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Abstract: Many statistical estimation procedures lead to nonconvex op-
timization problems. Algorithms to solve these are often guaranteed to
output a stationary point of the optimization problem. Oracle inequalities
are an important theoretical instrument to asses the statistical performance
of an estimator. Oracle results have focused on the theoretical properties
of the uncomputable (global) minimum or maximum. In the present work
a general framework used for convex optimization problems to derive ora-
cle inequalities for stationary points is extended. A main new ingredient of
these oracle inequalities is that they are sharp: they show closeness to the
best approximation within the model plus a remainder term. We apply this
framework to different estimation problems.
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regression, sparse PCA, sparse robust regression, stationary points.

1. Introduction

1.1. Background and Motivation

Nonconvex loss functions arise in many different branches of statistics, machine
learning and deep learning. These loss functions entail several advantages from
a statistical point of view. For instance, in robust regression, where one requires
that the influence function of the loss is bounded, nonconvex losses are widely
used. Furthermore, they are unavoidable in areas such as deep learning where
they arise as a byproduct of the representation of the data. Despite the expo-
nential increase in methodologies involving nonconvex loss functions, there are
still many theoretical questions that need to be answered.

As a matter of fact, the nonconvex optimization problems can usually be
solved only via algorithms that guarantee convergence to a so-called stationary
point. A stationary point is often not the global minimum. It is almost hopeless
to recover the latter. Statistical theory has mostly focused on deriving properties
of an incomputable global optimum. We show that under certain circumstances
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stationary points satisfy sharp oracle results similar to those that were derived
for the global optimum.

High-dimensional data (i.e. when the number of parameters to be estimated
exceeds the number of observations) represent an additional challenge. A well-
established way of tackling this problem is to assume that the number of “ac-
tive” parameters is smaller than the dimension of the parameter space. This
assumption is typically called “sparsity”. Estimators designed under the spar-
sity assumption are often M-estimators with either an additional constraint or
a penalty term. Under convex loss functions these approaches are numerically
equivalent. Here we focus on the latter approach. We consider estimators that
are composed of a nonconvex differentiable loss and a penalty term. Primarily,
the penalty term is chosen to be a “sparsity-inducing” norm.

We now describe the structure of the estimators that we are interested in. Let
Z1, . . . , Zn be independent observations with values in some space Z stemming
from a distribution depending on β ∈ C ⊆ R

p. Let ρ be a differentiable possibly
nonconvex function such that

ρ : C × Z → R. (1.1)

The function ρ measures the “misfit” that arises by taking the decision β in
comparison to the given data.

We define Rn as

Rn(β) =
1

n

n∑

i=1

ρ(β, Zi). (1.2)

Rn(·) is named the “empirical risk”. It is a random quantity as it depends
on the random observations {Zi}. The unknown quantity we are interested in
estimating is given by the minimizer of the population version:

β0 = argmin
β∈C

R(β), (1.3)

where R(β) = ERn(β) is the risk.
Consider a norm Ω(·) on R

p with dual norm of Ω∗(·). The subdifferential of
the norm Ω(·) is defined as

∂Ω(β) =

{
{z ∈ R

p : Ω∗(z) ≤ 1} , if β = 0,{
z ∈ R

p : Ω∗(z) = 1, zTβ = Ω(β)
}
, if β 6= 0.

(1.4)

[2]. We consider empirical risk minimization problems of the form

β̂ = argmin
β∈C

Rn(β) + λΩ(β), (1.5)

where λ > 0 is a tuning parameter that needs to be chosen.
To solve optimization problems of the type given in (1.5) one often uses

gradient descent algorithms and its modifications. However, algorithms for non-
convex optimization problems typically output a local optimum of the objective
function (1.5) but not β̂. In this paper we show that points β̃ satisfying

(Ṙn(β̃) + λz̃)T (β − β̃) ≥ 0, for all β ∈ C, (1.6)
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where z̃ ∈ ∂Ω(β̃), enjoy some properties of the (incomputable) estimator β̂.
These points β̃ are called stationary points.

We extend a general framework introduced in [38] for convex optimization
problems. The key property that is needed is called two point inequality in [38]:

− Ṙn(β̃)
T (β − β̃) ≤ λΩ(β) − λΩ(β̃). (1.7)

Using that z̃T β̃ = Ω(β̃) and that Ω∗(z̃) ≤ 1 one can see that the two point
inequality is indeed satisfied by points that satisfy inequality (1.6).

Let now β⋆ ∈ B be a non-random vector with ‖β⋆‖0 = s⋆. We think of the
vector β⋆ as of a quantity that already “contains” some additional structural
assumption about the estimation problem such as the number of non-zero en-
tries of the target β0. The vector β⋆ optimally trades off the approximation
and estimation errors. In this paper we show that stationary points (i.e. points
obeying inequality (1.6)) also mimic the behavior of the oracle as the optimum

β̂ does. The oracle inequalities that we derive are typically of the following type:

Ω(β̃ − β⋆) +R(β̃)−R(β0)

≤ R(β⋆)−R(β0)︸ ︷︷ ︸
approximation error

+ C2λ2s⋆︸ ︷︷ ︸
estimation error

+2λΩ−(β⋆), (1.8)

where C > 0 is a constant not depending on the sample size nor on the dimen-
sion of the estimation problem. Inequalities of this kind are also named sharp
since the constant in front of R(β⋆) is 1. This is particularly important if the
approximation error R(β⋆)−R(β0) is not small. In addition, we also derive rates
of convergence for the estimation error measured in different norms. In addition
to the Euclidean norm the estimation error can be measured in the Ω(·)-norm.

1.2. Related literature

Nonconvex optimization problems are ubiquitous. The most recent example that
makes theoretical understanding of stationary points of nonconvex optimization
problems necessary is deep learning. As mentioned at the end of Chapter 4.3 of
[11] the majority of the problems in deep learning cannot be solved via convex
optimization.

Another prominent area where statistical nonconvex optimization problems
arise is represented by mixture models. Typically, the estimators are computed
by a version of the Expectation-Maximization (EM) algorithm or by a (coordi-
nate) gradient descent algorithm. Examples for this can be found in [33] where
a finite mixture of regressions is considered in the high-dimensional setting.
An EM-type algorithm is proposed and theoretical guarantees for the global
minimizer are derived. The question about the statistical properties of station-
ary points (i.e. what the algorithm actually outputs) is left to future research.
In Schelldorfer et al. [31] linear mixed-effects models in the high-dimensional
setting are studied. A coordinate gradient descent algorithm is proposed and
convergence to a stationary point is proven. Also in this latter work there is
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a gap between what the numerical algorithm outputs and the statistical prop-
erties that are shown to hold for the global minimum. However, the situation
in the two mentioned papers is still more involved as the population version of
the problem has several stationary points. For EM-type algorithms the work of
[3] is the first that guarantees theoretical properties for estimates of symmetric
mixtures of two Gaussians and two regressions.

Several high-dimensional estimation problems related to regression lead in-
eluctably to nonconvex optimization problems. In [17] corrected linear regression
is studied. Three additional sources of noise that lead to nonconvex estimators
are examined. The case of additive noise in the predictors, the case of missing
data, and the case of multiplicative noise in the predictors are studied. The
population versions of these estimation problems are convex. However, due to
the estimators of the population covariance matrices they become nonconvex in
the sample version. A gradient descent algorithm is proposed and theoretical
properties of the minimum are described.

In a follow-up work [19] give theoretical guarantees for the stationary points
of nonconvex penalized M-estimators. Their framework also includes nonconvex
penalization terms. However, in contrast to the present work they do not provide
sharp oracle inequalities. In [18] the authors give theoretical guarantees for the
support recovery using nonconvex penalized M-estimators. The loss function as
well as the penalization term are both allowed to be nonconvex.

As far as robust regression is concerned, the use of nonconvex loss functions
is particularly appealing. The main robustness-inducing property that is ex-
ploited is the boundedness of the gradient/the Lipschitz continuity of the loss.
Estimators involving e.g. the Tukey loss function seem therefore particularly
well-suited for this task. [16] gives a general framework for this particular type
of regularized M-estimators. The penalty term is allowed to be nonconvex as
well.

In [20] a general framework to analyze the theoretical properties of
ℓ1-penalized and unpenalized M-estimators is proposed. The former is necessary
for the high-dimensional setting whereas the latter are used for the case where
the number of observations exceeds the number of parameters to be estimated.
Rates of convergence are derived for stationary points of several statistical es-
timation problems such as robust regression, binary linear classification, and
Gaussian mixtures. In contrast, we only consider the high-dimensional setting
and derive sharp oracle inequalities from which the rates obtained in [20] can
be recovered. Our framework applies also to different types of penalizing norms
other than the ℓ1-norm.

The nonconvex optimization problems that are considered in the present work
can be subdivided into the following types:

1. The quantity to be estimated β0 is the unique global minimizer of the
convex risk R(β). The source of nonconvexity stems exclusively from the
sample optimization problem. This case has been considered for example
in [17]. An example for this type of estimation problems is the corrected
linear regression with additive noise in the covariates. It is discussed in
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Subsection 3.1.
2. The quantity to be estimated β0 is (a possibly non-unique) global mini-

mizer of the nonconvex risk R(β). The risk R(β) is convex in an ℓ2 neigh-
borhood of the target, i.e. on a set of the form

B =
{
β ∈ R

p : ‖β − β0‖2 ≤ η
}

for some suitable constant η > 0. This case has been studied in [19] and
[16]. An example is binary linear classification in Subsection 3.4.

A parallel line of research is concerned with the inspection of the theoretical
properties of nonconvex penalization terms. In [41] a general framework for
concave penalization terms is established. In general, it is argued that concave
penalties reduce the bias that results from convex procedures such as e.g. the
Lasso [35]. We restrict ourselves to the case of norm penalized estimators.

1.3. Organization of the paper

In Section 2 we review the notion of an oracle and discuss the additional prop-
erties related to the penalization term that are needed for the sharp oracle
inequality. The sharp oracle inequality given in Theorem 2.1 is purely determin-
istic. In Section 3 we show how the (deterministic) sharp oracle inequality can
be applied to specific estimation problems. In Subsection 3.1 the application to
corrected linear regression is presented. In Subsection 3.2 we show that the sharp
oracle inequality also holds for stationary points of sparse PCA. In Subsections
3.4 and 3.3 we make use of Theorem 2.1 to derive sharp oracle inequalities also
for robust regression and binary linear classification. Finally, in Subsection 3.5
we propose a new estimator “Robust SLOPE” and derive a sharp oracle result.

2. Sharp oracle inequality

In this section we mainly discuss the (deterministic) properties of the population
version of the general estimation problem. In particular, we first describe the
condition on the (population) risk. Then, we specify the kind of regularizers
and their characteristics that are covered by our theory. Finally, we state a first
general nonrandom sharp oracle inequality.

2.1. Conditions on the risk

In order to guarantee a “sufficient identifiability” of the parameter β0 that is to
be estimated, we assume that the risk satisfies a strong convexity condition on
the convex set C. It is worth noticing that this is a condition on a theoretical
quantity that can be verified under the assumptions on the nonconvex loss in
the specific examples.
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Condition 1 (Two point margin condition). There is an increasing strictly
convex non-negative function G with G(0) = 0 and a semi-norm τ on C such
that for all β1, β2 ∈ C

R(β1)−R(β2)− Ṙ(β2)
T (β1 − β2) ≥ G(τ(β1 − β2)). (2.1)

Condition 1 says essentially that the curvature of the risk is sufficiently large
in a certain neighborhood of β0. As will be demonstrated in the sequel of the
paper, there are many examples where the loss function is nonconvex with some
additional structural assumptions and yet the population risk is “well-behaved”
on B.

Condition 1 is a condition on the theoretical risk. In contrast, Restricted
Strong Convexity (RSC) that was introduced in [22] and [1] combines the cur-
vature empirical risk with the penalty. It was originally designed to analyze the
properties of convex regularized M-estimators. In [17] and [19] it was further
extended to the case of nonconvex M-estimators. [16] introduces the notion of
local Restricted Strong Convexity. The latter one can be seen as a two point
margin condition on the sample version of the problem on the set C.

2.2. Conditions on the regularization term

In the ℓ1 world one exploits the property that any vector β ∈ R
p can be decom-

posed in an “active” and a “non-active” part. For a subset S ⊂ {1, . . . , p} we
define the vector βS such that βS,j = βj1{j∈S}. Then the following decomposi-
tion holds:

‖β‖1 = ‖βS‖1 + ‖βSc‖1. (2.2)

The previous equality is a slight abuse of notation: the vectors βS and βSc lie
either in R

p, or R
|S| and R

p−|S|, respectively. This property is usually named
“decomposability”.

