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Line codes generated by finite Coxeter groups
Ezio Biglieri, Life Fellow, IEEE, Emanuele Viterbo, Fellow, IEEE

Abstract

Using an algebraic approach based on the theory of Coxeter groups, we design, and describe the performance of,
a class of line codes for parallel transmission of b bits over b+1 wires that admit especially simple encoding and
decoding algorithms. A number of designs are exhibited, some of them being novel or improving on previously
obtained codes.

Index Terms

Line coding, group codes for the Gaussian channels, permutation modulation, Coxeter groups.

I. INTRODUCTION AND MOTIVATION OF THE WORK

In this paper we describe the design of vector line codes allowing an especially simple maximum-
likelihood (ML) detection procedure. This consists of a linear transformation of the vector received at the
output of an additive white Gaussian noise (AWGN) channel, followed by a binary slicer. The design is
based on the selection of a subset of a permutation modulation (PM) codebook being the direct product
of binary antipodal signaling schemes, and hence having a geometrical representation in the form of
a multidimensional orthotope (or hyper-rectangle). The encoder can also be implemented as a linear
transformation of the source (binary) vector.

Transmission on parallel wireline links (as those used to interconnect integrated circuits, or a television
set to a set-top box) is affected by disturbances placing a number of constraints on the design of the
signaling scheme. The key problem here is the design of line codes allowing the transmission of b bits
over w > b wires and using a codebook W subject to some constraints to be detailed later. The general
scheme is shown in Fig. 1. Here, b binary information symbols ±1 are input in parallel to the (w, b) line

line  
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receiver 
noisy  

channel 

Fig. 1: General scheme of vector coding.

encoder, which is a one-to-one map from {±1}b to the codebook W ⊆ Rw. This encoder outputs a code
vector w with w real components, which is added to white Gaussian noise to obtain vector y. Vector y
is processed by a detector whose output is an estimate b̂ of the information vector.

Fig. 2 illustrates the two basic circuits for wired binary communications: (a) unipolar signaling and (b)
differential signaling. The transmitter sends a current signal i through one wire in (a) and two wires in

The work of E. B. was supported by Project TEC2015-66228-P, while that of E. V. was supported by ARC under Grant Discovery Project
No. DP160101077.

Preliminary versions of this manuscript were presented in [3], [4].
Ezio Biglieri is with the Electrical Engineering Department, UCLA, and with Departament TIC, Universitat Pompeu Fabra, Barcelona,

Spain (email: e.biglieri@ieee.org). Emanuele Viterbo is with the Department of Electrical and Computer Systems Engineering,
Monash University, Melbourne, Australia (email: emanuele.viterbo@monash.edu).

ar
X

iv
:1

70
7.

08
93

2v
1 

 [
cs

.I
T

] 
 2

7 
Ju

l 2
01

7



2

i ∈ {0, I}
R v ∈ {0, RI}

(a) Binary unipolar signaling (NRZ): (1, 1) line code.

i ∈ {+I,−I}
R v ∈ {+RI,−RI}

(b) Binary differential signaling (DS): (2, 1) line code.

Fig. 2: Binary unipolar (NRZ) and binary differential signaling (DS) circuits.

(b), and the receiver measures a voltage v across the resistor R. In (a) a threshold voltage Vt = RI/2 is
used by a comparator to detect the binary information, while in (b) a zero-threshold voltage Vt = 0 is
used. Since the power dissipated on the resistor R is Ri2, on the average (a) uses half of the power of
(b), but reduces by a factor of two the distance to the threshold. Since the thermal noise produced by the
resistor is the same for both (a) and (b), this implies a power gain of 1.5dB of (b) over (a) to achieve the
same performance.

Other types of impairments may heavily affect the reliability of unipolar signaling: (i) Coupling of
EM interference with the transmission wire (common-mode disturbances), since the return current goes
through the ground plane, and (ii) Power supply fluctuations due to simultaneous switching noise (SSN),
which affect the stability of the threshold voltage. On the other hand, differential signaling provides
common-mode rejection of (i), and the zero threshold is insensitive to (ii) because the total current drawn
from the power supply is kept constant (for further details see, for example, [1], [7], [9]). The advantages
of DS come at the price of a reduction of the wire efficiency from 1 bit/wire to 0.5 bit/wire, and an
increase of the complexity needed by the transmitter to drive the currents. Recent work (partially listed
among the References below) has focused on the design of signaling schemes that retain the advantages
of DS while improving wire efficiency.

The circuit for a (3, 2) line code receiver was illustrated in [3]. In general, the receiver is realized by a
star of w resistors with a common center node, where the transmitted zero-sum currents converge to reduce
the overall SSN. The w codeword components represent current signals at the transmitter on w wires,
and the receiver uses zero-voltage comparators across

(
w
2

)
resistor pairs. These comparators determine

the sign of the differences between all pairs of components of the received vector (as illustrated in next
Section) in order to provide the sorting order of these components.

