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Improved Finite Blocklength Converses for
Slepian-Wolf Coding via Linear Programming

Sharu Theresa Jose Ankur A. Kulkarni

Abstract—A new finite blocklength converse for the Slepian-
Wolf coding problem is presented which significantly improves
on the best known converse for this problem, due to Miyake and
Kanaya [2]. To obtain this converse, an extension of the linear
programming (LP) based framework for finite blocklength point-
to-point coding problems from [3] is employed. However, a direct
application of this framework demands a complicated analysis
for the Slepian-Wolf problem. An analytically simpler approach
is presented wherein LP-based finite blocklength converses for
this problem are synthesized from point-to-point lossless source
coding problems with perfect side-information at the decoder.
New finite blocklength metaconverses for these point-to-point
problems are derived by employing the LP-based framework,
and the new converse for Slepian-Wolf coding is obtained by an
appropriate combination of these converses.

I. INTRODUCTION

The intractability of evaluating the nonasymptotic or finite
blocklength fundamental limit of communication has put the
onus on discovering finite blocklength achievability and con-
verses that sandwich tightly the nonasymptotic fundamental
limit. Accordingly, recent years have witnessed a surge of
tight finite blocklength achievability and converses ([4], [5],
[6], [3]), particularly for coding problems in the point-to-point
setting.

Eventhough many sharp and asymptotically tight finite
blocklength converses have been obtained in the point-to-
point setting employing tools like hypothesis testing [4] and
information spectrum [7], deriving tight finite blocklength
converses for multiterminal coding problems still remains
particularly challenging. Part of this challenge could be at-
tributed to the difficulty in extending the techniques in the
point-to-point setting to the network setting. In this paper,
we consider the classical multiterminal source coding prob-
lem – the Slepian-Wolf coding problem and show that the
extension of the linear programming (LP) based framework
we introduced for the point-to-point setting in [3], in fact
results in new and improved finite blocklength converses for
this problem. Moreover, it yields a framework via a hierarchy
of relaxations in which classical converses can be recovered,
and converses for the networked problem can be synthesized
using a combination of point-to-point converses.

Consider the finite blocklength Slepian-Wolf distributed
lossless source coding problem (in Figure 1) posed as the
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Fig. 1: Two-User Joint Source-Channel Coding Problem

following optimization problem,

SW min
f1,f2,g

E[I{(S1, S2) 6= (Ŝ1, Ŝ2)}]

s.t.
X1 = f1(S1),
X2 = f2(S2),

(Ŝ1, Ŝ2) = g(Y1, Y2),

where S1, S2, X1, X2, Y1, Y2, Ŝ1, Ŝ2 are discrete
random variables taking values in fixed, finite spaces
S1,S2,X1,X2,Y1,Y2, Ŝ1, Ŝ2, respectively. Notice that these
spaces could be Cartesian products of smaller spaces, and
hence could be sets of finite length strings. Here, S1 and S2

represent the two correlated sources distributed according
to a known joint probability distribution PS1,S2

. The source
signals are seperately encoded by functions f1 : S1 → X1

and f2 : S2 → X2 to produce signals X1 = f1(S1) and
X2 = f2(S2), respectively. The encoded signals are sent
through a deterministic channel with conditional distribution
PY1,Y2|X1,X2

= I{(Y1, Y2) = (X1, X2)} to get the signal
(Y1, Y2), where I{·} represents the indicator function which
equals unity when ‘·’ is true and is zero otherwise. (Y1, Y2)
is then jointly decoded by g : Y1 × Y2 → Ŝ1 × Ŝ2 to
obtain the output signal (Ŝ1, Ŝ2) = g(Y1, Y2). For the
finite blocklength Slepian-Wolf coding problem, we note
that spaces S1 = Ŝ1, S2 = Ŝ2, X1 = Y1 = {1, . . . ,M1}
and X2 = Y2 = {1, . . . ,M2}, M1,M2 ∈ N. An error
in transmission occurs when (S1, S2) 6= (Ŝ1, Ŝ2). Hence,
the objective of the finite blocklength Slepian-Wolf coding
problem SW is to minimize the probability of error over all
codes, i.e. over all encoder-decoder functions (f1, f2, g).

Our interest in this paper is in obtaining finite blocklength
converses (or lower bounds) on the optimal value of SW
and our approach is via the linear programming (LP) based
framework introduced in [3]. In [3], we showed that this
framework recovers and improves on most of the well-known
finite blocklength converses for point-to-point coding prob-
lems. In particular, the LP framework is shown to imply the
metaconverse of Polyanskiy-Poor-Verdú [4] for finite block-
length channel coding. For lossy source coding and lossy
joint source-channel coding with the probability of excess
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distortion as the loss criterion, the LP framework results in
two levels of improvements on the asymptotically tight tilted-
information based converses of Kostina and Verdú in [5] and
[6], respectively.

Fundamental to this framework is the observation that the
finite blocklength coding problem can be posed equivalently
as a nonconvex optimization problem over joint probability
distributions. A natural optimizer’s approach [8] to obtain
lower bounds would then be via a convex relaxation of the
nonconvex optimization problem. In particular, resorting to the
“lift-and-project” technique due to Lovasz, Schrijver, Sherali,
Adams and others [9], we obtain a LP relaxation of the
problem. From linear programming duality, we then get that
the objective value of any feasible point of the dual of this
LP relaxation yields a lower bound on the optimal loss in
the finite blocklength problem. As a result of this observation,
the problem of obtaining converses reduces to constructing
feasible points for the dual linear program.

The converses in [3] stated above for various point-to-point
settings emerge as special cases of this LP-based framework,
implied by the construction of specific dual feasible points.
This tightness of the LP relaxation shows that there is an
alternative, asymptotically tight way of thinking about optimal
finite blocklength coding – as the optimal packing of a pair
of source and channel flows satisfying a certain error density
bottleneck. The flows here are the variables of the dual
program and the bottleneck, its constraint.

In this paper, we further this theme towards the Slepian-
Wolf coding problem. In the present paper we observe that
our LP relaxation has an operational interpretation based on
optimal transport [10], wherein one designs not only codes, but
also couplings between them to minimize the resulting ‘error’.
Using the LP relaxation, we first establish new, clean, meta-
converses in the point-to-point setting for lossy source-coding
problems with side-information at the decoder; these converses
are stronger than our earlier converses in [3], they imply the
hypothesis testing and tilted information based converses of
Kostina and Verdú [5, Theorem 7,Theorem 8] and the converse
of Palzer and Timo [11, Theorem 1], and are, to the best
of our knowledge, the strongest known. Subsequently, we
analyse the dual LP of the finite blocklength Slepian-Wolf
coding problem. When extended to the networked Slepian-
Wolf coding problem, the LP-based framework results in a
large number of dual variables and constraints, which makes
it quite challenging to analyse and interpret. Consequently, we
devise an analytically simpler approach to construct feasible
points of the dual program using feasible points of simpler
point-to-point problems. This yields tight finite blocklength
converses that improve on the hitherto best known converse
for this problem, due to Miyake and Kanaya [2].

The dual variables of the LP relaxation of SW also have a
structure of ‘source flows’ and ‘channel flows’. Though, as yet,
we do not have physical or operational interpretations for these
‘flows’, they serve as useful analytical devices for synthesizing
converse expressions for SW. We find that source and channel
flows for problem SW follow a hierarchy such that flows at
the highest level satisfy the error density bottleneck, whereas
the flows at the next levels have to meet a bottleneck, dictated

by the flows at the level above, along various paths in the
network. We show that the well-known information spectrum-
based converse of Miyake and Kanaya [2] results from a
particular way of constructing these flows. Improvements
on this converse follow by synthesizing these flows in a
more sophisticated manner. Specifically, by synthesizing flows
for the networked problem using flows from the following
point-to-point problems: (a) lossless source coding of jointly
encoded correlated sources (S1, S2), (b) lossless source coding
of S1 with perfect side-information of S2 available at the
decoder, and (c) lossless source coding of S2 with perfect
side-information of S1 at the decoder, we show that a new
finite blocklength meta-converse results, which improves on
the converse of Miyake and Kanaya.

The paper is organized as follows. In Section II, we consider
the point-to-point lossy source coding problem with side-
information. By the LP framework and an appropriate choice
of source and channel flows, we derive new tight finite
blocklength converses for these problems. In Section III, we
discuss the extension of the LP relaxation to problem SW
and establish the duality based framework. In Section IV, we
illustrate how to synthesize new finite blocklength converses
for SW from point-to-point sub-problems and present a new
finite blocklength converse which improves on the converse
of Miyake and Kanaya. Lastly, in Section V, we discuss the
structure of the constraints of the dual program corresponding
to SW and possible avenues for further strengthening of the
bound.