The present framework can be applied to more general norm penalties. In [37]
the concept of weak decomposability was introduced. It relaxes decomposability
by requiring that for all β ∈ R

p and certain sets S the sum of certain norms of
βS and βSc is always smaller than or equal to Ω(β).

Definition 2.1 (Weakly decomposable norm, Definition 4.1 in [37]). For a
subset S ⊂ {1, . . . , p} the norm Ω is said to be weakly decomposable if there is a
norm ΩS

c

on R
p−|S| such that for all β ∈ R

p

Ω(β) ≥ Ω(βS) + ΩS
c

(βSc) =: Ω(β). (2.3)

Lemma 2.1. Suppose that the norm Ω(·) is weakly decomposable for a subset
S ⊂ {1, . . . , p}. Then for all β, β′ ∈ R

p

Ω(β)− Ω(β′) ≤ Ω(β′
S − βS) + Ω(βSc)− ΩS

c

(β′
Sc). (2.4)

Equation (2.4) is also named triangle property. It imitates the properties of
the ℓ1-norm.
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We insist on the fact that the choice of the regularization term has far-ranging
consequences on the properties of the estimator as well as on the techniques that
are necessary to analyze the estimator. In [38] the concept of weak decompos-
ability was further extended to other norms. As a consequence, the triangle
property can be shown to hold for many more cases. In the present framework
however, we sacrifice some generality for a more clear exposition of our results.

2.3. Effective sparsity

The choice of the penalization deeply influences the estimation performance of
the stationary points. In particular, this affects the estimation error part of the
oracle inequality. In order to provide a quantitative description of this effect,
we first review some concepts introduced in the rich literature about the Lasso.
The concepts developed in the ℓ1-norm are paradigmatic of the more general
notions.

A well-studied condition on the design in the ℓ1-penalized linear regression
framework are the ℓ1 restricted eigenvalue [6] and the more general compati-
bility constant [36]. As for the well-known ℓ1 framework, we recall the (slightly
modified) definition of an Ω-eigenvalue.

Definition 2.2 (Ω-eigenvalue, [37]). Let S be an allowed subset of {1, . . . , p}
and L > 0. The Ω-eigenvalue is defined as

δΩ(τ, L, S)

:= min
{
τ(βS − βSc) : Ω(βS) = 1,ΩS

c

(βSc) ≤ L
}
, (2.5)

where τ is the (semi)-norm from the two point margin condition (Condition 1).

Definition 2.3 (Ω-effective sparsity, [37]). The Ω-effective sparsity is defined
as

Γ2
Ω(τ, L, S) =

1

δ2Ω(L, S)
. (2.6)

Remark 1. Effective sparsity can be interpreted as a measure of how well one
can distinguish between the active and non-active parts depending on the spe-
cific context of the estimation problem. In fact, one can observe that increasing
the stretching factor L reduces the “distance” between the sets Ω(βS) = 1 and
ΩS

c

(βSc) ≤ L (as the size of this set increases). In turn, this means that the
effective sparsity becomes larger. In particular, the stretching factor L is shown
to depend on the tuning parameter λ. As the amount of noise increases it is
observed that the tuning parameter λ increases and therefore also the stretching
factor. More noise then translates to less distinguishable active and non-active
parts.

2.4. Main result

We denote the oracle by β⋆ ∈ C ⊂ R
p and the corresponding “active” set will be

denoted by S⋆. The oracle is a nonrandom vector that might be described as an
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idealized estimator that has additional structural information about the estima-
tion problem. For instance, the oracle could be a vector that “knows” how many
non-zero entries the underlying truth has. It then minimizes the upper bound of
inequality (1.8). In other terms, it optimally trades-off the approximation and
estimation errors.

Theorem 2.1. Let β̃ be a stationary point in the sense of inequality (1.6).
Suppose that Condition 1 is satisfied. Suppose further that the norm Ω(·) is
weakly decomposable. Let H be the convex conjugate 1 of G. Let λε > 0 and
λ∗ ≥ 0 such that for all β′ ∈ C and a constant 0 ≤ γ < 1

∣∣∣∣
(
Ṙn(β

′)− Ṙ(β′)
)T

(β⋆ − β′)

∣∣∣∣
≤ λεΩ(β

′ − β⋆) + γG(τ(β′ − β⋆)) + λ∗. (2.7)

Let λ > λε and 0 ≤ δ < 1. Define λ = λ − λε, λ = λ + λε + δλ, and L =
λ/((1− δ)λ). Then we have

δλΩ(β̃ − β⋆) +R(β̃)

≤ R(β⋆) + (1− γ)H

(
λΓΩ(τ, L, S

⋆)

1− γ

)
+ 2λΩ(β⋆S⋆c ) + λ∗. (2.8)

The proof of this theorem closely follows the proof of Theorem 7.1 in [38]. The
main difference lies in the fact that we do not need convexity of the empirical
risk Rn. Moreover, we allow for an additional term in the bound for the random
part. This is crucial in the examples considered in this paper. The interpretation
of the oracle inequality is that a given estimator achieves a rate of convergence
that is almost as good (up to an additional constant term that is typically the
risk of the oracle) as if it had background knowledge about the sparsity.

Remark 2. Condition (2.7) is a bound for the difference between averages (Ṙn)
and means (Ṙ). We refer to it as the ‘Empirical Process Condition’. Main theme
in the applications is to show that this condition holds with high probability, for
suitable constants λε, λ∗ and γ.

Remark 3. The terminology “sharp” is referred to the constant ‘1’ in front of
the risk in the upper bound of the inequality below. It also refers to the fact that
the upper bound does not involve R(β0).

Remark 4. The noise level λε needs to be chosen depending on the specific
structure of the problem. The term λ∗ is (in an asymptotic sense) of lower
order than λε. Asymptotically, it does not influence the rates.

Remark 5. The estimation error can be measured in the τ semi-norm by the
two point margin condition or in the Ω norm.

1The convex conjugate of G(·) is defined as H(v) = sup
u≥0

{uv −G(u)} see p. 104 of [28].
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3. Applications to specific estimation problems

In this section several applications of Theorem 2.1 are presented. The first part is
dedicated to the “usual” entrywise sparsity where the number of active parame-
ters in the target/truth β0 is assumed to be smaller than the problem dimension
p. In this first part the sparsity inducing norm is taken to be Ω(·) = ‖ ·‖1. In the
last subsection we introduce a new estimator “Robust SLOPE” to demonstrate
that our framework can be applied also to different penalizing norms.

3.1. Corrected linear regression

In this subsection we closely follow the notation in [17]. We consider the linear
model for i = 1, . . . , n:

Yi = Xiβ
0 + εi, (3.1)

where Yi ∈ R is a response variable and Xi ∈ R
1×p are i.i.d. copies of a sub-

Gaussian random vector X̃ ∈ R
p with unknown positive definite covariance

matrix ΣX , β0 ∈ R
p×1 is unknown and ε1, . . . , εn are i.i.d. copies of a sub-

Gaussian random variable ε̃ independent of X̃. We say that a random vector
X̃ is sub-Gaussian if sup‖β‖2≤1 ‖X̃β‖ψ2

< ∞ where for a real-valued random

variable Y , ‖Y ‖ψ2
:= inf{c > 0 : exp[Y 2/c2] ≤ 1} is the Orlicz norm for the

function ψ2(y) := exp[y2], y ≥ 0.
The matrix X ∈ R

n×p with rows Xi may be additionally corrupted by addi-
tive noise in which case one would observe

Z = X +W. (3.2)

The matrix W is independent of X and ε := (ε1, . . . , εn)
T . Its rows Wi are

assumed to be i.i.d. copies of a sub-Gaussian random vector W̃ with expectation
zero and known covariance matrix ΣW . Thus, the rows are i.i.d. copies of a
random vector Z̃.

The estimator in this case is then given by

β̂ = argmin
β∈Rp:‖β‖1≤Q

{

1

2
β
T

(

ZTZ

n
− ΣW

)

β −
Y TZ

n
β + λ‖β‖1

}

. (3.3)

We assume that Q ≥ ‖β0‖1 so that the vector β0 lies within the region over
which we compute the estimator. For ease of notation we define

Γ̂add :=
1

n
ZTZ − ΣW and γ̂add :=

1

n
ZTY. (3.4)

The empirical risk is then given by

Rn(β) =
1

2
βT Γ̂addβ − γ̂Taddβ. (3.5)

The first and second derivatives of the empirical risk are given by

Ṙn(β) = Γ̂addβ − γ̂add, R̈n(β) = Γ̂add. (3.6)
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It can be seen that in a high-dimensional setting (p > n) the matrix Γ̂add has
negative eigenvalues due to the additional noise. The high-dimensional estima-
tion problem is therefore nonconvex.

On the other hand, the population version of the empirical risk is given by

R(β) = ERn(β) =
1

2
βTΣXβ − βTΣXβ

0. (3.7)

The first and second derivatives are then given by

Ṙ(β) = ΣXβ − ΣXβ
0, R̈(β) = ΣX . (3.8)

The population version of the estimation is therefore convex. The next lemma
shows that the risk is not only convex but even strongly convex.

Lemma 3.1. The two point margin condition is satisfied with G(u) = u2 and

τ(·) = ‖Σ1/2
X (·)‖2, where Σ

1/2
X denotes the square root of ΣX .

The connection between the penalty and the norm τ(·) is established in the
following lemma that gives an expression for the effective sparsity (Definition
2.3).

Lemma 3.2. For τ(·) = ‖Σ1/2
X (·) ‖2 and Ω(·) = ‖ · ‖1 we have for any set

S ⊆ {1, . . . , p} with s = |S| that

Γ‖·‖1

(
‖Σ1/2

X (·)‖2, L, S
)
=

√
s

Λmin(ΣX)
. (3.9)

We now state several lemmas that are used to establish the Empirical Process
Condition (2.7).

Lemma 3.3. Define sup
‖β‖2≤1

‖Z̃β‖ψ2
=: CZ <∞. We then have for all β′ ∈ R

p

and all t > 0
∣

∣

∣(β
′ − β

⋆)T (Γ̂add −ΣX )(β′ − β
⋆)
∣

∣

∣

≤ 12C2

Z

√

8(t+ 2(log(2p) + 4))

n
(β′ − β

⋆)TΣZ(β
′ − β

⋆)

+ 12C2

Z

√

16(log(2p) + 4)

n
‖β′ − β

∗‖1
√

(β′ − β⋆)TΣZ(β′ − β⋆)

+ 12C2

Z

(

t+ 2(log(2p) + 4)

n

)

(β′ − β
⋆)TΣZ(β

′ − β
⋆)

+ 12C2

Z

(

2(log(2p) + 4)

n

)

‖β′ − β
⋆‖21.

with probability at least 1− exp(−t).
The following lemma shows how the quadratic form involving the positive

definite matrix ΣZ is related to the (quadratic) margin function.
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Lemma 3.4. Define Λ0 :=
(
1 + Λmax(ΣW )

Λmin(ΣX )

)
. We have for all u ∈ R

p

uTΣZu ≤ Λ0G(τ(u)), (3.10)

where Λmax(ΣW ) and Λmin(ΣX) are the largest and smallest eigenvalues of the
matrices ΣW and ΣX , respectively.

Lemma 3.5. Define sup
‖β‖2≤1

‖X̃β‖ψ2
=: CX <∞, sup

‖β‖2≤1

‖W̃β‖ψ2
=: CW <∞,

and ‖ε̃i‖ψ2
=: Cε <∞ for all i = 1, . . . , n, and for t > 0

λ̃ε(t) =16(C2

Z‖β
⋆‖2 + C

2

X‖β0‖2 + CWCX‖β0‖2 + CZCε)

·

(

2

√

2t+ log p

n
+

log p+ t

n

)

.

Then we have for all β̃ ∈ R
p

∣∣∣β⋆T
(
Γ̂add − ΣX

)
(β⋆ − β̃) +

(
γ̂add − ΣXβ

0
)T

(β′ − β⋆)
∣∣∣

≤ λ̃ε(t)‖β⋆ − β̃‖1 (3.11)

with probability at least 1− 4e−t.

Lemma 3.6. Let ζ > 0 be a constant. Define

γ = 12C2
ZΛ0

((
12 log(2p) + 16

n

)
ζ−1 (1 + ζ) + ζ

)
.

Then
∣

∣

∣

∣

(

Ṙn(β̃)− Ṙ(β̃)
)T

(β⋆ − β̃)

∣

∣

∣

∣

≤

(

λ̃ε(log(2p)) + 24C2

Z

(

8(log(2p) + 4)

nζ
+

2(log(2p) + 4)

n

)

Q

)

· ‖β∗ − β̃‖1 + γG(τ (β̃ − β
∗))

with probability at least 1− 5 exp(− log(2p)). If we choose

ζ < (24C2

Z)
−1Λ−1

0

and if we assume that

n > 24C2

Zζ
−1(1 + ζ)Λ0(12 log(2p) + 16)

then γ < 1. Hence, the Empirical Process Condition (2.7) is satisfied.

