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Distributed Detection in Ad Hoc Networks Through

Quantized Consensus

Shengyu Zhu and Biao Chen

Abstract

We study asymptotic performance of distributed detection in large scale connected sensor networks. Contrasting

to the canonical parallel network where a single node has access to local decisions from all other nodes, each node

can only exchange information with its direct neighbors in the present setting. We establish that, with each node

employing an identical one-bit quantizer for local information exchange, a novel consensus reaching approach can

achieve the optimal asymptotic performance of centralized detection as the network size scales. The statement is

true under three different detection frameworks: the Bayesian criterion where the maximum a posteriori detector

is optimal, the Neyman-Pearson criterion with a constant type-I error probability constraint, and the Neyman-

Pearson criterion with an exponential type-I error probability constraint. Leveraging recent development in distributed

consensus reaching using bounded quantizers with possibly unbounded data (which are log-likelihood ratios of local

observations in the context of distributed detection), we design a one-bit deterministic quantizer with controllable

threshold that leads to desirable consensus error bounds. The obtained bounds are key to establishing the optimal

asymptotic detection performance. In addition, we examine non-asymptotic performance of the proposed approach

and show that the type-I and type-II error probabilities at each node can be made arbitrarily close to the centralized

ones simultaneously when a continuity condition is satisfied.

Index Terms

Distributed detection, error exponent, one-bit quantizer, quantized consensus, large deviations.

I. INTRODUCTION

D
ISTRIBUTED detection in sensor networks has been an important research topic over the past decades

[2]–[8]. A canonical structure in distributed detection is the parallel fusion network where each sensor

receives an observation about a common phenomenon and sends a local decision (e.g., the observation itself, the

log-likelihood ratio (LLR), or its quantized version) to a fusion center. The fusion center makes the final decision
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based on all the information collected from the sensors. Another extensively studied structure is the tandem network

in which local decisions propagate in a serial manner until they reach the last sensor that serves as the fusion center.

Separately, there exist a large body of literature that deal with consensus type network inference problems in the

absence of any fusion center (see, e.g., [9]–[15]). Sensors iteratively exchange information with their neighbors to

arrive at a consensus decision using local updates.

This paper investigates asymptotic performance of distributed detection in an n-node sensor network where

each sensor receives an observation whose distribution is assumed to be independent and identically distributed

(i.i.d.) across all sensors. We specifically study the decay rate of detection error probability under the maximum

a posteriori (MAP) and the Neyman-Pearson criteria as the network size scales. The performance of distributed

detection is clearly bounded by that of centralized detection where all the observations are available for decision

making. With i.i.d. observations, the optimal acceptance region in the centralized case is fully characterized by the

average LLR of the observations. As such, the fusion or consensus based structures can achieve the optimal error

exponent if sensors are able to communicate real values of infinite precision. Notice that the parallel and tandem

networks respectively take n and n− 1 data transmissions, while the consensus based structure may require longer

transmission time that depends on the consensus algorithm.

Communicating real data, however, requires unlimited channel bandwidth in theory. Practical bandwidth and

resource limitations often dictate that only quantized data can be reliably exchanged. Of particular interest is the

extreme case where each sensor can only send one-bit information. Tsitsiklis established in [7] the optimality of

identical likelihood ratio quantizers in such a setting for a canonical fusion network with communications allowed

from the sensor to the fusion center (i.e., no consensus type iterations). With i.i.d. observations across sensors,

the decay rate under the Neyman-Pearson criterion is determined by the Kullback-Leibler divergence of the binary

output and is typically smaller than the centralized one. Under the MAP criterion, the decay rate is also suboptimal

to the centralized one in general. For the tandem network, it was shown in [8] that using a one-bit quantizer at each

sensor can never achieve an exponential decay rate of the error probability under the MAP criterion. To the best of

our knowledge, there is no asymptotic result on consensus based structures using one-bit quantizers at each node.

As such, it is a priori unknown whether one-bit quantization in a general connected network that allows iterative

message exchanges can achieve exponentially decaying error probability and what would be the optimal exponent

if exponentially vanishing error probability is feasible. Note that if nodes have perfect knowledge of global network

topology, one may construct schemes that utilize source coding ideas to attain the same optimal error exponent as

in the centralized setting. This, however, is not realistic in most applications where nodes only have knowledge of

their directly connected neighbors.

In this paper, we consider distributed detection over general connected sensor networks using iterative distributed

averaging algorithms, with the goal of reaching a consensus on the average LLR among all sensors in the network.

Sensors can only exchange one-bit information with their immediate neighbors and have no knowledge about the

global topology except the fact that the network is connected. Both parallel and tandem networks can be included
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in this setup if sensors and fusion center are able to transmit and receive data. Our motivation is to broaden the

appeal of decentralized inference and to examine problems that are relevant to many emerging applications involving

large scale networks of arbitrary topology. Before stating our approach, we would like to briefly review existing

distributed averaging algorithms with quantized communications to illustrate why there are no asymptotic results

on consensus based detection using one-bit communications:

a) most quantized consensus algorithms use infinite-level quantizers (e.g., rounding quantizer and truncated quan-

tizer) which still require unlimited bandwidth; see [16]–[20], among others.

b) while some recent results [18], [21] can work with finite-bit quantizers, they do not guarantee convergence at

a consensus in finite time. More critically, they assume that the data for average consensus are bounded and

the bound is known a priori.1 This assumption is generally too restrictive for detection since the LLRs of local

observations can be arbitrarily large for common distributions, e.g., Gaussian distributions with different means

for the two hypotheses. Specifically, the design and analysis of distributed consensus with finite (bounded)

quantizer and unbounded input appear to be key in solving the detection problem at hand.

c) a novel distributed averaging algorithm, referred to as BQ-CADMM, is proposed in [22]. The algorithm uses a

finite-bit bounded quantizer which first projects its argument to a compact set and then applies rounding quantizer

to the projected value. Within finite iterations, the quantized variable values at all nodes either converge to the

same quantization level or cycle around the average with the same sample mean over a finite period. The

consensus value is subject to a consensus error from the desired average due to quantized communications.

Though an upper bound is obtained for the consensus error, it has a non-vanishing constant error term and the

resulting consensus cannot be arbitrarily close to the true average in general.

Despite the presence of consensus errors, we note that BQ-CADMM has the advantages that it achieves a

consensus within finite iterations and that it does not assume any bound on the input data. Additionally, the

constant term in the error bound is from the quantization error of the rounding quantizer operating on the projected

value. We therefore adopt a new one-bit quantizer with controllable threshold such that the consensus error can be

made arbitrarily small if the consensus is reached at a specific quantization point. With this quantizer, we proceed

to construct an acceptance region using the consensus result and show that it approaches the optimal acceptance

region in the centralized case asymptotically. This helps establish that the best achievable rate is the same as the

centralized one under the MAP and the Neyman-Pearson criteria. Non-asymptotic scenarios are also studied and

the error probabilities at each node can be made arbitrarily close to the optimal centralized ones under a continuity

condition.

The rest of the paper is organized as follows. Section II reviews useful concepts and results. Section III defines a

new one-bit quantizer and establishes the convergence result of BQ-CADMM with this quantizer. The quantizer is

tailored for the detection application such that desired consensus accuracy is guaranteed. In Section IV, the consensus

1Different from the algorithms of part a) where truncation may be used to get a finite-bit quantizer when knowing the bound, the algorithms

in [18], [21] use the bound to choose appropriate algorithm parameters for predefined finite-bit quantizers.
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result of BQ-CADMM is used to construct an acceptance region that is shown to approach the optimal centralized

one and hence to achieve the same error exponent under the MAP and Neyman-Pearson criteria. Section V studies

the non-asymptotic performance of the proposed approach. Simulations are provided in Section VI where numerical

examples are used to evaluate the proposed approach and to characterize its convergence time. Section VII concludes

the paper and discusses further research directions.

II. PROBLEM AND PRELIMINARY

Section II-A states the problem of this paper and Section II-B introduces preliminary concepts and results that

will be used to prove our main results in Section IV.

