2)−h(α))−1

P
− β2 and observe that (52) is satisfied. By rearranging

(52)-(53), we obtain

− β2
2+

(

22(2h(θ)−h(D2)−h(α)) − 1
)

P
β2 + 1−

(

22(2h(θ)−h(D2)−h(α))−1
)

P
−
(

22(1−h(D2)) − 1

2P
−1
)2

≥ 0

(241)

whose LHS reaches its maximum value 0.2344 at β2 =
22(2h(θ)−h(D2)−h(α))−1

2P
= 0.2462. Therefore,

necessary conditions (52)-(53) are satisfied for all D2 ≥ 0.003.

Next, consider the necessary conditions in (54)-(55). Similar to the previous case, let D2 =
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0.003 and β1 =
2
2( α

1−α
h(α)−h(D2))−1

P
− β2 which satisfies (54). Rearrange (54)-(55) to obtain

−β2
2 +

(

22(
α

1−α
h(α)−h(D2)) − 1

)

P
β2+1−

(

22(
α

1−α
h(α)−h(D2)) − 1

)

P
−
(

22(1−h(D2)) − 1

2P
− 1

)2

≥ 0

(242)

whose LHS reaches a maximum of 0.4242 at β2 =
2
2( α

1−α
h(α)−h(D2))−1

2P
= 0.1294. Hence, necessary

conditions from (54)-(55) are satisfied for all D2 ≥ 0.003.

Lastly, consider the necessary conditions from Corollary 5 and let D2 = 0.003. From (23),

we have β1 ≥ 2
2(RS1|Z

(D1)+RS2|Z
(D2))−1

P
− β2, from which, by combining with (24), we obtain

−β2
2 +

(

22(RS1|Z
(D1)+RS2|Z

(D2)) − 1
)

P
β2 + 1−

(

22(RS1|Z
(D1)+RS2|Z

(D2)) − 1
)

P

−
(

22RS1S2
(D1,D2) − 1

2P
− 1

)2

≥ 0 (243)

and observe that the polynomial on the LHS attains its maximum value −0.0247 at β2 =
(

2
2(RS1|Z

(D1)+RS2|Z
(D2))−1

)

2P
= 0.4442. Hence, for this example, Corollary 5 cannot be satisfied for

any 0 ≤ β1, β2 ≤ 1. We therefore conclude that there exist distortion pairs for which the two

necessary conditions are satisfied while Corollary 5 is not.
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