A. Notation

Throughout this paper, we consider only discrete random
variables. We make use of the following notation. Upper case
letters A,B represent random variables taking values in finite
spaces represented by calligraphic letters, A,B respectively;
lower case letters a, b represent the specific values these
random variables take. I{·} represents the indicator function
which is equal to one when ‘·’ is true and is zero otherwise.
P(·) denotes the set of all probability distributions on ‘·’
and Q ∈ P(·) represents a specific distribution. If Q is
a joint probability distribution, let Q• denote the marginal
distribution of ‘•’. For example, QX|S represents the vector
with QX|S(x|s) for x ∈ X , s ∈ S as its components.
Let PA|BPC|D(a, b, c, d) stand for PA|B(a|b)PC|D(c|d). If P
represents an optimization problem, then OPT(P ) represents
its optimal value and FEA(P ) represents its feasible region.
LHS stands for Left Hand Side and RHS stands for Right
Hand Side. The notation a ⊥⊥ b denotes that a is independent
of b.

II. FINITE BLOCKLENGTH POINT-TO-POINT SOURCE
CODING

In this section, we consider the point-to-point lossy source
coding problem and the lossless source coding problem with
side information at the decoder. We employ the LP relaxation
framework to obtain finite blocklength converses for these
problems.
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Fig. 2: Lossy Source Coding

A. Point-to-Point Lossy Source Coding

We begin with point-to-point lossy source coding. The
finite blocklength lossy source coding problem (Figure 2) with
probability of excess distortion as the loss criterion can be
posed as the following optimization problem,

SC min
f,g

E[I{d(S, Ŝ) > d}]

s.t.
X = f(S)

Ŝ = g(Y ).

Here, S,X, Y and Ŝ are discrete random variables taking
values in fixed, finite spaces S,X ,Y, Ŝ respectively, with
X = Y = {1, . . . ,M}, M ∈ N and S = Ŝ. S repre-
sents the source message distributed according to a known
distribution PS . The source message is encoded according to
f : S → X to get the signal X which is transmitted across a
deterministic channel with conditional probability distribution
PY |X = I{Y = X}. Y represents the channel output which
is decoded according to g : Y → Ŝ to get the message
Ŝ at the destination. d : S × Ŝ → [0,+∞] represents the
distortion measure and d ≥ 0 represents the distortion level.
The optimization problem SC, thus, seeks to find a code (f, g)
which minimizes E[I{d(S, Ŝ) > d}] = P[d(S, Ŝ) > d], the
probability of excess distortion under the measure P induced
by f, g.

SC can be posed equivalently as the following optimization
problem over joint probability distributions,

SC min
Q,QX|S ,QŜ|Y

∑
s,ŝ

I{d(s, ŝ) > d}
∑
x,y

Q(s, x, y, ŝ)

s.t.

Q(ẑ) ≡ PSQX|SPY |XQŜ|Y (ẑ),∑
xQX|S(x|s) = 1 ∀s ∈ S,∑
ŝQŜ|Y (ŝ|y) = 1 ∀y ∈ Y,
QX|S(x|s) ≥ 0 ∀s ∈ S, x ∈ X ,
QŜ|Y (ŝ|y) ≥ 0 ∀ŝ ∈ Ŝ, y ∈ Y,

where ẑ := (s, x, y, ŝ) ∈ Ẑ , Ẑ := S ×
X × Y × Ŝ and PSQX|SPY |XQŜ|Y (ẑ) ≡
PS(s)QX|S(x|s)PY |X(y|x)QŜ|Y (ŝ|y). Here, QX|S represents
a randomized encoder and QŜ|Y represents a randomized
decoder. We refer the readers to [3] for details on this
formulation.

To obtain lower bounds on the optimal value of SC, we
adopt the LP relaxation detailed in [3]. Towards this, we intro-
duce a new variable W (s, x, y, ŝ) ≡ QX|S(x|s)QŜ|Y (ŝ|y) and
obtain valid constraints involving W through the constraints of
the problem. Specifically, multiply both sides of the constraint∑
xQX|S(x|s) ≡ 1 by QŜ|Y (ŝ|y) for all s, y, ŝ and multiply

both sides of
∑
ŝQŜ|Y (ŝ|y) ≡ 1 by QX|S(x|s) for all s, x, y.

Replacing the bilinear product terms in the resulting set of
constraints and in the objective of SC with W , gives new linear
constraints in the variables QX|S , QŜ|Y ,W , which together
with QX|S ∈ P(X|S) and QŜ|Y ∈ P(Ŝ|Y) give the following
LP relaxation.

LP min
QX|S ,QŜ|Y ,W

∑
ẑ

I{d(s, ŝ) > d}PS(s)PY |X(y|x)W (ẑ)

s.t.

∑
xQX|S(x|s) = 1 : γa(s) ∀s∑
ŝQŜ|Y (ŝ|y) = 1 : γb(y) ∀y∑

xW (ẑ)−QŜ|Y (ŝ|y) = 0 : λs(s, ŝ, y) ∀s, ŝ, y∑
ŝW (ẑ)−QX|S(x|s) = 0 : λc(x, s, y) ∀x, s, y

QX|S , QŜ|Y ,W ≥ 0.

Above γa, γb, λs and λc are Lagrange multipliers correspond-
ing to the respective constraints.

1) An operational interpretation via optimal transport: The
above LP relaxation can be explained operationally by relating
it to the optimal transport problem [10]. Note that for each
s ∈ S and y ∈ Y , W (s, ·, y, ·) is a coupling on X ×Ŝ between
the marginals QX|S(·|s) and QŜ|Y (·|y); let the set of such W
be denoted by Ξ(QX|S , QŜ|Y ). The LP relaxation of SC is
a nested minimization – the inner minimization is over all
couplings W ∈ Ξ(QX|S , QŜ|Y ) and the outer minimization is
over all randomized codes (QX|S , QŜ|Y ):

min
QX|S ,QŜ|Y

min
W∈Ξ(QX|S ,QŜ|Y )

∑
ẑ

I{d(s, ŝ) > d}PS(s)PY |X(y|x)W (ẑ).

The original problem SC has the outer minimization over
codes, but in place of the inner minimization over W it
employs the product QX|S(·|·)QŜ|Y (·|·) ∈ Ξ(QX|S , QŜ|Y ) to
obtain the distribution. Thus the LP relaxation is arrived at by
considering the term QX|S(·|·)QŜ|Y (·|·) in SC as an element
of Ξ(QX|S , QŜ|Y ) and minimizing the resulting cost over all
elements of Ξ(QX|S , QŜ|Y ). Operationally speaking, the LP
relaxation seeks to design codes and couplings between them
that minimize the error under the joint distribution induced by
the coupling.

We caution the readers that for multiterminal problems,
one must apply this interpretation with additional caveats. We
discuss this in Section III-A1.

2) Duality and bounds: Employing the Lagrange multi-
pliers corresponding to the constraints of LP, we obtain the
following dual of LP,

DP max
γa,γb,λs,λc

∑
s

γa(s) +
∑
y

γb(y)

s.t.
γa(s)−

∑
y λc(x, s, y) ≤ 0 ∀x, s (P1)

γb(y)−
∑
s λs(s, ŝ, y) ≤ 0 ∀ŝ, y (P2)

λs(s, ŝ, y) + λc(x, s, y) ≤ Σ(ẑ) ∀ẑ (P3)

where Σ(ẑ) = I{d(s, ŝ) > d}PS(s)I{y = x} for all ẑ, since
PY |X(y|x) = I{y = x}.

In problem DP, it is optimal to choose γa(s) and γb(y)
such that (P1) and (P2) hold with equality, i.e., γa(s) ≡
minx

∑
y λc(x, s, y) and γb(y) ≡ minŝ

∑
s λs(s, ŝ, y). Then
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the optimal value of DP with Σ(ẑ) as the RHS of (P3)
evaluates to,

OPT(DP,Σ(ẑ))

= max
λs,λc

{∑
s

min
x

∑
y

λc(x, s, y) +
∑
y

min
ŝ

∑
s

λs(s, ŝ, y)

}
s.t λc(x, s, y) + λs(s, ŝ, y) ≤ Σ(ẑ) ∀ẑ ∈ Ẑ. (1)

It follows that if we construct functions λs : S × Ŝ × Y → R
and λc : S × X × Y → R satisfying (1), then linear
programming duality implies the following lower bound on
OPT(SC),

OPT(SC) ≥ OPT(LP) = OPT(DP)

≥
∑
s

min
x

∑
y

λc(x, s, y) +
∑
y

min
ŝ

∑
s

λs(s, ŝ, y). (2)

Notice that λs and λc are functions on subspaces of
S × X × Y × Ŝ. λc is a function of the source signal s, the
channel input x and channel output y; we call this function
a channel flow. On the other hand, λs is a function of the
source signal s, the decoder input y and decoder output
ŝ. We refer to it as a source flow. Hence, for the point-
to-point finite blocklength source coding problem, our LP-
based framework reduces to constructing a source flow and
a channel flow such that they satisfy the bottleneck imposed
by the constraint (P3). The RHS of (P3) is the “error density”,
Σ(ẑ) = PS(s)I{y = x}I{d(s, ŝ) > d}, and hence the
challenge is to optimally pack a source flow and a channel
flow so as to not exceed the error density.

It was shown in [3] that by an appropriate construction
of these source and channel flows, a new finite blocklength
converse for lossy source coding results which improves on
the tilted information based converse of Kostina and Verdú [5].
Modifying and generalizing this construction of flows, we now
present a new metaconverse for lossy source coding, which
implies our improvement on the Kostina-Verdú converse and
the hypothesis testing based converse in [5, Theorem 8]. To the
best of our knowledge, the metaconverse below is the strongest
known.

