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Abstract—Improved lower bounds are derived on the average
and worst-case rate-memory tradeoffs of the Maddah-Ali&Niesen
coded caching scenario. For any number of users and files and
for arbitrary cache sizes, the multiplicative gap between the exact
rate-memory tradeoff and the new lower bound is shown to
be less than 2.315 in the worst-case scenario and 2.507 in the
average-case scenario.

Index Terms—Caching, rate-memory tradeoff, source coding,
index coding.

I. INTRODUCTION

We consider the canonical coded caching scenario by
Maddah-Ali and Niesen [1] with a single transmitter and
K receivers, where each receiver is equipped with a cache
memory of equal size (see in Figure 1). Communication takes
place in two phases: a caching phase and a subsequent delivery
phase. In the caching phase, the transmitter stores contents
(arbitrary functions of files) at the receivers’ cache memories.
In the delivery phase, each receiver makes a demand and
the transmitter accordingly conveys the desired files to each
of the receivers. The main challenge in this configuration
is that during the caching phase it is not known which
receiver demands which specific file from the library. The
cache contents thus need to be designed so as to be useful
for many possible demands.

Traditional caching systems store a portion of the most
popular files in each and every cache memory. This allows
the receivers to retrieve these files locally without burdening
the common communication link from the transmitter to the
receivers. Recently in [1], it was shown that much larger gains,
so called global caching gains, are possible if various receivers
store different parts of the files in their cache memories. In
this case, the transmitter can simultaneously serve multiple
receivers during the delivery phase by sending coded data,
and thus significantly reduce the delivery rate (latency) of
communication.

The main quantity of interest in this work is the rate-
memory tradeoff introduced in [1]—i.e., the minimum re-
quired delivery rate, as a function of the cache memories, so
that all receivers reliably recover their demanded files. We
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consider both the worst-case rate-memory tradeoff defined
in [1], which is the common scenario in the coded-caching
literature, as well as the average-case rate-memory tradeoff
defined in [2]. In the latter case, the rate can adapt to the
receivers’ demands and the rate-memory tradeoff is defined
as the average rate over all possible demand vectors. Upper
bounds on the worst-case rate-memory tradeoff were presented
for certain special cases in [3]–[10] and lower bounds (con-
verse results) were presented in [11]–[13]. The previously
best lower and upper bounds for the worst-case rate-memory
tradeoff match up to a multiplicative gap of 4 [11]. The works
in [5], [9] determined the exact rate-memory tradeoff assuming
uncoded cache placements, i.e., assuming that fractions of
contents are cached. This caching strategy is however known
to be suboptimal in general. Upper and lower bounds on
the rate-memory tradeoff for the average-case scenario were
derived in [9], [13]. The previously best lower and upper
bounds in this scenario have been shown to match up to a
multiplicative gap of 4.7 [13].

In this paper we provide new lower bounds on the rate-
memory tradeoff. The new lower bounds match the worst-case
and average-case rate-memory tradeoffs up to multiplicative
gaps of 2.315 and 2.507, respectively. More precisely, these
gaps are with respect to the upper bounds on the rate-memory
tradeoff under decentralized caching in [9]. An upper bound on
the rate-memory tradeoff under decentralized caching is also
an upper bound on the rate-memory tradeoff under centralized
caching considered here, because in the decentralized caching
the cache content at a given receiver has to be chosen accord-
ing to a specific distribution, whereas in centralized caching
any content can be cached that satisfies the cache memory
constraints. In an independent and concurrent work, [14]
presents slightly improved lower bounds for both the worst-
case and average-case rate-memory tradeoffs. These bounds
are within a gap of 2.00884 from the decentralized schemes.
The proof in [14] is similar to the proof here, but includes
an additional averaging step over all possible labelings of
receivers.

Many other variations of the caching problem have re-
cently been studied such as online caching [15]; caching with
non-uniform demands [2], [16]–[18]; caching of correlated
files [19]–[25] where [19] shows how Wyner’s and Gac-
Körner’s common information play a key role; caching in
noisy broadcast channels [26]–[40] where coding opportunities
could be exploited through joint cache-channel coding in
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Fig. 1: Coded caching scenario with K receivers having equal
cache size FM bits.

heterogeneous networks [27], [28], [30], [31]1, feedback and
channel state information [34]–[37], and multiple antennas
[39], [40]; caching in Gaussian interference networks [41]–
[43]; hierarchical networks [44] and multi-server networks
[45]; and cellular networks [46]–[53].

II. DETAILED PROBLEM SETUP

Consider the communication scenario in Figure 1, which
includes a single transmitter and K receivers that we term
Receivers 1, . . . ,K. The transmitter has a library of N in-
dependent messages W1, . . . ,WN . Each Wd is uniformly
distributed over {1, . . . , 2F } for F a positive integer. Every
receiver is provided with a cache memory of size FM bits,
and the range of interest for M is

0 ≤M ≤ N. (1)

Here, M = 0 means that there is no cache memory in the
system and M = N means that every receiver can store all
the library in its cache memory.

