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Monte Carlo Methods for the Ferromagnetic
Potts Model Using Factor Graph Duality

Mehdi Molkaraie and Vicenç Gómez

Abstract—Normal factor graph duality offers new possibilities
for Monte Carlo algorithms in graphical models. Specifically,
we consider the problem of estimating the partition function
of the ferromagnetic Ising and Potts models by Monte Carlo
methods, which are known to work well at high temperatures,
but to fail at low temperatures. We propose Monte Carlo methods
(uniform sampling and importance sampling) in the dual normal
factor graph, and demonstrate that they behave differently:
they work particularly well at low temperatures. By comparing
the relative error in estimating the partition function, we show
that the proposed importance sampling algorithm significantly
outperforms the state-of-the-art deterministic and Monte Carlo
methods. For the ferromagnetic Ising model in an external field,
we show the equivalence between the valid configurations in
the dual normal factor graph and the terms that appear in
the high-temperature series expansion of the partition function.
Following this result, we discuss connections with Jerrum–
Sinclair’s polynomial randomized approximation scheme (the
subgraphs-world process) for evaluating the partition function
of ferromagnetic Ising models.

Index Terms—Potts model, Ising model, normal factor graph,
partition function, dual normal factor graph, Monte Carlo meth-
ods, low-temperature regime, ferromagnetism, high-temperature
series expansion, subgraphs-world process.

I. INTRODUCTION

Many quantities of interest in statistical physics, combi-
natorics, information theory, and machine learning can be
expressed as a partition function

Z
4
=

∑
x1,...,xN

f(x1, . . . , xN ), (1)

where f(x1, . . . , xN ) is a nonnegative real function of finite-
valued variables x1, . . . , xN and where the sum runs over all
possible values of these variables. For example, if f takes
values in {0, 1}, then (1) counts the number of configura-
tions x1, . . . , xN for which f(x1, . . . , xN ) 6= 0. In statistical
physics, Z is usually considered as a function of temperature
(cf. Section II) and hence is called the partition function. For
large N , we are usually interested in the free energy per site
1
N lnZ rather than in Z itself.

Naive computation of (1) is exponential in N and practically
possible only for small N . If the function f in (1) has a cycle-
free factor graph (and no state variables with excessively many
states), then the partition function can be computed exactly
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Parts of this work were presented in [1]–[3].

by sum-product message passing [4]–[6] (with complexity
typically linear in N ), which, in this context, coincides with
the transfer matrix method from statistical physics [7, Chapter
2], [8, Chapter 5].

In general, however, the exact computation of the partition
function is intractable for large N , and even good approxima-
tions can be hard to obtain. Empirically good approximations
are often achieved with deterministic methods (including the
belief propagation (BP), the generalized belief propagation
(GBP) [9], and the tree expectation propagation (TreeEP) [10]
algorithms), but the accuracy of such approximations is often
difficult to assess theoretically.

In this paper, we pursue the idea (proposed in [1]–[3])
that normal factor graph duality offers new opportunities
for Monte Carlo algorithms. We develop and test this idea
for two-dimensional (2D) nearest-neighbor Ising and Potts
models. Both the Ising model [11], [12] and the more general
Potts model [13], [14] play an important role in many areas,
including statistical physics [7], image processing [15], spatial
statistics [16], and graph theory [17]–[19].

Exact computation of the partition function of the Potts
model is possible only in some special cases (e.g., in the one-
dimensional (1D) case). For the planar Ising model without an
external field, the problem is tractable and can be reduced to
evaluating a certain determinant [20], [21], and this approach
can also be used to obtain accurate approximations in more
general settings [22]. Also there is a polynomial randomized
approximation scheme [23, Chapter 28] for the partition func-
tion of general ferromagnetic Ising models in an external field
due to Jerrum and Sinclair [24]. Connections among the dual
normal factor graph representation of the Ising model, the
approximation scheme of Jerrum and Sinclair, and the high-
temperature series expansions of the partition function will be
discussed in detail in this paper. However, under reasonable
complexity assumptions, there is no polynomial randomized
approximation scheme for the partition function of the Potts
model. Indeed, for ferromagnetic Potts models, approximating
the partition function is as hard as approximating the number
of independent sets in a bipartite graph, which is among the
presumably intractable problems [25]–[27].

Known Monte Carlo algorithms for the partition function
work very well for the Potts model at high temperature (i.e.,
when local correlations decay quickly) [28]–[31]. At low
temperatures, however, Monte Carlo methods suffer from slow
and erratic convergence [30], [32]. More advanced Monte
Carlo methods (e.g., nested sampling [33] and the Swendsen-
Wang algorithm [34]) require sampling from a large sequence
of constraints or intermediate distributions at different temper-
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atures to estimate the partition function. The main challenge
is, therefore, to design Monte Carlo methods that achieve
sufficiently fast convergence in the low-temperature regime.

The approach of this paper is based on the notions of the
dual normal realization as introduced by Forney [35] and the
dual normal factor graph [36]–[38]. According to the normal
factor graph duality theorem, the partition function of the dual
normal factor graph equals that of the primal normal factor
graph up to a known scale factor [36]. The relation of normal
factor graph duality to Kramers–Wannier duality [39], [14,
Section II] in statistical physics has been worked out in [40]–
[42].

Using Monte Carlo methods in the dual normal factor graph
has been investigated in [1], [43], [2], [3]. It was demonstrated
(by simulations) in [1] that for the 2D Ising model without
an external field, baseline Monte Carlo methods converge
faster at low temperature in the dual normal factor graph than
in the primal normal factor graph. Some pertinent analytical
and numerical results regarding the variance of Monte Carlo
methods in the two domains were given in [43]. A suitable
partitioning of variables, which allows drawing independent
samples according to an auxiliary distribution, was introduced
in [2] to propose an importance sampling algorithm to estimate
the partition function of the Ising model in a strong external
field. The methods of [2] were further generalized in [3] to
models with a mixture of strong and weak couplings.

In this paper, we further explore the use of Monte Carlo
methods in the dual normal factor graph. Specifically, we pro-
pose Monte Carlo methods for estimating the partition function
of ferromagnetic q-state Potts models, with or without an
external field. We consider uniform sampling and importance
sampling algorithms, both of which are shown to work very
well for strong couplings or, equivalently, at low temperature.

Our experimental results show that, in various settings, the
importance sampling algorithm significantly improves upon
the state-of-the-art Monte Carlo and deterministic methods.
Indeed, in contrast to Monte Carlo methods in the primal
domain, the dual-domain Monte Carlo algorithms of this paper
excel at low temperatures.

The paper is organized as follows. In Section II, we review
the Potts model. The primal and the dual normal factor graphs
of the model will be presented in Section III and Section IV,
respectively. Specific Monte Carlo algorithms that use the dual
normal factor graph are proposed in Section V, and pertinent
experimental results (including comparisons with standard
deterministic and Monte Carlo methods) are presented in
Section VI. Extensions of our Monte Carlo methods to the
Potts model in an external field are discussed in Section VII.
In Section VIII, we establish the connection among the valid
configurations in the dual normal factor graph representation
of the Ising model in an external field, high temperature
series expansions of the partition function, and the randomized
approximation scheme of Jerrum and Sinclair. Appendix A
compares the variance of Monte Carlo methods in the primal
and in the dual normal factor graphs of the 2D Ising model
to demonstrate their opposite behavior.
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Fig. 1: Normal factor graph of (10).
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Fig. 2: Normal factor graph of (11).

II. THE 2D POTTS MODEL WITHOUT EXTERNAL FIELD

Let X1, X2, . . . , XN be a collection of N random variables
that take values in the set X , which in this context is identical
to Z/qZ, the ring of integers modulo q for some fixed integer
q ≥ 2. (In the special case where q = 2, we obtain the Ising
model.) Let xi represent a possible realization of Xi and X
stand for (X1, X2, . . . , XN ). The vectors x ∈ XN will be
called configurations.