In this paper we take an algebraic/geometric approach to the design and analysis of line coding schemes
transmitting b bits over w = b + 1 wires. We show how a matrix with orthogonal rows can transform
a suitable subset of a PM vector set [25] into a signal constellation whose geometric representation in
the Euclidean space is a b-dimensional orthotope, which leads to a simple ML decoding algorithm based
on one binary slicer per wire. Our design accounts for several types of impairments that may be present
besides additive white Gaussian noise. Specifically, resistance to common-mode noise is obtained by using
code words whose components are balanced (i.e., sum to zero), simultaneous switching output noise is
reduced by using constant-energy signals, and the effects of intersymbol interference are reduced by
having only two amplitude values at the input of each slicer [9], [11]. Codebook design is based on the
theory of Group Codes for the Gaussian Channel [26], as specialized to groups generated by reflections
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in orthogonal hyperplanes.
After examining a simple example for motivation (Section II), a general theory is expounded in

Section III. Design examples are shown in Section IV, while performance evaluation is presented in
Section V. Section VI deals with the optimization of the design, and additional remarks are presented in
Section VII.

II. AN EXAMPLE FOR MOTIVATION AND ILLUSTRATION

An early approach to the code design problem described in previous Section was taken in [20], where
a coding scheme based on a number of wires greater than 2 and having a wire efficiency 2/3 bit/wire was
advocated. This scheme was generalized by Abbasfar in [1], where a multiwire (“vector”) DS scheme was
designed. Under the assumption that the transmitted amplitudes are ±1, the number of +1 (and hence of
−1) in all transmitted vectors is kept constant, which makes this signaling scheme balanced. An example
of this generalized differential vector signaling scheme is provided by the following set of 6 vectors (the
codebook) used for transmission of log2 6 bits over w = 4 wires. Exhibiting the codebook in the form of
a matrix whose rows are the codewords, we have

W =


+1 −1 +1 −1
−1 +1 +1 −1
−1 −1 +1 +1
+1 −1 −1 +1
−1 +1 −1 +1
+1 +1 −1 −1

 (1)

Vectors (1) form a Variant-I PM set [8], [25], [28], obtained as the set of all the permutations of an
initial vector (−1,−1,+1,+1). In general, a (Variant-I) PM codebook in Rn is obtained as the set of
all the distinct permutations of an initial n-vector w1. Assuming that w1 has r distinct components with
multiplicities m1, . . . ,mr, and

∑r
i=1mi = n, these permutations are in number of n!/(m1!m2! · · ·mr!). A

peculiar feature of PM is that optimum (ML) detection over the additive white Gaussian noise (AWGN)
channel is especially simple. In fact, to decode the received n-vector y, the ML receiver need only arrange
its coordinates in decreasing order. This is equivalent to finding the signs of the

(
n
2

)
differences between

the components of y, and comparing these signs with the entries of a lookup table (notice also that the
requirement of balanced vectors in the codebook words leads to the optimality of the PM scheme, in the
sense discussed in [2]—more on this in Section VI).

Now, line codes based on the PM scheme may be improved upon if a codebook W can be found such
that: (i) It includes a number of codewords equal to a power of 2, so that |W| = 2b, (ii) Only b signs of
linear expressions need be computed for ML detection, (iii) These signs are the source symbols, so that
no lookup table is needed by the decoder, and (iv) Encoding can be obtained by a linear operation on
source symbols. Some line codes satisfying conditions (i)–(iv) were designed by Shokrollahi et al. (see
[1], [9]–[11], [24] and references within). In this paper we derive a general theory of these codes, based
on the concepts of Group Codes for the Gaussian Channel and of Coxeter groups.

We start with a relatively simple design example whose illustration will motivate the theory developed
in the balance of this paper. Consider the PM codebook with 6 words1 obtained as all the permutation
of the components of the initial vector w1 = (−1, 0, 1). Denoting by i-j the difference between the ith
and the jth components of a vector, in the absence of noise the word is identified by the signs of the
differences 1-2, 2-3, and 1-3 between pairs of its components. The situation is summarized in Table I,
where those differences are shown for all codebook vectors, as received in the absence of noise.

1In the following, we shall use interchangeably the terms word, vector, or point, to describe one element of W.
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TABLE I: Vectors of a PM codebook and differences between their components.

vector 1-2 2-3 1-3

À (−1, 0, 1) −1 −1 −2
Á (−1, 1, 0) −2 +1 −1
Â (0,−1, 1) +1 −2 −1
Ã (1, 0,−1) +1 +1 +2
Ä (0, 1,−1) −1 +2 +1
Å (1,−1, 0) +2 −1 +1

We can interpret the operations summarized in Table I as a linear mapping L between the original
codebook W and its transformed version W′ , LW, whose words are listed in the right part of Table I.
Since this transformation is one-to-one, W′ can be detected in lieu of the original codebook W. For
this observation to be practically useful, we need to consider PM schemes such that decoding W′ in the
presence of noise is equivalent to decoding W, but simpler. The simplest situation, which is the one on
which we shall focus our attention in the balance of this paper, occurs when the words of codebook W′

(interpreted as points in the 3-dimensional Euclidean space R3) are vertices of a 3-orthotope. If all these
vertices are included (which is obtained when the number of codewords chosen is a power of 2, viz.,
2b), then W′ can be optimally detected by simply taking the sign of each entry of the transformed vector
Ly, i.e., feeding it to a slicer. The slicer outputs are elements of {±1}b. Thus, the ML receiver in this
situation consists of a linear transformation L followed by b slicers. This fact can also be used for encoding
purposes: in fact, even encoding can be done linearly, by applying a suitable linear transformation to any
vector containing, in an appropriate form to be described later, b entries of the form (±1,±1, . . . ,±1).