Each receiver will demand exactly one message from the
library. We denote the demand of Receiver k by

dk ∈ N := {1, . . . , N} (2)

and thus the message demanded by Receiver k is Wdk . Let

d := (d1, . . . , dK) (3)

denote the receivers’ demand vector.
The communications process takes place in two phases,

namely the caching phase and the delivery phase. Caching
is done during a period of low network-congestion and before
the receivers’ demand vector d is known. More specifically,
for k ∈ {1, . . . ,K}, the transmitter sends an individual cache
message Vk ∈

{
1, . . . ,

⌊
2FM

⌋}
to Receiver k. Since d is

1Joint cache-channel coding is used for joint source-channel coding where
part of the sources are actually given by the cache contents.

unknown at this time, the cache messages will be functions of
the entire library. For every k ∈ {1, . . . ,K}, we have2

Vk := gk(W1, . . . ,WN ), (4)

for some caching function

gk : {1, . . . , 2F }N → {1, . . . , b2FMc}. (5)

In the delivery phase, the transmitter is given the receivers’
demands d = (d1, . . . , dK), and it generates the delivery-
symbol X that is sent over the common noise-free bit-pipe:

X := fd(W1, . . . ,WN ), (6)

for some encoding function

fd :
{

1, . . . , 2F
}N → X , (7)

where X is the delivery alphabet that we will specify shortly.
We assume that d is known to all the receivers (e.g., d can
be communicated to the receivers with asymptotically zero
transmission rate3).

Receiver k, k ∈ {1, . . . ,K}, perfectly observes the delivery-
symbol X , and thus recovers its desired message as

Ŵk := ϕk,d(X,Vk) (8)

using some decoding function

ϕk,d : X × {1, . . . , b2FMc} →
{

1, . . . , 2F
}
. (9)

We are left with specifying the delivery alphabet X . We
distinguish the worst-case [1] and average-case [2] scenarios
as follows:
• In the worst-case scenario, the delivery alphabet X does

not depend on the demand vector d. In this scenario,
the rate-memory pair (R, M) is achievable if for every
ε > 0 and sufficiently large message lengths F , there
exists a caching function (5), an encoding function (7),
and decoding functions (9) for delivery alphabet

X =
{

1, . . . , b2F (R+ε)c
}
, (10)

so that for each demand vector d ∈ NK , every Re-
ceiver k, k ∈ {1, . . . ,K}, can perfectly reconstruct its
desired message:

Ŵk = Wdk . (11)

• In the average-case scenario, the delivery alphabet X
depends on the demand vector d. In this scenario, the
rate-memory pair (R, M) is achievable if for each
demand vector d ∈ NK , any ε > 0, and sufficiently
large message lengths F , there exists a caching function
(5), an encoding function (7), and decoding functions (9)
for delivery alphabet

Xd = {1, . . . , b2FRdc}, (12)

2Alternatively, one could allow the caching functions to depend also on
external randomness that does not depend on the library nor the receivers’
demands. The rate-memory tradeoff, which is the focus of this paper, is the
same under both assumptions. This can be proved in a similar way as proving
that randomized encoding does not change the rate-distortion function of
memoryless source coding problems.

3Alternatively, the desired information could also be sent from the server
to the users as part of the subsequent delivery communication, see [54].
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so that each Receiver k ∈ {1, . . . ,K} can perfectly
reconstruct its desired message (11) and

1

NK

∑
d∈NK

Rd ≤ R+ ε. (13)

The main focus of this paper is on the rate-memory tradeoffs
of the worst-case and the average-case scenarios.

Definition 1: Given the cache memory size M , we define
the rate-memory tradeoffs R?worst(M) and R?avg(M) as the
infimum of all rates R such that the rate-memory pair (R, M)
is achievable for the worst-case and average-case scenarios,
respectively.

III. MAIN RESULTS

Define N̄ := min{K,N} and N̄ := {1, 2, . . . , N̄}.

A. Worst-Case Scenario

Our first result is a lower bound on the rate-memory tradeoff
in the worst-case scenario and it is proved in Section IV-B.
The bound can also be extracted from the converse result for
general degraded broadcast channels in [55].

Theorem 1: For all M ∈ [0, N),

R?worst(M) ≥ Rlow
worst(M), (14)

where

Rlow
worst(M) := max

{
max
`∈N̄

[
`−M `2

N

]
,

max
`∈N̄

`−M ∑̀
j=1

j

N − j + 1

}. (15)

Figure 2 compares our new lower bound on R?worst(M) with
the existing lower bounds in [1], [11], [12]. The figure also
shows upper bounds from [9]. The solid red upper bound is for
centralized caching, as considered in this paper. The dashed
black upper bound is for decentralized caching. For simplicity,
the latter upper bound is used to derive gap results as stated
in Theorem 2 below.

Fig. 3: The functions φ(a, `) for a ∈ (0, 1) and ` = 1, . . . , 104.

Theorem 2: Irrespective of the number of users K, the
library size N , and the memory size M ∈ [0, N):

R?worst(M)

Rlow
worst(M)

≤ max
`∈Z+

max
a∈(0,1)

φ(a, `), (16)

where

φ(a, `) :=

a(`+1)
(1−a)`

(
1−

(
`+a
`+1

)`/a)
1− (1− a)

∑`−1
j=0

1
`−aj

. (17)

Proof: See Section V.
Remark 1: For any ` ∈ Z+, the function a 7→ φ(a, `)

is continuous and bounded over (0, 1), see also Figure 3.
Numerical evaluations4 show that for ` ∈ {1, . . . , 104}:

max
a∈(0,1)

φ(a, `) ≤ 2.315. (18)

Moreover,

max
`∈Z+ : `>104

max
a∈(0,1)

φ(a, `) ≤ max
b∈(0,10−4)

max
a∈(0,1)

ψ(a, b), (19)

where

ψ(a, b) :=

a(1+b)
1−a

(
1−

(
1+ab
1+b

) 1
ab

)
1− (1−a)b

1−a+ab + 1−a
a ln (1− a+ ab)

. (20)

The function (a, b) 7→ ψ(a, b) is continuous and bounded over
(0, 1) × (0, 10−4), see also Figure 4. Numerical evaluations
show that

max
b∈(0,10−4)

max
a∈(0,1)

ψ(a, b) ≤ 2.315. (21)

Proof: Inequality (19) is proved in Section V-B.