Combining Lemma 3.6 with Theorem 2.1 we obtain the following corollary.
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Corollary 3.1. Suppose that the assumptions in Lemma 3.6 hold. Let β̃ be a
stationary point of the optimization problem (3.3). Let λε be defined as

λε = λ̃ε(log(2p))

+ 24C2
Z

(
8(log(2p) + 4)

nζ
+

2(log(2p) + 4)

n

)
Q

and λ > λε. Then, we have with probability at least 1− 5 exp(− log(2p))

δλ‖β̃ − β⋆‖1 +R(β̃)

≤ R(β⋆) +
λ
2
s⋆

4Λmin(ΣX)(1− γ)
+ 2λ‖β⋆S⋆c‖1.

As far as the asymptotics is concerned, we consider the case where the oracle

is β0 itself. We notice that the choice Q = o
(√

n
log p

)
leads to

‖β̃ − β0‖1 .

√
log p

n
s0

1

Λmin(ΣX)(1− γ)
(3.12)

and

‖β̃ − β0‖22 .
s0
n

log p
1

Λmin(ΣX)2(1− γ)
. (3.13)

We are able to recover the rates obtained also in [17]. Furthermore, we no-
tice that the rates of convergence depend on the smallest eigenvalue of the true
covariance matrix ΣX . This is not surprising since the smallest eigenvalue mea-
sures the curvature of the population risk. The larger Λmin(ΣX) is, the higher
the curvature, and the “easier” the estimation problem becomes. As far as esti-
mators leading to conex optimization problem are concerned, [29] propose and
analyze a method for the errors-in-variables model called MU-selector, where
MU stands for matrix uncertainty, for a deterministic noise matrix W . In [30]
the MU-selector is further improved to allow for random noise in the obser-
vations. The estimator is called Compensated MU selector and has a better
estimation performance similar to the method that is proposed in [17] and ana-
lyzed in the present paper. Two further estimators leading to convex optimiza-
tion problems based on an ℓ1, ℓ2 and ℓ∞ penalties are proposed in [4]. Finally,
[5] define an estimator that achieves minimax optimal rates up to a logarithmic
term. [10] propose another (convex) method called Convex Conditioned Lasso
(CoCoLasso) where the negative definite estimate of the covariance matrix (in a
high-dimensional setting) such as in (3.4) is replaced by a positive semidefinite
matrix. In addition to the previously mentioned papers, we also account for the
case where the underlying regression function/curve is not necessarily a linear
combination of the s0 variables. The importance of the sharp oracle inequalities
for the estimator given in equation (3.3) is to be seen in this additional property
rather than in the derivation that bears the dependence on ‖β⋆‖2 and ‖β0‖2.
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3.2. Sparse PCA

Principal component analysis is a widely used dimension reduction technique.
Its origins go back to [24] and [12]. Given an n× p matrix X ∈ R

n×p with i.i.d.
rows {Xi}ni=1 the aim is to find a one dimensional representation of the data such
that the variance explained by this representation is maximized. The empirical
covariance matrix is given by Σ̂ = XTX/n. We write that ΣX := EΣ̂. The
target β0 ∈ R

p is then given by the eigenvector corresponding to the maximal
eigenvalue of the covariance matrix ΣX . An estimator for the first principal
component is obtained by maximizing the empirical variance with respect to
β ∈ R

p:
maximize V̂ar(Xβ) = βT Σ̂β subject to ‖β‖2 = 1. (3.14)

The solution of the optimization problem (3.14) is the eigenvector corre-
sponding to the maximal eigenvalue of the objective function. An equivalent
form (after normalization) of the optimization problem (3.14) is the following
minimization problem where an objective function is minimized with respect to
β:

minimize
1

4
‖Σ̂− ββT ‖2F . (3.15)

Both optimization problems (3.14) and (3.15) lead to the same solution after
normalization. In this case, even if the optimization problem is nonconvex the
solution can be easily computed by finding the eigenvector corresponding to the
maximal eigenvalue of the sample covariance matrix Σ̂.

A major drawback of PCA is that the first principal component is typically
a linear combination of all the variables in the model. In many applications
it is however desirable to sacrifice some variance in order to obtain a sparse
representation that is easier to interpret. Furthermore, in a high-dimensional
setting PCA has been shown to be inconsistent [14]. [21] shows that under the
spiked covariance model ([13]) in a high-dimensional setting the eigenvector
corresponding to the largest eigenvalue of Σ̂ is not able to recover the truth
when the gap between the largest eigenvalue of ΣX and the second-largest is
“small”.

We need to restrict to a neighborhood of one of the global optima in order to
assure convexity and uniqueness of the minimum of the risk. Define B = {β ∈
R
p : ‖β − β0‖2 ≤ η}. Let β⋆ ∈ B be the “oracle” as given in Section 2.
We consider the penalized optimization problem

β̂ = argmin
β∈B;‖β‖1≤Q

1

4
‖Σ̂− ββT ‖2F + λ‖β‖1, (3.16)

where λ > 0 and Q > 0 are tuning parameters. The risk is given by

R(β) =
1

4
‖ΣX − ββT ‖2F . (3.17)

The first derivative of the risk is given by

Ṙ(β) = −ΣXβ + ‖β‖22β. (3.18)
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The second derivative of the risk is given by

R̈(β) = −ΣX + 2ββT + ‖β‖221p×p. (3.19)

The (strong) convexity of the risk on the neighborhood B depends on the “signal
strength”. In this case the latter is given by the largest singular value of the
population covariance matrix ΣX . The singular value decomposition of ΣX is
given by

ΣX = PΦ2PT , (3.20)

where PTP = PPT = 1p×p and Φ = diag(φ1, . . . , φp) with φmax = φ1 ≥ φ2 ≥
. . . φp ≥ 0.

Assumption 1.

i) We assume that the features X1, . . . , Xn are i.i.d. copies of a sub-Gaussian
random vector X̃ ∈ R

1×p with positive definite covariance matrix ΣX .
ii) It is assumed that for some ξ > 0

φmax ≥ φj + ξ, for all j 6= 1. (3.21)

iii) We assume that ξ > 3η.

Remark 6. Assumption 1 ii) is often referred to as spikiness condition. It
says that the signal should be sufficiently well separated from the other principal
components.

Remark 7. What needs to be further explained is the third assumption. In order
for the population risk to be convex in the neighborhood B we require a sufficiently
large gap between the largest eigenvalue of the true covariance matrix ΣX and
its remaining eigenvalues. One might object that the assumption of starting with
a “good” starting value is not realistic. However, a consistent initial estimate
with a slow rate of convergence is given in [40].

The following lemma guarantees that the risk is strictly convex around one
of the local minima of the population risk.

Lemma 3.7 (Lemma 12.7 in [38]). Suppose that Assumption 1 is satisfied. Then
for all β ∈ B we have

Λmin(R̈(β)) ≥ 2φmax(ξ − 3η), (3.22)

where Λmin(R̈(β)) is the smallest eigenvalue of the Hessian R̈(β) on the set B.
The next lemma shows that the risk is indeed sufficiently convex.

Lemma 3.8. Suppose that Assumption 1 is satisfied. The two point margin
condition is satisfied on B with τ(·) = ‖ · ‖2 and G(u) = 2φmax(ξ − 3η)u2.

As we now have a different norm τ(·) as compared to the sparse corrected
linear regression case, we also obtain a different effective sparsity:
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Lemma 3.9. For τ(·) = ‖·‖2 and Ω(·) = ‖·‖1 we have for any set S ⊆ {1, . . . , p}
with s = |S| that

Γ‖·‖1
(‖ · ‖2, L, S) =

√
s. (3.23)

The following lemma shows that the Empirical Process Condition 2.7 holds
with large probability with appropriate constants.

Lemma 3.10. Define sup
‖β‖2≤1

‖X̃β‖ψ2
=: CX <∞ and for t > 0

λ̃ε(t) = 4C2
X(‖β0‖2 + η)

(
2

√
2t+ log p

n
+
t+ log p

n

)
.

Let ζ > 0 be a constant. Then with Λ1 := 12C2
XΛmax(ΣX)/(φmax(ξ − 3η)) and

γ =Λ1

((
12 log(2p) + 16

n

)
ζ−1(1 + ζ) + ζ

)

we have for all β̃ ∈ B
∣∣∣∣
(
Ṙn(β̃)− Ṙ(β̃)

)T
(β̃ − β⋆)

∣∣∣∣
≤ λ̃ε(log(2p))

+ 24C2
XQ

16(log(2p) + 4)

2nζ
‖β̃ − β⋆‖1

+ 24C2
XQ

2(log(2p) + 4)

n
‖β̃ − β⋆‖1 + γG(τ(β̃ − β⋆)) (3.24)

with probability at least 1− 2 exp (− log(2p)). If we choose

ζ < Λ−1
1 and we assume n > ζ−1(1 + ζ)Λ1 log p

we have γ < 1. Hence, the Empirical Process Condition (2.7) is satisfied.

By combining Lemma 3.10 and Theorem 2.1 we obtain the following corollary.

Corollary 3.2. Let β̃ be a stationary point of the optimization problem (3.16).
Suppose that the conditions of Lemma 3.10 are satisfied. Let in particular
λ̃ε(log(2p)) be as in Lemma 3.10. Define

λε =λ̃ε(log(2p))

+ 24C2
XQ

(
16(log(2p) + 4)

2nζ
+

2(log(2p) + 4)

n

)
.

Then we have with probability at least 1− 2 exp(− log(2p))

δλ‖β̃ − β⋆‖1 +R(β̃)

≤ R(β⋆) +
λ
2
s⋆

8φmax(ξ − 3η)(1− γ)
+ 2λ‖β⋆S⋆c‖1. (3.25)
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For the asymptotics we assume that Q = o
(√

n
log p

)
. For simplicity, we take

the oracle to be β0 itself. Then λ ≍
√
log p/n and

‖β̃ − β0‖1 .

√
log p

n
s0

1

φmax(ξ − 3η)(1 − γ)
(3.26)

and

‖β̃ − β0‖22 .
s0
n

log p
1

φ2max(ξ − 3η)2(1− γ)
. (3.27)

We see that the rates depend on the gap between the largest eigenvalue of
the matrix ΣX and the remaining eigenvalues. It is again not surprising since
the estimation problem becomes “easier” the larger this gap is.

3.3. Robust regression

We consider the linear model for all i = 1, . . . , n and with Xi ∈ R
1×p i.i.d. copies

of a sub-Gaussian random vector X̃ ∈ R
1×p : sup

‖β‖2≤1

‖X̃β‖ψ2
=: CX <∞.

Yi = Xiβ
0 + εi, (3.28)

where we assume that the distribution of the errors is symmetric around 0. We
also assume that the errors ε1, . . . , εn are independent of the featuresX1, . . . , Xn.
In case of outliers and heavy-tailed noise in the linear regression model the
quadratic loss typically fails due to its unbounded derivative. Alternatives to
the quadratic loss are given by e.g. the Cauchy loss.

The empirical risk is given by

Rn(β) =
1

n

n∑

i=1

ρ(Yi −Xiβ). (3.29)

Its first derivative is given by

Ṙn(β) = − 1

n

n∑

i=1

ρ̇(Yi −Xiβ)X
T
i . (3.30)

Its second derivative is given by

R̈n(β) =
1

n

n∑

i=1

ρ̈(Yi −Xiβ)X
T
i Xi. (3.31)

Assumption 2.

i) Lipschitz continuity of the loss: there exists κ1 > 0 such that

|ρ̇(u)| ≤ κ1, for all u ∈ R.
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ii) Lipschitz continuity of the first derivative of the loss: there exists κ2 > 0
such that

|ρ̈(u)| ≤ κ2, for all u ∈ R.

iii) Local curvature condition: Define the tail probability as

εT = P

(
|εi| ≥

T

2

)
.

It is assumed that for T > 0

7

2
αT := min

|u|≤T
ρ̈(u) > 0.

We notice that for our framework we need to assume that also the first
derivative of the loss is Lipschitz continuous. In [16] the assumption is weaker
in the sense that it is only required that the second derivative of the loss is not
“too negative”.

The usual (typically uncomputable) “argmin”-type estimator is then given
by

β̂ = argmin
β∈B:‖β‖1≤Q

Rn(β) + λ‖β‖1, (3.32)

where λ > 0 and Q > 0 are tuning parameters.
We now cite a proposition from [16] that establishes the restricted strong

convexity conditions. It shows how the different (tuning) parameters are inter-
twined.

