
1

Distortion Bounds for Source Broadcast Problems
Lei Yu, Houqiang Li, Senior Member, IEEE and Weiping Li, Fellow, IEEE

Abstract—This paper investigates the joint source-channel
coding problem of sending a memoryless source over a mem-
oryless broadcast channel. An inner bound and several outer
bounds on the admissible distortion region are derived, which
respectively generalize and unify several existing bounds. As a
consequence, we also obtain an inner bound and an outer bound
for the degraded broadcast channel case. When specialized to
the Gaussian or binary source broadcast, the inner bound and
outer bound not only recover the best known inner bound and
outer bound in the literature, but also generate some new results.
Besides, we also extend the inner bound and outer bounds to
the Wyner-Ziv source broadcast problem, i.e., source broadcast
with side information available at decoders. Some new bounds
are obtained when specialized to the Wyner-Ziv Gaussian and
Wyner-Ziv binary cases.

Index Terms—Joint source-channel coding (JSCC), hybrid cod-
ing, Wyner-Ziv, side information, multivariate covering/packing,
method of introducing remote channels, network information
theory.

I. INTRODUCTION

As stated in Shannon’s source-channel separation theorem
[2], cascading source coding and channel coding does not lose
the optimality for point-to-point communication systems. This
separation theorem does not only suggest a simple system
architecture in which source coding and channel coding are
separated by a universal digital interface, but also guaran-
tees that such architecture does not incur any asymptotic
performance loss. Consequently, it forms the basis of the
architecture of today’s communication systems. However, for
many multi-user communication systems, the optimality of
such a separation does not hold any more [3], [4]. Therefore,
an increasing amount of literature focus on joint source-
channel coding (JSCC) in multi-user setting.

One of the most classical problems in this area is JSCC of
transmitting a Gaussian source over a K-user Gaussian broad-
cast channel with average transmitting power constrained.
Goblick [3] observed that when the source bandwidth and
the channel bandwidth are matched (i.e., one channel use
per source sample) linear uncoded transmission (symbol-by-
symbol mapping) is optimal. However, the optimality of such
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a simple linear scheme cannot be extended to the bandwidth
mismatch case. One way to approximately characterize the
admissible distortion region is finding its inner bound and
outer bound. For inner bound, analog coding or hybrid coding
has been studied in a vast body of literature [4], [5], [6], [7].
For 2-user Gaussian broadcast communication, Prabhakaran et
al. [7] gave the best known inner bound, which is achieved
by a hybrid digital-analog (HDA) scheme. On the other hand,
Reznic et al. [8] derived a non-trivial outer bound (tighter than
the single-user bound) for 2-user Gaussian broadcast prob-
lem with bandwidth expansion (i.e., more than one channel
uses per source sample) by introducing an auxiliary random
variable (or a remote source). Tian et al. [9] extended this
outer bound to the K-user case by introducing more than one
auxiliary random variables. Similar to the results of Reznic et
al., the outer bound given by Tian et al. is also nontrivial only
for the bandwidth expansion case [10]. Beyond broadcast com-
munication, Minero et al. [15] considered sending memoryless
correlated sources over a memoryless multi-access channel,
and derived an inner bound using a unified framework of
hybrid coding. Lee et al. [20] derived a unified achievability
result for memoryless network communication.

Besides, in [6], [17], [18] the Wyner-Ziv source commu-
nication problem was investigated, in which side information
correlated with the source is available at decoder(s). Shamai et
al. [6] studied the problem of sending a Wyner-Ziv source over
a point-to-point channel, and proved that for such communi-
cation system, the separate coding (which cascades Wyner-
Ziv coding with channel coding) does not incur any loss of
optimality. Nayak et al. [17] and Gao et al. [18] investigated
the Wyner-Ziv source broadcast problem, and obtained the
single-user outer bound by simply applying the cut-set bound
(the minimum distortion achieved in point-to-point setting) for
each receiver.

In this paper, we consider JSCC of transmitting a memory-
less source over a K-user memoryless broadcast channel, and
derive an inner bound and two outer bounds on the admissible
distortion region. The inner bound is derived by using a unified
framework of hybrid coding inspired by [15], and the outer
bounds are derived by introducing remote sources at the sender
side or introducing remote channels at receiver sides. The
proof method of introducing remote sources at the sender side
can be found in [8] and [9], and hence it is not new. However,
the introducing remote channels method is different from
existing methods. The existing method of introducing auxiliary
random variables at receiver sides, named the genie-aided
method, can be found in [9], [11], [16, Section 6.4.3]. Both
the genie-aided method and the introducing remote channels
method convert the original communication system into a new
one. However, the genie-aided method constructs a “stronger”
network such that the original network is a degraded version
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of it, while the introducing remote channels method constructs
a degraded (“weaker”) version of the original network. Hence
our introducing remote channels method is different from
the existing genie-aided method. Furthermore, our distortion
bounds are generalizations and unifications of several existing
bounds in the literature. Besides, as a consequence, we also
obtain an inner bound and an outer bound for the degraded
broadcast channel case. When specialized to the Gaussian
source broadcast and binary source broadcast, our inner bound
could recover the best known performance achieved by hybrid
coding, and our outer bound could recover the best known
outer bounds given by Tian et al. [9] and Khezeli et al.
[11]. Moreover, for these cases, our bounds can be also
used to generate some new results. Besides, we also extend
the inner bound and outer bounds to the Wyner-Ziv source
broadcast problem, i.e., source broadcast with side information
at decoders. When specialized to the Wyner-Ziv Gaussian and
binary cases, our bounds reduce to some new bounds.

The rest of this paper is organized as follows. Section II
summarizes basic notations, definitions and preliminaries, and
formulates the problem. Section III gives the main results for
the source broadcast problem, including the discrete, discrete
and degraded, binary, and Gaussian cases. Section IV extends
the results to the Wyner-Ziv source broadcast problem. Finally,
Section V gives the concluding remarks.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Notation

Throughout this paper, we follow the notation in [16]. For
example, for a discrete random variable X ∼ pX on alphabet
X and ε ∈ (0, 1), the set of ε-typical n-sequences xn (or the
typical set in short) is defined as

T (n)
ε (X)

=

{
xn :

∣∣∣∣ |{i : xi = x}|
n

− pX(x)

∣∣∣∣ ≤ εpX(x),∀x ∈ X
}
.

When it is clear from the context, we will use T (n)
ε to denote

T (n)
ε (X).
In addition, we use XA to denote the vector (Xj : j ∈ A),

use [i : j] to denote the set {bic , bic+ 1, · · · , bjc}, and use 1
to denote an all-one vector (similarly, use 2 to denote an all-2
vector). We say vector m[1:N ] is smaller than vector m′[1:N ] if
mj = m′j for k < j ≤ K and mk < m′k for some k. For two
vectors mI and m′I , we say mI is component-wise unequal
to m′I , if mi 6= m′i for all i ∈ I, and denote it as mI < m′I .
Besides, we use 1 {A} to denote the indicator function of an
event A, i.e.,

1 {A} =

{
1, if A is true;

0, if A is false.

We use exp and log to respectively denote the exponential
and logarithmic functions with the base 2.

B. Problem Formulation

Consider the source broadcast system shown in Fig. 1. A
discrete memoryless source (DMS) Sn is first coded into Xn

nS
Encoder

n
KY

nX

ˆ n
KS

Decoder K

1
nY 1

ˆ nS
Decoder 1

[1: ] |KY XP

Fig. 1. Source broadcast system.

using a source-channel code, then transmitted to K receivers
through a discrete memoryless broadcast channel (DM-BC)
pY[1:K]|X , and finally, the receiver k produces a source recon-
struction Ŝnk from the received signal Y nk .

Definition 1 (Source). A discrete memoryless source (DMS)
is specified by a probability mass function (pmf) pS on a finite
alphabet S. The DMS pS generates an i.i.d. random process
{Si} with Si ∼ pS .

Definition 2 (Broadcast Channel). A K-user discrete memo-
ryless broadcast channel (DM-BC) is specified by a collection
of conditional pmfs pY[1:K]|X on a finite output alphabet
Y1 × · · · × YK for each x in a finite input alphabet X .

Definition 3 (Degraded Broadcast Channel). A DM-BC
pY[1:K]|X is stochastically degraded (or simply degraded) if
there exists a random vector Ỹ[1:K] such that pỸk|X =

pYk|X , 1 ≤ k ≤ K (i.e., Ỹ[1:K] has the same conditional
marginal pmfs as Y[1:K] given X), and X → ỸK → ỸK−1 →
· · · → Ỹ1

1 form a Markov chain. In addition, as a special case,
if X → YK → YK−1 → · · · → Y1, i.e., Ỹk = Yk, 1 ≤ k ≤ K,
then pY[1:K]|X is physically degraded.

Definition 4. An n-length source-channel code is defined by a
encoding function xn : Sn 7→ Xn and K decoding functions
ŝk : Ynk 7→ Ŝnk , 1 ≤ k ≤ K, where Ŝk is the alphabet of
source reconstruction at the receiver k.

For any n-length source-channel code, the induced distor-
tion is defined as

Edk
(
Sn, Ŝnk

)
=

1

n

n∑
t=1

Edk
(
St, Ŝk,t

)
, (1)

for 1 ≤ k ≤ K, where dk (s, ŝk) : S × Ŝk 7→ [0,+∞] is a
distortion measure function for the receiver k.

Definition 5. For transmitting a source S over a channel
pY[1:K]|X , if there exists a sequence of source-channel codes
such that

lim sup
n→∞

Edk
(
Sn, Ŝnk

)
≤ Dk, (2)

then we say that the distortion tuple D[1:K] is achievable.

Definition 6. For transmitting a source S over a channel
pY[1:K]|X , the admissible distortion region is defined as

D ,
{
D[1:K] : D[1:K] is achievable

}
. (3)

1For brevity, the Markov chain is assumed in this direction.This differs
from that in the conference version [1].
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The admissible distortion region R only depends on the
marginal distributions of pY[1:K]|X , hence for the stochasti-
cally degraded channel case, it suffices to only consider the
corresponding physically degraded channel case.

In addition, Shannon’s source-channel separation theorem
shows that the minimum distortion for transmitting a source
over a point-to-point channel satisfies

Rk (Dk) = Ck, (4)

where Rk (· ) is the rate-distortion function of the source with
the distortion measure dk, and Ck is the capacity for the
receiver k. Therefore, the optimal distortion (Shannon limit)
is

D∗k = R−1k (Ck) . (5)

Obviously,

D ⊆ D∗ ,
{
D[1:K] : Dk ≥ D∗k, 1 ≤ k ≤ K

}
, (6)

where D∗ is named single-user outer bound.
In the system above, the source bandwidth and channel

bandwidth are matched. In this paper, we also consider the
communication system with bandwidth mismatch, whereby m
samples of a DMS are transmitted through n uses of a DM-
BC. For this case, the bandwidth mismatch factor is defined
as b = n

m .

C. Multivariate Covering/Packing Lemma

We first introduce the following multivariate covering and
packing lemmas which are important in the achievability part
in this work.

Let (U, V[0:k]) ∼ pU,V[0:k]
. Let (Un, V n0 ) ∼ pUn,V n0 be a

random vector sequence. For each j ∈ [1 : k], let Aj ⊆
[1 : j − 1]. Assume Aj satisfies if i ∈ Aj , then Ai ⊆ Aj .
For each j ∈ [1 : k] and each mAj ∈

∏
i∈Aj [1 : 2nri ],

let V nj (mAj ,mj),mj ∈ [1 : 2nrj ], be pairwise conditionally
independent random sequences, each distributed according to∏n
i=1 pVj |VAj ,V0

(vj,i|vAj ,i(mAj ), v0,i). Hence for each j ∈
[1 : k], Aj ∪{0} denotes the index set of the random variables
on which the codeword V nj is superposed. Based on the
notations above, we have the following multivariate covering
and packing lemmas.

Lemma 1 (Multivariate Covering Lemma). Let ε′ < ε. If
limn→∞ P

(
(Un, V n0 ) ∈ T (n)

ε′

)
= 1, then there exists δ(ε) that

tends to zero as ε→ 0 such that

lim
n→∞

P
(

(Un, V n0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε for some m[1:k]

)
= 1, (7)

if
∑
j∈J rj >

∑
j∈J H

(
Vj |VAjV0

)
−H (VJ |V0U)+δ(ε) for

all J ⊆ [1 : k] such that J 6= ∅ and if j ∈ J , then Aj ⊆ J .

Lemma 2 (Multivariate Packing Lemma). There exists δ(ε)
that tends to zero as ε→ 0 such that

lim
n→∞

P
(

(Un, V n0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε for some m[1:k]

)
= 0, (8)

if
∑
j∈J rj <

∑
j∈J H

(
Vj |VAjV0

)
−H (VJ |V0U)−δ(ε) for

some J ⊆ [1 : k] such that J 6= ∅ and if j ∈ J , then Aj ⊆ J .

Note that all the existing covering and packing lemmas such
as [16, Lem. 8.2] and [19, Lem. 4], involve only single-layer
codebook. Our multivariate covering and packing lemmas
generalize them to the case of multilayer codebooks.

