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Robust Multiplication-based Tests for Reed-Muller Codes∗

Prahladh Harsha† Srikanth Srinivasan‡

Abstract

We consider the following multiplication-based tests to check if a given function f : F
n
q → Fq is a

codeword of the Reed-Muller code of dimension n and order d over the finite field Fq for prime q (i.e., f is
the evaluation of a degree-d polynomial over Fq for q prime).

• Teste,k: Pick P1, . . . , Pk independent random degree-e polynomials and accept iff the function
f P1 · · · Pk is the evaluation of a degree-(d + ek) polynomial (i.e., is a codeword of the Reed-Muller
code of dimension n and order (d + ek)).

We prove the robust soundness of the above tests for large values of e, answering a question of Dinur and
Guruswami [Israel Journal of Mathematics, 209:611-649, 2015]. Previous soundness analyses of these tests
were known only for the case when either e = 1 or k = 1. Even for the case k = 1 and e > 1, earlier
soundness analyses were not robust.

We also analyze a derandomized version of this test, where (for example) the polynomials P1, . . . , Pk

can be the same random polynomial P. This generalizes a result of Guruswami et al. [SIAM J. Comput.,
46(1):132-159, 2017].

One of the key ingredients that go into the proof of this robust soundness is an extension of the standard
Schwartz-Zippel lemma over general finite fields Fq, which may be of independent interest.

1 Introduction

The problem of local testing of codes [RS96, Aro94, FS95, GS06] has received a lot of attention over the last
two decades. Informally speaking, the problem of testing a code is to design a robust algorithmic procedure
that tests if a given received word is a member of the code or not. The algorithmic procedure on access to
the received word, queries it at a few random locations and decides to accept/reject the word such that (1)
all codewords are accepted by the procedure and (2) non-codewords are rejected with probability propor-
tional to their distance from the code. The Reed-Muller code, due to its inherent local characterization, is
extremely amenable to efficient local testing. Local testing of Reed-Muller codes over large fields was ex-
tensively investigated in the 90’s [RS96, FS95, AS03, RS97], primarily motivated by their application to con-
struction of probabilistically checkable proofs [FGL+96, BFLS91, AS98, ALM+98]. More recently, local test-
ing of Reed-Muller codes over small fields have also been investigated [AKK+05, KR06, BKS+10, HSS13].

The basic problem of Reed-Muller code testing is to check if a given function f : F
n
q → Fq is close to a

degree-d multivariate polynomial (over Fq, the finite field of q elements) or equivalently if the word f is
close to the Reed-Muller code Pq(n, d) of order d and dimension n over the finite field Fq. This problem,

∗A preliminary version of this paper appeared in the Proc. 36th IARCS Conf. on Foundations of Software Technology & Theoretical
Computer Science (FSTTCS), 2016 [HS16].

†TIFR, Mumbai, India. prahladh@tifr.res.in
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in its local testing version, for the case when q = 2 was first studied by Alon, Kaufman, Krivilevich, Litsyn
and Ron [AKK+05], who proposed and analyzed a natural 2d+1-query test for this problem. Subsequent to
this work, improved analyses and generalizations to larger fields were discovered [KR06, BKS+10, HSS13].
These tests and their analyses led to several applications, especially in hardness of approximation, which
in turn spurred other Reed-Muller testing results (which were not necessarily local tests) [DG15, GHH+17].
In this work, we give a robust version of one of these latter multiplication based tests due to Dinur and
Guruswami [DG15]. Below we describe this variation of the testing problem, its context, and our results.

1.1 Local Reed-Muller tests

Given a field Fq of size q, let Fq(n) := { f | f : F
n
q → Fq}. The Reed-Muller code Pq(n, d), parametrized by

two parameters n and d, is the subset of Fq(n) that corresponds to those functions which are evaluations of
polynomials of degree at most d. If n, d and q are clear from context, we let r := (q − 1)n − d.

The proximity of two functions f , g ∈ Fq(n) is measured by the Hamming distance. Specifically, we let
∆( f , g) denote the absolute Hamming distance between f and g, i.e., ∆( f , g) := #{x ∈ F

n
q | f (x) 6= g(x)}.

For a family of functions G ⊆ Fq(n), we let ∆( f ,G) := min{∆( f , g) | g ∈ G}. We say that f is ∆-close to G
if ∆( f ,G) ≤ ∆ and ∆-far otherwise.

The following natural local test to check membership of a function f in P2(n, d) was proposed by
Alon et al. [AKK+05] for the case when q = 2 (and extended by Kaufman and Ron [KR06] to larger q).

• AKKLR Test: Input f : F
n
2 → F2

– Pick a random d + 1-dimensional affine space A.

– Accept iff f |A ∈ P2(d + 1, d).

Here, f |A refers to the restriction of the function f to the affine space A. Bhattacharyya et al. [BKS+10]
showed the following optimal analysis of this test.

Theorem 1.1 ([AKK+05, BKS+10]). There exists an absolute constant α > 0 such that the following holds. If
f ∈ F2(n) is ∆-far from P2(n, d) for ∆ ∈ N, then

Pr
A
[ f |A 6∈ P2(d + 1, d)] ≥ min{∆/2r, α}.

Subsequent to this result, Haramaty, Shpilka and Sudan [HSS13] extended this result to all constant sized
fields Fq. These optimal analyses then led to the discovery of the so-called “short code” (aka the low degree
long code) due to Barak et al. [BGH+15] which has played an important role in several improved hardness
of approximation results [DG15, GHH+17, KS17, Var15, Hua15].

1.2 Multiplication-based tests

We now consider the following type of multiplication-based tests to check membership in Pq(n, d),
parametrized by two numbers e, k ∈ N.

• Teste,k: Input f : F
n
q → Fq

2



– Pick P1, . . . , Pk ∈R Pq(n, e).

– Accept iff f P1 · · · Pk ∈ Pq(n, d + ek).

This tests computes the point-wise product of f with k random degree-e polynomials P1, . . . , Pk respectively
and checks that the resulting product function f P1 · · · Pk is the evaluation of a degree-(d + ek) polynomial.
Unlike the previous test, this test is not necessarily a local test.

The key lemma due to Bhattacharyya et al. [BKS+10] that led to the optimal analysis in Theorem 1.1 is the
following robust analysis of Test1,1.

Lemma 1.2 ([BKS+10]). Let f ∈ F2(n) be ∆-far from P2(n, d) for ∆ = 2r/100. For randomly picked ℓ ∈ P2(n, 1),
we have

Pr
ℓ
[∆( f · ℓ,P2(n, d + 1)) < β∆] = O

(
1

2r

)

,

for some absolute constant β > 0.

Observe that the AKKLR test is equivalent to Test1,r−1 for r = n− d. This observation coupled with a simple
inductive argument using the above lemma implies Theorem 1.1.

Motivated by questions related to hardness of coloring hypergraphs, Dinur and Guruswami studied the
Teste,1 for e = r/4 and proved the following result.

Lemma 1.3 ([DG15]). Let f ∈ F2(n) be ∆-far from P2(n, d) for ∆ = 2r/100 and let e = (n− d)/4. For randomly
picked P ∈ P2(n, e), we have

Pr
P
[ f · P ∈ P2(n, d + e)] ≤

1

22Ω(e)
.

Note that the Teste,1 is not a local test (as is the case with multiplication based tests of the form Teste,k).
Furthermore, the above lemma does not give a robust analysis unlike Lemma 1.2. More precisely, the lemma
only bounds the probability that the product function f · P is in P2(n, d + e), but does not say anything
about the probability of f · P being close to P2(n, d + e) as in Lemma 1.2. Despite this, this lemma has
had several applications, especially towards proving improved inapproximability results for hypergraph
colouring [DG15, GHH+17, KS17, Var15, Hua15].

1.3 Our results

Our work is motivated by the question raised at the end of the previous section: can the analysis of the
Dinur-Guruswami Lemma be strengthened to yield a robust version of Lemma 1.3? Such a robust ver-
sion, besides being interesting of its own right, would yield a soundness analysis of the Teste,k for k > 1
(wherein the input function f is multiplied by k degree-e polynomials). This is similar to how Lemma 1.2
was instrumental in proving Theorem 1.1.

We begin by first showing this latter result (ie., the soundness analysis of the Teste,k). First for some notation.
For non-negative n and d, let Nq(n, d) denote the number of monomials m in indeterminates X1, . . . , Xn such
that the degree of each variable in m is at most q − 1 and the total degree is at most d. Equivalently, Nq(n, d)
is the dimension of the vector space Pq(n, d). For n < 0, we define Nq(n, d) = 1.

Theorem 1.4 (Soundness of Teste,k). For every prime q there exists a constant cq such that the following holds. Let

k ∈ N be arbitrary constant. Let n, d, r, ∆, e ∈ N be positive integers such that r = (q − 1)n − d, ∆ ≤ qr/4(q−1)−2,
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and e ≤ r/4k. Then, given any f ∈ Fq(n) that is ∆-far from Pq(n, d) and for P1, . . . , Pk chosen independently and
uniformly at random from Pq(n, e), we have

Pr
P1,...,Pk

[
f P1P2 · · · Pk ∈ Pq(n, d + ek)

]
≤

k

qN
,

for some N ≥ η(q, k) · Nq(⌊
L
10⌋ − cq, e), for L = ⌊logq ∆⌋ and η(q, k) = 1

qk/q−1 ln q
.

Remark 1.5. • To appreciate the parameters of Theorem 1.4, it is instructive to lower bound the prob-
ability PrP1,...,Pk

[
f P1P2 · · · Pk ∈ Pq(n, d + ek)

]
for some fixed f . Let L and ∆ be positive integers such

that ∆ = qL. Let f : F
n
q → F be the function defined as follows:

f (x1, . . . , xn) =
n−L

∏
i=1

(

1 − x
q−1
i

)

.

By definition, f ∈ Pq(n, D) where D := (n − L)(q − 1). Hence, it has distance ∆ = qL from any other
degree-D polynomial (see Fact 2.1) and hence, also from all functions in Pq(n, d) provided D ≥ d.
Observe that f is a function which is one on the L-dimensional subspace V := {x1 = x2 = · · · =
xn−L = 0} and 0 elsewhere. Let us consider what happens when we multiply f with P1P2 · · · Pk

where each of the Pi are random functions in Pq(n, e). Let Ei denote the event that Pi vanishes on

the subspace V. We first note that Pr[Ei] = q−Nq(L,e). We then observe that if any of the events Ei

happen, then f P1P2 · · · Pk ≡ 0. Hence, the PrP1,...,Pk

[
f P1P2 · · · Pk ∈ Pq(n, d + ek)

]
is lower bounded by

the probability Pr [∃i, Ei] ≈ kq−Nq(L,e). Theorem 1.4 states that this is roughly the largest that it can
be.

• The constant cq is obtained from a result of Haramaty, Shpilka and Sudan [HSS13] (see statement of
Lemma 2.11).

• The quantity Nq(n, d) is the number of distinct monomials in n variables of individual degree at most
(q − 1) and total degree at most d. This is certainly lower bounded by the number of monomials in

⌊d/(q − 1)⌋ variables of individual degree at most q − 1, which is exactly q⌊d/(q−1)⌋. Plugging this
bound of Nq into Theorem 1.4 yields the following corollary.