A. Problem Statement

Consider a connected n-node sensor network with m bi-directional links. Each sensor i, i = 1, 2, . . . , n, has its

own observation yi. We model this network as a connected undirected graph with n nodes and m edges. Let Ni

denote the set of directly linked nodes of node i and |Ni| its cardinality. Here node i is not considered as a linked

node of itself, i.e., i /∈ Ni. Then n − 1 ≤ m ≤ n(n−1)
2 , 1 ≤ |Ni| ≤ n− 1, and 2m =

∑n
i=1 |Ni|. Assume that the

observations yn originate from an i.i.d. source Q(y) with alphabet Σ that can be either a finite set or any Polish

space.2 Denote P(Σ) as the space of probability measures on Σ. We consider two hypotheses

• H1 : Q = P1 ∈ P(Σ),

• H2 : Q = P2 ∈ P(Σ),

with prior probabilities π1 and π2 = 1 − π1, respectively. Let An ⊆ Σn denote the acceptance region for H1 and

Ac
n = Σn \ An the critical region. Then the type-I and type-II error probabilities are respectively

αn = P1(A
c
n) and βn = P2(An).

We investigate the asymptotic detection performance via consensus based approaches where sensors can only

reliably exchange one-bit information with its neighbors at each iteration. To ensure autonomy in a large sensor

network, local sensors, or more precisely, local computations and communications, do not require the information

about the global network structure. We consider the following three criteria for large connected sensor networks:

• Neyman-Pearson criterion with constant constraint: for a given α ∈ (0, 1),

maximize lim inf
n→∞

−
1

n
log βn,

subject to lim
n→∞

αn ≤ α.

• MAP criterion: given π1, π2 ∈ (0, 1),

maximize lim inf
n→∞

−
1

n
log (π1αn + π2βn) .

2That is, separable completely metrizable topological space. We follow [23] to use Polish space in order not to be distracted by measurability

concerns. In many applications like ours, Σ is either a finite set or a subset of Rd for some d ∈ Z
+.
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• Neyman-Pearson criterion with exponential constraint: for a given γ ∈ (0,D(P2||P1)),

maximize lim inf
n→∞

−
1

n
log βn,

subject to lim inf
n→∞

−
1

n
logαn ≥ γ.

It is a priori unknown a) if exponentially vanishing error probabilities in the network size can be achieved given

only one-bit local information exchange; and b) what would be the optimal error exponent if indeed exponentially

decaying error probabilities can be attained. Before introducing the consensus based scheme for the construction

of acceptance regions, we first review centralized results that act as performance bounds for distributed detection.

B. Preliminaries

Throughout the rest of this paper, we assume that P1 ∈ P(Σ) and P2 ∈ P(Σ) are absolutely mutually continuous.

We begin with the definition of relative entropy.

Definition 1: The relative entropy or Kullback-Leibler divergence between P1 and P2 is defined as

D(P1‖P2) =

∫

Σ
log

dP1

dP2
dP1 = EP1

(

log
dP1

dP2

)

,

where dP1/dP2 stands for the Radon-Nikodym derivative of P1 with respect to P2.

For ease of presentation, we write dP1 and dP2 as p1 and p2, respectively. Using the weak law of large numbers,

we can derive the following asymptotic equipartition property for the relative entropy.

Theorem 1 ([24, Theorem 11.8.1]): Let yn be a sequence of random variables drawn i.i.d. according to P1, and

let P2 be any other measure from P(Σ). Then

1

n
log

p1(y
n)

p2(yn)
→ D(P1‖P2) in probability.

Definition 2: For a fixed n and ǫ > 0, a sequence yn ∈ Σn is said to be relative entropy typical if and only if

D(P1‖P2)− ǫ ≤
1

n
log

p1(y
n)

p2(yn)
≤ D(P1‖P2) + ǫ.

The set of relative entropy typical sequences is called the relative entropy typical set A
(n)
ǫ (P1‖P2).

We then have the following lemma as a direct consequence of Theorem 1.

Lemma 1 ([24, Theorem 11.8.2]): Given any positive ǫ,

P1

(

A(n)
ǫ (P1‖P2)

)

> 1− ǫ,

provided that n is sufficiently large.

With the above definitions, we are ready to present Stein’s lemma which provides the best exponent for the type-II

error probability under the Neyman-Pearson criterion with a constant constraint on the type-I error probability.

Theorem 2 (Stein’s Lemma [24, Theorem 11.8.3], [23, Lemma 3.4.7]): Let yn be i.i.d. ∼ Q. Consider the test

between two hypotheses H1 : Q = P1 and H2 : Q = P2, where 0 < D(P1‖P2) < ∞. Let βα
n be the infimum of

βn among all tests with αn ≤ α. Then for any 0 < α < 1,

lim
n→∞

−
1

n
log βα

n = D(P1‖P2),
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which can be asymptotically achieved by choosing the acceptance region as A
(n)
ǫ (P1‖P2) with ǫ → 0, i.e.,

lim
ǫ→0

lim
n→∞

−
1

n
logP2

(

A(n)
ǫ (P1‖P2)

)

= D(P1‖P2).

Under the Bayesian framework, the best error exponent is provided by Chernoff theorem.

Theorem 3 (Chernoff [24, Theorem 11.9.1], [23, Lemma 3.4.6]): For π1 > 0 and π2 > 0, the best achievable

exponent in the Bayesian probability of error is given by

lim inf
n→∞

−
1

n
log(π1αn + π2βn) = C(P1, P2),

where C(P1, P2) is the Chernoff information defined as

C(P1, P2) , − min
0≤λ≤1

log

(
∫

Σ
p1(y)

λp2(y)
1−λdy

)

.

We next present the centralized result under the Neyman-Pearson criterion with exponential constraint via large

deviations. Define the logarithmic moment generating function of the LLR as

Λ(λ) = logEP1

(

e
−λ log p1(y)

p2(y)

)

, λ ∈ R.

Notice that Λ(0) = Λ(1) = 0 for the hypothesis testing problem as P1 and P2 are assumed to be mutually absolutely

continuous. The Fenchel-Legendre transform of Λ(λ), which characterizes the large deviations associated with the

empirical mean of i.i.d. random variables, is defined as

Λ∗(τ) , sup
λ∈R

{λτ − Λ(λ)}.

A useful property of Λ∗(·) is stated in the following lemma, which is a direct result from [23, Lemma 2.2.5].

Lemma 2: Λ∗(τ) is a non-decreasing convex function for τ > −D(P1‖P2).

The following theorem characterizes the large deviations of the probabilities of error under likelihood ratio tests.

Theorem 4 ([23, Theorem 3.4.3]): Let the acceptance region for H1 be
{

yn :
1

n
log

p1(y
n)

p2(yn)
> −τ

}

. (1)

Given τ ∈ (−D(P1‖P2),D(P2‖P1)), the error probabilities satisfy

lim
n→∞

−
1

n
logαn = Λ∗(τ) > 0,

and

lim
n→∞

−
1

n
log βn = Λ∗(τ)− τ > 0.

The acceptance region in (1) is referred to as the Neyman-Pearson test in the literature. It is straightforward to see

that the type-II error probability βn becomes larger as τ increases. Thus, Theorem 4 together with the optimality of

the Neyman-Pearson test (see, e.g., [23], [24]) implies that the optimal error exponent under the Neyman-Pearson

criterion with exponential constraint is given by

lim inf
n→∞

−
1

n
log βn = Λ∗(τ∗)− τ∗,
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where τ∗ is the smallest value in (−D(P1‖P2),D(P2‖P1)) such that Λ∗(τ∗) = γ and its existence is guaranteed

as per Stein’s lemma and Lemma 2. The corresponding acceptance region is then given by the Neyman-Pearson

test in (1) with τ = τ∗.

Also shown in [23], both Stein’s lemma and Chernoff theorem can be deduced from Theorem 4. An interesting

fact is that the Chernoff information is equal to the Fenchel-Legendre transform of Λ(·) evaluated at zero, i.e.,

C(P1, P2) = Λ∗(0). Instead of directly studying the Neyman-Pearson criterion with exponential constraint via large

deviations, we will first consider the Neyman-Pearson criterion with constant constraint and the Bayesian criterion

in Section IV to help illustrate our approach. In order to apply consensus based approaches, notice that for all the

three criteria reviewed in Section II-B, the optimal detectors all amount to a form of threshold test of the global

LLR. With distributed detection, if one can reconstruct the global LLR, then optimal detection performance in the

centralized setting can be attained. Since the global LLR is equivalent to the average of all local LLR values, this

motivates the average consensus approach for distributed detection where local LLRs are treated as local agent

data. We comment again that the LLRs for most observation models are intrinsically unbounded. The next section

introduces such a distributed averaging algorithm that uses only one-bit quantizer at each node.