III. SOURCE BROADCAST

A. Discrete Memoryless Broadcast

Now, we bound the distortion region for the source broad-
cast communication. To write the inner bound, for 1 ≤ j ≤
N , 2K − 1, we first introduce an auxiliary random variable
Vj for each of the 2K−1 nonempty subsets Gj ⊆ [1 : K], and
let Vj denote a common message transmitted from the sender
to all the receivers in Gj . The Vj corresponds to a subset Gj
by the following one-to-one mapping. Sort all the nonempty
subsets Gj ⊆ [1 : K] in the decreasing order2. Map the jth
subset in the resulting sequence to j. Obviously this mapping
is one-to-one corresponding. For example, if K = 3, then
G1 = {1, 2, 3} ,G2 = {2, 3} ,G3 = {1, 3} ,G4 = {1, 2} ,G5 =
{3} ,G6 = {2} ,G7 = {1}; see Fig. 2.

Besides, let

Aj , {i ∈ [1 : N ] : Gj $ Gi} , 1 ≤ j ≤ N, (9)

Bk , {i ∈ [1 : N ] : k ∈ Gi} , 1 ≤ k ≤ K. (10)

If K = 3, then A1 = ∅,A2 = {1} ,A3 = {1} ,A4 =
{1} ,A5 = {1, 2, 3} ,A6 = {1, 2, 4} ,A7 = {1, 3, 4} and
B1 = {1, 3, 4, 7} ,B2 = {1, 2, 4, 6} ,B3 = {1, 2, 3, 5}. Later
we will show that Aj and Bk respectively correspond to the
index set of the random variables on which the codeword V nj
is superposed, and the index set of decodable codewords V nj ’s
for the receiver k in the proposed hybrid coding scheme; see
Appendix C-A. The decoder k is able to recover correctly the
V nBk with probability approaching 1 as n→∞. In addition, it
is easy to verify that if j ∈ Bk, then Aj ⊆ Bk. It means that
the proposed codebook satisfies that if the information V nj can
be recovered correctly by the receiver k (i.e., j ∈ Bk), then
V nAj can also be recovered correctly by it.

Based on the notations above, we define a distortion region
(inner bound)

D(i) =
{
D[1:K] : ∃pV[1:N]|S , r[1:N ], x

(
v[1:N ], s

)
, ŝk (vBk , yk) ,

k ∈ [1 : K] s.t. Edk(S, Ŝk) ≤ Dk, k ∈ [1 : K],∑
j∈J

rj >
∑
j∈J

H
(
Vj |VAj

)
−H (VJ |S)

for all J ⊆ [1 : N ] s.t.J 6= ∅ and Aj ⊆ J ,∀j ∈ J ,∑
j∈J c

rj <
∑
j∈J c

H
(
Vj |VAj

)
−H (VJ c |YkVJ ) ,

k ∈ [1 : K] for all J ⊆ Bk s.t.

J c , Bk\J 6= ∅ and Aj ⊆ J ,∀j ∈ J
}
. (11)

2We say a set G is larger than another H if |G| > |H|, or |G| = |H| and
there exists some 1 ≤ i ≤ |G| such that G [i] > H [i] and G [l] = H [l] for
all 1 ≤ l ≤ i− 1, where G [i] (or H [i]) denotes the ith largest element in G
(or H).
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Fig. 2. (a) The inclusion relation of the sets Gj , 1 ≤ j ≤ N with K = 3;
(b) The structure of the codebook for the unified hybrid coding with K = 3.

Besides, for any positive integer L, define a distortion region
(outer bound achieved by introducing remote sources at the
sender)

D(o)
1 =

{
D[1:K] : ∃pŜ[1:K]|S s.t.

Edk
(
S, Ŝk

)
≤ Dk, k ∈ [1 : K],

and for any pU[1:L]|S , one can find pỸ[1:K]Ũ[1:L]X
s.t.

I
(
ŜA;UB|UC

)
≤ I

(
YA; ŨB|ŨCỸA

)
for any A ⊆ [1 : K] ,B, C ⊆ [1 : L]

}
, (12)

and another distortion region (outer bound achieved by intro-
ducing remote channels at receivers)

D(o)
2 =

{
D[1:K] : ∃pX , ŝk (ỹk) , k ∈ [1 : K] s.t.

Edk
(
S, Ŝk

)
≤ Dk, k ∈ [1 : K],

and for any pU[1:L]|Y[1:K]
,

one can find pỸ[1:K]|SpŨ[1:L]|Ỹ[1:K]
s.t.

I
(
S; ỸBŨB′ |ỸCŨC′

)
≤ I (X;YBUB′ |YCUC′)

for any B, C ⊆ [1 : K] ,B′, C′ ⊆ [1 : L]
}
. (13)

Then we have the following theorem. The proof is given in
Appendix C.

Theorem 1. For transmitting a DMS S over a DM-BC
pY[1:K]|X ,

D(i) ⊆ D ⊆ D(o)
1 ∩ D

(o)
2 . (14)

Remark 1. The inner bound of Theorem 1 can be easily
extended to Gaussian or any other well-behaved continuous-
alphabet source-channel pairs by the standard discretization
method [16, Thm. 3.3]. Moreover for these cases the outer
bounds still hold. Theorem 1 can be also extended to the
bandwidth mismatch case, where m samples of a DMS
are transmitted through n uses of a DM-BC. This can be
accomplished by replacing the source and channel symbols in
Theorem 1 by supersymbols of lengths m and n, respectively.
Besides, Theorem 1 could be also extended to the problems
of broadcasting correlated sources (by modifying the distor-
tion measures) and source broadcast with channel input cost
constraints (by introducing channel input constraints).

The inner bound D(i) in Theorem 1 is achieved by a unified
hybrid coding scheme depicted in Fig. 3. In this scheme, the
codebook has a layered (or superposition) structure (see Fig.
2), and consists of randomly and independently generated
codewords V n[1:N ](m[1:N ]), m[1:N ] ∈

∏N
i=1 [1 : 2nri ], where

r[1:N ] satisfies (11). At the encoder side, upon a source
sequence Sn, the encoder produces digital messages M[1:N ]

with Mi meant for all the receivers k’s satisfying i ∈ Bk.
Then, the codeword V n[1:N ](M[1:N ]) and the source sequence
Sn are used to generate a channel input Xn by a symbol-by-
symbol mapping x(v[1:N ], s). At the decoder sides, upon the
received signal Y nk , the decoder k reconstructs MBk (and also
V nBk(MBk)) losslessly, and then generates Ŝnk by a symbol-by-
symbol mapping ŝk(vBk , yk). Such a scheme could achieve
any D[1:K] in the inner bound D(i).

To reveal essence of such hybrid coding, the digital trans-
mission part of this hybrid coding can be roughly understood
as the cascade of a K-user Gray-Wyner source-coding and
a K-user Marton’s broadcast channel-coding, which share
a common codebook. According to [16, Thm. 13.3], the
encoding operation of Gray-Wyner source-coding with rates
r[1:N ] is successful if

∑
j∈J rj >

∑
j∈J H

(
Vj |VAj

)
−

H (VJ |S) for all J ⊆ [1 : N ] such that J 6= ∅ and if j ∈
J , then Aj ⊆ J , and according to [16, Thm 8.4] the decod-
ing operation of Marton’s broadcast channel-coding with rates
r[1:N ]

3 is successful if
∑
j∈J c rj <

∑
j∈J c H

(
Vj |VAj

)
−

H (VJ c |YkVJ ) for all 1 ≤ k ≤ K and for all J ⊆
Bk such that J c 6= ∅ and if j ∈ J , then Aj ⊆ J . Since the
proposed hybrid coding satisfies the two sufficient conditions
above, V nBk(MBk) can be correctly recovered by the receiver
k. Note that such informal understanding is inaccurate owing
to the use of symbol-by-symbol mappings, but it provides a
rationale for our scheme. Besides, the design of such unified
hybrid coding is inspired by the hybrid coding scheme for
sending correlated sources over a multi-access channel in [15].

The outer bounds D(o)
1 and D(o)

2 in Theorem 1 are derived
by introducing auxiliary random variables Un[1:L] at the sender
side or at receiver sides. The proof method of introducing
auxiliary random variables (or remote sources) at sender side
could be found in [9], [11, Thm. 2] and [12, Lem. 1]. In
[9] it was used to derive the outer bound for Gaussian source
broadcast, and in [11, Thm. 2] and [12, Lem. 1] it was used to
derive the outer bounds for sending source over 2-user general
broadcast channel. This proof method generalizes the one used
to derive the single-user outer bound, but it does not always
result in a strictly tighter outer bound than the single-user one
[10]. On the other hand, introducing remote channels method
is different from the existing genie-aided method [9], [11],
[16, Section 6.4.3], since the genie-aided method constructs a
“stronger” network such that the original network is a degraded
version of it, but the introducing remote channels method con-

3Note that for Marton’s broadcast channel-coding [16, p. 212-213], r[1:N ]
here does not correspond to the regular broadcast-rates R[1:N ], but corre-
sponds to the total rates R̃[1:N ] of each subcodebooks. In addition, here
we only require the decoding operation is successful, hence the condition
that the chosen codewords and the source sequence are jointly typical, which
was required in the encoding operation of Gray-Wyner source-coding, is not
repeatedly required here.
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Fig. 3. The unified hybrid coding used to prove the inner bound in Theorem 1.

structs a degraded (“weaker”) version of the original network.
A deeper understanding of these two proof methods has been
given by Khezeli et al. in [12]. pŜ[1:K]|S can be considered
as a virtual broadcast channel realized over physical broadcast
channel pY[1:K]|X , and hence certain mutual informations (e.g.,
channel capacity region) based on pŜ[1:K]|S are less than or
equal to those based on pY[1:K]|X . This leads to the desired
necessary conditions. Besides, the necessary conditions can
be also understood from the perspective of virtual sources. X
and Y[1:K] respectively can be considered as a virtual source
and K virtual reconstructions. Then the physical source S and
the physical reconstructions Ŝ[1:K] are correlated through the
virtual source and virtual reconstructions. Hence the physical
source should be more “tractable” than the virtual one, and
certain mutual informations (e.g., source-coding rate region)
based on the physical source and reconstructions should be
less than or equal to those based on the virtual source and
reconstructions. The analysis above gives the reasons why
D(o)

1 is expressed in form of comparison of the “capacity
regions” of virtual broadcast channel and physical broadcast
channel, while D(o)

2 is expressed in form of comparison of
the “source-coding rate regions” of virtual source and physical
source.

For the 2-user broadcast case, the inner bound in Theorem
1 reduces to

D(i) =
{

(D1, D2) : ∃pV0,V1,V2|S , x (v0, v1, v2, s) ,

ŝk (v0, vk, yk) , k = 1, 2, s.t. Edk
(
S, Ŝk

)
≤ Dk,

I(V0Vk;S) < I(V0Vk;Yk), k = 1, 2,

I(V0V1V2;S) + I(V1;V2|V0)

< min {I(V0;Y1), I(V0;Y2)}
+ I(V1;Y1|V0) + I(V2;Y2|V0),

I(V0V1;S) + I(V0V2;S) + I(V1;V2|V0S)

< I(V0V1;Y1) + I(V0V2;Y2)
}
. (15)

This inner bound was first given by Yassaee et. al [21]. On the
other hand, letting K = 2, L = 1, D(o)

1 and D(o)
2 respectively

reduce to

D(o)
1 =

{
(D1, D2) : ∃pŜ1Ŝ2|S s.t.

Edk
(
S, Ŝk

)
≤ Dk, k = 1, 2,

and for any pmf pU |S , one can find pŨXỸ1Ỹ2
s.t.

I
(
Ŝ1;U

)
≤ I

(
Y1; Ũ |Ỹ1

)
,

I
(
Ŝ2;U

)
≤ I

(
Y2; Ũ |Ỹ2

)
,

I
(
Ŝ1Ŝ2;U

)
≤ I

(
Y1Y2; Ũ |Ỹ1Ỹ2

)
,

I
(
Ŝ1;S|U

)
≤ I

(
Y1;X|Ũ Ỹ1

)
,

I
(
Ŝ2;S|U

)
≤ I

(
Y2;X|Ũ Ỹ2

)
,

I
(
Ŝ1Ŝ2;S|U

)
≤ I

(
Y1Y2;X|Ũ Ỹ1Ỹ2

)}
,

or a simpler but possibly looser one,

D(o)
1 =

{
(D1, D2) : ∃pŜ1Ŝ2|S s.t.

Edk
(
S, Ŝk

)
≤ Dk, k = 1, 2,

and for any pmf pU |S , one can find pXỸ1Ỹ2
s.t.

I
(
Ŝ1;U

)
≤ I

(
Y1; Ỹ1

)
,

I
(
Ŝ2;U

)
≤ I

(
Y2; Ỹ2

)
,

I
(
Ŝ1Ŝ2;U

)
≤ I

(
Y1Y2; Ỹ1Ỹ2

)
,

I
(
Ŝ1;S|U

)
≤ I

(
Y1;X|Ỹ1

)
,

I
(
Ŝ2;S|U

)
≤ I

(
Y2;X|Ỹ2

)
,

I
(
Ŝ1Ŝ2;S|U

)
≤ I

(
Y1Y2;X|Ỹ1Ỹ2

)}
,

and

D(o)
2 =

{
(D1, D2) : ∃pX , ŝk (ỹk) , k = 1, 2 s.t.

Edk
(
S, Ŝk

)
≤ Dk, k = 1, 2,

and for any pmf pU |Y1Y2
,

one can find pỸ1Ỹ2|SpŨ |Ỹ1Ỹ2
s.t.