Corollary 1.6. Let q, k ∈ N be constants with q prime and ε, δ ∈ (0, 1) be arbitrary constants. Let n, d, r, ∆, e ∈ N

be such that r = (q − 1)n − d, qεr ≤ ∆ ≤ qr/4(q−1)−2, and δr ≤ e ≤ r/4k. Then, given any f ∈ Fq(n) that is
∆-far from Pq(n, d) and for P1, . . . , Pk chosen independently and uniformly at random from Pq(n, e), we have

Pr
P1,...,Pk

[
f P1P2 · · · Pk ∈ Pq(n, d + ek)

]
≤

1

qqΩ(r)
,

where the Ω(·) above hides a constant depending on k, q, δ, ε.

We then show that the above corollary can be used to prove the following robust version of Lemma 1.3,
answering an open question of Dinur and Guruswami [DG15].

Theorem 1.7 (Robust soundness of Teste,1). Let q ∈ N be a constant with q prime and ε, δ ∈ (0, 1) be arbitrary

constants. Let n, d, r, ∆, e ∈ N be such that r = (q − 1)n − d, qεr ≤ ∆ ≤ qr/4(q−1)−2, and δr ≤ e ≤ r/8. Then,

there is a ∆′ = qΩ(r) such that given any f ∈ Fq(n) that is ∆-far from Pq(n, d) and for P chosen uniformly at
random from Pq(n, e), we have

Pr
P

[
∆( f · P,Pq(n, d + e)) < ∆′

]
≤

1

qqΩ(r)
,

where the Ω(·) above hide constants depending on q, δ, ε.
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Equipped with such multiplication-based tests, we can ask if one can prove the soundness analysis of other
related multiplication-based tests. For instance, consider the following test which checks correlation of the
function f with the square of a random degree-e polynomial.

• Corr-Squaree: Input f : F
n
3 → F3

– Pick P ∈R P3(n, e).

– Accept iff f · P2 ∈ P3(n, d + 2e).

This test was used by Guruswami et al. [GHH+17] to prove the hardness of approximately coloring 3-
colorable 3-uniform hypergraphs. However, their analysis was restricted to the squares of random polyno-
mials. Our next result shows that this can be extended to any low-degree polynomial of random polynomi-
als. More precisely, let h ∈ Pq(1, k) be a univariate polynomial of degree exactly k for some k < q. Consider
the following test.

• Corr-he: Input f : F
n
q → Fq

– Pick P ∈R Pq(n, e).

– Accept iff f · h(P) ∈ Pq(n, d + ek).

We show that an easy consequence of Corollary 1.6 proves the following soundness claim about the test
Corr-h.

Corollary 1.8 (Soundness of Corr-he). Let q, k ∈ N be constants with q prime, k < q, and let ε, δ ∈ (0, 1) be

arbitrary constants.1 Let n, d, r, ∆, e ∈ N be such that r = (q − 1)n − d, qεr ≤ ∆ ≤ qr/4(q−1)−2, and δr ≤ e ≤
r/4k. Let h ∈ Pq(1, k) be a univariate polynomial of degree exactly k. Then, given any f ∈ Fq(n) that is ∆-far from
Pq(n, d) and for P chosen uniformly at random from Pq(n, e), we have

Pr
P

[
f · h(P) ∈ Pq(n, d + ek)

]
≤

1

qqΩ(r)/2k
,

where the Ω(·) above hides a constant depending on k, q, δ, ε.

A generalization of the Schwartz-Zippel lemma over Fq. A special case of Theorem 1.4 is already quite
interesting. This case corresponds to when the function f is a polynomial of degree exactly d′, for some d′

slightly larger than d. (It is quite easy to see by the Schwartz-Zippel lemma over Fq — which guarantees
that a non-zero polynomial of low degree is non-zero at many points — that this f is far from Pq(n, d).) In
this case, we would expect that when we multiply f with k random polynomials P1, . . . , Pk ∈ Pq(n, e), that
the product f P1 · · · Pk is a polynomial of degree exactly d′ + ek and hence not in Pq(n, d + ek) with high
probability.

We are able to prove a tight version of this statement (Lemma 3.3). For every degree d′, we find a polynomial
f of degree exactly d′ that maximizes the probability that f P1 has degree < d′ + s for any parameter s ≤ e.
This polynomial turns out to be the same polynomial for which the Schwartz-Zippel lemma over Fq is tight.
This is not a coincidence: it turns out that our lemma is a generalization of the Schwartz-Zippel lemma over
Fq (see Section 3.1).

Given the utility of the Schwartz-Zippel lemma in Coding theory and Theoretical Computer Science, we
think this statement may be of independent interest.

1The assumption k < q is necessary here since otherwise h(P) could be Pq − P, which is always 0.
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1.4 Proof ideas

The basic outline of the proof of Theorem 1.4 is similar to the proof of Lemma 1.3 from the work of Dinur
and Guruswami [DG15] which corresponds to Theorem 1.4 in the case that q = 2 and k = 1. We describe
this argument in some detail so that we can highlight the variations in our work.

The argument is essentially an induction on the parameters e, r = n − d, and ∆. As long as r is a sufficiently
large constant, Lemma 1.2 can be used [DG15, Lemma 22] to show that for any f ∈ F2(n) that is ∆-far
from P2(n, d), there is a variable X such that for each α ∈ {0, 1} = F2, the restricted function f |X=α is
∆′ = Ω(∆)-far from P2(n − 1, d).2

Now, to argue by induction, we write

f = Xg + h and P1 = XQ1 + R1 (1)

where g, h, Q1, R1 depend on n − 1 variables, Q1 is a random polynomial of degree ≤ e − 1 and R1 is a
random polynomial of degree ≤ e. Using the fact that X2 = X over F2, we get f P1 = X((g + h)Q1 +
gR1) + hR1.

Since f |X=α is ∆′-far from P2(n − 1, d), we see that both h and g + h are ∆′-far from P2(n − 1, d). To apply
induction, we note that f P1 ∈ P2(n, d + e) iff hR1 ∈ P2(n − 1, d + e) and (g + h)Q1 + hR1 ∈ P2(n − 1, d +
e − 1); we call these events E1 and E2 respectively. We bound the overall probability by Pr [E1] · Pr [E2 | R1]
(note that E1 depends only on R1).

We first observe that Pr [E1] can be immediately bounded using the induction hypothesis since h is ∆′-far
from Pq(n − 1, d+ e) and R1 is uniform over Pq(n− 1, e). The second term Pr [E2 | R1] can also be bounded
by the induction hypothesis with the following additional argument. We argue that (for any fixed R1)
the probability that (g + h)Q1 + gR1 ∈ P2(n − 1, d + e − 1) is bounded by the probability that (g + h)Q1 ∈
P2(n− 1, d+ e− 1): this follows from the fact that the number of solutions to any system of linear equations
is bounded by the number of solutions of the corresponding homogeneous system (obtained by setting the
constant term in each equation to 0). Hence, it suffices to bound the probability that (g + h)Q1 ∈ P2(n −
1, d + e − 1), which can be bounded by the induction hypothesis since (g + h) is ∆′-far from P2(n − 1, d)
and Q1 is uniform over P2(n − 1, e − 1) and we are done.

Though our proofs follow the above template, we need to deviate from the proof above in some important
ways which we elaborate below.

The first is the decomposition of f and P1 from (1) obtained above, which yields two events E1 and E2, the
first of which depends only on R1 and the second on both Q1 and R1. For q > 2, the standard monomial
decomposition of polynomials does not yield such a nice “upper triangular” sequence of events. So we
work with a different polynomial basis to achieve this. This choice of basis is closely related to the poly-
nomials for which the Schwartz-Zippel lemma over Fq is tight. While such a basis was used in the special
case of q = 3 in the work of Guruswami et al. [GHH+17] (co-authored by the authors of this work), it was
done in a somewhat ad-hoc way. Here, we give, what is in our opinion a more transparent construction
that additionally works for all q.

Further modifications to the Dinur-Guruswami argument are required to handle k > 1. We illustrate this
with the example of q = 2 and k = 2. Decomposing as in the Dinur-Guruswami argument above, we obtain

2Actually, Lemma 1.2 implies the existence of a linear function with this property and not a variable. But after a linear transforma-
tion of the underlying space, we may assume that it is a variable.
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f = Xg + h, P1 = XQ1 + R1, and P2 = XQ2 + R2. Multiplying out, we get

f P1P2 = X(Q1Q2(g + h) + (g + h)(Q1R2 + Q2R1) + gR1R2
︸ ︷︷ ︸

Q:=

) + hR1R2 .

Bounding the probability that f P1P2 ∈ P2(n, d + 2e) thus reduces to bounding the probability of event
that hR1R2 ∈ P2(n − 1, d + 2e) — E1 depending only on R1 and R2 — and then the probability that Q ∈
P2(n − 1, d + 2e − 1) — denoted E2 — given any fixed R1 and R2. The former probability can be bounded
using the induction hypothesis straightforwardly.

By a reasoning similar to the k = 1 case, we can reduce bounding Pr [E2 | R1, R2] to the probability that
Q1Q2(g + h) ∈ P2(n − 1, d + 2e − 1). However, now we face a problem. Note that we have g + h = f |X=1

is ∆′-far from P2(n − 1, d) and Q1, Q2 ∈ P2(n − 1, e − 1). Thus, the induction hypothesis only allows us to
upper bound the probability that Q1Q2(g + h) ∈ P2(n − 1, d + 2e − 2) which is not quite the event that we
want to analyze. Indeed, if f is a polynomial of degree exactly d + 1, then the polynomial Q1Q2(g + h) ∈
P2(n − 1, d + 2e − 1) with probability 1. A similar problem occurs even if f is a polynomial of degree d′

slightly larger than d or more generally, when f is close to some polynomial of degree d′.

This naturally forces us to break the analysis into two cases. In the first case, we assume not just that f is
far from P2(n, d) but also from P2(n, d′) but for some d′ a suitable parameter larger than d. In this case,
we can modify the proof of Dinur and Guruswami to bound the probability that f P1P2 ∈ P2(n, d + 2e) as
claimed in Theorem 1.4. In the complementary case when f is close to some polynomial F ∈ P2(n, d′), we
can essentially assume that f is a polynomial of degree exactly d′. In this case, we can use the extension of
Schwartz-Zippel lemma referred to above to show that with high probability f P1P2 is in fact a polynomial
of degree exactly d′ + 2e and is hence not of degree d + 2e < d′ + 2e.

1.5 Organization

We begin with some notation and definitions in Section 2. We prove the extension of the Schwartz-Zippel
lemma (Lemma 3.3) in Section 3 and then Theorem 1.4 in Section 4. Finally, we give two applications of
Corollary 1.6 in Section 5: one to proving a robust version of the above test (thus resolving a question of
Dinur and Guruswami [DG15]) and the other to proving Corollary 1.8.

2 Preliminaries

For a prime power q, let Fq denote the finite field of size q. We use Fq[X1, . . . , Xn] to denote the standard

polynomial ring over variables X1, . . . , Xn and Pq(n) to denote the ring Fq[X1, . . . , Xn]/〈X
q
1 − X1, . . . , X

q
n −

Xn〉.