4All numerical evaluations in this paper are performed by applying the
MATLAB function fmincon with the sequential quadratic programming
(SQP) method.
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B. Average-Case Scenario

Theorem 3: For all M ∈ [0, N),

R?avg(M) ≥ Rlow
avg(M), (22)

where

Rlow
avg(M)

:= max

{
max

`∈{1,...,K}

[(
1−

(
1− 1

N

)`)
(N − `M)

]
,

max
`∈{1,...,K}

[(
1−

(
1− 1

N

)`)
N − `(`+ 1)

2N
M

]}
.

(23)

Proof: See Section IV-C.
Figure 5 compares this new lower bound on R?avg(M) with

the existing lower bounds in [13] and the upper bounds in
[9]. The solid red upper bound is for centralized caching, as
considered in this paper. The dotted green upper bound is for
decentralized caching and also from [9].
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As the following theorem and remark show, the multiplica-
tive gap between the lower bound of Theorem 3 and R?avg(M)
is at most 2.507.

Theorem 4: Irrespective of the number of users K, the
library size N , and the memory size M ∈ [0, N):

R?avg(M)

Rlow
avg(M)

≤ max
u∈(0,1]

max
v∈(0,1/2]

η(u, v), (24)

where

η(u, v)

:=

(
u+ v − v (1− v)

u
v

)(
1−

(
1− v

u+v (1− v)
u
v

) 1
v

)
(1− v)

u
v

(
1−

(
1 + u

2

)
(1− v)

u
v

) .

(25)

Proof: See Section VI.
Remark 2: The function η(u, v) is continuous and bounded

over (0, 1]× (0, 1/2]. Numerical evaluations show that

max
u∈(0,1]

max
v∈(0,1/2]

η(u, v) ≤ 2.507. (26)

IV. PROOF OF THEOREMS 1 AND 3
A. Auxiliary Lemmas

The following two lemmas will be used in the proofs of
Theorems 1 and 3.

Lemma 1 (see below) is stated for the average-case scenario.
It also readily applies to the worst-case scenario if rate Rd is
replaced by R.

Lemma 1: Fix a number ` ∈ N̄ and a demand vector d ∈
NK whose first ` entries are d1, . . . , d`. Fix also a small ε > 0
and assume a sufficiently large F with caching, encoding, and
decoding functions so that (11) holds for all k ∈ {1, . . . ,K}.
Then,

Rd+ε ≥ κd(`)− 1

F

∑̀
k=1

I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
),

(27)
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where κd(`) denotes the number of distinct demands for
Receivers 1, . . . , `:

κd(`) := |{d1, . . . , d`}|. (28)

Proof: For any k ∈ {1, . . . , `}:

I(X;Wdk |V1, . . . ,Vk,Wd1 , . . . ,Wdk−1
)

(a)
= H(Wdk |V1, . . . ,Vk,Wd1 , . . . ,Wdk−1

)

= H(Wdk |Wd1 , . . . ,Wdk−1
)

−I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
)

(b)
= F · 1

{
dk /∈ {d1, . . . , dk−1}

}
−I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1

), (29)

where 1
{
dk /∈ {d1, . . . , dk−1} denotes the indicator func-

tion that is 1 if dk is not in {d1, . . . , dk−1} and is 0
otherwise. Moreover, (a) holds because (11) implies that
H(Wdk |X,V1, . . . ,Vk,Wd1 , . . . ,Wdk−1

) = 0 and (b) holds
by the independence of the messages and because H(Wd) =
F for any d ∈ N .

On the other hand,∑̀
k=1

I(X;Wdk |V1, . . . ,Vk,Wd1 , . . . ,Wdk−1
)

≤
∑̀
k=1

I(X;Wdk ,Vk|V1, . . . ,Vk−1,Wd1 , . . . ,Wdk−1
)

= I(X;Wd1 , . . . ,Wd` ,V1, . . . ,V`)
≤ H(X)
(a)

≤ F (Rd + ε), (30)

where (a) holds by (10). Combining (29) and (30) establishes
the lemma.

Lemma 2: Let L be a positive integer, (A1, . . . , AL) be
a random independent L-tuple, and V be a random variable
arbitrarily correlated with A1, . . . , AL. For any subset S ⊆
{1, . . . , L}, denote the subset {As, s ∈ S} by AS . Then, for
all l ∈ {1, . . . , L},

1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

I(AS ;V) ≤ l

L
I(A1, . . . , AL;V). (31)

Proof: Consider any l ∈ {1, . . . , L}. We have

1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

I(AS ;V)

(a)
=

1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

∑
j∈S

H(Aj)

− 1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

H(AS |V)

=

(
L−1
l−1

)(
L
l

) L∑
j=1

H(Aj)−
1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

H(AS |V)

(b)

≤ l

L

L∑
j=1

H(Aj)−
l

L
H(A1, . . . , AL|V)

(c)
=

l

L
I(A1, . . . , AL;V), (32)

where (a) and (c) follow since A1, . . . , AL are independent
and (b) follows from the generalized Han Inequality (see [56,
Theorem 17.6.1]).