I
(
S; Ũ

)
≤ I (X;U) ,

I
(
S; Ỹ1|Ũ

)
≤ I (X;Y1|U) ,

I
(
S; Ỹ2|Ũ

)
≤ I (X;Y2|U) ,

I
(
S; Ỹ1|Ỹ2Ũ

)
≤ I (X;Y1|Y2U) ,

I
(
S; Ỹ2|Ỹ1Ũ

)
≤ I (X;Y2|Y1U) ,

I
(
S; Ỹ1Ỹ2|Ũ

)
≤ I (X;Y1Y2|U)

}
.

Note that the outer bounds D(o)
1 and D(o)

2 are not trivial
in general. The necessity of introducing nondegenerate vari-
able(s) for D(o)

1 can be concluded from some special cases,
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e.g., source broadcast over a degraded channel, quadratic
Gaussian source broadcast, or Hamming binary source broad-
cast (see the details in the subsequent three subsections). To
show the necessity of introducing a nondegenerate variable for
D(o)

2 , we consider the first three inequalities on mutual infor-
mation in D(o)

2 . Next we show that the necessary conditions

I
(
S; Ũ

)
≤ I (X;U) , (16)

I
(
S; Ỹ1|Ũ

)
≤ I (X;Y1|U) , (17)

I
(
S; Ỹ2|Ũ

)
≤ I (X;Y2|U) , (18)

with a nondegenerate U results in a tighter bound than
that with a degenerate U (for the latter case, the necessary
conditions reduce to the single-user bound).

Suppose the broadcast channel PY1Y2|X satisfies Y1 =
(Y0, Y

′
1), Y2 = (Y0, Y

′
2) for some Y0, Y

′
1 , Y

′
2 . Consider a

lossless transmission case (Hamming distortion measure and
D1 = D2 = 0): S = (S1, S2), Ŝ1 = S1, Ŝ2 = S2, and
H(S1) = C1 and H(S2) = C2. Obviously, these conditions do
not violate the single-user outer bound. Now we show that for
some sources,these conditions violate the outer bound D(o)

2 .
Set U = Y0 in D(o)

2 . Then it is easy to obtain the following
inequalities from (16)-(18).

I(S1S2;V ) ≤ I(X;Y0), (19)
H(S1|V ) ≤ I(X;Y1|Y0), (20)
H(S2|V ) ≤ I(X;Y2|Y0), (21)

for some pV |S1S2
. Therefore, we further have

H(S1) ≤ H(S1) + I(S2;V |S1) (22)
= I(S1S2;V ) +H(S1|V ) (23)
≤ I(X;Y0) + I(X;Y1|Y0) (24)
= I(X;Y1) ≤ C1. (25)

On the other hand, by the assumptions H(S1) = C1 and
H(S2) = C2, the equalities hold in all the inequalities above,
which implies I(X;Y1) = C1 (i.e., PX is a capacity-achieving
distribution), I(S1S2;V ) = I(X;Y0) , and I(S2;V |S1) = 0,
i.e., S2 → S1 → V . Similarly, we have S1 → S2 → V . In
addition, the Gács-Körner common information [22], [23] is
defined as

CGK(S1;S2) = sup
PV |S1S2 :S2→S1→V,S1→S2→V

I(S1S2;V ).

(26)
Hence there exists pV |S1S2

such that S2 → S1 → V, S1 →
S2 → V and I(S1S2;V ) = I(X;Y0) , only if CGK(S1;S2) ≥
I(X;Y0) > 0 (suppose the channel PY0|X satisfies I(X;Y0) >
0 for the capacity-achieving distribution PX ). However the
Gács-Körner common information does not always exist for
all source pairs (S1, S2), e.g., CGK(S1;S2) = 0 for a doubly
symmetric binary source. This implies the outer bound is
tighter than the single-user one, which in turn implies D(o)

2

are not trivial in general.

B. Discrete Memoryless Broadcast over Degraded Channel

If the channel is degraded, define

D(i)
DBC =

{
D[1:K] : ∃pVK |SpVK−1|VK · · · pV1|V2

, x (vK , s) ,

ŝk (vk, yk) , k ∈ [1 : K] s.t.

Edk(S, Ŝk) ≤ Dk,

I (S;Vk) ≤
k∑
j=1

I (Yj ;Vj |Vj−1) , k ∈ [1 : K],

where V0 , ∅
}
, (27)

and

D(o)
DBC ={
D[1:K] : ∃pŜ[1:K]|S , pX s.t.

Edk(S, Ŝk) ≤ Dk, k ∈ [1 : K],(
I(Ŝ[1:k];Uk|Uk−1) : k ∈ [1 : K]

)
∈ RDBC(pXpY[1:K]|X)

for any pUK−1|SpUK−2|UK−1
· · · pU1|U2

, U0 , ∅, UK , S,

and
(
I(S; Ŝ[1:k]) : k ∈ [1 : K]

)
∈ RSRC(pXpY[1:K]|X)

}
,

(28)

where

RDBC

(
pXpY[1:K]|X

)
={

R[1:K] : Rk ≥ 0,∃pVK−1|XpVK−2|VK−1
· · · pV1|V2

s.t.

k∑
j=1

Rj ≤
k∑
j=1

I (Yj ;Vj |Vj−1) , k ∈ [1 : K],

where V0 , ∅, VK , X
}

(29)

denotes the capacity of the degraded broadcast channel
pY[1:K]|X with the input X following pX , and

RSRC

(
pXpY[1:K]|X

)
={

R[1:K] : Rk ≥ 0,

k∑
j=1

Rj ≥ I
(
X;Y[1:k]

)
, k ∈ [1 : K]

}
(30)

denotes the successive refinement coding rate region of source
X with reconstructions Y[1:K] following pY[1:K]|X .

Then as a consequence of Theorem 1, the following theorem
holds.

Theorem 2. For transmitting a DMS S over a degraded DM-
BC pY[1:K]|X ,

D(i)
DBC ⊆ D ⊆ D

(o)
DBC. (31)

Remark 2. D(o)
DBC can be also expressed as

D(o)
DBC =

{
D[1:K] : ∃pŜ[1:K]|S , pX s.t.

Edk
(
S, Ŝk

)
≤ Dk, k ∈ [1 : K],

RDBC

(
pSpŜ′

[1:K]
|S

)
⊆ RDBC

(
pXpY[1:K]|X

)
,
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RSRC

(
pSpŜ′

[1:K]
|S

)
⊇ RSRC

(
pXpY[1:K]|X

)
,

Ŝ′k , Ŝ[1:k], k ∈ [1 : K]
}
. (32)

From the last constraint of D(o)
DBC, one can obtain an interesting

conclusion: the single-user outer bound D∗[1:K] can be achieved
for source broadcast over a degraded channel only if the source
is successively refinable.

Remark 3. If pS is Gaussian and all dk (s, ŝk) , k ∈ [1 : K]
are the quadratic distortion function (i.e., dk (s, ŝk) = (s −
ŝk)2, k ∈ [1 : K]), then the smallest capacity region (with
input distribution restricted to pS) RDBC(pSpŜ′

[1:K]
|S) over

all pŜ[1:K]|S is obtained by setting pŜ[1:K]|S as the Gaussian

broadcast channel such that for k ∈ [1 : K], S = Ŝk + Ek
and Ŝk ∼ N (0, NS −Dk), Ek ∼ N (0, Dk) are independent.
That is, setting pŜ[1:K]|S as the Gaussian broadcast channel is
“optimal” for this case. This point is obtained by observing
that: 1) the capacity region for this case is

C =
⋃

+∞=τ0≥τ1≥···≥τK=0{
R[1:K] : Rk ≤

1

2
log

(Dk + τk−1) (NS + τk)

(Dk + τk) (NS + τk−1)
, k ∈ [1 : K]

}
;

(33)

2) for any other channels pŜ[1:K]|S satisfying Edk
(
S, Ŝk

)
≤

Dk, k ∈ [1 : K], C is a subset (or an inner bound) of the
capacity region (with input distribution restricted to pS) of
pŜ[1:K]|S [9]. Therefore, Gaussian broadcast channels have the
smallest capacity regions given noise powers (here noise is
not restricted to be independent of the channel input). This
observation is consistent with the point-to-point case [14,
Problem 10.8].

Note that the last constraint of D(i)
DBC can be understood

as the intersection between the successive refinement rate
region of the source S with reconstructions V[1:K] and the
capacity of the degraded broadcast channel pY[1:K]|X with
the input X and auxiliary random variables V[1:K], is not
empty. The second constraint of D(o)

DBC can be understood
as the capacity of the virtual degraded broadcast channel
pŜ′

[1:K]
|S with the input S is included in the capacity of the

physical degraded broadcast channel pY[1:K]|X with the input
X . Similarly, the last constraint of D(o)

DBC can be understood as
the successive refinement rate region of the physical source S
with reconstructions Ŝ′[1:K] includes the successive refinement
rate region of the virtual source X with reconstructions Y[1:K].

C. Hamming Binary Broadcast

Consider sending a binary source S ∼ Bern
(
1
2

)
with the

Hamming distortion measure dk(s, ŝ) = d(s, ŝ) , 0, if s =
ŝ; 1, otherwise, over a binary broadcast channel Yk = X ⊕
Wk, 1 ≤ k ≤ K with Wk ∼ Bern (pk) , 12 ≥ p1 ≥ p2 ≥ · · · ≥
pK ≥ 0. Assume the bandwidth mismatch factor is b.

We first consider the inner bound part. For bandwidth
expansion (b > 1) case, as a special case of hybrid coding,
systematic source-channel coding (or Uncoded Systematic

Coding) was first investigated in [6]. For any point-to-point
lossless communication, such systematic coding does not lose
the optimality; however, for some lossy transmission cases
such as Hamming binary source communication, it is not
optimal any more [6]. To retain the optimality, we can first
quantize the source S, and then transmit the quantized signal
using Uncoded Systematic Coding. The performance of such
code can be obtained directly from Theorem 2.

Specifically, let U2 = S ⊕ E2, U1 = U2 ⊕ E1 with
E2 ∼ Bern(D2), E1 ∼ Bern(d1). Let V2 =

(
U2, X

b−1) , V1 =(
U1, X

b−1
1

)
, Xb−1

1 = Xb−1 ⊕ Bb−1, where Xb−1
1 and Xb−1

are independent of U2 and U1, and Xb−1 and Bb−1 follow
b − 1 dimensional Bern( 1

2 ) and Bern(θ), respectively. Let
xb(v2, s) =

(
u2, x

b−1), ŝ2 (v2, yb2) = u2, and ŝ1
(
v1, y

b
1

)
=

u1, if d1 < p1; y1, otherwise, where y1 is the first letter of yb1.
Substituting these variables and functions into the inner bound
D(i)

DBC in Theorem 2, we get the following corollary.

Corollary 1 (Coded Systematic Coding). For transmitting a
binary source S with the Hamming distortion measure over a
2-user binary broadcast channel with the bandwidth mismatch
factor b,

D ⊇ D(i)
CSC , convexhull

{
(D1, D2) :

0 ≤ θ, d1 ≤
1

2
,

D1 ≥ min {d1 ? D2, p1 ? D2} ,
r1 , 1−H2(d1 ? p1) + (b− 1) [1−H2(θ ? p1)],

r2 , H2(d1 ? p2)−H2(p2) + (b− 1) [H2(θ ? p2)−H2(p2)],

1−H2(d1 ? D2) ≤ r1,

1−H2(D2) ≤ r1 + r2

}
, (34)

where ? denotes an binary operation such that

x ? y = (1− x)y + x(1− y), (35)

and H2 denotes the binary entropy function, i.e.,

H2(p) = −p log p− (1− p) log(1− p). (36)

Remark 4. Coded Systematic Coding without timesharing
does not always lead to a convex distortion region, hence a
timesharing mechanism is needed to improve the performance.
This is equivalent to adding a timesharing variable Q into V2
and V1, before substituting them into the inner bound D(i)

DBC.
Besides, note that unlike Uncoded Systematic Coding, the
Coded Systematic Coding could always achieve the optimal
distortion for at least one of the receivers. Moreover, unlike
separate coding the Coded Systematic Coding weakens the
cliff effect, and results in a slope-cliff effect.

The outer bound of Theorem 2 reduces to the following
outer bound for the Hamming binary source broadcast prob-
lem. This outer bound was first given in [11, Eqn (41)] for the
2-user case.

Theorem 3. [11, Eqn (41)] For transmitting a binary source
S with the Hamming distortion measure over a K-user binary
broadcast channel with the bandwidth mismatch factor b,

D ⊆ D(o)
DBC ,
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Ucoded Systematic Coding
(Wyner−Ziv Broadcast Coding)
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Fig. 4. Distortion bounds for sending a binary source over a binary broadcast
channel with b = 2, p1 = 0.18, p2 = 0.12. Outer Bounds 1 and 2
respectively correspond to the outer bound of Theorem 3 and the outer
bound of Theorem 6. Separate Coding, Uncoded Systematic Coding, and
Coded Systematic Coding respectively correspond to the separate scheme
(combining successive-refinement code [16, Example 13.3] with superposition
code [16, Example 5.3]), the inner bound in Corollary 2, and the inner bound
in Corollary 1. Single-user Outer Bounds 1 and 2 correspond to the single-user
outer bound (6) and the single-user Wyner-Ziv outer bound (41), respectively.
Besides, Single-user Outer Bound 2, Outer Bound 2 and Uncoded Systematic
Coding can be considered as outer bounds and inner bound for the Wyner-Ziv
source broadcast problem with b = 1, β1 = p1, β2 = p2.

