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Codes on Graphs: Models for Elementary

Algebraic Topology and Statistical Physics
G. David Forney, Jr., Life Fellow, IEEE

Abstract—This paper is mainly a semi-tutorial introduc-
tion to elementary algebraic topology and its applications
to Ising-type models of statistical physics, using graphical
models of linear and group codes. It contains new material
on systematic (n, k) group codes and their information sets;
normal realizations of homology and cohomology spaces;
dual and hybrid models; and connections with system-
theoretic concepts such as observability, controllability, and
input/output realizations.

Index terms— Algebraic topology, graphical mod-

els, group codes, Ising models.

I. INTRODUCTION

Algebraic topology goes back to Kirchhoff’s circuit

laws [3]; however, it is not very familiar to most en-

gineers and scientists. A major purpose of this paper

is to provide an introduction to elementary algebraic

topology using graphical models that have arisen in

coding theory— namely, normal realizations (NRs) [5]

and normal factor graphs (NFGs) [14]— which turn out

to be very well suited to this purpose.

This work was directly stimulated by that of Al-

Bashabsheh and Vontobel [2], who as far as we know

were the first to use NFGs to model algebraic topology

spaces. They apply these models to computing partition

functions of Ising-type models of statistical physics,

which had been shown by Al-Bashabsheh and Mao [1]

and Forney and Vontobel [9] to be nicely modeled by

NFGs. Some differences in our approach are:

• We use NRs rather than NFGs to model the princi-

pal spaces of elementary algebraic topology.

• We focus on the group case rather than the field

case, although we treat both.

• In particular, algebraic topology spaces are regarded

as “systematic (n, k) group codes.”
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• We make connections to system-theoretic no-

tions such as observability, controllability and in-

put/output (I/O) realizations.

Another stimulus was the work of Molkaraie et al.

[15], [16], [19], who have used dual NFGs for Monte

Carlo evaluations of partition functions of Ising-type

models. Our work lays an algebraic foundation for

such evaluations, and systematically presents alternative

approaches to carrying them out.

In Section II, we develop the main results of elemen-

tary (one-dimensional) algebraic topology. We describe

the topology of a graph G = (V,E) by its incidence

matrix M [4], and show how this allows us to treat the

group and vector space cases in a common framework.

We introduce the concept of a systematic (n, k) group

code over a group alphabet A, generalizing a linear

(n, k) block code, and show that the principal spaces

of elementary algebraic topology are systematic (n, k)
group codes. We model all of these spaces by normal

realizations. Using system-theoretic concepts such as

observability and controllability, we then reduce these re-

alizations to nonredundant (observable and controllable)

input/output (I/O) realizations.

We begin with cohomology (coboundary operators,

etc.), which we regard as more basic than homology

(boundary operators, etc.), and then obtain dual results

using an elementary Adjoint Homomorphism Lemma, as

well as normal realization duality. We exhibit “bases” of

principal spaces that are based on cut sets and cycles of

G in the primal and dual cases, respectively [4]. Finally,

we give simple dual normal realizations that we believe

capture the essences of the zeroth and first (co)homology

spaces of G.

In Section III, following [1], [2], [9], [19], we show

how to model partition functions of an Ising-type (e.g.,

Ising or Potts) model by “edge-weighted normal fac-

tor graphs” based on normal realizations of algebraic-

topology spaces as in Section II. Some of the I/O real-

izations of Section II are simpler than the straightforward

normal realizations that have been used previously, and

may be more suitable for simulations.

http://arxiv.org/abs/1707.06621v2
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Since the partition function of such a model is just

a number, it is equal to its Fourier transform, which is

represented by the dual NFG, up to scale. As observed

in [19], computations based on the dual NFG may be

simpler, as in the case of a single-cycle graph, or may

behave better at low temperatures. We generalize the

well-known high-temperature expansion for Ising models

(A = Z2) to Potts models (A = Zq) and to generalized

Ising-type models whose spin alphabet A may be any

finite abelian group.

In the presence of an external field, we show that a

realization of the partition function using the dual NFG

is generally more complicated (higher-dimensional) than

using the primal NFG. To reduce this increased complex-

ity, we suggest a novel hybrid model, with part in the

primal domain, part in the dual domain, and a Fourier

transform between them.

In Section IV, following [2], we give an introduc-

tion to two-dimensional algebraic topology, using pla-

nar graphs to illustrate two-dimensional complexes. We

introduce dual graphs, and show (as in [2], [19]) that

there are in general four different ways to represent the

partition function of an Ising-type model on a planar

graph G, involving either G or its dual graph Ĝ, and

either the original interaction weights or their Fourier

transforms (in which temperature is dualized).

In an Appendix, we give a very simple proof of

the Normal Factor Graph Duality Theorem, including

scale factors, and show how the scale factor must be

modified when the NFG is based on a normal realization.

Interestingly, this leads to an alternative proof of the

Controllability Test of [8].

II. INTRODUCTION TO ALGEBRAIC TOPOLOGY

The concepts of elementary (one- and two-

dimensional) algebraic topology are often phrased

in scary mathematical jargon, but they actually involve

only some elementary graph theory and linear algebra,

or, more fundamentally, the algebra of abelian groups.

This section is a tutorial introduction to these con-

cepts, with the following unusual features:

• we treat the field and group cases in a common

setting;

• we give graphical models (normal realizations) of

all important spaces;

• we begin with cochains and coboundary operators

rather than chains and boundary operators; conse-

quently, our primal model is the dual of the usual

primal model, and vice versa;

• we use system-theoretic properties such as observ-

ability, controllability and I/O realizations.

A. Elementary graph theory

A finite undirected graph G = (V,E) is specified by a

finite vertex set V , a finite edge set E, and a specification

of which two vertices in V are incident on each edge

e ∈ E.

Rather than specifying the topology of G as usual by

its adjacency matrix A, indexed by V × V , we will use

instead its incidence matrix M , indexed by E×V , which

is defined as follows [4].

We first give each edge e ∈ E an orientation, perhaps

arbitrary. This orientation is merely a technical device

to resolve ambiguities; we are still thinking of G as an

undirected graph.

We then define Mev = 1 if v = h(e), the head of

e; Mev = −1 if v = t(e), the tail of e; and Mev = 0
otherwise. (We assume that there are no self-loops; i.e.,

that h(e) 6= t(e).)
Each edge e ∈ E is thus associated with a {0,±1}-

valued vector Me = (Mev, v ∈ V ), namely the eth row

of M , which has precisely two nonzero components,

namely Meh(e) = +1 and Met(e) = −1. (As we will

see, it makes no difference whether we take Me or −Me

as the eth row of M .)

Thus each of the |E| rows of the incidence matrix

M has two nonzero values, namely ±1. The number of

nonzero values in the vth column Mv of M is the number

of edges whose initial or final vertex is v, namely the

degree dv of v.

v1
v2

v3

v4v5

e1 e2

e3 e4 e5
e6

Fig. 1. Graph G of Example 1.

Example 1. Consider the directed graph G of Figure 1.

G has |V | = 5 vertices and |E| = 6 edges. Its incidence

matrix is

M =

















−1 +1 0 0 0
0 −1 +1 0 0
−1 0 0 0 +1
0 −1 0 +1 0
0 0 −1 +1 0
0 0 0 −1 +1

















.

The key graphical parameters of a finite graph G =
(V,E) are:

• the number |V | of its vertices;

• the number |E| of its edges;
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• the number β0(G) of its connected components, also

called its zeroth Betti number;

• its cyclomatic number1 β1(G) = |E|− |V |+β0(G),
also called its first Betti number.

For example, for our example graph G, we have |E| = 6,

|V | = 5, and β0(G) = 1, so β1(G) = 6− 5 + 1 = 2.

Evidently β0(G) ≥ 0, with equality if and only if G
is the empty graph with |V | = |E| = 0. We will assume

that G is nonempty; i.e., β0(G) ≥ 1.

If G = (V,E) has β0(G) connected components Gi =
(Vi, Ei), then V =

⋃

i Vi and E =
⋃

i Ei. If the vertices

and edges are ordered to reflect this partition, then

the incidence matrix of G is M = diag{M1,M2, . . .},
where Mi is the incidence matrix of Gi. The component

graphs Gi may then be analyzed independently. There-

fore, without essential loss of generality, we will assume

from now on that G is connected; i.e., β0(G) = 1 and

β1(G) = |E| − |V |+ 1.

It is well known in elementary graph theory that if

G = (V,E) is connected, then G contains a spanning

tree T = (V,ET ), namely a cycle-free connected

subgraph of G that comprises all |V | vertices of G and

|ET | = |V | − 1 of its edges. The number of edge

deletions required to reduce G to a spanning tree T of

G is thus |E| − |ET | = |E| − |V | + 1 = β1(G), the

cyclomatic number of G. It follows that β1(G) ≥ 0, with

equality if and only if G is cycle-free. We will see that

β1(G) measures the number of independent cycles in G.

For example, given the graph G of Example 1, we may

obtain a spanning tree T ⊆ G by removing β1(G) = 2
edges; e.g., e3 and e5. Here G contains three cycles, any

two of which may be chosen as “independent;” the third

cycle is then the “sum” of the other two. (These terms

will be defined more satisfactorily later.)

B. Elements of algebraic topology

In algebraic topology [3], a finite graph G = (V,E)
is called a 1-dimensional complex. Its vertices v ∈ V
are called its 0-dimensional objects, and its edges e ∈ E
are called its 1-dimensional objects. As we shall see, its

incidence matrix M is the matrix of a certain operator.

Let A be some abelian group alphabet. The reader

will not be misled if he or she assumes that A is a field;

however, we assert that all of our results hold if A is

any abelian group with a well-defined dual group (i.e.,

character group) Â; e.g., any finite abelian group. We

will use notation that is appropriate when A is a finite

abelian group.

1The term “cyclomatic number” was apparently coined by James
Clerk Maxwell [10].

We consider the spaces C0 = AV and C1 = AE

of all A-valued functions defined on V and E, respec-

tively. In algebraic topology, the elements of AV and

AE are called 0-cochains and 1-cochains, respectively.

We will regard the elements x ∈ AV as sets x =
(xv1 , xv2 , . . . , xv|V |

) of |V | elements of A indexed by

the elements of V , and similarly the elements y ∈ AE

as sets y = (ye1 , ye2 , . . . , ye|E|
) of |E| elements of A

indexed by the elements of E. When x and y are used

in conjunction with the incidence matrix M , we may

regard them as column vectors, and we will call them

vertex vectors x and edge vectors y, respectively.

In elementary algebraic topology, the coboundary op-

erator d is defined as the homomorphism whose matrix

is M ; i.e.,

d : AV → AE , x 7→Mx.

This definition makes sense because the “product” za is

well-defined for all z ∈ {0,±1}, a ∈ A, for any abelian

group A; i.e., we regard M as an integer matrix.2 If A
contains a unit element 1— e.g., if A is a field or a ring

with unity— then M may alternatively be thought of as

an A-matrix.

The image of the coboundary operator d is called

the coboundary space B1 = im d. Thus B1 is the

subspace/subgroup of C1 = AE that is generated by the

elementary coboundary vectors {Mva | v ∈ V, a ∈ A}.
If A is a field, then B1 is the column space of M .

The kernel of d is called the zero-coboundary space

Z0 = ker d. We have immediately:

Theorem 1(a) (Z0). If G = (V,E) is a connected

graph, then its zero-coboundary space Z0 = ker d is

the repetition code C= = {(a, a, . . . , a) | a ∈ A} ⊆ AV

over A.

Proof : The constraint Mx = 0 implies that for every

edge e ∈ E, Mex = 0. Since the row vector Me

has precisely two nonzero values of opposite sign, this

implies xh(e) = xt(e) for all e ∈ E; i.e., the vertex values

at the two ends of edge e must be equal. Since G is

connected, these edge constraints propagate throughout

G, implying that all vertex values xv must be equal.

A graphical illustration of this proof will be given in

Section II-D; see Figure 3.

Theorem 1(a) has the following corollary:

2 More precisely, any group homomorphism ϕ : AV → AE may be
characterized by a matrix of group homomorphisms {ϕev : A → A}.
For the coboundary operator d, the constituent homomorphisms dev
are all zero, identity, or negative identity homomorphisms, as indicated
by the entries Mev ∈ {0,±1} of the incidence matrix M .
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Theorem 1(b) (B1). If G = (V,E) is a connected graph,

then its coboundary space B1 = im d is isomorphic to

A|V |−1.

Proof : By the fundamental theorem of homomorphisms,

we have B1 = im d ∼= C0/kerd = C0/Z0.
For any v ∈ V , let (C0):v̄ denote the subset AV \{v}×
{0}{v} of C0 = AV such that xv = 0. Evidently (C0):v̄
is isomorphic to A|V |−1. Moreover, (C0):v̄ is a set of

coset representatives for C0/Z0, and the corresponding

one-to-one map (C0):v̄ ↔ C0/Z0 is an isomorphism.

Therefore B1 ∼= C0/Z0 ∼= (C0):v̄ ∼= A|V |−1.

A graphical illustration of this proof will be given in

Section II-F; see Figure 9.

C. Systematic (n, k) group codes

In coding theory, if A is a field, then An is a vector

space, and any subspace C ⊆ An of dimension k is

called a linear (n, k) block code over A. Thus in the

field case Z0 = ker d is a linear (|V |, 1) block code

over A, and B1 = im d is a linear (|E|, |V | − 1) block

code over A.

Moreover, every linear (n, k) block code C has a

systematic k × n generator matrix that contains a k × k
identity matrix as a submatrix, whose column positions

are said to be an information set of C; the remaining

column positions are called a check set.

For example, if A is a field and I is an index set of

size |I| = n, then the repetition code C= ⊆ AI is a

linear (n, 1) block code over A, the all-1 codeword is a

systematic 1×n generator matrix, and for any i ∈ I the

singleton subset {i} ⊆ I is an information set.

We now extend this nomenclature by defining system-

atic (n, k) group codes. We will ultimately show that

all of the important spaces of algebraic topology are

systematic (n, k) group codes.

Definition (systematic (n, k) group codes). If A is an

abelian group and I is an index set of size |I| = n,

then a subgroup C ⊆ AI that is isomorphic to Ak will

be called an (n, k) group code over A. Moreover, such

a code will be called a systematic (n, k) group code

over A if the projection of C onto AJ for some subset

J ⊆ I of size |J | = k is an isomorphism to AJ ∼= Ak.

Any such subset J will be called an information set of

C, and its complement J̄ a check set of C.

For example, if A is a group, then the repetition code

C= ⊆ AI is a systematic (n, 1) group code over A, and

for any i ∈ I the singleton subset {i} is an information

set, since the projection of C= onto any coordinate is an

isomorphism.

In the spirit of this definition, for any (n, k) group

code C over an abelian group A, we may call n its

“length” and k its “dimension,” even though, strictly

speaking, the term “dimension” is inappropriate when

A is not a field. We may also call AI a “space” and

C ⊆ AI a “subspace.”