Theorem 2.1 (Metaconverse for Lossy Source Coding):
Consider problem SC. For any code,

E[I{d(S, Ŝ) > d}] ≥ OPT(SC) ≥ OPT(LP) = OPT(DP)

≥ sup
0≤φ(s)≤PS(s)

{∑
s

φ(s)−M max
ŝ

∑
s

φ(s)I{d(s, ŝ) ≤ d}
}
,

(3)

where the supremum is over all functions φ : S → [0, 1] such
that 0 ≤ φ(s) ≤ PS(s) for all s ∈ S.
Proof : Consider the following values of source and channel
flows,

λc(x, s, y) ≡ I{y = x}φ(s), (4)
λs(s, ŝ, y) ≡ −φ(s)I{d(s, ŝ) ≤ d}.

We now check if the above choice of flows satisfy constraint
(P3). For this, consider the following two cases.
Case 1: I{d(s, ŝ) > d} = 1.

In this case, λs(s, ŝ, y) = 0 and λc(x, s, y) = I{y = x}φ(s) ≤
PS(s)I{y = x}, which is the RHS of (P3).
Case 2: I{d(s, ŝ) > d} = 0.
In this case, the RHS of (P3) is zero and LHS becomes,
I{y = x}φ(s) − φ(s) ≤ 0, thereby satisfying (P3). Hence,
the considered choice of flows satisfy constraint (P3). Conse-
quently, the required lower bound follows from (2) by taking
supremum over φ such that 0 ≤ φ(s) ≤ PS(s) ∀s ∈ S.
In particular, choosing φ(s) = min{PS(s), z(s)} in (3) where
z : S → [0,∞), and taking the supremum over such z, we get
the following bound,

E[I{d(S, Ŝ) > d}] ≥ OPT(SC) ≥ OPT(LP)

≥ sup
z≥0

{∑
s

min{PS(s), z(s)}

−M max
ŝ

∑
s

min{PS(s), z(s)}I{d(s, ŝ) ≤ d}
}
. (5)

Remark II.1. (Choice of Flows) An easy way of motivating
the choice of flows is as follows. Observe that if 0 ≤ φ(s) ≤
PS(s) for all s, we have that,

Σ(ẑ) ≥ φ(s)I{y = x}I{d(s, ŝ) > d}
= φ(s)I{y = x} − φ(s)I{y = x}I{d(s, ŝ) ≤ d}.

An obvious choice of the flows would thus be λc(x, s, y) =
φ(s)I{y = x} and λs(s, ŝ, y) ≤ −φ(s)I{y = x}I{d(s, ŝ) ≤
d}, which results in our metaconverse in (3). �

The following results are corollaries to the metaconverse.
jS(·,d) below is the d-tilted information; we refer the reader
to [5] for details.

Corollary 2.2: (Metaconverse Recovers Improvement on
Kostina-Verdú Converse from [3, Corollary 5.9])
The following converse follows from (5):

E[I{d(S, Ŝ) > d}] ≥ OPT(SC) ≥ OPT(LP) = OPT(DP)

≥ sup
γ

{
P[jS(S,d) ≥ γ + logM ] +

1

M
×∑

s

PS(s) exp(jS(s,d)− γ)I{jS(s,d) < logM + γ}

−max
ŝ

exp(−γ)
∑
s

PS(s) exp(jS(s,d))I{d(s, ŝ) ≤ d}
}
,

which is the improvement on the Kostina-Verdú tilted infor-
mation based converse in [3, Corollary 5.9].
Proof : To see this, take z(s) = PS(s) 1

M exp(jS(s,d) −
γ) for any scalar γ and lower bound
−M supŝ

∑
s min{PS(s), z(s)}I{d(s, ŝ) ≤ d} with

−M supŝ
∑
s z(s)I{d(s, ŝ) ≤ d}. Subsequently, take

supremum over γ to get the required bound.

Consider a binary hypothesis testing problem between dis-
tributions PS and QS . Let αθ(PS , QS) represent the minimum
type-I error,

∑
s PS(s)T (s) over all tests T such that the type-

II error,
∑
sQS(s)(1 − T (s)) is at most θ. The following

corollary shows that the metaconverse in Theorem 2.1 in fact
recovers the hypothesis testing based converse of Kostina and
Verdú [5, Theorem 8].
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Corollary 2.3: (Metaconverse Recovers Kostina-Verdú Hy-
pothesis testing based Converse from [5, Theorem 8])
The following converse follows from (5),

E[I{d(S, Ŝ) > d}] ≥ OPT(SC) ≥ OPT(LP) = OPT(DP)

(a)

≥ sup
QS∈P(S)

sup
β≥0

{∑
s

min{PS(s), βQS(s)} − βM∗
}

(b)
= sup

QS∈P(S)

αM∗(PS , QS), (6)

which is equivalent to the hypothesis testing based converse
of Kostina and Verdú in [5, Theorem 8]. Here, M∗ =
M maxŝQ[d(S, ŝ) ≤ d] and Q is the measure on S induced
by QS .
Proof : To recover the converse in (a) from (5), take
z(s) = βQS(s) where β ≥ 0 and lower bound
−M supŝ

∑
s min{PS(s), z(s)}I{d(s, ŝ) ≤ d} with

−M supŝ
∑
s z(s)I{d(s, ŝ) ≤ d} = −βM∗. Subsequently,

take the supremum over β ≥ 0 and QS ∈ P(S) to get the
required bound. The proof of the relation in (b) is included
in Corollary A.1 in Appendix A.

Corollary 2.4: (Metaconverse Recovers Palzer-Timo Con-
verse [11, Theorem 1])
The following converse follows from (5),

E[I{d(S, Ŝ) > d}] ≥ OPT(SC) ≥ OPT(LP) = OPT(DP)

≥ sup
β∈R

{
P[jS(S,d) ≥ β]

−M max
ŝ

P[jS(S,d) ≥ β, d(S, ŝ) ≤ d]

}
,

which is the converse of Palzer and Timo in [11, Theorem 1].
Proof : To obtain this converse from (5), take
z(s) = PS(s)I{jS(s,d) ≥ β} where β ≥ 0
in (3) and take supremum over β ≥ 0. Notice
that in this case, min{z(s), PS(s)} = z(s) since
z(s) = PS(s)I{jS(s,d) ≥ β} ≤ PS(s).

The finite blocklength lossless data compression problem
results from SC by setting d(S, Ŝ) = I{S 6= Ŝ} and d = 0.
The following corollary particularizes the metaconverse in (3)
to lossless data compression. In this case, the metaconverse
takes a particularly simple form.

Corollary 2.5 (Metaconverse for Lossless Source Coding):
For lossless data compression, consider the setting of The-
orem 2.1 with d(S, Ŝ) = I{S 6= Ŝ} and d = 0. Conse-
quently, for any code, the following converse follows from
Theorem 2.1,

E[I{S 6= Ŝ}] ≥ OPT(SC) ≥ OPT(LP) = OPT(DP)

≥ sup
0≤φ≤PS

{
‖φ‖1 −M‖φ‖∞

}
. (7)

In the above converse we have viewed φ as a vector in
R|S| that is nonnegative and dominated by PS ∈ R|S|. The
maximization in (7) is a tradeoff between increasing the `1
norm of φ on the one hand, and decreasing the `∞ norm
of φ on the other. One plausible strategy for this tradeoff is

to take φ(s) = PS(s) for those s ∈ S for which PS(s) is
not too large, and zero otherwise. Specifically, one may take
φ(s) = PS(s)I{PS(s) ≤ exp(−γ)

M } for some γ ≥ 0. Then the
RHS of (7) is lower bounded by

sup
γ≥0

{
P[h(S) ≥ logM + γ]− exp(−γ)

}
,

where h(S) = − logPS(S). The above converse is [5,
Theorem 7] specialized to the lossless case.

Having outlined the LP based framework for point-to-point
lossless source coding, we now consider three problems that
will serve as sub-problems for analysing problem SW.

3) Lossless Coding of Jointly Encoded Correlated Sources
(S1, S2): In this sub-problem of Slepian-Wolf coding prob-
lem, the correlated sources S1, S2 are jointly encoded by
f : S1 × S2 → X1 × X2 to get (X1, X2). (X1, X2) is sent
through the channel PY1,Y2|X1,X2

= I{(Y1, Y2) = (X1, X2)}
to get (Y1, Y2) which is then decoded according to g :
Y1 ×Y2 → Ŝ1 × Ŝ2. The objective, as for SW problem, is to
losslessly recover (S1, S2) at the destination.

It is easy to see that the above joint encoding problem is
equivalent to the point-to-point lossless source coding problem
SC with S := (S1, S2), X := (X1, X2), Y := (Y1, Y2),
Ŝ := (Ŝ1, Ŝ2) and d(S, Ŝ) = I{S 6= Ŝ} with d = 0.
Consequently, to obtain finite blocklength converses for the
joint encoding problem of correlated sources, we resort to the
following generalized version of DP for lossless source coding
problem,

DPJE max
γ̂a,γ̂b,λ̂s,λ̂c

∑
s1,s2

γ̂a(s1, s2) +
∑
y1,y2

γ̂b(y1, y2)

s.t.