{
D[1:K] : For any values

1

2
= τ0 ≥ τ1 ≥ · · · ≥ τK = 0,

1

b
(H2 (τk−1 ? Dk)−H2 (τk ? Dk) : k ∈ [1 : K]) ∈ RBBC

}
,

(37)

where RBBC denotes the capacity of the binary broadcast
channel given by

RBBC ={
R[1:K] : ∃ some values

1

2
= θ0 ≥ θ1 ≥ · · · ≥ θK = 0 s.t.

0 ≤ Rk ≤ H2 (θk−1 ? pk)−H2 (θk ? pk) , k ∈ [1 : K]
}
.

(38)

The bounds in Corollary 1 and Theorem 3 are illustrated in
Fig. 4.

D. Quadratic Gaussian Broadcast

Consider sending a Gaussian source S ∼ N (0, NS) with
the quadratic distortion measure dk(s, ŝ) = d(s, ŝ) , (s− ŝ)2
over a power-constrained Gaussian broadcast channel Yk =
X + Wk, 1 ≤ k ≤ K with E

(
X2
)
≤ P andWk ∼

N (0, Nk) , N1 ≥ N2 ≥ · · · ≥ NK . Assume the bandwidth
mismatch factor is b. As stated in Remark 1, Theorem 1
(or 2) holds for the Gaussian case as well. The inner bound
D(i)

DBC in Theorem 2 could recover the best known inner bound
[7, Thm. 5] by setting the random variables and symbol-by-
symbol mappings to some suitable ones. On the other hand,
setting U[1:K−1] to be jointly Gaussian with S, the outer bound

0 0.05 0.1 0.15 0.2
0

1

1.5

2

2.5
x 10−3

D
2

D1

Single-user Outer Bound 

Outer Bound 1

Inner Bound 1

Outer Bound 2

Inner Bound 2

0.5

Fig. 5. Distortion bounds for sending a Gaussian source over a Gaussian
broadcast channel with b = 2, NS = 1, P = 50, N1 = 10, N2 = 1. Outer
Bounds 1 and 2 and Inner Bounds 1 and 2 respectively correspond to the
outer bound in [9, Thm. 2], the outer bound in Theorem 7, the inner bound
in [7, Thm. 5], and the inner bound achieved by Wyner-Ziv separate coding
(uncoded systematic code) [17, Lem. 3]. Single-user Outer Bound corresponds
to the single-user outer bound (6). Besides, Outer Bound 2 and Inner Bound
2 can be considered as an outer bound and an inner bound for the Wyner-Ziv
source broadcast problem with b = 1, β1 = NSN1

P+N1
, β2 = NSN2

P+N2
. For this

case, Single-user Outer Bound corresponds to the single-user Wyner-Ziv outer
bound (41).

nS
Encoder

nX
Y[1:K ] |X
P

n
KY Ŝ nK

Decoder K

1
nY Ŝ n1

Decoder 1

1
nZ

n
KZ

Fig. 6. Wyner-Ziv source broadcast system: a broadcast communication
system with side information at decoders.

D(o)
DBC in Theorem 2 could recover the best known outer bound

[9, Thm. 2]. The bounds in [7, Thm. 5] and [9, Thm. 2] are
illustrated in Fig. 5.

IV. WYNER-ZIV SOURCE BROADCAST: SOURCE
BROADCAST WITH SIDE INFORMATION

We now extend the source broadcast problem by allowing
decoders to access side information correlated with the source.
As depicted in Fig. 6, receiver k observes memoryless side
information Znk , and it produces a source reconstruction Ŝnk
from the received signal Y nk and side information Znk .

Definition 7. An n-length Wyner-Ziv source-channel code is
defined by the encoding function xn : Sn 7→ Xn and K
decoding functions ŝnk : Ynk ×Znk 7→ Ŝnk , 1 ≤ k ≤ K.
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Definition 8. If there exists a sequence of Wyner-Ziv source-
channel codes satisfying

lim sup
n→∞

Edk
(
Sn, Ŝnk

)
≤ Dk, (39)

then we say that the distortion tuple D[1:K] is achievable.

Definition 9. The admissible distortion region for the Wyner-
Ziv broadcast problem is defined as

DSI ,
{
D[1:K] : D[1:K] is achievable

}
. (40)

Shamai et al. [6, Thm. 2.1] showed that for transmitting
a source over a point-to-point channel pYk|X with side infor-
mation Zk available at the decoder, the minimum achievable
distortion for the receiver k satisfies RS|Zk (Dk) = Ck, where
RS|Zk (· ) is the Wyner-Ziv rate-distortion function of the
source S given that the decoder observes Zk [16]. Therefore,
the optimal achievable distortion is D∗SI,k = R−1S|Zk (Ck) .
Obviously,

DSI ⊆ D∗SI ,
{
D[1:K] : Dk ≥ D∗SI,k, 1 ≤ k ≤ K

}
, (41)

where D∗SI is named single-user Wyner-Ziv outer bound.
Besides, we also consider the bandwidth mismatch case,

whereby m samples of a DMS are transmitted through n uses
of a DM-BC with l samples of side information available at
each decoder. For simplicity, we assume m = l. For this case,
the bandwidth mismatch factor is defined as b = n

m .

A. Discrete Memoryless Wyner-Ziv Broadcast
If consider S and Z[1:K] as the input and outputs of a

virtual broadcast channel pZ[1:K]|S , then the Wyner-Ziv source
broadcast problem with the encoding function xn(sn) is
equivalent to the source broadcast problem of sending S over
pZ[1:K]|SpY[1:K]|X with the encoding function (sn, xn(sn)).
Correspondingly, the Wyner-Ziv source broadcast system can
be considered as a (uncoded) systematic source-channel cod-
ing system. Hence by setting the symbol-by-symbol function
as
(
s, x

(
v[1:N ], s

))
, from Theorem 1, we obtain the following

inner bound for the Wyner-Ziv source broadcast problem.

D(i)
SI =

{
D[1:K] : ∃pV[1:N]|S , r[1:N ], x

(
v[1:N ], s

)
,

ŝk (vBk , yk, zk) , k ∈ [1 : K] s.t.

Edk
(
S, Ŝk

)
≤ Dk, k ∈ [1 : K],∑

j∈J
rj >

∑
j∈J

H
(
Vj |VAj

)
−H (VJ |S)

for all J ⊆ [1 : N ] s.t. J 6= ∅ and Aj ⊆ J ,∀j ∈ J ,∑
j∈J c

rj <
∑
j∈J c

H
(
Vj |VAj

)
−H (VJ c |YkZkVJ ) ,

k ∈ [1 : K] for all J ⊆ Bk s.t.

J c , Bk\J 6= ∅ and Aj ⊆ J ,∀j ∈ J
}
. (42)

In addition, regard
(
U[1:L], Z[1:K]

)
as auxiliary random

variables following pU[1:L]|SpZ[1:K]|S given S, then following
steps similar to the proof of the outer bound D(o)

1 of Theorem
1, we can obtain the following outer bound on DSI.

D(o)
SI,1 =

{
D[1:K] : ∃pŜ[1:K]|S,Z[1:K]

s.t.

Edk
(
S, Ŝk

)
≤ Dk, k ∈ [1 : K],

and for any pU[1:L]|S,Z[1:K]
,

one can find pŨ[1:L],Z̃[1:K],X
s.t.

I
(
ŜA;UB|UCZA

)
≤ I

(
YA; ŨB|ŨCZ̃A

)
for any A ⊆ [1 : K] ,B, C ⊆ [1 : L]

}
, (43)

Similarly, following steps similar to the proof of the outer
bound D(o)

2 of Theorem 1, we can prove another outer bound
on DSI.

D(o)
SI,2 =

{
D[1:K] : ∃pX , ŝnk (ỹk, z

n
k ) , k ∈ [1 : K] s.t.

Edk
(
S, Ŝk

)
≤ Dk, k ∈ [1 : K],

and for any pmf pU[1:L]|Y[1:K]
,

one can find pỸ[1:K]|SpŨ[1:L]|Ỹ[1:K]
s.t.

I
(
Sn; ỸBŨB′ |ỸCŨC′

)
≤ I (X;YBUB′ |YCUC′)

for any B, C ⊆ [1 : K] ,B′, C′ ⊆ [1 : L]
}
. (44)

Therefore, the following theorem holds. The proof is omit-
ted.

Theorem 4. For transmitting a DMS S over a DM-BC
pY[1:K]|X with side information Zk at the decoder k (k ∈ [1 :
K]),

D(i)
SI ⊆ DSI ⊆ D(o)

SI,1 ∩ D
(o)
SI,2. (45)

Remark 5. Similar to Theorem 1, Theorem 4 could be ex-
tended to a Gaussian or any other well-behaved continuous-
alphabet source-channel pair. It also can be extended to the
problems of broadcasting Wyner-Ziv correlated sources, and
Wyner-Ziv source broadcast with channel input cost.

B. Discrete Memoryless Wyner-Ziv Broadcast over Degraded
Channel with Degraded Side Information

Theorem 4 can be used to derive an inner bound and
an outer bound for the degraded channel and degraded side
information case. Define

D(i)
SI−D =

{
D[1:K] : ∃pVK |SpVK−1|VK · · · pV1|V2

, x (vK , s) ,

ŝk (vk, yk, zk) , k ∈ [1 : K] s.t.

Edk
(
S, Ŝk

)
≤ Dk,

I (S;Vk) ≤
k∑
j=1

I (YjZj ;Vj |Vj−1) , k ∈ [1 : K],

where V0 , ∅
}
, (46)

and

D(o)
SI−D =

{
D[1:K] : ∃pVK |SpVK−1|VK · · · pV1|V2

, pX ,

ŝk (vk, zk) , k ∈ [1 : K] s.t.

Edk
(
S, Ŝk

)
≤ Dk,

(I (Vk;Uk|Uk−1Zk) : k ∈ [1 : K]) ∈ RDBC

(
pXpY[1:K]|X

)
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for any pmf pUK−1|SpUK−2|UK−1
· · · pU1|U2

,

U0 , ∅, UK , S,

and (I (Vk;S|Zk) : k ∈ [1 : K]) ∈ RSRC

(
pXpY[1:K]|X

)}
,

(47)

where RDBC

(
pXpY[1:K]|X

)
and RSRC

(
pXpY[1:K]|X

)
are

given in (29) and (30), respectively. Then we have the fol-
lowing theorem. The proof is analogous to that of Theorem 2,
and therefore omitted.

Theorem 5. For transmitting a DMS S over a degraded DM-
BC pY[1:K]|X (X → YK → YK−1 → · · · → Y1) with degraded
side information Zk (S → ZK → ZK−1 → · · · → Z1) at the
decoder k (k ∈ [1 : K]),

D(i)
SI−D ⊆ DSI ⊆ D(o)

SI−D. (48)

Remark 6. D(o)
SI−D can be also expressed as

D(o)
SI−D =

{
D[1:K] : ∃pVK |SpVK−1|VK · · · pV1|V2

, ŝk (vk, zk) ,

k ∈ [1 : K] s.t. Edk
(
S, Ŝk

)
≤ Dk,

RDBC−SI

(
pSpZ[1:K]|SpV[1:K]|S,Z[1:K]

)
⊆ RDBC

(
pXpY[1:K]|X

)
,

RSRC−SI

(
pSpZ[1:K]|SpV[1:K]|S,Z[1:K]

)
⊇ RSRC

(
pXpY[1:K]|X

)}
, (49)

where

RDBC−SI

(
pXpZ[1:K]|XpY[1:K]|X,Z[1:K]

)
,{

R[1:K] : Rk ≥ 0,∃pVK−1|XpVK−2|VK−1
· · · pV1|V2

s.t.

k∑
j=1

Rj ≤
k∑
j=1

I (Yj ;Vj |Vj−1Zj) ,

k ∈ [1 : K], where V0 , ∅, VK , X
}
, (50)

and

RSRC−SI

(
pXpZ[1:K]|XpY[1:K]|X,Z[1:K]

)
,{

R[1:K] : Rk ≥ 0,

k∑
j=1

Rj ≥ I (X;Yk|Zk) , k ∈ [1 : K]
}
.

(51)

C. Wyner-Ziv Binary Broadcast

Consider sending a binary source S ∼ Bern
(
1
2

)
with the

Hamming distortion measure dk(s, ŝ) = d(s, ŝ) , 0, if s =
ŝ; 1, otherwise, over a binary broadcast channel Yk = X ⊕
Wk, 1 ≤ k ≤ K with Wk ∼ Bern (pk) , 12 ≥ p1 ≥ p2 ≥ · · · ≥
pK ≥ 0. Assume the side information Zk observed by the
receiver k satisfies S = Zk ⊕ Bk with independent variables
Zk ∼ Bern

(
1
2

)
and Bk ∼ Bern (βk). Assume the bandwidth

mismatch factor is b.