We can think of the elements of Pq(n) as elements of Fq[X1, . . . , Xn] of individual degree at most q − 1 in
a natural way. Given P, Q ∈ Pq(n), we use P · Q or PQ to denote their product in Pq(n). We use P ∗ Q to
denote their product in Fq[X1, . . . , Xn].

Given a set S ⊆ F
n
q and an f ∈ Pq(n), we use f |S to denote the restricted function on the set S. Typically, S

will be specified by a polynomial equation. One special case is the case when S is a hyperplane: i.e., there
is a non-zero homogeneous degree-1 polynomial ℓ(X) ∈ Pq(n) and an α ∈ Fq such that S = {x | ℓ(x) =
α}. In this case, it is natural to think of f |ℓ(X)=α = f |S as an element of Pq(n − 1) by applying a linear

transformation that transforms ℓ(X) into the variable Xn and then setting Xn = α.
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For d ≥ 0, we use Pq(n, d) to denote the polynomials in Pq(n) of degree at most d.

The following are standard facts about the ring Pq(n) and the space of functions mapping F
n
q to Fq.

Fact 2.1. 1. Consider the ring of functions mapping F
n
q to Fq with addition and multiplication defined pointwise.

This ring is isomorphic to Pq(n) under the natural isomorphism that maps each polynomial P ∈ Pq(n) to the
function (mapping F

n
q to Fq) represented by this polynomial.

2. In particular, each function f : F
n
q → Fq can be represented uniquely as a polynomial from Pq(n). As a further

special case, any non-zero polynomial from Pq(n) represents a non-zero function f : F
n
q → Fq.

3. (Schwartz-Zippel lemma over Fq [KLP68]) Any non-zero polynomial from Pq(n, d) is non-zero on at least

qn−a−1(q − b) points from F
n
q where d = a(q − 1) + b and 0 ≤ b < q − 1.

4. In particular, if f , g ∈ Pq(n, d) differ from each other at at most ∆ < qn−a−1(q − b) points, then f = g.

5. (A probabilistic version of the Schwartz-Zippel lemma (see, e.g., [HSS13])) It follows from the above that given
a non-zero polynomial g ∈ Pq(n, d), then g(x) 6= 0 at a uniformly random point of F

n
q with probability at

least q−d/(q−1). Similarly, if f , g ∈ Pq(n, d) are distinct, then for uniformly random x ∈ F
n
q , the probability

that f (x) 6= g(x) is at least q−d/(q−1).

From now on, we will use without additional comment the fact that functions from F
n
q to Fq have unique

representations as multivariate polynomials where the individual degrees are bounded by q − 1.

Recall that m1 ∗m2 denotes the product of these monomials in the ring Fq[X1, . . . , Xn] while m1 · m2 denotes

their product in Pq(n) = Fq[X1, . . . , Xn]/〈X
q
1 − X1, . . . , X

q
n − Xn〉. We say that monomials m1, m2 ∈ Pq(n)

are disjoint if m1 ∗ m2 = m1 · m2 (where the latter monomial is interpreted naturally as an element of
Fq[X1, . . . , Xn]). Equivalently, for each variable Xi (i ∈ [n]), the sum of its degrees in m1 and m2 is less
than q.

Given distinct monomials m1, m2 ∈ Fq[X1, . . . , Xn], we say that m1 > m2 if either one of the following holds:

deg(m1) > deg(m2), or deg(m1) = deg(m2) and we have m1 = ∏i X
ei
i and m2 = ∏i X

e′i
i where for the least

j such that ej 6= e′j, we have ej > e′j.

The above is called the graded lexicographic order on monomials [CLO15]. This ordering obviously restricts
to an ordering on the monomials in Pq(n), which are naturally identified as a subset of the monomials of
Fq[X1, . . . , Xn]. The well-known fact about this monomial ordering we will use is the following.

Fact 2.2 ([CLO15]). For any monomials m1, m2, m3, we have m1 ≤ m2 ⇒ m1 ∗ m3 ≤ m2 ∗ m3.

Given an f ∈ Pq(n), we use Supp( f ) to denote the set of points x ∈ F
n
q such that f (x) 6= 0. If f 6= 0, we use

LM( f ) to denote the largest monomial (w.r.t. ordering defined above) with non-zero coefficient in f .

Let m = ∏i∈[n] X
ei
i with ei < q for each i and let d = deg(m). For an integer s ≥ 0, we let

Us(m) := { ∏
j∈[n]

X
e′j
j | ∑

j

e′j = d + s and ∀j q > e′j ≥ ej, },

Ds(m) := { ∏
j∈[n]

X
e′j
j | ∑

j

e′j = s and ∀j e′j + ej < q}.

8



Note that the monomials in Ds(m) are precisely the monomials of degree s that are disjoint from m. Further,
the map ρ : Ds(m) → Us(m) defined by ρ(m1) = m1 · m defines a bijection between Ds(m) and Us(m), and
hence we have

Fact 2.3. For any monomial m and any s ≥ 0, |Us(m)| = |Ds(m)|.

For non-negative integers s ≤ e, we define Us,e(m) :=
⋃

s≤t≤e Ut(m) and Ds,e(m) :=
⋃

s≤t≤e Dt(m). Since
|Ut(m)| = |Dt(m)| for each t, we have |Us,e(m)| = |Ds,e(m)|.

2.1 A different basis for Pq(n)

Applying Fact 2.1 in the case that n = 1, it follows that the monomials {Xi | 0 ≤ i < q} form a natural basis
for the space of all functions from Fq to Fq. The following is another such basis which is sometimes more
suitable for our purposes.

Definition 2.4 (A suitable basis for the space of functions from Fq to Fq). Fix a linear ordering � of all the
elements of Fq. Let ξ0, . . . , ξq−1 be the elements of Fq according to this ordering. For any i ∈ {0, . . . , q − 1},

let b�i (X) = ∏j<i(X − ξ j). Note that for i < q, b�i (X) is a non-zero polynomial of degree i. In particular,

{b�i (X) | 0 ≤ i < q} is a basis for the space of all functions from Fq to Fq. Usually, when we apply this definition,

the ordering � will be implicitly clear and hence we will use bi(X) to refer to b�i (X).

The following property of this basis will be useful.

Lemma 2.5. Fix any ordering � of Fq and let {bi(X) | 0 ≤ i < q} be the corresponding basis as in Definition 2.4.
Then, for any f : Fq → Fq and i ∈ {0, . . . , q − 1}, we have f (X) · bi(X) = f (ξi)bi(X) + b′i(X) where b′i(x) ∈
span{bi+1(X), . . . , bq−1(X)}.

Proof. We know that f (X) is a polynomial of degree at most q − 1 in X. By linearity, it suffices to prove the
lemma for f (X) = Xk for 0 ≤ k ≤ q − 1. We prove this by induction on k. The base case (k = 0) of the
induction is trivial. We also handle the case k = 1 by noting that

X · bi(X) = ξibi(X) + (X − ξi)bi(X) = ξibi(X) + bi+1(X)

which has the required form.

Now consider k ∈ {2, . . . , q − 1}. By the induction hypothesis, we know that Xk−1 · bi(X) = ξk−1
i bi(X) +

b′i(X) where b′i(X) ∈ span{bi+1(X), . . . , bq−1(X)}. Hence, we see that Xk · bi(X) = X · ξk−1
i bi(X) +

Xb′i(X) = (X − ξi + ξi) · ξk−1
i bi(X) + Xb′i(X). Expanding we obtain

Xk · bi(X) = ξk
i bi(X) + (X − ξi)bi(X) + Xb′i(X) = ξk

i bi(X) + bi+1(X) + Xb′i(X) = ξk
i bi(X) + b′′i (X)

where b′′i (X) ∈ span{bi+1(X), . . . , bq−1(X)} by using the fact that Xb′i(X) ∈ span{bi+1(X), . . . , bq−1(X)},
which follows from the case k = 1. This proves the induction statement and hence also the lemma.

We now consider functions f : F
n
q → Fq over n variables X1, . . . , Xn. As noted above, this space of functions

is ring isomorphic to Pq(n). We will use an alternate basis for this space also.

We fix an ordering � of Fq and let {bi(Xj) | 0 ≤ i < q} be the corresponding basis in the variable Xj.
We refer to functions of the form ∏j∈[n] bi j

(Xj) as generalized monomials w.r.t. �: we call this set Bq(n) (the

9



orderings will be implicit). The degree of the monomial ∏j∈[n] bi j
(Xj) is ∑j∈[n] ij. Given a degree parameter

d ∈ N, we let Bq(n, d) denote the set of all monomials in Bq(n) of degree at most d.

The following fact is easily proved.

Fact 2.6. 1. For any n, d ∈ N, the set Bq(n, d) is a basis for the space of polynomials in Pq(n, d).

2. In particular, the set Bq(n) = Bq(n, (q − 1)n) is a basis for Pq(n).

What makes the above basis useful is the following lemma.

Lemma 2.7. Fix any ordering ξ0, . . . , ξq−1 of Fq and let bi(X) (0 ≤ i ≤ q − 1) be the corresponding basis. Given
any f ∈ Pq(n) and any P ∈ Pq(n, d), we may write the function f · P ∈ Pq(n) as

f P =
q−1

∑
k=0

bk(Xn)

(

Qk · f |Xn=ξk
+ ∑

0≤j<k

Qj · hj,k

)

where P = ∑
q−1
k=0 bk(Xn)Qk(X1, . . . , Xn−1), and hj,k(X1, . . . , Xn−1) ∈ Pq(n − 1).

Remark 2.8. The above statement encapsulates the advantage of working with the basis from Definition 2.4.
Note that the coefficient of bk(Xn) only involves Qi(X1, . . . , Xn−1) for i ≤ k. This gives us an “upper
triangular” decomposition of the polynomial f P that we will find useful.

Proof. By Fact 2.6 point 1, we can write f = ∑
q−1
i=0 bi(Xn) fi(X1, . . . , Xn−1). Expanding f P, we get

f P = ∑
i,j∈{0,...,q−1}

bi(Xn)bj(Xn) fiQj

(by Lemma 2.5) = ∑
i,j

fiQj ·

(

bi(ξ j)bj(Xn) + ∑
k>j

αi,j,kbk(Xn)

)

=
q−1

∑
k=0

bk(Xn)

(

Qk ∑
i

fibi(ξk) + ∑
j<k,i

αi,j,k fiQj

)

=
q−1

∑
k=0

bk(Xn)

(

Qk f |Xn=ξk
+ ∑

j<k

Qj · hj,k

)

,

where hj,k := ∑i αi,j,k fi.

We will also need to analyze the product of many polynomials in the above basis, for which we use the
following.