We now proceed to explain in detail how the concept above can be implemented. The tips of the 6
vectors of Table I are the vertices of a regular hexagon lying on the surface of a 3-dimensional sphere
with radius

√
2, as shown in Fig. 3. Since all points of w ∈W lie on the hyperplane 〈w,1〉 = 0, where 1

Fig. 3: Geometric representation of codebook in Table I.

denotes the vector all of whose components are 1, we may project the points of W on this plane to obtain
a 2-dimensional representation. A general way of performing this projection was described by Peterson
in [23]. The projection of the n-vector w on the plane described by the scalar product 〈w,1〉 = 0 is
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obtained by computing wA, where A is the n× n projection matrix

A =


1 + β β β · · · β γ
β 1 + β β · · · β γ

. . .
β β β · · · 1 + β γ
γ γ γ · · · γ γ

 (2)

where γ , 1/
√
n and β , −1/(n −

√
n). Using this with n = 3, the code vectors are transformed into

vectors whose third component is zero, thus reducing the codebook representation to a 2-dimensional
space, as illustrated in Fig. 4.

Fig. 4: 2-dimensional geometric representation of codebook in Table I.

In the specific case we are now handling, the reduced codebook with 2b = 4 words whose geometric
representation has a rectangular shape is obtained by removing vectors Â and Ä from the 6-vector PM
set of Table I. In matrix form:

W =


−1 0 1
−1 1 0
1 0 −1
1 −1 0


À
Á
Ã
Å

(3)

The ML (congruent) decision regions of this codebook are defined by their boundary planes, as obtained
from the equations

〈y, (wi −wj)〉 = 0 (4)

where wi, wj are neighbors. Eq. (4) expresses the fact that the separating plane is orthogonal to the
line joining wi and wj , or, equivalently, that y has the same distance from wi and wj . The plane
separating neighbors w1 and w2 has equation y2− y3 = 0, while that separating w1 and w6 has equation
2y1 − y2 − y3 = 0, or, equivalently, (y1 − y2) + (y1 − y3) = 0 (Fig. 5).

The ML detection procedure is summarized in Table II.
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Fig. 5: 2-dimensional representation of codebook (3). Dashed lines: Separators of ML decision regions
based on the signs of 2-3 and of (1-2) + (1-3).

TABLE II: Transformation of codebook W into onto the vector set W′ with 4 elements ±3,±1, the four
vertices of a rectangle.

vector (1-2) + (1-3) 2-3

À (−1, 0, 1) −3 −1
Á (−1, 1, 0) −3 1
Ã (1, 0,−1) 3 1
Å (1,−1, 0) 3 −1

This Table describes the transformation L which maps the codebook W onto the vector set W′ with
4 elements ±3,±1, the four vertices of a rectangle. The decision regions of the transformed codebook
are delimited by the coordinate axes in the 2-dimensional plane, and hence the transmitted vector can be
detected by simply slicing the components of Ly, as indicated above. The linear transformation of W is
given by the detection matrix

M =

 1 1 1
2 −1 −1
0 1 −1

 (5)

which has orthogonal rows (notice that M itself is not orthogonal, so that transformation by M alters the
scales of the coordinate axes). Its first row reflects the fact that the sum of the components of each row
of W is zero (balanced codewords), the second row corresponds to the difference (1-2) + (1-3), and the
third row to the difference (2-3). Thus, we have

WMT =


0 −3 −1
0 −3 1
0 3 1
0 3 −1

 (6)

which expresses the transformation of the original vector set W into the new vector set whose two-
dimensional representation is shown in Fig. 6. In turn, this vector set can be detected using simply
the signs of its second and third components. Conversely, the linear coding procedure transforms the
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Fig. 6: 2-dimensional representation of the linearly transformed codebook WMT.

information matrix

B = sgn(WMT) =


0 −1 −1
0 −1 1
0 1 1
0 1 −1

 (7)

into W as
W = BK (8)

where K = 1
2
M. Notice that L transforms the 3-dimensional codebook W into the 2-dimensional

codebook W′. Thus, the inverse transformation mapping the 4 information symbols into W should be a
map between a 2-dimensional and a 3-dimensional space. This explains why each row of B has a “zero”
prepended.

A. Towards a general theory
We now describe how codebook (3) can be generated directly, i.e., without necessarily thinking of it as

a subset of a PM set. The basic requirement here is that W be a group code for the Gaussian channel [26].
This is generated by the action of a group of real orthogonal matrices Oi, i = 1, . . . , 2b, on an initial
vector w1, and results into Voronoi regions that are congruent. The geometric structure we are interested
in is that of an orthotope, which suggests that the Voronoi regions be bounded by orthogonal hyperplanes.
In the example we are examining, the two matrices

O1 =

 1 0 0
0 0 1
0 1 0

 O2 =
1

3

 −1 2 2
2 2 −1
2 −1 2

 (9)

satisfy the condition O2
1 = O2

2 = I, and represent reflections in the orthogonal planes with normal vectors
w1 −w2 = (0,−1, 1) and w1 −w6 = (−2, 1, 1), respectively. They commute, and (O1O2)