γ̂a(s1, s2)−
∑
y1,y2

λ̂c(s1, s2, x1, x2, y1, y2) ≤ 0
∀x1, x2, s1, s2 (A1)

γ̂b(y1, y2)−
∑
s1,s2

λ̂s(s1, s2, ŝ1, ŝ2, y1, y2) ≤ 0
∀ŝ1, ŝ2, y1, y2 (A2)

λ̂s(s1, s2, ŝ1, ŝ2, y1, y2) + λ̂c(s1, s2, x1, x2, y1, y2) ≤Υ(z̃)
∀z̃ (A3)

where z̃ := (s1, s2, x1, x2, y1, y2, ŝ1, ŝ2), Υ(z̃) = I{(s1, s2) 6=
(ŝ1, ŝ2)} PS1,S2

(s1, s2)I{(y1, y2) = (x1, x2)} for all z̃.
Though this is a straightforward generalization of DP, we will
need this later and hence we have included it here.

As in the case of DP, taking γ̂a and γ̂b such that (A1)
and (A2) hold with equality, OPT(DPJE) can be written in
terms of the channel flow λ̂c(s1, s2, x1, x2, y1, y2) and source
flow λ̂s(s1, s2, ŝ1, ŝ2, y1, y2). The metaconverse for lossless
source coding problem in Corollary 2.5 then readily implies
the following corollary.

Corollary 2.6 (Metaconverse for Jointly Encoded Sources):
Consider problem SC with S := (S1, S2), X := (X1, X2),
Y := (Y1, Y2), Ŝ := (Ŝ1, Ŝ2) and d(S, Ŝ) = I{S 6= Ŝ}
with d = 0. Consequently for any code, we have from
Corollary 2.5,

E[I{(S1, S2) 6= (Ŝ1, Ŝ2)}] ≥ OPT(DPJE)

≥ sup
0≤φ̂(s1,s2)≤PS1,S2 (s1,s2)

{∑
s1,s2

φ̂(s1, s2)

−M1M2 max
ŝ1,ŝ2

φ̂(ŝ1, ŝ2)

}
, (8)
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where the supremum is over φ̂ : S1 × S2 → [0, 1] such that
0 ≤ φ̂(s1, s2) ≤ PS1,S2

(s1, s2) for all s1 ∈ S1, s2 ∈ S2.
Proof : To obtain the required converse, we consider the
following choice for the flows in DPJE, which generalizes
the ones adopted in (4).

λ̂c(x1, x2, s1, s2, y1, y2)≡ I{(y1, y2)=(x1, x2)}φ̂(s1, s2) (9)

λ̂s(s1, s2, ŝ1, ŝ2, y1, y2) ≡ −φ̂(s1, s2)I{(s1, s2) = (ŝ1, ŝ2)},

The feasibility of these flows with respect to (A3) can be
verified as in the proof of Theorem 2.1 and we skip the proof
here.

B. Lossless Source Coding of S1 with S2 as the Side-
Information

We now consider the following sub-problem of Slepian-
Wolf coding: S1 is to be recovered losslessly at the destination
with S2 available as side-information at the decoder (Figure 3).
Towards this, S1 is encoded according to f1 : S1 → X1 to
get X1, which is transmitted through the channel PY1|X1

=
I{Y1 = X1} to get Y1. S2 is the side information available at
the decoder which decodes according to g : S2 × Y1 → Ŝ1

to get Ŝ1. The finite blocklength source coding of S1 given
S2 as the side information can be then posed as the following
optimization problem,

SID1|2 min
f1,g

E[I{S1 6= Ŝ1}]

s.t. X1 = f1(S1), Ŝ1 = g(S2, Y1).

Thus, SID1|2 seeks to obtain a code (f1, g) which minimizes
E[I{S1 6= Ŝ1}] = P[S1 6= Ŝ1], the average probability of error.

To obtain finite blocklength converses, we employ the
LP relaxation approach in [3] to obtain the following LP
relaxation of the problem SID1|2.

LPSI1|2 min
QX1|S1 ,QŜ1|Y1,S2

,W

∑
z̄

Ψ(z̄)W (z̄)

s.t.

∑
x1
QX1|S1

(x1|s1) ≡ 1 : γ̄a(s1)∑
ŝ1
QŜ1|Y1,S2

(ŝ1|y1, s2) ≡ 1 : γ̄b(y1, s2)∑
x1
W (z̄)−QŜ1|Y1,S2

(ŝ1|y1, s2) = 0 : λ̄
(1|2)
s (s, ŝ1, y1)∑

ŝ1
W (z̄)−QX1|S1

(x1|s1) ≡ 0 : λ̄
(1|2)
c (s, x1, y1)

QX1|S1
, QŜ1|Y1,S2

,W ≥ 0,

where s := (s1, s2), z̄ := (x1, s1, s2, ŝ1, y1) and Ψ(z̄) =
PS1,S2(s1, s2)I{s1 6= ŝ1}I{y1 = x1}.

Employing the Lagrange multipliers γ̄a, γ̄b, λ̄(1|2)
s and λ̄(1|2)

c

corresponding to the constraints of LPSI1|2, we obtain the
following dual of LPSI1|2.

DPSI1|2 max
γ̄a,γ̄b,λ̄

(1|2)
s ,λ̄

(1|2)
c b

∑
s1

γ̄a(s1) +
∑
y1,s2

γ̄b(y1, s2)

s.t.

γ̄a(s1)−
∑
y1,s2

λ̄
(1|2)
c (s1, s2, x1, y1) ≤ 0

∀x1, s1 (B1)

γ̄b(s2, y1)−
∑
s1
λ̄

(1|2)
s (s1, s2, ŝ1, y1) ≤ 0
∀s2, ŝ1, y1 (B2)

λ̄
(1|2)
s (s1, s2, ŝ1, y1) + λ̄

(1|2)
c (s1, s2, x1, y1) ≤Ψ(z̄)

∀z̄ (B3)

Choosing γ̄a(s1) and γ̄b(s2, y1) such that (B1) and (B2)
hold with equality, OPT(DPSI1|2) can be written in terms
of λ̄(1|2)

c (s1, s2, x1, y1) and λ̄
(1|2)
s (s1, s2, ŝ1, y1). Notice that

λ̄
(1|2)
c is a function of x1, s1, s2, y1. Thus, for each s2 ∈ S2, it

is akin to a channel flow of the point-to-point source coding
problem with S1 as the source. Likewise, for each s2 ∈ S2,
λ̄

(1|2)
s (s1, s2, ŝ1, y1) is akin to a source flow for this problem.

Following these observations, we now show that an appropriate
construction of these source and channel flows results in the
following finite blocklength converse for SID1|2.

Theorem 2.7: Consider the problem SID1|2. For any code,
the following lower bound holds,

E[I{S1 6= Ŝ1}] ≥ OPT(SID1|2) ≥

OPT(LPSI1|2) ≥ sup
0≤φ(1|2)≤PS1,S2

{∑
s1,s2

φ(1|2)(s1, s2)

−M1

∑
s2

max
ŝ1

φ(1|2)(ŝ1, s2)

}
, (10)

where the supremum is over φ(1|2) : S1 × S2 → [0, 1] such
that φ(1|2)(s1, s2) ≤ PS1,S2

(s1, s2) for all s1 ∈ S1, s2 ∈ S2.
Proof : To obtain the required converse, we consider the
following values for the source flow and channel flow,

λ̄(1|2)
c (s1, s2, x1, y1) = I{x1 = y1}φ(1|2)(s1, s2),

λ̄(1|2)
s (s1, s2, ŝ1, y1) = −φ(1|2)(s1, s2)I{s1 = ŝ1}. (11)

The feasibility of these flows with respect to (B3) can be
verified as in the proof of Theorem 2.1. Consequently,
employing linear programming duality and taking supremum
over φ(1|2) gives the required bound.
Notice that choosing φ(1|2)(s1, s2) =
min{PS1,S2

(s1, s2), η2(s1, s2)}, η2 : S1 × S2 → [0, 1], yields
the following bound, E[I{S1 6= Ŝ1}] ≥ OPT(SID1|2) ≥

OPT(LPSI1|2) ≥ sup
η2≥0

{∑
s1,s2

min{PS1,S2
(s1, s2), η2(s1, s2)}

−M1

∑
s2

max
ŝ1

min{PS1,S2
(s1, s2), η2(s1, s2)}

}
. (12)

When particularized to η2(s1, s2) = PS2
(s2)

exp(−β)
M1

for β ≥
0, where PS2

(s2) =
∑
s1
PS1,S2

(s1, s2) and taking supremum
over β, the converse in (12) becomes,

E[I{S1 6= Ŝ1}] ≥ OPT(LPSI1|2) ≥ OPT(DPSI1|2)

(a)

≥ sup
β≥0

{
P[hS1|S2

(S1|S2) ≥ logM1 + β]

+
exp(−β)

M1

∑
s1,s2

PS2(s2)I{hS1|S2
(s1|s2) < logM1 + β}

−M1

∑
s2

sup
ŝ1

min

{
PS1,S2(ŝ1, s2), P (s2)

exp(−β)

M1

}}
(13)

(b)

≥ sup
β≥0

{
P[hS1|S2

(S1|S2) ≥ logM1 + β]− exp(−β)

}
. (14)

Here hA|B(a|b) ≡ − logPA|B(a|b) is the conditional entropy
density. The inequality in (a) follows from the definition
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Fig. 3: Lossless source coding with side information available
only at the decoder

of conditional entropy density. The inequality in (b) fol-
lows by lower bounding the non-negative term corresponding
to I{hS1|S2

(s1|s2) < logM1 + β} in (13) by zero and
upper bounding min{PS1,S2(ŝ1, s2), PS2(s2)

exp(−β)
M1

} with
PS2

(s2)
exp(−β)
M1

. Notice that the converse in (14) is the well-
known converse for lossless source-coding problem with side-
information at the decoder. The converse in (13) provides a
new improvement on the standard converse.