The variables X1, X2, . . . , XN are associated with the ver-
tices of a simple and connected graph G = (V, E) that has
N = |V| vertices and |E| edges. In the Potts model, each
variable represents the q possible states of a particle, and two
variables interact if their corresponding vertices are connected
by an edge in E .

For illustrative purposes, we will take G to be a grid with
size N = M ×M , and assume periodic boundary conditions,
so that each variable has exactly four neighbors. However, the
methods of this paper are easily adapted to Potts models with
arbitrary topology. Indeed, we will consider 2D Potts models
with free boundary conditions in our numerical experiments.

Conventionally E is defined as the set of all the unordered
pairs (k, `) ∈ {1, . . . , N} × {1, . . . , N} such that Xk and X`

are nearest neighbors. Thus

|E| = 2N (2)

for periodic boundary conditions. A real coupling parameter
Jk,` is associated with each pair (k, `) ∈ E . The energy of a
configuration x ∈ XN is given by the Hamiltonian

H(x) = −
∑

(k,`)∈E

Jk,` · δ(xk − x`), (3)

where δ(·) is the Kronecker delta, which evaluates to one if
its argument is zero, and to zero otherwise.

In this paper, we focus on ferromagnetic models, which are
characterized by the condition Jk,` ≥ 0 for all (k, `) ∈ E , i.e.,
configurations in which adjacent variables take on the same
value have lower energy. The probability of a configuration
x ∈ XN is given by the Boltzmann distribution

pB(x) =
e−βH(x)

Z
. (4)
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Here, β denotes the inverse temperature and the normaliza-
tion constant Z is the partition function given by

Z =
∑

x∈XN

e−βH(x), (5)

where the sum runs over all the configurations [7].
We will find it convenient to omit the parameter β (i.e.,

we set β = 1) and to work with varying values of the
coupling parameters Jk,`. In this set-up, large values of Jk,`
correspond to low temperature and small values correspond to
high temperature. In particular, the special case where Jk,` = 0
for all (k, `) ∈ E corresponds to infinite temperature.

We now let

f(x) = e−H(x) (6)

=
∏

(k,`)∈E

κk,`(xk, x`) (7)

with
κk,`(xk, x`) =

{
eJk,` , if xk = x`
1, otherwise. (8)

Thus (5) becomes

Z =
∑

x∈XN

f(x), (9)

in agreement with (1).
The factorization (7) will be used in the next section.

III. PRIMAL NORMAL FACTOR GRAPH
OF THE POTTS MODEL

We use normal factor graphs as in [35], [5], [36], [37] (also
called Forney factor graphs), where variables are represented
by edges and factors are represented by nodes/boxes. (By
contrast, factor graphs as in [4] represent both factors and
variables by nodes.) For example, the factorization

f(x1, x2, x3, x4, x5)

= f1(x1, x2, x5)f2(x2, x3)f3(x3, x4, x5) (10)

is represented by the normal factor graph in Fig. 1. We say
that a configuration x is valid iff f(x) 6= 0, and we note that
only valid configurations contribute to the partition function
(1).

As observed in [35], in order to represent the variables by
edges, each variable must be involved in only one or two
factors. If some variable appears in more than two factors
as, e.g., in

g(x1, x2, x3, x4) = g1(x1, x2)g2(x1, x3)g3(x1, x4), (11)

we introduce auxiliary variables x′1 and x′′1 , and define an
additional equality indicator function

I=(x1, x
′
1, x
′′
1)
4
= δ(x1 − x′1) · δ(x1 − x′′1) (12)

(as shown in Fig. 2) such that x1 = x′1 = x′′1 in all valid
configurations. The partition function is not affected by such
replications.

We next note that the Hamiltonian (3) and factors (8) can
equivalently be written as a function of yk,` = xk − x`. To
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Fig. 3: Primal normal factor graph of the 2D Potts model.
The empty boxes represent the factors (8), the boxes labeled
“=” are equality indicator functions given by (12), the boxes
labeled “+” are zero-sum indicator functions given by (14),
and the symbol “◦” indicates a sign inversion. The periodic
boundary conditions are not shown.

simplify notation, we will henceforth denote the elements of
E by a single index variable e ∈ E rather than by a vertex index
pair (k, `) ∈ V2, with adjacencies continuing to be determined
by the graph G = (V, E).

Hence, each factor (8) can be written as

κe(ye) =

{
eJe , if ye = 0
1, otherwise. (13)

Applying factors (13) in (7), we can construct the primal
normal factor graph of the Potts model as shown in Fig. 3,
in which the empty boxes represent (13), the boxes labeled
“=” are instances of equality indicator functions as in (12),
the boxes labeled “+” are instances of the zero-sum indicator
functions defined as

I+(ye, xk, x`)
4
= δ(ye + xk + x`), (14)

and in analogy with the logic NAND gate the symbol “◦” is
used to indicate a sign inversion. (Recall that all arithmetic
manipulations are done modulo q.)

For q = 2, the Potts model is equivalent to the Ising model.
However, the standard convention is to define the Hamiltonian
of the model as

H(x) = −
∑

(k,`)∈E

Jk,` ·
(
2δ(xk − x`)− 1

)
. (15)

Following a similar approach, we can obtain the primal normal
factor graph of the Ising model (also shown in Fig. 3), where
the empty boxes represent factors given by

κe(ye) =

{
eJe , if ye = 0
e−Je , if ye = 1. (16)

Note that, for the Ising model the “◦” symbols are immaterial
and can be removed from Fig. 3.
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Fig. 4: Dual normal factor graph of the 2D Potts model.
The empty boxes represent the factors (18), the boxes labeled
“=” are equality indicator functions given by (12), the boxes
labeled “+” are zero-sum indicator functions given by (14),
and the symbol “◦” indicates a sign inversion. The periodic
boundary conditions are not shown.

In the special case of the 2D Ising model with constant
couplings Je = J and without an external field, the parti-
tion function is analytically available in the thermodynamic
limit (i.e., as N → ∞) from Onsager’s solution [44]. In
Appendix A, we will use the analytical solution of the partition
function to analyze the variance of Monte Carlo methods
of this paper. For the (nonbinary) 2D Potts model, no such
analytical solution for the partition function is yet available.

Next, we will describe the corresponding dual normal factor
graphs of the models in this section.

IV. DUAL NORMAL FACTOR GRAPH
OF THE POTTS MODEL

The dual normal factor graph of some given (primal) normal
factor graph has the same topology as the primal normal factor
graph, but all factors are replaced by their Fourier transforms
(which includes replacing equality indicator functions by zero-
sum indicator functions, and vice versa). See [35], [5], [36],
[38], [43] for more details.

In the dual normal factor graph, all variables are replaced
by their corresponding dual (frequency) variables, which take
values in the same alphabet as the primal variables. We will
use the tilde symbol to denote variables in the dual domain.
The dual normal factor graph has the same partition function
as the primal normal factor graph, up to some known scale
factor [36, Theorem 2]. We denote the partition function of
the dual normal factor graph by Zd.

Following [43], we can obtain the dual normal factor graph
of the 2D Potts model as shown in Fig. 4, in which the empty
boxes represent factors that are the 1D Fourier transforms
of (13) given by

γe(ỹe) =
∑
ye∈X

κe(ye)e
−i2πyeỹe/q. (17)
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Fig. 5: A partitioning of the variables Ỹ = {Ỹe : e ∈ E}
in Fig. 4 as in Section IV-A. The edges in T (drawn with
thick edges) represent the variables ỸT , which are linearly
dependent on the remaining variables ỸT . This spanning tree
works both with and without periodic boundary conditions.
Also shown is an example of a valid configuration for q = 3
(assuming no boundary conditions).