2 = 1. Thus,
O1 and O2 generate the matrix group of order 4 with elements I,O1,O1O2,O2. The product of these
matrices by the initial vector (−1, 0, 1) yields the codebook (3).
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III. BASIC THEORY

Being guided by the considerations developed in Section II, we now expound the general theory leading
to line codes in the shape of orthotopes. The appropriate mathematical tool is the theory of finite Coxeter
groups. These [5]–[7], [12], [13] are defined by generators and relations. A finite Coxeter group G has
a presentation with generator set R = {Ri} and relations (RiRj)

m(i,j) = I , where Ri, Rj are group
elements, I denotes the identity element of G, and m(i, j) are integers. In particular, m(i, i) = 1, and
m(i, j) = 2 if and only if Ri and Rj commute. A Coxeter group has a convenient description in terms of a
graph having as nodes the elements of R and as edges the unordered pairs {Ri, Rj} such that m(i, j) ≥ 3.
The edges with m(i, j) ≥ 4 are labeled by that number. The group is irreducible if its Coxeter graph is
connected. For example, the graph with n isolated nodes

• • • · · · • • (10)

is the Coxeter graph of a group isomorphic to Zn
2 of order 2n. The graph

• • • · · · • • (11)

with nodes labeled R1, R2, . . . , Rn−1, is the Coxeter graph of the symmetric group Sn whose generators
are the adjacent transpositions Ri = (i, i+ 1), 1 ≤ i ≤ n.

A reflection on the Euclidean space Rn is a linear transformation of Rn of codimension 1, called
its mirror and having a nontrivial eigenvector with eigenvalue −1, called a root of the reflection. A
reflection can be represented by the matrix I− 2δδT, where δ is the corresponding unit-norm root vector
normal to the mirror plane. Coxeter groups are generated by reflections, so that each node in the Coxeter
graph corresponds to a reflection. In particular, when m(i, j) = 2 the corresponding reflections are in
orthogonal planes. Thus, we are especially interested in groups of the form (10) whose elements are
faithfully represented by (b + 1) × (b + 1) matrices corresponding to reflections in hyperplanes that are
mutually orthogonal, as well as orthogonal to the hyperplane whose normal vector is the all-one vector
1. Once such a group with order 2b is found, the line code W is obtained by applying the matrix group
to an initial (b+1)-vector w1. As a result, we obtain a line code whose 2b Voronoi regions are congruent
and bounded by orthogonal hyperplanes. In geometric terms, the line code turns out to be equivalent to
a Cartesian product of binary antipodal signals, with an added dimension allowing the codewords to be
balanced.

To generate from a PM set the Coxeter group we need, we advocate the following procedure. Start
from a balanced initial (b + 1)-vector w1, and choose b root permutations2 wi, i = 2, . . . , b + 1, of w1

such that the b unit-norm (column) vectors

δi ,
w1 −w(i+1)

‖w1 −w(i+1)‖
, i = 1, . . . , b (12)

are mutually orthogonal. (Section VI describes an algorithm to select these root permutations.) Next, the
corresponding reflection matrices

Oi , I− 2δiδ
T
i (13)

are computed. Direct calculation shows that O2
i = (OiOj)

2 = I, so that these matrices generate a Coxeter
matrix group isomorphic to a power of Z2. The group code W is obtained by applying this matrix group
to w1 [26]. From now on, we shall describe the group code by listing its vectors as rows of the 2b×(b+1)
matrix W.

Since the Voronoi region associated with a point wi ∈ W is the set of points lying closer to wi than
to any other wj , j 6= i, from the equality ‖y −wi‖ = ‖y −wj‖ we see that 〈y, (wi −wj)〉 = 0 defines
the hyperplane halfway between wi and wj and orthogonal to the vector (wi −wj) (see Fig. 7).

2With an abuse of terminology, we identify a permutation with the vector obtained by permuting the components of w1.
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Fig. 7: 3-dimensional Voronoi region for a orthotope-shaped codebook.

The scalar product is positive if y is closer to wi than to wj , and vice versa. Thus, defining a matrix
M whose first row is vector 1 (reflecting the fact that the whole set of points of W lies in hyperplane
〈y,1〉 = 0) and the remaining rows are proportional to vectors δi, the rows of the matrix WMT all have
the form (0,±d1, . . . ,±db), with all di > 0, so that sgnWMT = (0,±1, . . . ,±1). We write

WMT = BD (14)

where D is the diagonal matrix
D = diag(0, d1, . . . , db) (15)

and the information matrix B has rows of the form (0,±1, . . . ,±1). From (14), we derive the encoding
equation W = BK, where the encoding matrix K has the form

K , DM−T (16)

(Notice that, since all the entries of the first column of B are zero, the first row of K can be replaced by
any vector.)

IV. DESIGN EXAMPLES

We shall now exhibit a few design examples, while optimization considerations are postponed to next
section. One may notice that we have chosen our operations so that coding and decoding involve only
integer numbers. This is not the only choice: for example, one may require all quantities involved in the
calculations not to exceed 1 in absolute value.