C. Lossless Source Coding of S2 with S1 as the Side-
Information

Analogous to SID1|2, the finite blocklength lossless source
coding problem of S2 with S1 as the side information can be
posed as the following optimization problem,

SID2|1 min
f,g

E[I{S2 6= Ŝ2}]

s.t.
X2 = f2(S2)

Ŝ2 = g(S1, Y2).

The dual of the corresponding LP relaxation of SID2|1 then
becomes,

DPSI2|1 max
γ̃a,γ̃b,λ̃

(2|1)
s ,λ̃

(2|1)
c

∑
s2

γ̃a(s2) +
∑
y2,s1

γ̃b(y2, s1)

s.t.

γ̃a(s2)−
∑
y2,s1

λ̃
(2|1)
c (s1, s2, x2, y2) ≤ 0

∀x2, s2 (C1)

γ̃b(s1, y2)−
∑
s2
λ̃

(2|1)
s (s1, s2, ŝ2, y2) ≤ 0
∀s1, ŝ2, y2 (C2)

λ̃
(2|1)
s (s1, s2, ŝ2, y2) + λ̃

(2|1)
c (s1, s2, x2, y2)≤∆(z′)

∀z′ (C3),

where z′ := (s1, s2, x2, y2, ŝ2), and ∆(z′) =
PS1,S2

(s1, s2)I{y2 = x2}I{s2 6= ŝ2}. The following
choice of source flow and channel flow results in a converse
similar to the one in Theorem 2.7 for the problem SID2|1.

λ̃(2|1)
c (s1, s2, x2, y2) = φ(2|1)(s1, s2)I{x2 = y2}
λ̃(2|1)
s (s1, s2, ŝ2, y2) = −φ(2|1)(s1, s2)I{s2 = ŝ2}, (15)

where φ(2|1) : S1 × S2 → [0, 1] is such that 0 ≤
φ(2|1)(s1, s2) ≤ PS1,S2

(s1, s2) for all s1 ∈ S1, s2 ∈ S2.

Theorem 2.8: Consider the problem SID2|1. Consequently,
for any code, the following lower bound holds,

E[I{S2 6= Ŝ2}] ≥ OPT(SID2|1) ≥ OPT(DPSI2|1)

≥ sup
0≤φ(2|1)(s1,s2)≤PS1,S2 (s1,s2)

{∑
s1,s2

φ(2|1)(s1, s2)

−M2

∑
s1

max
ŝ2

φ(2|1)(s1, ŝ2)

}
. (16)

In the next section, we extend the LP based framework to
finite blocklength Slepian-Wolf coding problem and establish
the duality based framework.

III. LINEAR PROGRAMMING BASED FRAMEWORK FOR
THE SLEPIAN-WOLF PROBLEM

In this section, we discuss the extension of the linear
programming (LP) based framework in Section II to the finite
blocklength Slepian-Wolf coding problem SW. Towards this,
consider the joint probability distribution Q : S1×S2×X1×
X2 × Y1 × Y2 × Ŝ1 × Ŝ2 → [0, 1] which can be factored as,

Q(z) ≡ PS1,S2
QX1|S1

QX2|S2
PY1Y2|X1X2

QŜ1,Ŝ2|Y1,Y2
(z),

where Z := S1 × S2 × X1 × X2 × Y1 × Y2 × Ŝ1 × Ŝ2 and
z := (s1, s2, x1, x2, y1, y2, ŝ1, ŝ2) ∈ Z . Employing Q, we ob-
tain the following optimization problem over joint probability
distributions,

SW min
QX1|S1 ,QX2|S2 ,
Q,QŜ1,Ŝ2|Y1,Y2

∑
z∈Z

I{(s1, s2) 6= (ŝ1, ŝ2)}Q(z)

s.t.

PS1S2
QX1|S1

QX2|S2
PY1,Y2|X1,X2

QŜ1,Ŝ2|Y1,Y2
(z)≡Q(z),

QX1|S1
∈ P(X1|S1),

QX2|S2
∈ P(X2|S2),

QŜ1,Ŝ2|Y1,Y2
∈ P(Ŝ1, Ŝ2|Y1,Y2),

where, P(A|B) := {QA|B|
∑
aQA|B(a|b) = 1, QA|B(a|b) ≥

0, ∀ a, b}. Here, QX1|S1
and QX2|S2

represent the two ran-
domized encoders, and QŜ1,Ŝ|Y1,Y2

represents a randomized
decoder. It is easy to argue as in [3] that the above formulation
is in fact equivalent to problem SW stated in the introduction.

As in the case of the point-to-point problems, the presence
of the multilinear constraint renders the feasible region of
SW nonconvex. Notice that the degree of the multilinear term
is three since there are three decision makers, whereas in
the point-to-point problems the degree was two. To obtain
converses or lower bounds on the optimal value of SW, we
will again derive a linear programming (LP) relaxation of the
nonconvex feasible region of SW, as shown in the next section.

A. LP Relaxation
For obtaining a linear programming relaxation of SW, we

resort to the “lift-and-project” technique in integer program-
ming. Towards this, we define the following new variables,

W (z) ≡ QX1|S1
QX2|S2

QŜ1,Ŝ2|Y1,Y2
(z), (17)

U(z1) ≡ QX1|S1
(x1|s1)QŜ1,Ŝ2|Y1,Y2

(ŝ1, ŝ2|y1, y2), (18)

V (z2) ≡ QX2|S2
(x2|s2)QŜ1,Ŝ2|Y1,Y2

(ŝ1, ŝ2|y1, y2), (19)

T (z3) ≡ QX1|S1
(x1|s1)QX2|S2

(x2|s2), (20)
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where recall that z := (s1, s2, x1, x2, y1, y2, ŝ1, ŝ2), z1 :=
(s1, x1, y1, y2, ŝ1, ŝ2), z2 := (s2, x2, ŝ1, ŝ2, y1, y2) and z3 :=
(s1, s2, x1, x2). Using these variables, we first lift the problem
SW to a higher dimensional space and then impose additional
valid constraints involving these new variables. To obtain these
constraints, we adopt the following procedure.

For each s1 ∈ S1, we multiply both sides of the
constraint

∑
x1
QX1|S1

(x1|s1) = 1 by QX2|S2
(x2|s2) for

all x2, s2, by QŜ1,Ŝ2|Y1,Y2
(ŝ1, ŝ2|y1, y2) for all ŝ1, ŝ2, y1, y2

and by QX2|S2
(x2|s2)QŜ1,Ŝ2|Y1,Y2

(ŝ1, ŝ2|y1, y2) for all
x2, s2, ŝ1, ŝ2, y1, y2, to obtain three new sets of multilinear
equality constraints. Replace the resulting multilinear product
terms by the newly defined variables in (17)–(20). This results
in the following new valid linear constraints in the lifted space,∑

x1

T (x1, x2, s1, s2) ≡ QX2|S2
(x2|s2)∑

x1

U(x1, s1, ŝ1, ŝ2, y1, y2) ≡ QŜ1,Ŝ2|Y1,Y2
(ŝ1, ŝ2|y1, y2)∑

x1

W (z) ≡ V (x2, s2, ŝ1, ŝ2, y1, y2).

Similar set of linear constraints can be obtained corre-
sponding to

∑
x2
QX2|S2

(x2|s2) = 1 for all s2 and∑
ŝ1,ŝ2

QŜ1,Ŝ2|Y1,Y2
(ŝ1, ŝ2|y1, y2) = 1 for all y1, y2. Subse-

quently, add these new sets of linear constraints to the original
constraints of SW. Further, replace Q in the objective function
of SW with the first constraint written in terms of W , drop
the multilinear equalities in (17)-(20) and we have the LP
relaxation of SW, LPSW as given in the next page. Notice
that the constraints of LPSW are implied by the constraints of
SW whereby LPSW is a relaxation of SW.