Thus

γe(ỹe) =

{
eJe − 1 + q, if ỹe = 0
eJe − 1, otherwise, (18)

which is nonnegative due to the ferromagnetic assumption (i.e.,
Je ≥ 0).

Similarly, we can obtain the dual normal factor graph of
the 2D Ising model (shown in Fig. 4), where the empty boxes
represent factors as in

γe(ỹe) =

{
2 cosh(Je), if ỹe = 0
2 sinh(Je), if ỹe = 1,

(19)

which is the 1D Fourier transform of (16). Notice that (19) is
also nonnegative due to ferromagnetic assumption. Again, for
the Ising model the “◦” symbols can be safely removed from
the dual normal factor graph.

The partition function of the dual normal factor graph is
thus

Zd =
∑

valid ỹ

∏
e∈E

γe(ỹe), (20)

where the sum runs over all valid configurations in the dual
normal factor graph.

For the dual 2D Potts and Ising models with factors as
in (18) and (19), and with periodic boundary conditions, it
holds that1

Zd = qNZ (21)

see [36].

1In general, the scale factor α(G) = Zd/Z depends on the topology of G
and on the local scale factors used in the Fourier transforms. In our setup,
the scale factor is given by α(G) = q|E|−|V|. For example, in a 2D torus
|E| = 2N , and therefore α(G) = qN as in (21); in a 1D model with periodic
boundary conditions |E| = |V|, and thus α(G) = 1. For more details, see [45],
[42, Section 3.3].
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Fig. 4 is the basis of the Monte Carlo algorithms of this
paper to estimate Zd. The estimates are then used to compute
an estimate of Z via (21).

A. Independent Variables and Spanning Trees in the Dual
Normal Factor Graph

In our Monte Carlo methods, we will use partitions of
G into two disjoint subsets G = T ∪ T such that T is a
spanning tree (that reaches every zero-sum factor) and T is
the corresponding cospanning tree, as illustrated in Fig. 5.
The edges of T are called the branches and the edges of T
are called the chords of G with respect to T . Although T is
always without cycles, T need not be cycle-free. Any such
partition induces a corresponding partition of the variables
Ỹ = {Ỹe : e ∈ E} into ỸT and ỸT .

Proposition 1. Consider a valid configuration in the dual
normal factor graph of the Potts model. Suppose variables
Ỹ1, Ỹ2, . . . form a cutset in the dual normal factor graph, then
it holds that ∑

e ∈ Cutset

ỹe = 0 (22)

2

Proof. Removing all the edges that represent variables
Ỹ1, Ỹ2, . . . partitions G into G1 ∪ G2. Suppose in G1 we write
down the equations associated with all the zero-sum indicator
factors. Since each variable, say ỹt for t ∈ E1 appears twice
in the summation, once as ỹt and once as −ỹt (see Fig. 4),
the sum over all these equations is equal to zero. Furthermore,
the same sum in G is equal to

∑
e ∈ Cutset ỹe. This completes

the proof. �

The proof follows along the same lines in G2. For more details,
see [45], [42, Section 2.5].

Removing a branch b ∈ T partitions T = T1∪T2. The edges
that connect T1 and T2 form a unique cutset in G, called the
fundamental cutset belonging to b. Each fundamental cutset
has exactly one branch of T that does not appear in any other
fundamental cutset, along with edges (chords) that belong to
T . Indeed, each spanning tree defines a set of |T | fundamental
cutsets: one for each branch of the spanning tree [46, Chapter
2]. According to Proposition 1, for each b ∈ T we can
compute Ỹb as a linear combination of ỸT by applying (22)
on the fundamental cutset belonging to b. We conclude that
the variables in ỸT are linearly independent and the variables
in ỸT are fully determined by ỸT via a linear transformation.

It follows that the number of valid configurations in the dual
normal factor graph of the Potts model is q|T |. In any such
partitioning the number of variables in ỸT is

|T | = N − 1 (23)

and the number of variables in ỸT is |T | = |E| − |T |. For
the 2D torus, we thus have

|T | = N + 1 (24)

from (2).

V. MONTE CARLO METHODS FOR THE PARTITION
FUNCTION OF THE DUAL NORMAL FACTOR GRAPH

We propose two basic Monte Carlo algorithms for estimat-
ing the partition function. Both algorithms use partitions of E
and Y as in Section IV-A and Fig. 5.

In both Monte Carlo algorithms, we draw independent
samples ỹ

(1)

T , . . . , ỹ
(L)

T ∈ X |T | according to some auxiliary

probability distribution, and each of these samples ỹ
(`)

T is

completed (by computing the corresponding ỹ
(`)
T ∈ X |T |) to

a valid configuration ỹ(`) = (ỹ
(`)

T , ỹ
(`)
T ) ∈ X |E|. Computing

ỹ
(`)
T from ỹ

(`)

T is easy and linear in |T |.
We will also use the quantities

ΓT (ỹT ) =
∏
e∈T

γe(ỹe), (25)

ΓT (ỹT ) =
∏
e∈T

γe(ỹe), (26)

and

Γ(ỹ) = ΓT (ỹT )ΓT (ỹT ) =
∏
e∈E

γe(ỹe), (27)

therefore (20) becomes

Zd =
∑

valid ỹ

Γ(ỹ). (28)

We propose uniform sampling and importance sampling
algorithms to estimate Zd. Given the partitioning, the com-
putational complexity of our algorithms is O(|E|) per sample
and O(L|E|) in total. The variance of both methods is derived
in Section V-C.

A. Uniform Sampling

As a baseline algorithm (used in [1] and [43]), we use
independent samples ỹ

(1)

T , . . . , ỹ
(L)

T drawn uniformly over
X |T |, which are completed to valid configurations ỹ(`) ∈ X |E|
as described above. We then use the estimate

ẐUni
d =

q|T |

L

L∑
`=1

Γ(ỹ(`)). (29)

It is easily verified that E[ẐUni
d ] = Zd, i.e., the estimator is

unbiased:

E

[
q|T |

L

L∑
`=1

Γ(Ỹ(`))

]
= q|T | E

[
Γ(Ỹ(1))

]
(30)

= q|T |
∑

valid ỹ

1

q|T |
Γ(ỹ) (31)

= Zd, (32)

where the last step follows from (28).
The accuracy of (29) depends on the fluctuations of Γ(ỹ(`)).

In the low-temperature limit (i.e., for eJe � q), these fluc-
tuations disappear, because γe(ỹe) ≈ eJe becomes constant.
The estimator (29) can therefore be expected to work well at
sufficiently low temperatures.
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Fig. 6: Comparison with deterministic algorithms (BP, GBP,
and TreeEP): experimental results for a Potts model with
q = 3, N = 8×8, periodic boundary conditions, and constant
couplings J . The plot shows the relative error (51) as a
function of J . (Recall that large J corresponds to the low-
temperature regime.)