III. DISTRIBUTED AVERAGE CONSENSUS USING ONE-BIT COMMUNICATIONS

The BQ-CADMM approach proposed in [22] employs a finite-bit quantizer that applies a projection operator

followed by the uniform rounding quantizer. Due to this rounding quantizer, the resulting consensus value is subject

to a consensus error from the desired average and the derived error bound has a non-vanishing constant error term

(cf. [22, Theorem 3]). This fact implies that the consensus based approach is in itself insufficient if one is to

attain the same asymptotic performance of the centralized case. We therefore adopt a new binary quantizer with

controllable threshold such that the consensus error can be made arbitrarily small when consensus is reached at a

specific quantization point.

We now construct the one-bit quantizer in a similar fashion to that of [22]: the composition of (uniform)

quantization and projection. Given quantization resolution ∆ > 0 and a predefined quantization point a ∈ R,

let Q(·) be a uniform quantizer defined as

Q(x) = a+ t∆, if a+ t∆− δ < x ≤ a+ (t+ 1)∆ − δ,

where x ∈ R, t ∈ Z, and δ ∈ (0,∆). If we pick a = 0 and δ = ∆
2 , then Q(·) becomes the usual rounding quantizer.

Let X = [a, a+∆] and denote by TX : R → X the projection operator that maps x ∈ R to the nearest point in X ,

i.e.,

TX (x) =



























a, if x < a,

x, if a ≤ x ≤ a+∆,

a+∆, otherwise.
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The one-bit quantizer is defined as

Qδ(·) = Q ◦ TX (·), (2)

which we refer to as δ-quantizer. One can easily verify that the δ-quantizer is equivalent to a binary threshold

quantizer

Qδ(x) =











a, if x ≤ a+∆− δ,

a+∆, otherwise.

Presented in Algorithm 1 is BQ-CADMM with this δ-quantizer, where ri ∈ R denotes the local data, i.e.,

local LLR at node i, and ρ is the algorithm parameter that can be any positive value. It is straightforward to see

that BQ-CADMM is fully distributed since the updates of local variables xk+1
i and αk+1

i only rely on local and

neighboring information.3 While similar results of BQ-CADMM using this δ-quantizer can be obtained as a direct

generalization of [22], we derive tighter consensus error bounds by taking advantage of the fact that there are only

two quantization values. This is stated in Thereom 5.

Algorithm 1 BQ-CADMM with the δ-quantizer

Require: Initialize x0i = 0 and α0
i = 0 for each agent i, i = 1, 2, . . . , n. Set ρ > 0 and

k = 0.

1: repeat

2: every agent i do

xk+1
i =

1

1 + 2ρ|Ni|

(

ρ|Ni|Qδ(x
k
i ) + ρ

∑

j∈Ni

Qδ(x
k
j )− αk

i + ri

)

,

αk+1
i = αk

i + ρ

(

|Ni|Qδ(x
k+1
i )−

∑

j∈Ni

Qδ(x
k+1
j )

)

.

3: set k = k + 1.

4: until a predefined stopping criterion (e.g., a maximum iteration number) is satisfied.

Theorem 5: Let r̄ = 1
n

∑n
i=1 ri denote the data average. For BQ-CADMM using the δ-quantizer Qδ(·), there

exists a finite number of iterations k0 such that for k ≥ k0, all the quantized variable values

• either converge to the same quantization value:

Qδ(x
k
1) = Qδ(x

k
2) = · · · = Qδ(x

k
n) , x∗Q ∈ {a, a+∆},

3Throughout the rest of this paper, ‘BQ-CADMM’ stands for the algorithm with the δ-quantizer; we use ‘original BQ-CADMM’ to

represent the algorithm with the bounded rounding quantizer in [22].
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where x∗Q satisfies the following error bound










∣

∣

∣
x∗Q−TX (r̄)

∣

∣

∣
≤
(

1 + 4ρm
n

)

(∆− δ), if x∗Q = a,
∣

∣

∣
x∗Q−TX (r̄)

∣

∣

∣
<
(

1 + 4ρm
n

)

δ, if x∗Q = a+∆,

(3)

• or cycle around the true average r̄ with a finite period T ≥ 2, i.e., xki = xk+T
i , i = 1, 2, . . . , n. Furthermore,

T−1
∑

l=0

Qδ(x
k+l
1 ) =

T−1
∑

l=0

Qδ(x
k+l
2 ) = · · · =

T−1
∑

l=0

Qδ(x
k+l
n ), (4)

and

|r̄ − (a+∆− δ)| < 6ρn∆. (5)

Proof: See Appendix.

Remark 1: Contrasting with the original BQ-CADMM that has a uniform consensus error bound when the

algorithm converges, the δ-quantizer results in error bounds that are dependent on the consensus value. This is

achieved by the asymmetric rounding of the δ-quantizer. Clearly, choosing a small δ relative to ∆
2 will skew the

quantizer toward a, i.e., the quantizer threshold is much closer to a+∆. Thus, when consensus is reached at a+∆,

the consensus error is ensured to be small too.

Remark 2: While Theorem 5 only requires a connected network, the convergence time (the smallest k0 in

convergent cases or the smallest k0 + T in cyclic cases) depends on the agents’ data, the network structure as well

as the algorithm parameter ρ. Besides, BQ-CADMM converges in most cases, particularly with large and dense

networks or small enough algorithm parameters (see simulations in Section VI).

Remark 3: For BQ-CADMM to work, i.e., Theorem 5 to hold, the algorithm parameter ρ can be any positive

value and does not depend on other parameters; however, to guarantee certain accuracy as we will need in the next

section, ρ has to be selected according to network parameters such as the number of nodes and the number of

edges. In addition, the choice of ρ has an impact on whether convergence or oscillation can happen. To see this,

consider r̄ 6= a+∆ − δ. Then (5) is violated with small enough ρ and convergence must be reached. This might

also explain why small algorithm parameters are likely to yield convergence results in our simulations where r̄

itself is random.

IV. OPTIMAL ASYMPTOTIC PERFORMANCE

This section establishes the optimal asymptotic performance under the three criteria. We use the consensus result

from BQ-CADMM with appropriate algorithm parameter and quantizer setup to construct acceptance regions that

can asymptotically achieve the optimal performance in centralized settings.

A. Neyman-Pearson Criterion with Constant Constraint

From Stein’s lemma, the relative entropy typical set A
(n)
ǫ (P1‖P2) achieves the optimal error exponent in the

centralized setting with diminishing ǫ. Consequently, by picking suitable ρ and small enough δ we can construct
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an acceptance region that is asymptotically equivalent to A
(n)
ǫ (P1‖P2) thus achieving the same error exponent. The

result is presented in the following theorem.

Theorem 6: Let yn be i.i.d. ∼ Q. Consider the test between two hypotheses H1 : Q = P1 and H2 : Q = P2,

where 0 < D(P1‖P2) < ∞. Let ri = log p1(yi)
p2(yi)

be the local data at node i. Set a = 0, ∆ = D(P1‖P2), and

ρ = min

{

δ

6nD(P1‖P2)
,
n

4m

}

.

Assume that BQ-CADMM runs sufficiently long such that either convergence or cycling occurs. Let the acceptance

region for H1 be

Aδ
n =

{

yn : BQ-CADMM cycles}
⋃
{

yn : BQ-CADMM converges at x∗Q = D(P1‖P2)
}

.

Then given any 0 < δ < D(P1‖P2),

P1

((

Aδ
n

)c)

<
1

2
δ, for n sufficiently large, (6)

and moreover,

lim
δ→0

lim
n→∞

−
1

n
log P2

(

Aδ
n

)

= D(P1‖P2). (7)

Proof: In this case we have r̄ = 1
n log p1(yn)

p2(yn) , the average LLR. We first find a sufficient condition for yn ∈ Aδ
n

to establish (6). If yn /∈ Aδ
n, then BQ-CADMM converges at x∗Q = 0 and hence (3) implies
∣

∣

∣

∣

TX

(

1

n
log

p1(y
n)

p2(yn)

)
∣

∣

∣

∣

≤
(

1 + 4ρ
m

n

)

(D(P1‖P2)− δ).