Here, γa(s1), γb(s2), γc(y1, y2), µ
(2|1)
c (x2, s1, s2),

µ
(1)
s (s1, ŝ1, ŝ2, y1, y2), λ

(2|1)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2),

µ
(1|2)
c (x1, s1, s2), µ

(2)
s (s2, ŝ1, ŝ2, y1, y2),

λ
(1|2)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2), λc(s1, s2, x1, x2, y1, y2),
µ

(2)
c (s2, x2, y1, y2) and µ

(1)
c (s1, x1, y1, y2) represent the

Lagrange multipliers corresponding to the constraints of
LPSW in that order.

1) An stronger optimal transport interpretation: The LP
relaxation of SW, LPSW, also admits an interpretation via a
“multiterminal” optimal transport problem. As in the point-
to-point LP relaxation, we note that for each s1 ∈ S1, s2 ∈
S2, y1 ∈ Y1, y2 ∈ Y2, W (s1, s2, ·, ·, y1, y2, ·, ·) is a cou-
pling on X1 × X2 × (Ŝ1 × Ŝ2) between all three marginals
QX1|S1

(·|s1), QX2|S2
(·|s2) and QŜ1,Ŝ2|Y1,Y2

(·, ·|y1, y2); de-
note the set of all such W by Ξ′. However, note that W ∈ Ξ′

does not automatically imply that, for instance,∑
x1

W (z) ∈ Ξ(QX2|S2
, QŜ1,Ŝ2|Y1,Y2

), (21)

and likewise, that∑
x2

W (z) ∈ Ξ(QX1|S1
, QŜ1,Ŝ2|Y1,Y2

), (22)∑
ŝ1,ŝ2

W (z) ∈ Ξ(QX1|S1
, QX2|S2

). (23)

LPSW is obtained by imposing not only that W ∈ Ξ′, but also
(21)-(23). Skipping the latter requirements would evidently
lead to a looser relaxation which would perhaps not suffice
for our purpose of obtaining tight converses. As in the point-
to-point problem, LPSW is a nested minimization where the
relaxation arises from replacing the product of kernels of
randomized codes by any coupling in Ξ′ that is constrained
by (21)-(23), and then minimizing over all codes.

We note that the variables U, V, T in (18)-(20) are in-
troduced in LPSW only to express the constraints (21)-(23)
on W in a clearer manner. They could be eliminated in
a straightforward manner and the entire problem could be
expressed only in terms of W and the randomized code
(QX1|S1

, QX2|S2
, QŜ1,Ŝ2|Y1,Y2

).

B. Duality and Converses

Employing the Lagrange multipliers corresponding
to the constraints of LPSW, we now obtain the
dual of LPSW, denoted DPSW, and shown on the
next page. Here, Π(z) ≡ I{(s1, s2) 6= (ŝ1, ŝ2)}×
PS1,S2(s1, s2) I{(y1, y2) = (x1, x2)}. Let Θ :=

(λ
(1|2)
s , λ

(2|1)
s , λc, γ

a, γb, γc, µ
(1)
s , µ

(1)
c , µ

(2)
s , µ

(2)
c , µ

(1|2)
c , µ

(2|1)
c )

represent the collection of all these Lagrange multipliers or
dual variables.

To evaluate the optimal value of DPSW, it suffices to take
γa(s1), γb(s2) and γc(y1, y2) such that the constraints (D1),
(D2), (D3) hold with equality. Thus, at optimality,

γa(s1) ≡ min
x1

{∑
y1,y2

µ(1)
c (s1, x1, y1, y2) +

∑
s2

µ(1|2)
c (x1, s1, s2)

}
γb(s2) ≡ min

x2

{∑
y1,y2

µ(2)
c (s2, x2, y1, y2) +

∑
s1

µ(2|1)
c (x2, s1, s2)

}
γc(y1, y2) ≡ min

ŝ1,ŝ2

{∑
s2

µ(2)
s (s2, ŝ1, ŝ2, y1, y2)+

∑
s1

µ(1)
s (s1, ŝ1, ŝ2, y)

}
.

Let Θ̄ := (λ
(1|2)
s , λ

(2|1)
s , λc, µ

(1)
s , µ

(1)
c , µ

(2)
s , µ

(2)
c , µ

(1|2)
c , µ

(2|1)
c )

represent the collection of remaining dual variables. From
the duality of linear programming, the following lemma then
outlines our framework for obtaining lower bounds.

Lemma 3.1: Any collection of functions Θ̄ satisfying con-
straints (D4)-(D7) yields the following lower bound on the
optimal value of SW, i.e.,

OPT(SW)
(a)

≥ OPT(LPSW)
(b)
= OPT(DPSW)

≥
∑
s1

min
x1

{∑
y1,y2

µ(1)
c (s1, x1, y1, y2) +

∑
s2

µ(1|2)
c (x1, s1, s2)

}
+
∑
s2

min
x2

{∑
y1,y2

µ(2)
c (s2, x2, y1, y2) +

∑
s1

µ(2|1)
c (x2, s1, s2)

}
+
∑
y1,y2

min
ŝ1,ŝ2

{∑
s2

µ(2)
s (s2, ŝ1, ŝ2, y1, y2)

+
∑
s1

µ(1)
s (s1, ŝ1, ŝ2, y)

}
. (24)

The inequality in (a) follows since LPSW is a relaxation of
SW and (b) results from the duality of linear programming.
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LPSW min
W,T,V,U,

QX1|S1 ,QX2|S2 ,
QŜ1,Ŝ2|Y1,Y2

∑
z∈Z

I{(s1, s2) 6= (ŝ1, ŝ2)} PS1,S2(s1, s2) I{(y1, y2) = (x1, x2)}W (z)

s.t.

∑
x1
QX1|S1

(x1|s1) = 1 : γa(s1) ∀s1∑
x2
QX2|S2

(x2|s2) = 1 : γb(s2) ∀s2∑
ŝ1,ŝ2

QŜ1,Ŝ2|Y1,Y2
(ŝ1, ŝ2|y1, y2) = 1 : γc(y1, y2) ∀y1, y2∑

x1
T (z3)−QX2|S2

(x2|s2) = 0 : µ
(2|1)
c (x2, s1, s2) ∀x2, s1, s2∑

x1
U(z1)−QŜ1,Ŝ2|Y1,Y2

(ŝ1, ŝ2|y1, y2) = 0 : µ
(1)
s (s1, ŝ1, ŝ2, y1, y2) ∀s1, ŝ1, ŝ2, y1, y2∑

x1
W (z)− V (z2) = 0 : λ

(2|1)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) ∀s1, s2, x2, y1, y2, ŝ1, ŝ2∑

x2
T (z3)−QX1|S1

(x1|s1) = 0 : µ
(1|2)
c (x1, s1, s2) ∀x1, s1, s2∑

x2
V (z2)−QŜ1,Ŝ2|Y1,Y2

(ŝ1, ŝ2|y1, y2) = 0 : µ
(2)
s (s2, ŝ1, ŝ2, y1, y2) ∀s1, ŝ1, ŝ2, y1, y2∑

x2
W (z)− U(z1) = 0 : λ

(1|2)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) ∀s1, s2, x1, y1, y2, ŝ1, ŝ2∑

ŝ2,ŝ1
W (z)− T (z3) = 0 : λc(s1, s2, x1, x2, y1, y2) ∀s1, s2, x1, x2, y1, y2∑

ŝ2,ŝ1
V (z2)−QX2|S2

(x2|s2) = 0 : µ
(2)
c (x2, s2, y1, y2) ∀x2, s2, y1, y2∑

ŝ1,ŝ2
U(z1)−QX1|S1

(x1|s1) = 0 : µ
(1)
c (x1, s1, y1, y2) ∀x1, s1, y1, y2

QX1|S1
, QX2|S2

, QŜ1,Ŝ2|Y1,Y2
, V, U,W, T ≥ 0.

DPSW max
Θ

∑
s1

γa(s1) +
∑
s2

γb(s2) +
∑
y1,y2

γc(y1, y2)

s.t.

γa(s1)−
∑
y1,y2

µ
(1)
c (s1, x1, y1, y2)−

∑
s2
µ

(1|2)
c (x1, s1, s2) ≤ 0 ∀x1, s1 (D1)

γb(s2)−
∑
y1,y2

µ
(2)
c (s2, x2, y1, y2)−

∑
s1
µ

(2|1)
c (x2, s1, s2) ≤ 0 ∀x2, s2 (D2)

γc(y1, y2)−
∑
s2
µ

(2)
s (s2, ŝ1, ŝ2, y1, y2)−

∑
s1
µ

(1)
s (s1, ŝ1, ŝ2, y1, y2) ≤ 0 ∀ŝ1, ŝ2, y1, y2 (D3)

λ
(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) + λ

(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) + λc(s1, s2, x1, x2, y1, y2) ≤ Π(z) ∀z (D4)

µ
(2)
s (s2, ŝ1, ŝ2, y1, y2) + µ

(2)
c (s2, x2, y1, y2)−

∑
s1
λ

(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) ≤ 0 ∀s2, x2, y1, y2, ŝ1, ŝ2 (D5)

µ
(1)
s (s1, ŝ1, ŝ2, y1, y2) + µ

(1)
c (s1, x1, y1, y2)−

∑
s2
λ

(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) ≤ 0 ∀s1, x1, y1, y2, ŝ1, ŝ2 (D6)

µ
(2|1)
c (x2, s1, s2) + µ

(1|2)
c (x1, s1, s2)−

∑
y1,y2

λc(s1, s2, x1, x2, y1, y2) ≤ 0 ∀x1, x2, s1, s2 (D7)

The last inequality follows from Θ̄ being feasible for DPSW
and using that (D1)-(D3) hold with equality.