Let V1 =
(
U1, X

b
1

)
, V2 =

(
U2, X

b
)
, V3 = ∅ with U1 and

U2 are independent of Xb
1 and Xb. S, U2 and U1 satisfy the

distribution pSpU2|SpU1|U2
, where

0 1 2

pU2|S =
0
1

(
q2ᾱ2 q2α2 q̄2
q2α2 q2ᾱ2 q̄2

)
, (52)

0 1 2

pU1|U2
=

0
1
2

 q′1ᾱ
′
1 q′1α

′
1 q̄′1

q′1α
′
1 q′1ᾱ

′
1 q̄′1

0 0 1

 , (53)

with 0 ≤ q2, q
′
1 ≤ 1, 0 ≤ α2, α

′
1 ≤ 1

2 . X
b and Xb

1 satisfy
Xb

1 = Xb ⊕ Bb, Xb ∼ b-dimensional Bern( 1
2 ), and Bb ∼

b-dimensional Bern(θ) with 0 ≤ θ ≤ 1
2 . Denote α1 = α2 ?

α′1, q1 = q2q
′
1, and set xb(v2, s) = xb and for k = 1, 2,

ŝk
(
vk, y

b
k, zk

)
=

{
zk, if αk ≥ βk or αk < βk, uk = 2;

uk, if αk < βk, uk = 0, 1.
(54)

Substituting these random variables and functions into D(i)
SI

in Theorem 4 (for this case, the hybrid coding reduces to
a layered digital coding), we get the following performance,
which is tighter than that of the Layered Description Scheme
(LDS) [17, Lem. 4].

Corollary 2 (Layered Digital Coding). For transmitting a
binary source S with the Hamming distortion measure over a
2-user binary broadcast channel with side information Zk at
the decoder k (k ∈ [1 : K]),

DSI ⊇ D(i)
LDC ,{

(D1, D2) : 0 ≤ q1 ≤ q2 ≤ 1,

0 ≤ α2 ≤ α1 ≤
1

2
, 0 ≤ θ ≤ 1

2
,

q1r(α1, β1) ≤ b (1−H2(θ ? p1)) ,

q1r(α1, β2) ≤ b (1−H2(θ ? p2)) ,

q2r(α2, β2) ≤ b (1−H2(p2)) ,

q1r(α1, β1) + (q2r(α2, β2)− q1r(α1, β2))

≤ b (1−H2(θ ? p1)) + b (H2(θ ? p2)−H2(p2)) ,

Di ≤ qi min {αi, βi}+ (1− qi)βi, i = 1, 2
}
, (55)

where
r(α, β) = H2(α ? β)−H2(α), (56)

? denotes the binary operation given in (35), and H2 denotes
the binary entropy function given in (36).

In addition, the outer bound of Theorem 5 reduces to the
following one for the Wyner-Ziv binary case. The proof is
given in Appendix D.

Theorem 6. For transmitting a binary source S with the
Hamming distortion measure over a K-user binary broadcast
channel with degraded side information Zk ( 12 ≥ β1 ≥ β2 ≥
· · · ≥ βK ≥ 0) at the decoder k (k ∈ [1 : K]),

DSI ⊆ D(o)
SI−D ,{

D[1:K] : ∃ 0 ≤ α1, α2, · · · , αK ≤
1

2
s.t.
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αk ≤ D′k , min {Dk, βk} , k ∈ [1 : K],

and for any values
1

2
= τ0 ≥ τ1 ≥ · · · ≥ τK = 0,

1

b

(
ηk
(
H2 (βk ? τk)−H2 (βk ? τk−1)

− (H4 (αk, βk, τk)−H4 (αk, βk, τk−1))
)

:

k ∈ [1 : K]
)
∈ RBBC

}
, (57)

where RBBC denotes the capacity region of the binary broad-
cast channel given in (38),

ηk ,

{
βk−D′k
βk−αk , if αk < βk,

0, otherwise,
(58)

H4 (x, y, z) ,− (xyz + xyz) log (xyz + xyz)

− (xyz + xyz) log (xyz + xyz)

− (xyz + xyz) log (xyz + xyz)

− (xyz + xyz) log (xyz + xyz) , (59)

and x , 1− x.

The bounds in Corollary 2 and Theorem 6 are shown in
Fig. 4.

D. Wyner-Ziv Gaussian Broadcast

Consider sending a Gaussian source S ∼ N (0, NS) with
the quadratic distortion measure dk(s, ŝ) = d(s, ŝ) , (s− ŝ)2
over a power-constrained Gaussian broadcast channel Yk =
X + Wk, 1 ≤ k ≤ K with E

(
X2
)
≤ P and Wk ∼

N (0, Nk) , N1 ≥ N2 ≥ · · · ≥ NK . Assume the side infor-
mation Zk observed by the receiver k satisfies S = Zk +Bk
with independent Gaussian variables Zk ∼ N (0, NS − βk)
and Bk ∼ N (0, βk). Assume the bandwidth mismatch factor
is b. As stated in Remark 5, Theorem 4 (or 5) holds for
the Gaussian case as well. The inner bound of Theorem 5
recovers the existing results in [17], [18], and the outer bound
of Theorem 5 generates the following outer bound for the
Wyner-Ziv Gaussian source broadcast problem. The proof is
given in Appendix E.

Theorem 7. For transmitting a Gaussian source S over a
Gaussian broadcast channel with degraded side information
Zk (β1 ≥ β2 ≥ · · · ≥ βK) at the decoder k (k ∈ [1 : K]),

DSI ⊆ D(o)
SI−D ,{

D[1:K] : For any values +∞ = τ0 ≥ τ1 ≥ · · · ≥ τK = 0,

1

b

(
1

2
log

(Dk + τk−1) (βk + τk)

(Dk + τk) (βk + τk−1)
: k ∈ [1 : K]

)
∈ RGBC

}
,

(60)

where RGBC denotes the capacity of Gaussian broadcast
channel given by

RGBC =
{
R[1:K] : Rk ≥ 0, k ∈ [1 : K], NK+1 = 0,

K∑
k=1

(Nk −Nk+1) exp(2

k∑
j=1

Rj) ≤ P +N1

}
. (61)

The bound of Theorem 7 is shown in Fig. 5.

V. CONCLUDING REMARKS

In this paper, we focused on the joint source-channel coding
problem of sending a memoryless source over a memoryless
broadcast channel, and developed an inner bound and two
outer bounds for this problem. The inner bound is achieved
by using a unified hybrid coding scheme, and it can recover
the best known performance of hybrid coding. Similarly, our
outer bounds can also recover the best known outer bound in
the literature. Besides, we extend the results to the Wyner-Ziv
source broadcast problem.

The inner bounds achieved by the proposed hybrid coding
is established by using generalized multivariate covering and
packing lemmas, and the outer bounds are derived by introduc-
ing auxiliary random variables (at the sender side or receiver
sides). These lemmas and tools are expected to be exploited
to derive more and stronger achievability and converse results
for network information theory.

APPENDIX A
PROOF OF LEMMA 1

We follow similar steps to the proof of mutual covering
lemma [15]. Let

B =
{
m[1:k] ∈

k∏
i=1

[1 : 2nri ] : (Un, V n0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε

}
.

(62)
Then we only need to show limn→∞ P (|B| = 0) = 0. On the
other hand,

lim
n→∞

P (|B| = 0)

= lim
n→∞

∑
un,vn0

pUn,V n0 (un, vn0 )P (|B| = 0|un, vn0 ) (63)

≤ lim
n→∞

∑
(un,vn0 )∈T (n)

ε′

pUn,V n0 (un, vn0 )P (|B| = 0|un, vn0 )

+ lim
n→∞

P
(

(un, vn0 ) /∈ T (n)
ε′

)
(64)

= lim
n→∞

∑
(un,vn0 )∈T (n)

ε′

pUn,V n0 (un, vn0 )P (|B| = 0|un, vn0 )

(65)

To prove limn→∞ P (|B| = 0) = 0, it is sufficient to show
limn→∞ P (|B| = 0|un, vn0 ) = 0 for any (un, vn0 ) ∈ T (n)

ε′ .
Utilizing the Chebyshev lemma [16, App. B], we can bound
the probability as

P (|B| = 0|un, vn0 )

≤ P
(
(|B| − E|B|)2 ≥ (E|B|)2|un, vn0

)
(66)

≤ Var(|B||un, vn0 )

(E(|B||un, vn0 ))2
. (67)

Next we prove the upper bound Var(|B||un,vn0 )
(E(|B||un,vn0 ))2 tends to zero

as n→∞. Define

E
(
m[1:k]

)
,

{
1, if (un, vn0 , V

n
[1:k](m[1:k])) ∈ T

(n)
ε ;

0, otherwise,
(68)
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for each m[1:k] ∈
∏k
i=1[1 : 2nri ], then |B| can be expressed

as
|B| =

∑
m[1:k]∈

∏k
i=1[1:2

nri ]

E
(
m[1:k]

)
. (69)

Denote

p0 = P
(

(un, vn0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε |un, vn0
)
, (70)

pI = P
(

(un, vn0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε ,

(un, vn0 , V
n
[1:k](mI ,m

′
Ic)) ∈ T (n)

ε |un, vn0
)
, (71)

for m[1:k] = 1, and m′[1:k] = 2. Obviously, p[1:k] = p0. Then

E(|B||un, vn0 )

=
∑
m[1:k]

P
(

(un, vn0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε |un, vn0
)

(72)

= 2n
∑k
j=1 rjp0, (73)

and

E(|B|2|un, vn0 )

=
∑
I⊆[1:k]

∑
m[1:k]

∑
m′Ic :m

′
Ic<mIc

P
(

(un, vn0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε ,

(un, vn0 , V
n
[1:k](mI ,m

′
Ic)) ∈ T (n)

ε |un, vn0
)

(74)

= 2n
∑k
j=1 rjp0 +

∑
I$[1:k]

∑
m[1:k]

∑
m′Ic :m

′
Ic<mIc

P
(

(un, vn0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε ,

(un, vn0 , V
n
[1:k](mI ,m

′
Ic)) ∈ T (n)

ε |un, vn0
)
. (75)

Define

J , {J $ [1 : k] : if j ∈ J , then Aj ⊆ J} . (76)

Then any set I $ [1 : k] can transform into a J (I) ∈ J by
removing all the elements j’s such that Aj * I. According
to generation of random codebook, we can observe that pI =
pJ (I). Therefore,∑
I$[1:k]

∑
m[1:k]

∑
m′Ic :m

′
Ic<mIc

P
(

(un, vn0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε ,

(un, vn0 , V
n
[1:k](mI ,m

′
Ic)) ∈ T (n)

ε |un, vn0
)

=
∑
I$[1:k]

∑
m[1:k]

∑
m′Ic :m

′
Ic<mIc

pJ (I) (77)

≤
∑
I$[1:k]

2n(
∑k
j=1 rj+

∑
j∈Ic rj)pJ (I) (78)

≤
∑
I$[1:k]

2n(
∑k
j=1 rj+

∑
j∈(J (I))c rj)pJ (I) (79)

≤
∑
J∈J

2k−|J |2n(
∑k
j=1 rj+

∑
j∈Jc rj)pJ (80)

≤
∑
J∈J

2n(
∑k
j=1 rj+

∑
j∈Jc rj+o(1))pJ , (81)

where (79) follows from J (I) ⊆ I, (80) follows from that
for each J ⊆ J, there are at most 2k−|J | of I’s that could
transform into J , and o(1) denotes a term that vanishes as
n→∞. Hence

Var(|B||un, vn0 )

≤ E(|B|2|un, vn0 ) (82)

≤ 2n
∑k
j=1 rjp0 +

∑
J∈J

2n(
∑k
j=1 rj+

∑
j∈Jc rj+o(1))pJ . (83)

Furthermore we have

Var(|B||un, vn0 )

(E(|B||un, vn0 ))2

≤
2n

∑k
j=1 rjp0 +

∑
J∈J 2n(

∑k
j=1 rj+

∑
j∈Jc rj+o(1))pJ(

2n
∑k
j=1 rjp0

)2
(84)

= 2−n
∑k
j=1 rj

1

p0
+
∑
J∈J

2n(−
∑
j∈J rj+o(1)) pJ

p20
. (85)

According to the generation process of random codebook, we
can observe that

p0 =
∑

vn
[1:k]

:(un,vn0 ,v
n
[1:k]

)∈T (n)
ε

P
(
V n[1:k](m[1:k]) = vn[1:k]|u

n, vn0

)
(86)

≥ 2−n(
∑k
j=1H(Vj |VAjV0)−H(V[1:k]|UV0)+2δ(ε)), (87)

where (87) follows from that for any (un, vn0 , v
n
[1:k]) ∈ T

(n)
ε ,

P
(
V n[1:k](m[1:k]) = vn[1:k]|u

n, vn0

)
≥ 2−n(

∑k
j=1H(Vj |VAjV0)+δ(ε)), (88)

and for any (un, vn0 ) ∈ T (n)
ε′ ,∣∣∣{vn[1:k] : (un, vn0 , v

n
[1:k]) ∈ T

(n)
ε

}∣∣∣
≥ 2n(H(V[1:k]|UV0)+δ(ε)). (89)

Similarly, we also can get

pJ ≤ exp
{
−n
( k∑
j=1

H
(
Vj |VAjV0

)
+
∑
j∈J c

H
(
Vj |VAjV0

)
−H

(
V[1:k]|UV0

)
−H (VJ c |UV0VJ )− 4δ (ε)

)}
.