Lemma 2.9. Say P1, . . . , Pk ∈ Pq(n, d) with Pi = ∑
q−1
j=0 bj(Xn)Qi,j(X1, . . . , Xn−1). Let P = ∏

k
i=1 Pi =

∑
q−1
j=0 bj(Xn)Qj(X1, . . . , Xn−1). Given j1, . . . , jk ∈ {0, . . . , q − 1}, we say that (j1, . . . , jk) ≤ j if ji ≤ j for each

i ∈ [k] and (j1, . . . , jk) < j if ji ≤ j for each i ∈ [k] and there is some i such that ji < j. Also, let Q(j1,...,jk)
denote

∏i∈[k] Qi,ji .
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For each j ∈ {0, . . . , q − 1}, we have

Qj = ∑
(j1,...,jk)≤j

β
(j)
(j1,...,jk)

Q(j1,...,jk)
,

where β
(j)
(j1,...,jk)

∈ Fq and further β
(j)
(j,...,j)

6= 0.

Proof. We prove the lemma by induction on k. The base case k = 1 is trivial since we can take β
(j)
(j1)

= 1 if

j1 = j and 0 otherwise.

Now, consider the inductive case k > 1. For P̃ = ∏i<k Pi, we have the above claim, which yields

Q̃j = ∑
(j1,...,jk−1)≤j

β̃
(j)
(j1,...,jk−1)

Q(j1,...,jk−1)
,

where P̃ = ∑j bj(Xn)Q̃j. Also, β̃
(j)
(j,j,...,j)

6= 0.

To prove the inductive claim, we expand P = ∏i Pi = P̃Pk and use Lemma 2.5. The computation is as
follows.

P = P̃Pk =

(

∑
j

bj(Xn)Q̃j

)

·

(
q−1

∑
ℓ=0

bℓ(Xn)Qℓ

)

= ∑
j,ℓ

Q̃jQℓbj(Xn)bℓ(Xn). (2)

By Lemma 2.5, it follows that

bj(Xn)bℓ(Xn) = ∑
r≥(j,ℓ)

γ
(r)
(j,ℓ)

br(Xn),

where γ
(r)
(j,ℓ)

∈ Fq for each (j, ℓ) ≤ r and in particular γ
(r)
(r,r)

= br(ξr) 6= 0. Substituting in (2) we get

P = ∑
j,ℓ

Q̃jQℓ ∑
r≥(j,ℓ)

γ
(r)
(j,ℓ)

br(Xn)

= ∑
r

br(Xn) ∑
(j,ℓ)≤r

γ
(r)
(j,ℓ)

Q̃jQℓ

(by Induction Hypothesis) = ∑
r

br(Xn) ∑
(j,ℓ)≤r

γ
(r)
(j,ℓ)

Qℓ ∑
(j1,...,jk−1)≤j

β̃
(j)

j̄
Q j̄

= ∑
r

br(Xn) ∑
(j1,...,jk−1,ℓ)≤r

β
(r)
(j1,...,jk−1,ℓ)

Q(j1,...,jk−1,ℓ),

where
β
(r)
(j1,...,jk−1,ℓ)

= ∑
j≥(j1,...,jk−1),j≤r

γ
(r)
(j,ℓ)

β̃
(j)
(j1,...,jk−1)

.

In particular, β
(r)
(r,...,r)

= γ
(r)
(r,r)

β̃
(r)
(r,...,r)

6= 0 since we showed that γ
(r)
(r,r)

6= 0 above and β̃
(r)
(r,...,r)

6= 0 by the

Induction Hypothesis.
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2.2 Multilinear and set-multilinear systems of equations

Fix any set Z of variables and say we have a partition Π = {Z1, . . . ,Zk} of Z . A polynomial P ∈ Fq[Z ] is
Π-set-multilinear (or just set-multilinear if Π is clear from context) if every monomial appearing in P involves
exactly one variable from each Zi (i ∈ [k]). The polynomial P is Π-multilinear if every monomial involves
at most one variable from each Zi (i ∈ [k]). Note that a Π-set-multilinear polynomial is homogeneous of
degree k and a Π-multilinear polynomial has degree at most k.

Given a Π as above and a Π-multilinear polynomial P, its homogeneous degree k component is a Π-set-
multilinear polynomial Q. We call Q the set-multilinear part of P.

Lemma 2.10. Fix any set Z = {Z1, . . . , ZN} of variables and a partition Π = {Z1, . . . ,Zk} of Z . Let P1, . . . , Pm

be any set of Π-multilinear polynomials with set-multilinear parts Q1, . . . , Qm respectively. Then, we have

Pr
z∼FN

q

[P1(z) = 0 ∧ · · · ∧ Pm(z) = 0] ≤ Pr
z∼FN

q

[Q1(z) = 0 ∧ · · · ∧ Qm(z) = 0] .

The above lemma generalizes the well-known fact that a system of (inhomogeneous) linear equations has
at most as many solutions as the corresponding homogeneous system of linear equations obtained by setting
the constant term in each equation to 0.

Proof. The proof uses the above fact about the number of solutions for systems of linear equations. Consider
the following systems of multilinear polynomial equations. For j ∈ {0, . . . , k} and i ∈ [m], define Pj,i as
follows: P0,i = Pi and given Pj,i for j < k, we define Pj+1,i by dropping all monomials from Pj,i that do not
involve the variables from Zj+1. In particular, we see that Pk,i = Qi for each i ∈ [m].

We claim that for each j < k we have

Pr
z∼FN

2




∧

i∈[m]

Pj,i(z) = 0



 ≤ Pr
z∼FN

2




∧

i∈[m]

Pj+1,i(z) = 0



 . (3)

The above clearly implies the lemma.

To show that (3) holds, we argue as follows. Fix any assignment to all the variables in Z \ Zj+1. For each
such assignment, the event on the Left Hand Side of (3) is the event that a system of m linear equations L
in Zj+1 is satisfied by a uniformly random assignment to Zj+1: this follows since each Pj,i is a multilinear

polynomial w.r.t. Π. On the Right Hand Side, we have the event that some other system L′ of m linear
equations is satisfied. By inspection, it can be verified that L′ is the homogeneous version of L: i.e., each
equation in L′ is obtained by zeroing the constant term of the corresponding equation in L. By standard
linear algebra, L′ has at least as many solutions as L. Hence, the probability that a random assignment
to the variables in Zj+1 satisfies L′ is at least the probability that a random assignment satisfies L. This
implies (3).

2.3 A result of Haramaty, Shpilka, and Sudan

The following is an easy corollary of a result from the work of Haramaty, Shpilka, and Sudan [HSS13].
Analogous corollaries have been observed before by Dinur and Guruswami [DG15] (using [BKS+10]) and
Guruswami et al. [GHH+17].
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Lemma 2.11. Let q be any constant prime. There is a constant cq > q depending only on q such that the following

holds. Let n, d, ∆, r be non-negative integers with d < (q − 1)n, r := (q − 1)n − d, q5 < ∆ < qr/(q−1), and r ≥ cq.
Then, for any f ∈ Pq(n) that is ∆-far from Pq(n, d), there is a non-zero homogeneous linear function ℓ(X1, . . . , Xn)

such that for each α ∈ Fq, the restriction f |ℓ(X)=α is at least ∆/q3-far from Pq(n − 1, d).

We need the following theorem due to Haramaty, Shpilka and Sudan [HSS13].

Theorem 2.12 ([HSS13, Theorem 1.7 and 4.16] using absolute distances instead of fractional distances). For
every prime q, there exists a constant λq such that the following holds. For β : F

n
q → Fq, let A1, . . . , AK be hyper-

planes such that β|Ai
is ∆1-close to some degree d polynomial on Ai. If K > q

⌈ d+1
q−1 ⌉+λq and ∆1 < qn−d/(q−1)−2/2,

then ∆(β,Pq(n, d)) ≤ 2q∆1 + 4(q − 1) · qn/K.

Proof of Lemma 2.11. Let cq = cqλq where λq is the constant from Theorem 2.12 and c is an absolute constant
determined below.

Suppose Lemma 2.11 were false with r ≥ cq. Then, for every nonzero homogeneous linear function ℓ, at

least one of { f |ℓ=α | α ∈ Fq} is ∆/q3-close to a degree d polynomial. We thus, get K = (qn − 1)/(q − 1)

hyperplanes such that the restriction of f to these hyperplanes is ∆/q3-close to a degree d polynomial.

Observe that K ≥ qn−1 > q
⌈ d+1

q−1 ⌉+λq if r ≥ cq and the constant c is chosen large enough. Also note that

since ∆ < qr/(q−1), we have ∆/q3 < q(r/(q−1))−3 ≤ qn−d/(q−1)−2/2. Hence, by Theorem 2.12 we have
∆( f ,Pq(n, d)) ≤ 2∆/q2 + 4 · (q− 1)2 · qn/(qn − 1) < 2∆/q2 + 8(q− 1)2 < ∆ (since ∆ ≥ q5). This contradicts
the hypothesis that f is ∆-far from Pq(n, d).

3 An extension of the Schwartz-Zippel Lemma over Fq

The results of this section hold over Fq where q is any prime power.

Lemma 3.1. Let d, s ≥ 0 be arbitrary integers with d + s ≤ n(q − 1). Assume d = (q − 1)u + v for u, v ≥ 0

with v < (q − 1). Then the monomial m0 := X
q−1
1 · · · X

q−1
u Xv

u+1 of degree d satisfies |Us(m0)| ≤ |Us(m)| for all
monomials m of degree exactly d.

Proof. Fix any monomial m of degree d such that |Us(m)| is as small as possible; say m = ∏j∈[n] X
e j

j . By

renaming the variables if necessary, we assume that e1 ≥ e2 ≥ · · · ≥ en.

If m 6= m0, then we can find an i < n such that 0 < ei+1 ≤ ei < q − 1. Consider the monomial m′ =

X
ei+1
i X

ei+1−1
i+1 ∏j 6∈{i,i+1} X

e j

j . We claim that |Us(m′)| ≤ |Us(m)|. This will complete the proof of the lemma,

since it is easy to check that by repeatedly modifying the monomial in this way at most d times, we end up
with the monomial m0. By construction, we will have shown that |Us(m0)| ≤ |Us(m)|.

We are left to show that |Us(m′)| ≤ |Us(m)| or equivalently (by Fact 2.3) that |Ds(m′)| ≤ |Ds(m)|. To this
end, we show that for any (n − 2)-tuple e′ = (e′1, . . . , e′i−1, e′i+2, . . . , e′n), we have |Ds(m′, e′)| ≤ |Ds(m, e′)|
where Ds(m, e′) denotes the set of monomials m̃ ∈ Ds(m) such that for each j ∈ [n] \ {i, i + 1}, the degree
of Xj in m̃ is e′j. To see this, note that Ds(m, e′) and Ds(m′, e′) are in bijective correspondence with the sets S

and T respectively, defined as follows:

S = {(d1, d2) | 0 ≤ d1 ≤ a, 0 ≤ d2 ≤ b, d1 + d2 = c},

T = {(d1, d2) | 0 ≤ d1 ≤ a − 1, 0 ≤ d2 ≤ b + 1, d1 + d2 = c},
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where a := (q − 1)− ei, b := (q − 1)− ei+1, and c = s − ∑j 6∈{i,i+1} e′j; note that by assumption, (q − 1) >

ei ≥ ei+1 and hence 1 ≤ a ≤ b. Our claim thus reduces to showing |T| ≤ |S|, which is done as follows.