Proposition 3.1 (Adapted from Proposition 2 in [16]). Suppose that X1, . . . , Xn

are i.i.d. copies of a sub-Gaussian random vector X̃ with positive definite co-
variance matrix ΣX . Assume also that

cC2
X

(
ε
1/2
T + exp

(
− c′T 2

C2
Xη

2

))

≤ αT
(7/2)αT + κ2

Λmin(ΣX)

2
. (3.33)

and that the loss function satisfies Assumption 2 and that n ≥ c0s log p. Then
we have with probability at least 1− c exp(−c′ log p) for all β1, β2 ∈ B

(
Ṙn(β1)− Ṙn(β2)

)T
(β1 − β2)

≥ α‖β1 − β2‖22 − ξ‖β1 − β2‖21,

where

α =
7

2
αT

Λmin(ΣX)

16
, and ξ =

C((7/2)αT + κ2)
2C2

XT
2

η2
.
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Remark 8. We require a more conservative bound in equation (3.33). Instead
of a constant 1 in front of αT in the denominator of the upper bound we need
a constant that is larger than 1, e.g. 7/2. This slightly stronger assumption also
translates to a requirement on the sample size: the constant c0 here is larger
than the constant c0 in [16]. We notice also that the constants c and c′ on the
left-hand side of inequality (3.33) might be different from the one in [16] (see
also Lemma C.3).

The following lemma says that the (theoretical) risk of the robust loss func-
tions is strongly convex on B.
Lemma 3.11 (Two point margin for nonconvex robust losses). Suppose that
Assumption 2 is satisfied. The two point margin condition holds with G(u) =

3αTu
2 and τ(·) =

∥∥∥Σ1/2
X (·)

∥∥∥
2
.

As far as the effective sparsity is concerned, we notice that the norm τ(·) and
the penalty term ‖ · ‖1 are the same as in Subsection 3.1. Lemma 3.2 therefore
applies also in this case.

Lemma 3.12. Suppose that Assumption 2 combined with equation (3.33) holds.
Assume that n ≥ c0s log p. Define

λε = 4κ1CX

√
2 log(2p)

n
+ 2ξQ

log p

n
. (3.34)

With γ = κ2/(3αT ) we then have with probability at least 1 − c exp(−c′ log p)
that for all β′ ∈ B

(
Ṙn(β

′)− Ṙ(β′)
)T

(β⋆ − β′)

≤ λε‖β′ − β∗‖1 + γG(τ(β′ − β⋆)). (3.35)

Assuming that κ2

αT
< 3 we see that the Empirical Process Condition (2.7) is

satisfied.

Combining Theorem 2.1 and Lemma 3.12 we have the following corollary.

Corollary 3.3. Let β̃ be a stationary point of the objective function (3.32).
Suppose that the conditions of Lemma 3.12 are satisfied. Then we have with
probability at least 1− c exp(−c′ log p)

δλ‖β̃ − β⋆‖1 +R(β̃) ≤ R(β⋆) +
λ
2
s⋆

12αTΛmin(ΣX)(1 − γ)

+ 2λ‖β⋆S⋆c‖1. (3.36)

The asymptotics in this case is as follows: assuming Q = o
(√

n
log p

)
and
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therefore a tuning parameter (up to constants) λ ≍
√

log p
n we obtain

‖β̃ − β0‖1 .
√

log p

n
s0

1

αTΛmin(ΣX)(1− γ)

and

‖β̃ − β0‖22 .
s0
n

log p
1

Λmin(ΣX)2α2
T (1− γ)

.

3.4. Binary linear classification

In binary linear classification one is interested in estimating the correct group
assignment (1 or 0) of the output Yi ∈ {0, 1} given the observations Xi ∈ R

p

for all i = 1, . . . , n. The conditional probability is assumed to be given by

P (Yi = 1|Xi = xi) = σ(xiβ
0), (3.37)

where β0 ∈ R
p is the quantity that we aim at estimating. The function σ(·) :

R → (0, 1) is “sufficiently regular”.
The empirical risk and population risk are given by

Rn(β) =
1

n

n∑

i=1

(
Yi − σ(βTXT

i )
)2
, R(β) = ERn(β). (3.38)

The function σ is given by

σ(z) =
1

1 + e−z
for all z ∈ R. (3.39)

The estimator under study is defined as

β̂ = argmin
β∈B

Rn(β) + λ‖β‖1, (3.40)

where for some constant η > 0 the neighborhood B is given by
B =

{
β ∈ R

p : ‖β − β0‖2 ≤ η
}
and λ > 0 is a tuning parameter.

Remark 9. In order to obtain an initial estimate that is “sufficiently” close
to the target one may use (under appropriate distributional assumptions) an
estimator such as the one proposed in [25], [26] and [27].

Assumption 3.

i) For all i = 1, . . . , n it is assumed that the Xi’s are i.i.d. copies of a sub-
Gaussian random vector X̃ ∈ R

p with CX := sup
‖β‖2≤1

‖X̃β‖ψ2
<∞.

ii) For all i = 1, . . . , n and for some constant K2 > 0 it is assumed that for all
β ∈ B: |Xiβ| ≤ K2.
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Remark 10. Comparable assumptions on the features Xi can be found in [20]
and [32] where similar nonconvex estimation problems are discussed and ana-
lyzed.

We now show that the risk is strongly convex on the neighborhood B of β0.

Lemma 3.13. Suppose that Assumption 3 i) and ii) are satisfied. Define

V = min
u∈[−K2,K2]

σ′(u) > 0.

Assume that V Λmin(ΣX) > 5C3
Xη. Then we have for all β1, β2 ∈ B

R(β1)−R(β2)− Ṙ(β2)
T (β1 − β2)

≥ 2(V Λmin(ΣX)− 5C3
Xη)‖β1 − β2‖22 =: G(τ(β1 − β2)).

We notice that the norm τ(·) and the penalty are the same as in Subsection
3.2. The effective sparsity is therefore given by Lemma 3.9.

The following lemma is used to show that the empirical process part is
bounded with high probability.

Lemma 3.14. Let ε̃1, . . . , ε̃n be i.i.d. Rademacher random variables indepen-
dent of X̃. Define Cε̃ = ‖ε̃i‖ψ2

and

λε = 16(6K2 + 2)Cε̃CX

(√
4 log(p+ 1)

n
+

log(p+ 1)

n

)

+ CX

√
log p

n

We have for all β′ ∈ B
∣∣∣∣
(
Ṙn(β

′)− Ṙ(β′)
)T

(β⋆ − β′)

∣∣∣∣ ≤ λε‖β′ − β⋆‖1 +
8K2 log p

n

with probability at least 1 − (2 + j0 + ⌈log2(2
√
pη)⌉) exp(− log(p))), where j0 is

the smallest positive integer such that j0 + 1 > log2 n.

Corollary 3.4. Let β̃ be a stationary point of the objective function (3.40).
Suppose that Assumption 3 is satisfied. Then we have with probability at least
1− (2 + j0 + ⌈log2(2

√
pη)⌉) exp(− log(p)))

δλ‖β̃ − β⋆‖1 +R(β̃)

≤ R(β⋆) +
λ
2
s⋆

2(V Λmin(ΣX)− 5C3
Xη)Λmin(ΣX)

+ 2λ‖β⋆S⋆c‖1 +
8K2 log p

n
. (3.41)
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As far as the asymptotics is concerned, we see that with λ ≍
√

log p
n and

taking β⋆ = β0 in the previous corollary we have

‖β̃ − β0‖1 .

√
log p

n
s0

1

2(V Λmin(ΣX)− 5C3
Xη)Λmin(ΣX)

and

‖β̃ − β0‖22 .
s0
n

log p
1

4(V Λmin(ΣX)− 5C3
Xη)

2Λmin(ΣX)2
.

3.5. Robust SLOPE

As an example for a nonconvex M-estimator that is used with a penalty that is
not the ℓ1-norm, we consider a robust version (i.e. using a robust loss function
as in Subsection 3.3 instead of the quadratic loss) of the estimator proposed in
[7].

Let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and λ1 > 0. For β ∈ R
p the sequence |β|(1) ≥

|β|(2) ≥ · · · ≥ |β|(p) represents the absolute values of the entries of β in increasing
order. The sorted ℓ1-norm is then defined as

Jλ(β) = λ1|β|(1) + λ2|β|(2) + · · ·+ λp|β|(p) =
p∑

j=1

λj |β|(j). (3.42)

We define the robust SLOPE estimator as

β̂ = argmin
β∈B:‖β‖1≤Q

Rn(β) + µJλ(β), (3.43)

where µ > 0 and Q > 0 are tuning parameters.

Lemma 3.15 (Lemma 6.13 in [38] and Lemma 15 in [34]). The sorted ℓ1-norm
is weakly decomposable with

ΩS
c

(βSc) =

r∑

l=1

λp−r+l|β|(l,Sc), (3.44)

where r = p− s and |β|(1,Sc) ≥ · · · ≥ |β|(r,Sc) is the sequence of ordered absolute
values indexed in the set S. The norm Ω(·) is defined as Ω(β) := Jλ(βS) +
ΩS

c

(βSc).

The following lemma, which is in part given also in [34] after the definition of
the square root SLOPE, allows us to show that the Empirical Process Condition
2.7 is satisfied with high probability for Ω(·) given in Lemma 3.15.

Lemma 3.16. Suppose that λp > 0. For all β ∈ R
p we have that

Ω(β) ≥ Ω(β) ≥ λp‖β‖1 (3.45)

and consequently for the dual norm of Ω(·) we have for all w ∈ R
p

Ω∗(w) ≤ λp‖w‖∞. (3.46)
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The effective sparsity of the sorted ℓ1-norm is given in the following lemma.

Lemma 3.17. For τ(·) = ‖Σ1/2
X (·)‖2 and Ω(·) = Jλ(·) we have for any set

S ⊆ {1, . . . , p} with s = |S| that

ΓJλ

(
‖Σ1/2

X (·)‖2, L, S
)
= λ1

√
s

Λmin(ΣX)
. (3.47)

Corollary 3.5. Suppose that Assumption 2 is satisfied. Let β̃ be a stationary
point of the objective function (3.40). Then we have with probability at least
1− c exp(−c′ log p)

δλΩ(β̃ − β⋆) +R(β̃)

≤ R(β⋆) +
µ2λ21s

⋆

12Λmin(ΣX)αT (1− γ)
+ 2µΩ(β⋆−). (3.48)

4. Discussion

We have extended the general framework to derive sharp oracle inequalities in
Chapter 7 of [38] for convex optimization problems to nonconvex optimization
problems. Stationary points of certain nonconvex regularized M-estimators are
shown to satisfy sparsity oracle inequalities provided that the risk satisfies a
(restricted) form of strong convexity. In addition, we have demonstrated that
our framework can be applied to weakly decomposable norms. So far, we have
restricted ourselves to norm penalized estimators since the techniques used to
bound the empirical processes rely on the properties of norms. The derived
oracle inequalities are sharp in the sense that they reveal closeness to the best
approximation in the model class plus a remainder term which can be seen as the
estimation error. These sharp oracle inequalities extend the rates of convergence
obtained in previous work.
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Appendix A: Proof of the lemma in Section 2

Proof of Lemma 2.1. By the weak decomposability we have

Ω(β′) ≥ Ω(β′
S) + ΩS

c

(β′
Sc)

which is equivalent to

−Ω(β′) ≤ −Ω(β′
S)− ΩS

c

(β′
Sc).

By the above and the triangle inequality we have

Ω(β)− Ω(β′) = Ω(βS + βSc)− Ω(β′)

≤ Ω(βS + βSc)− Ω(β̃S)− ΩS
c

(β̃Sc)

≤ Ω(βS − β̃S) + Ω(βSc)− ΩS
c

(β̃Sc).

Appendix B: Proof of Theorem 2.1

Proof of Theorem 2.1. As remarked earlier the proof of this theorem closely
follows the proof of Theorem 7.1 in [38] but there are some important differences.
We start by considering a Taylor expansion of the risk around a stationary point
β̃ of the objective function Rn(·) + λΩ(·):

R(β) = R(β̃) + Ṙ(β̃)T (β − β̃) + Rem(β̃, β),

where Rem(β̃, β) is defined as

Rem(β̃, β) = R(β)−R(β̃)− Ṙ(β̃)T (β − β̃).

Then,
R(β̃)−R(β) + Rem(β̃, β) = −Ṙ(β̃)T (β − β̃).

Case 1 Suppose that

Ṙ(β̃)T (β − β̃) ≥ δλΩ(β̃ − β)− 2λΩ(βSc)− λ∗ − γG(τ(β̃ − β)).