Picking 0 < ρ ≤ ρ1 ,
nδ

9m(D(P1‖P2)−δ) , we have

(

1 + 4ρ
m

n

)

(D(P1‖P2)− δ) ≤ D(P1‖P2)−
5

9
δ.

Thus, if yn is such that

∣

∣

∣

1
n log p1(yn)

p2(yn) −D(P1‖P2)
∣

∣

∣
≤ 1

2δ, yn must lie in Aδ
n as TX (·) projects a real value to the

nearest point in X = [0,D(P1‖P2)]. Therefore,

Aδ
n ⊇

{

yn :

∣

∣

∣

∣

1

n
log

p1(y
n)

p2(yn)
−D(P1‖P2)

∣

∣

∣

∣

≤
1

2
δ

}

= A
(n)
δ/2(P1‖P2).

Hence, (6) is true according to Lemma 1.

We next show that Aδ
n can asymptotically achieve the optimal error exponent by identifying a necessary condition

for yn ∈ Aδ
n. When convergence happens, x∗Q = D(P1‖P2) and (3) implies that

∣

∣

∣

∣

TX

(

1

n
log

p1(y
n)

p2(yn)

)

−D(P1‖P2)

∣

∣

∣

∣

<
(

1 + 4ρ
m

n

)

δ.

If we again pick ρ small enough, e.g., 0 < ρ ≤ ρ2 ,
n
4m , then

(

1 + 4ρm
n

)

δ ≤ 2δ. Thus,

TX

(

1

n
log

p1(y
n)

p2(yn)

)

> D(P1‖P2)− 2δ.

Assume that 0 < δ < D(P1‖P2)
2 such that D(P1‖P2)− 2δ > 0. From the definition of TX (·), we have

1

n
log

p1(y
n)

p2(yn)
> D(P1‖P2)− 2δ. (8)
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Now if BQ-CADMM cycles, we have from Theorem 5 that
∣

∣

∣

∣

1

n
log

p1(y
n)

p2(yn)
− (D(P1‖P2)− δ)

∣

∣

∣

∣

< 6ρn∆.

Letting ρ ≤ ρ3 =
δ

6nD(P1‖P2)
, we conclude that (8) is also true. Thus, if yn ∈ Aδ

n and 0 < δ < D(P1‖P2)
2 , we have

p2(y
n) < p1(y

n)2−n(D(P1‖P2)−2δ),

and further,

−
1

n
logP2(A

δ
n) = −

1

n
log

∫

Aδ
n

p2(y
n)dy

> −
1

n
log

(

2−n(D(P1‖P2)−2δ)

∫

Aδ
n

p1(y
n)dy

)

≥ D(P1‖P2)− 2δ,

which, together with Stein’s lemma, implies (7).

The proof is complete by choosing ρ = min{ρ1, ρ2, ρ3} and noting that δ < D(P1‖P2) and m ≤ n(n−1)
2 .

Therefore, by choosing small enough δ, we have that αn < 1
2δ ≤ α for large n and that the type-II error exponent

is arbitrarily close to the optimal error exponent D(P1‖P2) which is given in Stein’s lemma. Moreover, the above

proof implies that as long as δ → 0 with n → ∞, we can get

lim
n→∞

−
1

n
log βn = D(P1‖P2). (9)

On the other hand, δ cannot decrease too fast in order to satisfy the type-I error constraint. With finite alphabet,

a simple choice to meet the type-I error constraint is from Hoeffding’s test [25] by setting δ = |Σ| logn
n where |Σ|

denotes the cardinality of the alphabet. In general, there is not such a universal selection for δ. We may calculate a

δ > 0 such that P1

(

A
(n)
δ/2

)

≥ 1−α, and it is not hard to show that this δ vanishes as n scales. If the above choice

is greater than or equal to D(P1‖P2), we can simply set δ = D(P1‖P2)
2 to ensure 0 < δ < D(P1‖P2). In this way,

(9) is guaranteed under the type-I error constraint.

B. MAP Criterion

Unlike the Neyman-Pearson criterion with constant constraint, the MAP criterion does not require a diminishing

δ. As one will see, this is because the optimal acceptance region converges to the same set asymptotically for any

positive prior probabilities. Specifically, it is well-known that the optimal acceptance region for any n under the

MAP criterion is
{

yn :
1

n
log

p1(y
n)

p2(yn)
>

1

n
log

π2
π1

}

, (10)



12

provided that π1 and π2 are both positive. We also have

lim inf
n→∞

−
1

n
logP1

({

yn :
1

n
log

p1(y
n)

p2(yn)
≤

1

n
log

π2
π1

})

= lim inf
n→∞

−
1

n
logP2

({

yn :
1

n
log

p1(y
n)

p2(yn)
>

1

n
log

π2
π1

})

= C(P1, P2), (11)

as a result of Lemma 2, Theorem 4, and the fact that Λ∗(0) = C(P1, P2). We remark that (11) does not depend on

particular values of π1 and π2 as long as they are positive. The following theorem states our result on the exponent

of the Bayesian error probability.

Theorem 7: Let yn be i.i.d ∼ Q. Consider the hypothesis test between H1 : Q = P1 and H2 : Q = P2 with

positive prior probabilities π1 and π2, respectively. Assume that C(P1, P2) > 0. For the δ-quantizer Qδ(·), set

a = −1, ∆ = 2, and δ = 1. Set also the local data ri = log p1(yi)
p2(yi)

and the algorithm parameter ρ = 1
12n2 . Assume

that BQ-CADMM runs sufficiently long such that either convergence or cycling occurs. Let the acceptance region

for H1 be

An =
{

yn : BQ-CADMM cycles}
⋃
{

yn : BQ-CADMM converges at x∗Q = 1
}

.

Then the error exponent is given by

lim inf
n→∞

−
1

n
log(π1αn + π2βn) = C(P1, P2).

Proof: With this setup, the δ-quantizer has the threshold at a + ∆ − δ = 0. First note that if BQ-CADMM

results in oscillation between the two quantization points, Theorem 5 implies
∣

∣

∣

∣

1

n
log

p1(y
n)

p2(yn)

∣

∣

∣

∣

< 6ρn∆ =
1

n
,

where the last inequality is because ρ = 1
12n2 .

In the convergent case, we first use a necessary condition for x∗Q = 1 to show that

lim inf
n→∞

−
1

n
log βn ≥ C(P1, P2).

By Theorem 5, when x∗Q = 1, yn must satisfy
∣

∣

∣

∣

TX

(

1

n
log

p1(y
n)

p2(yn)

)

− 1

∣

∣

∣

∣

< 1 + 4ρ
m

n
.

If we pick ρ ≤ 1
4m and recall that TX (·) is the projection operator that maps a real value to the nearest point in

X = [−1, 1], the above inequality indicates that yn is such that

1

n
log

p1(y
n)

p2(yn)
> −

1

n
.

Together with the cyclic case, we get

An ⊆

{

yn :
1

n
log

p1(y
n)

p2(yn)
> −

1

n

}

.
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Hence,

βn = P2(An) ≤ P2

({

yn :
1

n
log

p1(y
n)

p2(yn)
> −

1

n

})

.

Comparing with (10), we see that {yn : 1
n log p1(yn)

p2(yn) > − 1
n} is the optimal acceptance region for the hypothesis

testing problem with prior probabilities 2
3 and 1

3 under H1 and H2, respectively. Therefore, (11) implies that

lim inf
n→∞

−
1

n
log βn

≥ lim inf
n→∞

−
1

n
log P2

({

yn :
1

n
log

p1(y
n)

p2(yn)
> −

1

n

})

= C(P1, P2). (12)

We next find a sufficient condition for yn ∈ An to establish

lim inf
n→∞

−
1

n
logαn ≥ C(P1, P2). (13)

When yn /∈ An, convergence must be reached at x∗Q = −1 and we have
∣

∣

∣

∣

TX

(

1

n
log

p1(y
n)

p2(yn)

)

+ 1

∣

∣

∣

∣

≤ 1 + 4ρ
m

n
.