(90)

Substituting (87) and (90) into (85), we have

Var(|B||un, vn0 )

(E(|B||un, vn0 ))2

≤ exp
{
−n
( k∑
j=1

rj −
( k∑
j=1

H
(
Vj |VAjV0

)
−H

(
V[1:k]|UV0

)
+ 2δ (ε)

))}
+
∑
J∈J

exp
{
−n
( k∑
j=1

rj −
(∑
j∈J

H
(
Vj |VAjV0

)
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−H (VJ |UV0) + 6δ (ε) + o(1)
))}

. (91)

(91) tends to zero if

k∑
j=1

rj >

k∑
j=1

H
(
Vj |VAjV0

)
−H

(
V[1:k]|UV0

)
+ 2δ (ε)

(92)∑
j∈J

rj >
∑
j∈J

H
(
Vj |VAjV0

)
−H (VJ |UV0) + 6δ (ε) + o(1),

(93)

i.e.,
∑
j∈J rj >

∑
j∈J H

(
Vj |VAjV0

)
−H (VJ |UV0) + δ′ (ε)

for some δ′ (ε) that tends to zero as ε → 0. This completes
the proof.

APPENDIX B
PROOF OF LEMMA 2

For any J such that J 6= ∅ and if j ∈ J then Aj ⊆ J ,

P
(

(Un, V n0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε for some m[1:k]

)
≤ P

(
(Un, V n0 , V

n
J (mJ )) ∈ T (n)

ε for some mJ
)

(94)

=
∑
un,vn0

pUn,V n0 (un, vn0 )

× P
(

(un, vn0 , V
n
J (mJ )) ∈ T (n)

ε for some mJ |un, vn0
)

(95)

≤
∑
un,vn0

pUn,V n0 (un, vn0 )

×
∑
mJ

P
(

(un, vn0 , V
n
J (mJ )) ∈ T (n)

ε |un, vn0
)
. (96)

Similar to (87), we can obtain that

P
(

(un, vn0 , V
n
J (mJ )) ∈ T (n)

ε |un, vn0
)

≤ 2−n(
∑
j∈J H(Vj |VAjV0)−H(VJ |UV0)−2δ(ε)). (97)

Substituting it into (96), we have

P
(

(Un, V n0 , V
n
[1:k](m[1:k])) ∈ T (n)

ε for some m[1:k]

)
≤ 2n(

∑
j∈J rj−(

∑
j∈J H(Vj |VAjV0)−H(VJ |UV0)−2δ(ε))). (98)

(98) tends to zero if∑
j∈J

rj <
∑
j∈J

H
(
Vj |VAjV0

)
−H (VJ |UV0)− 2δ (ε) . (99)

This completes the proof.

APPENDIX C
PROOF OF THEOREM 1

A. Inner Bound

Actually the inner bound can be seen as a corollary to [20,
Thm. 1] by choosing a proper set of network topology, transit
probability and symbol-by-symbol functions. For complete-
ness and clarity, next we provide a direct description of the
proposed hybrid coding scheme and a direct proof for it.

Codebook Generation: Fix the conditional pmf pV[1:N]|S ,
vector r[1:N ], encoding function x

(
v[1:N ], s

)
and decoding

functions ŝk (vBk , yk) that satisfy

Edk
(
S, Ŝk

)
≤ Dk, 1 ≤ k ≤ K, (100)∑

j∈J
rj >

∑
j∈J

H
(
Vj |VAj

)
−H (VJ |S)

for all J ⊆ [1 : N ] s.t. J 6= ∅
and Aj ⊆ J ,∀j ∈ J , (101)∑

j∈J c
rj <

∑
j∈J c

H
(
Vj |VAj

)
−H (VJ c |YkVJ ) ,

k ∈ [1 : K] for all J ⊆ Bk s.t.

J c , Bk\J 6= ∅ and Aj ⊆ J ,∀j ∈ J .
(102)

For each j ∈ [1 : N ] and each mAj ∈
∏
i∈Aj [1 : 2nri ],

randomly and independently generate a set of sequences
vnj (mAj ,mj),mj ∈ [1 : 2nrj ], with each distributed according
to
∏n
i=1 pVj |VAj (vj,i|vAj ,i(mAj )). The codebook

C =
{
vn[1:N ]

(
m[1:N ]

)
: m[1:N ] ∈

∏N
i=1[1 : 2nri ]

}
. (103)

is revealed to the encoder and all the decoders.
Encoding: We use joint typicality encoding. Given sn,

encoder finds the smallest index vector m[1:N ] such that(
sn, vn[1:N ]

(
m[1:N ]

))
∈ T (n)

ε . If there is no such index vector,
let m[1:N ] = 1. Then the encoder transmits the signal

xi = x
(
v[1:N ],i

(
m[1:N ]

)
, si
)
, 1 ≤ i ≤ n. (104)

Decoding: We use joint typicality decoding. Let ε′ > ε.
Upon receiving the signal ynk , the decoder of the receiver k
finds the smallest index vector m̂(k)

Bk such that

(vnBk(m̂
(k)
Bk ), ynk ) ∈ T (n)

ε′ . (105)

If there is no such index vector, let m̂(k)
Bk = 1. The decoder

reconstructs the source as

ŝk,i = ŝk(vBk,i(m̂
(k)
Bk ), yk,i), 1 ≤ i ≤ n. (106)

Analysis of Expected Distortion: We bound the distortions
averaged over Sn and the random codebook C. Define the
“error” event

E = E1 ∪

(⋃
k

E2,k

)
∪

(⋃
k

E3,k

)
, (107)

where

E1 =
{(
Sn, V n[1:N ]

(
m[1:N ]

))
/∈ T (n)

ε for all m[1:N ]

}
,

(108)

E2,k =
{(
Sn, V n[1:N ]

(
M[1:N ]

)
, Y nk

)
/∈ T (n)

ε′

}
, (109)

E3,k =
{(
V nBk(m′Bk), Y nk

)
∈ T (n)

ε′

for some m′Bk ,m
′
Bk 6= MBk

}
, (110)
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for 1 ≤ k ≤ K. Using the union bound, we have

P (E) ≤ P (E1) +

K∑
k=1

P
(
Ec1
⋂
E2,k

)
+

K∑
k=1

P (E3,k) . (111)

Now we claim that if (101) and (102) hold, then P (E) tends
to zero as n→∞. Before proving it, we show that this claim
implies the inner bound of Theorem 1.

Define

E4,k =
{(
Sn, V nBk(M̂

(k)
Bk ), Y nk

)
/∈ T (n)

ε′

}
. (112)

then we have Ec ⊆ Ec4,k, i.e., E4,k ⊆ E . This implies that
P (E4,k) ≤ P (E) → 0 as n → ∞. Then utilizing the typical
average lemma [16], we have

lim sup
n→∞

Edk
(
Sn, Ŝnk

)
= lim sup

n→∞

{
P (E4,k)E

[
dk

(
Sn, Ŝnk

)
|E4,k

]
+ P

(
Ec4,k

)
E
[
dk

(
Sn, Ŝnk

)
|Ec4,k

]}
(113)

= lim sup
n→∞

E
[
dk

(
Sn, Ŝnk

)
|Ec4,k

]
(114)

≤ (1 + ε′)Edk
(
S, Ŝk

)
(115)

≤ (1 + ε′)Dk. (116)

Therefore, the desired distortions are achieved for sufficiently
small ε′.

Next we turn back to prove the claim above. Following
from the multivariate covering lemma (Lemma 1), the first
term of (111), P (E1), vanishes as n → ∞, and according to
conditional typicality lemma [16, Sec. 3.7], the second item
tends to zero as n→∞.

Now we focus on the third term of (111). E3,k can be writen
as

E3,k =
⋃
I⊆Bk

EI3,k, (117)

where

EI3,k =
{(
V nBk (MI ,m

′
Ic) , Y

n
k

)
∈ T (n)

ε′

for some m′Ic ,m
′
Ic <MIc

}
, (118)

with Ic , Bk\I. Using the union bound we have

P (E3,k) ≤
∑
I⊆Bk

P
(
EI3,k

)
. (119)

Each Bk has a finite number of subsets, hence we only need to
show for each I ⊆ Bk, P

(
EI3,k

)
vanishes as n→∞. To show

this, it is needed to analyze the correlation between coding
index M[1:N ] and nonchosen codewords. Specifically, M[1:N ]

depends on the source sequence and the entire codebook, and
hence the standard packing lemma cannot be applied directly.
This problem has been resolved by the technique developed
in [15], [20].

P
((
V nBk (MI ,m

′
Ic) , Y

n
k

)
∈ T (n)

ε′

for some m′Ic ,m
′
Ic <MIc

)

=
∑
m[1:N]

∑
ynk

P
(
M[1:N ] = m[1:N ], Y

n
k = ynk ,(

V nBk (mI ,m
′
Ic) , y

n
k

)
∈ T (n)

ε′

for some m′Ic ,m
′
Ic < mIc

)
(120)

≤
∑
m[1:N]

∑
ynk

∑
m′Ic :m

′
Ic<mIc

P
(
M[1:N ] = m[1:N ],

Y nk = ynk ,
(
V nBk (mI ,m

′
Ic) , y

n
k

)
∈ T (n)

ε′

)
(121)

where (121) follows from the union bound.
Define a sub-codebook as

C(mI ,m′Ic ) =
{
V n[1:N ]

(
mI ,m

′′
Ic ,m

′′
Bck

)
:

∀
(
m′′Ic ,m

′′
Bck

)
,m′′Ic < m′Ic

}
. (122)

Define another coding index as M̃[1:N ] which is generated
by performing the same coding process as M[1:N ] but on
the codebook C(mI ,m′Ic ), i.e., given the source sequence sn,
the encoder finds the smallest index vector m̃[1:N ] such that(
sn, vn[1:N ]

(
m̃[1:N ]

))
∈ T (n)

ε ; if there is no such index vector,
let m̃[1:N ] = 1. Then according to the generation process
of M[1:N ] and M̃[1:N ], we have if M[1:N ] = m[1:N ], then
M̃[1:N ] = m[1:N ]. Now continuing with (121), we have

P
(
M[1:N ] = m[1:N ], Y

n
k = ynk ,

(
V nBk (mI ,m

′
Ic) , y

n
k

)
∈ T (n)

ε′

)
=

∑
v′nBk

,c,sn

P
(
M[1:N ] = m[1:N ], C(mI ,m′Ic ) = c,

Sn = sn, V nBk (mI ,m
′
Ic) = v′nDk

)
×

n∏
i=1

pYk|X
(
yk,i|x

(
v[1:N ],i(m[1:N ]), si

))
× 1

{(
v′nBk , y

n
k

)
∈ T (n)

ε′

}
(123)

=
∑

v′nBk
,c,sn

P
(
M[1:N ] = m[1:N ], M̃[1:N ] = m[1:N ],

C(mI ,m′Ic ) = c, Sn = sn, V nBk (mI ,m
′
Ic) = v′nDk

)
×

n∏
i=1

pYk|X
(
yk,i|x

(
v[1:N ],i(m[1:N ]), si

))
× 1

{(
v′nBk , y

n
k

)
∈ T (n)

ε′

}
(124)

≤
∑

v′nBk
,c,sn

P
(
M̃[1:N ] = m[1:N ], C(mI ,m′Ic ) = c,

Sn = sn, V nBk (mI ,m
′
Ic) = v′nDk

)
×

n∏
i=1

pYk|X
(
yk,i|x

(
v[1:N ],i(m[1:N ]), si

))
× 1

{(
v′nBk , y

n
k

)
∈ T (n)

ε′

}
(125)

=
∑

v′nBk
,c,sn

P
(
M̃[1:N ] = m[1:N ], C(mI ,m′Ic ) = c, Sn = sn

)

×
n∏
i=1

pYk|X
(
yk,i|x

(
v[1:N ],i(m[1:N ]), si

))
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× P
(
V nBk (mI ,m

′
Ic) = v′nBk |C(mI ,m′Ic ) = c

)
× 1

{(
v′nBk , y

n
k

)
∈ T (n)

ε′

}
(126)

where c =
{
vn[1:N ]

(
mI ,m

′′
Ic ,m

′′
Bck

)
:

∀
(
m′′Ic ,m

′′
Bck

)
,m′′Ic < m′Ic

}
, and (126) follows from

the fact that V nBk (mI ,m
′
Ic) → C(mI ,m′Ic ) →

(
Sn, M̃[1:N ]

)
forms a Markov chain.

Define

J , {J ⊆ Bk : Aj ⊆ J ,∀j ∈ J } . (127)

Then any set I ⊆ Bk can be transformed into a J (I) ∈ J
by removing all the elements j’s such that Aj * I. Denote
J c , Bk\J . Then according to the generation process of the
codebook, continuing with (126), we have∑
v′nBk

P
(
V nBk (mI ,m

′
Ic) = v′nBk |C(mI ,m′Ic ) = c

)
× 1

{(
v′nBk , y

n
k

)
∈ T (n)

ε′

}
=
∑
v′nJc

P
(
V nJ c (mI ,m

′
Ic) = v′nJ c |C(mI ,m′Ic ) = c

)
× 1

{(
vnJ (mJ ) , v′nJ c , y

n
k

)
∈ T (n)

ε′

}
(128)

=
∑
v′nJc

∏
j∈J c

n∏
i=1

pVj |VAj

(
v′j,i|vAj∩J ,i (mJ ) , v′Aj∩J c,i

)
× 1

{(
vnJ (mJ ) , v′nJ c , y

n
k

)
∈ T (n)

ε′

}
(129)

≤ 2n(H(VJc |YkVJ )−
∑
j∈Jc H(Vj |VAj )+(|J c|+1)δ(ε′)), (130)

where δ (ε′) is a term that tends to zero as ε′ → 0, and
(130) follows from the fact that

∏n
i=1 pVj |VAj

(
vj,i|vAj ,i

)
≤

2−n(H(Vj |VAj )−δ(ε
′)) for any

(
vnj , v

n
Aj

)
∈ T (n)

ε′ and∣∣∣{v′nJ c :
(
vnJ , v

′n
J c , y

n
k

)
∈ T (n)

ε′

}∣∣∣ ≤ 2n(H(VJc |YkVJ )+δ(ε′))

for any
(
ynk , v

n
J
)
.