Then we have

δλΩ(β̃ − β) +R(β̃) + Rem(β̃, β)

≤ R(β) + 2λΩ(βSc) + λ∗ + γG(τ(β̃ − β))

Hence, as Rem(β̃, β) ≥ 0 and γ < 1 we have

δλΩ(β̃ − β) +R(β̃) + γRem(β̃, β)

≤ R(β) + λ∗ + γ G(τ(β̃ − β))︸ ︷︷ ︸
≤Rem(β̃,β)

+2λΩ(βSc)
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and therefore

δλΩ(β̃ − β) +R(β̃) ≤ R(β) + 2λΩ(βSc) + λ∗.

Case 2 Suppose now that Ṙ(β̃)T (β−β̃) ≤ δλΩ(β̃−β)−2λΩ(βSc)−λ∗−γG(τ(β̃−
β)). By the stationarity of β̃ we have that

Ṙn(β̃)
T (β − β̃) + λz̃T (β − β̃) ≥ 0 ∀β ∈ C.

This implies

−Ṙn(β̃)T (β − β̃) ≤ λz̃Tβ − λΩ(β̃)

≤ λΩ∗(z̃)︸ ︷︷ ︸
≤1

Ω(β)− λΩ(β̃)

≤ λΩ(β)− λΩ(β̃).

Or equivalently,

0 ≤ Ṙn(β̃)
T (β − β̃) + λΩ(β)− λΩ(β̃).

Therefore,

− Ṙ(β̃)T (β − β̃) + δλΩ(β̃ − β)

≤
(
Ṙn(β̃)− Ṙ(β̃)

)T
(β − β̃) + λΩ(β) − λΩ(β̃) + δλΩ(β̃ − β)

≤ λεΩ(β̃ − β) + λΩ(β)− λΩ(β̃) + λ∗ + γG(τ(β̃ − β)) + δλΩ(β̃ − β).

Hence,

− Ṙ(β̃)T (β − β̃) + δλΩ(β̃ − β)

≤ λε(Ω(β̃S − βS) + ΩS
c

(β̃Sc − βSc)) + λΩ(β)− λΩ(β̃)

+ λ∗ + γG(τ(β̃ − β)) + δλΩ(β̃ − β)

≤ λε(Ω(β̃S − βS) + ΩS
c

(β̃Sc − βSc))

+ λΩ(β̃S − βS) + λΩ(βSc)− λΩS
c

(β̃Sc) by the triangle property, cf. Lemma 2.1

+ λ∗ + γG(τ(β̃ − β)) + δλΩ(β̃ − β)

≤ λε(Ω(β̃S − βS) + ΩS
c

(β̃Sc − βSc))

+ λΩ(β̃S − βS) + λΩ(βSc)− λΩS
c

(β̃Sc − βSc) + λΩS
c

(βSc) by the triangle inequality

+ λ∗ + γG(τ(β̃ − β)) + δλΩ(β̃ − β)

≤ λε(Ω(β̃S − βS) + ΩS
c

(β̃Sc − βSc))

+ λΩ(β̃S − βS)− λΩS
c

(β̃Sc − βSc) + 2λΩ(βSc) since ΩS
c

(βSc) ≤ Ω(βSc)

+ λ∗ + γG(τ(β̃ − β)) + δλΩ(β̃ − β).
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Summarizing, we have

− Ṙ(β̃)T (β − β̃) + δλΩ(β̃ − β)

≤ (λε + λ+ δλ)Ω(β̃S − βS)− (1 − δ)λΩS
c

(β̃Sc − βSc)

+ λ∗ + γG(τ(β̃ − β)) + 2λΩ(βSc),

where we have used that λ = λ− λε. Using that

−Ṙ(β̃)T (β − β̃) + δλΩ(β̃ − β)

≥ 2λΩ(βSc) + λ∗ + γG(τ(β̃ − β))

we obtain

0 ≤ λΩ(β̃S − βS)− (1− δ)λΩS
c

(β̃Sc − βSc).

Hence,
(1− δ)λΩS

c

(β̃Sc − βSc) ≤ λΩ(β̃S − βS). (B.1)

Or equivalently,

ΩS
c

(β̃Sc − βSc) ≤ λ

(1− δ)λ
Ω(β̃S − βS) = LΩ(β̃S − βS). (B.2)

By the effective sparsity we have that

Ω(β̃S − βS) ≤ τ(β̃S − βS)ΓΩ(L, βS, τ). (B.3)

We then have

− Ṙ(β̃)T (β − β̃) + δλΩ(β̃ − β)

≤ λτ(β̃ − β)ΓΩ(L, βS , τ) + 2λΩ(βSc) + λ∗ + γG(τ(β̃ − β)).

Using Fenchel’s inequality, the convexity of G, and the two point margin we
conclude that

(R(β̃)−R(β) + Rem(β̃, β)) + δλΩ(β̃ − β)

≤ (1− γ)τ(β̃ − β)
λΓΩ(L, βS , τ)

1− γ
+ 2λΩ(βSc) + λ∗ + γG(τ(β̃ − β))

≤ (1− γ)H

(
λΓΩ(L, τ, βS)

1− γ

)
+ (1− γ)G(τ(β̃ − β)) + 2λΩ(β−S)

+ λ∗ + γG(τ(β̃ − β))

≤ (1− γ)H

(
λΓΩ(L, τ, βS)

1− γ

)
+Rem(β̃, β) + 2λΩ(βSc) + λ∗

= (1− γ)H

(
λΓΩ(L, τ, βS)

1− γ

)
+ 2λΩ(βSc) + Rem(β̃, β) + λ∗.
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Hence,

δλΩ(β̃ − β) +R(β̃) ≤ R(β) + (1 − γ)H

(
λΓΩ(L, τ, βS)

1− γ

)
+ 2λΩ(βSc) + λ∗.

Appendix C: Properties of sub-Gaussian and sub-exponential

random variables

In this section, we summarize and prove some useful facts about sub-Gaussian
and sub-exponential random variables. The characterization via the Orlicz norms
is used. We refer the reader to Section 2.2 of [39] for a detailed treatment. For
k = 1, 2 and x ∈ R≥0 we define the function

ψk(x) = exp
(
xk
)
− 1. (C.1)

Definition C.1. The Orlicz norm ‖X‖ψk
of a random variable X is defined as

‖X‖ψk
= inf

{
C > 0 : Eψk

( |X |
C

)
≤ 1

}
. (C.2)

Lemma C.1 (Exercise 7 in [39]). The infimum in Equation C.2 is attained.

Among other properties of a random variable, Orlicz norms describe the
behavior of its moments.

Definition C.2. A random variable X is said to be sub-exponential if ‖X‖ψ1
<

∞.

Definition C.3. A random variable X is said to be sub-Gaussian if ‖X‖ψ2
<

∞.

The next lemma gives a bound on the second moment of a sub-Gaussian
random variable.

Lemma C.2. Suppose that ‖X‖ψ2
<∞. Then

E
[
X2
]
≤ 2‖X‖2ψ2

. (C.3)
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Proof. We have

E
[
X2
]
=

∫ ∞

0

P
(
X2 > t

)
dt

=

∫ ∞

0

P

(
X2

‖X‖2ψ2

>
t

‖X‖2ψ2

)
dt

= ‖X‖2ψ2

∫ ∞

0

P

(
X2

‖X‖2ψ2

> x

)
dx

≤ ‖X‖2ψ2

∫ ∞

0

E

[
exp

(
X2

‖X‖2ψ2

)]
exp(−x)dx

≤ 2‖X‖2ψ2

∫ ∞

0

e−xdx

= 2‖X‖2ψ2
.

The following lemma gives a bound on the fourth moment of a sub-Gaussian
random variable. It allows us to carry over the proof of Lemma 7 in [16] that is
used to establish Proposition 3.1.

Lemma C.3. Suppose that ‖X‖ψ2
<∞. Then

E
[
X4
]
≤ 4‖X‖4Ψ2

. (C.4)

Proof. Since X4 ≥ 0 we have by the tail summation property

E
[
X4
]
=

∫ ∞

0

P
(
X4 > t

)
dt

=

∫ ∞

0

P

(
X4

‖X‖4ψ2

>
t

‖X‖4ψ2

)
dt

= 2‖X‖4ψ2

∫ ∞

0

P

(
X2

‖X‖2ψ2

> x

)
x dx, by a change of variables

= 2‖X‖4ψ2

∫ ∞

0

P

(
exp

(
X2

‖X‖2ψ2

)
> exp(x)

)
dx

≤ 2‖X‖4ψ2

∫ ∞

0

E

[
exp

(
X2

‖X‖2ψ2

)]
exp(−x)x dx, by Markov’s inequality

≤ 4‖X‖4ψ2

∫ ∞

0

e−xx dx, since E
[
exp(X2/‖X‖2ψ2

)
]
≤ 2

= 4‖X‖4ψ2

(
−e−xx|∞0 +

∫ ∞

0

e−xdx

)

= 4‖X‖4ψ2
.
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In the proofs of our results we often need to bound the average of the products
of sub-Gaussian random variables. The following lemma says that the product
of two sub-Gaussian random variables is sub-exponential.

Lemma C.4. Suppose that ‖X‖ψ2
<∞ and that ‖Y ‖ψ2

<∞. Then ‖XY ‖ψ1
≤

‖X‖ψ2
‖Y ‖ψ2

.

Proof. We have that

E

[
exp

( |XY |
‖X‖ψ2

‖Y ‖ψ2

)]

≤ E

[
exp

(
X2

2‖X‖2ψ2

+
Y 2

2‖Y ‖2ψ2

)]
, by Young’s inequality

≤ E

[
1

2
exp

(
X2

‖X‖2ψ2

)
+

1

2
exp

(
Y 2

‖Y ‖2ψ2

)]
, by Young’s inequality

≤ 2.

The concentration behavior of the average of products of sub-Gaussian ran-
dom variables is given in the following lemma.

Lemma C.5. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of (X,Y ), where ‖X‖ψ2
<

∞ and ‖Y ‖Ψ2
<∞. Then for all t > 0

P

(∣∣∣∣∣
1

n

n∑

i=1

XiYi − EXY

∣∣∣∣∣ ≥ 8‖X‖ψ2
‖Y ‖ψ2

√
2t

n
+ 4‖X‖ψ2

‖Y ‖ψ2

t

n

)
≤ exp(−t).

(C.5)
If X and Y are independent and EX = EY = 0, for all t > 0

P

(∣∣∣∣∣
1

n

n∑

i=1

XiYi

∣∣∣∣∣ ≥ 2‖X‖ψ2
‖Y ‖ψ2

√
2t

n
+ ‖X‖ψ2

‖Y ‖ψ2

t

n

)
≤ exp(−t). (C.6)

Appendix D: Proof of the lemmas in Section 3

D.1. High probability bounds on random quadratic forms

In the following we provide similar bounds on random quadratic forms as in the
Supplement of [17]. We provide a full proof so that it can be traced down where
our explicit constants come from.

Lemma D.1. Consider a row-vector X ∈ R
s with ΣX := EXTX. Let ΣX = I

and sup
‖β‖2≤1

‖Xβ‖ψ2
=: C < ∞. Then for all t > 0, with probability at least



Elsener and van de Geer/Sharp oracle inequalities for stationary points 29

1− exp(−t), it holds that

sup
‖u‖2=1,‖v‖2=1

∣∣∣uT (Σ̂− I)v
∣∣∣ ≤ 4C2

√
8(t+ log 2 + 4s)

n
+ 4C2

(
t+ log 2 + 4s

n

)
.

(D.1)

Proof. Define

Â := sup
‖u‖2=1,‖v‖2=1

∣∣∣uT (Σ̂− I)v
∣∣∣ .

Let u, v, ũ and ṽ be arbitrary. Then

uT (Σ̂− I)v = ũT (Σ̂− I)ṽ

+ (u− ũ)T (Σ̂− I)(v − ṽ) + uT (Σ̂− I)(v − ṽ) + (u− ũ)T (Σ̂− I)v.

Thus for all ε > 0 and for ‖u− ũ‖2 ≤ ε and ‖v − ṽ‖2 ≤ ε
∣∣∣uT (Σ̂− I)v

∣∣∣ ≤
∣∣∣ũT (Σ̂− I)ṽ

∣∣∣+ 2εÂ+ ε2Â. (D.2)

We now take Sε to be a minimal ε-covering of the unit sphere {w ∈ R
s : ‖w‖2 = 1}.