If c < 0 or c > a + b, then both S and T are empty sets and the claim is trivial. So assume that 0 ≤ c ≤ a + b.
In this case, we see that |T \ S| ≤ 1: in fact, T \ S can only contain the element (c − b − 1, b + 1) and this
happens only when the inequalities 0 ≤ c − b − 1 ≤ a − 1 are satisfied. But this allows us to infer that S \ T
contains (a, c − a) since 0 ≤ c − b − 1 ≤ c − a and c − a ≤ b. Thus, |T \ S| ≤ |S \ T| and hence |T| ≤ |S|.

We have the following immediate corollary of Lemma 3.1.

Corollary 3.2. Let d, e, s ≥ 0 be arbitrary parameters with s ≤ e and d ≤ n(q − 1). Assume d = (q − 1)u + v for

u, v ≥ 0 with v < (q − 1). Then the monomial m0 := X
q−1
1 · · · X

q−1
u Xv

u+1 satisfies |Us,e(m0)| ≤ |Us,e(m)| for all
monomials m of degree exactly d.

The main technical lemma of this section is the following.

Lemma 3.3 (Extension of the Schwartz-Zippel lemma over Fq). Let e, d, s ≥ 0 be integer parameters with s ≤ e.
Let f ∈ Pq(n) be non-zero and of degree exactly d with LM( f ) = m1. Then,

Pr
P∈RPq(n,e)

[deg( f P) < d + s] ≤
1

q|Us,e(m1)|
.

In particular, using Corollary 3.2, the probability above is upper bounded by 1

q|Us,e(m0)|
where the monomial m0 is as

defined in the statement of Corollary 3.2.

Proof. Let P = ∑m:deg(m)≤e αmm where m ranges over all monomials in Pq(n) of degree at most e and the

αm are chosen independently and uniformly at random from Fq. Also, let f = ∑
N
i=1 βimi where βi 6= 0 for

each i and we have m1 > m2 > · · · > mN in the graded lexicographic order defined earlier.

Thus, we have

f P =



 ∑
m:deg(m)≤e

αmm



 ·

(
N

∑
i=1

βimi

)

= ∑
m̃



 ∑
(m,j):mmj=m̃

αmβ j



 m̃.

The polynomial f P has degree < d + s iff for each m̃ of degree at least d + s, its coefficient in the above
expression is 0. Since the βi’s are fixed, we can view this event as the probability that some set of homoge-
neous linear equations in the αm variables (one equation for each m̃ of degree at least d + s) are satisfied. By
standard linear algebra, this is exactly q−t where t is the rank of the linear system. So it suffices to show
that there are at least |Us,e(m1)| many independent linear equations in the system.

Recall that |Ds,e(m1)| = |Us,e(m1)|. Now, for each m ∈ Ds,e(m1), consider the “corresponding” monomial
m̃ = m · m1 = m ∗ m1 ∈ Us,e(m1) (the second equality is true since m is disjoint from m1). Note that each
m̃ ∈ Us,e(m1) has degree exactly deg(m) +deg(m1) ∈ [d + s, d + e]. Thus, for f P to have degree < d+ s, the
coefficient of each m̃ must vanish. Further, since |Ds,e(m1)| = |Us,e(m1)| it suffices to show that the linear
equations corresponding to the different m̃ ∈ Us,e(m1) are all linearly independent.

To prove this, we argue as follows. Let m′ be a monomial of degree at most e. We say that m′ influences
m̃ ∈ Us,e(m1) if αm′ appears with non-zero coefficient in the equation corresponding to m̃. We now make
the following claim.
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Claim 3.4. Let m̃ ∈ Us,e(m1) and m ∈ Ds,e(m1) be such that m̃ = m ∗ m1. Then, m influences m̃. Further, if some
monomial m′ influences m̃, then m′ ≥ m.

Assuming the above claim, we complete the proof of the lemma as follows. Consider the matrix B of
coefficients obtained by writing the above linear system in the following manner. For each m̃ = m ∗ m1 ∈
Us,e(m1), we have a row of B and let the rows be arranged from top to bottom in increasing order of m
(w.r.t. the graded lexicographic order). Similarly, for each m′ of degree at most e, we have a column and
again the columns are arranged from left to right in increasing order of m′. The (m̃, m′)th entry contains the
coefficient of αm′ in the equation corresponding to the coefficient of m̃.

Restricting our attention only to columns corresponding to m′ ∈ Ds,e(m1), Claim 3.4 guarantees to us that
the submatrix thus obtained is a |Ds,e(m1)| × |Ds,e(m1)| matrix that is upper triangular with non-zero entries
along the diagonal. Hence, the submatrix is full rank. In particular, the matrix B (and hence our linear
system) has rank at least |Ds,e(m1)|. This proves the lemma.

Proof of Claim 3.4. We start by showing that m does indeed influence m̃. The linear equation corresponding
to m̃ is

∑
(m′,j):m′·mj=m̃

β jαm′ = 0 (4)

where m′ runs over all monomials of degree at most e.

Clearly, one of the summands in the LHS above is β1αm. Thus, to ensure that m influences m̃, it suffices to
ensure that no other summand containing the variable αm appears. That is, that m · mj 6= m̃ for any j > 1.
(Note that in general unique factorization is not true in Pq(n), since Xq = X.)

To see this, note further that m · mj is either equal to m ∗ mj (if they are disjoint) or has smaller degree than
m ∗ mj. In either case, we have m · mj ≤ m ∗ mj. Thus, we obtain

m · mj ≤ m ∗ mj < m ∗ m1 = m̃

where the second inequality follows from the fact that m1 > mj and hence (by Fact 2.2) m′ ∗m1 > m′ ∗mj for

any monomial m′. This shows that αm appears precisely once in the left hand side of (4) and in particular,
that it must influence m̃.

Now, we show that no m′ < m influences m̃. Fix some m′ < m. For any j ∈ [N] we have

m′ · mj ≤ m′ ∗ mj ≤ m′ ∗ m1 < m ∗ m1 = m̃

where the first two inequalities follow from a similar reasoning to above and the third from the fact that
m′ < m. Hence, we see that no monomial that is a product of m′ with another monomial from f can equal
m̃. In particular, this means that m′ cannot influence m̃.

This completes the proof of the claim.

Corollary 3.5. Let n, e, d, P, f be as in Lemma 3.3. Further, let r be such that (q − 1)n − d = r and assume r ≥ 3e.

Then, PrP∼Pq(n,e) [deg( f P) < d + e] ≤ q−Nq(⌊L/3⌋,e) where L = ⌊r/(q − 1)⌋.

Proof. To prove the corollary, we use Lemma 3.3 with s = e and prove a lower bound on |Ue,e(m0)| =
|Ue(m0)| = |De(m0)| where m0 is the monomial from the statement of Lemma 3.1.

We first observe that we can assume that r ≥ 3(q − 1). If this is not the case, then ⌊L/3⌋ = 0 and hence
Nq(⌊L/3⌋, e) = 1. Thus, the claimed bound on PrP∼Pq(n,e) [deg( f P) < d + e] follows from the fact that
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|De(m0)| ≥ 1. Hence, we will assume from now on that r ≥ 3(q − 1). In conjunction with our assumption
that r ≥ 3e, this implies that

r ≥ 2e + (q − 1). (5)

Let T index the L =
⌊

r
q−1

⌋

variables not present in the monomial m0. We can lower bound |De(m0)| by the

number of monomials of degree exactly e in Pq(n, e) supported on variables from T; let M denote this set
of monomials.

Partition T arbitrarily into two sets T1 and T2 such that |T1| = L′ = ⌊L/3⌋.

To lower bound |M|, note that given any monomial m1 ∈ Pq(n, e) in the variables of T1 of degree at most e,
we can find a monomial m2 over the variables of T2 such that their product has degree exactly e. The reason
for this is that the maximum degree of a monomial in the variables in T2 is

(L − L′)(q − 1) ≥
L

2
(q − 1) ≥

1

2
(

r

q − 1
− 1)(q − 1) =

r − (q − 1)

2
≥ e

where the last inequality follows from (5). Hence, we can always find a monomial m2 over the variables in
T2 such that deg(m1m2) = e. Hence, we can lower bound |M| by the number of monomials m1 over the
variables in T1 of degree at most e which is Nq(L′, e). We have thus shown that |Ue,e(m0)| ≥ Nq(L′, e). An
application of Lemma 3.3 now implies the corollary.

3.1 Connection to the Schwartz-Zippel Lemma over Fq

Consider the special case of Lemma 3.3 when e = (q − 1)n and s = 0. In this case, note that Pq(n, e)

is just the ring Pq(n) and hence the above lemma implies PrP∼Pq(n) [deg( f P) < d] ≤ 1

q|Us,e(m0)|
where

m0 is the monomial from the statement of Lemma 3.1. Note that as a special case, this implies that

PrP∼Pq(n) [ f P = 0] ≤ 1

q|Us,e(m0)|
.

Observe that by Fact 2.1, f P = 0 if and only if the polynomial f P vanishes at each point of F
n
q . However,

since P evaluates to an independent random value in Fq at each input x ∈ F
n
q , we see that the probability

that f P evaluates to 0 at each point is exactly the probability that P(x) = 0 at each point where f (x) 6= 0.

This happens with probability exactly 1
q|Supp( f )| .

Putting it all together, we see that 1
q|Supp( f )| ≤

1

q|Us,e(m0)|
and hence, |Supp( f )| ≥ |Us,e(m0)| = |Ds,e(m0)|.

For the chosen values of e and s, the latter quantity is exactly the total number of monomials — of any
degree — that are disjoint from m0, which is exactly (q − v)qn−u−1, matching the Schwartz-Zippel lemma
over Fq (Fact 2.1).

It is also known that the Schwartz-Zippel lemma over Fq is tight for a suitably chosen degree d polynomial
f . Lemma 3.3 is also tight for the same polynomial f , as we show below.

The Schwartz-Zippel lemma is tight for any d ≤ n(q − 1) for the polynomial f (X1, . . . , Xn) defined as
follows. Write d = u(q − 1) + v so that 0 ≤ v < q − 1. Fix any ordering ξ0, . . . , ξq−1 of Fq. Recall (see
Section 2.1) that Bq(n, d) is the space of generalized monomials w.r.t. this ordering of degree at most d. Let
f = bv(Xu+1) · ∏

u
i=1 bq−1(Xi). Note that f ∈ Bq(n, d).

We show that this same f also witnesses the tightness of Lemma 3.3.
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Claim 3.6. Let f ∈ Pq(n) be as defined above. Then, for any e, s ≥ 0 we have

Pr
P∼Pq(n,e)

[deg( f P) < d + s] =
1

q|Us,e(m0)|

where m0 is as defined in the statement of Corollary 3.2.

Proof. By Lemma 3.3, we already know that

Pr
P∼Pq(n,e)

[deg( f P) < d + s] ≤
1

q|Us,e(m0)|
.

So it suffices to prove the opposite inequality. Namely that

Pr
P∼Pq(n,e)

[deg( f P) < d + s] ≥
1

q|Us,e(m0)|
. (6)

For this proof, it is convenient to work with generalized monomials w.r.t. two different orderings. Consider
the reverse ordering to the one defined above: i.e., ξq−1, . . . , ξ0. Let b′i(X) denote the basis from Section 2.1
w.r.t. this ordering. We define B′

q(n, e) to be the generalized monomials (see Section 2.1) w.r.t. this ordering
of degree at most e.