B. Proof of Theorem 1

Fix ` ∈ N̄ and restrict attention to Receivers 1, . . . , ` and
their cache memories. Let Qdist

` be the set of all ordered
`-dimensional demand vectors (d1, . . . , d`) with all distinct
entries. So,

|Qdist
` | =

(
N

`

)
`!. (33)

Notice that for d ∈ Qdist
` , we have κd(`) = `, and averaging

Inequality (27)5 over all demand vectors d ∈ Qdist
` yields the

following inequality:

R+ ε ≥ `−
∑̀
k=1

αk, (34)

where

α1 :=
1(
N
`

)
`!

∑
d∈Qdist

`

1

F
I(Wd1 ;V1), (35a)

and for k = 2, . . . , `:

αk :=
1(
N
`

)
`!

∑
d∈Qdist

`

1

F
I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1

).(35b)

We now upper bound the terms
∑`
k=1 αk that appear on the

right hand side of (34). In particular, we prove the following
lemma in Appendix B.

Lemma 3: Parameters α1, . . . , α` satisfy

∑̀
j=1

αk ≤ min

{
`2

N
M,

∑̀
j=1

jM

N − j + 1

}
. (36)

Proof: See Appendix B.
Inserting (36) into (34), we obtain

R+ ε ≥ `− ≤ min

{
`2

N
M,

∑̀
j=1

jM

N − j + 1

}
. (37)

Finally, letting ε→ 0 concludes the proof.

C. Proof of Theorem 3

For any ` ∈ {1, . . . ,K}, let Qrep
` be the set of all ordered

length-` vectors (d1, . . . , d`) ∈ N `, where repetitions are
allowed. Notice that:

|Qrep
` | = N `. (38)

5In (27) Rd needs to be replaced by R because here we consider a worst-
case scenario.
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Recall also that in the average-case scenario under inves-
tigation, the demand vector d := (d1, . . . , dK) is uniform
over Qrep

K . Let D := (D1, . . . , DK) ∼ Uniform(NK).
Fix now an ` ∈ {1, . . . ,K}, and average Inequality (27)

over all demand vectors d ∈ Qrep
K . This yields:

ED[RD + ε] ≥ ED[κD(`)]−
∑̀
k=1

βk, (39)

where

β1 :=
1

F
I(WD1

;V1|D), (40a)

and for k = 2, . . . , `:

βk :=
1

F
I(WDk

;V1, . . . ,Vk|WD1
, . . . ,WDk−1

,D). (40b)

We can bound the terms in (39) with the following two
lemmas.

Lemma 4:

ED

[
κD(`)

]
= N

(
1−

(
1− 1

N

)`)
. (41)

Proof:

ED

[
κD(`)

]
= ED

[∑̀
k=1

1
{
Dk /∈ {D1, . . . , Dk−1}

}]

=
∑̀
k=1

ED

[
1
{
Dk /∈ {D1, . . . , Dk−1}

}]
(a)
=
∑̀
k=1

N∑
j=1

1

N
ED

[
1
{
j /∈ {D1, . . . , Dk−1}

}∣∣∣Dk = j
]

(b)
=
∑̀
k=1

(
1− 1

N

)k−1

(c)
= N

(
1−

(
1− 1

N

)`)
, (42)

where (a) holds by the law of total expectation and be-
cause Dk is uniform over {1, . . . , N}; (b) holds because
D1, . . . , Dk−1 are i.i.d. and uniform over {1, . . . , N}; and (c)
follows by the formula of a geometric sum.

Lemma 5: Parameters β1, . . . , β` satisfy

∑̀
j=1

βj ≤ min

{
ED

[
κD(`)

]
· `M
N

,
∑̀
j=1

jM

N

}
. (43)

Proof: See Appendix C.
Combining the above two lemmas with (39), we obtain:

ED[RD + ε] ≥ N
(

1−
(

1− 1

N

)`)
−min

{
ED

[
κD(`)

]
· `M
N

,
∑̀
j=1

jM

N

}
.(44)

Finally, letting ε→ 0 concludes the proof.

V. PROOF OF THE GAP-RESULTS IN THEOREM 2 AND
REMARK 1

A. Proof of Theorem 2

We wish to uniformly bound the gap

ξ(K,N,M) :=
R?worst(M)

Rlow
worst(M)

, (45)

irrespective of K,N ≥ 1 and M ∈ [0, N).
Recall the achievable rate-memory tradeoff from [9, Corol-

lary 2] and denote it by RYMA(K,N,M). For any pair of
positive integers K,N ≥ 1, we have

RYMA(K,N,M)

:=

{
N̄ if M = 0,
N−M
M

(
1−

(
1− M

N

)N̄)
if M ∈ (0, N).