Combining (121), (126) and (130) gives

P
(
(V nBk(MI ,m

′
Ic), Y

n
k ) ∈ T (n)

ε′

for some m′Ic ,m
′
Ic <MIc

)
≤ exp

{
n
(∑
j∈J c

rj −
(∑
j∈J c

H
(
Vj |VAj

)
−H (VJ c |YkVJ )− (|J c|+ 1) δ (ε′)

))}
. (131)

Hence if
∑
j∈J c rj <

∑
j∈J c H

(
Vj |VAj

)
−H (VJ c |YkVJ )−

(|J c|+ 1) δ (ε′) for all J ∈ J, then the third term of (111)
tends to zero as n → ∞. Letting ε′ small enough, this
completes the proof of the inner bound.

It is worth noting that although the multivariate packing
lemma (Lemma 2) has not been employed directly in the proof,
the derivation after (129) is essentially the same as that of the
multivariate packing lemma.

B. Outer Bound D(o)
1

For fixed pU[1:L]|S , we first introduce a set of aux-
iliary random variables Un[1:L] that follow the distribu-
tion

∏n
i=1 pU[1:L]|S

(
u[1:L],i|si

)
. Hence the Markov chains

Un[1:L] → Sn → Xn → Y nk → Ŝnk , 1 ≤ k ≤ K hold. Consider
that

I (Y nA ;UnB |UnC )

=

n∑
t=1

I
(
Y nA ;UB,t|UnC U t−1B

)
(132)

=

n∑
t=1

H
(
UB,t|UnC U t−1B

)
−H

(
UB,t|UnC U t−1B Y nA

)
(133)

=

n∑
t=1

H (UB,t|UC,t)−H
(
UB,t|UnC U t−1B Y nA

)
(134)

=

n∑
t=1

I
(
UB,t;U

n
C U

t−1
B Y nA |UC,t

)
(135)

≥
n∑
t=1

I
(
UB,t; ŜA,t|UC,t

)
(136)

= nI
(
UB,Q; ŜA,Q|UC,QQ

)
(137)

= nI
(
UB,Q; ŜA,QQ|UC,Q

)
(138)

≥ nI
(
UB,Q; ŜA,Q|UC,Q

)
(139)

= nI
(
UB; ŜA|UC

)
, (140)

where the time-sharing random variable Q is defined to be
uniformly distributed [1 : n] and independent of all other
random variables, and in (140), Ul , Ul,Q, Ŝk , Ŝk,Q, 1 ≤
l ≤ L, 1 ≤ k ≤ K.

On the other hand,

I (Y nA ;UnB |UnC )

=

n∑
t=1

I
(
YA,t;U

n
B |UnC Y t−1A

)
(141)

= nI
(
YA,Q;UnB |UnC Y

Q−1
A Q

)
(142)

= nI
(
YA; ŨB|ŨCỸA

)
, (143)

Set Yk , Yk,Q, Ũl , Unl , Ỹk , Y Q−1k Q, 1 ≤ l ≤ L, 1 ≤ k ≤
K, then combining (140) and (143) gives us the outer bound
D(o)

1 .

C. Outer Bound D(o)
2

For fixed pU[1:L]|Y[1:K]
, we first introduce a set of

auxiliary random variables Un[1:L] that follow distribution∏n
i=1 pU[1:L]|Y[1:K]

(
u[1:L],i|y[1:K],i

)
. Hence the Markov chains

Sn → Xn → Y n[1:K] → Un[1:L] hold. Note that different

from the proof of R(o)
1 , the auxiliary random variables Un[1:L]

here is introduced at receiver sides, and pY[1:K]U[1:L]|X =
pU[1:L]|Y[1:K]

pY[1:K]|X forms a new memoryless broadcast chan-
nel. Consider that

I (Sn;Y nB U
n
B′ |Y nC UnC′)

≤ I (Xn;Y nB U
n
B′ |Y nC UnC′) (144)

=

n∑
t=1

I
(
Xn;YB,tUB′,t|Y nC UnC′Y t−1B U t−1B′

)
(145)
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=

n∑
t=1

H
(
YB,tUB′,t|Y nC UnC′Y t−1B U t−1B′

)
−H

(
YB,tUB′,t|Y nC UnC′Y t−1B U t−1B′ X

n
)

(146)

≤
n∑
t=1

H (YB,tUB′,t|YC,tUC′,t)

−H (YB,tUB′,t|YC,tUC′,tXt) (147)

=

n∑
t=1

I (YB,tUB′,t;Xt|YC,tUC′,t) (148)

= nI (YB,QUB′,Q;XQ|YC,QUC′,QQ) (149)
= nH (YB,QUB′,Q|YC,QUC′,QQ)

− nH (YB,QUB′,Q|YC,QUC′,QXQQ) (150)
≤ nH (YB,QUB′,Q|YC,QUC′,Q)

− nH (YB,QUB′,Q|YC,QUC′,QXQ) (151)
= nI (YB,QUB′,Q;XQ|YC,QUC′,Q) (152)
= nI (X;YBUB′ |YCUC′) , (153)

where (147) follows from the Markov chain
U t−1[1:L]U

n
[1:L],t+1Y

t−1
[1:K]Y

n
[1:K],t+1X

t−1Xn
t+1 → Xt →

Y[1:K],tU[1:L],t and the fact conditioning reduces entropy, (151)
follows from the Markov chain Q→ XQ → Y[1:K],QU[1:L],Q

and the fact conditioning reduces entropy, the time-sharing
random variable Q is defined to be uniformly distributed [1 : n]
and independent of all other random variables, and in (153),
Ul , Ul,Q, Yk , Yk,Q, X , XQ, 1 ≤ l ≤ L, 1 ≤ k ≤ K.

On the other hand,

I (Sn;Y nB U
n
B′ |Y nC UnC′)

=

n∑
t=1

I
(
St;Y

n
B U

n
B′ |Y nC UnC′St−1

)
(154)

= nI
(
SQ;Y nB U

n
B′ |Y nC UnC′SQ−1Q

)
(155)

= nI
(
S; ỸBŨB′ |ỸCŨC′

)
, (156)

Set S , SQ, Ũl , Unl S
Q−1Q, Ỹk , Y nk S

Q−1Q, 1 ≤ l ≤
L, 1 ≤ k ≤ K, then combining (153) and (156) gives us the
outer bound D(o)

2 .

APPENDIX D
PROOF OF THEOREM 6

Observe that if there is no information transmitted over the
channel, receiver k could produce a reconstruction within the
distortion βk. Hence we only need consider the case of D[1:K]

with
Dk ≤ βk, 1 ≤ k ≤ K. (157)

For the Wyner-Ziv binary broadcast with bandwidth mis-
match case (the bandwidth mismatch factor b), Theorem 5
states that if D[1:K] is achievable, then there exists some pmf
pVK |SpVK−1|VK · · · pV1|V2

and functions ŝk (vk, zk) , 1 ≤ k ≤
K such that

Ed
(
S, Ŝk

)
= P

(
Ŝk ⊕ S = 1

)
≤ Dk, (158)

and for any pmf pUK−1|SpUK−2|UK−1
· · · pU1|U2

,

1

b
(I (Vk;Uk|Uk−1Zk) : k ∈ [1 : K]) ∈ RBBC (159)

holds, where the capacity of binary broadcast channel RBBC

is given in (38) [13].
Define the sets

Ak = {vk : ŝk (vk, 0) = ŝk (vk, 1)} , 1 ≤ k ≤ K, (160)

so that their complements

Ack = {vk : ŝk (vk, 0) 6= ŝk (vk, 1)} , 1 ≤ k ≤ K. (161)

By hypothesis,

Ed
(
S, Ŝk

)
= P(Vk ∈ Ak)E

[
d
(
S, Ŝk

)
|Vk ∈ Ak

]
+ P(Vk ∈ Ack)E

[
d
(
S, Ŝk

)
|Vk ∈ Ack

]
(162)

≤ Dk. (163)

We first show that

E
[
d
(
S, Ŝk

)
|Vk ∈ Ack

]
≥ βk. (164)

To do this, we write

E
[
d
(
S, Ŝk

)
|Vk ∈ Ack

]
=
∑
vk∈Ack

P(Vk = vk)

P(Vk ∈ Ack)
E
[
d
(
S, Ŝk

)
|Vk = vk

]
. (165)

If vk ∈ Ack and ŝk (vk, 0) = 0 then ŝk (vk, 1) = 1. Therefore,
for such vk,

E
[
d
(
S, Ŝk

)
|Vk = vk

]
= P (Zk = 0, S = 1|Vk = vk)

+ P (Zk = 1, S = 0|Vk = vk) (166)
= P (S = 1|Vk = vk)P (Zk = 0|S = 1)

+ P (S = 0|Vk = vk)P (Zk = 1|S = 0) (167)
= βk, (168)

where (167) follows that Zk → S → Vk forms a Markov
chain. If vk ∈ Ack but ŝk (vk, 0) = 1, then for such vk,

E
[
d
(
S, Ŝk

)
|Vk = vk

]
= 1− βk ≥ βk, (169)

since βk ≤ 1
2 . Therefore, (164) follows from (168) and (169).

Now we write

E
[
d
(
S, Ŝk

)
|Vk ∈ Ak

]
=
∑
vk∈Ak

P(Vk = vk)

P(Vk ∈ Ak)
E
[
d
(
S, Ŝk

)
|Vk = vk

]
, (170)

and define gk (vk) , ŝk (vk, 0) , λvk , P(Vk=vk)
P(Vk∈Ak) , µk ,

P(Vk ∈ Ak),

dvk , E
[
d
(
S, Ŝk

)
|Vk = vk

]
(171)

= P (S 6= gk (vk) |Vk = vk) , (172)

then utilizing (163) and (164), we have

d′k , µk
∑
vk∈Ak

λvkdvk + (1− µk)βk ≤ Dk. (173)
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Next we will show

I (Vk;Uk|Zk)

≥ βk −Dk

βk − αk
(
H2 (βk ? τk)

− (H4 (αk, βk, τk)−H2 (αk ? βk))
)
. (174)

Choose UK−1 = S⊕E′K−1 and Uk = Uk+1⊕E′k, 1 ≤ k ≤
K − 2, where E′k ∼ Bern (τ ′k) is independent of all the other
random variables. Define Ek = E′K−1 ⊕E′K−2 ⊕ · · · ⊕E′k ∼
Bern (τk) with τk = τ ′K−1 ? τ

′
K−2 ? · · · ? τ ′k. Then

I (Vk;Uk|Zk)

= H (Uk|Zk)−H (Uk|Vk, Zk) (175)

= H2 (βk ? τk)− µk
∑
vk∈Ak

λvkH (Uk|Zk, Vk = vk)

− (1− µk)
∑
vk∈Ack

P(Vk = vk)

P(Vk ∈ Ack)
H (Uk|Zk, Vk = vk) .

(176)

For fixed vk, define a set of random variables
(V ′k, S

′, U ′k, Z
′
k) ∼ 1 {v′k = vk} pSUkZk|Vk (s′, u′k, z

′
k|v′k),

then H (U ′kZ
′
k|V ′k) = H (UkZk|Vk = vk) and

H (Z ′k|V ′k) = H (Zk|Vk = vk). Since pSUkZk|Vk satisfies

pSUkZk|Vk (s′, u′k, z
′
k|v′k)

= pS|Vk (s′|v′k) pZk|S (z′k|s′) pUk|S (u′k|s′) , (177)

it holds that Z ′k = S′⊕Bk, U ′k = S′⊕Ek. Hence Z ′k⊕U ′k =
Bk ⊕ Ek.

For fixed vk, consider

H (Uk|Zk, Vk = vk)

= H (UkZk|Vk = vk)−H (Zk|Vk = vk) (178)
= H (U ′kZ

′
k|V ′k)−H (Z ′k|V ′k) (179)

= H (U ′k|Z ′kV ′k) (180)
= H (U ′k ⊕ Z ′k|Z ′kV ′k) (181)
= H (Bk ⊕ Ek|Z ′kV ′k) (182)
≤ H (Bk ⊕ Ek) (183)
= H2 (βk ? τk) . (184)

Combine (176) and (184), then we have

I (Vk;Uk|Zk)

≥ H2 (βk ? τk)− µk
∑
vk∈Ak

λvkH (Uk|Zk, Vk = vk)

− (1− µk)H2 (βk ? τk) (185)

= µkH2 (βk ? τk)− µk
∑
vk∈Ak

λvkH (Uk|Zk, Vk = vk) .