For another example, a zero-sum code C+ ⊆ AI of

length n = |I| over A is defined as

C+ =

{

a ∈ AI

∣

∣

∣

∣

∣

∑

i∈I

ai = 0

}

.

C+ is evidently a strict subgroup of AI . Moreover,

since we may choose any n − 1 elements ai of a

codeword a ∈ C+ freely from A, and then choose the

remaining element so that
∑

I ai = 0, it is evident that

the projection of C+ onto any subset J ⊆ I of size

|J | = n − 1 is AJ ∼= An−1. Thus a zero-sum code

of length n over A is a systematic (n, n − 1) group

code over A, and every subset of I of size n− 1 is an

information set.

We now show that every systematic (n, k) group code

has an I/O map, which will allow us to represent all of

our realizations as I/O behaviors.

I/O Map Lemma. If C is a systematic (n, k) group code

over an abelian groupA with information set J ⊆ I and

check set J̄ = I \J , then there exists a homomorphism

ϕC : AJ → AJ̄ such that

C =
{

(aJ , ϕC(aJ ))
∣

∣ aJ ∈ A
J
}

.

Proof : Write the codewords c ∈ AI as c = (cJ , cJ̄ ),
where cJ and cJ̄ are the projections of c onto AJ

and AJ̄ , respectively. Then the required homomorphism

ϕC : AJ → AJ̄ exists, since there is an isomorphism

C ↔ C|J ∼= A
J , and the projection of C onto AJ̄ is a

homomorphism.

In coding theory, an encoder that maps an information

sequence aJ ∈ AJ to a check sequence ϕC(aJ ) ∈ AJ̄

and transmits both as the codeword (aJ , ϕC(aJ )) is

called a systematic encoder.

In system theory, a behavior of the form

{(aJ , ϕC(aJ )) | aJ ∈ AJ } is called an I/O

behavior, where aJ ∈ AJ is regarded as the input, and

ϕC(aJ ) ∈ AJ̄ as the output. In this context, we will

call the homomorphism ϕC : AJ → AJ̄ an I/O map.

To construct a “generator matrix” for a systematic

(n, k) group code C with information set J , we observe

that C has a set of k one-dimensional subcodes that may

be regarded as a systematic “basis” of C, as follows. For

each of the k coordinates i ∈ J , consider the subcode
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Ci ⊆ C consisting of the codewords in C that are all-

zero in the remaining k− 1 coordinates J \ {i}. By the

isomorphism between AJ and C, Ci must be isomorphic

to A via projection onto the ith coordinate. Moreover, C
is evidently the direct sum of the subcodes Ci:

C =
⊕

i∈J

Ci ∼= A
J .

For example, for the zero-sum code C+ ⊆ AI , any

subset {i} ⊆ I of size 1 is a check set, and the set

of |I| − 1 “one-dimensional” subcodes (C+)j , j 6= i,
that consist of all codewords c ∈ C+ such that cj =
a, ci = −a, and all remaining coordinates are zero forms

a “basis” for C+.

Finally, the support S ⊆ I of an (n, k) group code

C ⊆ AI is the set of indices i ∈ S such that the

projection C|i of C onto the ith coordinate is nontrivial.

If C has support S (or less), then we may say that C
is effectively a (|S|, k) group code, and that its effective

length is |S|. For example, the subcodes Ci defined in the

previous paragraph are effectively (n− k + 1, 1) group

codes with supports {i} ∪ J̄ (or less).

D. Elementary normal realizations

We will now construct normal realizations for the

zero-coboundary space Z0 = ker d and the coboundary

space B1 = im d that will help to visualize and prove

their properties.

In general, a normal realization [5] is a graphical

model based on a graph G = (V,E,H), in which the

vertices (or “nodes”) v ∈ V represent constraint codes

Cv, the edges e ∈ E represent internal variables, and

the half-edges h ∈ H represent external variables. The

constraint code Cv is the set of all permissible (“valid”)

values of the variables corresponding to the edges and

half-edges that are incident on vertex v. The set of all

valid variable configurations— i.e., the configurations

that are compatible with all constraints— is called the

behavior B of the realization, and the projection of

the behavior onto the half-edge variables is called its

external behavior C; alternatively, C is called the code

that is realized. If all constraint codes are linear, then

B and C are vector spaces; if all constraint codes are

abelian groups, then B and C are abelian groups.

For this paper, we need only elementary normal

realizations, namely normal realizations that satisfy the

following restrictions:

• All internal and external variables have a common

alphabet A, which is either a field F, or more

generally an abelian group A with a well-defined

dual (character) group Â;

• All constraint codes are either repetition codes C=,

which constrain all incident variables to be equal, or

zero-sum codes C+, which constrain the sum of all

incident variables to be zero. Thus if the degree of

vertex v is n, then Cv is either the (n, 1) repetition

code C= over A, or the (n, n − 1) zero-sum code

C+ over A.

We will indicate repetition constraints by the symbol
= , and zero-sum constraints by the symbol + . We

may also employ the following simple manipulations and

special symbols:

• A repetition constraint of degree 2 may be simply

replaced by an edge, since = = .

• A zero-sum constraint of degree 2 may be replaced

by an edge with a small circle representing a sign

inverter: + ⇒ ◦ . We will sometimes

call this an inverting edge.

• A repetition constraint of degree 2 plus a sign

inverter may be replaced by an inverting edge, since
= ◦ = ◦ .

• A zero-sum constraint of degree 2 plus a sign

inverter may be replaced simply by an edge, since
+ ◦ = .

• We may optionally put an arrow on an edge if we

wish to indicate the direction of a cause-and-effect

relationship, as we will illustrate shortly below.

Using normal realizations, we now wish to study the

image and kernel of the coboundary operator d : AV →
AE ,x 7→ Mx of a graph G = (V,E) with incidence

matrix M . The input/output (I/O) behavior of d will be

defined as W 01 = {(x,y) ∈ AV × AE | y = Mx)},
which is evidently a systematic (|V | + |E|, |V |) group

code over A with information set V .

Figure 2 shows an elementary normal realization of

the I/O behavior W 01 for our example graph G. (We

observe that the graph G = (VG, EG, HG) of this normal

realization actually has |VG| = |V |+|E| vertices, |EG| =
2|E| edges, and |HG| = |V |+ |E| half-edges.)

In Figure 2, a set x = {xv, v ∈ V } of |V | external

input variables is associated with the vertices v ∈ V of

G. Each vertex variable xv is replicated dv times via a

repetition constraint, and passed on (with a sign inversion

if v = h(e)) to a zero-sum constraint associated with

one of the dv adjacent edges e ∈ E(v), thus making

the input to the zero-sum constraint −Mevxv . For each

edge e ∈ E, a zero-sum constraint on all the incident

signed vertex variables and the output variable ye at

edge e enforces the constraint ye + (−Mex) = 0; thus

y = Mx, as desired. Thus every constraint in the

realization is realized as a little I/O behavior. Arrows
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= + = + =

+ + +

= + =

x1

x2

x3

x4x5

y1 y2

y3 y4 y5

y6

Fig. 2. Normal realization of I/O behavior W 01 = {(x,Mx) | x ∈
AV } for graph G of Figure 1.

on all edges indicate the directions of these cause-and-

effect relationships.

Now, to obtain a realization of the zero-coboundary

space Z0 = ker d = {x | Mx = 0}, we constrain

the external edge variables ye to equal zero, which

simply removes them from the realization.3 Also, since
+◦ = , we may simply use the latter realiza-

tion for each edge. Thus we obtain the extremely simple

realization of Z0 that is shown in Figure 3. We have

removed the arrows because the effects of the constraints

now flow in all directions.

= = =

==

x1

x2

x3

x4x5

Fig. 3. Normal realization of Z0 = ker d for graph G of Figure 1.

It is obvious from this realization that Z0 is the

(|V |, 1) repetition code C= ⊆ AV ; i.e., Figure 3 gives a

pictorial proof of Theorem 1(a).

Moreover, if G were a disconnected graph with

β0(G) > 1 connected components, then the correspond-

ing realization of Z0 = ker d as in Figure 3 would

evidently consist of β0(G) disconnected (and therefore

independent) repetition codes. This is the main reason

why we have started in this paper with the coboundary

operator d rather than the usual boundary operator ∂,

since we regard connectedness as the most elementary

concept of topology.

3In other words, Z0 is the cross-section (W 01):AV = {x ∈ AV |
(x, 0) ∈ W 01} of W 01 on AV .

Similarly, to get a realization of the coboundary space

B1 = im d, we simply remove the external vertex

variables xv from Figure 2, while leaving the dv internal

replica variables representing the values xv.4 Thus we

obtain the realization of B1 shown in Figure 4.

= + = + =

+ + +

= + =

y1 y2

y3 y4 y5

y6

Fig. 4. Normal realization of B1 = im d for graph G of Figure 1.

E. Partitions, cut sets, and bases for B1

We have seen in Theorem 1(b) that the coboundary

space B1 = im d of a graph G = (V,E) is a systematic

(|E|, |V |−1) group code over A. We will now show that

for any spanning tree T of G, B1 has an information set

corresponding to the (|V |−1)-element edge set ET of T ,

and a corresponding “basis” consisting of certain cut-set

vectors, to be defined below.

Let P = V1⊔V2 be a nontrivial disjoint partition of the

vertex set V into two subsets, V1 and V2 = V̄1. P induces

a partition of the edge set E into three subsets: a subset

E1 of edges whose ends are both in V1, a subset E2

of edges whose ends are both in V2, and the remaining

subset EP of edges that have one end in V1 and one

in V2, which is called the cut set of the partition P .

We assume that the two subgraphs G1 = (V1, E1) and

G2 = (V2, E2) are both connected.

We define a cut-set vector [4] of the partition P =
V1 ⊔ V2 as the image y = Mx of any vertex vector

x = (x1,x2) such that x1 is any element of the repetition

code C= ⊆ AV1 defined on the vertex subset V1, and x2

is the all-zero vector on the complementary subset V2.

Evidently y ∈ B1.

Cut-Set Lemma. If y ∈ AE is a cut-set vector of a

partition P = V1 ⊔V2, then ye = 0 if e ∈ E1 or e ∈ E2.

Moreover, if e ∈ EP , then ye = ±a for some a ∈ A,

where the sign depends on whether the edge e goes from

V1 to V2, or vice versa.

4In other words, B1 is the projection (W 01)|AE = {y ∈ AE |

∃x : (x,y) ∈ W 01} of W 01 onto AE .
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Proof. The first statement follows from the fact that x1

and x2 are elements of the repetition codes over V1 and

V2, respectively, and therefore are in the kernels of the

coboundary operators d1 : AV1 → AE1 and d2 : AV2 →
AE2 of the subgraphs G1 = (V1, E1) and G2 = (V2, E2),
respectively. The second statement follows from the fact

that if xv = a for all v ∈ V1 and xv = 0 for all v ∈ V2,

and e ∈ EP connects a vertex in V1 to a vertex in V2,

then ye = ±a, with the sign depending on whether the

head or the tail of e is in V1.

To illustrate, in our example graph G, the edges EP =
{e3, e4, e5} form a cut set corresponding to the partition

P = {v1, v2, v3} ⊔ {v4, v5} of V , as shown in Figure

5. Given an input vector x that has the constant value a
on V1 and 0 on V2, the coboundary operator d produces

an output vector d(x) = Mx that is all-zero on E1 and

E2, and equal to either a or −a (depending on the edge

orientation) on the cut set EP .

= + = + =

+ + +

= + =

a

a

a

00

0 0

a a a

0

G1

G2

EP

Fig. 5. Typical cut-set vector y = Mx for partition P =
{v1, v2, v3} ⊔ {v4, v5}.

For any nontrivial partition P of V , the set of all cut-

set vectors y ∈ B1 as x1 ranges through all elements

of the repetition code C= ⊆ AV1 will be called the cut-

set subspace (B1)P ⊆ B1. Evidently (B1)P is a one-

dimensional linear or group code with support EP ⊆ E.

We now find a set of |V | − 1 fundamental cut sets

EP such that the corresponding one-dimensional cut-

set subspaces (B1)P generate the (|V |− 1)-dimensional

space B1; i.e., we find a “basis” for B1 (where the quotes

may be removed in the linear case). We start with any

spanning tree T = (V,ET ) of G, where |ET | = |V |−1.

Since T is a tree, every edge e ∈ ET is a cut set of T
that partitions the vertex set V of T into two connected

subsets, say V1(e) and V2(e). The cut set EP (e) of G that

corresponds to the same partition P (e) of the vertex set

V of G will be defined as our eth fundamental cut set of

G. The cut set EP (e) must include e, but cannot include

any other edges in ET , since their ends are either both

in V1(e) or both in V2(e). Thus EP (e) ⊆ {e} ∪ ET̄ .

For example, for our example graph G, deleting the

β1(G) = 2 edges e3 and e5 yields a spanning tree

T with ET̄ = {e3, e5}. The respective cut sets in

{e1} ∪ET̄ , {e2} ∪ET̄ , {e4} ∪ET̄ , and {e6} ∪ ET̄ are

(e1, e3), (e2, e5), (e4, e3, e5), and (e6, e3), as shown in

Figure 6.

v1
v2

v3

v4v5

e1 e2

e4
e6

e3 e5
(a)

(d)

(b)

(c)

Fig. 6. Spanning tree T of G, and cut sets of G including (a) e1; (b)
e2; (c) e4; (d) e6.

Theorem 2 (“basis” for B1). For any graph G and any

spanning tree T ⊆ G with cut set ET , the |V | − 1 cut-

set subspaces {(B1)P (e), e ∈ ET } are a set of one-

dimensional subspaces of B1 that form a systematic

“basis” for B1. Thus ET is an information set for B1.

Proof. The |V |−1 cut-set subspaces {(B1)P (e), e ∈ ET }
are all independent, since their supports are completely

disjoint on ET . Since B1 is (|V | − 1)-dimensional, it

follows that every element of B1 is a unique combination

of elements of {(B1)P (e), e ∈ ET }.

Thus B1 is sometimes called the cut space of G, and

dimB1 = |V | − 1 the rank of G [4].

F. Nonredundant I/O realizations

We have seen that Z0 and B1 are systematic (n, k)
group codes, and we have identified their information

sets. We will now construct I/O realizations with these

information sets. Moreover, in order to obtain I/O re-

alizations in which every edge may be labeled with

a cause-and-effect arrow, we first analyze the unob-

servability (generator redundancy) and uncontrollability

(constraint redundancy) properties of our previous real-

izations, and eliminate the corresponding redundancies.

As we have seen, Z0 = kerd is a (|V |, 1) repetition

code over A, so the set {v} comprising any single vertex

v ∈ V may be taken as an information set, and then the

remaining vertices comprise the corresponding check set.