A. Example 1 (b = 2)
Consider the initial vector w1 = (−1, 0, 1) and the root permutations w2 = (−1, 1, 0) and w3 =

(1,−1, 0). From (12) we obtain δ1 = (0,−1/
√
2, 1/
√
2) and δ2 = (−2/

√
6, 1/
√
6, 1/
√
6), the generator

matrices (9), and hence codebook (3). With

M =

 1 1 1
0 −1 1
2 −1 −1

 (17)

we obtain

WMT =


0 1 −3
0 −1 −3
0 −1 3
0 1 3

 (18)
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which yields sgnWMT = B, where

B =


0 1 −1
0 −1 −1
0 −1 1
0 1 1

 (19)

With D = diag(0, 1, 3) we also obtain the encoding equation

BK = BDM−T = W (20)

as it should be.

B. Example 2 (b = 3)
With b = 3 and initial vector w1 = (−3,−1, 1, 3), choose the root permutations w2 = (−3, 3, 1,−1),

w3 = (−1,−3, 3, 1), and w4 = (1,−1,−3, 3). From these we obtain δ1 = (0,−1/
√
2, 0, 1/

√
2), δ2 =

(−1/2, 1/2,−1/2, 1/2), and δ3 = (−1/
√
2, 0, 1/

√
2, 0), and hence the following generators of the matrix

Coxeter group isomorphic to Z3
2:

O1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



O2 =
1

2


1 1 −1 1
1 1 1 −1
−1 1 1 1
1 −1 1 1



O3 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



(21)

The codebook is

W = w1



I
O1

O2

O3

O1O2

O1O3

O2O3

O1O2O3


=



−3 −1 1 3
−3 3 1 −1
−1 −3 3 1
1 −1 −3 3
−1 1 3 −3
1 3 −3 −1
3 −3 −1 1
3 1 −1 −3


(22)

The Peterson transformation matrix (2)

A =
1

2


1 −1 −1 1
−1 1 −1 1
−1 −1 1 1
1 1 1 1

 (23)
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yields the 3-dimensional version of the codebook

AW =



0 2 4 0
−4 2 0 0
0 −2 4 0
4 2 0 0
−4 −2 0 0
0 2 −4 0
4 −2 0 0
0 −2 −4 0


(24)

With

M =


1 1 1 1
0 −1 0 1
−1 1 −1 1
−1 0 1 0

 (25)

we have that the rows of WMT are proportional to (0,±4,±4,±4). Hence, choosing

B = sgnWMT (26)

and taking D = diag(0, 4, 4, 4), we obtain

K = DM−T =


0 0 0 0
0 −2 0 2
−1 1 −1 1
−2 0 2 0

 (27)

and BK = W, as it should be.

C. Example 3 (b = 3)
Consider again b = 3, and the initial vector w1 = (−3, 1, 1, 1). Since the permutations of this vector

would yield a codebook with only four points, we assume that the central inversion matrix −I is also an
element of the Coxeter group generating the codebook. This is equivalent to assuming that −w1 is also
a codeword. Choosing the root permutations (−1, 3,−1,−1), (−1,−1, 3,−1), and (−1,−1,−1, 3), we
obtain the following codebook (called ENRZ in [9]):

W =



−3 1 1 1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3
1 1 1 −3
1 1 −3 1
1 −3 1 1
3 −1 −1 −1


(28)

which can be seen as the union of two PM codebooks, one generated by the four permutations of
(−3, 1, 1, 1) and the other generated by the 4 permutations of (3,−1,−1,−1).3

Using (23), the projection WA yields a matrix whose rows are the 8 vectors of the form (±2,±2,±2, 0),
corresponding to a 3-dimensional cube as shown in Fig. 8.

3In a different way, it can be seen as a subset of a Variant-II PM [26], which includes not only the permutations of an initial vector, but
also the sign changes of its components. This subset should include only the balanced vectors within the Variant-II PM set.
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Fig. 8: 3-dimensional representation of the 8 points of codebook of Example 3.

M can be given the form of a 4× 4 Hadamard matrix:

M =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (29)

which yields a matrix WMT whose rows have the form (0,±4,±4,±4), and the encoding matrix may
be chosen as K = M.

D. Example 4 (b = 3)
Choose the initial vector w1 = (−1, 0, 0, 1) and the root permutations (0,−1, 0, 1), (−1, 1,−1, 1), and

(−1, 0, 1, 0). The decoding matrix

M =


1 1 1 1
0 −1 0 1
−1 1 −1 1
−1 0 1 0

 (30)

yields rows of the matrix WMT with the form (0,±1,±2,±1). The encoding matrix is K = 1
2
M.

E. Example 5 (b = 4)
Take b = 4, and the initial vector w1 = (−2,−1, 0, 1, 2). The root permutations (−2, 1, 0,−1, 2),

(−1,−2, 1, 0, 2), (−1, 0, 1, 2,−2), and (0,−1,−1, 1, 2) lead to the decoding matrix

M =


1 1 1 1 1
0 −1 0 1 0
−1 1 −1 1 0
−1 −1 −1 −1 4
−1 0 1 0 0

 (31)
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which yields rows of the matrix WMT with the form (0,±2,±2,±10,±2).