(186)

Now we consider the second term of (186).∑
vk∈Ak

λvkH (Uk|Zk, Vk = vk)

=
∑
vk∈Ak

λvk (H (UkZk|Vk = vk)−H (Zk|Vk = vk))

(187)

=
∑
vk∈Ak

λvk (H4 (dvk , βk, τk)−H2 (dvk ? βk)) (188)

=
∑
vk∈Ak

λvkG1 (dvk , βk, τk) , (189)

where the function H4 (x, y, z) is defined in (59) and

G1 (x, y, z) , H4 (x, y, z)−H2 (x ? y) . (190)

Equality (188) follows from calculating the entropies accord-
ing to the definition.

Now we show that G1 (x, y, z) is concave in x. To do this,
we consider

∂2

∂x2
G1 (x, y, z)

= − (yz − yz)2

xyz + xyz
− (yz − yz)2

xyz + xyz
− (yz − yz)2

xyz + xyz

− (yz − yz)2

xyz + xyz
+

(y − y)
2

xy + xy
+

(y − y)
2

xy + xy
(191)

= −

(
(yz − yz)2

xyz + xyz
+

(yz − yz)2

xyz + xyz
− (y − y)

2

xy + xy

)

−

(
(yz − yz)2

xyz + xyz
+

(yz − yz)2

xyz + xyz
− (y − y)

2

xy + xy

)
(192)

≤ 0, (193)

where (193) follows from the following inequality

a21
b1

+
a22
b2

=
1

b1 + b2
(b1 + b2)

(
a21
b1

+
a22
b2

)
(194)

=
1

b1 + b2

(
a21 + a22 +

b2a
2
1

b1
+
b1a

2
2

b2

)
(195)

≥ 1

b1 + b2

(
a21 + a22 + 2a1a2

)
(196)

=
(a1 + a2)

2

b1 + b2
, (197)

for b1, b2 > 0 and arbitrary real numbers a1, a2. (193) implies
G1 (x, y, z) is concave in x.

Then combining the concavity of G1 (x, y, z) with (186)
and (189), we have

I (Vk;Uk|Zk)

≥ µk

(
H2 (βk ? τk)−G1

( ∑
vk∈Ak

λvkdvk , βk, τk

))
(198)

= µk (H2 (βk ? τk)−G1 (αk, βk, τk)) (199)

where
αk ,

∑
vk∈Ak

λvkdvk . (200)

From (173), αk satisfies

µkαk + (1− µk)βk ≤ Dk. (201)

Combine (201) with Dk ≤ βk (i.e., (157)), then we have

0 ≤ αk ≤ Dk ≤ βk. (202)

Therefore,

I (Vk;Uk|Zk)
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≥ βk −Dk

βk − αk
(H2 (βk ? τk)−G1 (αk, βk, τk)) (203)

=
βk −Dk

βk − αk
(
H2 (βk ? τk)

− (H4 (αk, βk, τk)−H2 (αk ? βk))
)
, (204)

i.e., (174) holds.
Next we will show

I (Vk;Uk|Uk−1Zk)

≥ βk −Dk

βk − αk

(
H2 (βk ? τk)−H2 (βk ? τk−1)

− (H4 (αk, βk, τk)−H4 (αk, βk, τk−1))
)
. (205)

Consider

I (Vk;Uk|Uk−1Zk)

= H (Uk|Uk−1Zk)−H (Uk|Uk−1ZkVk) (206)
= H (Uk−1|Uk) +H (Uk|Zk)

−H (Uk−1|Zk)−H (Uk|Uk−1ZkVk) (207)

= H2

(
τ ′k−1

)
+H2 (βk ? τk)

−H2 (βk ? τk−1)−H (Uk|Uk−1ZkVk) . (208)

Write the last term as

H (Uk|Uk−1ZkVk)

= − (1− µk)
∑
vk∈Ack

P(Vk = vk)

P(Vk ∈ Ack)
H (Uk|Uk−1, Zk, Vk = vk)

− µk
∑
vk∈Ak

λvkH (Uk|Uk−1, Zk, Vk = vk) . (209)

For fixed vk, define
(
V ′k, S

′, U ′k, U
′
k−1, Z

′
k

)
∼

1 {v′k = vk} pSUkUk−1Zk|Vk
(
s′, u′k, u

′
k−1, z

′
k|v′k

)
. Since

pSUkUk−1Zk|Vk
(
s′, u′k, u

′
k−1, z

′
k|v′k

)
= pS|Vk (s′|v′k) pZk|S (z′k|s′) pUk|S (u′k|s′)
× pUk−1|Uk

(
u′k−1|u′k

)
, (210)

we have Z ′k = S′ ⊕Bk, U ′k = S′ ⊕Ek, U ′k−1 = U ′k ⊕E′k−1.
Hence Z ′k⊕U ′k = Bk⊕Ek, Z ′k⊕U ′k−1 = Bk⊕Ek−1. Similar
to the derivation for H (Uk|Uk−1, Vk = vk), we can write

H (Uk|Uk−1, Zk, Vk = vk)

= H
(
U ′k|U ′k−1Z ′kV ′k

)
(211)

= H
(
U ′k ⊕ Z ′k|U ′k−1 ⊕ Z ′k, Z ′k, V ′k

)
(212)

≤ H
(
U ′k ⊕ Z ′k|U ′k−1 ⊕ Z ′k

)
(213)

= H (Bk ⊕ Ek|Bk ⊕ Ek−1) (214)
= H (Bk ⊕ Ek) +H (Bk ⊕ Ek−1|Bk ⊕ Ek)

−H (Bk ⊕ Ek−1) (215)

= H2

(
τ ′k−1

)
+H2 (βk ? τk)−H2 (βk ? τk−1) . (216)

Combine (208), (209) and (216), then we have

I (Vk;Uk|Uk−1Zk)

≥ µk
(
H2

(
τ ′k−1

)
+H2 (βk ? τk)−H2 (βk ? τk−1)

)
− µk

∑
vk∈Ak

λvkH (Uk|Uk−1, Zk, Vk = vk) . (217)

Consider the last term of (217),∑
vk∈Ak

λvkH (Uk|Uk−1, Zk, Vk = vk)

=
∑
vk∈Ak

λvk

(
H (Uk|Zk, Vk = vk)

+H (Uk−1|Uk, Zk, Vk = vk)

−H (Uk−1|Zk, Vk = vk)
)

(218)

=
∑
vk∈Ak

λvk

(
H (Uk, Zk|Vk = vk) +H2

(
τ ′k−1

)
−H (Uk−1, Zk|Vk = vk)

)
(219)

= H2

(
τ ′k−1

)
+
∑
vk∈Ak

λvk (H4 (dvk , βk, τk)−H4 (dvk , βk, τk−1))

(220)

= H2

(
τ ′k−1

)
+
∑
vk∈Ak

λvkG2 (dvk , βk, τk, τk−1) , (221)

where (220) is by directly calculating the entropies according
to the definition, and

G2 (x, y, z, t) , H4 (x, y, z)−H4 (x, y, t) . (222)

Note that function G1 (x, y, z) is a special case of function
G2 (x, y, z, t) given t = 1

2 , i.e.,

G1 (x, y, z) = G2

(
x, y, z,

1

2

)
. (223)

Now we show that G2 (x, y, z, t) is concave in x when 0 ≤
z ≤ t ≤ 1

2 , which generalizes the concavity of G1 (x, y, z).
To do this, we consider

∂2

∂x2
G2 (x, y, z, t)

= − (yz − yz)2

xyz + xyz
− (yz − yz)2

xyz + xyz
− (yz − yz)2

xyz + xyz
− (yz − yz)2

xyz + xyz

+

(
yt− yt

)2
xyt+ xyt

+

(
yt− yt

)2
xyt+ xyt

+

(
yt− yt

)2
xyt+ xyt

+

(
yt− yt

)2
xyt+ xyt

,

(224)

and
∂

∂t

(
∂2

∂x2
G2 (x, y, z, t)

)
=

∂

∂t

((
yt− yt

)2
xyt+ xyt

+

(
yt− yt

)2
xyt+ xyt

)

+
∂

∂t

((
yt− yt

)2
xyt+ xyt

+

(
yt− yt

)2
xyt+ xyt

)
(225)

=
−y2 · y2 · (xy + xy) · (1− 2t)(
xyt+ xyt

)2 (
xyt+ xyt

)2
+
−y2 · y2 · (xy + xy) · (1− 2t)(
xyt+ xyt

)2 (
xyt+ xyt

)2 . (226)

Hence for 0 ≤ t ≤ 1
2 ,

∂

∂t

(
∂2

∂x2
G2 (x, y, z, t)

)
≤ 0, (227)
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i.e., ∂2

∂x2G2 (x, y, z, t) is decreasing in t. Then we have for
0 ≤ z ≤ t ≤ 1

2 ,

∂2

∂x2
G2 (x, y, z, t) ≤ ∂2

∂x2
G2 (x, y, z, z) = 0. (228)

It implies G2 (x, y, z, t) is concave in x when 0 ≤ z ≤ t ≤ 1
2 .

Combining (217) and (221), and utilizing the concavity of
G2 (x, y, z, t), we have

I (Vk;Uk|Uk−1Zk)

≥ µk
(
H2 (βk ? τk)−H2 (βk ? τk−1)

−G2

( ∑
vk∈Ak

λvkdvk , βk, τk, τk−1
))

(229)

= µk

(
H2 (βk ? τk)−H2 (βk ? τk−1)

−G2 (αk, βk, τk, τk−1)
)

(230)

where αk is given by (200) and satisfies (201) and (202).
Therefore,

I (Vk;Uk|Uk−1Zk)

≥ βk −Dk

βk − αk

(
H2 (βk ? τk)−H2 (βk ? τk−1)

−G2 (αk, βk, τk, τk−1)
)

(231)

=
βk −Dk

βk − αk

(
H2 (βk ? τk)−H2 (βk ? τk−1)

− (H4 (αk, βk, τk)−H4 (αk, βk, τk−1))
)
, (232)

i.e., (205) holds.
Combining (159), (174) and (205) gives Theorem 6.

APPENDIX E
PROOF OF THEOREM 7

For the Wyner-Ziv Gaussian broadcast with bandwidth
mismatch case (the bandwidth mismatch factor b), Theorem
5 states that if D[1:K] is achievable, then there exist some pmf
pVK |SpVK−1|VK · · · pV1|V2

and functions ŝk (vk, zk) , 1 ≤ k ≤
K such that

Ed
(
S, Ŝk

)
≤ Dk, (233)

and for any pmf pUK−1|SpUK−2|UK−1
· · · pU1|U2

,

1

b
(I (Vk;Uk|Uk−1Zk) : k ∈ [1 : K]) ∈ RGBC (234)

holds, where the capacity of Gaussian broadcast channelRGBC

is given in (61).
Choose UK−1 = S+E′K−1 and Uk = Uk+1 +E′k, 1 ≤ k ≤

K − 2, where E′k ∼ N (0, τ ′k) is independent of all the other
random variables. Define Ek =

∑K−1
j=k E′j ∼ N (0, τk) with

τk =
∑K−1
j=k τ ′j . Then

I (V1;U1|Z1)

≥ I
(
Ŝ1;U1|Z1

)
(235)

= h (U1|Z1)− h
(
U1|Ŝ1Z1

)
(236)

= h (U1|Z1)− h
(
U1 − Ŝ1|Ŝ1Z1

)
(237)

≥ h (U1|Z1)− h
(
U1 − Ŝ1

)
(238)

≥ 1

2
log (2πe (β1 + τ1))− 1

2
log (2πe (D1 + τ1)) (239)

=
1

2
log

β1 + τ1
D1 + τ1

, (240)

where (239) follows from the fact that a Gaussian distribution
maximizes the differential entropy for a given second moment.

On the other hand,

I (Vk;Uk|Uk−1Zk)

≥ I
(
Ŝk;Uk|Uk−1Zk

)
(241)

= I
(
Ŝk;Uk|Zk

)
− I

(
Ŝk;Uk−1|Zk

)
(242)

= h (Uk|Zk)− h (Uk−1|Zk)

+ h
(
Uk−1|ZkŜk

)
− h

(
Uk|ZkŜk

)
. (243)

The first two terms of (243)

h (Uk|Zk)− h (Uk−1|Zk) =
1

2
log

βk + τk
βk + τk−1

. (244)

The last two terms of (243)

h
(
Uk−1|ZkŜk

)
− h

(
Uk|ZkŜk

)
= h

(
Uk−1|ZkŜk

)
− h

(
Uk|ZkŜkE′k−1

)
(245)

= h
(
Uk−1|ZkŜk

)
− h

(
Uk−1|ZkŜkE′k−1

)
(246)

= I
(
Uk−1;E′k−1|ZkŜk

)
(247)

= h
(
E′k−1

)
− h

(
E′k−1|ZkŜkUk−1

)
(248)

= h
(
E′k−1

)
− h

(
E′k−1|Zk, Ŝk, Uk−1 − Ŝk

)
(249)

≥ h
(
E′k−1

)
− h

(
E′k−1|Uk−1 − Ŝk

)
(250)

= I
(
E′k−1;S − Ŝk + Ek + E′k−1

)
(251)

≥ 1

2
log

Dk + τk−1
Dk + τk

, (252)

where (252) is by applying the mutual information game result
that Gaussian noise is the worst additive noise under a variance
constraint [14, p. 298, Problem 9.21] and taking E′k−1 as the
channel input.

Combining (243), (244) and (252), we have

I (Vk;Uk|Uk−1Zk) ≥ 1

2
log

(βk + τk) (Dk + τk−1)

(βk + τk−1) (Dk + τk)
. (253)

(234), (240) and (253) imply Theorem 7.
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