However, we can see that specifying an information

set does not suffice to determine cause-and-effect rela-

tionships on the internal edges. The fundamental reason

is that the realization of Z0 in Figure 3 contains β1(G) =
2 redundant edge constraints. Indeed, it is easy to see that

it would suffice to propagate the value of any single input

vertex variable through a spanning tree T of G in order

to generate all other output vertex variables correctly;
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moreover, in such a realization every edge in ET would

have a definite direction, namely the direction “away”

from the input vertex. Such a nonredundant realization

of Z0 is illustrated in Figure 7, where we choose the

information set {v1} and ET = {e1, e2, e4, e6}.

= = =

==

x1

x2

x3

x4x5

Fig. 7. I/O realization of Z0 = ker d on ET = {e1, e2, e4, e6},
with {x1} as information set.

The realization of Figure 3 thus has β1(G) = 2 “de-

grees of redundancy.” This kind of constraint redundancy

is called uncontrollability in [7], [8]. More precisely,

in [8] “uncontrollable” is defined as “having dependent

constraints,” which in this case are the β1(G) = 2
redundant edge constraints. (“Local reductions” such as

those leading to Figure 7 are discussed more generally

in [8].)

Next, we will develop an I/O realization for the

coboundary space B1 ⊆ AE . We have seen that B1 is

a systematic (|E|, |V | − 1) group code over A, and that

for any spanning tree T of G, ET ⊆ E is an information

set for B1.

However, we again observe that specifying an infor-

mation set for the realization of B1 in Figure 4 does

not suffice to determine cause-and-effect relationships

on the internal edges. In this case, the basic reason

is that this realization has β0(G) = 1 internal degree

of freedom corresponding to the unobservable behavior

B
u of this realization, namely the internal behavior

when the external variables are fixed to zero. This

kind of redundancy is called unobservability in [7], [8].

(Alternatively, “unobservable” means “having redundant

generators.”)

For the realization of B1 in Figure 4, the unobservable

behavior B
u ⊆ AE is the behavior of the realization

shown in Figure 8. This behavior is evidently the same

as the internal behavior of the (observable) realization

of Z0 = ker d in Figure 3, since both may be obtained

from the realization of W 01 in Figure 2 by deleting the

vertex variables xv and setting all edge variables ye to

zero. Again, since G is connected, Bu is obviously a

repetition code with dimension β0(G) = 1.

= = =

==

Fig. 8. Realization of the unobservable behavior Bu of the Figure 4
realization of B1.

Since the unobservable behavior B
u of Figure 4

is a repetition code, it follows that adding the same

element of A to every vertex value does not change

the output configuration in B1. (In physics, this kind of

unobservability is sometimes called “global symmetry.”)

To obtain an observable realization of B1, we may

therefore fix any internal vertex variable in Figure 4 to

zero, breaking the global symmetry. (Again, this is an

example of a “local reduction” as in [8].)

We illustrate such a realization in Figure 9, where we

have chosen ET = {e1, e2, e4, e6} as the information

set, and fixed x1 = 0. Such an I/O realization could

be used in a simulation to generate all elements of B1,

by letting {y1, y2, y4, y6} run through all |A|4 possible

configurations.

+ = + =

+ +

=+=

+

y1 y2

y3 y4 y5

y6

Fig. 9. I/O realization of B1 = im d, fixing x1 = 0, and using
{y1, y2, y4, y6} as information set.

This argument is essentially the same as the algebraic

argument used in our proof of Theorem 1(b), and Figure

9 may be regarded as an illustration of that proof.

G. Elements of duality theory

We now introduce some elementary duality theory for

both the group and field cases. (See the Appendix for

more on duality theory for abelian groups, focussing on

Fourier transforms.)
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We stipulate that A must have a well-defined dual

group Â, for which the inner product 〈â, a〉 is well

defined for all â ∈ Â, a ∈ A.5 If A is a field F, then

Â may also be taken as F; if A is Zq , then Â may also

be taken as Zq; more generally, if A is a finite abelian

group, then A has a well-defined dual group Â (called

its character group) that is isomorphic to A. Again, we

will assume that A is a finite abelian group (or finite

field) in this paper.

Given a finite coordinate index set I, the dual group to

AI is then ÂI , with the inner product between â ∈ ÂI

and a ∈ AI defined in standard coordinatewise fashion:

〈â, a〉 =
∑

i∈I〈âi, ai〉. Two vectors â ∈ ÂI and a ∈
AI are orthogonal if 〈â, a〉 = 0. The dual code (or

orthogonal code) C⊥ to a group code C ⊆ AI is the set

of all â ∈ ÂI that are orthogonal to all a ∈ C.

Given a group code C ⊆ AI and an index subset J ⊆
I with complement J̄ = I \J , the projection of C onto

J is defined as C|J = {aJ ∈ AJ | ∃(aJ , aJ̄ ) ∈ C},
and the cross-section of C on J is defined as C:J =
{aJ ∈ AJ | (aJ ,0J̄ ) ∈ C}. If C⊥ is the dual code to

C, then by projection/cross-section duality [5], (C|J )⊥ =
(C⊥):J and (C:J )⊥ = (C⊥)|J .

Given a homomorphism ϕ : AI → AJ , its adjoint

homomorphism is defined as the unique homomorphism

ϕ̂ : ÂJ → ÂI such that 〈ϕ̂(â), a〉 = 〈â, ϕ(a)〉 for all

â ∈ ÂJ , a ∈ AI .

We define the I/O code of ϕ as W = {(a, ϕ(a)) ∈
AI × AJ | a ∈ AI}, and its dual I/O code as Ŵ =
{(−ϕ̂(â), â) ∈ ÂI × ÂJ | â ∈ ÂJ }. Evidently Ŵ is

essentially the I/O code of ϕ̂, up to sign inversion and

coordinate ordering.

Adjoint homomorphisms and their I/O codes have the

following properties:

Adjoint Homomorphism Lemma. Given a homomor-

phism ϕ : AI → AJ and its adjoint homomorphism

ϕ̂ : ÂJ → ÂI :

(a) The I/O codeW of ϕ is a systematic (|I|+|J |, |I|)
group code, with information set I.

(b) The dual I/O code Ŵ is the orthogonal systematic

(|I|+ |J |, |J |) group codeW⊥ with information set J .

(c) The kernel of ϕ and the image of ϕ̂ are orthogonal

codes: (kerϕ)⊥ = im ϕ̂.

(d) Similarly, (im ϕ)⊥ = ker ϕ̂.

Proof : (a) The projection of the I/O code W =
{(a, ϕ(a)) ∈ AI × AJ | a ∈ AI} onto I is an

isomorphism W ↔ AI with image W|I = AI .

5As explained in the Appendix, we assume an additive inner product
with 〈â, a〉 ∈ R/Z, rather than a multiplicative inner product with
〈â, a〉 in the complex unit circle T.

(b) The projection of the dual I/O code Ŵ =
{(−ϕ̂(â), â) ∈ ÂI × ÂJ | â ∈ ÂJ } onto J is an iso-

morphism Ŵ ↔ ÂJ with image Ŵ|J = ÂJ . Because

the inner product is defined coordinatewise, the inner

product between (−ϕ̂(â), â) ∈ Ŵ and (a, ϕ(a)) ∈ W is

−〈ϕ̂(â), a〉+ 〈â, ϕ(a)〉 = 0 for all â ∈ ÂJ , a ∈ AI , by

the definition of ϕ̂. ThereforeW and Ŵ are orthogonal.

Indeed, they are dual codes, since dim Ŵ + dimW =
|J |+ |I|.

(c) The cross-section W:I = {a ∈ AI | (a,0) ∈ W}
of W on AI is precisely kerϕ, whereas the projection

(W⊥)|I = {b̂ ∈ ÂI | ∃â ∈ ÂJ : (b̂, â) ∈
W⊥} of W⊥ = Ŵ onto ÂI is precisely im ϕ̂.

By projection/cross-section duality, W:I = kerϕ and

(W⊥)|I = im ϕ̂ are thus dual codes.

(d) Mutatis mutandis, W|J = im ϕ and (W⊥):J =
ker ϕ̂ are dual codes.

In view of the I/O Map Lemma for systematic (n, k)
group codes, we thus have the following generalization

of well-known results for the field case:

Theorem 3 (dual systematic group codes). If C ⊆ AI

is a systematic (n, k) group code over A, then its dual

code C⊥ ⊆ ÂI is a systematic (n, n − k) group code

over the dual group Â. Moreover, the information sets

of C⊥ are the check sets of C, and vice versa.

Proof : By the I/O Map Lemma, if C is a systematic

(n, k) group code with information set J ⊆ I, then

there exists a homomorphism ϕC : AJ → AJ̄ such

that C is the I/O code of ϕC : AJ → AJ̄ ; i.e.,

C = {(aJ , ϕC(aJ )) | aJ ∈ AJ }. By the Adjoint

Homomorphism Lemma, if ϕ̂C : ÂJ̄ → ÂJ is the

adjoint homomorphism to ϕC , then the dual I/O code

{(−ϕ̂C(â), â) ∈ ÂJ × ÂJ̄ | â ∈ ÂJ̄ } is the orthogonal

code C⊥. Evidently C⊥ is a systematic (n, n− k) group

code over Â with an information set J̄ that is equal to

the complement of the information set J of C.

For example, if C= ⊆ AI is an (n, 1) repetition code

over A, then its dual code (C=)⊥ is the (n, n− 1) zero-

sum code C+ ⊆ ÂI . The information sets of C are the

singleton sets {{i}, i ∈ I}, whereas the information sets

of C⊥ are the complementary sets {I \ {i}, i ∈ I}.

H. Duality in elementary algebraic topology

In algebraic topology, for historical reasons, the dual

space to the space C0 = AV of 0-cochains is called the

space of 0-chains, denoted by C0 = ÂV . Similarly, the

dual ÂE to the space C1 = AE of 1-cochains is called

the space of 1-chains, denoted by C1 = ÂE .
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B0 = im ∂ : (|V |, |V | − 1) ÂV ←− ÂE
∂

Z1 = ker ∂ : (|E|, |E| − |V |+ 1)

m ⊥ m adjoint m ⊥

Z0 = kerd : (|V |, 1) AV −→ AE
d

B1 = im d : (|E|, |V | − 1)

Fig. 10. Duality of coboundary operator d : AV → AE and boundary operator ∂ : ÂE → ÂV .

We will regard the elements x̂ ∈ ÂV as sets x̂ =
(x̂v1 , x̂v2 , . . . , x̂v|V |

) of |V | elements of Â indexed by

the elements of V, and similarly the elements ŷ ∈ ÂE

as sets ŷ = (ŷe1 , ŷe2 , . . . , ŷe|E|
) of |E| elements of Â

indexed by the elements of E. When x̂ and ŷ are used in

conjunction with the incidence matrix M , we may regard

them as row vectors, and call them dual vertex vectors

x̂ and dual edge vectors ŷ, respectively. We define inner

products in standard componentwise fashion; e.g., for

x ∈ AV and x̂ ∈ ÂV , 〈x̂,x〉 =
∑

V 〈x̂v, xv〉.
The boundary operator ∂ : ÂE → ÂV is then defined

as the homomorphism that maps ŷ ∈ ÂE to ∂(ŷ) =
ŷM ∈ ÂV , where M is again the incidence matrix of

G. Evidently, for any ŷ ∈ ÂE ,x ∈ ÂV we have

〈∂(ŷ),x〉 = ŷMx = 〈ŷ, d(x)〉.

It follows that:

Boundary Operator Lemma. The boundary operator

∂ : ÂE → ÂV is the adjoint homomorphism d̂ to the

coboundary operator d : AV → AE .

By the Adjoint Homomorphism Lemma, this implies

that the kernel of ∂, called the zero-boundary space

Z1 = ker ∂, is the orthogonal code (B1)⊥ to the image

B1 = im d of d; and conversely the image of ∂, called

the boundary space B0 = im ∂, is the orthogonal code

(Z0)⊥ to the kernel Z0 = ker d of d. Therefore we have:

Theorem 4 (B0, Z1). For a connected graph G = (V,E):
(a) The boundary space B0 = im ∂ is a (|V |, |V |−1)

zero-sum code C+ ⊆ ÂV .

(b) The zero-boundary space Z1 = ker ∂ is a system-

atic (|E|, β1(G)) group code over Â.

Proof. (a) By Theorem 1(a), Z0 is the (|V |, 1) repetition

code over A, so its dual code B0 is the (|V |, |V | − 1)
zero-sum code over Â.

(b) By Theorem 1(b), B1 ⊆ AE is a systematic

(|E|, |E|−β1(G)) group code overA, so its dual code Z1

is a systematic (|E|, β1(G)) group code over Â.

Figure 10 summarizes the duality relationships be-

tween the adjoint operators d : AV → AE and

∂ : ÂE → ÂV , and between their kernels and images.

I. Dual normal realizations

We will now construct normal realizations of the

boundary space B0 = im ∂ and the zero-boundary space

Z1 = ker ∂ of G as dual realizations to our earlier real-

izations of the zero-coboundary space Z0 = (B0)
⊥ and

the coboundary space B1 = (Z1)
⊥ of G, respectively.

In general, the dual realization to an elementary nor-

mal realization is obtained as follows:

• The variable alphabet A is replaced by its dual

alphabet Â;

• Repetition constraints ( = ) are replaced by zero-

sum constraints ( + ), and vice versa;

• Edges ( ) are replaced by inverting edges ( ◦ ),

and vice versa.

By the normal realization duality theorem [5], if the

external behavior of the original normal realization is C,

then the external behavior of the dual normal realization

is C⊥. (If A is a finite abelian group, then this theorem

is a corollary to the normal factor graph duality theorem;

see Appendix.)

We start with the dual I/O behavior W10 =
{(−ŷM, ŷ) | ŷ ∈ ÂE} of the boundary operator ∂,

which by the Adjoint Homomorphism Lemma is the dual

code to the I/O behavior W 01 = {(x,Mx) | x ∈ AV }
of the coboundary operator d; i.e., W10 = (W 01)⊥. Thus

W10 is a systematic (|V |+ |E|, |E|) group code over Â
with information set E.

We may thus obtain an elementary normal realization

of W10 by dualizing our earlier realization of W01 in

Figure 2, which results in the realization of Figure 11.

Again, we have included arrows on all edges to indicate

cause-and-effect relationships; note that all arrows are

now reversed.

In Figure 11, a set ŷ = {ŷe, e ∈ E} of |E| external

input variables is associated with the edges e ∈ E of G.