Then |Sε| ≤ (1 + 2/ε)s by Lemma 14.27 in [38]. It follows that

(1− 2ε− ε2)Â ≤ max
ũ∈Sε,ṽ∈Sε

∣∣∣ũT (Σ̂− I)ṽ
∣∣∣ . (D.3)

For each ũ and ṽ in the unit sphere, we know that ‖Xũ‖ψ2
‖Xṽ‖ψ2

= C2. Hence
for each such ũ, ṽ and for all t > 0, with probability at least 1− 2 exp(−t),

∣∣∣ũT (Σ̂− I)ṽ
∣∣∣ ≤ 2C2

√
8t

n
+

2C2t

n
. (D.4)

It follows that for all t > 0, with probability at least 1− exp(−t)

max
ũ∈Sε,ṽ∈Sε

∣∣∣ũT (Σ̂− I)ṽ
∣∣∣ ≤ 2C2

√
8(t+ log(2|Sε|2))

n
+ 2C2

(
t+ log(2|Sε|2

n

)
.

(D.5)
We now choose

ε :=

√
6− 2

2
. (D.6)

Then

1− 2ε− ε2 =
1

2
. (D.7)

Moreover,

1 +
2

ε
= 1 +

4√
6− 2

= 1 +
4(
√
6 + 2)

2
= 2(1 +

√
6). (D.8)

Thus,
2|Sε|2 ≤ 2(2(1 +

√
6))2s. (D.9)
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But then
log(2|Sε|2) ≤ log 2 + 2s log(2(1 +

√
6)) ≤ log 2 + 4s. (D.10)

Corollary D.1. Let X be a row vector in R
s and ΣX := EXTX be arbitrary.

We now define
C := sup

‖Σ1/2
X u‖2=1

‖Xu‖ψ2
(D.11)

and we get for all t > 0 that with probability at least 1− exp(−t)

sup
‖Σ1/2

X u‖2=1,‖Σ1/2
X v‖2=1

∣∣∣uT (Σ̂− ΣX)v
∣∣∣

≤ 4C2

√
8(t+ log 2 + 4s)

n
+ 4C2

(
t+ log 2 + 4s

n

)
. (D.12)

The following lemma about random quadratic forms may be of interest in
itself. The following lemma is in its core part a variant of Lemma 15 in [17]. We
use a different technique that involves the Transfer Principle from [23].

Lemma D.2. We have for all u ∈ R
p and for all t > 0

∣∣∣uT (Σ̂− ΣX)u
∣∣∣ ≤ 12C2

√
8(t+ 2(log(2p) + 4))

n
uTΣXu

+ 12C2

√
16(log(2p) + 4))

n
‖u‖1

√
uTΣXu

+ 12C2

(
t+ 2(log(2p) + 4)

n

)
uTΣXu

+ 12C2

(
2(log(2p) + 4)

n

)
‖u‖21 (D.13)

with probability at least 1− exp(−t).
Proof. Let

t(s, p) := 4C2

√
8(t+ log 2 + 4s+ s log p)

n
+ 4C2

(
t+ log 2 + 4s+ s log p

n

)
.

(D.14)
Define the event

E :=

{
sup

S⊂{1,...,p}:|S|≤s

∣∣∣∣∣
uTS (Σ̂− ΣX)vS
‖XuS‖2‖XvS‖2

∣∣∣∣∣ ≤ t(s, p)

}
. (D.15)

Then on E , for all u

uTS (Σ̂− ΣX)uS ≥ −t(s, p)uTSΣXuS (D.16)
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or
uTS

(
Σ̂− (1− t(s, p))ΣX

)
uS ≥ 0. (D.17)

By the transfer principle ([23]), on E , for all u ∈ R
p

uT
(
Σ̂− (1− t(s, p))

)
u ≥ −max

j
B̂j,j‖u‖21/(s− 1), (D.18)

where
B̂ = Σ̂− (1− t(s, p))ΣX . (D.19)

We have, using the previous corollary, on E

sup
|S|,‖uS‖2=1

uTS

(
Σ̂− (1− t(s, p))ΣX

)
uS ≤ 2t(s, p). (D.20)

We therefore find on E , for all u ∈ R
p,

uT
(
Σ̂− (1 − t(s, p))ΣX

)
u ≥ −2t(s, p)‖u‖21/(s− 1). (D.21)

But then on E

uT (Σ̂− ΣX)u ≥ −t(s, p)uTΣXu− 2t(s, p)‖u‖21/(s− 1)

= −t(s, p)
(
uTΣXu+ 2‖u‖21/(s− 1)

)
.

The same exercise can be done to find that on E , also, for all u ∈ R
p

uT (ΣX − Σ̂)u ≥ −t(s, p)
(
uTΣXu+ 2‖u‖21/(s− 1)

)
. (D.22)

Therefore, on E for all u ∈ R
p

∣∣∣uT (Σ̂− ΣX)u
∣∣∣ ≤ t(s, p)

(
uTΣXu+ 2‖u‖21/(s− 1)

)
. (D.23)

Therefore, on E for all u ∈ R
p such that ‖u‖21 ≤ (s− 1)uTΣXu we have

∣∣∣uT (Σ̂− ΣX)u
∣∣∣ ≤ 3t(s, p)uTΣXu. (D.24)

Consider for k ∈ N the event

Fk :=

{
sup

u:‖u‖2

1
≤k

∣∣∣uT (Σ̂− ΣX)u
∣∣∣

≥ 12C2

√
8(t+ log(2p) + 4 + (log p+ 4)k)

n

+12C2

(
t+ log(2p) + (log p+ 4)k

n

)}
.

We have shown that
P(Fk) ≤ exp(−t). (D.25)
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We have for k ≥ 2

2(log(2p) + 4)(k − 1) ≥ (log(2p) + 4)k = (log p+ 4)k + k log 2. (D.26)

We also have the partition

{
‖u‖21 ≤ 1

}
∪
{
1 < ‖u‖21 ≤ 2

}
∪ · · · ∪

{
k − 1 < ‖u‖21 ≤ k

}
∪ . . . . (D.27)

If for some k ≥ 2, it holds that ‖u‖21 > k − 1, then the event

∣∣∣uT (Σ̂− ΣX)u
∣∣∣ ≥ 12C2

√
8(t+ log(2p) + 4 + 2‖u‖21(log(2p) + 4))

n

+ 12C2

(
t+ log(2p) + 4 + 2‖u‖21(log(2p) + 4)

n

)

implies

∣∣∣uT (Σ̂− ΣX)u
∣∣∣ ≥ 12C2

√
8(t+ log(2p) + 4 + k(log(2p) + 4))

n

+ 12C2

(
t+ log(2p) + 4 + k(log(2p) + 4)

n

)
.

Hence the event

∃u : uTΣXu = 1 :

∣∣∣uT (Σ̂− ΣX)u
∣∣∣ ≥ 12C2

√
8(t+ 2(‖u‖21 + 1)(log(2p) + 4))

n

+12C2

(
t+ 2(‖u‖21 + 1)(log(2p) + 4)

n

)

has probability at most

K∑

k=1

exp(−(t+ k log 2)) ≤ exp(−t)
∞∑

k=1

= exp(−t). (D.28)

In other words, we have shown that the event

∀u :

∣∣∣uT (Σ̂− ΣX)u
∣∣∣ ≤ 12C2

√
8(t+ 2(‖u‖21/(uTΣXu) + 2)(log(2p) + 4))

n
uTΣXu

+ 12C2

(
t+ 2(‖u‖21/(uTΣXu) + 1)(log(2p) + 4)

n

)
uTΣXu

has probability at least 1 − exp(−t). It follows that with probability at least
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1− exp(−t)

∀u :

∣∣∣uT (Σ̂− ΣX)u
∣∣∣ ≤ 12C2

√
8(t+ 2(log(2p) + 4))

n
uTΣXu

+ 12C2

√
16(log(2p) + 4))

n
‖u‖1

√
uTΣXu

+ 12C2

(
t+ 2(log(2p) + 4)

n

)
uTΣXu

+ 12C2

(
2(log(2p) + 4)

n

)
‖u‖21.

D.2. Proofs of the lemmas in Subsection 3.1

Proof of Lemma 3.1. Let βt be an intermediate point, i.e. βt = tβ+(1− t)β′ ∈
B, t ∈ [0, 1] (since B is convex). Then

R(β)−R(β′) = Ṙ(β′)T (β − β′) + (β − β′)T R̈(βt)(β − β′)

= Ṙ(β′)T (β − β′) + (β − β′)TΣX(β − β′)

= Ṙ(β′)T (β − β′) +G(τ(β − β′)),

where τ(β − β′) := ‖Σ1/2
X (β − β′)‖2 and G(u) = u2.

Proof of Lemma 3.3. The result follows from Lemma D.2 by noticing that

Γ̂add − ΣX =
ZTZ

n
− ΣZ . (D.29)

Proof of Lemma 3.2. We have that for ‖βS‖0 = s

‖βS‖21 ≤ s‖βS‖22 ≤ s
Λmin(ΣX)‖β‖22

Λmin(ΣX)
≤ s

Λmin(ΣX)
‖Σ1/2

X β‖22 =
s

Λmin(ΣX)
τ(β)2.

Hence,

‖βS‖1
τ(β)

≤
√

s

Λmin(ΣX)
.



Elsener and van de Geer/Sharp oracle inequalities for stationary points 34

Proof of Lemma 3.4. We have for all u ∈ R
p

uTΣZu = uT (ΣX +ΣW )u

= uTΣXu+ uTΣWu

≤ G(τ(u)) +
Λmax(ΣW )

Λmin(ΣX)
Λmin(ΣX)uTu

≤ G(τ(u)) +
Λmax(ΣW )

Λmin(ΣX)
uTΣXu

≤
(
1 +

Λmax(ΣW )

Λmin(ΣX)

)
G(τ(u)).

Proof of Lemma 3.5. We have that

∣∣∣β∗T

(Γ̂add − ΣX)(β′ − β∗)
∣∣∣ =

∣∣∣∣β∗T

(
ZTZ

n
− ΣZ

)
(β′ − β∗)

∣∣∣∣

≤
∥∥∥∥
(
ZTZ

n
− ΣZ

)
β∗
∥∥∥∥
∞

‖β′ − β∗‖1.

We notice that
∥∥∥∥
(
ZTZ

n
− ΣZ

)
β∗
∥∥∥∥
∞

= max
1≤j≤p

∣∣∣∣eTj
(
ZTZ

n
− ΣZ

)
β∗
∣∣∣∣ .

For all j = 1, . . . p and for all t > 0 we have

∣∣∣∣eTj
(
ZTZ

n
− ΣZ

)
β∗
∣∣∣∣ ≤ 8‖β∗‖2C2

Z

√
2t

n
+ 4‖β∗‖2C2

Z

t

n
.

with probability at least 1− exp(−t). By the union bound we conclude that for
all t > 0 the event

∥∥∥∥
(
ZTZ

n
− ΣZ

)
β∗
∥∥∥∥
∞

≤ 8‖β∗‖2C2
Z

√
2(t+ log p)

n
+ 4‖β∗‖2C2

Z

t+ log p

n

has probability at least 1− exp(−t).
We also have that

γ̂add − ΣXβ
0 =

1

n
ZTY − ΣXβ

0

=

(
XTX

n
− ΣX

)
β0 +

WTX

n
β0 +

ZT ε

n
.

For the first term we have for all j = 1, . . . , p and all t > 0 that the event

∣∣∣∣eTj
(
XTX

n
− ΣX

)
β0

∣∣∣∣ ≤ 8C2
X‖β0‖2

√
2t

n
+ 4C2

X‖β0‖2
t

n
.
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has probability at least 1−exp(−t). By the union bound we have that the event

∥∥∥∥
(
XTX

n
− ΣX

)
β0

∥∥∥∥
∞

≤ 8C2
X‖β0‖2

√
2(t+ log p)

n
+ 4C2

X‖β0‖2
t+ log p

n

has probability at least 1− exp(−t).
For the second term we have for all j = 1, . . . , p and all t > 0 that the event

∣∣∣∣eTj
(
WTX

n

)
β0

∣∣∣∣ ≤ 8CWCX‖β0‖2
√

2t

n
+ 4CWCX‖β0‖2

t

n

has probability at least 1−exp(−t). By the union bound we have that the event

∥∥∥∥
WTX

n
β0

∥∥∥∥
∞

≤ 8CWCX‖β0‖2
√

2(t+ log p)

n
+ 4CWCX‖β0‖2

t+ log p

n

has probability at least 1− exp(−t).
Finally, the we have for the third term for all j = 1, . . . , p and all t > 0 that

the event

∣∣∣∣eTj
ZT ε

n

∣∣∣∣ ≤ 8CZCε

√
2t

n
+ 4CZCε

t

n

has probability at least 1−exp(−t). By the union bound we have that the event

∥∥∥∥
ZT ε

n

∥∥∥∥
∞

≤ 8CZCε

√
2(t+ log p)

n
+ 4CZCε

t+ log p

n

has probability at least 1− exp(−t).
Combining these bound proves that the event

∥∥∥
(
Γ̂add − ΣX

)
β∗
∥∥∥
∞

+
∥∥γ̂add − ΣXβ

0
∥∥
∞

≤ 16(C2
Z‖β∗‖2 + C2

X‖β0‖2 + CWCX‖β0‖2 + CZCε)

(
2

√
2t+ log p

n
+
t+ log p

n

)

has probability at least 1− 4 exp(−t).
Proof of Lemma 3.6. The result follows by combining Lemma 3.3, Lemma 3.4,
and Lemma 3.5.