(46)

Since RYMA(K,N,M) upper bounds the rate-memory trade-
off under a decentralized caching assumption [9], it must
also upper bound the rate-memory tradeoff under centralized
caching as considered here. (In fact, decentralized caching
imposes additional constraints on the caching functions gk
compared to our setup here.) Thus, for any number of users
K and files N :

R?worst(M) ≤ RYMA(K,N,M), M ∈ [0, N). (47)

We thus have

ξ(K,N,M) ≤ RYMA(K,N,M)

Rlow
worst(M)

≤ RYMA(K,N,M)

Rworst(K,N,M)
, (48)

where we define

Rworst(K,N,M) := max
`∈N̄

∑̀
j=1

(
1− jM

N − j + 1

)
(49)

and the second inequality holds because for all K,N,M :

Rlow
worst(M) ≥ max

`∈N̄

`− ∑̀
j=1

jM

N − j + 1


= Rworst(K,N,M). (50)

We have a closer look at the function Rworst(K,N,M).
Define

Mi :=

{
N−i
i+1 if i ∈ {0, 1, . . . , N̄ − 1},

0 if i = N̄ .

and notice that

0 = MN̄ < MN̄−1 < · · · < M0 = N. (51)

In Appendix A it is shown that for each i ∈ N̄ :

Rworst(K,N,M) = i−M ·
i∑

j=1

j

N − j + 1
, M ∈ [Mi,Mi−1].

(52)
So, for given K,N , the function Rworst(K,N,M) is
piecewise-linear with N̄ line segments over the intervals

[Mi,Mi−1], i ∈ {2, . . . , N̄}, (53a)
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[M1,M0). (53b)

We next upper bound RYMA(K,N,M) by a function
RYMA(K,N,M) that is piecewise-linear over the same in-
tervals (53). Specifically, for every ` ∈ N̄ , define for M ∈
[M`,M`−1):

RYMA(K,N,M) :=
M`−1 −M
M`−1 −M`

RYMA(K,N,M`)

+
M −M`

M`−1 −M`
RYMA(K,N,M`−1). (54)

Notice that

RYMA(K,N,M`) = RYMA(K,N,M`), ∀` ∈ {1, . . . , N̄},
(55)

whereas for general M ∈ [0, N):

RYMA(K,N,M) ≥ RYMA(K,N,M), (56)

because for fixed values of K,N the function
RYMA(K,N,M) is convex in M .

Plugging (56) into (48), we obtain:

ξ(K,N,M) ≤ RYMA(K,N,M)

Rworst(K,N,M)
=: Ξ(K,N,M). (57)

Now, since the upper bound Ξ(K,N,M) is continuous and
bounded in M ∈ [0, N) and because it is quasiconvex6 in M ,
the maximum of Ξ(K,N,M) over each of the N̄ − 1 closed
intervals in (53a) is attained at one of the two boundary points
of the interval. That means,

max
M∈[0,M1]

ξ(K,N,M) ≤ max
`∈N̄

Ξ(K,N,M`) (58)

Consider now the half-open interval M ∈ [M1,M0). Since
RYMA(K,N,M0) = Rworst(K,N,M0) = 0, for M ∈
[M1,M0):

Ξ(K,N,M)

=
M0−M
M0−M1

RYMA(K,N,M1) + M−M1

M0−M1
· 0

M0−M
M0−M1

Rworst(K,N,M1) + M−M1

M0−M1
· 0

=
RYMA(K,N,M1)

Rworst(K,N,M1)

= Ξ(K,N,M1), (59)

and Ξ(K,N,M) is constant over [M1,M0). So, trivially the
maximum is achieved for M = M1. Combined with (58), this
yields:

max
M∈[0,N)

ξ(K,N,M) ≤ max
`∈N̄

Ξ(K,N,M`). (60)

We continue to bound the right-hand side of (60). Irrespec-
tive of K,N ∈ Z+, we have:

Ξ(K,N,MN̄ ) =
N̄

N̄
= 1. (61)

When N̄ = 1 (i.e., only one file or only one user), Inequalities
(60) and (61) imply that the gap ξ(K,N,M) = 1 for all
M ∈ [0, N), and hence our lower bound is exact.

6A linear-fractional function is always quasiconvex [57].

We therefore assume in the following that N̄ ≥ 2. For ` ∈
{1, . . . , N̄ − 1}, we have

Ξ(K,N,M`) =

N−N−`
`+1

N−`
`+1

(
1−

(
1− 1

N
N−`
`+1

)N̄)
∑`
j=1

(
1− j

N−j+1
N−`
`+1

)

=

`(N+1)
N−`

(
1−

(
`(N+1)
(`+1)N

)N̄)
∑`
j=1

(
1 +

(
1− N+1

N−j+1

)
N−`
`+1

)

=

`(N+1)
N−`

(
1−

(
`(N+1)
(`+1)N

)N̄)
`(N+1)
`+1 − (N−`)(N+1)

`+1

∑`
j=1

1
N−j+1

=

`(`+1)
N−`

(
1−

(
`(N+1)
(`+1)N

)N̄)
`− (N − `)∑`

j=1
1

N−j+1

≤
`(`+1)
N−`

(
1−

(
`(N+1)
(`+1)N

)N)
`− (N − `)∑`

j=1
1

N−j+1

a=`/N
=

a(`+1)
(1−a)`

(
1−

(
`+a
`+1

)`/a)
1− (1− a)

∑`−1
j=0

1
`−aj

=: φ(a, `). (62)

Note that since ` ∈ {1, . . . , N̄ − 1},

a ∈ [1/N, 1). (63)

Therefore,

max
K∈Z+

max
N∈Z+

max
M∈[0,N)

ξ(K,N,M) ≤ max
`∈Z+

max
a∈(0,1)

φ(a, `), (64)

which concludes the proof.