Each edge variable ŷe is replicated twice via a repetition

constraint of degree 3. Each replica is passed on (with

a sign inversion if v = t(e)) to the zero-sum constraint

associated with one of the two vertices h(e), t(e), thus

making ŷeMev the input to this zero-sum constraint. At

each vertex v ∈ V of G, the zero-sum constraint on
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+ = + = +

= = =

+ = +

x̂1

x̂2

x̂3

x̂4x̂5

ŷ1 ŷ2

ŷ3 ŷ4 ŷ5

ŷ6

Fig. 11. Normal realization of dual I/O behavior W10 = {(−ŷM, ŷ) |
ŷ ∈ ÂE}.

all these incident variables plus an output variable x̂v

enforces the constraint x̂v = −(ŷM)v; thus x̂ = −ŷM ,

as desired.

To get a realization of the boundary space B0 =
im ∂ = {yM | y ∈ AE}, we may simply remove

the external variables ŷe in Figure 11, while leaving

the two internal replica variables representing ±ŷe.

Since =◦ = ◦ , we may simply use the latter

realization for each edge. Thus we obtain the simple

realization of B0 shown in Figure 12. (Strictly, this

realization realizes −B0 = {−ŷM}, but since B0 is

an abelian group, we have −B0 = B0.) Alternatively,

since B0 = (Z0)⊥, we may obtain the realization of

Figure 12 by dualizing the Figure 3 realization of Z0.

+ + +

++

x̂1

x̂2

x̂3

x̂4x̂5

Fig. 12. Normal realization of boundary space B0 = im ∂ for graph
G of Figure 1.

Similarly, to get a realization of the zero-boundary

space Z1 = ker ∂ = (B1)⊥, we may either zero the

external vertex variables x̂v in Figure 11, or else dualize

the realization of B1 in Figure 4. By either method, we

obtain the realization of Z1 shown in Figure 13.

J. Cycles and bases for Z1

By Theorem 4(b), Z1 is a (|E|, β1(G)) group code

over Â. We now show that Z1 is generated by a certain

set of β1(G) cycle vectors. Thus Z1 is often called

+ = + = +

= = =

+ = +

ŷ1 ŷ2

ŷ3 ŷ4 ŷ5

ŷ6

Fig. 13. Normal realization of Z1 = ker ∂ for graph G of Figure 1.

the cycle space of G, and β1(G) the nullity of G [4].

Historically, this seems to have been the starting point

of algebraic topology.

Given an edge e ∈ E of a graph G with head and tail

vertices h(e) and t(e), we define −e as the reverse edge

with head and tail vertices t(e) and h(e), respectively.

A cycle of a graph G is then a simple closed path

e = (±e1, . . . ,±en), consisting of a set of n edges

or reversed edges such that h(ei) = t(ei+1) for all

i ∈ [1, n], where en+1 = e1, and no edge or vertex

is repeated.

We then define a cycle vector [4] corresponding to a

cycle e = (±e1, . . . ,±en) as any edge vector ŷ ∈ ÂE

such that, for some â ∈ Â, ŷe = â if +e is an element

of e, ŷe = −â if −e is an element of e, and ŷe =
0 otherwise. The |Â| cycle vectors corresponding to a

given cycle e evidently form a one-dimensional cycle

code C(e) ⊆ ÂE that is effectively a repetition code

with support e.

For example, our example graph G has a cycle e =
(e1, e4, e6,−e3) of length n = 4. The corresponding

cycle code is C(e) = {(â, 0,−â, â, 0, â) | â ∈ Â}.
It is easy to see that if y ∈ ÂE is any cycle vector,

then ∂(y) = yM = 0; i.e., every cycle vector is in

Z1 = ker ∂. For example, we show in Figure 14(a) that

if the cycle vector (â, 0,−â, â, 0, â) is the input to the

I/O realization of Figure 11, then the output vector is

yM = 0. Therefore:

Cycle Code Lemma. For every cycle e of a connected

graph G, the cycle code C(e) is a one-dimensional

subcode of Z1 with support e.

We will now show that Z1 has a “basis” consisting of

β1(G) cycle codes C(e).
We start with any spanning tree T = (V,ET ) of G.

We define ET̄ = E \ ET as the complement of ET , so

|ET̄ | = |E| − |V |+ 1 = β1(G). For each edge e ∈ ET̄ ,

there exists a fundamental cycle ee of G comprising e
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+ = + = +

= = =

+ = +

0

0

0

00

â 0

−â â 0

â

+ = + = +

= = =

+ = +

0

0

0

00

0 â

0 −â −â

0

(a) (b)

Fig. 14. Cycle vectors corresponding to fundamental cycles including (a) e3; (b) e5.

and the path connecting its final vertex to its initial vertex

in T . Since the support of the cycle code C(ee) is ee ⊆
{e}∪ET , it follows that the β1(G) cycle codes C(ee) are

independent, since their supports are completely disjoint

on ET̄ . Thus we have proved:

Theorem 5 (“basis” for Z1). For any graph G and any

spanning tree T ⊆ G, ET̄ is an information set for Z1,

and the β1(G) = |E| − |V | + 1 cycle codes C(ee), e ∈
ET̄ , are a set of one-dimensional subspaces of Z1 that

form a systematic “basis” for Z1.

For example, for our example graph G, deleting the

β1(G) = 2 edges e3 and e5 yields a spanning tree T . The

respective fundamental cycles in {e3} ∪ET and {e5} ∪
ET are e3 = (e1, e4, e6,−e3)) and e5 = (e2,−e5,−e4).
Thus C(e3) = {(â, 0,−â, â, 0, â) | â ∈ Â} and C(e5) =
{(0, â, 0,−â,−â, 0) | â ∈ Â}, as shown in Figure 14.

We can now make precise our earlier statement that

β1(G) is the number of independent cycles in G. Using

a spanning tree T of G, we have identified β1(G) funda-

mental cycles ee, e ∈ ET̄ , such that Z1 is generated by

the cycle codes C(ee). Thus for any cycle e, the cycle

code C(e) ⊆ Z1 is generated by the cycle codes C(ee).
For example, our example graph G has one other cycle,

whose cycle vectors {(â, â,−â, 0, â, â) | â ∈ Â} are

sums of the corresponding vectors of C(e3) and C(e5).

K. Dual nonredundant input/output realizations

As we have seen, the dual of an I/O realization is an

I/O realization of the dual code with the complementary

information set. For example, the dual to the I/O realiza-

tion of Z0 in Figure 7 is the I/O realization of the dual

zero-sum code B0 = (Z0)⊥ shown in Figure 15, which

is also controllable and observable.

Alternatively, to obtain this I/O realization, we could

have started with the realization of B0 in Figure 12. The

unobservable behavior Bu of this realization, shown in

+ + +

++

x̂1

x̂2

x̂3

x̂4x̂5

Fig. 15. I/O realization of B0, with information set {x̂2, x̂3, x̂4, x̂5}.

Figure 16, has dimension dimB
u = β1(G) = 2; i.e.,

there are β1(G) = 2 internal degrees of freedom, corre-

sponding to cycles in Z1 = ker ∂ that do not affect the

vertex vector x̂ (sometimes called “local symmetries”).

Thus we could have obtained Figure 15 by using two

local reductions to break these local symmetries.

+ + +

++

Fig. 16. Realization of the unobservable behavior Bu of the Figure
12 realization of B0.

It is shown in [7], [8] that if a realization has dimB
u

“degrees of unobservability,” then its dual realization has

dimB
u “degrees of uncontrollability.” Thus the fact that

the realization of B0 in Figure 12 has β1(G) = 2 degrees

of unobservability alternatively follows from the fact that

the realization of Z0 in Figure 3 has β1(G) = 2 degrees

of uncontrollability. (We have found that it is usually

easiest to determine the controllability properties of a

realization from the observability properties of its dual.)
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space dimension realization observable? B

u controllable? deg. unc.

Z0 = ker d β0(G) Fig. 3 yes {0} no β1(G)
B1 = im d |E| − β1(G) Fig. 4 no Fig. 8 yes 0
Z1 = ker ∂ β1(G) Fig. 13 yes {0} no β0(G)
B0 = im ∂ |V | − β0(G) Fig. 12 no Fig. 16 yes 0

TABLE I
OBSERVABILITY AND CONTROLLABILITY PROPERTIES OF REALIZATIONS OF Z0, B1, Z1 AND B0 .

Finally, the dual to the I/O realization of B1 in Figure

9 is a controllable and observable I/O realization of the

dual code Z1 = ker ∂, which is a systematic (|E|, β1(G))
group code over Â, using the complementary informa-

tion set ET̄ , as shown in Figure 17.

= + = +

= =

+=+

=

ŷ1 ŷ2

ŷ3 ŷ4 ŷ5

ŷ6

Fig. 17. I/O realization of Z1 = ker ∂, with information set {ŷ3, ŷ5}.

Alternatively, we could have started with the realiza-

tion of Z1 in Figure 13. As we have just discussed,

since this realization is the dual to the unobservable

realization of B1 in Figure 4 with dimB
u = 1, it

must have one “degree of uncontrollability.” The reader

may verify that the realization of Figure 13 continues

to function correctly if any single zero-sum constraint

( + ) is removed. For example, Figure 17 is Figure 13

with the top left constraint removed.

We summarize the observability and controllability

properties of the realizations of Z0, B1, Z1 and B0 in

Figures 3, 4, 13 and 12 in Table I (where “deg. unc.”

denotes “degrees of uncontrollability”).

L. Homology spaces

In algebraic topology, homology spaces are quotient

spaces (resp. quotient groups) whose dimensions (resp.

“free ranks”) are topological invariants of complexes. We

will not delve deeply into this topic, but for future ref-

erence we give the homology spaces for the elementary

one-dimensional complexes that we have studied in this

section, and we exhibit nice dual realizations for them.

For a graph G = (V,E), the zeroth cohomology space

is defined as H0 = Z0. We have seen that if G is

connected, then dimZ0 = 1, so dimH0 = 1 for all

connected graphs.

The zeroth homology space of G is defined as the quo-

tient space H0 = C0/B0. Since B0 = (Z0)⊥ = (H0)⊥,

H0 is the dual space to H0, and thus has the same

dimension, namely dimH0 = 1, again for all connected

graphs.

More generally, it is easy to see that if G is not

connected, but rather consists of β0(G) > 1 connected

components, then H0 = Z0 consists of the direct sum

of β0(G) independent repetition codes, one defined on

each of the β0(G) components of G (see the discussion

in connection with Figure 3). Thus in general dimH0 =
β0(G). Dually, B0 = (Z0)⊥ consists of the direct sum

of β0(G) independent zero-sum codes, one defined on

each of the β0(G) components of G, so in general

dimB0 = |V | − β0(G), and dimH0 = β0(G).
For a graph G, the first homology space of G is defined

as H1 = Z1. We have seen that if G is connected, then

dimZ1 = β1(G), so dimH1 = β1(G) for all connected

graphs. Also, the first cohomology space of G is defined

as H1 = C1/B1. Since B1 = (Z1)
⊥ = (H1)

⊥, H1 is

the dual space to H1, and thus has the same dimension,

namely dimH1 = β1(G), for all connected graphs.

More generally, it is easy to see that if G consists

of β0(G) > 1 connected components, then H1 = Z1

consists of the direct sum of β0(G) independent codes

of dimensions β1(Gi), one defined on each of the

β0(G) components Gi = (Vi, Ei) of G. Thus in general

dimH1 =
∑

i β1(Gi) =
∑

i(|Ei| − |Vi| + 1) = |E| −
|V | + β0(G) = β1(G). Dually, B1 = (Z1)

⊥ consists of

the direct sum of β0(G) independent codes of dimensions

|Ei|−β1(Gi), one defined on each component Gi of G, so

in general dimB1 = |E|−β1(G), and dimH1 = β1(G).
The properties of these homology spaces are elegantly

captured by the unobservable behaviors Bu of Figures 8

and 16, respectively, which we recapitulate in Figure 18.

We note that these realizations are each others’ duals.

It seems to us that the simple, elegant and dual real-

izations of Figure 18 represent the Platonic essences of

the zeroth cohomology space H0 and the first homology

space H1 of a graph G.
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= = =
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(a) (b)

Fig. 18. Dual realizations whose behaviors represent (a) the zeroth cohomology space H0 of G; (b) the first homology space H1 of G.

III. ISING-TYPE MODELS

We now show how to extend these graphical models of

algebraic topology spaces to realize partition functions

of Ising and related models of statistical physics.

A. Ising models and Ising-type models

In statistical physics, an Ising model is defined as

follows:

• Particles are associated with the vertex set V of a

connected graph G = (V,E).
• Each particle may be in one of two states (often

called “spins”). The state space is A = Z2, and the

state of the particle at the vth vertex is denoted by

xv ∈ A. The configuration space is thus AV .

• Two particles v, v′ ∈ V interact directly only if

they are joined by an edge e ∈ E; i.e., if (v, v′) =
(h(e), t(e)), or vice versa, where {h(e), t(e)} are

the two vertices at the ends of edge e. Their

interaction energy Ee(xv, xv′) is −Je if xv = xv′

and Je if xv 6= xv′ , where Je is the interaction

strength for edge e. In other words, Ee(xv, xv′ ) =
−(−1)xv−xv′Je = −(−1)xh(e)−xt(e)Je.

• The probability of a configuration x ∈ AV is then

given by the Boltzmann distribution

p(x) =
1

Z

∏

e∈E

exp
(

βJe(−1)
xh(e)−xt(e)

)

,

where β is the inverse temperature, and the parti-

tion function Z is6

Z =
∑

x∈AV

∏

e∈E

exp
(

βJe(−1)
xh(e)−xt(e)

)

.

Evidently the probability of a configuration x ∈ AV

depends only on the corresponding edge configuration

y(x) = d(x) = Mx ∈ AE . Thus

p(x) =
1

Z

∏

e∈E

exp
(

βJe(−1)
ye(x)

)

,

6This Z has nothing to do with the topological spaces Z0, Z0, . . .
of the previous section.

where ye(x) = Mex = xh(e) − xt(e). Moreover,

Z =
∑

x∈AV

∏

e∈E

eβJe(−1)ye(x)

= |A|
∑

y∈B1

∏

e∈E

eβJe(−1)ye ,

where B1 = im d, and |A| = | ker d| is the number of

configurations in AV that map to each y ∈ B1.

More generally, we define an Ising-type model as a

statistical model based on a graph G = (V,E) in which

• Particles are associated with the vertex set V and

have states xv ∈ A, where the state space A may

be any finite abelian group;

• The probability of a configuration x ∈ AV de-

pends only on the corresponding edge configuration

y(x) = d(x) = Mx ∈ AE , and is given by

p(x) =
1

Z

∏

e∈E

fe (ye(x))

for some set of edge-weighting functions

{fe(ye), e ∈ E}, where

Z =
∑

x∈AV

∏

e∈E

fe(ye(x)) = |A|
∑

y∈B1

∏

e∈E

fe(ye).

For example, a Potts model is an Ising-type model in

which A = Zq for q > 2, and fe(0) = exp(βJe), while

fe(ye) = 1 for ye 6= 0. Much broader generalizations are

evidently possible, but we do not know to what extent

they may have been studied in statistical physics.