B. Importance Sampling
An importance sampling estimator (proposed in [2], [3])

is obtained by drawing independent samples ỹ
(1)

T , . . . , ỹ
(L)

T ∈
X |T | according to the auxiliary probability distribution

pT (ỹT ) =
ΓT (ỹT )

ZT
(33)

=
∏
e∈T

γe(ỹe)∑q−1
ξ=0 γe(ξ)

, (34)

where ZT is available in closed-form as

ZT =
∏
e∈T

q−1∑
ξ=0

γe(ξ) (35)

=
∏
e∈T

qeJe (36)

= q|T | exp
(∑
e∈T

Je

)
. (37)

The product form in (34) indicates that to draw samples
according to pT (ỹT ), we can draw each component ỹ(`)e of
ỹ
(`)

T independently with probability

P
(
ỹ(`)e = ξ

)

=


1 + (q − 1)e−Je

q
, if ξ = 0

1− e−Je
q

, for ξ = 1, 2, . . . , q − 1.
(38)

Again, the samples ỹ
(1)

T , . . . , ỹ
(L)

T are completed to valid
configurations ỹ(1), . . . , ỹ(L) ∈ X |E|. We then use the estimate

Ẑ Imp
d =

ZT
L

L∑
`=1

ΓT (ỹ
(`)
T ), (39)
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Fig. 7: Comparison with deterministic algorithms (BP, GBP,
and TreeEP): experimental results for a Potts model with
q = 3, N = 8×8, periodic boundary conditions, and coupling
parameters Je: Je = |J ′e| with J ′e

i.i.d.∼ N (0, σ2). The plot
shows the relative error (51) as a function of σ2.

which is unbiased:

E

[
ZT
L

L∑
`=1

ΓT (Ỹ
(`)
T )

]
= ZT E

[
ΓT (Ỹ

(1)
T )
]

(40)

= ZT

∑
valid ỹ

pT (ỹT )ΓT (ỹT ) (41)

=
∑

valid ỹ

ΓT (ỹT )ΓT (ỹT ) (42)

= Zd. (43)

The accuracy of (39) mainly depends on the fluctuations of
ΓT (ỹ

(`)
T ). The estimator can therefore be expected to work

well at sufficiently low temperatures where these fluctuations
disappear.

C. Variance of the Estimates

The variance of the importance sampling estimator (39) is

Var[Ẑ Imp
d ] = E

[(
Ẑ Imp

d

)2]− E
[
Ẑ Imp

d

]2
(44)

=
Z2
T
L

∑
valid ỹ

pT (ỹT )ΓT (ỹT )2

− Z2
d

L
(45)

=
1

L

∑
valid ỹ

ΓT (ỹT )2

pT (ỹT )
ΓT (ỹT )2

− Z2
d

L
(46)

=
Z2

d

L

∑
valid ỹ

pd(ỹ)2

pT (ỹ)
− 1

 , (47)

where both pd(ỹ) = Γ(ỹ)/Zd and pT (ỹT ) = ΓT (ỹT )/ZT are
probability mass functions defined on the valid configurations
of the dual normal factor graph.

We thus have

Var[Ẑ Imp
d ]

L

Z2
d

= χ2
(
pd, pT

)
, (48)
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where χ2(·, ·) denotes the chi-squared divergence, which is
always nonnegative and is equal to zero if and only if its two
arguments are equal [47, Chapter 4].

An analogous derivation for the uniform sampling estimator
(29) yields

Var[ẐUni
d ]

L

Z2
d

= χ2
(
pd, pu

)
, (49)

where pu(ỹ) is the uniform distribution over the valid config-
urations.

In the low-temperature limit with eJe � q for all e ∈ E ,
both pd and pT become uniform over the valid configurations
and both (48) and (49) vanish. More importantly, the variance
of the importance sampling estimator (48) vanishes under the
weaker condition (weaker for nonconstant couplings)

eJe � q for e ∈ T , (50)

since in this case pd(ỹ) ∝ ΓT (ỹT )ΓT (ỹT ) converges to
pT (ỹ) ∝ ΓT (ỹT ) if ΓT (ỹT ) becomes constant.

For the Ising model on a 2D torus, a more detailed analysis
of the variance of our proposed Monte Carlo methods is given
in Appendix A.

D. Choosing the Partitioning

The choice of T and T does not affect the performance
of the uniform sampling estimator (29), but it can affect
the performance (i.e., the convergence) of the importance
sampling estimator (39) for nonconstant couplings. Recall
that the normalized variance (48) vanishes if (50) holds. This
result suggests to include into T only edges e with stronger
couplings (i.e., with large Je). To this end, the following
heuristic strategy can be used: choose T to be a spanning
tree that maximizes

∑
e∈T Je. This is a maximum-spanning

tree problem, that can be solved efficiently with complexity
linear in N and |E| (see [48, Chapter. VI]). We will use this
heuristic strategy in our numerical experiments in Section VI.

VI. NUMERICAL EXPERIMENTS

In this section, we demonstrate the methods of Section V
with some numerical experiments. In Sections VI-A to VI-C,
we work with tractable models where the partition function
can be computed exactly via the junction tree algorithm [49];
larger grids are considered in Section VI-D.

A. Comparison with Deterministic Algorithms

We first consider the Potts model with q = 3 on an 8×8 grid
with periodic boundary conditions. For this size of grid, we
were able to compute the exact value of the partition function.

In Figs. 6 and 7, we compare the accuracy of the proposed
methods with three standard deterministic algorithms: BP,
GBP [9], [50], [51], and TreeEP [10]. These three algorithms
turned out to perform best, in our setting, among all deter-
ministic methods implemented in [52]. (Among the different
versions of GBP in [52], we selected the one with the best
performance.)

The accuracy of the proposed Monte Carlo methods depends
on the number of samples, but the result is exact (with

0 0.25 0.5 0.75 1 1.25 1.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

J

ln
(Ẑ

)/
N

Exact ln(Z)/N

Swendsen-Wang

Uni (primal)

Imp

Uni (dual)

Fig. 8: Comparison with uniform sampling and the Swendsen-
Wang algorithm: experimental results for a Potts model with
q = 3, N = 8×8, periodic boundary conditions, and constant
couplings J . The plot shows ln(Ẑ)/N as a function of J .

probability one) in the limit of infinitely many samples. By
contrast, the deterministic algorithms (BP, GBP, and TreeEP)
yield approximations whose accuracy is not improved beyond
convergence. However, it should be emphasized that determin-
istic algorithms converge much faster than our Monte Carlo
methods.

Figs. 6 and 7 show the relative error

| log Ẑ − logZ|
logZ

(51)

for the different estimates Ẑ. The labels “Uni” and “Imp”
refer to uniform sampling as in Section V-A and importance
sampling as in Section V-B, respectively.

In Fig. 6, the couplings Je = J are constant. For the
proposed Monte Carlo methods, log Ẑ in (51) is averaged
over 50 trials, each with L = 108 samples (taking about two
minutes on a 2GHz Intel Xeon CPU).

In Fig. 7, the couplings are chosen randomly according to
a half-normal distribution: Je = |J ′e| with J ′e

i.i.d.∼ N (0, σ2)
for all e ∈ E . The spanning tree was chosen according
to the heuristic strategy proposed in Section V-D. The plot
shows the relative error (51), where logZ is averaged over
25 independent realizations of the couplings and for every
realization, log Ẑ is averaged over L = 108 samples.

Both Figs. 6 and 7 clearly show that, for sufficiently strong
couplings (i.e., at low temperature), the importance sampling
algorithm (39) yields much better estimates of the partition
function than the other algorithms. In particular, from Fig. 7,
we observe that importance sampling outperforms the second
best approach (TreeEP) by more than two orders of magnitude
for σ2 > 1.5. The accuracy of the proposed methods can still
be improved, of course, by increasing the number of samples.

B. Comparison with Standard Monte Carlo Methods

We again consider the Potts model with q = 3 on an 8× 8
grid with periodic boundary conditions. In Fig. 8, we compare
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10−1

100
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J = 0.5

J = 1.0

J = 1.5

J = 2.0

Fig. 9: Number of required samples as a function of the width
of the grid M to achieve a relative error (51) of 10−2, for
a 2D Potts model with q = 3, free boundary conditions, and
constant couplings J .

the proposed methods with two Monte Carlo methods that
operate in the primal Potts model. The first of these (standard)
Monte Carlo algorithms (labeled “Uni (primal)” in Fig. 8) is a
baseline algorithm: we use uniform samples x(1), . . . ,x(L) ∈
XN and form the (unbiased) estimate

ẐUni =
qN

L

L∑
`=1

f(x(`)) (52)

with f as in (7).
The second standard Monte Carlo algorithm uses

the Swendsen-Wang algorithm [34] to obtain samples
x(1), . . . ,x(L) ∈ XN according to the Boltzmann distribution
(4). From these samples, we form the Ogata-Tanemura
estimate

ẐOT =

(
1

LqN

L∑
`=1

1

f(x(`))

)−1
, (53)

which satisfies E[Ẑ−1OT ] = Z−1. For more details on the Ogata-
Tanemura estimator, see [53], [32].