B. Proof of Inequality (19)

We have a closer look at the denominator of the function
φ(a, `).

Notice that 1
n ≤

∫ n
n−1

dt
t for all n ≥ 2. Therefore,

`−1∑
j=0

1

`− aj =

`−1∑
j=0

1

`(1− a) + a(`− j)

i=`−j
=

∑̀
i=1

1

`(1− a) + ai

=
1

`(1− a) + a
+

1

a

∑̀
i=2

1

`(1− a)/a+ i

≤ 1

`(1− a) + a
+

1

a

∑̀
i=2

∫ `(1−a)/a+i

`(1−a)/a+i−1

1

t
dt

=
1

`(1− a) + a
+

1

a

∫ `(1−a)/a+`

`(1−a)/a+1

1

t
dt

=
1

`(1− a) + a
+

1

a
ln

(
`

`(1− a) + a

)
.(65)
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We use (65) to upper bound the function φ(a, `):

φ(a, `) =

a(`+1)
(1−a)`

(
1−

(
`+a
`+1

)`/a)
1− (1− a)

∑`−1
j=0

1
`−aj

≤
a(`+1)
(1−a)`

(
1−

(
`+a
`+1

)`/a)
1− 1−a

`(1−a)+a − 1−a
a ln

(
`

`(1−a)+a

)
b=1/`

=

a(1+b)
1−a

(
1−

(
1+ab
1+b

) 1
ab

)
1− (1−a)y

1−a+ab + 1−a
a ln (1− a+ ab)

= ψ(a, b). (66)

Noting also that if ` > 104, then b < 10−4, this concludes the
proof of (19).

VI. PROOF OF THE GAP-RESULT IN THEOREM 4

We wish to uniformly bound the gap

θ(K,N,M) :=
R?avg(M)

Rlow
avg(M)

, (67)

irrespective of K,N ≥ 1 and M ∈ [0, N).
Since RYMA(K,N,M) upper bounds the rate-memory

tradeoff for the worst case, it must also upper bound the rate-
memory tradeoff for the average case. Thus, for any number
of users K and files N :

R?avg(M) ≤ RYMA(K,N,M), M ∈ [0, N). (68)

We thus have

θ(K,N,M) ≤ RYMA(K,N,M)

Rlow
avg(M)

≤ RYMA(K,N,M)

Ravg(K,N,M)
, (69)

where we defined

Ravg(K,N,M) := max
`∈N̄

∑̀
k=1

[(
1− 1

N

)k−1

− k

N
M

]
, (70)

and where the second inequality holds because for all
K,N,M :

Rlow
avg(M) ≥ max

`∈N̄

[(
1−

(
1− 1

N

)`)
N − `(`+ 1)

2N
M

]
= max

`∈N̄

∑̀
k=1

[(
1− 1

N

)k−1

− k

N
M

]
. (71)

Define

M̃` :=

{
N
`+1

(
1− 1

N

)`
if ` ∈ {0, 1, . . . , N̄ − 1},

0 if ` = N̄ .
(72)

and note that 0 = M̃N̄ < M̃N̄−1 < · · · < M̃0 = N .
Using similar arguments as in Appendix A, it can be shown
that function Ravg(K,N,M) is piecewise-linear with N̄ line
segments over the intervals

[M̃`, M̃`−1], ` ∈ {2, . . . , N̄} (73a)

[M̃1, M̃0). (73b)

We next upper bound RYMA(K,N,M) by a function
RYMA(K,N,M) that is piecewise-linear over the same in-
tervals (73). Specifically, for every ` ∈ N̄ , define for M ∈
[M̃`, M̃`−1):

RYMA(K,N,M) :=
M̃`−1 −M
M̃`−1 − M̃`

RYMA(K,N, M̃`)

+
M − M̃`

M̃`−1 − M̃`

RYMA(K,N, M̃`−1). (74)

Notice that

RYMA(K,N, M̃`) = RYMA(K,N, M̃`), ∀` ∈ {1, . . . , N̄},
whereas for general M ∈ [0, N):

RYMA(K,N,M) ≥ RYMA(K,N,M), (75)

because RYMA(K,N,M) is convex in M for fixed K,N .
Plugging (75) into (69), we obtain:

θ(K,N,M) ≤ RYMA(K,N,M)

Ravg(K,N,M)
=: Θ(K,N,M). (76)

Following similar arguments as in the proof of Theorem 2, we
have

max
M∈[0,N)

θ(K,N,M) ≤ max
`∈N̄

Θ(K,N, M̃`). (77)

We continue to bound the right-hand side of (77). Irrespec-
tive of K,N ∈ Z+, we have:

Θ(K,N, M̃N̄ ) =
N̄

N(1− (1− 1/N)N̄ )

=
x

1− ((1− 1/N)N )x

∣∣∣
x=N̄/N

(a)

≤ x

1− e−x
∣∣∣
x=N̄/N

(b)

≤ 1

1− e−1
, (78)

where (a) follows since (1 − 1/ζ)ζ ≤ e−1 for all ζ > 1 and
(b) follows since x 7→ x

1−e−x is an increasing function. This
implies that when N̄ = 1 (i.e., one file or one user), then
Θ(K,N,M) ≤ 1