F. Example 6 (b = 5)
With b = 5, choose the initial vector w1 = (1,−1,−3,−1, 1, 3) and the root permutations w2 =

(1, 1,−3,−1,−1, 3), w3 = (1, 1,−3,−1, 3,−1), w4 = (−1,−1, 1,−3, 1, 3), w5 = (−1,−1,−3, 1, 1, 3),
and w6 = (3,−3,−1, 1,−1, 1). The 32-word codebook can be decoded using the matrix

M =


1 1 1 1 1 1
1 −1 0 0 0 0
0 0 0 1 −1 0
−1 −1 −1 1 1 1
1 1 −2 0 0 0
0 0 0 1 1 −2

 (32)

The product WMT yields a matrix all of whose rows have the form (0,±2,±6,±6,±2,±6). Encoding
is done with K = M.

V. CONSIDERATION OF ERROR PROBABILITIES

After addition of white Gaussian noise samples ∼ N(0, N0/2) independent across wires and transmitted
b-tuples, the codebook matrix W+N is received. The detection process is summarized as the calculation
of the signs of (W + N)MT. The jth symbol of the ith source b-tuple is erroneously detected if its
polarity is altered by noise, which occurs with probability

(pe)i,j = P
(
nj < −

∣∣∣(WMT
)
i,j

∣∣∣) (33)

where nj ∼ N(0, σ2
j ), and σ2

j , (N0/2)ξ
2
j is the jth element of the diagonal covariance matrix of the

noise term:
E
[
(NMT)T(NMT)

]
= M

[
E(NTN)

]
MT

=
N0

2
diag(ξ21 , . . . , ξ

2
b+1)

(34)

Thus,

(pe)i,j = Q


∣∣∣(WMT

)
i,j

∣∣∣√
N0/2 ξj

 (35)

We define the signal-to-noise ratio η observing that the average energy associated with the transmission
of a signal b-tuple is given by

E =
‖W‖2

2b
(36)

where ‖W‖ denotes the Frobenius norm of matrix W. The energy per bit is consequently Eb = E/b, and
the signal-to-noise ratio is

η ,
Eb

N0

=
‖W‖2/2b

bN0

(37)

Thus, we can rewrite (35) in the form

(pe)i,j = Q
(
αi,j

√
2η
)
, i = 1, . . . , 2b, j = 2, . . . , b+ 1 (38)
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where4

αi,j ,

(∣∣WMT
∣∣ (MMT)−1/2

)
i,j√

‖W‖2/(b2b)
(39)

Since group codes have the uniform error probability, i.e., the error probability is the same for every
transmitted codeword, the values of αi,j do not depend on the value of i. An alternative expression is

α1,j =
√
b
‖w1 −wj‖
2 · ‖w1‖

, j = 2, . . . , b+ 1, (40)

where the denominator is the diameter of the sphere enclosing the codebook vectors.
Using (40), we obtain

b+1∑
j=2

α2
1,j = b (41)

In fact, due to the symmetry of the codebook, if w1 ∈W then also −w1 ∈W. The distance between w1

and −w1 is equal to the diameter of the hypersphere on whose surface the codebook points lie, and the
vector joining these two points is the longest diagonal of the corresponding orthotope. The squared length
of this diagonal equals the sum of the squared lengths of the edges radiating from w1, which proves (41).

Since the Voronoi regions are congruent and bounded by orthogonal hyperplanes, the ML decisions on
the individual bits are affected by independent noise samples, and hence the following exact expression
for the average error probability holds:

pe = 1−
b+1∏
j=2

[
1−Q

(
α1,j

√
2η
)]

(42)

We may also observe that (42) is minimized, under the constraint (41), by choosing all the α1,j equal,
which corresponds to having the codebook orthotope equal to a hypercube.

From (42) we may derive the union upper bound

pe ≤
b+1∑
j=2

Q
(
α1,j

√
2η
)

(43)

and the asymptotic approximation, valid for large signal-to-noise ratios,

pe . ν Q
(
αmin

√
2η
)

(44)

where αmin = minj α1,j , and ν is the number of α1,j taking value αmin.
Table III summarizes the values of the αi,j for some line codes.

VI. OPTIMIZATION OF THE CODEBOOK

A natural and common optimization criterion, based on the performance at large values of signal-to-
noise ratios, is the maximization of the minimum Euclidean distance of the codebook, i.e., of

dmin = min
O
‖w1 −Ow1‖ (45)

where O runs through the matrices representing the Coxeter group chosen for the codebook design. The
choice between two line codes with the same dmin may be based on the second smallest Euclidean distance,
etc. Since the design criterion described in Section III generates a codebook which is a subset of a PM
set, the minimum distance of the latter turns out to be a lower bound on (45).

4Observe that the rows of the matrix
∣∣WMT

∣∣ quantifies the amplitudes of the eye opening before rectification. Notice that having
equal columns of matrix

∣∣WMT
∣∣ is not sufficient to have equally protected symbols, as their noise protection also depends on the values

ξ22 , . . . , ξ
2
(b+1).
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TABLE III: Performance of some (b+ 1, b) Coxeter-group line codes.

b w1 root permutations α1,j , j = 2, . . . , b+ 1

1 (1,−1) (−1, 1) 1.