Fig. 8 shows the estimated ln(Z)/N , where the results were
obtained by averaging over 50 trials, each with L = 108

samples. It is clear from Fig. 8 that importance sampling as
in Section V-B works well for large couplings (low tempera-
tures), where both standard Monte Carlo algorithms fail.

We do not here compare the proposed methods with an-
nealed (i.e., multi-temperature) Monte Carlo methods [54]:
since, in principle, annealing can also be used in the dual
normal factor graph; the advantage of the dual graph over the
primal graph at low temperatures extends also to Monte Carlo
methods with annealing.

C. Scaling Behavior of the Importance Sampling Algorithm

We analyze the performance of the importance sampling
algorithm in the dual normal factor graph in terms of the
required number of samples L to achieve a given relative error

4 5 6 7 8 9 10 11 12 13 14

101

102

103

104

105

106

107

108

M

L

J = 0.5

J = 1.0

J = 1.5

J = 2.0

Fig. 10: Number of required samples as a function of the width
of the grid M to achieve a relative error (51) of 10−3, for a
2D Potts model with q = 3, free boundary conditions, and
constant couplings J .

as a function of the width of the gird M . If the desired relative
error was not achieved after L = 108 samples, we stopped the
simulations.

We consider a 3-state Potts model with constant couplings
Je = J , with free boundary conditions, and on an M ×M
grid, where up to M = 14 we were able to compute the exact
value of the partition function.

Figs. 9 and 10 show experimental results to achieve a
relative error of 10−2 and 10−3, respectively. For J = 2
(i.e., when the temperature is low enough), the number of
required samples is almost independent of M . For J = 1.5,
to achieve a relative error of 10−3, the number of required
samples increases with M ; but it remains almost constant
to achieve a relative error of 10−2. We take these results as
evidence that the importance sampling algorithm is robust at
low temperature. On the other hand, for weaker couplings, L
grows quickly as a function of M .

D. Larger Grids

Fig. 11 shows results for a fixed realization of a Potts model
with q = 3 on a grid of size N = 40× 40 and with couplings
Je

i.i.d.∼ U [2.5, 3.0] for all e ∈ E . The plot shows ln(Ẑ)/N
vs. the number of samples L for five independent runs of the
Monte Carlo algorithms. It is obvious (and unsurprising) that
importance sampling converges more quickly than uniform
sampling. In this example, importance sampling yields the
estimate ln(Ẑ)/N ≈ 5.493.

Fig. 12 shows results obtained from importance sampling
for a fixed realization of an Ising model of size N = 50 ×
50 and with couplings Je

i.i.d.∼ U [2.0, 3.5] for all e ∈ E . The
estimated ln(Z)/N is about 6.00314.

VII. THE 2D POTTS MODEL IN AN EXTERNAL FIELD

We now extend the proposed Monte Carlo methods to Potts
models with an external field, where the Hamiltonian (3) (the
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100 101 102 103 104 105 106 107
5.476

5.480

5.484

5.488

5.492

5.496

L

ln
(Ẑ

)/
N

Importance Sampling

Uniform Sampling

Fig. 11: Experimental results for a fixed realization of a Potts
model with q = 3, N = 40× 40, and coupling parameters
Je

i.i.d.∼ U [2.5, 3.0] for all e ∈ E . The plot shows the estimated
ln(Z)/N using importance sampling (solid black lines) and
using uniform sampling (dashed blue lines) in the dual normal
factor graph.

energy of a configuration x) is generalized to

H(x) = −
∑

(k,`)∈E

Jk,` · δ(xk − x`)−
N∑
k=1

Hk · δ(xk), (54)

where the real parameters Hk represent the external field. We
restrict ourselves to the standard case where the external field
affects the variable xk only if xk = 0, cf. [55, Chapt. 1].

We will also assume

Hk ≥ 0 (55)

for all k. The partition function is

Z =
∑

x∈XN

e−H(x). (56)

Following our approach in Section III, we can construct
the the primal normal factor graph of the model as shown
in Fig. 13, where the empty boxes represent (13) and the small
empty boxes represent factors given by

τk(xk) =

{
eHk , if xk = 0
1, otherwise. (57)

A. Dual Normal Factor Graph
The corresponding dual normal factor graph is shown in

Fig. 14. The only change with respect to Fig. 4 is the additional
factors λk(z̃k), k = 1, . . . , N , which are the 1D Fourier
transforms of the factors (57) given by2

λk(z̃k) =
1

q

q−1∑
xk=0

τk(xk)e−i2πxk z̃k/q (58)

2Here, in contrast to (17), a local scale factor 1/q is included in the
definition of the 1D Fourier transform. For the 2D torus, this makes the scale
factor Zd/Z equal to qN in Potts models with or without an external field. If
we do not include the local scale factor 1/q in (58), we need to distinguish
between two cases: Zd = qNZ for the 2D torus without an external field,
and Zd = q2NZ for the 2D torus in the presence of an external field.

100 101 102 103 104 105
6.00295

6.00304

6.00313

6.00322

6.00331

L

ln
(Ẑ

)/
N

Fig. 12: Experimental results for a fixed realization of an Ising
model with N = 50× 50 and couplings Je

i.i.d.∼ U [2.0, 3.5]
for all e ∈ E . The plot shows the estimated ln(Z)/N using
importance sampling in the dual normal factor graph.

Thus

λk(z̃k) =


eHk − 1 + q

q
, if z̃k = 0

eHk − 1

q
, otherwise.

(59)

Note that (59) is nonnegative due to (55).
Again, from the scale factor (21), for the 2D torus we have

Zd = qNZ. (60)

B. Partitioning the Variables

For the Potts model in an external field, the variables in
the dual normal factor graph consist of Ỹ = {Ỹe : e ∈ E}
and Z̃ = {Z̃k : k ∈ {1, . . . , N}}. Again, we partition
these variables into (Ỹ, Z̃)T and (Ỹ, Z̃)T such that, in any
valid configuration, the variables in (Ỹ, Z̃)T are linearly
independent and the variables in (Ỹ, Z̃)T are fully determined
by (Ỹ, Z̃)T via a linear transformation. However, the variables
Z̃ are not independent.

Proposition 2. In every valid configuration, it holds that
N∑
k=1

z̃k = 0 (61)
2

Proof: Because of the zero-sum constraints on the vertices
of the dual normal factor graph, each z̃k (in any valid config-
uration) can be written as the sum of the variables attached to
the corresponding zero-sum indicator function. However, each
variable will appear exactly twice in (61), once as ye and once
as −ye. This completes the proof. 2

In the absence of an external field, the number of valid
configurations in the dual normal factor graph of the Potts
model is q|T |, cf. Section IV-A. Furthermore, according to
Proposition 2, adding an external field increases the number
of independent variables (free components) by N − 1, and
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Fig. 13: Primal normal factor graph of the 2D Potts model in
an external field. The only change with respect to Fig. 3 is
the additional factors τk given by (57). The periodic boundary
conditions are not shown.

thus increases the number of valid configurations to q|T |+N−1.
Therefore, for the 2D torus in an external field, the number of
valid configurations in the dual normal factor graph is q2N ,
whereas it is qN in the primal normal factor graph.