The usual object of study is the partition function Z as

a function of inverse temperature β. In an Ising model,

as β → 0 (i.e., in the high-temperature limit), the weight

we(x) = exp(βJe(−1)ye(x)) tends to 1, independent

of ye(x), so Z → |A||V | and p(x) → |A|−|V | for all

x ∈ AV ; i.e., in physical terms, the interaction between

neighboring vertices disappears. On the other hand, as

β → ∞ (i.e., in the low-temperature limit), and if

Je > 0 (the ferromagnetic case), then the weight we(x)
is large if ye = 0 (xh(e) = xt(e)) and small if ye 6= 0
(xh(e) 6= xt(e)), which tends to force these two values to

agree. If β → ∞ and if Je < 0 (the antiferromagnetic

case), then the weight we(x) becomes small if ye = 0
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(xh(e) = xt(e)) and large if ye 6= 0 (xh(e) 6= xt(e)),

which tends to force these two values to disagree.

B. From normal realizations to edge-weighted NFGs

Following [19], [2], we will now show how the parti-

tion function of an Ising-type model may be represented

by a normal factor graph (NFG), and in particular by an

edge-weighted NFG (EWNFG).

Normal factor graphs [14], [1], [9] build on the

concepts of normal realizations [5] and factor graphs

[13]. NFGs are used to model functions that can be repre-

sented as real- or complex-valued sums of products, such

as partition functions. (For more on partition functions

of NFGs, see [9].)

The semantics of NFGs are similar to those of normal

realizations. Again, a normal factor graph is a graphical

model based on a graph G = (V,E,H), in which the

edges e ∈ E represent internal variables se ∈ Ae,

and the half-edges h ∈ H represent external variables

ah ∈ Ah. However, the vertices v ∈ V now repre-

sent complex-valued functions fv(sv, av) of the values

(sv, av) of all variables that correspond to the edges and

half-edges that are incident on vertex v.

We will assume that all variable alphabets are finite

abelian groups. The internal and external configuration

spaces are then AE =
∏

E Ae and AH =
∏

H Ah, re-

spectively. The NFG then represents the sum of products

Z(a) =
∑

s∈AE

∏

v∈V

fv(sv, av),

called the partition function (or “exterior function” [1],

[2], or “partition sum” [2]) of the NFG.

NFGs generalize normal realizations in the follow-

ing sense. Given a normal realization based on G =
(V,E,H), if each vertex constraint code Cv is replaced

by its indicator function δCv
(i.e., δCv

(sv, av) = 1 if

(sv, av) ∈ Cv, else δCv
(sv, av) = 0), then

Z(a) =
∑

s∈AE

δB(s, a),

where δB(s, a) is the indicator function of the behavior

B = {(s, a) | all constraints satisfied} of the normal

realization. Thus Z(a) > 0 if and only if a is in the

external behavior C, which is the projection C = B|AH

of B onto the external configuration space AH .

If all constraint codes Cv are group codes, then the

behavior and the external behavior are group codes B ⊆
AE ×AH and C ⊆ AH , respectively. Moreover, if B is

finite, then by the group property the number of elements

of B that map to each element of C is the same, namely

|Bu| = |B|/|C|, where

B
u = B:AE

= {(s,0) ∈ B | s ∈ AE}

is the unobservable behavior of the realization. There-

fore Z(a) = |Bu|δC(a).
In summary:

Theorem 6 (normal realization as an NFG). If all alpha-

bets are finite abelian groups, then a normal realization

with external behavior C and unobservable behavior Bu

may be interpreted as a normal factor graph whose

partition function is Z(a) = |Bu|δC(a).

Next, we extend this definition as follows. An edge-

weighted NFG consists of a normal realization of a

group code C as above, in which all internal functions

{fv, v ∈ V } are indicator functions δCv
of group codes

Cv, plus a set {fh, h ∈ H} of edge-weighting functions

fh attached to each external half-edge h ∈ H of the

normal realization. The resulting NFG has no external

variables, and its partition function is evidently the

complex number

Z =
∑

a∈AH

Z(a)f(a) = |Bu|
∑

a∈C

f(a),

where B
u is the unobservable behavior of the normal

realization, and f(a) =
∏

h∈H fh(ah).
As [2], [19] have observed, the partition functions

of Ising-type models are naturally represented by such

edge-weighted NFGs. In particular, the partition func-

tion of an Ising-type model may be represented as an

EWNFG based on a normal realization of the cobound-

ary space B1 = im d of a graph G = (V,E) over

the finite group alphabet A, and an appropriate set of

edge-weighting functions {fe(ye), e ∈ E}. The partition

function of such a model is thus

Z = |Bu|
∑

y∈B1

f(y) = |Bu|
∑

y∈B1

∏

e∈E

fe(ye),

where |Bu| is the size of the unobservable behavior of

the normal realization.

For example, Figure 19 shows the EWNFGs derived

from the normal realizations of B1 = im d of Figures 4

and 9, respectively (recall that Figure 9 is an I/O real-

ization using the information set yT = {y1, y2, y4, y6}).
We recall that for the normal realization underlying

Figure 19(a), we have |Bu| = |A|, whereas for that

of Figure 19(b), |Bu| = 1. Thus the partition function

of the EWNFG of Figure 19(a) is |A|
∑

y∈B1 f(y) =
Z , whereas the partition function of Figure 19(b) is
∑

y∈B1 f(y) = Z/|A|. The two EWNFGs are thus

equivalent up to a scale factor of |A|.
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Fig. 19. EWNFGs for scaled partition function of Ising-type model based on normal realizations of B1 = im d in (a) Figure 4; (b) Figure 9.

Notice that such EWNFGs alternatively model the

communications scenario in which the possible transmit-

ted sequences are codewords y from the linear code B1,

and the relative (unscaled) likelihood of each possible

symbol ye ∈ A is fe(ye).
7

The dimension of B1 is dimB1 = |E| − β1(G) =
|V |− 1, the number of edges in a spanning tree T of G.

Thus Z may be computed as in [17] by choosing a span-

ning tree T ⊆ G, letting yT run freely through AET ,

extending each yT to the corresponding y ∈ B1 via a

linear transformation, computing fe(y) =
∏

e∈E fe(ye),
summing these contributions, and finally multiplying by

|A|. If we use an I/O realization of B1 as in Figure

9, then the extension of each yT to the corresponding

y ∈ B1 occurs “automatically” by propagation through

the I/O realization.

Molkaraie [15], [16] has proposed an importance-

sampling algorithm to estimate the partition function Z ,

using the information set yT . The idea is to choose a

series of samples yT ∈ AET according to an auxiliary

probability distribution p(yT ), extend each such yT to

the corresponding y ∈ B1, and then compute fe(y) for

each sample. For the auxiliary probability distribution,

he proposes p(yT ) = fe(yT )/ZT , where

fe(yT ) =
∏

e∈ET

fe(ye); ZT =
∑

yT ∈AET

fe(yT ).

Again, an I/O realization of B1 could be used to compute

this extension of yT to y “automatically.”

7Indeed, it was the recognition of this analogy by Sourlas [21] in
1989 that led to the first connections between coding theory and the
Ising models of statistical physics.

Hakimi and Bredeson [11] conducted an early investigation into
whether graphical binary linear codes such as B1 could be useful
for data communications.

C. Dual realizations

Molkaraie and Loeliger [19] observed that it is some-

times easier to compute or estimate the partition function

Z of an EWNFG by using the dual EWNFG. We now

revisit this observation in the context of this paper.

The normal factor graph duality theorem (NFGDT)

[1], [6], [9] says that the dual of an NFG whose partition

function is Z is an NFG whose partition function is the

Fourier transform Ẑ of Z , up to a certain scale factor.

In the Appendix, we give the simplest proof we know

of this very powerful and general result, using a simple

Edge Replacement Lemma.

The dual of an EWNFG based on a normal realization

of some group or linear code C and edge-weighting

functions {fe, e ∈ E} is evidently an EWNFG based on

the dual normal realization with the Fourier-transformed

edge weighting functions {f̂e, e ∈ E}.
Since the partition function of an EWNFG is a com-

plex number Z , its Fourier transform is simply Ẑ = Z;

i.e., the Fourier transform of a number (namely, a

complex-valued function of no variables) is that number.

In the Appendix, we consider interpreting a dual

normal realization as an NFG. Considering all relevant

scale factors, we show that

Theorem 7 (Dual normal realization as an NFG). The

dual of a finite abelian group normal realization with be-

havior B and external behavior C may be interpreted as

an NFG with partition function |B||AE ||CV |−1δC⊥(â),
where |AE | =

∏

E |Ae| and CV =
∏

V |Cv|.

As discussed in the Appendix, Theorems 6 and 7

imply that:

(a) The external behavior of the dual normal realization

is C⊥. Thus, when all alphabets are finite abelian

groups, we obtain the normal realization duality

theorem (NRDT) as a corollary.
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Fig. 20. Dual EWNFGs for scaled Fourier transform of partition function of Ising-type model, based on normal realizations of Z1 = ker ∂ in
(a) Figure 13; (b) Figure 17.

(b) The size of the unobservable behavior of the dual

normal realization is |B̂u| = |B||AE ||CV |−1. Thus

the dual NR is observable and the NR is controllable

if and only if |B||AE ||CV |−1 = 1. Interestingly,

this yields the controllability test of [8] for the finite

abelian group case.

For Ising-type models, dualization of a normal re-

alization of B1 = im d as in Figure 4 or 9 gives a

normal realization of Z1 = ker ∂ = (B1)⊥ as in Figure

13 or Figure 17. Correspondingly, dualization of the

corresponding edge-weighted NFGs in Figure 19 yields

the dual EWNFGs shown in Figure 20.

We recall that Figure 17 is an I/O realization using

the information set yT̄ = {ŷ3, ŷ5}. The dual partition

function may be computed or sampled like the primal

function, by letting yT̄ range freely on the complement

ET̄ of the edge set ET of any spanning tree T of

G. Thus if we choose the same tree T for the primal

and dual realizations, then the two information sets are

complements of each other.

In the Appendix, we compute the scale factor for dual

Ising-type models based on a graph G = (V,E). If the

partition function of the primal edge-weighted NFG as in

Figure 19(a) is Z , then Ẑ = Z , and the partition function

of the dual edge-weighted NFG as in Figure 20(a) is

|A||E|−|V |Ẑ = |A|β1(G)−1Ẑ.

(This result was derived previously by Molkaraie [17].)8

8 Since the scale factor is independent of edge weights, one way
of computing it is to calculate partition functions for the particular
case where fe(ye) = 1 for all ye ∈ A and for all e ∈ E; then all

configurations in Figure 19(a) have weight 1, so Z = |A||V |. Now

f̂e(ŷe) = |A|δ(ye), so only the all-zero configuration contributes to

Ẑ , with weight |A| for each edge e ∈ E, so the partition function of

Figure 20(a) is |A||E|. Since |A||E| is |A||E|−|V | times Z = |A||V |,

the scale factor must be |A||E|−|V |.

Dualization turns hard constraints into soft constraints,

and vice versa. For example, an interaction weight

function fe(ye) represents a strict (equality) constraint

if fe(ye) ∝ δ{0}(ye), for then only configurations y with

ye = 0 contribute to the partition function. On the other

hand, fe(ye) represents no constraint if fe(ye) ∝ 1 for

all ye, for then it makes the same contribution for every

configuration y. Since the dual code to {0} is the uni-

verse code A, the Fourier transform of a strict-constraint

function is a no-constraint function, and vice versa.

Similarly, in an Ising-type model, the Fourier transform

of a low-temperature interaction weight function fe(ye)
is a high-temperature weight function, and vice versa.

For this reason, an expression for Ẑ is sometimes called

a high-temperature expansion of Z . High-temperature

constraints are softer than low-temperature constraints,

and have fewer long-range correlations, so convergence

of Monte Carlo estimates is faster and less random [19].

D. Example: Single-cycle graph

Following [19], we now give an example of dual re-

alizations of a partition function Z and its Fourier trans-

form Ẑ on a single-cycle graph. In statistical physics,

a single-cycle graph arises in a one-dimensional (1D)

Ising-type model with periodic boundary conditions.

A single-cycle graph G of length n has n vertices

vi, i ∈ Zn, and n edges ei, i ∈ Zn, such that edge ei
connects vertices vi and vi+1 (with index arithmetic in

Zn, so en−1 connects vn−1 and v0).

Figure 21 shows an NFG with partition function Z for

a 1D Ising-type model of length n over A = Zq with

periodic boundary conditions. The realization is based

on an image realization of B1 = im d, which is the

(n, n− 1) zero-sum code over Zq .



18

= + = + = · · · = +
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x0 x1 x2 xn−1y0 y1 yn−1

Fig. 21. NFG for partition function of 1D Ising-type model with
periodic boundary conditions.

Since Z0 = ker d is the (n, 1) repetition code over

A, every codeword of B1 = im d is the image of

|A| different vertex vectors x + a1, a ∈ A. Thus, if

we like, we may fix any vertex variable to zero, say

x0 = 0, without affecting the partition function, up to a

scale factor of |A|. We may also replace each repetition

constraint of degree 2 plus its neighboring sign inverter

by an inverting edge, since =◦ = ◦ . This

results in the observable I/O realization of Figure 22,

whose underlying graph T , a spanning tree of G, is a

cycle-free chain graph. This shows that a 1D Ising-type

model defined on T with fixed boundary conditions (i.e.,

x0 = xn = 0) has the same partition function (up to a

scale factor of |A|) as the same model with periodic

boundary conditions (i.e., x0 = xn).

+ + · · · +

f0 f1 fn−1

y0 y1 yn−1

Fig. 22. NFG for 1D Ising-type model with fixed boundary conditions
x0 = xn = 0.

Figure 23 shows the dual NFG, whose partition

function is (up to scale) the Fourier transform Ẑ of

the partition function Z of Figure 21. The underlying

normal realization is a dual I/O realization of Z1 =
ker ∂, the (n, 1) repetition code over Â. Thus Ẑ ∝
∑

ŷ∈Â

∏

i f̂i(ŷ). Computing the partition function of the

dual NFG is clearly much easier than computing Z .

= = · · · =

f̂0 f̂1 f̂n−1

ŷ0 ŷ1 ŷn−1

Fig. 23. Dual NFG for 1D Ising-type model.

E. Ising-type models with an external field

An Ising-type model may be generalized to include

an external field as follows [15]. In addition to the

interaction energies Ee(xv, xv′), there is an external

field energy Ev(xv) for each particle v ∈ V . The

external field weight function is defined as gv(xv) =
exp

(

−βEv(xv)
)

, where β > 0 is again the inverse

temperature. The probability of a configuration x ∈ AV

is then given by the Boltzmann distribution

p(x) =
1

Z

[

∏

e∈E

fe(xh(e) − xt(e))

][

∏

v∈V

gv(xv)

]

,

where the partition function is now defined as

Z =
∑

x∈AV

[

∏

e∈E

fe(xh(e) − xt(e))

] [

∏

v∈V

gv(xv)

]

.