Therefore, when n ≥ 2 and ρ ≤ 1
4m ,

Ac
n ⊆

{

yn :
1

n
log

p1(y
n)

p2(yn)
≤

1

n

}

.

Since
{

yn : 1
n log p1(yn)

p2(yn) ≤
1
n

}

is the optimal critical region for the hypothesis testing problem with prior probabil-

ities 1
3 and 2

3 , (13) can be shown similarly.

Finally, combining (12) and (13) we have

lim inf
n→∞

−
1

n
log (π1αn + π2βn) ≥ lim inf

n→∞
−
1

n
log (max{π1, π2}) + lim inf

n→∞
−
1

n
log (max{αn, βn}) ≥ C(P1, P2).

The proof is complete by Chernoff theorem and the fact that m ≤ n(n−1)
2 for a connected undirected graph.

Remark 4: It appears that choosing ρ = 1
12n2 , which can be very small, may make BQ-CADMM slow. Fortunately,

BQ-CADMM is more likely to converge with larger n and we only need ρ ≤ 1
4m if convergence happens. A

decreasing strategy for ρ can also be used to accelerate the convergence of BQ-CADMM; see Section VI-B as well

as [22, Section V-D].

The above theorem indicates that the consensus approach achieves the optimal error exponent which is given

by Chernoff theorem. A direct extension is to consider multi-hypothesis testing. We will show that our consensus

based approach also achieves the centralized error exponent under MAP criterion by executing multiple runs of

BQ-CADMM. Denote the probability measures and their corresponding prior probabilities respectively by Pw and

πw, w = 1, 2, . . . ,W . We also denote dPw as pw. Assume that all πw’s are positive and that Pw and Pw′ are

absolutely mutually continuous with C(Pw, Pw′) > 0 for any w 6= w′. The centralized MAP rule for the w-th

hypothesis is given by

A∗
w(n) =

{

yn : πwpw(y
n) ≥ max

w′<w
πw′pw′(yn), πwpw(y

n) > max
w′>w

πw′pw′(yn)

}

.
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For ease of presentation, define the following Neyman-Pearson test between two different hypotheses

V w,w′

n =











{

yn : 1
n log pw(yn)

pw′(yn) ≥
1
n log πw′

πw

}

, if w′ < w,
{

yn : 1
n log pw(yn)

pw′(yn) >
1
n log πw′

πw

}

, if w′ > w.

Then we can write A∗
w(n) =

⋂

w′ 6=wV
w,w′

n for a given w. Two useful facts about V w,w′

n are stated as follows:

• V w,w′

n = Σn \ V w′,w
n ,

(

V w′,w
n

)c
.

• Consider binary hypothesis testing between Pw and P ′
w with prior probabilities πw

πw+πw′

and πw′

πw+πw′

, respec-

tively. Then V w,w′

n is the optimal acceptance region for Pw under MAP criterion. Similar to (11), Lemma 2

and Theorem 4 indicate

lim inf
n→∞

−
1

n
log Pw

((

V w,w′

n

)c)

= lim inf
n→∞

−
1

n
logPw′

(

V w,w′

n

)

= C(Pw, Pw′).

Now consider the optimal Bayesian error for the multi-hypothesis testing

P ∗
e =

∑

w

πwPw((A
∗
w(n))

c).

Noting that Pw((A
∗
w(n))

c) = Pw

(

⋃

w′ 6=w

(

V w,w′

n

)c)

, we get the following

max
w′ 6=w

Pw

((

V w,w′

n

)c)

≤ Pw((A
∗
w(n))

c) ≤
∑

w′ 6=w

Pw

((

V w,w′

n

)c)

. (14)

Thus, we get the error exponent

lim inf
n→∞

−
1

n
logPw((A

∗
w(n))

c) = min
w′ 6=w

C(Pw, Pw′),

for any given w ∈ {1, 2, . . . ,W}. Hence, the centralized error exponent is

lim inf
n→∞

−
1

n
logP ∗

e = min
w

min
w′ 6=w

C(Pw, Pw′).

To apply our consensus based approach, we use the bubble sorting idea to construct the MAP detector: starting

with w = 1 and w′ = 2, test whether yn ∈ V w,w′

n ; if yes, keep this w, otherwise, set w = w′; set w′ = w′ + 1

and test again if yn ∈ V w,w′

n ; continue this process until the W -th hypothesis is involved. It is straightforward

to see that the final w is the output of the MAP detector. Recall that the acceptance region in Theorem 7, when

testing between Pw and Pw′ , achieves the same optimal error exponent as V w,w′

n . We may replace V w,w′

n with this

acceptance region, denoted by Aw,w′

n , to implement the consensus based approach. In summary, the above algorithm

runs BQ-CADMM W − 1 times to make a decision for the multi-hypothesis testing problem.

To study how this algorithm performs, let Aw(n) be the acceptance region for the w-th hypothesis resulting from

the W − 1 runs of BQ-CADMM. For the first hypothesis to be selected, yn must be such that yn ∈
⋂

w′ 6=1A
1,w′

n

and conversely, if yn ∈
⋂

w′ 6=1 A
1,w′

n , we must select the first hypothesis. Thus, A1(n) =
⋂

w′ 6=1A
1,w′

n . Similar to

(14) and using Theorem 7, we have

lim inf
n→∞

−
1

n
logP1((A1(n))

c) = min
w′ 6=1

C(P1, Pw′).
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For 2 ≤ w ≤ W − 1, if the final decision is w, then the (w − 1)-th run of BQ-CADMM must accept w. At the

same time, yn must lie in Aw,w′

n for any w′ > w. Thus,
(

⋂

w′<w

(Aw′,w
n (n))c

)

⋂

(

⋂

w′>w

Aw,w′

n

)

⊂ Aw(n) ⊂
⋂

w′>w

Aw,w′

n .

Recalling the definition of Aw,w′

n , we conclude that

min
w′ 6=w

C(Pw, Pw′) ≤ lim inf
n→∞

−
1

n
log Pw((Aw(n))

c) ≤ min
w′>w

C(Pw, Pw′).

For the W -th hypothesis, similar argument shows that

min
w′ 6=W

C(PW , Pw′) ≤ lim inf
n→∞

−
1

n
log PW ((AW (n))c) ≤ max

w′ 6=W
C(PW , Pw′).

Finally, it is noted that the Bayesian error is Pe =
∑

w πwPw((Aw(n))
c) and that its error exponent is decided by the

lowest error exponent of Pw((Aw(n))
c). Together with the symmetry property of C(Pw, Pw′) (i.e., C(Pw, Pw′) =

C(Pw′ , Pw)), we conclude that

lim inf
n→∞

−
1

n
log Pe = min

w
min
w′ 6=w

C(Pw, Pw′), (15)

which is the optimal error exponent in the centralized case. The result is summarized in the following theorem.

Theorem 8: Consider multi-hypothesis testing with hypotheses Pw, w = 1, 2, . . . ,W for some integer W ≥ 2.

Assume that the prior probability πw for each hypothesis is positive and that the hypotheses Pw are pairwise

absolutely continuous with each other. Using W − 1 runs of BQ-CADMM with the same quantizer and algorithm

parameters in Theorem 7, each node can achieve the optimal centralized error exponent under the MAP criterion,

which is given in (15).

C. Neyman-Pearson Criterion with Exponential Constraint

We now consider the Neyman-Pearson criterion with exponential constraint based on large deviations techniques.

Similar to the above two cases, the key is to pick appropriate algorithm and quantizer parameters such that the

constructed acceptance region approaches the optimal centralized one as the network size increases.

Theorem 9: Let yn be i.i.d. ∼ Q. Consider the hypothesis test between H1 : Q = P1 and H2 : Q = P2 and assume

that 0 < D(P1‖P2),D(P2‖P1) < ∞. Set a = −D(P2‖P1), ∆ = D(P1‖P2) +D(P2‖P1), and δ = D(P1‖P2) + τ

with τ ∈ (−D(P1‖P2),D(P2‖P1)). Set also ri = log p1(yi)
p2(yi)

and

ρ =
1

6n2(D(P1‖P2) +D(P2‖P1))
.