Both the uniform sampling algorithm and the importance
sampling algorithm of Section V can be adapted to the
present setting. We describe only the latter for two such
partitionings. The first partitioning is suitable for models in the
low-temperature regime, and the second one is designed for
models that are in the presence of a strong external field. The
performance of the proposed algorithms depends on the choice
of the partitioning, as will be illustrated by our numerical
experiments in Section VII-E.

C. Importance Sampling for Models at Low Temperature

An obvious choice for (Ỹ, Z̃)T with the required properties
includes ỸT (i.e., a spanning tree as in Section IV-A) and
N − 1 components of Z̃, i.e.,

(Ỹ, Z̃)T = (ỸT , Z̃\Z̃1), (62)

which implies

(Ỹ, Z̃)T = (ỸT , Z̃1). (63)

The quantities ΓT and ΓT from (25) and (26) are then
generalized to

ΓT
(
(ỹ, z̃)T

)
=
∏
e∈T

γe(ỹe)

N∏
k=2

λk(z̃k) (64)

and
ΓT
(
(ỹ, z̃)T

)
= λ1(z̃1)

∏
e∈T

γe(ỹe), (65)

respectively.

+ =◦ + =◦ + =◦ +

=
◦

=
◦

=
◦

=
◦

+ =◦ + =◦ + =◦ +

=
◦

=
◦

=
◦

=
◦

+ =◦ + =◦ + =◦ +

=
◦

=
◦

=
◦

=
◦

+ =◦ + =◦ + =◦ +

γ1

ZZ
λ1

ZZ ZZ ZZ

ZZ ZZ ZZ ZZ

ZZ ZZ ZZ ZZ

ZZ ZZ ZZ ZZ

Fig. 14: Dual normal factor graph of the 2D Potts model in
an external field. The only change with respect to Fig. 4 is the
additional factors λk given by (59). The periodic boundary
conditions are not shown.

The quantity ZT from (37) is generalized to

ZT =
∑

(ỹ,z̃)T

ΓT
(
(ỹ, z̃)T

)
(66)

=

∏
e∈T

q−1∑
ξ=0

γe(ξ)

 N∏
k=2

q−1∑
ξ′=0

λk(ξ′)

 (67)

=

∏
e∈T

qeJe

( N∏
k=2

eHk

)
(68)

= q|T | exp

∑
e∈T

Je +

N∑
k=2

Hk

 . (69)

The algorithm then goes as follows.
1) Generate L independent samples (x̃, ỹ)

(1)

T , . . . , (ỹ, z̃)
(L)

T
from the distribution

pT
(
(ỹ, z̃)T

)
=

ΓT
(
(ỹ, z̃)T

)
ZT

(70)

2) For each sample (ỹ, z̃)
(`)

T , compute its unique extension

(ỹ, z̃)
(`)
T to a valid configuration (ỹ, z̃)(`), including z̃1,

which can be computed as

z̃1 = −
N∑
m=2

z̃m (71)

from (61).
3) Compute the estimate

Ẑ Imp
d =

ZT
L

L∑
`=1

ΓT
(
(ỹ, z̃)

(`)
T
)
. (72)

The estimate (72) is easily verified to be unbiased, cf. (43).
Creating the samples (ỹ, z̃)

(`)

T in Step 1 is straightforward
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Fig. 15: Comparison with deterministic algorithms (BP, GBP, and TreeEP): experimental results for a Potts model with q = 3,
N = 8 × 8, constant coupling parameter J , and in a constant external field H . The plots show the relative error (51) as a
function of J . Left: H = 0.05; middle: H = 0.1; right: H = 0.2.

since the distribution in (70) decomposes into a product:
first sample the components ỹ

(`)
e , e ∈ T , of each sample

independently according to (38), then sample the components
z̃
(`)
2 , . . . , z̃

(`)
N of each sample independently according to

P
(
z̃
(`)
k = ξ

)
=


1 + (q − 1)e−Hk

q
, if ξ = 0

1− e−Hk

q
, for ξ = 1, 2, . . . , q − 1.

(73)

With this choice of partitioning, it can be verified that (48)
vanishes when eJe � q for e ∈ T .

One can design a slightly different algorithm with rejections
by drawing all the components z̃(`)1 , z̃

(`)
2 , . . . , z̃

(`)
N according

to (73); but accept only the samples that satisfy (61). The
corresponding partitioning in the dual normal factor graph is

(Ỹ, Z̃)T = (ỸT , Z̃). (74)

Accordingly

ΓT
(
(ỹ, z̃)T

)
=
∏
e∈T

γe(ỹe)
N∏
k=1

λk(z̃k) (75)

and

ΓT
(
(ỹ, z̃)T

)
=
∏
e∈T

γe(ỹe). (76)

For more details, see [3].

D. Importance Sampling for Models in a Strong External
Field

We assume another partitioning of (Ỹ, Z̃) given by

(Ỹ, Z̃)T = Ỹ, (77)

which implies

(Ỹ, Z̃)T = Z̃. (78)

This partitioning generalizes ΓT and ΓT to

ΓT
(
ỹ
)

=
∏
e∈E

γe(ỹe) (79)

and

ΓT
(
z̃
)

=

N∏
k=1

λk(z̃k). (80)

The partition function ZT is then generalized to

ZT =
∑
ỹ

ΓT
(
ỹ
)

(81)

= q|E| exp
(∑
e∈E

Je

)
. (82)

The importance sampling algorithm goes as follows.
1) Generate L independent samples ỹ(1), . . . , ỹ(L) accord-

ing to

pT
(
ỹ
)

=
ΓT (ỹ)

ZT
. (83)

2) From each sample ỹ(`), compute z̃(`).
3) Compute the unbiased estimate

Ẑ Imp
d =

ZT
L

L∑
`=1

ΓT
(
z̃(`)
)
. (84)

In this setting, it can be verified that (48) vanishes in the
limit of the strong field (i.e., for eH � q). For more details,
see [2]. The partitioning in (77) and (78) will also be used
in Section VIII to establish connections between the dual
normal factor graph representation of the 2D Ising model in
an external field and the high-temperature series expansions
of the partition function.

E. Numerical Experiments

Experimental results for a Potts model with N = 8 × 8,
q = 3, and periodic boundary conditions are shown in Figs. 15
and 16, for constant coupling parameter Je = J and for
constant external field Hk = H . The partition function is
computed exactly via the junction tree algorithm, which allows
to compare the accuracy of different algorithms. For the Monte
Carlo algorithms, the estimates are averaged over 50 trials,
each with L = 108 samples. The accuracy of the estimates is
then compared with deterministic algorithms: BP, GBP, and
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TreeEP as in Section VI-A. The figures show the relative
error (51) as a function of J .

Fig. 15 shows results for H = 0.05 (left), H = 0.1 (middle),
and H = 0.2 (right). We find that GBP works well, especially
for H = 0.2; but the importance sampling algorithm (72) is
more accurate at low temperatures (i.e., for large J) and in
weak external fields.

For H = 1.0, experimental results are shown in Fig. 16,
where we consider both importance sampling algorithms pro-
posed in (72) and (84). As expected, we observe that the
importance sampler in (84) outperforms (72) for stronger
external fields (stronger compared to the coupling parameter).
However, GBP performs extremely well in this setting, indeed
its relative error is below 10−7 in the whole range.

The accuracy of the importance sampling algorithms can be
improved, of course, by increasing the number of samples.

VIII. THE 2D ISING MODEL IN AN EXTERNAL FIELD,
THE HIGH-TEMPERATURE SERIES EXPANSION,

AND THE SUBGRAPHS-WORLD PROCESS

In this section, we show the equivalence between the valid
configurations in the dual normal factor graph and the config-
urations in Jerrum and Sinclair subgraphs-world process [24]
for a ferromagnetic Ising model on a 2D torus. Following [24],
we restrict our focus to Ising models in a constant external
field H .