In fact, by applying Young’s inequality with ζ > 0 to the result of Lemma
3.3 we have
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∣∣∣(β′ − β∗)T (Γ̂add − ΣX)(β′ − β∗)
∣∣∣

≤ 12C2
Z

(
8(t+ 2(log(2p) + 4))

2nζ
+
ζ

2

)
(β′ − β∗)TΣX(β′ − β∗)

+ 12C2
Z

(
16(log(2p) + 4)

2nζ
‖β′ − β∗‖21 +

ζ

2
(β′ − β∗)TΣZ(β

′ − β∗)

)

+ 12C2
Z

(
t+ 2(log(2p) + 4)

n

)
(β′ − β∗)TΣX(β′ − β∗)

+ 12C2
Z

(
2(log(2p) + 4)

n

)
‖β′ − β∗‖21

≤ 12C2
Z

(
4t+ 8 log(2p) + 16

n

)(
1

ζ
+ 1

)
Λmin(ΣX)−1(Λmin(ΣX)

+ Λmax(ΣW ))G(τ(β′ − β∗)) + 12C2
ZζΛmin(ΣX)−1(Λmin(ΣX)

+ Λmax(ΣW ))G(τ(β′ − β∗))

+ 12C2
Z

(
16(log(2p) + 4)

2nζ
+

2(log(2p) + 4)

n

)
‖β′ − β∗‖21.

With t = log(2p) we have
∣∣∣(β′ − β∗)T (Γ̂add − ΣX)(β′ − β∗)

∣∣∣
≤ γG(τ(β′ − β∗))

+ 12C2
Z

(
16(log(2p) + 4)

2nζ
+

2(log(2p) + 4)

n

)
‖β′ − β∗‖21.

D.3. Proofs of the lemmas in Subsection 3.2

Proof of Lemma 3.9. We have that for ‖βS‖0 = s

‖βS‖21 ≤ s‖βS‖22 ≤ sτ(β)2.

Hence,

‖βS‖1
τ(β)

≤
√
s.

Proof of Lemma 3.10. We have for all β̃ ∈ B
(
Ṙn(β̃)− Ṙ(β̃)

)T
(β̃ − β⋆)

= β̃T (ΣX − Σ̂)(β̃ − β⋆)

= (β̃ − β⋆)T (ΣX − Σ̂)(β̃ − β⋆) + β⋆
T

(ΣX − Σ̂)(β̃ − β⋆).
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To bound the first term we invoke Lemma D.2: the event
∣∣∣(β̃ − β⋆)T (ΣX − Σ̂)(β̃ − β⋆)

∣∣∣

≤ 12C2
X

√
8(t+ 2(log(2p) + 4))

n
(β̃ − β⋆)TΣX(β̃ − β⋆)

+ 12C2
X

√
16(log(2p) + 4))

n
‖β̃ − β⋆‖1

√
(β̃ − β⋆)TΣX(β̃ − β⋆)

+ 12C2
X

(
t+ 2(log(2p) + 4)

n

)
(β̃ − β⋆)TΣX(β̃ − β⋆)

+ 12C2
X

(
2(log(2p) + 4)

n

)
‖β̃ − β⋆‖21.

has probability at least 1− exp(−t).
We now apply Young’s inequality with a constant ζ > 0:

∣∣∣(β̃ − β∗)T (ΣX − Σ̂)(β̃ − β∗)
∣∣∣

≤ 12C2
X

(
8(t+ 2(log(2p) + 4))

2nζ
+
ζ

2

)
(β̃ − β∗)TΣX(β̃ − β∗)

+ 12C2
X

(
16(log(2p) + 4)

2nζ
‖β̃ − β∗‖21 +

ζ

2
(β̃ − β∗)TΣX(β̃ − β∗)

)

+ 12C2
X

(
t+ 2(log(2p) + 4)

n

)
(β̃ − β∗)TΣX(β̃ − β∗)

+ 12C2
X

(
2(log(2p) + 4)

n

)
‖β̃ − β∗‖21.

With t = log(2p) and using that

(β̃ − β∗)TΣX(β̃ − β∗)

≤ Λmax(ΣX)‖β̃ − β∗‖22

=
Λmax(ΣX)

2φmax(ρ− 3η)
2φmax(ρ− 3η)‖β̃ − β∗‖22 =

Λmax(ΣX)

2φmax(ρ− 3η)
G(τ(β̃ − β∗))

we obtain
∣∣∣(β̃ − β∗)T (ΣX − Σ̂)(β̃ − β∗)

∣∣∣

≤ γG(τ(β̃ − β∗)) + 12C2
X

(
16(log(2p) + 4)

2nζ
+

2(log(2p) + 4)

n

)
‖β̃ − β∗‖21.

For the second term we notice that
∥∥∥(Σ̂− ΣX)β⋆

∥∥∥
∞

= max
1≤j≤p

∣∣∣eTj
(
Σ̂− ΣX

)
β⋆
∣∣∣ .
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For all j = 1, . . . , p and all t > 0 the event

∣∣∣eTj
(
Σ̂− ΣX

)
β⋆
∣∣∣ ≤ 8C2

X(‖β0‖2 + η)

√
2t

n
+ 4C2

X(‖β0‖2 + η)
t

n

has probability at least 1−exp(−t). By the union bound we have that the event

∥∥∥(Σ̂− ΣX)β⋆
∥∥∥
∞

≤ 8C2
X(‖β0‖2 + η)

√
2(t+ log p)

n
+ 4C2

X(‖β0‖2 + η)
t+ log p

n

has probability at least 1− exp(−t).
The result follows by combining Lemma 3.7 with the upper bounds.

D.4. Proofs of the lemmas in Subsection 3.3

Proof of Lemma 3.11. Consider the Taylor expansion of the risk

R(β1) = R(β2) + Ṙ(β2)
T (β1 − β2) + (β1 − β2)

T R̈(βt)(β1 − β2),

where βt = tβ1 + (1− t)β2 ∈ B and t ∈ [0, 1].
Hence,

R(β1)−R(β2) ≥ Ṙ(β2)
T (β1 − β2) + (β1 − β2)

T R̈(βt)(β1 − β2).

For ease of notation we define the event Ai as

Ai =

{
|εi| ≤

T

2

}
∩
{
|Xi(β1 − β2)| ≤

T

8η
‖β1 − β2‖2

}
∩
{
|Xi(β2 − β0)| ≤ T

4

}
.

We also define the truncation functions ϕt and ψt as

ϕt(u) =





u2, if |u| ≤ t
2 ,

(t− u)2, if t
2 ≤ |u| ≤ t,

0, if |u| ≥ t,
and ψt(u) =





1, if |u| ≤ t
2 ,

2− 2
t |u|, if t

2 ≤ |u| ≤ t,
0, if |u| ≥ t.

and the functions

f(β1, β2) =
1

n

n∑

i=1

ϕT‖β1−β2‖2/8η (Xi(β1 − β2)) · ψT/2(εi) · ψT/4(Xi(β2 − β0)),

f̃(β1, β2) =
1

n

n∑

i=1

(Xi(β1 − β2))
2.
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The second order term of the Taylor expansion of the risk is given by

(β1 − β2)
T R̈(βt)(β1 − β2)

= E

[
1

n

n∑

i=1

ρ̈(Yi −Xiβ
t)(Xi(β1 − β2))

2

]

= E

[
1

n

n∑

i=1

ρ̈(Yi −Xiβ
t)(Xi(β1 − β2))

21Ai

]

+ E

[
1

n

n∑

i=1

ρ̈(Yi −Xiβ
t)(Xi(β1 − β2))

21Ac
i

]

≥ 7

2
αTE

[
1

n

n∑

i=1

(Xi(β1 − β2))
21Ai

]
− κ2E

[
1

n

n∑

i=1

(Xi(β1 − β2))
21Ac

i

]

+ κ2E

[
1

n

n∑

i=1

(Xi(β1 − β2))
21Ai

]

− κ2E

[
1

n

n∑

i=1

(Xi(β1 − β2))
21Ai

]

= (
7

2
αT + κ2)E

[
1

n

n∑

i=1

(Xi(β1 − β2))
21Ai

]
− κ2E

[
1

n

n∑

i=1

(Xi(β1 − β2))
2

]

≥ (
7

2
αT + κ2)E [f(β1, β2)]− κ2E

[
f̃(β1, β2)

]

= (
7

2
αT + κ2)E [f(β1, β2)]− (

7

2
αT + κ2)E

[
f̃(β1, β2)

]

+ (
7

2
αT + κ2)E

[
f̃(β1, β2)

]
− κ2E

[
f̃(β1, β2)

]

As a consequence of Lemma 7 in [16] we have that

(
7

2
αT + κ2)

(
E

[
f̃(β1, β2)

]
− E [f(β1, β2)]

)
≤ αT

2
E

[
f̃(β1, β2)

]
.

Hence,

(
7

2
αT + κ2)E [f(β1, β2)]− (

7

2
αT + κ2)E

[
f̃(β1, β2)

]

+ (
7

2
αT + κ2)E

[
f̃(β1, β2)

]
− κ2E

[
f̃(β1, β2)

]

≥ −αT
2
E

[
f̃(β1, β2)

]
+

7

2
αTE

[
f̃(β1, β2)

]

= 3αTE
[
f̃(β1, β2)

]

= 3αT (β1 − β2)
TΣX(β1 − β2) = 3αT ‖Σ1/2

X (β1 − β2)‖22 = G(τ(β1 − β2)).
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Proof of Lemma 3.12.

(
Ṙn(β

′)− Ṙ(β′)
)T

(β⋆ − β′)

=
(
Ṙn(β

′)− Ṙn(β
⋆) + Ṙn(β

⋆)− Ṙ(β⋆) +R(β⋆)−R(β′)
)T

(β⋆ − β′)

=
(
Ṙn(β

′)− Ṙn(β
⋆)
)T

(β⋆ − β′) =: (I)

+
(
Ṙn(β

⋆)− Ṙ(β⋆)
)T

(β⋆ − β′) =: (II)

+
(
Ṙ(β⋆)− Ṙ(β′)

)T
(β⋆ − β′) =: (III)

To bound the first term we make use of the local restricted strong convexity
from [16] (Proposition 3.1).

There, we find that the following holds: there exist α > 0 and ξ ≥ 0 such
that for all β1, β2 ∈ B

(
Ṙn(β1)− Ṙn(β2)

)T
(β1 − β2) ≥ α‖β1 − β2‖22 − ξ

log p

n
‖β1 − β2‖21.

Hence, multiplying the inequality by (−1) we also have for all β1, β2 ∈ B
(
Ṙn(β1)− Ṙn(β2)

)T
(β2 − β1) ≤ ξ

log p

n
‖β1 − β2‖21 − α‖β1 − β2‖22.

As far as the second term (II) is concerned, we have that the following holds

(
Ṙn(β

⋆)− Ṙ(β⋆)
)T

(β⋆ − β′)

≤
∣∣∣∣
(
Ṙn(β

⋆)− Ṙ(β⋆)
)T

(β⋆ − β′)

∣∣∣∣

≤
∥∥∥Ṙn(β⋆)− Ṙ(β⋆)

∥∥∥
∞

‖β⋆ − β′‖1.

We have that
∥∥∥Ṙn(β⋆)− Ṙ(β⋆)

∥∥∥
∞

= max
1≤j≤p

∣∣∣∣∣
1

n

n∑

i=1

ρ̇(Yi −Xiβ
⋆)Xij − E [ρ̇(Yi −Xiβ

⋆)Xij ]

∣∣∣∣∣

By assumption, Xij is sub-Gaussian. Hence, we have for all j ∈ {1, . . . , p}
that for all t > 0 invoking Lemma 14.16 in [9]

P

(∥∥∥Ṙn(β⋆)− Ṙ(β⋆)
∥∥∥
∞

≥ 4κ1CX

√(
t2 +

log(2p)

n

))
≤ exp(−nt2).
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As far as the third term (III) is concerned, we have that

(
Ṙ(β1)− Ṙ(β2)

)T
(β1 − β2)

≤
∣∣∣∣
(
Ṙ(β1)− Ṙ(β2)

)T
(β1 − β2)

∣∣∣∣

=

∣∣∣∣∣E
[
1

n

n∑

i=1

(−ρ̇(Yi −Xiβ1) + ρ̇(Yi −Xiβ2))Xi(β1 − β2)

]∣∣∣∣∣

≤ E

[
1

n

n∑

i=1

|ρ̇(Yi −Xiβ2)− ρ̇(Yi −Xiβ2)| |Xi(β1 − β2)|
]

≤ κ2
1

n

n∑

i=1

E

[
|Xi(β1 − β2)|2

]

=
κ2
3αT

G(τ(β1 − β2))

D.5. Proofs of the lemmas in Subsection 3.4

Proof of Lemma 3.13. We consider the two term Taylor expansion of R for an
intermediate point β† ∈ B

R(β1) = R(β2) + Ṙ(β2)
T (β1 − β2) + (β1 − β2)

T R̈(β†)(β1 − β2).