Assume that BQ-CADMM runs sufficiently long such that either convergence or cycling occurs. Let the acceptance

region for H1 be

An =
{

yn : BQ-CADMM cycles}
⋃
{

yn : BQ-CADMM converges at x∗Q =D(P1‖P2)
}

.
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Then we have

lim inf
n→∞

−
1

n
log αn = Λ∗(τ),

and

lim inf
n→∞

−
1

n
log βn = Λ∗(τ)− τ.

Proof: The δ-quantizer of this setup has its threshold set at −τ . The proof is similar to previous ones and we

hence omit some details.

We first find a sufficient condition for yn ∈ An. If yn 6∈ An, BQ-CADMM must reach a consensus at x∗Q =

−D(P2‖P1). Then Theorem 5 implies
∣

∣

∣

∣

TX

(

1

n
log

p1(y
n)

p2(yn)

)

+D(P2‖P1)

∣

∣

∣

∣

≤
(

1 + 4ρ
m

n

)

(D(P2‖P1)− τ) .

Picking ρ small enough, e.g., ρ < 1
4m(D(P2‖P1)−τ) , we get

TX

(

1

n
log

p1(y
n)

p2(yn)

)

≤ −τ +
1

n
.

Since TX (·) projects a real value into [−D(P2‖P1),D(P1‖P2)] and τ ∈ (−D(P1‖P2),D(P2‖P1)), there exists a

positive integer n0 such that for n ≥ n0,

Ac
n ⊆

{

yn :
1

n
log

p1(y
n)

p2(yn)
≤ −τ +

1

n

}

.

Therefore,

lim inf
n→∞

−
1

n
log αn

≥ lim inf
n→∞

−
1

n
log P1

({

yn :
1

n
log

p1(y
n)

p2(yn)
≤ −τ +

1

n

})

= Λ∗(τ), (16)

where the last equality is due to Lemma 2 and Theorem 4.

We next find a necessary condition for yn ∈ An. If yn results in a cyclic behavior of BQ-CADMM, we must

have
∣

∣

∣

∣

1

n
log

p1(y
n)

p2(yn)
+ τ

∣

∣

∣

∣

< 6ρn(D(P1‖P2) +D(P2‖P1)).

For the other case where convergence is reached at x∗Q = D(P1‖P2), we have
∣

∣

∣

∣

TX

(

1

n
log

p1(y
n)

p2(yn)

)

−D(P1‖P2)

∣

∣

∣

∣

<
(

1 + 4ρ
m

n

)

(D(P1‖P2) + τ) .

With ρ = 1
6n2∆ , we can verify that with a sufficiently large n,

An ⊆

{

1

n
log

p1(y
n)

p2(yn)
> −τ −

1

n

}

.

Thus,

lim inf
n→∞

−
1

n
log βn ≥ Λ∗(τ)− τ. (17)
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Finally, the optimality of the Neyman-Pearson test and Theorem 4 establish the equalities in (16) and (17).

Therefore, by replacing τ = τ∗ where τ∗ is the optimal threshold in the centralized case, each node achieves the

optimal centralized error exponent in Theorem 4 under the Neyman-Pearson criterion with exponential constraint.

D. Remarks

We have the following remarks regarding to our main results.

1) Parameter Selection: We focus on the Neyman-Pearson criterion with exponential constraint as both Stein’s

lemma and Chernoff theorem can be deduced from it. While in Theorem 9 only a single parameter setup is selected

for the δ-quantizer to accommodate all possible −D(P1‖P2) < τ < D(P2‖P1), the quantizer parameters can be

chosen from a quite broad set. With given τ in the Neyman-Pearson test of (1), one can pick any a and ∆ to

satisfy a < −τ < a + ∆. Then δ can be chosen such that 0 < δ < ∆ and the threshold a + ∆ − δ → −τ

as n → ∞. To guarantee the optimal asymptotic performance, the algorithm parameter ρ must be small enough

to ensure 6ρn∆ → 0 as n → ∞. This setup of quantizer and algorithm parameters can be similarly verified by

exploring the sufficient and necessary conditions on the acceptance region.

It is worth noting that while the optimal error exponent only requires the constructed acceptance region to

asymptotically approach the centralized one, prudent choice of quantizer setup and step size can improve the non-

asymptotic performance; see Section V and Section VI-A. Besides, our choice of ρ is obtained from worst-case

consensus error bounds that are generally loose and in turn result in loose ρ. Thus, our algorithm is very likely to

perform well in terms of error probabilities without requiring ρ to be very small; see also the simulation result in

Section VI-A when n is small.

2) Practical Considerations: In our main theorems, the acceptance regions all rely on the average LLR and seem

to require knowledge of observations yn across the sensors. This, however, is not the case; consensus decision making

is ensured at each node based only on locally available information through local observation and local information

exchange. To see this, assume that either convergence or cycling has occured. Then Theorem 5 guarantees that a

consensus is reached at all the nodes. That is, if a node converges at a (or a+∆), every other node converges at a

(or a+∆); if the node cycles, every other node cycles. As such, each node can make the same decision determined

by the acceptance region.

Since there is no closed-form result on the number of iterations needed for convergence or cycling to happen,

there is a need to choose a stopping criterion at each node. A natural approach is to set the maximum number

of iterations at the beginning, which, however, requires characterization of the convergence time of BQ-CADMM.

An upper bound on the convergence time, which depends on the network topology and agents’ data, may still be

insufficient as these quantities are locally unknown. In a fully distributed manner, we can run additional algorithms to

determine if a consensus has been reached; see, e.g., [26], [27]. These additional algorithms may take a long running

time in large networks and will require extra data communications. In general, finding a practically meaningful and

efficient stopping criterion for distributed averaging algorithms remains an open problem.
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As to detecting the cyclic state, nodes may record a certain number of consecutive variable values and check

if any cycle exists. Yet, there is no guarantee that the oscillation can be perfectly detected, as we do not have

a meaningful upper bound on the cyclic period.4 Indeed, the cyclic behavior can be ignored without losing any

optimality in terms of error exponents. To see this, consider rejecting H1 if oscillation happens. It can be similarly

shown that the same error exponent is achieved under each criterion. Therefore, nodes can make their decision

based on their current state to achieve the optimal asymptotic performance, but they fail to reach a consensus when

oscillation occurs. Moreover, as shown by our simulation in Section VI-A, convergence almost always happens

with the choice of ρ = 1
4m when n becomes large.

3) Comparison with Fusion Center Based Structures: By enabling sensors and fusion center to transmit and

receive data, the parallel and tandem networks are equivalent to the undirected star and path graphs, respectively. As

such, the parallel and tandem networks can be regarded as special cases of consensus type structures. It is important

to note that we achieve the optimal error exponent as in centralized settings at a cost of more data transmissions.

The fusion center based structures need n and n − 1 data transmissions for the parallel and tandem networks,

respectively. The consensus based structure, however, has each sensor sending one bit to its neighbors and hence

there are in total 2m bits per iteration, where m = n and n− 1 for the star and path graphs, respectively. To see

how many bits are needed for decision making at all nodes, it requires the characterization on the convergence

time of BQ-CADMM. While the current work does not characterize convergence time, we will conduct numerical

examples in Section VI to evaluate it empirically.

V. NON-ASYMPTOTIC DETECTION PERFORMANCE

While this paper focuses on characterizing asymptotic detection performance when the network size scales, we

are also interested in non-asymptotic performance of the proposed approach. For a broad class of criteria, including

the Neyman-Pearson criterion and the Bayesian criterion, the optimal acceptance region for H1 is defined by a

LLR test with a suitably chosen threshold

A∗
n =

{

yn :
1

n
log

p1(y
n)

p2(yn)
> τ∗

}

,

where τ∗ ∈ R and n is finite. Similar to the asymptotic setting, we will use the consensus result of BQ-CADMM

to construct an acceptance region whose type-I and type-II error probabilities are arbitrarily close to the centralized

ones.