For this model, the energy of a configuration x ∈ XN is
given by the Hamiltonian [8, Chapter 3]

H(x) = −
∑

(k, `) ∈ E

Jk,` ·
(
2δ(xk − x`)− 1

)
−H

N∑
k=1

(
1− 2δ(xk)

)
. (85)

The primal normal factor graph of the model is shown
in Fig. 13, where the empty boxes represent (16) and the small
empty boxes represent the factors

τ(xk) =

{
e−H , if x̃k = 0
eH , if x̃k = 1.

(86)

Fig. 14 shows the dual normal factor graph of the 2D
Ising model in an external field, where the empty boxes
represent (19) and the small empty boxes represent the factors
λ(z̃k), which are the 1D Fourier transforms of (86), and are
given by

λ(z̃k) =

{
cosh(H), if z̃k = 0
− sinh(H), if z̃k = 1.

(87)

Again, for the Ising model, the “◦” symbols are immaterial
and can be removed from normal factor graphs.

Since the partition function is invariant under the change
of sign of the external field [7, Chapter 1], we will assume
H ≤ 0. Therefore, factors (87) are nonnegative. The invariance
of the partition function under the change of sign of H is
implied by Proposition 2, as in any valid configuration in the
dual normal factor graph, it holds that

N∑
k=1

z̃k = 0, (88)
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Fig. 16: Comparison with deterministic algorithms (BP, GBP,
and TreeEP): experimental results for a Potts model with
q = 3, N = 8 × 8, constant coupling parameter J , and in
a constant external field H = 1.0. The plots show the relative
error (51) as a function of J .

i.e., the Hamming weight of Z̃ is always even, where the
Hamming weight of a configuration is the number of nonzero
components of that configuration [56]. Indeed,

∏N
k=1 λ(z̃k)

takes on the same positive value regardless of the sign of H .
In [24], the authors propose a Markov chain (called the

subgraphs-world process), which is defined on the set of edges
W ⊆ E of the interaction graph of the model (as in Fig. 14).
The scheme of Jerrum and Sinclair then uses the following
expansion of the partition function in powers of tanh(H) and
tanh(J)

Z = A
∑
W⊆E

tanh(H)|odd(W)|
∏

(k,`)∈W

tanh(Je), (89)

where odd(W) denotes the set of all odd-degree vertices in
the subgraph of E induced by W , and

A =
(
2 cosh(H)

)N ∏
(k,`)∈W

cosh(Je). (90)

The sum in (89) is known as the high-temperature series
expansion in statistical physics [57], [8, p. 94].

In the dual normal factor graph, we adopt the partitioning of
(Ỹ, Z̃) proposed in (77) and (78). We can thus freely choose
the variables Ỹ = {Ỹe : e ∈ E}, and therefrom compute the
variables Z̃ =

{
Z̃k : k ∈ {1, . . . , N}

}
.

The partition function Zd can then be written as

Zd =
∑

valid (ỹ, z̃)

N∏
k=1

λ(z̃k)
∏
e∈E

γe(ỹe) (91)

= 2|E| cosh(H)N
∏
e∈E

cosh(Je)·

∑
valid (ỹ, z̃)

N∏
k=1

tanh(|H|)z̃k
∏
e∈E

tanh(Je)
ỹe . (92)
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In a 2D torus |E| = 2N , thus

Zd = 2NA
∑

valid (ỹ, z̃)

tanh(|H|)
∑N

k=1 z̃k
∏
e∈E

tanh(Je)
ỹe , (93)

where A is as in (90).
Accordingly, we define S ⊆ E as

S(ỹ)
4
= {e : Ỹe = 1}. (94)

Here, as ỹ runs over the configurations in the dual normal
factor graph, S(ỹ) runs over all the 2|E| subsets of E . Let us
consider the subgraph of E induced by S, in which z̃k = 1 if it
is connected to a zero-sum indicator function with odd degree,
and z̃k = 0 otherwise. Therefore,

∑N
k=1 z̃k counts the number

of odd-degree vertices in S. Thus, from (93) we obtain

Zd = 2NA
∑
S⊆E

tanh(|H|)|odd(S)|
∏

e∈S(ỹ)

tanh(Je). (95)

After applying the scale factor (60) in (95), we will obtain
the high-temperature series expansion of the partition function
given by (89). We conclude that the configurations in the
subgraphs-world process coincide with the valid configurations
in the dual normal factor graph of the Ising model in an
external field. (The number of vertices with odd degree in
the subgraph S is always even, which is also implied by
Proposition 2.)

The scheme of Jerrum and Sinclair works on a Markov
chain whose states are configurations of the subgraphs-world
and whose stationary distribution is given by pd, cf. Section V.
Transitions occur between states that differ in a single edge
according to the Metropolis rule. Remarkably, the mixing
time of the proposed Markov chain is only polynomial in
the size of the model at all temperatures. Indeed, a rigorous
analysis shows that the expected running time of the generator
for the subgraphs-world configurations is upper bounded by
O
(
|E|2N8(log ε−1+ |E|)

)
, where ε is the confidence parame-

ter. The scheme is randomized, i.e., it provides approximations
to the partition function, which fall within arbitrary small error
bounds with high probability [24, Section 4].

Our proposed unbiased Monte Carlo methods in the dual
normal factor graph draw independent samples according to an
auxiliary distribution. The partition function is then estimated
by averaging according to the importance sampling weights
of the independent samples, cf. (39). Monte Carlo methods
of this paper work particularly well in the low-temperature
regime.

The main focus of this paper is on the (nonbinary) Potts
model, where Monte Carlo methods in the dual normal
factor graph outperform the state-of-the-art methods at low
temperatures (with no external field or in a weak external
field). However, approximating the partition function of the
ferromagnetic Potts model is already as hard as approximating
the number of independent sets in a bipartite graph, which
is among the presumably intractable (the #BIS-hardness)
problems. For more details see [25]–[27].

IX. CONCLUSION

We reviewed representations of the Ising and Potts models
of statistical physics in terms of normal factor graphs, and

further explored the idea that Monte Carlo algorithms in the
dual normal factor graph can yield good estimates of the
partition function at low temperatures. Specifically, we pro-
posed and investigated such algorithms for the ferromagnetic
Potts model, and we observed good convergence for strong
couplings (i.e., at low temperatures). In our numerical experi-
ments, for the 2D ferromagnetic Potts models, the importance
sampling algorithms in the dual normal factor graph yield
more accurate estimates at low temperatures (and with no, or
weak, external field) than the state-of-the-art deterministic and
Monte Carlo methods. We expect such Monte Carlo methods
in the dual normal factor graph to work well also for three-
dimensional grids and in graphical models with more general
topologies. Using deterministic algorithms (e.g., GBP and
TreeEP) in the dual graph is certainly possible, but it has not
been tried yet.

We also showed the equivalence between the valid config-
urations in the dual normal factor graph and the terms that
appear in the high-temperature series expansion of the partition
function of the ferromagnetic Ising model in an external field,
and discussed connections with the subgraphs-world process
in the randomized approximate scheme of Jerrum and Sincalir.

Finally, it should be mentioned that the factors in the dual
normal factor graph can, in general, be negative or even
complex-valued, which could be a serious challenge for Monte
Carlo methods. Such issues were avoided in this paper by
considering only ferromagnetic models, but they must be faced
in any attempt to deal with antiferromagnetic models, spin
glasses, and computational problems in quantum information
processing [58]–[61].