Thus, to obtain finite blocklength lower bounds on SW, it
suffices to construct functions,

λ(2|1)
s : S1 × S2 ×X2 × Y1 × Y2 × Ŝ1 × Ŝ2 → R,
λ(1|2)
s : S1 × S2 ×X1 × Y1 × Y2 × Ŝ1 × Ŝ2 → R,
λc : S1 × S2 ×X1 ×X2 × Y1 × Y2 → R,

µ(1)
s : S1 × Ŝ1 × Ŝ2 × Y1 × Y2 → R,
µ(1)
c : S1 ×X1 × Y1 × Y2 → R, (25)

µ(2)
s : S2 × Ŝ1 × Ŝ2 × Y1 × Y2 → R,
µ(2)
c : S2 ×X2 × Y1 × Y2 → R,

µ(2|1)
c : X2 × S1 × S2 → R,
µ(1|2)
c : X1 × S1 × S2 → R,

such that the point-wise inequalities in (D4)-(D7) are satisfied.
We call the above collection of functions Θ̄, a feasible point

of DPSW. As is evident, construction of such a feasible point
of DPSW is challenging and probably cumbersome at first
glance. Another hindrance is the difficulty in interpreting these
variables so as to develop any intuitions on construction of
these variables.

Consequently, in this paper, we present a systematic method
to construct feasible points of DPSW and thereby, obtain

finite blocklength converses for SW coding. We show that a
combination of the source and channel flows of the problems
DPJE, DPSI1|2 and DPSI2|1, yields a new feasible point of
DPSW and thereby, a new finite blocklength converse. We
discuss this in the next section.

IV. FROM POINT-TO-POINT CONVERSES TO
SLEPIAN-WOLF CONVERSES

In this section, we present a systematic synthesis of finite
blocklength converses for the Slepian-Wolf coding problem
from the source and channel flows of the dual programs
DPJE, DPSI1|2 and DPSI2|1 discussed in Section II.

We begin by discussing the structure of DPSW. Since
constraints (D1)-(D3) can be assumed to hold with equality,
our main concern is with the variables λ(1|2)

s , λ
(2|1)
s , λc and

µ
(1)
s , µ

(2)
s , µ

(1)
c , µ

(2)
c , µ

(2|1)
c , µ

(1|2)
c . We will refer to these vari-

ables (recall that these are functions, as stated in (25)) also as
flows. Our approach for interpreting and classifying these flows
is based on relating these flows to flows of problems DPJE,
DPSI1|2 and DPSI2|1. We remark that there may be other
approaches that would yield a more refined understanding.

We begin with the λ’s. Consider the flow λ
(1|2)
s . Observe

that λ(1|2)
s is a function of s1, s2, x2, y1, y2, ŝ1, ŝ2 but is inde-

pendent of x1. Hence, for each fixed s2, x2, y2 and ŝ2, λ(1|2)
s

may be likened to a source flow from S1 to Ŝ1 (recall that the
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source flow in the point-to-point problem was a function of
the source, the channel output and the destination, but not of
the channel input). The dependence of λ(1|2)

s on s2, x2, y2, ŝ2

hints at (coded or uncoded) side-information about S2 through
the path S2 → X2 → Y2 → Ŝ2. This leads one to surmise
that the flow λ

(1|2)
s would have a close relation to the source

flow of the problem DPSI1|2. Thus we refer to λ
(1|2)
s as

a source flow for DPSW. Note though, that this is not the
only heuristic one can apply. If λ(1|2)

s is assumed to be also
independent of x2, then λ(1|2)

s (s1, s2, x2, y1, y2, ŝ1, ŝ2) can be
also interpreted to be the source flow in the problem DPJE
where S1, S2 are jointly encoded. Thus one surmises that a
value for λ(1|2)

s could probably be arrived at by a combination
of the source flows of DPJE and DPSI1|2. A similar heuristic
can be applied to surmise that λ(2|1)

s could be arrived at
through the source flows of DPJE and DPSI2|1. The flow
λc(s1, s2, x1, x2, y1, y2) which depends on correlated sources
and the channel inputs and outputs, appears to be related to
the channel flows of all three problems DPJE,DPSI1|2 and
DPSI2|1, and should therefore be a function of the latter flows.
We refer to it as the channel flow. Thus in problem DPSW,
there are two source flows and one channel flow that satisfy
an error density bottleneck (D4).

We now come to the µ’s. Notice that the flows of problem
DPSW fall into a hierarchy wherein the λ’s are constrained
by the error density bottleneck (constraint (D4)), whereas the
µ’s are constrained by a bottleneck determined by the λ’s.
Arguing as in the case of the λ’s we see that µ(1)

s and µ(1)
c are

akin to source and channel flows of a coding problem along
the path S1 → X1 → Y1 → Ŝ1. Note though the objective of
the problem (source coding, or something else) would depend
on λ(2|1)

s , the RHS of constraint (D6). Likewise µ(2)
s and µ(2)

c

resemble source channel flows for a coding problem along
S2 → X2 → Y2 → Ŝ2 whose objective is determined by
λ

(1|2)
s . The final set of dual variables µ(1|2)

c and µ
(2|1)
c are

somewhat distinct from the rest, since they do not seem to be
analogous to any flows from point-to-point problems. We will
interpret these later.

The following two propositions distill these heuristics into
a formal relationship between the feasible regions of problems
DPSW and problems DPJE, DPSI1|2 and DPSI2|1.

Proposition 4.1: Let Θ̄1|2 := (γ̄a, γ̄b, λ̄
(1|2)
s , λ̄

(1|2)
c ) ∈

FEA(DPSI1|2) with its corresponding objective value,
OBJ(DPSI1|2) =

∑
s1
γ̄a(s1) +

∑
s2,y1

γ̄b(s2, y1). Then the
following choice of values for the variables of DPSW is
feasible.

λ(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2)≡ λ̄(1|2)

s (s1, s2, ŝ1, y1)I{x2 = y2}
λc(s1, s2, x1, x2, y1, y2) ≡ λ̄(1|2)

c (s1, s2, x1, y1)I{x2 = y2},
µ(2)
c (s2, x2, y1, y2) ≡ γ̄b(s2, y1)I{x2 = y2}, (26)

µ(1|2)
c (x1, s1, s2) ≡

∑
y1

λ̄(1|2)
c (s1, s2, x1, y1),

λ(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) ≡ 0, µ(2|1)

c (x2, s1, s2) ≡ 0,

µ(1)
s (s1, ŝ1, ŝ2, y1, y2) ≡ 0, µ(1)

c (s1, x1, y1, y2) ≡ 0,

µ(2)
s (s2, ŝ1, ŝ2, y1, y2) ≡ 0, γc(y1, y2) ≡ 0,

γb(s2) ≡
∑
y1

γ̄b(s2, y1), γa(s1) ≡ γ̄a(s1).

Consequently, OPT(DPSW) ≥
∑
s1
γa(s1) +

∑
s2
γb(s2) +∑

y1,y2
γc(y1, y2) which is equal to the objective of DPSI1|2

under Θ̄1|2. In particular, considering Θ̄1|2 as the optimal
solution of DPSI1|2 gives OPT(DPSW) ≥ OPT(DPSI1|2).
Proof : The proof is included in Appendix B.
It thus becomes clear that given any feasible point
(γ̄a, γ̄b, λ̄

(1|2)
s , λ̄

(1|2)
c ) ∈ FEA(DPSI1|2), one can construct

a feasible point of DPSW as given in (26). Moreover, the
objective value of the resulting feasible point gives a lower
bound on OPT(DPSW). Similarly, it can be shown that given
any feasible point of DPSI2|1, one can construct a feasible
point of DPSW with the same cost, thereby implying

OPT(DPSW) ≥ OPT(DPSI2|1).

As with the problems with side-information, the following
proposition illustrates a relation between the feasible regions
of DPJE and DPSW.

Proposition 4.2: The following relationship between the
feasible region of DPJE and DPSW holds. Let Θ̂ :=
(γ̂a, γ̂b, λ̂s, λ̂c) ∈ FEA(DPJE) with its corresponding
objective value, OBJ(DPJE) =

∑
s1,s2

γ̂a(s1, s2) +∑
y1,y2

γ̂b(y1, y2). Then the following choice of values of the
variables of DPSW are feasible.