1−e−1 ≤ 1.582 for all M ∈ [0, N).
In the following, we assume that N̄ ≥ 2. As for ` ∈
{1, . . . , N̄ − 1}, we have

Θ(K,N,M`)

=

N− N
`+1 (1− 1

N )
`

N
`+1 (1− 1

N )
`

(
1−

(
1− 1

N
N
`+1

(
1− 1

N

)`)N̄)
N −

(
N + `

2

) (
1− 1

N

)`
=

(
`+1
N − 1

N

(
1− 1

N

)`)(
1−

(
1− 1

`+1

(
1− 1

N

)`)N̄)
(
1− 1

N

)` (
1−

(
1 + `

2N

) (
1− 1

N

)`)

≤

(
`+1
N − 1

N

(
1− 1

N

)`)(
1−

(
1− 1

`+1

(
1− 1

N

)`)N)
(
1− 1

N

)` (
1−

(
1 + `

2N

) (
1− 1

N

)`)
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(a)
=

(
u+ v − v (1− v)

u/v
)(

1−
(

1− v
u+v (1− v)

u/v
)1/v

)
(1− v)

u/v
(

1−
(
1 + u

2

)
(1− v)

u/v
)

=: η(u, v), (79)

where (a) follows by a change of variable u = `/N and
v = 1/N . Note that since ` ∈ {1, . . . , N̄ − 1} and assuming
N̄ ≥ 2,

u ∈
[

1

N
,
N̄ − 1

N

]
and v ∈ (0, 1/2]. (80)

Also, it holds that 1
1−e−1 < maxu∈(0,1] maxv∈(0,1/2] η(u, v).

Therefore,

max
K∈Z+

max
N∈Z+

max
M∈[0,N)

θ(K,N,M) ≤ max
u∈(0,1]

max
v∈(0,1/2]

η(u, v),

(81)

which concludes the proof.

VII. CONCLUSION

This paper derives new lower bounds on the rate-memory
tradeoff under a worst-case or an average-case scenario. The
obtained lower bounds are compared to upper bounds on the
rate-memory tradeoffs in decentralized caching scenarios and
shown to match these upper bounds up to a multiplicative gap
of at most 2.315 (in the worst-case scenario) and 2.507 (in
the average-case scenario). Previous bounds could establish
a gap of 4.7 and 4, respectively. In a work that is parallel to
this [14], improved upper bounds were presented which match
the decentralized upper bounds up to factors of almost 2. The
bounds in [14] are based on similar technical steps as used in
this paper. The improvement is obtained through an additional
averaging step over the labeling of the receivers.

The converse technique presented in this paper can be
extended to setups where delivery communication takes place
over a noisy broadcast channel (BC) (rather than a noise-free
link as considered in this paper). Corresponding bounds on the
capacity-memory tradeoff over general discrete memoryless
BCs can be found in [55].

APPENDIX A
PROOF OF EQUATION (52)

Fix i ∈ N̄ and M ∈ [Mi,Mi−1]. Define

νj :=
1

Mj−1
=

k

N − j + 1
, j ∈ {1, . . . , N̄}. (82)

Notice that
ν1 ≤ ν2 ≤ . . . ≤ νN̄ (83)

and
1

νi+1
≤M ≤ 1

νi
. (84)

Rewrite Rworst(K,N,M) as

Rworst(K,N,M) = max
`∈N̄

[∑̀
j=1

(
1−M · νj

)]
. (85)

By (83) and (84), the summands (1 − M · νj) are positive
or zero for all j ≤ i and they are negative j > i. The
maximum in (85) is thus achieved by choosing ` = i. This
proves equation (52).

APPENDIX B
PROOF OF LEMMA 3

We first prove that for each k ∈ {1, . . . , `}:

αk ≤
kM

N − k + 1
, (86)

which establishes the upper bound∑̀
k=1

αk ≤
∑̀
k=1

kM

N − k + 1
. (87)

For each partial demand vector d̃ = (d1, . . . , dk−1), let
Wd̃ := {Wd1 , . . . ,Wdk−1

}. We have:

Fαk

=
1

`!
(
N
`

) ∑
d∈Qdist

`

I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
)

=
1

`!
(
N
`

) ∑
d̃∈Qdist

k−1

∑
d∈Qdist

` :

(d1,...,dk−1)=d̃

I(Wdk ;V1, . . . ,Vk|Wd̃)

(a)
=

1

`!
(
N
`

) ∑
d̃∈Qdist

k−1

∑
j∈N\d̃

I(Wj ;V1, . . . ,Vk|Wd̃)

·
(
N − k
`− k

)
(`− k)!

=
1

k!
(
N
k

) ∑
d̃∈Qdist

k−1

∑
j∈N\d̃

I(Wj ;V1, . . . ,Vk|Wd̃)

(b)
=

1

k!
(
N
k

)[ ∑
d̃∈Qdist

k−1

[
H
(
{Wj : j ∈ N\d̃}

∣∣Wd̃

)
−

∑
j∈N\d̃

H(Wj |V1, . . . ,Vk,Wd̃)
]]

(c)

≤ 1

k!
(
N
k

) ∑
d̃∈Qdist

k−1

I
(
{Wj : j ∈ N\d̃} ; V1, . . . ,Vk

∣∣Wd̃

)
(d)

≤
(k − 1)!