This partition function may be realized by starting

with a realization of Z as in Figure 19(a), and attaching

to each vertex v ∈ V a function vertex representing the

external field weight function gv(xv), as shown in Figure

24. The resulting EWNFG has no external variables, and

evidently realizes the partition function of the model

including an external field.

= + = + =

+ + +

= + =

g1

g2

g3

g4g5

f1 f2

f3 f4 f5

f6

Fig. 24. EWNFG for partition function of Ising-type model with an
external field, based on normal realization of I/O behavior W 01 =
{(x, d(x) | x ∈ AV } in Figure 2.

The normal realization underlying this EWNFG is that

of the I/O behavior W 01 = {(x, d(x) | x ∈ AV } of the

coboundary operator d, as illustrated in Figure 2. This

behavior is a systematic (|E|+|V |, |V |) group code over

A, for which the vertex set V is an information set.

Consequently, the dual EWNFG is based on the

normal realization of the dual I/O behavior W10 =
{(−∂(ŷ), ŷ) | ŷ ∈ ÂE} of the boundary operator ∂,

as illustrated in Figure 11. This behavior is a systematic

(|E|+ |V |, |E|) group code over A, for which the edge

set E is an information set. The resulting dual EWNFG

shown in Figure 25. Explicitly, its partition function is
∑

(x̂,ŷ)∈W10

∏

v∈V

ĝv(x̂v)
∏

e∈E

f̂e(ŷe),

which is called a high-temperature expansion of Z .
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+ = + = +

= = =

+ = +

ĝ1

ĝ2

ĝ3

ĝ4ĝ5

f̂1 f̂2

f̂3 f̂4 f̂5

f̂6

Fig. 25. Dual EWNFG for scaled partition function of Ising-type
model with an external field, based on normal realization of dual I/O
behavior W10 = {(−∂(ŷ), ŷ) | ŷ ∈ ÂE} in Figure 11.

For the special case of the Ising model (A = Z2) with

a constant external field, there are well-known explicit

formulas for this high-temperature expansion [20], [12].

The above expression generalizes these high-temperature

expansions to general finite abelian group alphabets A
and non-constant external fields Hv .

However, since |E| = |V | − 1 + β1(G), the dual I/O

behavior will be higher-dimensional than the primal I/O

behavior if β1(G) > 1; i.e., if G has more than one cycle.

Thus with an external field it will generally be more

complex to compute the partition function of the dual

EWNFG than that of the primal EWNFG. We will now

explore methods of reducing this increased complexity.

F. Alternative and hybrid I/O realizations

We see that whereas in the primal domain the presence

of an external field adds only one dimension to the

realization of Z (the difference between the dimensions

of B1 and W 01), in the dual domain it adds |V | − 1
dimensions (the difference between the dimensions of

Z1 and W10). We now suggest alternative realizations

of the partition function Z and its Fourier transform Ẑ
for Ising-type models with an external field, with the

objective of simplifying their calculation.

As discussed above, Z is the partition function of an

EWNFG based on a normal realization of the I/O be-

havior W 01 = {(x, d(x) | x ∈ AV } of the coboundary

operator d, as illustrated in Figure 2, where W 01 is a

linear (|E|+ |V |, |V |) code over A.

We have seen that the vertex vector x ∈ AV is an

obvious information set for W 01. However, we will now

show that for any v ∈ V and any edge set ET such that

T is a spanning tree of G, (xv,yT ) ∈ A{v} × AET is

an information set for W 01. Moreover, we will give an

I/O realization of W 01 based on this information set.

We recall that the projection of W 01 onto the edge

configuration space AE is B1 = im d, which is an

(|E|, |E| − β1(G)) = (|E|, |V | − 1) systematic group

code with information set ET for any spanning tree

T ⊆ G. Hence for any (x,y) ∈ W 01, the edge vector

y may be realized by taking yT as the input to an I/O

realization of B1, such as the realization illustrated in

Figure 9; the output is then the unique yT̄ such that

y = (yT ,yT̄ ) ∈ B1.

Now we may extend an I/O realization of B1 such

as Figure 9 to obtain a vertex vector x(yT ) as another

output, thus obtaining a pair (x(yT ),y) ∈ W 01. Note

that we have shown that any single vertex variable xv

in Figure 9 can be fixed to 0 (i.e., xv(yT ) = 0, where

v ∈ V may be chosen arbitrarily), so (xv̄(yT ),y) ∈
(W 01):v̄ . Moreover, the set of all pairs (x,y) ∈ W 01 that

have edge vector y is the coset (x+Z0,y) of Z0×{0}
that contains (x,y), where Z0 = ker d is the (|E|, 1)
repetition code over A.

It follows that W 01 may be generated by the normal

realization shown in Figure 26. On the left, a single input

vertex variable xv ∈ A{v} generates the unique vertex

vector xv̄(xv) = (xv, . . . , xv) ∈ AV \{v} such that

(xv,xv̄(xv)) ∈ Z0. On the right, an input edge vector

yT ∈ AET generates the unique edge vector yT̄ (yT ) ∈
AE\ET such that y(yT ) = (yT ,yT̄ (yT )) ∈ B1, and

an associated vertex vector xv̄(yT ) ∈ AV \{v} such that

(x(yT ),y(yT )) ∈W 01, where x(yT ) = (0,xv̄(yT )) ∈
AV . The final output pair is (xv̄(xv,yT ),yT̄ (yT )),
where xv̄(xv,yT ) = xv̄(xv) + xv̄(yT ), which to-

gether with the input pair (xv,yT ) give the unique

pair (x,y) ∈ W 01 that is consistent with the inputs

(xv,yT ) ∈ A{v} ×AET .

Z0 (W 01):v̄

+

xv yT

xv̄(xv,yT ) yT̄ (yT )

xv̄(xv) xv̄(yT )

Fig. 26. I/O realization of the I/O behavior W 01 = {x, d(x)} with
information set (xv,yT ).

For a realization of the dual I/O map W10 = (W 01)⊥,

we need merely dualize this representation, as shown in

Figure 27. On the left, the dual of the repetition code

Z0 is the zero-sum code B0. On the right, the dual

of the cross-section (W 01):v̄ is the projection (W10)|v̄,
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which may be realized by extending the I/O realization

of Z1 = ker ∂ in Figure 17, which uses ŷT̄ as an

information set, in a dual manner to the extension of

Figure 9 discussed above, which involves adding x̂v̄

as a second information set. Finally, the remainder of

the realization is dualized by replacing the zero-sum

constraint by an equality constraint, and changing the

directions of the arrows.9 Thus we obtain the realization

of Figure 27.

B0 (W10)|v̄

=

x̂v ŷT

x̂v̄ ŷT̄

x̂v̄ x̂v̄

Fig. 27. I/O realization of the dual I/O behavior W10 = {−∂(ŷ), ŷ}
with information set (x̂v̄ , ŷT̄ ).

These normal realizations may be used to realize

scaled versions of Z and Ẑ by attaching edge weights.

For example, the dual EWNFG of Figure 28 realizes a

scaled version of Ẑ by attaching edge weights ĝ(x̂) and

f̂(ŷ) to components of x̂ and ŷ, respectively.

B0 (W10)|v̄

=

ĝv(x̂v) f̂T (ŷT )

ĝv̄(x̂v̄) f̂T̄ (ŷT̄ )

x̂v ŷT

x̂v̄

x̂v̄ x̂v̄ ŷT̄

Fig. 28. Dual EWNFG for Ising-type model.

A hybrid alternative that may be attractive because

of the simplicity of the repetition code Z0 is shown in

Figure 29. Here, using the Edge Replacement Lemma

(see Appendix), the left (vertex) side is realized in the

primal domain, and the right (edge) side is realized in the

dual domain, with a connection via a Fourier transform

function (plus sign inverter) between the (|V | − 1)-
dimensional primal and dual vertex vectors xv̄ and x̂v̄.

(In this figure, the scale factors of the Edge Replacement

Lemma have been omitted.)

9Superfluous sign inverters have been removed.

Z0 (W10)|v̄

+

gv(xv) f̂T (ŷT )

gv̄(x
′′
v̄ ) f̂T̄ (ŷT̄ )

xv ŷT

F
xv̄

x′′
v̄

x′
v̄ x̂v̄ ŷT̄

Fig. 29. Hybrid NFG for Ising-type model.

In this hybrid realization, the left side is 1-

dimensional, the right side is β1(G)-dimensional, and the

two are linked by |V | − 1 edge variables, which require

a (|V | − 1)-dimensional Fourier transform over A. For

many alphabets A— e.g., Z2— “fast Fourier transform”

algorithms may be used. Overall, such a hybrid real-

ization may therefore yield a significant reduction in

complexity.10

IV. TWO-DIMENSIONAL ALGEBRAIC TOPOLOGY

We now consider graphs that have well-defined faces.

We will primarily consider connected planar graphs

with no self-loops and no dangling edges, which is the

simplest case.

A. Two-dimensional complexes

In elementary algebraic topology [3], a graph G =
(V,E) plus a set F of faces is called a two-dimensional

complex G+ = (V,E, F ). A face f ∈ F of G+ is called

a two-dimensional object.

Faces are defined according to the topological space

on which G is imagined to be drawn. For instance, a

planar graph is one that can be drawn on a plane without

any edges crossing. The interior faces of G are then the

areas of the plane that are bounded by the edges of G. We

will assume that G has no “dangling” degree-1 vertices;11

then every edge of G bounds either two interior faces of

G, if it is an interior edge, or one interior face of G, if

it is an exterior edge.

It is easy to see that in general the number of interior

faces of a planar graph is |F | = β1(G). For example, as

a planar graph, our example graph G in Figure 1 has two

interior faces, one interior edge, and five exterior edges.

10Vontobel [23] has pointed out that the “Hamiltonian NFGs” in [22,
Fig. 4] are also hybrid realizations, in that they include both primal
and dual parts, with Legendre transforms between them.

11The “no dangling vertices” assumption is the dual to the “no self-
loops” assumption.
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Alternatively, a planar graph G may be considered to

be drawn on a sphere; then its “exterior face” is also

taken to be a face, and every edge of G bounds precisely

two faces of G. In this case, |F | = β1(G) + 1 = |E| −
|V |+2. For example, as a planar graph on a sphere, our

example graph G has |V | = 5, |E| = 6, and |F | = 3.

In algebraic topology, the vector space C2 = AF of

column vectors over A indexed by F is called the space

of 2-cochains of G+. Again, we will call such vectors

face vectors, and write them as column vectors z in

matrix expressions. The dual vector space C2 = ÂF

is called the space of 2-chains; again, we will call these

dual face vectors, write them as row vectors ẑ ∈ ÂF in

matrix expressions, and use the standard inner product.

The boundary of a face f is a set E(f) ⊆ E
of directed edges. Each face f ∈ F is assumed to

have an orientation, perhaps arbitrary; then each edge

e ∈ E(f) is given a sign αfe = 1 if the face and

edge orientations are aligned, or αfe = −1 otherwise. If

e /∈ E(f), then αfe = 0. The {0,±1}-valued matrix

M2 = {αfe | f ∈ F, e ∈ E} will be called the

second incidence matrix of G. (Hereafter, our original

incidence matrix M will be denoted M1 and called the

first incidence matrix of G.) Since an edge of G+ is

incident on two faces if it is an interior edge or on one

face if it is an exterior edge, each of the |E| columns

of M2 has one or two nonzero values. The number of

nonzero values in the f th row is the degree δf of the

face f , i.e., the number of edges bounding f .

The second boundary operator is defined as the ho-

momorphism ∂2 : ÂF → ÂE , ẑ 7→ ẑM2; i.e., the map

whose matrix is the second incidence matrix M2 of G. Its

kernel Z2 = ker∂2 is called the second zero-boundary

space of G+, and its image B1 = im ∂2 is the second

boundary space of G+.

For example, our example graph G of Figure 1 may

be taken as a planar graph G+ drawn on a plane, with

two interior faces. If each face is given a clockwise

orientation, then its second incidence matrix is

M2 =

[

1 0 −1 1 0 1
0 1 0 −1 1 0

]

.

Note that only one edge is interior, and that Z2 = ker ∂2
is trivial, for this graph and in general for planar

graphs drawn on planes. Thus dimB1 = 2. In general,

dimB1 = |F | = β1(G).
However, if we consider our example graph to be

drawn on a sphere, then G+ has three faces, and all edges

become interior edges. If the “exterior face” is given a

counterclockwise orientation, then

M2 =





1 0 −1 1 0 1
0 1 0 −1 1 0
−1 −1 1 0 −1 −1



 .

Since all edges are now interior, each column of M2 now

has precisely 2 nonzero values ±1. Moreover, since the

sum of the three rows is 0 ∈ ÂE , the second boundary

operator ∂2 now has a nontrivial kernel Z2 of dimension

1. Therefore dimZ2 = 1 in this case and, by similar

arguments, for planar graphs in general. However, the

image B1 remains unchanged, regardless of whether we

take G+ as a graph on a plane or on a sphere. Thus

its dimension remains dimB1 = 2 for this example, or

dimB1 = β1(G) for planar graphs in general.

Notice that the first two rows of M2 are the edge

vectors ŷ(p1), ŷ(p2) corresponding to the two cycles

p1,p2 that bound the two interior faces of G+, and

therefore are elements of the zero-boundary space Z1,

the kernel Z1 of our original first boundary operator

∂1 : ÂE → ÂV , ŷ 7→ ŷM1. It follows that B1 = Z1

in this example, and, by similar arguments, for planar

graphs in general.

Dually, the image of our original first coboundary

operator d1 : AV → AE ,x 7→ M1x will continue

to be denoted as B1, and its kernel as Z0. Since d1
is the adjoint homomorphism to ∂1, B1 = (Z1)

⊥

and Z0 = (B0)
⊥ . Similarly, we define the second

coboundary operator as the adjoint homomorphism to

∂2— i.e., the operator d1 : AE → AF ,y 7→ M2y. By

the Adjoint Homomorphism Lemma, the kernel Z1 and

image B2 of d2 are then Z1 = (B1)
⊥ and B2 = (Z2)

⊥.

B. Homology spaces

In general, it is straightforward to show that in any

two-dimensional complex, the second boundary space

B1 is a subspace of the first zero-boundary space Z1 =
ker ∂1, by showing that every row of M2 is an edge vec-

tor ŷ(p) corresponding to a cycle p. Thus for a general

two-dimensional complex we have B1 ⊆ Z1. The first

homology space is then defined as H1 = Z1/B1.

For a two-dimensional complex G+ based on a planar

graph G, we have seen that B1 = Z1, so for our example

planar graph and in general, we have dimH1 = 0,

whether we take G+ as a graph on a plane or on a sphere.