2 (−1, 0, 1) (−1, 1, 0) 0.71, 1.22
(1,−1, 0)

3 (−3,−1, 1, 3) (−3, 3, 1,−1) 0.77, 1.1, 1.1
(−1,−3, 3, 1)
(1,−1,−3, 3)

3 (−1, 0, 0, 1) (−1, 0, 1, 0) 0.87, 0.87, 1.22
(0,−1, 0, 1)
(0, 1,−1, 0)

3 (−3, 1, 1, 1) (−1, 3,−1,−1) 1, 1, 1
(−1,−1, 3,−1)
(−1,−1,−1, 3)

4 (−2,−1, 0, 1, 2) (−2, 1, 0,−1, 2) 0.63, 0.89, 0.89, 1.41
(−1,−2, 1, 0, 2)
(−1, 0, 1, 2,−2)
(0,−1,−2, 1, 2)

5 (1,−1, 3,−3, 5,−5) (−1, 1, 5,−5, 3,−3) 0.66, 0.76, 0.76, 1.31, 1.31
(3,−3, 1,−5, 5,−1)
(3,−3, 5,−1, 1,−5)
(3, 5,−3,−1, 1,−5)
(−5,−3, 1, 3, 5,−1)

5 (−2,−1, 0, 0, 1, 2) (−2,−1, 2, 0, 1, 0) 0.71, 1.0, 1.0, 1.0, 1.22
(−2, 0,−1, 0, 2, 1)
(−2, 1, 0, 0,−1, 2)
(0,−2,−1, 2, 0, 1)
(0,−1, 0,−2, 1, 2)

5 (1,−1,−3,−1, 1, 3) (1, 1,−3,−1,−1, 3) 0.67, 0.67, 1.17, 1.17, 1.17
(1, 1,−3,−1, 3,−1)
(−1,−1, 1,−3, 1, 3)
(−1,−1,−3, 1, 1, 3)
(3,−3,−1, 1,−1, 1)

A. Choosing the initial vector
The first constraint on the choice of w1 comes from the observation that, due to the linearity of the

encoder, if w ∈ W then also −w ∈ W. A sufficient condition for this to occur is to force −w to be
a permutation of w, which is obtained from an initial vector such that its nonzero components occur in
pairs including positive and negative values. All the examples in Table III satisfy this condition, with the
only exception of the entry described in Example IV-C.

Further, it seems reasonable to start from an original PM set having the largest possible minimum
distance.5 Using the notations of [25], the initial vector for the generation of a PM set has components
µ1, . . . , µk, each being different and repeated m1, . . . ,mk times, respectively. It was proved in [2] that
for optimality the µi must be equally spaced (i.e., µi+1 − µi is a constant). Moreover, if m1, . . . ,mk are
given, then the optimum combination of µs and ms consists of pairing the smallest m with the smallest
µ, the second smallest m with the largest µ, the third smallest m with the second smallest µ, and so forth.
Thus, the optimization of a PM set is complete once the ms are chosen in an optimum way. In [14],
[15], Ingemarsson has advocated a choice of the ms which makes the amplitudes of the initial vector
have a sampled Gaussian distribution (an idea that was used in [25]). However, the solution of [14], [15]

5One should keep in mind that it may occur that the minimum distance of the line code be larger than that of the original PM set.
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may not be optimum, as the search was restricted to initial vectors satisfying a certain symmetry [18],
[19]. A numerical optimization algorithm was derived by Karlof [16], [17], while tables of optimum PM
sets in low dimensions are exhibited in [8]. For small values of b, a sensible choice consists of checking
all the partitions (m1,m2, . . . ,mr) of the number of components of w1, as mentioned in Section II, and
choosing the partition yielding the best code.

In our design, for dmin optimization, we examine all the partitions of (b + 1) in the form b + 1 =
m1 + . . . + mk, and derive for each of them a codebook under the assumption of equally spaced µi.
This is shown in Examples IV-B to IV-D, where the partitions 4 = 1 + 1 + 1 + 1, 4 = 1 + 2 + 1, and
4 = 3+ 1 were considered. Notice also that some of the partitions may not lead to a codebook satisfying
our constraints: for example, the partition 4 = 2+2 generates a PM set with 4!/(2!2!) = 6 vectors, which
cannot be used to generate a codebook with 2b = 8 vectors as needed.

B. Choosing the root permutations
Once w1 has been chosen, the Coxeter matrix group has to be generated, which is obtained, as described

in Section III, by taking b additional permutations wi, i = 2, . . . , b+ 1, (the root permutations) such that
the b difference vectors (w1 −wi) are mutually orthogonal. These vectors correspond to the b edges of
a b-dimensional orthotope having w1 as a vertex. We observe first that in some cases such permutations
may not exist. For example, the initial vector w1 = (−1, 0, 0, 0, 1) originates a PM set with 20 vectors,
from which 4 orthogonal difference vectors cannot be found. In other cases, more than one choice of root
permutations is available, as shown graphically in Fig. 9 for the simple case b = 2. From this figure it is
seen that the two choices are equivalent, as they give rise to congruent orthotopes, but this may not be
the case for b > 2.

  

  

Fig. 9: Two possible choices of root permutations leading to equivalent codebooks with b = 2.