By adding an subtracting R̈(β0) we have

R(β1)−R(β2)− Ṙ(β2)
T (β1 − β2)

= (β1 − β2)
T (R̈(β†)− R̈(β0))(β1 − β2) + (β1 − β2)

T R̈(β0)(β1 − β2).

As far as the first term is concerned we have that

R̈(β†)− R̈(β0) = E

[
1

n

n∑

i=1

(g(Xiβ
†)− g(Xiβ

0))XT
i Xi

]
,

where

g(Xiβ
†) = 2(σ′(Xiβ

†)2 + (σ(Xiβ
†)− Yi)σ

′′(Xiβ
†))

We see that g is Lipschitz continuous by considering its first derivative

∣∣∣∣
d

du
g(u)

∣∣∣∣ = 2 |2σ′(u)σ′′(u) + σ′(u)σ′′(u) + σ(u)σ′′′(u)− Yiσ
′′′(u)|

≤ 10,
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where we have used that |σ(·)| ≤ 1, |σ′(·)| ≤ 1, |σ′′(·)| ≤ 1, |σ′′(·)| ≤ 1, |σ′′′(·)| ≤
1, and |Yi| ≤ 1. Hence, we have for all v ∈ R

p with ‖v‖2 = 1 that

∣∣∣vT (R̈(β†)− R̈(β0))v
∣∣∣ ≤ 10E

[
1

n

n∑

i=1

Xi(β
† − β0)(vTXT

i )
2

]

≤ 10E
[
(Xi(β

† − β0))2
]1/2

E
[
(vTXT

i )
4
]1/2

,

≤ 10C3
X ‖β† − β0‖2︸ ︷︷ ︸

≤η

.

We also have that for all v ∈ R
p with ‖v‖2 = 1

vT R̈(β0)v ≥ 2V Λmin(ΣX).

Therefore, we conclude that

R(β1)−R(β2)− Ṙ(β2)
T (β1 − β2)

= (β1 − β2)
T (R̈(β†)− R̈(β0))(β1 − β2) + (β1 − β2)

T R̈(β0)(β1 − β2)

≥ 2(V Λmin(ΣX)− 5C3
Xη)‖β1 − β2‖22

= G(‖β1 − β2‖2).

Proof of Lemma 3.14. We first consider the empirical process for M > 0:

ZM = sup
β̃∈B:‖β̃−β⋆‖1≤M

∣∣∣∣
(
Ṙn(β̃)− Ṙ(β̃)

)T
(β⋆ − β̃)

∣∣∣∣

= sup
β̃∈B:‖β̃−β⋆‖1≤M

∣∣∣∣∣−
2

n

n∑

i=1

[
(Yi − σ(Xiβ̃))σ

′(Xiβ̃)Xi

+E

[
(Yi − σ(Xiβ̃))σ

′(Xiβ̃)Xi

]]
(β⋆ − β̃)

∣∣∣

By the symmetrization theorem for i.i.d. Rademacher random variables ε̃1, . . . , ε̃n
we have

EZM ≤ E sup
β̃∈B:‖β̃−β⋆‖1≤M

∣∣∣∣∣
4

n

n∑

i=1

ε̃i(Yi − σ(Xiβ̃))σ
′(Xiβ̃)Xi(β

⋆ − β̃)

∣∣∣∣∣ .

We define the function

f(Xiβ̃) = (Yi − σ(Xiβ̃))σ
′(Xiβ̃)Xi(β

⋆ − β̃).

The function f is Lipschitz continuous as one can see by considering its first
derivative:∣∣∣∣

d

du
f(u)

∣∣∣∣ =
∣∣σ′′(u)YiXiβ

⋆ − σ′(u)2Xiβ
⋆ − σ(u)σ′′(u)Xiβ

⋆ − Yiσ
′′(u)u

− Yiσ
′(u) + σ′(u)2u+ σ(u)σ′′(u)u+ σ(u)σ′(u)

∣∣
≤ 6K2 + 2.
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By the contraction Theorem ([15]) using that f(Xiβ
⋆) = 0 and by the dual

norm inequality we then have

EZM ≤ E sup
β̃∈B:‖β̃−β⋆‖1≤M

∣∣∣∣∣
4

n

n∑

i=1

ε̃i(f(Xiβ̃)− f(Xiβ
⋆))

∣∣∣∣∣

≤ 8(6K2 + 2)E sup
β̃∈B:‖β̃−β⋆‖1≤M

∣∣∣∣∣
1

n

n∑

i=1

ε̃iXi(β
⋆ − β̃)

∣∣∣∣∣

≤ 8(6K2 + 2)ME

∥∥∥∥∥
1

n

n∑

i=1

ε̃iXi

∥∥∥∥∥
∞

.

We notice that by Lemma C.4 the following holds:

E

[
exp

( |ε̃iXij |
‖ε̃i‖ψ2

‖Xij‖ψ2

)]
− 1 ≤ 1.

Therefore, expanding the exponential we have

E

[
exp

( |ε̃iXij |
‖ε̃i‖ψ2

‖Xij‖ψ2

)]
− 1

=

∞∑

k=1

1

k!

|ε̃iXij |k
‖ε̃i‖kψ2

‖Xij‖kψ2

=
1

m!

|ε̃iXij |m
‖ε̃i‖mψ2

‖Xij‖mψ2

+
∞∑

k=1,k 6=m

1

k!

|ε̃iXij |k
‖ε̃i‖kψ2

‖Xij‖kψ2

≤ 1.

This implies for all m ≥ 1 that

1

m!

|ε̃iXij |m
‖ε̃i‖mψ2

‖Xij‖mψ2

≤ 1.

Hence,

|ε̃iXij |m ≤ m!‖ε̃i‖mψ2
‖Xij‖mψ2

=
m!

2
‖ε̃i‖m−2

ψ2
‖Xij‖m−2

ψ2
(2‖ε̃i‖2ψ2

‖Xij‖2ψ2
).

Dividing the previous equation by (
√
2‖ε̃i‖ψ2

‖Xij‖ψ2
)m we obtain

(
|ε̃iXij |√

2‖ε̃i‖ψ2
‖Xij‖ψ2

)m
≤ m!

2

(
‖ε̃i‖ψ2

‖Xij‖ψ2√
2‖ε̃i‖ψ2

‖Xij‖ψ2

)m−2

=
m!

2

(
1√
2

)m−2

.

We also notice that

E [ε̃iXij ] = Eε̃iEXij = 0.

By Lemma 14.12 in [9] we then have that

E

∥∥∥∥∥
1

n

n∑

i=1

ε̃iXij√
2‖ε̃i‖ψ2

‖Xij‖ψ2

∥∥∥∥∥
∞

≤ log(p+ 1)√
2n

+

√
2 log(p+ 1)

n



Elsener and van de Geer/Sharp oracle inequalities for stationary points 44

or equivalently

E

∥∥∥∥∥
1

n

n∑

i=1

ε̃iXij

∥∥∥∥∥
∞

≤ ‖ε̃i‖ψ2
‖Xij‖ψ2

log(p+ 1)

n
+

√
4‖ε̃i‖2ψ2

‖Xij‖2ψ2
log(p+ 1)

n

=: λ̃1.

In view of applying Bousquet’s concentration inequality ([8]) in the form given
in [38] in Corollary 16.1 we notice that

sup
β̃∈B:‖β̃−β⋆‖1≤M

Var(f(Xiβ̃))

≤ sup
β̃∈B:‖β̃−β⋆‖1≤M

E

[
f(Xiβ̃)

2
]

= sup
β̃∈B:‖β̃−β⋆‖1≤M

E

[
(Yi − σ(Xiβ̃))

2σ′(Xiβ̃)
2(Xi(β

⋆ − β̃))2
]

≤ sup
β̃∈B:‖β̃−β⋆‖1≤M

E

[
(Xi(β

⋆ − β̃))2

‖β⋆ − β̃‖22

]
‖β⋆ − β̃‖22

≤ sup
β̃∈B:‖β̃−β⋆‖1≤M

C2
X‖β⋆ − β̃‖21

≤ C2
XM

2.

We also have that

‖f‖∞ ≤ 2K2.

Hence, by Bousquet’s concentration inequality we obtain for all t > 0

P

(
ZM ≥ 2EZM + CXM

√
2t

n
+

8K2t

n

)
≤ exp(−t).

Therefore,

P

(
ZM ≥ 16(6K2 + 2)Mλ̃1 + CXM

√
2t

n
+

8K2t

n

)
≤ exp(−t).

To simplify the notation, we define

λ̃2(t) = 16(6K2 + 2)λ̃1 + CX

√
2t

n
.

Hence,

P

(
ZM ≥Mλ̃2(t) +

8K2t

n

)
≤ exp(−t).
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Define

Z(β̃, β⋆) :=

∣∣∣∣
(
Ṙn(β̃)− Ṙ(β̃)

)T
(β⋆ − β̃)

∣∣∣∣

Hence,

P

(
∃β̃ ∈ B : ‖β̃ − β⋆‖1 ≤ 1

n
: Z(β̃, β⋆) ≥ 2‖β̃ − β⋆‖1λ̃2(t) +

λ̃2(t)

n
+

8K2t

n

)

≤ P

(
∃β̃ ∈ B : ‖β̃ − β⋆‖1 ≤ 1

n
: Z(β̃, β⋆) ≥ λ̃2(t)

n
+

8K2t

n

)

≤ exp(−t).

We also have

P

(
∃β̃ ∈ B :

1

n
< ‖β̃ − β⋆‖1 ≤ 2

√
pη :

Z(β̃, β⋆) ≥ 2‖β̃ − β⋆‖1λ̃2(t) +
λ̃2(t)

n
+

8K2t

n

)

≤
⌈log

2
(ηn

√
p)⌉∑

j=0

P

(
∃β̃ ∈ B :

2j

n
< ‖β̃ − β⋆‖1 ≤ 2j+1

n
:

Z(β̃, β⋆) ≥ 2‖β̃ − β⋆‖1λ̃2(t) +
λ̃2(t)

n
+

8K2t

n

)

≤
⌈log

2
(ηn

√
p)⌉∑

j=0

P

(
∃β̃ ∈ B :

2j

n
< ‖β̃ − β⋆‖1 ≤ 2j+1

n
:

Z(β̃, β⋆) ≥ 2j+1

n
λ̃2(t) +

λ̃2(t)

n
+

8K2t

n

)

≤
⌈log

2
(ηn

√
p)⌉∑

j=0

P

(
∃β̃ ∈ B : ‖β̃ − β⋆‖1 ≤ 2j+1

n
:

Z(β̃, β⋆) ≥ 2j+1

n
λ̃2(t) +

8K2t

n

)

≤ (⌈log2(ηn
√
p)⌉+ 1) exp(−t).

Choosing t = log p, we see that by the union bound

P

(
∃β̃ ∈ B : Z(β̃, β⋆) ≥ 2‖β̃ − β⋆‖1λ̃2(log p) +

λ̃2(log p)

n
+

8K2 log p

n

)

≤ (⌈log2(ηn
√
p)⌉+ 2) exp(− log p).
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D.6. Proofs of the lemmas in Subsection 3.5

Proof of Lemma 3.16.

Jλ(β)

λp
=
λ1
λp

|β|(1) + · · ·+ λp
λp

|β|(p)

≥ ‖β‖1.

It follows that for all w ∈ R
p

Jλ(w)
∗ ≤ (λp‖w‖1)∗ = sup

β∈Rp:‖β‖1≤1

λp|wTβ| = λp sup
β∈Rp:‖β‖1≤1

|wTβ| = λp‖w‖∞.

Proof of Lemma 3.17. For ‖βS‖0 = s we have that

Jλ(βS) =

s∑

j=1

λj |βS |(j) ≤ λ1‖βS‖1 ≤ λ1
√
s‖β‖2 ≤ λ1

√
s
‖Σ1/2

X βS‖2√
Λmin(ΣX)

.

Hence,

Jλ(βS)

τ(β)
≤ λ1

√
s

Λmin(ΣX)
.
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