APPENDIX A
COMPARING THE VARIANCE OF MONTE CARLO METHODS

IN THE PRIMAL AND IN THE DUAL NORMAL FACTOR
GRAPHS OF THE 2D ISING MODEL

We compare the variance of the uniform sampling and
importance sampling estimators in the primal and in the dual
domains for estimating the partition function of the Ising
model on a 2D torus, with constant coupling parameter J ,
without an external field, and in the thermodynamic limit (i.e.,
as N → ∞). The choice of the model and the parameters
is due to the fact that the partition function is analytically
available from Onsager’s solution in this case, see [44], [7,
Chapter 7].

For this model, the critical coupling (i.e., the phase transi-
tion) is located at

Jc =
1

2
ln(1 +

√
2) ≈ 0.4407 (96)

and, at criticality, the derivative of lnZ with respect to J (i.e.,
the internal energy of the model) is given by

lim
N→∞

1

N

∂ lnZ(Jc)

∂Jc
=
√

2, (97)

see [62].
In the primal domain, the analytical solution of the partition

function allows us to calculate the exact value of the variance
of the uniform sampling estimator as a function of J . In
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the dual domain, we provide upper and lower bounds on
the variance of the estimators. The derived bounds are not
necessarily tight for all values of J , however, they are good
enough to illustrate the opposite behavior of the estimators in
the primal and in the dual domains.

We recall from (23) and (24) that for the 2D torus |T | =
N − 1 and |T | = N + 1.

A. Uniform Sampling

Following our analysis in Section V-C, the variance of the
uniform sampling estimator in the primal domain (52) can be
expressed as

Var[ẐUni]
L

Z2
= χ2

(
pB, pu

)
, (98)

where pB(x) is the Boltzmann distribution given by (4) and
pu(x) is the uniform distribution over all the configurations.

It follows that

1 + Var[ẐUni]
L

Z(J)2
=
∑
x

pB(x)2

pu(x)
(99)

=
2N

Z(J)2

∑
x

f(x)2 (100)

= 2N
Z(2J)

Z(J)2
, (101)

where Z(J) denotes the partition function evaluated at J , and
the last step is due to the following identity

Z(2J) =
∑
x

f(x)2. (102)

Thus, in the thermodynamic limit we obtain

lim
N→∞

1

N
ln
(

1 + Var[ẐUni]
L

Z(J)2

)
=

ln(2) + lim
N→∞

lnZ(2J)

N
− lim
N→∞

2 lnZ(J)

N
. (103)

We use the closed-form solution of the partition function to
evaluate (103) numerically as a function of J , which is plotted
by the solid black line in Fig. 17. As expected, we observe
that uniform sampling in the primal domain can provide good
estimates of the partition function when J is small (i.e., at
high temperature), while it is an inefficient estimator for larger
values of J (i.e., at low temperature).

From (49), we expand the variance of the uniform sampling
algorithm in the dual domain (29) as

1 + Var[ẐUni
d ]

L

Zd(J)2
=
∑

valid ỹ

pd(ỹ)2

pu(ỹ)
(104)

=
2|T |

Zd(J)2

∑
valid ỹ

Γ(ỹ)2 (105)

=
2N+1

Zd(J)2
R, (106)

where R 4
=
∑

valid ỹ Γ(ỹ)2.
From (21), we have Zd = 2NZ . Thus

1 + Var[ẐUni
d ]

L

Zd(J)2
=

2−N+1

Z(J)2
R. (107)
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Fig. 17: Comparing the variance of Monte Carlo methods in
the primal and in the dual domains for the Ising model on a
2D torus, with constant coupling J , and in the thermodynamic
limit. The solid black line shows (103); for the uniform
sampling algorithm in the dual domain the dotted blue line
shows the upper bound in (114) and the dashed blue line
shows the lower bound in (117); for the importance sampling
algorithm in the dual domain the dashed-dotted red line shows
the upper bound in (126).

In the sequel, we will derive upper and lower bounds on R,
which is the partition function of a dual normal factor graph
(as shown in Fig. 4) with factors given by

ρ(ỹe) =

{
4 cosh(J)2, if ỹe = 0
4 sinh(J)2, if ỹe = 1.

(108)

Thus

R =
∑

valid ỹ

∏
e∈E

ρ(ỹe) (109)

≤
(
4 cosh(J)2

)|T |∑
ỹT

∏
e∈T

ρ(ỹe) (110)

=
(
2 cosh(J)

)2(N−1)
RT . (111)

Here, RT is the partition function of a subgraph of the dual
normal factor graph induced by T , which can be computed
exactly as

RT =
(
ρ(0) + ρ(1)

)|T |
(112)

=
(
4 cosh(2J)

)N+1
. (113)

Combining (107), (111), and (113) yields the following
upper bound

lim
N→∞

1

N
ln
(

1 + Var[ẐUni
d ]

L

Zd(J)2

)
≤ 3 ln(2)

+ ln
(

cosh(2J) · cosh(J)2
)
− lim
N→∞

2 lnZ(J)

N
, (114)

which is plotted by the dotted blue line in Fig. 17.
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To obtain the lower bound, we note that

R =
∑

valid ỹ

∏
e∈E

ρ(ỹe) (115)

≥
(
4 cosh(J)2

)2N
. (116)

Combining (107) and (116) gives the following lower bound

lim
N→∞

1

N
ln
(

1 + Var[ẐUni
d ]

L

Zd(J)2

)
≥ 3 ln(2)

+ 4 ln
(

cosh(J)
)
− lim
N→∞

2 lnZ(J)

N
, (117)

which is plotted by the dashed blue line in Fig. 17.
From Fig. 17, we observe that uniform sampling in the dual

domain is inefficient for small values of J , however, compared
to uniform sampling in the primal domain, it can provide more
reliable estimates of the partition function when J is large.
(Recall from Section V-C that (49) vanishes as J → ∞, i.e,
in the low-temperature limit.)

Both estimators seem to be inefficient in the mid-
temperature regime and near criticality (96).

B. Importance Sampling

From (48), the variance of the importance sampling algo-
rithm can be expressed as

1 + Var[Ẑ Imp
d ]

L

Zd(J)2
=
∑

valid ỹ

pd(ỹ)2

pT (ỹ)
(118)

=
Z2
T

Zd(J)2

∑
valid ỹ

pT (ỹ)ΓT (ỹT )2. (119)

From (21), we have Zd = 2NZ. Moreover,

ZT =
∑
ỹT

ΓT (ỹT ) (120)

= 2|T |eJ|T | (121)
= 2N+1eJ(N+1), (122)

cf. (37). From (19) and (26), we obtain∑
valid ỹ

pT (ỹ)ΓT (ỹT )2 ≤
(
4 cosh(J)2

)|T |
(123)

=
(
2 cosh(J)

)2(N−1)
. (124)

Thus

1 + Var[Ẑ Imp
d ]

L

Zd(J)2
=

22Ne2J(N+1)

Z(J)2
cosh(J)2(N−1), (125)

which, in the thermodynamic limit N → ∞, gives the
following upper bound

lim
N→∞

1

N
ln
(

1 + Var[Ẑ Imp
d ]

L

Zd(J)2

)
≤ 2 ln(2)

+ 2J + 2 ln
(

cosh(J)
)
− lim
N→∞

2 lnZ(J)

N
. (126)

Let us denote the upper bound in (126) by U(J), which is
plotted by the dashed-dotted red line in Fig. 17. The derivative
of U(J) with respect to the coupling parameter J is

∂U(J)

∂J
= 2 + 2 tanh(J)− lim

N→∞

2

N

∂ lnZ(J)

∂J
. (127)

From (97), it is straightforward to verify that (127) is zero at
the critical coupling Jc given by (96). From Fig. 17 we observe
that the upper bound U(J) grows to attain its maximum at Jc,
but then decays for J > Jc. (Again, recall from Section V-C
that (48) vanishes as J →∞.)
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