We make a simple observation. Since each bi vanishes exactly at ξ0, . . . , ξi−1 and each b′j vanishes exactly at

ξq−1, . . . , ξq−j, we obtain

bi(X) · b′j(X) = 0 iff i + j ≥ q. (7)

We say that bi and b′j are disjoint if i + j < q. Similarly, two generalized monomials ∏i∈[n] bji(Xi) and

∏i∈[n] b′
j′i
(Xi) are disjoint if for each i, the basis elements bji and b′

j′i
are disjoint. From (7) above, the product

of any pair of non-disjoint generalized monomials with one from each of Bq(n, d) and B′
q(n, e) is 0.

Since B′
q(n, e) forms a basis for Pq(n, e) (Fact 2.6), we can view the process of sampling P uniformly from

Pq(n, e) as picking αi1,...,in ∈ Fq independently and uniformly at random for each (i1, . . . , in) such that

∑j∈[n] ij ≤ e and setting

P = ∑
(i1,...,in):∑j i j≤e

αi1,...,in ∏
j∈[n]

b′i j
(Xj).

We now consider the product f P, which is expanded as

f P = ∑
(i1,...,in):∑j i j≤e

αi1,...,in f · ∏
j∈[n]

b′i j
(Xj).

From the definition of f and using (7), we see that the product of f with each generalized monomial from
B′

q(n, e) is non-zero if and only if ij = 0 for all j ∈ [u] and iu+1 + v < q. In particular, the number of

generalized monomials in B′
q(n, e) of degree exactly t ≤ e that are disjoint from f is equal to the cardinality

of the set
D′

t( f ) = {(i1, . . . , in) | ∑
j

ij = t, ij = 0 ∀j ∈ [u], iu+1 + v < q}

By inspection, it is easily verified that the above set has the same cardinality as Dt(m0). In particular the
size of the set

⋃

s≤t≤e D′
t( f ) is ∑s≤t≤e |D

′
t( f )| = |Ds,e(m0)| = |Us,e(m0)|.
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Note that when αi1,...,in = 0 for all (i1, . . . , in) ∈
⋃

s≤t≤e D′
t( f ), then we have deg( f P) < d + s. Since

the coefficients αi1,...,in are chosen independently and uniformly at random from Fq, this happens with

probability q−|Us,e(m0)|. This implies (6) and completes the proof of the claim.

4 Analyzing Teste,k

We prove the main theorem of the paper, namely Theorem 1.4, in this section. The results of this section
only hold for prime fields.

For any non-negative integer parameters L and e, recall that Nq(L, e) denotes the number of monomials m
in indeterminates X1, . . . , XL such that the degree of each variable in m is at most q − 1 and the total degree
is at most e. Equivalently, Nq(L, e) is the dimension of the vector space Pq(L, e). For L < 0, we define
Nq(L, e) = 1.

We will choose the constant cq as in Lemma 2.11.

We argue that the theorem holds by considering two cases. We argue that when f is ∆-far from polynomials
of degree d + r/4 — a much stronger assumption than the hypothesis of the theorem — then a modification
of the proof of Dinur and Guruswami [DG15] coupled with a suitable choice of basis for Pq(n, d) yields the
desired conclusion.

If not, then f is ∆-close to some polynomial of degree exactly d′ that is slightly larger than d. In this case, we
can argue that f is “essentially” a polynomial of degree exactly d′ and for any such polynomial, the product
f P1 . . . Pk is, w.h.p., a polynomial of degree exactly d′ + ek and hence f 6∈ Pq(n, d + ek). This requires the
results of Section 3.

We now proceed with the proof details. We consider the following two cases.

Case 1: f is ∆-far from Pq(n, d + r
4 ). See Section 4.1 below.

Case 2: f is ∆-close to Pq(n, d + r
4 ). Let F ∈ Pq(n, d + r

4 ) be such that f is ∆-close to F. Let d′ = deg(F).
Note that d′ > d since f is ∆-far from Pq(n, d) by assumption. Hence, we must have d < d′ ≤ d + r

4 .

Note that for any P1, . . . , Pk ∈ Pq(n, e), we have f P1 · · · Pk is ∆-close to FP1 · · · Pk (since f (x) = F(x)
implies that f (x) ·∏i Pi(x) = F(x) ·∏i Pi(x)). We have FP1 · · · Pk ∈ Pq(n, d′+ ek) ⊆ Pq(n, d′+ r/4) ⊆
Pq(n, d+ r/2). Now if f P1 · · · Pk ∈ Pq(n, d+ ek) ⊆ Pq(n, d+ r/2), then by the Schwartz Zippel lemma
over Fq (Fact 2.1) applied to polynomials of degree at most d+ r/2, we see that f P1 · · · Pk = FP1 · · · Pk.
Hence, we have FP1 · · · Pk ∈ Pq(n, d+ ek) which in particular implies that FP1 · · · Pk must have degree
strictly less than d′ + ek.

For this event to occur there must be some i < k such that FP1 · · · Pi has degree exactly d′i := d′ + ei
but FP1 · · · Pi+1 has degree strictly less than d′i + e.

We have shown that

Pr
P1,...,Pk

[
f P1 · · · Pk ∈ Pq(n, d + ek)

]
≤ Pr

P1,...,Pk

[
deg(FP1 · · · Pk) < d′ + ek

]

≤
k−1

∑
i=0

Pr
P1···Pk

[

deg

(

F
i+1

∏
j=1

Pj

)

< d′i + e | deg

(

F
i

∏
j=1

Pj

)

= d′i

]

. (8)

For each i, conditioning on any fixed choice of P1, . . . , Pi, the right hand side of (8) can be bounded
using Corollary 3.5 applied with d replaced by d′i ≤ d + r/2− e = (q− 1)n− (r/2+ e) (the parameter
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r/2 + e satisfies the hypothesis of Corollary 3.5 as r ≥ 4ek ≥ 4e and hence r/2 + e ≥ 3e). The upper

bound on the probability obtained from Corollary 3.5 is q−Nq(⌊L′/3⌋,e) where L′ = ⌊r/(q − 1)⌋. Note

that by our assumption that ∆ ≤ qr/4(q−1)−2, we have ⌊L′/3⌋ ≥ L = ⌊logq ∆⌋. Hence, using (8) we

have
Pr

P1,...,Pk

[
f P1 · · · Pk ∈ Pq(n, d + ek)

]
≤ kq−Nq(L,e).

This implies Theorem 1.4 in this case.

4.1 Case 1 of Theorem 1.4: f is ∆-far from Pq(n, d + r
4)

In this case, we adopt the method of Dinur and Guruswami [DG15] along with a suitable choice of basis
(Section 2.1) and Lemma 2.10 to bound the required probability. The proof is an induction, the key technical
component of which is Lemma 2.11, which follows from the work of Haramaty et al. [HSS13].

Let d′ = d + r/4. Since we know that f is not of degree d′ (indeed it is ∆-far from Pq(n, d′)), we intuitively
believe that f P1 · · · Pk should not even belong to Pq(n, d′+ ek) ) Pq(n, d+ ek). Hence, we associate with the
event that f P1 · · · Pk ∈ Pq(n, d + ek) the “surprise” parameter s := d′− d. This will be one of the parameters
we will track in the induction. Recall that for our setting of parameters s = r/4 ≥ ek.

Definition 4.1. For any positive integers n1, r1, ∆1, e1 ≥ 0, and s1 ≥ e1k, we define the quantity ρ(n1, e1, r1, ∆1, s1)
to be the largest ρ ∈ R such that for any d1 ≥ 0 such that d1 ≤ (q − 1)n1 − s1 − r1 and for any f that is ∆1-far

from Pq(n1, d1 + s1) for 0 < ∆1 < qr1/(q−1), we have

Pr
P1,...,Pk∼Pq(n1,e1)

[
f P1 · · · Pk ∈ Pq(n1, d1 + e1k)

]
≤ q−ρ.

We prove by induction on e1, r1, and ∆1 that for any n1, e1, r1, ∆1, s1 as above,

ρ(n1, e1, r1, ∆1, s1) ≥ η(q, k) · Nq(⌊
L1

10
⌋ − cq, e1) (9)

where η(q, k) is as in the statement of the theorem, L1 = ⌊logq ∆1⌋, and cq is as defined in Lemma 2.11.

Note that applying (9) with n1 = n, e1 = e, r1 = r, ∆1 = ∆ and s1 = s immediately implies the result of this
section (i.e. the statement of Theorem 1.4 in this case).

The base case of the induction — which we apply when either e1 = 0, r1 ≤ cq, or ∆1 ≤ q5 — is the following
simple lemma. (It is stated in greater generality than needed in the rest of the proof.)

Lemma 4.2. For any positive n1, r1, and ∆1; e1 ≥ 0; and s1 ≥ e1k, we have ρ(n1, e1, r1, ∆1, s1) ≥ η(q, k).

The inductive case is captured in the following lemma.

Lemma 4.3. For any positive n1, e1, r1, ∆1 and s1 ≥ e1k with e1 > 0, r1 ≥ cq and q5 < ∆1 < qr1/(q−1), we have

ρ(n1, e1, r1, ∆1, s1) ≥
min{e1,q−1}

∑
i=0

ρ(n1 − 1, e1 − i, r1 − (q − 1), ∆1/q3, s1 − ki).

Assuming both these lemmas, we can quickly finish the proof of (9) as follows. We proceed by induction
on e1 + ∆1 + r1. In case either e1 = 0 or ∆1 ≤ q5 or r1 < cq, we can easily infer (9) using Lemma 4.2 and
using the fact that Nq(⌊L1/10⌋ − cq, e1) = 1. This is by a simple case analysis.
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• Assume e1 = 0. In this case, Nq(⌊L1/10⌋ − cq, e1) = 1 since either ⌊L1/10⌋ − cq ≥ 0 and hence the
number of monomials of degree at most e1 in ⌊L1/10⌋ − cq many variables is 1, or ⌊L1/10⌋ − cq < 0
and Nq(⌊L1/10⌋ − cq, e1) = 1 by definition.

• Now assume that ∆1 ≤ q5. In this case, we see immediately that ⌊L1/10⌋ − cq < 0 and hence
Nq(⌊L1/10⌋ − cq, e1) = 1 by definition.

• Finally assume that r1 < cq. In this case, L1 = ⌊logq ∆1⌋ < r1/(q − 1) < cq. Hence, we again have

⌊L1/10⌋ − cq < 0 and thus Nq(⌊L1/10⌋ − cq, e1) = 1 by definition.

The above proves the base case of the induction. For the inductive case when all the hypotheses of
Lemma 4.3 hold, we see that

ρ(n1, e1, r1, ∆1, s1) ≥
min{e1,q−1}

∑
i=0

ρ(n1 − 1, e1 − i, r1 − (q − 1), ∆1/q3, s1 − ki)

≥ η(q, k) ·
min{e1,q−1}

∑
i=0

Nq(⌊(L1 − 3)/10⌋ − cq, e1 − i)

≥ η(q, k) ·
min{e1,q−1}

∑
i=0

Nq(⌊L1/10⌋ − 1 − cq, e1 − i)

≥ η(q, k) · Nq(⌊L1/10⌋ − cq, e1),

where the first inequality is simply the statement of Lemma 4.3, the second follows by induction, and the
fourth follows from the simple observation that for any L′ ∈ Z and e′ > 0,

Nq(L′, e′) ≤
min{e′,q−1}

∑
i=0

Nq(L′ − 1, e′ − i).