In other cases the different choices of root permutations yield codebooks with different performance,
as revealed by the Euclidean distances from w1 to the other root permutations. A simple algorithm listing
all the choices of root permutations and their quality consists of the following. First, form the matrix ∆
whose rows are the differences between w1 and all its permutations. The Gram matrix ∆∆T has zero in all
entries corresponding to a pair of orthogonal differences. From this matrix we can generate the incidence
matrix of a graph whose vertices are those differences, and the edges join vertex pairs corresponding
to orthogonal differences. A clique of this graph is a subset of the vertices corresponding to mutually
orthogonal differences. The maximum number of vertices in such a clique is b, and the clique is called
maximal. Thus, the problem of choosing a set of root permutations is tantamount to that of choosing a



17

maximal clique with the largest minimum norm of the orthogonal differences in it (as mentioned before,
if two cliques have the same minimum norm, we choose the one whose second smallest distance is the
largest, etc.).

For example, the initial vector w1 = (1,−1,−3,−1, 1, 3) of Example IV-F has 180 permutations and
24 maximal cliques. The best clique under our criterion yields the values of α1,j listed in the last entry of
Table III. A related line code, using the same w1 and exhibited in [24, Table 2], yields a slightly inferior
performance (the values of α1,j are 0.67, 0.67, 0.67, 0.95, and 1.65).

C. Removing the PM and integer-number constraint
The designs done in the previous sections were based on the constraint of a codebook being a subset of

a PM set, as this choice reduces the cardinality of the set of the signal amplitudes in each wire. This is a
convenient choice, because a limited number of amplitudes implies a limited number of current or voltage
sources needed to implement the encoder. In addition, one can deal only with integer amplitudes, thus
increasing the accuracy of the implementation as rounding becomes unnecessary. The downside of this
choice is that the vertices of the codebook orthotope are constrained to a subset of those of the polytope
of the original PM set (a semiregular polytope, see [25]). If this constraint is removed, after a Coxeter
matrix group is generated, one may choose the optimum initial vector as indicated in [19], that is, being
at the same distance from every plane bounding the fundamental region of the Coxeter group in which
w1 lies. 6 In general, we have

Fig. 10: Comparison of the line codes with b = 2 obtained from the same matrix Coxeter group, as applied
to w1 (see the entry with b = 2 in Table III) and to w1,opt.

w1,opt =
∑ w1 −wi

‖w1 −wi‖
(46)

where the sum runs through the set of root permutations. The resulting codebook has the shape of a
hypercube, which yields α1,j = 1 for j = 2, . . . , b + 1. Fig. 10 shows a geometric representation of the
codebook obtained with the choice of the optimum initial vector.

For suboptimum design, one may use an integer-value approximation of the optimum initial vector,
which could lead to a codebook shape close to a hypercube, possibly at the price of a larger number of
values of the codeword components. For illustration, consider b = 3 and the first set of root permutations

6We recall that the fundamental region of a matrix group is a connected region of the space such that no point in its interior can be
obtained as Ow1, where O is any matrix of the group. For a precise definition see, e.g., [19].
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of Table III. The matrix representation of the Coxeter group in this case yields the optimum initial vector
w1,opt = (−1/2 −

√
2/2, 1/2 −

√
2/2,−1/2 +

√
2/2, 1/2 +

√
2/2), and a codebook W whose rows are

permutations of w1,opt. Using the suboptimum initial vector (−6,−1, 1, 6) ≈ 5 × w1,opt, one obtains
α1,j ≈ 1.

VII. MISCELLANEOUS REMARKS

À In [19], [22], group codes generated by Coxeter groups were studied. The constraint of having Voronoi
regions bounded by orthogonal hyperplanes, and hence allowing an exceedingly simple simple ML
detection, was not considered. The designs in [19] were optimized by choosing an initial vector in
the center of a fundamental region of the Coxeter group.

Á A topic related to the codebooks examined in this paper is the study of constant-weight codes. These
satisfy the equal-energy condition, while their words may not be balanced in the sense of this paper.
See, e.g., [21], [27] and the references therein.

Â Introduction of error-control capabilities can be obtained by suitably decreasing the wire efficiency
and using standard linear codes, as advocated in [11].

Ã It should be noticed that the subset of permutations leading to a line code constructed using a Coxeter
group does not necessarily form a subgroup of matrices of the natural representation of the symmetric
group. In fact, although the generating matrices of a representation of the Coxeter group, as applied
to w1, yield permutations of that vector, these may not be all permutation matrices. As an example,
the “square” code of Fig. 10, generated by the optimum w1 approximately equal to (−0.8,−0.3, 1.1),
yields the codebook

W =


−0.8 −0.3 1.1
−0.8 1.1 −0.3
0.8 −1.1 0.3
0.8 0.3 −1.1

 (47)

As another example, with the design of last entry in Table III the optimum initial vector can be found
to be (1,−1,−

√
3,−1, 1,

√
3) yields a codebook whose words have again an increased alphabet size

and are not permutations of the initial vector.

VIII. CONCLUSIONS

Expanding on the work described in [1], [9], [11], [24], we have developed an algebraic method for
generating line codes for parallel transmission that have many of the properties of differential signaling.
These are group codes generated by a matrix representation of a Coxeter group. Performance evaluation
is also discussed, and a number of design examples are exhibited (some of which are new, or improve
upon known codes), along with some consideration of optimum codes.
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