(
N
k−1

)
k!
(
N
k

) kFM

=
kFM

N − k + 1
, (88)

where (a) holds because for each value of ` and j there are(
N−k
`−k

)
(` − k)! ordered demand vectors d = (d1, . . . , dK) ∈

Qdist
` with (d1, . . . , dk−1) = d̃ and with dk = j; (b)

holds by the independence of the messages; (c) holds be-
cause for any random tuple (A1, . . . , AL) it holds that∑L
l=1H(Al) ≥ H(A1, . . . , AL); and (d) holds because

I(W1, . . . ,WN ;V1, . . . ,Vk|Wd̃) cannot exceed kFM . This
concludes the proof of (86) and thus of (87).

We now prove ∑̀
k=1

αk ≤
`2M

N
. (89)

For each d ∈ Qdist
` :

I(Wd1 ;V1) +
∑̀
k=2

I(Wdk ;V1, . . . ,Vk|Wd1 ,Wd2 , . . . ,Wdk−1
)
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≤ I(Wd1 ,Wd2 , . . . ,Wd` ;V1, . . . ,V`). (90)

So,

F

(
N

`

)
`! ·
∑̀
k=1

αk

=
∑

d∈Qdist
`

[
I(Wd1 ;V1)

+
∑̀
k=2

I(Wdk ;V1, . . . ,Vk|Wd1 ,Wd2 , . . . ,Wdk−1
)

]
≤
∑

d∈Qdist
`

I(Wd1 ,Wd2 , . . . ,Wd` ;V1 . . . ,V`)

= `!
∑

d∈Qdist
` :

d1<d2···<d`

I(Wd1 ,Wd2 , . . . ,Wd` ;V1 . . . ,V`)

(a)

≤ `!

(
N

`

)
`

N
I(W1, . . . ,WN ;V1, . . . ,V`)

≤ `

N
`!

(
N

`

)
`FM, (91)

where (a) follows by Lemma 2.

APPENDIX C
PROOF OF LEMMA 5

We first prove that for each k ∈ {1, . . . , `}:

βk ≤
kM

N
, (92)

which establishes the upper bound

∑̀
k=1

βk ≤
∑̀
k=1

kM

N
. (93)

Defining Dk := (D1, . . . , Dk), we have:

Fβk = I(WDk
;V1, . . . ,Vk|WD1

, . . . ,WDk−1
,D)

= I(WDk
;V1, . . . ,Vk|WD1

, . . . ,WDk−1
,Dk)

(a)
=

1

Nk

∑
d∈Qrep

k

I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
)

=
1

Nk

∑
d̃∈Qrep

k−1

N∑
j=1

I(Wj ;V1, . . . ,Vk|Wd̃)

(b)

≤ 1

Nk

∑
d̃∈Qrep

k−1

I(W1, . . . ,WN ;V1, . . . ,Vk|Wd̃)

(c)

≤ 1

Nk

∑
d̃∈Qrep

k−1

kFM

=
kFM

N
, (94)

where (a) holds by writing out the conditioning on Dk in
form of an expectation; (b) holds because the messages are
independent and because H(A1, . . . , AL) ≤∑L

l=1H(Al) for
any random L-tuple (A1, . . . , AL); and (c) holds because

I(W1, . . . ,WN ;V1, . . . ,Vk|Wd̃) cannot exceed kFM . This
concludes the proof of (92) and thus (93).

We now prove

∑̀
k=1

βk ≤ ED

[
κD(`)

]
· `M
N

. (95)

Let Ddist
` be a vector containing all distinct elements of

D` := (D1, . . . , D`). Notice that Ddist
` is of length κD`

(`).
Also, following the definition of the previous section, WD`

:=
{WD1 , . . . ,WD`

} = WDdist
`

. We have:

F
∑̀
k=1

βk

= I(WD1
;V1|D)

+
∑̀
k=2

I(WDk
;V1, . . . ,Vk|WD1

,WD2
, . . . ,WDk−1

,D)

≤ I(WD`
;V1, . . . ,V`|D)

≤ I(WD`
;V1, . . . ,V`|D`)

= I
(
WD`

;V1, . . . ,V`
∣∣D`, κD`

(`)
)

=
∑̀
i=1

P(κD`
(`) = i)I

(
WD`

;V1, . . . ,V`
∣∣D`, κD`

(`) = i
)

(a)
=
∑̀
i=1

P(κD`
(`) = i)I

(
WDdist

`
;V1, . . . ,V`

∣∣Ddist
` , κD`

(`) = i
)

(b)
=
∑̀
i=1

P(κD`
(`) = i)

∑
d̃∈Qdist

i :

d̃1<d̃2···<d̃i

1(
N
i

)I(Wd̃;V1, . . . ,V`)

(c)

≤
∑̀
i=1

P(κD(`) = i)
i

N
I(W1, . . . ,WN ;V1, . . . ,V`)

(d)

≤
∑̀
i=1

P(κD(`) = i) · i · `FM
N

= ED

[
κD(`)

]
· `FM
N

. (96)

Notice that here (a) holds because for the involved mutual
informations only the set of distinct demands matters and not
the exact demand vector. Moreover, (b) holds because given
κD`

(`) = i the probability that Ddist
` equals a specific vector

d̃ ∈ Qdist
i equals

(
N
i

)−1
; (c) follows from Lemma 2; and

(d) follows since I(W1, . . . ,WN ;V1, . . . ,V`) cannot be larger
than `FM .
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