This finishes the proof of (9) assuming Lemma 4.2 and Lemma 4.3. We now prove these lemmas.

Proof of Lemma 4.2. Fix any d1 ≤ (q − 1)n1 − s1 − r1 and any f ∈ Pq(n1) that is ∆1-far from Pq(n1, d1 + s1).
In particular, f 6∈ Pq(n1, d1). Say f is of degree d′ for some d′ > d1. As we have d1 + e1k ≤ d1 + s1 <

(q − 1)n1, we can fix some d′′ such that d1 + e1k < d′′ ≤ min{(q − 1)n1, d′ + e1k}.

We first show that there exists a monomial m of degree d′′ and a choice for P1, . . . , Pk such that the monomial
m has non-zero coefficient in f P1 · · · Pk. If d′′ = d′, then we can take m to be any monomial of degree d′ with
non-zero coefficient in f and P1, . . . , Pk to each be the constant polynomial 1. Otherwise, let d′′ = d′ + δ;
note that δ ≤ e1k. Let m̃ = LM( f ) (of degree d′). We choose any m′ ∈ Dδ(m̃). Since deg(m′) = δ ≤ e1k, we
can find m′

1, . . . , m′
k of degrees at most e1 each such that m′ = m′

1 · · · m′
k. We set m = m̃m′. It can be checked

that if P1 = m′
1, . . . , Pk = m′

k, then the monomial m appears with non-zero coefficient in f P1 · · · Pk = f m′.

We now consider the probability that m has a non-zero coefficient in the random polynomial g = f P1 · · · Pk

obtained when each Pi is chosen uniformly from Pq(n1, e1). The coefficient of m in g can be seen to be a
polynomial R of degree at most k in the coefficients of P1, . . . , Pk. Since we have seen above that there is a
choice of P1, . . . , Pk such that this coefficient is non-zero, we know that R is a non-zero polynomial. By the

Schwartz-Zippel lemma (Fact 2.1), we see that the probability that R is non-zero is at least q−k/(q−1). Thus,

with probability at least q−k/(q−1), the monomial m has non-zero coefficient in g and hence deg(g) ≥ d′′ >
d1 + e1k.
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Hence, the probability that deg(g) ≤ d1 + e1k is upper bounded by (1 − q−k/(q−1)). Using the standard
inequality 1 − x ≤ exp(−x) and the definition of η(q, k), we see that

Pr
P1,...,Pk

[deg(g) ≤ d1 + e1k] ≤ exp(−
1

qk/(q−1)
) ≤ q−η(q,k).

This proves the lemma.

Proof of Lemma 4.3. Fix any d1 ≤ (q − 1)n1 − s1 − r1 and any f ∈ Pq(n1) that is ∆1-far from Pq(n1, d1 + s1).
Since r1 ≥ cq, Lemma 2.11 is applicable to f . Hence, there is a linear function ℓ(X) such that for each α ∈ Fq,

the restricted function f |ℓ(X)=α is ∆1/q3-far from Pq(n1 − 1, d1 + s1). By applying a linear transformation

to the set of variables, we may assume that ℓ(X) = Xn1 .

Let q′ = min{e1, q − 1}. Note that q′ > 0.

Fix any ordering {ξ0, . . . , ξq−1} of the field Fq and consider the univariate basis polynomials bi(X) (0 ≤ j <
q) w.r.t. this ordering as defined in Section 2.1. We can view the process of sampling each Pi(X1, . . . , Xn1) ∈
Pq(n1, e1) as independently sampling Qi,j(X1, . . . , Xn1−1) ∈ Pq(n1 − 1, e1 − j) (0 ≤ j ≤ q′) and setting

Pi = ∑0≤j<q bj(Xn1)Qi,j(X1, . . . , Xn1−1) where Qi,j = 0 for j ∈ {q′ + 1, . . . , q − 1}. Let P denote P1 · · · Pk. We

can also decompose P = ∑0≤j<q bj(Xn1)Qj(X1, . . . , Xn1−1).

We now use Lemma 2.7, by which can decompose the product f P as follows

f P =
q−1

∑
ℓ=0

bℓ(Xn1)

(

Qℓ · f |Xn1
=ξℓ + ∑

0≤j<ℓ

Qj · hj,ℓ

)

(10)

where each hj,ℓ(X1, . . . , Xn1−1) is some element of Pq(n1 − 1).

By Lemma 2.9, it follows that for each ℓ < q

Qℓ = ∑
(ℓ1,...,ℓk)≤ℓ

β
(ℓ)
(ℓ1,...,ℓk)

Q(ℓ1,...,ℓk)
(11)

where β
(ℓ)
(ℓ,...,ℓ)

6= 0 and Q(ℓ1,...,ℓk)
= ∏i∈[k] Qi,ℓi

. Plugging (11) into (10) we obtain

f P =
q−1

∑
ℓ=0

bℓ(Xn1) ·



 f |Xn1
=ξℓ ∑

(ℓ1,...,ℓk)≤ℓ

β
(ℓ)
(ℓ1,...,ℓk)

Q(ℓ1,...,ℓk)
+ ∑

0≤j<ℓ

hj,ℓ ∑
(ℓ1,...,ℓk)≤j

β
(j)
(ℓ1,...,ℓk)

Q(ℓ1,...,ℓk)





=
q−1

∑
ℓ=0

bℓ(Xn1)×



β
(ℓ)
(ℓ,...,ℓ)

Q(ℓ,...,ℓ) f |Xn1
=ξℓ + ∑

(ℓ1,...,ℓk)<ℓ

Q(ℓ1,...,ℓk)
h
(ℓ)
(ℓ1,...,ℓk)





︸ ︷︷ ︸

:=Rℓ(X1,...,Xn1−1)

(12)

where each h
(ℓ)
(ℓ1,...,ℓk)

= h
(ℓ)
(ℓ1,...,ℓk)

(X1, . . . , Xn1−1) ∈ Pq(n1 − 1). We also use h
(ℓ)
(ℓ,...,ℓ)

to denote β
(ℓ)
(ℓ,...,ℓ)

f |Xn1
=ξℓ

.
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Now, we analyze the probability that f P ∈ Pq(n1, d1 + e1k). We have

Pr
Qi,j

[
f P ∈ Pq(n1, d1 + e1k)

]
≤ Pr

Qi,j




∧

0≤ℓ<q

Rℓ ∈ Pq(n1, d1 + e1k − ℓ)





≤ ∏
0≤ℓ<q

Pr
Qi,j

[
Rℓ ∈ Pq(n1, d1 + e1k − ℓ) | {R0, . . . , Rℓ−1}

]

≤ ∏
0≤ℓ<q

Pr
Qi,j

[
Rℓ ∈ Pq(n1, d1 + e1k − ℓ) | {Qi,j | i ∈ [k], j < ℓ}

]
(13)

where the last inequality follows from the fact that each Rj only depends on Qi,j′ where i ∈ [k] and j′ ≤ j.

Let expq(θ) denote qθ . We claim that for each ℓ ∈ {0, . . . , q′}, the ℓth term in the RHS of (13) can be bounded

as follows.

Pr
Qi,j

[
Rℓ ∈ Pq(n1, d1 + e1k − ℓ) | {Qi,j | i ∈ [k], j < ℓ}

]
≤ expq(−ρ(n1 − 1, e1 − ℓ, r1 − (q − 1), ∆1/q3, s1 − kℓ))

(14)

Substituting into (13) (and using the trivial upper bound of 1 for terms corresponding to ℓ ∈ {q′ + 1, . . . , q−
1}) this will show that

ρ(n1, e1, r1, ∆1, s1) ≥
q′

∑
ℓ=0

ρ(n1 − 1, e1 − ℓ, r1 − (q − 1), ∆1/q3, s1 − kℓ)

which proves the lemma.

It remains only to prove (14) for which we use Lemma 2.10. We first condition on any choice of Qi,j for
i ∈ [k] and j < ℓ. The event Rℓ ∈ Pq(n1 − 1, d1 + e1k − ℓ) now depends only on the random polynomials
in Q = {Qi,ℓ | i ∈ [k]}. We view the process of sampling these polynomials as sampling the coefficients of

the standard monomials m ∈ Pq(n1 − 1, e1 − ℓ)3 independently and uniformly at random from Fq. Let ζi,m

denote the (random) coefficient of the monomial m in the polynomial Qi,ℓ.

Scanning the definition of Rℓ in (12) above, we see that Rℓ is the sum of polynomials Q(ℓ1,...,ℓk)
h
(ℓ)
(ℓ1,...,ℓk)

,

where (ℓ1, . . . , ℓk) ≤ ℓ. For each (ℓ1, . . . , ℓk) < ℓ, the polynomial Q(ℓ1,...,ℓk)
is a product of at most k − 1

polynomials from the set Q.

The event that Rℓ ∈ Pq(n1 − 1, d1 + e1k − ℓ) is equal to the probability that each monomial m̃ of degree
larger than d1 + e1k − ℓ has zero coefficient in Rℓ. Consider the coefficient of m̃ in each term

h
(ℓ)
(ℓ1,...,ℓk)

Q(ℓ1,...,ℓk)
= Q′

(ℓ1,...,ℓk) ∏
i:ℓi=ℓ

Qi,ℓi
(15)

where Q′
(ℓ1,...,ℓk)

is the fixed polynomial ∏i:ℓi<ℓ Qi,ℓi
· h

(ℓ)
(ℓ1,...,ℓk)

.

Let Z = {ζi,m | i ∈ [k], m ∈ Pq(n1 − 1, e1 − ℓ)} and Zi = {ζi,m | m ∈ Pq(n1 − 1, e1 − ℓ)} for each
i ∈ [k]. Clearly, Π = {Z1, . . . ,Zk} is a partition of Z . It can be verified from (15) that the coefficient of

each monomial m̃ in h
(ℓ)
(ℓ1,...,ℓk))

Q(ℓ1,...,ℓk)
is a Π-multilinear polynomial (see Section 2.2) C

(m̃)
(ℓ1,...,ℓk)

applied to

the random variables in Z . In fact, it only depends on the random variables in
⋃

i:ℓi=ℓ Zi. Hence, this
polynomial is Π-set-multilinear if and only if ℓ1 = · · · = ℓk = ℓ.

3Any basis for the space Pq(n1 − 1, e1 − ℓ) will do here. In particular, we do not need the special basis from Section 2.1.
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Hence, from the definition of Rℓ (12) we see that the coefficient of m̃ in Rℓ is

C(m̃) := ∑
(ℓ1,...,ℓk)≤ℓ

C
(m̃)
(ℓ1,...,ℓk)

(16)

which is a Π-multilinear polynomial in Z with set-multilinear part C
(m̃)
(ℓ,...,ℓ)

. We will use Lemma 2.10 to

bound the probability that C(m̃)(ζi,m : i, m) = 0.