In a general two-dimensional complex, the first co-

homology space is defined as H1 = Z1/B1 =
(B1)

⊥/(Z1)
⊥, which from linear algebra is the dual

space to H1 = Z1/B1. Thus for a planar graph

dimH1 = dimH1 = 0; i.e., the image B1 of d1 is

equal to the kernel Z1 of d2.
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Fig. 30. Z2 = ker ∂2 for G+: (a) normal realization; (b) simplified normal realization.

In this context, the second homology space H2 of G+

is defined as Z2. We have seen that dimZ2 = 0 if G
is a planar graph defined on a plane, but dimZ2 = 1 if

G is defined on a sphere. The second cohomology space

is defined as H2 = C2/B2 = C2/(Z2)
⊥, which is the

dual space to H2 = Z2; thus dimH2 = dimH2.

The dimensions of the homology or cohomology

spaces H0, H1, H2 are thus (1, 0, 0) if G is regarded as a

planar graph on a plane, or (1, 0, 1) if G is regarded as a

planar graph on a sphere. We see that these dimensions

are universal for all graphs of these respective types [3].

Two-dimensional complexes become more interesting

when H1 = Z1/B1 is nontrivial; i.e., when there exist

cycle vectors in Z1 = ker ∂1 that are not second bound-

ary vectors in B1 = im ∂2. For example, as shown in [2],

if G is a 2-dimensional square lattice graph drawn on a

torus, then dimH1 = 2, since there are two independent

cycle vectors that do not bound faces.

C. Normal realizations

Figure 30(a) depicts a normal realization of Z2 =
ker ∂2 when we view G+ as being drawn on a sphere,

so there is an exterior face f0 as well as the two interior

faces f1, f2. The three equality constraints correspond

to the face variables ẑ0, ẑ1, ẑ2, and the six zero-sum

constraints correspond to the edge variables ŷ1, . . . , ŷ6,

which are all set to 0 in this kernel realization. One of

the two incident face variables to each edge constraint

is negated, according to the entries αfe of M2.

Figure 30(b) depicts a simplified realization of Z2 =
ker ∂2. Note the resemblance of this realization to that

of Z0 = ker d1 in Figure 3 or 7.

Similarly, Figure 31 depicts the dual realization of

B2 = im d2, which resembles that of B0 = im ∂1 in

Figure 12 or 15. We now explain these resemblances.

D. Dual graphs

Let G = (V,E) be a connected planar graph, let

G+ = (V,E, F ) be the associated 2-dimensional com-

plex when G is drawn on a sphere, and let M1 and M2

+

+ +

z0

z1 z2

Fig. 31. Dual normal realization of B2 = im d2 for G+.

be the first and second incidence matrices of G+. The

number of faces is then |F | = β1(G)+1 = |E|−|V |+2,

including the exterior face. Assuming that G has no

dangling vertices, every edge is incident on two distinct

faces, a right face r(e) ∈ F and a left face ℓ(e) ∈ F .

(For our purposes, it does not matter which is which.)

Each row (M1)e of M1 then has two nonzero values,

(M1)eh(e) = +1 and (M1)et(e) = −1. Similarly,

each column (M2)e of M2 has two nonzero values,

(M2)er(e) = +1 and (M2)eℓ(e) = −1.

It is thus natural to define the dual graph Ĝ = (F,E)
as the planar graph with the same edge set E, but with

vertex and face sets interchanged, so Ĝ+ = (F,E, V )
has incidence matrices M̂1 = (M2)

T and M̂2 = (M1)
T

equal to the transposes of the original incidence matrices.

Thus β1(Ĝ) = |E| − |F |+ 1 = |V | − 1 = |E| − β1(G).
Geometrically, we may construct this dual graph by

putting vertices of Ĝ inside each face of G (including

the exterior face), and putting edges between two such

vertices if and only if the corresponding faces share an

edge, as illustrated for our example graph in Figure 32.

• •

•

✁
✁
✁
✁
✁

Fig. 32. Dual graph Ĝ to the graph G of Example 1.

The similarity of this dual graph Ĝ to the graphs of

Figure 30 and 31 is no accident. For Ĝ+ = (F,E, V ), the

first boundary operator ∂̂1 : ÂE → ÂF has matrix M̂1 =
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Fig. 33. (a) Z1 = ker d2 for G+; (b) B1 = im ∂2 for G+.

(M2)
T , and thus maps the row vector ŷ ∈ ÂE to ẑ =

ŷ(M2)
T ∈ ÂF . This map is evidently the same up to

transposition as that of the second coboundary operator

d2 : AE → AF of G+, which maps the column vector

y ∈ AE to z = M2y. Similarly, ∂̂2 : ÂV → ÂE is the

same map up to transposition as d1 : AV → AE , and the

first and second coboundary operators, d̂1 : ÂF → ÂE

and d̂2 : ÂE → ÂV , are the same up to transposition as

∂2 and ∂1, respectively.

Thus the boundary and zero-boundary spaces for Ĝ+

are simply the transposes of those spaces for G+: B̂0 =
(B2)T , Ẑ1 = (Z1)T , B̂1 = (B1)T , Ẑ2 = (Z0)T , B̂1 =
(B1)

T , Ẑ0 = (Z2)
T , B̂2 = (B0)

T , Ẑ1 = (Z1)
T .

Figure 30 may thus be seen as realizing either Z2 =
ker ∂2 for G+, or Ẑ0 = ker d̂1 for Ĝ+. Similarly, Figure

31 may be seen as realizing either B2 = im d2 for G+,

or B̂0 = im ∂̂1 for Ĝ+.

Using the dual graph Ĝ, we may also realize Z1 =
ker d2 for G+ as Ẑ1 = ker ∂̂1 for Ĝ, and B1 = im ∂2
for G+ as B̂1 = im d̂1 for Ĝ. For example, Figures

33(a) and 33(b) show realizations of Z1 and B1 for our

example graph G+ as realizations of Ẑ1 and B̂1 for its

dual graph Ĝ as in Figures 13 or 4. Again, these are dual

realizations; i.e., Z1 = (B1)
⊥.

However, for a two-dimensional complex G+ based on

a planar graph G, we also have Z1 = B1 = im d1 and

B1 = Z1 = ker∂1; therefore we may alternatively real-

ize Z1 as an image realization based on G as in Figure

4, or B1 as a kernel realization based on G as in Figure

13. Since G has |E| edges and |V | = |E| − β1(G) + 1
vertices, whereas Ĝ has |E| edges and β1(G)+1 vertices,

the representation based on G (resp. Ĝ) will in general

be simpler if β1(G) > |E|/2 (resp. β1(G) < |E|/2).

E. Realizations of partition functions for planar graphs

Let G+ = (V,E, F ) be a two-dimensional complex

based on a connected planar graph G. Then we have

seen that the partition function Z(G) of an Ising-type

model based on G with interaction weight functions

{fe(a) | e ∈ E, a ∈ A} may be represented (up to scale)

as the partition function of an EWNFG consisting of a

realization of its first coboundary space B1 = im d1
with edge weights {fe(a)}. We recall that dimB1 =
|V | − 1 = |E| − β1(G).

As we have seen, with a planar graph we have B1 =
Z1 = ker d2. Moreover, Z1 may be realized as Ẑ1 =
ker ∂̂1 for the dual graph Ĝ. Hence Z(G) may also be

represented (up to scale) by a realization of the first zero-

boundary space Ẑ1 = ker ∂̂1 of Ĝ with edge weights

{fe(a)}.
Furthermore, the Fourier transform Ẑ(G) of Z(G),

which as we have seen is equal to Z(G) up to scale, may

be represented (up to scale) by a kernel realization of

its first zero-boundary space Z1 = ker ∂1, with Fourier-

transformed edge weights {f̂e(a)}. We have dimZ1 =
β1(G), which can be less than dimB1 = |V | − 1 =
|E| − β1(G), as we have seen in Figures 21 and 23.

The Fourier transform will in general convert a low-

temperature to a high-temperature model, and vice versa.

If G is a planar graph, then Z1 = B1, and B1 may

be realized as B̂1 = im d̂1 for the dual graph Ĝ. Thus

Ẑ(G) may also be represented (up to scale) by an image

realization of the first coboundary space B̂1 = im d̂1 of

Ĝ, with Fourier-transformed edge weights {f̂e(a)}.
Table II summarizes these four possible representa-

tions.

Al-Bashabsheh and Vontobel [2] show that the parti-

tion function Z(G) of an EWNFG based on a connected

planar graph G and edge weights {fe(a)} is equal up to

scale to the partition function of an EWNFG based on

the dual graph Ĝ with dual edge weights {f̂e(a)}. This

follows from equating (up to scale) the first and fourth

lines of Table II.

For example, let G be a single-cycle graph of length

N , which is a connected planar graph with |V | = |E| =
N and β1(G) = 1. Its dual graph Ĝ thus has only

|V̂ | = 2 vertices, while β1(Ĝ) = N − 1. Figure 21

shows a representation of the partition function Z(G)
using an image realization of the (N,N−1) linear code

B1 = im d1 on the graph G, and Figure 23 shows a

representation of its Fourier transform Ẑ(G) (up to scale)

using a kernel realization of the (N, 1) code Z1 = ker ∂1



24
realizes space dimension realization type graph no. vertices edge wts.

Z(G) B1 = im d1 |E| − β1(G) Fig. 4 or 9 G |E| − β1(G) + 1 {fe(a)}

Z(Ĝ) Ẑ1 = ker ∂̂1 |E| − β1(G) Fig. 13 or 17 Ĝ β1(G) + 1 {fe(a)}

Ẑ(G) Z1 = ker ∂1 β1(G) Fig. 13 or 17 G |E| − β1(G) + 1 {f̂e(a)}

Ẑ(Ĝ) B̂1 = im d̂1 β1(G) Fig. 4 or 9 Ĝ β1(G) + 1 {f̂e(a)}

TABLE II
REPRESENTATIONS OF A PARTITION FUNCTION Z (UP TO SCALE), USING EITHER A GRAPH G OR ITS DUAL GRAPH Ĝ , AND EITHER EDGE

WEIGHTS {fe(a)} OR DUAL WEIGHTS {f̂e(a)}.

on G. We now see that Z(G) could alternatively be

represented (up to scale) by a kernel realization of Z(Ĝ)
using the (N,N−1) code Ẑ1 = ker ∂̂1 with edge weights

{fe(a)} on the dual graph Ĝ, or alternatively by an image

realization of Ẑ(Ĝ) using the (N, 1) code B̂1 = im d̂1
with edge weights {f̂e(a)} on Ĝ.

V. CONCLUSION

In this paper, we have presented an introduction to

elementary algebraic topology using normal realizations,

and, following [2], [19], we have shown how such real-

izations may be used for calculating partition functions

of Ising-type models. Indeed, using dual realizations and

dual graphs, we have given multiple alternative ways

of representing such partition functions, summarized in

Section IV-E.

While Molkaraie et al. [15], [16], [18], [19], have suc-

cessfully exploited such alternatives in Monte Carlo sim-

ulations using importance sampling, much more could

be done. In particular, in the presence of external fields,

the hybrid models suggested in Section III-F should be

explored further.

Our results are very general; in particular, they apply

for any finite abelian group alphabet A. Thus one could

explore Ising-type models with group alphabets more

general than Zq; however, we have no idea whether such

models would be of interest to statistical physicists.

For the field of codes on graphs, this development

suggests exploring graphical models that are inspired

more by algebraic topology than by traditional system-

theory models (e.g., trellises, tail-biting trellises, kernel

and image representations). For example, we have re-

cently found a simple and elegant “2-state” elementary

normal realization of the (8, 4, 4) first-order Reed-Muller

code on a 3-cube graph, shown in Figure 34. Are there

similarly “nice” realizations of more complex codes?
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Fig. 34. “2-state” 3-cube realization of the binary (8,4,4) first-order
Reed-Muller code. (Figure courtesy of F. R. Kschischang.)
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APPENDIX: THE NFG DUALITY THEOREM

The normal factor graph duality theorem (NFGDT)

[1], [6], [9] is the key duality result for normal factor

graphs (NFGs) over finite abelian groups. It shows that

the partition function of a dual NFG is equal to the

Fourier transform of the partition function of the primal

NFG, up to a scale factor which was shown in [1] to be

|AE | (see below for terminology and notation).

In this appendix we give the simplest proof we know

of this result, and extend it to situations in which the

NFG is based on a normal realization [5]; specifically,

to NFGs that are based purely on normal realizations,

and to edge-weighted NFGs (EWNFGs), as discussed in

the main text. We compute the appropriate scale factors

for these cases.

A.1 Fourier transforms over finite abelian groups

Given an additive finite abelian group A, its dual

group (or character group) Â may be defined as the

set of all homomorphisms â : A → R/Z, where R/Z
is the additive group of real numbers modulo 1. It is

well known that Â is a finite abelian group that is

isomorphic to A. Also, the dual group to Â is A, where

a : Â → R/Z is defined by a(â) = â(a).
For â ∈ Â, a ∈ A, we may define the “inner

product” (pairing) 〈â, a〉 = â(a) = a(â). The usual inner

product properties— e.g., 〈â, 0〉 = 0, 〈â,−a〉 = −〈â, a〉,
〈â, a± b〉 = 〈â, a〉 ± 〈â, b〉— then follow from the

properties of homomorphisms.

If f(a) is any complex-valued function f : A → C,

then its Fourier transform f̂(â) is the complex-valued

function f̂ : Â → C defined by

f̂(â) =
∑

a∈A

f(a)e2πi〈â,a〉.

The matrix F = {e2πi〈â,a〉 | a ∈ A, â ∈ Â} is called

the Fourier transform matrix over A. We will regard F
as a function of two variables with alphabets A and Â.

If ĝ(â) is any complex-valued function ĝ : Â → C,

then its inverse Fourier transform g(a) is the complex-

valued function g : A → C defined by

g(a) = |A|−1
∑

â∈Â

ĝ(â)e−2πi〈â,a〉.

The matrix F−1 = {|A|−1e−2πi〈â,a〉 | â ∈ Â, a ∈ A} is

called the inverse Fourier transform matrix over A, and

will also be regarded as a function of two variables with

alphabets Â and A.

We may verify that F−1 is in fact the in-

verse of F by using the basic orthogonality relation

|A|−1
∑

â∈Â e2πi〈â,a〉 = δa.

Given a subgroup C ⊆ A, the orthogonal subgroup

C⊥ ⊆ Â is the set {â ∈ Â | 〈â, a〉 = 0, ∀a ∈ C}. The

orthogonal subgroup to C⊥ is C, and |C||C⊥| = |A|. It is

well known, and easy to prove, that the Fourier transform

of the indicator function δC of C is the scaled indicator

function |C|δC⊥ of C⊥.12 The above orthogonality rela-

tion follows from the special case in which C = {0} and

C⊥ = Â.