Set a = τ∗ − 1, ∆ = 2, and δ = 1 for the δ-quantizer. Then the threshold in this setup is τ∗. Set also

ri = log p1(yi)
p2(yi)

. We again run BQ-CADMM long enough such that either a convergent result or cyclic result is

reached. Let the acceptance region for H1 be

An =
{

yn : BQ-CADMM cycles}
⋃
{

yn : BQ-CADMM converges at x∗Q = τ∗ + 1
}

.

4As given in [22], an upper bound can be derived but is too loose to use in practice.
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We next find sufficient and necessary conditions for yn ∈ An. If yn 6∈ An, BQ-CADMM converges at x∗Q = τ∗−1.

We get

|TX (r̄)− (τ∗ − 1)| ≤
(

1 + 4ρ
m

n

)

.

Then the projection operator TX (·) implies that we must have yn ∈ An if

r̄ − τ∗ > 4ρ
m

n
, if ρ <

n

4m
.

When yn ∈ An, BQ-CADMM either cycles or converges at x∗Q = τ∗ + 1. Thus, yn must be such that either

|r̄ − τ∗| < 12ρn,

or

r̄ − τ∗ > −4ρ
m

n
, if ρ <

n

4m
.

Since 1 ≤ m ≤ n(n−1)
2 for a connected network, then for Q ∈ {P1, P2} and ρ < n

4m we get

Q

({

yn :
1

n
log

p1(y
n)

p2(yn)
> τ∗ + 4ρ

m

n

})

≤ Q(An)

≤ Q

({

yn :
1

n
log

p1(y
n)

p2(yn)
> τ∗ − 12ρn

})

.

Let z = 1
n log p1(yn)

p2(yn) and denote its cumulative distribution function as Q(τ) = Q ({z : z ≤ τ}). We can further

write the above as

1−Q
(

τ∗ + 4ρ
m

n

)

≤ Q(An) ≤ 1−Q (τ∗ − 12ρn) .

Recall that Q(A∗
n) = 1 − Q(τ∗), we have that Q(An) → Q(A∗

n) as ρ → 0 given that Q(τ) is continuous at

τ = τ∗. Therefore, when the continuity condition holds for both P1 and P2, we can make the type-I and type-II

error probabilities arbitrarily close to the optimal ones by picking small enough ρ.

VI. SIMULATIONS

A. Non-Asymptotic Performance

We first consider the following hypothesis testing problem between two Gaussian distributions in star networks:

• H1 : P1 = N (1, 10),

• H2 : P2 = N (−1, 10).

For finite n and positive π1 and π2, the optimal centralized acceptance region for H1 under the MAP criterion is
{

yn :
1

n
log

p1(y
n)

p2(yn)
>

1

n
log

π2
π1

}

=

{

yn :
1

5

n
∑

i=1

yi > ln
π2
π1

}

,
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Fig. 1. Error probability of Monte Carlo simulations for the Gaussian example; the number of trials for each plotted value is 10
5.

and the optimal Bayesian error probability is given by

P ∗
e = π1qfunc

((

1−
5

n
ln

π2
π1

)
√

n

10

)

+ π2qfunc

((

1 +
5

n
ln

π2
π1

)
√

n

10

)

, (18)

where qfunc(·) denotes the complementary distribution function for standard Gaussian distribution. We perform

Monte Carlo simulations to estimate the actual Bayesian error probability of our approach and compare it with

(18). In the spirit of Remark 4, we run BQ-CADMM with ρ = 1
4m and check if BQ-CADMM converges to the

right hypothesis. If BQ-CADMM cycles, we rerun BQ-CADMM with ρ = 1
12n2 and make the decision based on

the new consensus result. Summarized in Fig. 1 and Fig. 2 are the Monte Carlo results for the Gaussian example

with different prior probabilities: π1 = 0.5 and π1 = 0.1.

We observe from Fig. 1 that the consensus based error probabilities of the two cases are both very close to

the centralized error probability with π1 = 0.5 for all n. That said, in the case of π1 = 0.1, the consensus based

approach has its error probability far from the centralized one when n is small. This is because we use δ = 1 in

the consensus based approach for all positive prior probabilities and consequently, the acceptance region is very

different from the optimal centralized one with π1 = 0.1 for small n. Similar to the setup of the δ-quantizer in

Section V, we pick δ = 1 − 1
n log π2

π1
such that the threshold of the δ-quantizer becomes 1

n log π2

π1
. Here we need

n ≥ 4 to ensure δ > 0. Running the example with π1 = 0.1 again, we obtain the new error probability very close

to the optimal one (see the dashed line with cross markers in Fig. 1). In addition, we record the number of trials

in which BQ-CADMM cycles with ρ = 1
4m . As plotted in Fig. 2, it is clear that BQ-CADMM tends to converge

as n increases.
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Fig. 2. Number of cyclic cases in 10
5 trials for the Gaussian example.

B. Convergence Time

We now numerically evaluate convergence time of the proposed approach. Given the number of nodes, we

consider the above Gaussian example with π1 = 0.5 over star graph which has the smallest number of edges for

a connected network, complete graph which has the largest number of edges, and randomly generated connected

graphs with intermediate numbers of edges. A random graph with n nodes and m edges is generated as follows:

first generate a complete graph of n nodes and then randomly remove
n(n−1)

2 −m edges while ensuring the graph

stays connected. Since we have shown that BQ-CADMM with this example is more likely to converge with larger

n, we only count the convergent cases and pick ρ = 1
4m for BQ-CADMM.

Simulation result is shown in Fig. 3. The plotted value is the average of 2, 000 runs in which both data and graph

are randomly generated at each run. One can see that sparser and larger networks usually have longer convergence

time and that the average convergence time for all cases is approximately O(n log n). As a result, in a sensor network

with n nodes and m edges, the proposed approach requires approximately O(mn log n) bits of data transmissions

for the Gaussian example.

Noticing that the above simulation uses a fixed algorithm parameter for BQ-CADMM, we now apply a decreasing

parameter strategy which is shown to dramatically reduce the convergence time in [22]. Start with ρ = n
m . If ρ > 1

4m ,

we run BQ-CADMM for 50 iterations and then reduce ρ by a factor of 10. We repeat this process until ρ ≤ 1
4m at

which we run BQ-CADMM long enough such that either convergence or cycling occurs. The average convergence

time is shown in Fig. 4. Compared with fixed parameter strategy, we observe that the decreasing strategy runs

50 ⌈log10(4n)⌉ iterations before ρ meets the accuracy requirement and makes BQ-CADMM proceed faster at early

stages. When ρ indeed satisfies the required accuracy, it only takes a few iterations before reaching the final state.
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Fig. 3. Convergence time of BQ-CADMM for the Gaussian example with π1 = 0.5; each plotted value is the average of 2, 000 runs.

With the decreasing parameter strategy for BQ-CADMM, we conjecture that the consensus based approach requires

O(m log n) bits of data transmissions on the average to achieve the optimal asymptotic performance for the Gaussian

example.
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Fig. 4. Convergence time of BQ-CADMM using decreasing parameter strategy for the Gaussian example with π1 = 0.5; each plotted value

is the average of 2, 000 runs.
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VII. CONCLUSION AND DISCUSSION

This paper studies asymptotic performance of consensus based detection for large scale connected networks using

BQ-CADMM, a recently proposed quantized consensus approach that has finite quantization levels with possibly

unbounded data. Different from the original BQ-CADMM that has a constant term in the consensus error bound, we

construct a binary quantizer with controllable threshold such that the consensus value can be of desired accuracy.

We then show that each node can achieve the same optimal error exponent as the centralized cases under three

common criteria. Non-asymptotic behavior of the proposed approach is also addressed.

While the convergence time of BQ-CADMM is shown to be finite, extensive numerical studies show that the

decreasing strategy in our simulations requires approximately O(log n) iterations for the proposed approach to reach

a decision. However, precise characterization on convergence time or its upper bound remains elusive. Meanwhile,

many works, such as [12]–[15], consider the sequential setting where the total number of sensors is finite and each

sensor can receive successive observations. Our future work would be to extend our approach, with modifications

to handle temporal observations, to the sequential setting.

APPENDIX

Proof of Theorem 5: By the definition of Qδ(·) in (2), it is clear that |Qδ(x)− TX (x)| < ∆ < ∞ for x ∈ R.