Now we can analyze the probability that Rℓ ∈ Pq(n1 − 1, d1 + e1k − ℓ). We omit the conditioning on Qi,j

(j < ℓ) since they are fixed. Below, m̃ varies over all monomials in Pq(n1 − 1) of degree > d1 + e1k − ℓ.

Pr
Qi,ℓ

[
Rℓ ∈ Pq(n1 − 1, d1 + e1k − ℓ)

]
= Pr

ζi,m

[
∧

m̃

C(m̃)(ζi,m) = 0

]

≤ Pr
ζi,m

[
∧

m̃

C
(m̃)
(ℓ,...,ℓ)

(ζi,m) = 0

]

= Pr
ζi,m

[

Q(ℓ,...,ℓ)h
(ℓ)
(ℓ,...,ℓ)

∈ Pq(n1 − 1, d1 + e1k − ℓ)
]

= Pr
ζi,m

[

Q(ℓ,...,ℓ) f |Xn1
=ξℓ ∈ Pq(n1 − 1, d1 + e1k − ℓ)

]

(17)

where the inequality follows from Lemma 2.10; the second equality follows from the fact that

C
(m̃)
(ℓ,...,ℓ)

(ζi,m) = 0 for all m̃ if and only if each monomial of degree more than d1 + e1k − ℓ has zero co-

efficient in Q(ℓ,...,ℓ)h
(ℓ)
(ℓ,...,ℓ)

; and the last equality follows from the fact that h
(ℓ)
(ℓ,...,ℓ)

= β
(ℓ)
(ℓ,...,ℓ)

f |Xn1
=ξℓ and

β
(ℓ)
(ℓ,...,ℓ)

6= 0.

The final expression in (17) can be bounded by the induction hypothesis applied with n2 = n1 − 1, e2 =
e1 − ℓ, r2 = r1 − (q − 1), ∆2 = ∆1/q3 and s2 = s1 − kℓ. We show below that the parameters satisfy all the
required conditions from Definition 4.1.

• Note that r2 = r1 − (q − 1) > 0 as r1 ≥ cq > q (see Lemma 2.11 for the final inequality).

• Q(ℓ,...,ℓ) = ∏i Qi,ℓ is a product of ℓ polynomials independently and uniformly sampled from Pq(n1 −

1, e1 − ℓ) = Pq(n2, e2). Recall that e1 ≥ q′ ≥ ℓ and hence e2 = e1 − ℓ ≥ 0.

• By assumption, g := f |Xn=ξℓ is ∆1/q3 = ∆2-far from Pq(n1 − 1, d1 + s1) = Pq(n2, d2 + s2) where
d2 = d1 + kℓ and s2 is as defined above. Note that s2 = s1 − kℓ ≥ e1k − kℓ = e2k. Also note that

(q − 1)n2 − d2 = (q − 1)n1 − (q − 1)− d1 − kℓ ≥ r1 + s1 − (q − 1)− kℓ = r2 + s2,

where the inequality uses d1 ≤ (q − 1)n1 − r1 − s1. Hence, we have d2 ≤ (q − 1)n2 − r2 − s2.

• We also have ∆2 = ∆1/q3 < qr1/(q−1)−3 < qr2/(q−1). Similarly, as ∆1 > q5, we have ∆2 > 0.

• Finally, we consider the event that g ∏i Qi,ℓ ∈ Pq(n1 − 1, d1 + e1k − ℓ) = Pq(n2, d2 + e2k − ℓ) ⊆
Pq(n2, d2 + e2k).

Thus, we can upper bound the probability in (17) by expq(−ρ(n2, e2, r2, ∆2, s2)), which yields (14) and

proves the lemma.
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5 Two applications

5.1 A question of Dinur and Guruswami

In this section, we show how Corollary 1.6 implies Theorem 1.7, thus answering a open question raised by
Dinur and Guruswami [DG15].

Proof of Theorem 1.7. The proof of the lemma for robustness ∆′ can be reduced to Corollary 1.6 for k = 2 as
follows.

Let f be ∆-far from Pq(n, d) as stated in the lemma. Call P “lucky” if ∆( f · P,Pq(m, d + e)) ≤ ∆′. We
need to bound the probability PrP∈Pq(n,e)[P is lucky ]. For a lucky P, let F be a degree-(d + e) polynomial

that is ∆′-close to f · P. Now, choose P′ ∈R Pq(n, e) and let g = f P · P′. Also, let G = F · P′; note that
G ∈ Pq(n, d + 2e).

Let D = {x ∈ F
n
q | F(x) 6= f (x)P(x)}. We have |D| ≤ ∆′. Further, if P′(x) = 0 for each x ∈ D, then we

have g = G and hence g ∈ Pq(n, d + 2e).

Observe that the event that P′(x) = 0 for each x ∈ D is a set of |D| ≤ ∆′ homogeneous linear equations
in the (randomly chosen) coefficients of P. These equations simultaneously vanish with probability at least

q−∆′
. Hence, for a lucky P, we see that PrP′

[
g ∈ Pq(n, d + 2e)

]
≥ q−∆′

.

Thus, we see that for independent and randomly chosen P, P′ ∈ Pq(n, e),

Pr
P,P′

[
f PP′ ∈ Pq(n, d + 2e)

]

≥ Pr
P
[P is lucky ] · Pr

P,P′
[g ∈ Pq(n, d + 2e) | P is lucky ]

≥ Pr
P
[P is lucky ] · Pr

P,P′
[g = G | P is lucky ]

≥ Pr
P
[P is lucky ] ·

1

q∆′ .

Thus, by Corollary 1.6 we get

Pr
P
[P is lucky ] ≤

q∆′

qqΩ(r)
.

The lemma now follows for some ∆′ = qΩ(r).

5.2 Analysis of Corr-h

Recall the test Corr-h defined in the introduction where h ∈ Pq(n, k) is a polynomial of exact degree k. In
this section, we analyze this test Corr-h, thus proving Corollary 1.8.

For this we need the following two properties of polynomials.

Dual of Pq(n, d): For any two functions, f , g ∈ Fq(n), define 〈 f , g〉 := ∑x∈F
n
q

f (x) · g(x). Given any Fq-

space C ⊆ Fq(n), the dual of C is defined as C⊥ := { f ∈ Fq(n) | ∀g ∈ C , 〈 f , g〉 = 0}. Recall that
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r = (q− 1)n− d. It is well-know that the sets of polynomials Pq(n, d) and Pq(n, r− 1) are duals of each
other [Lin99]. We use these dual spaces to write the indicator variable for the event “ f ∈ Pq(n, d)”

equivalently as 1 f∈Pq(n,d) = EQ∈Pq(n,r−1)

[

ω〈 f ,Q〉
]

, where ω = e2πi/q. This follows from the following

observations.

• For any polynomial P ∈ Pq(n, d), we have that for all Q ∈ Pq(n, r − 1), 〈P, Q〉 = 0. Thus, in this

case we have EQ∈Pq(n,r−1)

[

ω〈P,Q〉
]

= 1.

• Let f /∈ Pq(n, d). For each α ∈ Fq, let Cα := {Q ∈ Pq(n, r − 1) | 〈 f , Q〉 = α}. Since
f /∈ Pq(n, d), there exists a Q ∈ Pq(n, r − 1) such that 〈 f , Q〉 6= 0 and hence C0 is a proper sub-
space of Pq(n, r − 1). This implies that {Cα}α∈Fq form an equipartition of Pq(n, r − 1). Hence,

EQ∈Pq(n,r−1)

[

ω〈 f ,Q〉
]

= Eα∈Fq

[

EQ∈Cα

[

ω〈 f ,Q〉
]]

= Eα∈Fq [ω
α] = 0.

Squaring trick: We use a standard squaring trick to bound the absolute value of the quantity EP

[

ω〈h(P), f 〉
]

.

Let g be a univariate polynomial of degree exactly k with leading coefficient gk. We will show (using
induction on k) that for all k ≥ 1, we have

∣
∣
∣
∣E

P

[

ω〈g(P), f 〉
]
∣
∣
∣
∣

2k

≤ E
P1,...,Pk

[

ω〈k!gkP1···Pk, f 〉
]

.

The base case of the induction (k = 1) can be easily checked to be true. Let g(P) = aP + b where
a 6= 0.

∣
∣
∣
∣E

P

[

ω〈aP+b, f 〉
]
∣
∣
∣
∣

2

= E
P,P1

[

ω〈(a(P+P1)+b), f 〉 · ω〈−(aP+b), f 〉
]

= E
P,P1

[

ω〈aP1, f 〉
]

= E
P1

[

ω〈aP1, f 〉
]

.

We now induct from k − 1 to k. Let g be a polynomial of degree exactly k with leading coefficient gk.
To this end, we first observe that g(P + P1)− g(P) is a polynomial of degree exactly k − 1 in P with
leading coefficient kP1gk.

∣
∣
∣
∣E

P

[

ω〈g(P), f 〉
]
∣
∣
∣
∣

2k

=

(∣
∣
∣
∣E

P

[

ω〈g(P), f 〉
]
∣
∣
∣
∣

2
)2k−1

=

(

E
P,P1

[

ω〈g(P+P1)−g(P), f 〉
])2k−1

(by convexity) ≤ E
P1

[∣
∣
∣
∣E

P

[

ω〈g(P+P1)−g(P), f 〉
]
∣
∣
∣
∣

2k−1]

(by induction) ≤ E
P1

[

E
P2,...,Pk

[

ω〈(k−1)!·(kP1gk)·P2P3···Pk, f 〉
]]

= E
P1,...,Pk

[

ω〈k!gkP1···Pk, f 〉
]

.

We are now ready to prove Corollary 1.8.

Proof of Corollary 1.8. Since the class of polynomials Pq(n, d + ek) is closed under scalar multiplication, we
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can assume (by multiplying by a non-zero scalar if necessary) that h is monic.

Pr
P∈Pq(n,e)

[
f · h(P) ∈ Pq(n, d + ek)

]
=

∣
∣
∣
∣
∣

E
P∈Pq(n,e),Q∈Pq(n,s−1)

[

ω〈 f ·h(P),Q〉
]
∣
∣
∣
∣
∣

∣
∣
∣
∣E

Q

[

E
P

[

ω〈h(P), f Q〉
]]
∣
∣
∣
∣

2k/2k

(by convexity) ≤

(

E
Q

[∣
∣
∣
∣E

P

[

ω〈h(P), f Q〉
]
∣
∣
∣
∣

2k])1/2k

(by the squaring trick) ≤

(

E
Q

[

E
P1,...,Pk

[

ω〈k!P1···Pk, f Q〉
]])1/2k

=

(

E
P1,...,Pk

[

E
Q

[

ω〈P1···Pk f ,Q〉
]])1/2k

=

(

Pr
P1,...,Pk

[

f ·∏
i

Pi ∈ Pq(n, d + ek)

])1/2k

where the first inequality follows from Jensen’s inequality and the second from the Squaring trick. For the
third equality, we have used the fact that since k < q, the polynomials k!P1 · · · Pk and P1 · · · Pk are distributed
identically.

The corollary now follows from Corollary 1.6.
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