Finally, if f(a) is a function of multiple variables

a = {ai, i ∈ I}, then its Fourier transform f̂(â) is

obtained by taking the Fourier transform of each variable

separately, since 〈â, a〉 =
∑

I〈âi, ai〉; i.e., the Fourier

transform is separable, as illustrated in Figure 35.

Â1
F
A1

f
A3
F
Â3

A2

F

Â2

=
Â1

f̂

Â2

Â3

Fig. 35. The Fourier transform is separable.

A.2 Normal factor graphs

A normal factor graph (NFG) is based on a graph

G = (V,E,H) consisting of a set of vertices indexed

by a vertex index set V , a set of edges indexed by an

edge index set E, and a set of half-edges indexed by

a half-edge index set H . With each edge e ∈ E we

associate an internal (state) variable se whose alphabet

is a finite abelian group denoted by Ae, and with each

half-edge we associate an external variable ah whose

alphabet is a finite abelian group denoted by Ah. The

internal variable configuration space is defined as the

Cartesian product AE =
∏

E Ae.

With each vertex v ∈ V we associate a complex-

valued function fv(sv, av) of the variables corresponding

to the edges and half-edges that are incident on vertex

v. The partition function (or “exterior function” [1]) of

the NFG is then defined as the following function of its

external variables:

Z(a) =
∑

s∈AE

∏

v∈V

fv(sv, av).

The dual normal factor graph to an NFG as defined

above is based on the same graph G = (V,E,H), but

with the following replacements:

12The simple and lovely proof goes as follows: (a) obvious for â ∈
C⊥, since 〈â, a〉 = 0 for all a ∈ C; (b) if â /∈ C⊥, then 〈â, b〉 6= 0
for some b ∈ C; for this b, we have e2πi〈â,b〉(

∑
a∈C e2πi〈â,a〉) =

∑
a∈C e2πi〈â,a+b〉 =

∑
a∈C e2πi〈â,a〉, since C + b = C; but since

e2πi〈â,b〉 6= 1, this equation can hold only if
∑

a∈C e2πi〈â,a〉 = 0.
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• For each edge e ∈ E, the variable se ∈ Ae is

replaced by a dual variable ŝe ∈ Âe, where Âe

denotes the dual group to Ae;

• For each half-edge h ∈ H , the variable ah ∈ Ah is

replaced by a dual variable âh ∈ Âh;

• For each vertex v ∈ V , the function fv(sv, av) is

replaced by its Fourier transform f̂v(ŝv, âv);
• Lastly, each edge is replaced by a sign-inverting

edge.

The normal factor graph duality theorem (NFGDT)

says that the partition function of the dual NFG is the

Fourier transform of the partition function of the primal

NFG, up to a scale factor that will be determined shortly.

The key to the proof of the NFGDT is the following Edge

Replacement Lemma (an example of what is called a

“holographic transformation” in [1], [6], [9]):

Edge Replacement Lemma. In any NFG, any edge

representing a variable whose alphabet is a finite abelian

group A may be replaced by F ◦ F , namely a

cascade of F , a sign inverter, and F , plus a disconnected

node |A|
−1

that contributes a scale factor of |A|−1

to the partition function, without changing the partition

function.

Proof : By the basic orthogonality relation given above,

we have |A|−1
∑

Â e2πi〈â,a〉e−2πi〈â,a′〉 = δaa′ .

This lemma is illustrated by Figure 36.

A
=

A
F

Â
◦
Â

F
A

|A|−1

Fig. 36. Edge Replacement Lemma: an edge with alphabet A may be
replaced by a cascade of F , a sign inverter, and F , plus a disconnected
node representing a scale factor |A|−1.

The NFGDT then follows:

Theorem (NFG duality). If G = (V,E,H) is a normal

factor graph with functions {fv | v ∈ V }, internal

variable alphabets {Ae | e ∈ E}, and external variable

alphabets {Ah | h ∈ H} whose partition function is

Z(a), then the dual normal factor graph with functions

{f̂v | v ∈ V }, internal variable alphabets {Âe | e ∈ E},
external variable alphabets {Âh | h ∈ H}, and with

sign inverters inserted in each edge has partition function

|AE |Ẑ(â), where Ẑ(â) is the Fourier transform of Z(a),
and the scale factor is |AE | =

∏

E |Ae|.

Proof : If we have an NFG whose partition function is

Z(a), then by definition and by separability the Fourier

transform Ẑ(â) is the partition function of the NFG

that results when each external half-edge, representing

a variable with alphabet Ah, h ∈ H , is replaced by

F , namely a Fourier transform from Ah to the dual

external variable alphabet Âh. By the Edge Replace-

ment Lemma, if we then replace each edge e ∈ E,

representing an internal variable with alphabet Ae, by

F ◦ F , omitting the scale factor |Ae|−1, then the

resulting NFG has Fourier transform |AE |Ẑ(â), where

|AE | =
∏

E |Ae|. Now each function node fv, v ∈ V, in

the NFG is surrounded by edge and half-edge segments

of the form F . By the definition of the Fourier

transform and by separability, each such node and its

surrounding Fourier transform functions realizes the

Fourier-transformed function f̂v.

The scale factor |AE | is thus the product of all internal

variable alphabet (state space) sizes |Ae|, as in the

version of the NFGDT derived in [1].

A.3 Scale factors of code indicator functions

In Section III-B, we consider interpreting a normal

realization as an NFG. Edges and half-edges represent

the same internal and external variables, but a constraint

code Cv is now interpreted as its indicator function δCv
.

If the normal realization has external behavior C and

unobservable behavior B
u, then we conclude that the

partition function of the resulting NFG is as follows:

Theorem 6 (Normal realization as an NFG). If all alpha-

bets are finite abelian groups, then a normal realization

with external behavior C and unobservable behavior Bu

may be interpreted as a normal factor graph whose

partition function is Z(a) = |Bu|δC(a).

By the NFG duality theorem, the dual NFG to the

NFG of Theorem 6 has partition function

|AE |Ẑ(â) = |AE ||B
u||C|δC⊥(â).

The vertex functions of this dual NFG are the Fourier

transforms of the primal vertex functions fv = δCv
, and

therefore are of the form f̂v = |Cv|δC⊥
v

. The NFG of the

dual NR of the NR of Theorem 6 is the same as this dual

NFG, except that its function nodes are of the form δC⊥
v

;

therefore its partition function is |AE ||CV |−1Ẑ(â) =
|AE ||Bu||C||CV |−1δC⊥(â) = |AE ||B||CV |−1δC⊥(â),
where |CV | =

∏

V |Cv|. In summary:

Theorem 7 (Dual normal realization as an NFG). The

dual of a finite abelian group normal realization with be-

havior B and external behavior C may be interpreted as

an NFG with partition function |B||AE ||CV |−1δC⊥(â),
where |AE | =

∏

E |Ae| and CV =
∏

V |Cv|.

Now if we denote the external behavior of the dual

normal realization as Ĉ and its unobservable behavior as
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B̂
u, then, from Theorem 6, its partition function as an

NFG is |B̂u|δĈ(â). We thus conclude that:

(a) The external behavior Ĉ of the dual normal real-

ization is C⊥. Thus, when all alphabets are finite

abelian groups, we obtain the normal realization

duality theorem as a corollary.

(b) The size |B̂u| of the unobservable behavior of the

dual normal realization is |B||AE ||CV |−1.

There is an interesting connection between result (b)

and the notions of observability and controllability of

normal realizations defined in [8]. A finite abelian group

normal realization with unobservable behavior B
u is

observable if and only if |Bu| = 1, and dimB
u

measures its “degree of unobservability.” A finite abelian

group normal realization whose dual has unobservable

behavior B̂
u is controllable if and only if |B̂u| = 1,

and dim B̂
u measures its “degree of uncontrollability.”

Thus as a further corollary we have the controllability

test of [8]:

Corollary (Controllability test [8]). Given a finite

abelian group normal realization with behavior B, to-

tal constraint size |CV | =
∏

V |Cv|, and total state

space size |AE | =
∏

E |Ae|, the unobservable behavior

B̂
u of the dual normal realization has size |B̂u| =
|B||AE ||CV |−1 ≥ 1. Thus the realization is controllable

if and only if |B| = |CV |/|AE |.

This controllability test may be understood as follows.

If all edges are removed from the realization, then its

behavior is simply CV =
∏

V Cv, the Cartesian product

of the behaviors Cv of each of its disconnected nodes.

If we reinsert the edge constraints, each of which is a

degree-2 equality constraint between two variables with

a common alphabet Ae, then each such constraint will

reduce the size of the behavior by a factor of |Ae|,
provided that it is independent of all previous constraints.

Thus |B| ≥ |CV |/|AE |, with equality if and only if all

constraints are independent.

A.4 Scale factors for edge-weighted NFGs

An edge-weighted NFG consists of an NFG based

on a normal realization of a linear or group code C as

above, in which all internal functions fv are indicator

functions δCv
of linear or group codes Cv, plus edge-

weighting functions fh attached to each external half-

edge h ∈ H of the normal realization. The resulting

NFG has no external variables, and its partition function

is the constant Z = |Bu|
∑

a∈C f(a), where B
u is

the unobservable behavior of the normal realization as

above, and f(a) =
∏

H fh(ah).

As noted above, if C is a linear or group code, then

the Fourier transform of δC(s) is the scaled indicator

function |C|δC⊥(ŝ). Thus if we construct the “dual” edge-

weighted NFG by replacing every node function δCv
(s)

simply by δC⊥
v
(ŝ) rather than by |Cv|δC⊥

v
(ŝ), then the

partition function will be reduced by a scale factor of

|CV |−1 =
∏

V |Cv|
−1.

Thus we obtain the following corollary of the NFG

duality theorem:

Theorem 8 (Edge-weighted NFG duality). Given an

edge-weighted NFG based on a graph G = (V,E,H)
with internal functions {δCv

| v ∈ V }, internal variable

alphabets {Ae | e ∈ E}, external variable alpha-

bets {Ah | h ∈ H}, and edge-weighting functions

{fh | h ∈ H} that realizes a partition function

Z = |Bu|
∑

a∈C f(a), then the “dual edge-weighted

NFG” with internal functions {δC⊥
v
| v ∈ V }, internal

variable alphabets {Âe | e ∈ E}, external variable

alphabets {Âh | h ∈ H}, external weighting functions

{f̂h | h ∈ H}, and sign inverters inserted in each edge

realizes the partition function

|AE |

|CV |
Z = |B̂u|

∑

â∈C⊥

f̂(â),

where |AE | =
∏

E |Ae|, |CV | =
∏

v |Cv|, and |B̂u| =
|B||AE ||CV |−1.

For example, let us consider an Ising-type model

based on a graph G = (V,E), with variable alphabet

A and edge-weighting functions {fe(ye), e ∈ E}, such

as the edge-weighted NFG shown in Figure 19(a). The

resulting edge-weighted NFG G = (VG, EG) actually

has |VG| = |V | + 2|E| vertices, consisting of |V |
equality functions, |E| zero-sum functions, and |E| edge-

weighting functions; |EG| = 3|E| edges, each represent-

ing an internal variable with alphabet A; and no half-

edges, so its partition function is a constant Z .

If we wish to compute the partition function of the

dual edge-weighted NFG as shown in Figure 20(a) from

the partition function Z of the primal edge-weighted

NFG, then we need to adjust Z as follows. Since the

NFG has |EG| = 3|E| edges, we must multiply by the

scale factor |AE | = |A|3|E|. Since the primal NFG has

|V | equality functions and |E| zero-sum weight functions

of degree 3 with total dimension 2|E|, we need to divide

by |CV | = |A||V |+2|E|. Therefore the partition function

of the dual EWNFG is |A||E|−|V |Z .13

13Again, this result was derived previously by Molkaraie [17], and
Footnote 8 gives an alternative derivation.



28

REFERENCES

[1] A. Al-Bashabsheh and Y. Mao, “Normal factor graphs and
holographic transformations,” IEEE Trans. Inf. Theory, vol. 57,
pp. 752–763, Feb. 2011.

[2] A. Al-Bashabsheh and P. O. Vontobel, “A factor-graph approach
to algebraic topology, with applications to Kramers–Wannier
duality,” IEEE Trans. Inf. Theory, vol. 64, pp. 7488–7510, Dec.
2018.

[3] P. G. Bamberg and S. Sternberg, A Course in Mathematics for

Students of Physics, vol. 2. Cambridge, UK: Cambridge U. Press,
1990.

[4] B. Bollobás, Modern Graph Theory. New York: Springer, 1998.
[5] G. D. Forney, Jr., “Codes on graphs: Normal realizations,” IEEE

Trans. Inf. Theory, vol. 47, pp. 520–548, Feb. 2001.
[6] G. D. Forney, Jr., “Codes on graphs: Duality and MacWilliams

identities,” IEEE Trans. Inform. Theory, vol. 57, pp. 1382–1397,
Mar. 2011.

[7] G. D. Forney, Jr., “Codes on graphs: Fundamentals,” IEEE Trans.

Inf. Theory, vol. 60, pp. 5809–5826, Oct. 2014.
[8] G. D. Forney, Jr. and H. Gluesing-Luerssen, “Codes on graphs:

Observability, controllability and local reducibility,” IEEE Trans.
Inf. Theory, vol. 59, pp. 223–238, Jan. 2013.

[9] G. D. Forney, Jr. and P. O. Vontobel, “Partition functions of
normal factor graphs,” Proc. 2011 Inf. Theory Appls. Workshop
(La Jolla, CA), Feb. 2011.

[10] P. Giblin, Graphs, Surfaces and Homology. Cambridge, UK:
Cambridge U. Press, 2010.

[11] S. Hakimi and J. Bredeson, “Graph-theoretic error-correcting
codes,” IEEE Trans. Inform. Theory, vol. 14, pp. 584–591, July
1968.

[12] M. Jerrum and A. Sinclair, “Polynomial-time approximation
algorithm for the Ising model,” SIAM J. Computing, vol. 11, pp.
1087–1116, Oct. 1993.

[13] F. R. Kschischang, B. J. Frey and H.-A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol.
47, pp. 498–519, Feb. 2001.

[14] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Sig.

Proc. Mag., vol. 21, pp. 28–41, Jan. 2004.
[15] M. Molkaraie, “An importance sampling scheme for models in a

strong external field,” Proc. IEEE Intl. Symp. Inf. Theory, Hong
Kong, pp. 1179–1183, June 2015.

[16] M. Molkaraie, “An importance sampling scheme for the Ising
model with strong couplings,” Proc. 2016 Int. Zurich Seminar

Comm., Zurich, pp. 180–184, Mar. 2016.
[17] M. Molkaraie, “The primal versus the dual Ising model,”

Proc. 2017 Allerton Conf., Monticello, IL, Oct. 2017; arXiv:
1607.00866v2, Jan. 2017.
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