Together with the deterministic property (i.e., Qδ(x1) = Qδ(x2) if x1 = x2), that BQ-CADMM using this δ-

quantizer either converges or cycles with every node having the same sum of quantized variable values over one

period can be shown by the same idea as that of [22, Theorem 3]. What remains is to derive the error bounds in

the respective cases.

Convergent case: With convergence, we can write xki = x∗i for k ≥ k0. To show the error bound (3), denote

e∗i = TX (x
∗
i )−x∗Q. Consider first x∗Q = a and assume that |x∗Q−TX (r̄)| > ∆− δ; otherwise, the error bound holds

trivially. Following the same steps of the consensus error proof of [22, Theorem 3], we obtain that

∣

∣x∗Q − TX (r̄)
∣

∣ ≤
1

n

n
∑

i=1

(2ρ|Ni|+ 1) |e∗i |.

Since
∑n

i=1 |Ni| = 2m, it remains to find an upper bound for e∗i . Note that Qδ(x
∗
i ) = x∗Q = a implies TX (x

∗
i ) ∈

[a, a+∆− δ] and hence |e∗i | = |TX (x
∗
i )− a| ≤ ∆− δ. Similar argument proves the error bound for x∗Q = a+∆

and is omitted.

Cyclic case: We will show that xki is close to the threshold a+∆− δ and then use this fact to characterize the

difference between the threshold and the data average. Assume that the cycling state has been reached, i.e., k ≥ k0.

With only two quantization values a and a + ∆, there are at most four possible cases for two consecutive agent
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values Qδ(x
k
i ) and Qδ(x

k+1
i ). We now discuss these cases one by one and before this, we write the following

useful update from the xi- and αi-updates in Algorithm 1:

xk+1
i =

1

1 + 2ρ|Ni|

(

ρ|Ni|Qδ(x
k
i ) + ρ

∑

j∈Ni

Qδ(x
k
j )− αk

i + ri

)

=
1

1 + 2ρ|Ni|

(

ρ|Ni|Qδ(x
k
i ) + ρ

∑

j∈Ni

Qδ(x
k
j )− αk−1

i − ρ|Ni|Qδ(x
k
i ) + ρ

∑

j∈Ni

Qδ(x
k
j ) + ri

)

= xki +
1

1 + 2ρ|Ni|

(

2ρ
∑

j∈Ni

Qδ(x
k
j )− ρ|Ni|Qδ(x

k−1
i )− ρ

∑

j∈Ni

Qδ(x
k−1
j )

)

. (19)

• Case 1: Qδ(x
k
i ) = a and Qδ(x

k+1
i ) = a+∆. By the definition of δ-quantizer, we have xki ≤ a+∆−δ < xk+1

i .

Following (19) and using the fact that only a and a + ∆ can be the output of Qδ(·), we also get xk+1
i ≤

a+∆− δ + 2ρ|Ni|
1+2ρ|Ni|

∆. In summary, we have

a+∆− δ < xk+1
i ≤ a+∆− δ +

2ρ|Ni|

1 + 2ρ|Ni|
∆.

• Case 2: Qδ(x
k
i ) = a+∆ and Qδ(x

k+1
i ) = a. Similar to Case 1, it can be shown that

a+∆− δ −
2ρ|Ni|

1 + 2ρ|Ni|
∆ < xk+1

i ≤ a+∆− δ.

• Case 3: Qδ(x
k
i ) = a+∆ and Qδ(x

k+1
i ) = a+∆. We can immediately conclude that xk+1

i > a+∆− δ. To

find an upper bound on xk+1
i , consider the αi-update at index k:

αk
i = αk−1

i + ρ|Ni|Qδ(x
k
i )− ρ

∑

j∈Ni

Qδ(x
k
j ) ≥ αk−1

i ,

where inequality follows from Qδ(x
k
i ) = a+∆. By induction, we have αk′

i ≤ αk
i where k′ < k is the largest

index such that Qδ(x
k′

i ) = a. Note that such k′ always exists for k ≥ k0 +T as a result of the cyclic behavior

and (4). Then we have

xk+1
i =

1

1 + 2ρ|Ni|

(

ρ|Ni|Qδ(x
k
i ) + ρ

∑

j∈Ni

Qδ(x
k
j )− αk

i + ri

)

≤
1

1 + 2ρ|Ni|

(

ρ|Ni|Qδ(x
k
i ) + ρ

∑

j∈Ni

Qδ(x
k
j )− αk′

i + ri

)

= xk
′

i +
1

1 + 2ρ|Ni|

(

ρ|Ni|Qδ(x
k
i ) + ρ

∑

j∈Ni

Qδ(x
k
j ) + ρ

∑

j∈Ni

Qδ(x
k′

j )− ρ|Ni|Qδ(x
k′

i )

− ρ|Ni|Qδ(x
k′−1
i )− ρ

∑

j∈Ni

Qδ(x
k′−1
j )

)

,

where the last equality is obtained by the xi- and αi-updates at the k′-th iteration. As Qδ(x
k′

i ) = a, we have

xk+1
i ≤ a+∆− δ +

3ρ|Ni|

1 + 2ρ|Ni|
∆.

• Case 4: Qδ(x
k
i ) = a and Qδ(x

k+1
i ) = a. Similar to Case 3, we can get

a+∆− δ −
3ρ|Ni|

1 + 2ρ|Ni|
∆ < xk+1

i ≤ a+∆− δ.
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Summarizing all the four cases and using the fact that |Ni| < n, we conclude the following:

|xki − (a+∆− δ)| ≤
3ρ|Ni|

1 + 2ρ|Ni|
∆ <

3ρn

1 + 2ρn
∆, for k ≥ k0. (20)

With (20), we can now bound xki −Qδ(x
k
i ) with k ≥ k0. If Qδ(x

k
i ) = a, then

a+∆− δ −
3ρn

1 + 2ρn
∆ < xki ≤ a+∆− δ.

Thus,

|xki −Qδ(x
k
i )| ≤ max

{∣

∣

∣

∣

∆− δ −
3ρn

1 + 2ρn
∆

∣

∣

∣

∣

,∆ − δ

}

.

When Qδ(x
k
i ) = a+∆, we can similarly derive

|xki −Qδ(x
k
i )| ≤ max

{
∣

∣

∣

∣

3ρn

1 + 2ρn
∆− δ

∣

∣

∣

∣

, δ

}

.

As 0 < δ < ∆, we finally have

|xki −Qδ(x
k
i )| <

3

2
∆. (21)

To bound the difference between the threshold a+∆− δ and the data average r̄, we sum up the variable values

over one period for k ≥ k0 and get
∣

∣

∣

∣

∣

∑T−1
l=0 xk+l

i

T
− (a+∆− δ)

∣

∣

∣

∣

∣

<
3ρn

1 + 2ρn
∆, (22)

and
∣

∣

∣

∣

∣

∑T−1
l=0 xk+l

i

T
−

∑T−1
l=0 Qδ(x

k+l
i )

T

∣

∣

∣

∣

∣

<
3

2
∆, (23)

where (22) is from (20) and (23) is from (21). Also summing up both sides of the xi-update of BQ-CADMM over

a period yields

(1 + 2ρ|Ni|)

∑T−1
l=0 xk+l

i

T
− ρ|Ni|

∑T−1
l=0 Qδ(x

k+l
i )

T
− ρ

∑

j∈Ni

∑T−1
l=0 Qδ(x

k+l
j )

T
+

∑T−1
l=0 αk+l

i

T
− ri = 0. (24)

Further summing up both sides (24) from i = 1 to n, we have

n
∑

i=1

(1 + 2ρ|Ni|)

∑T−1
l=0 xk+l

i

T
−

n
∑

i=1

2ρ|Ni|

∑T−1
l=0 Qδ(x

k+l
i )

T
−

n
∑

i=1

ri = 0, (25)

where we use the fact
∑n

i=1 α
k
i = 0 for any k (cf. [22, Lemma 1]) together with (4). To complete the proof, we

divide both sides of (25) by n and use (22) and (23), which leads to

|r̄ − (a+∆− δ)| < 4ρ
m

n

3

2
∆ +

3ρn

1 + 2ρn
∆ < 6ρn∆.

where the second inequality is because m ≤ n(n−1)
2 for a connected undirected graph.
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