λ(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2)≡ λ̂s(s1, s2, ŝ1, ŝ2, y1, y2)

λc(s1, s2, x1, x2, y1, y2) ≡ λ̂c(s1, s2, x1, x2, y1, y2),

µ(2)
c (s2, x2, y1, y2) ≡ 0, µ(1|2)

c (x1, s1, s2) ≡ 0,

λ(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) ≡ 0,

µ(2|1)
c (x2, s1, s2) ≡ γ̂a(s1, s2),

µ(1)
s (s1, ŝ1, ŝ2, y1, y2) ≡ 0, µ(1)

c (s1, x1, y1, y2) ≡ 0,

γa(s1) ≡ 0, γb(s2) ≡
∑
s1

γ̂a(s1, s2),

γc(y1, y2) ≡ γ̂b(y1, y2),

µ(2)
s (s2, ŝ1, ŝ2, y1, y2) ≡

∑
s1

λ̂s(s1, s2, ŝ1, ŝ2, y1, y2).

Consequently, OPT(DPSW) ≥
∑
s1
γa(s1) +

∑
s2
γb(s2) +∑

y1,y2
γc(y1, y2) which is the objective of DPJE under Θ̂.

Moreover, considering Θ̂ to be the optimizing feasible point
of DPJE yields that OPT(DPSW) ≥ OPT(DPJE).
Proof : The proof is similar to the proof of Proposition 4.1
and we skip the proof here.

The relationships between the feasible regions of DPSW
with that of DPJE, DPSI1|2 and DPSI2|1 established through
Propositions 4.1 and 4.2 help in establishing a formal inter-
pretation for the roles of the dual variables of DPSW. From
Proposition 4.1, we see that the dual variable λ(1|2)

s that we
considered as akin to a source flow for DPSI1|2 and also as
a source flow for the DPJE, has a somewhat more complex
interpretation. Specifically, while the latter interpretation holds
thanks to Proposition 4.2, the former holds only along the
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diagonal x2 = y2, as seen in (26). A similar caveat holds for
the channel flow λc and the other source flow λ

(2|1)
s .

We remark here that the choices of the µ’s in Propo-
sitions 4.2 and 4.1 are not necessarily optimal and hence,
one may not obtain a sharp interpretation for these flows.
Nonetheless, it can be seen that when the sum

∑
s1
λ

(1|2)
s is

considered as in constraint (D5), the source flow from S1 to
destination Ŝ1 is averaged out, and what is left, is the influence
of side-information of S2. From Proposition 4.2 it can be
seen that µ(2)

s accounts for the point-to-point like source flow
through the path from S2 to the destination node (Ŝ1, Ŝ2).
Further, (26) implies that µ(2)

c accounts for the channel flow
through this path. Similarly, µ(1)

s represents the point-to-point
like source flow through the path from S1 to (Ŝ1, Ŝ2) via the
decoder and µ(1)

c represents the corresponding channel flow for
this path. Finally, thanks to the relation µ(1|2)

c =
∑
y1
λ̄

(1|2)
c in

(26), we can interpret that µ(1|2)
c represents an average channel

flow from S1 to (Ŝ1, Ŝ2) given the side-information about S2.

Similarly, µ(2|1)
c represents an average channel flow from S2

given information about S1.

A. Synthesizing Converses for SW from Point-to-Point Duals

As an immediate consequence of Proposition 4.1 and Propo-
sition 4.2, we get that the point-to-point metaconverses in
(10), (16) and (8) are all lower bounds on OPT(DPSW).
Consequently, the following is a straightforward lower bound
on OPT(DPSW),

OPT(DPSW) ≥ max

{
sup

0≤φ̂(s1,s2)≤PS1,S2 (s1,s2)

{∑
s1,s2

φ̂(s1, s2)

−M1M2 max
ŝ1,ŝ2

φ̂(ŝ1, ŝ2)

}
,

sup
0≤φ(1|2)(s1,s2)≤PS1,S2 (s1,s2)

{∑
s1,s2

φ(1|2)(s1, s2)

−M1

∑
s2

max
ŝ1

φ(1|2)(ŝ1, s2)

}
,

sup
0≤φ(2|1)(s1,s2)≤PS1,S2 (s1,s2)

{∑
s1,s2

φ(2|1)(s1, s2)

−M2

∑
s1

max
ŝ2

φ(2|1)(s1, ŝ2)

}}
. (27)

Convex analytically speaking, the above bound considers
a convex combination of feasible points of DPSW obtained
via Propositions 4.1 and 4.2. In the following theorem we
synthesize a new feasible point for DPSW by a nonlinear
combination of the source and channel flows in the point-to-
point dual programs DPJE, DPSI1|2 and DPSI2|1. We will
subsequently apply specific metaconverses from Corollary 2.6,
Theorem 2.7 and Theorem 2.8 to get our new metaconverse.

Theorem 4.3: Let (γ̄a, γ̄b, λ̄
(1|2)
s , λ̄

(1|2)
c ) ∈ FEA(DPSI1|2),

(γ̃a, γ̃b, λ̃
(2|1)
s , λ̃

(2|1)
c ) ∈ FEA(DPSI2|1) and (γ̂a, γ̂b, λ̂s, λ̂c) ∈

FEA(DPJE). Then, any choice of values for the variables

of DPSW satisfying the following equations is feasible for
DPSW.

λ(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) =

[
λ̄(1|2)
s (s1, s2, ŝ1, y1)×

I{x2 = y2}+ αλ̂s(s1, s2, ŝ1, ŝ2, y1, y2)

]
I{(s1, s2) = (ŝ1, ŝ2)},

λ(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) =

[
λ̃(2|1)
s (s1, s2, ŝ2, y2)×

I{x1 = y1}+ (1− α)λ̂s(s1, s2, ŝ1, ŝ2, y1, y2)

]
×

I{(s1, s2) = (ŝ1, ŝ2)},

λc(s1, s2, x1, x2, y1, y2)= min

{
P (s1, s2)I{(y1, y2) = (x1, x2)},

λ̂c(s1, s2, x1, x2, y1, y2) + λ̄(1|2)
c (s1, s2, x1, y1)I{x2 = y2}

+ λ̃(2|1)
c (s1, s2, x2, y2)I{x1 = y1}

}
, (28)

µ(2)
c (s2, x2, y1, y2) ≤

[
γ̄b(y1, s2)−

∑
s1 6=ŝ1

λ̄(1|2)
s (s1, s2, ŝ1, y2)

]
× I{x2 = y2}I{s2 = ŝ2},

µ(2)
s (s2, ŝ1, ŝ2, y1, y2) = αλ̂s(ŝ1, s2, ŝ1, ŝ2, y1, y2)I{s2 = ŝ2},

µ(1)
c (s1, x1, y1, y2) ≤

[
γ̃b(s1, y2)−

∑
s2 6=ŝ2

λ̃(2|1)
s (s2, s2, ŝ2, y2)

]
× I{x1 = y1}I{s1 = ŝ1},

µ(1)
s (s1, ŝ1, ŝ2, y1, y2) = (1− α)λ̂s(s1, ŝ2, ŝ1, ŝ2, y1, y2)

× I{s1 = ŝ1},
µ(2|1)
c (x2, s1, s2) + µ(1|2)

c (x1, s1, s2)

≤
∑
y1,y2

λc(s1, s2, x1, x2, y1, y2),

where α ∈ (0, 1) and γa(s1), γb(s2) and γc(y1, y2) are chosen
such that (D1), (D2) and (D3) hold with equality.
Proof : The proof is included in Appendix B.

Theorem 4.3 generates a new feasible point for DPSW using
an appropriate and nonlinear combination of the feasible points
of the point-to-point source coding problems. Notice that the
source flow λ

(1|2)
s is taken as a superposition of the source flow

for DPSI1|2 (which acts only when x2 = y2) and a fraction of
the source flow for DPJE. Similarly, λ(2|1)

s is a superposition
of the source flow for DPSI2|1 (which acts only when x1 =
y1) with the remaining fraction of the source flow for DPJE.
While λ(1|2)

s and λ(2|1)
s are linear combinations of the point-to-

point source flows, the channel flow λc considers a nonlinear
combination of the channel flows of DPSI1|2, DPSI2|1 and
DPJE, so as to satisfy the bottleneck in constraint (D4). Since
λc dictates the choice of µ(1|2)

c and µ(2|1)
c , the nonlinearity is

also inherited in the relation of µ’s.
Moreover, the nonlinear relation between λc and the channel

flows of the point-to-point problems is one of the reasons
for the improvement on the classical converse of Miyake and
Kanaya, as can be seen later in (31). This improvement is
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otherwise hard to deduce from a feasible point of DPSW
resulting from a convex combination of point-to-point feasible
points.

Thanks to Theorem 4.3, to obtain finite blocklength con-
verses for Slepian-Wolf coding, it suffices to consider the
simpler point-to-point source-coding problems and construct
good feasible points for them. In particular, considering those
feasible points of DPSI1|2, DPSI2|1 and DPJE which yield
the metaconverses in (10), (16) and (8) for the correspond-
ing point-to-point sub-problems and subsequently employing
Theorem 4.3, we obtain the following new finite blocklength
converse for SW.

Theorem 4.4 (Metaconverse for Slepian-Wolf Coding): Con-
sider the problem SW. Consequently, for any code, the follow-
ing bound holds:

E[I{(S1, S2) 6= (Ŝ1, Ŝ2)}] ≥ OPT(SW) ≥ OPT(DPSW) ≥

sup
φ̂,φ(1|2),φ(2|1)

{∑
s1,s2

min{PS1,S2
(s1, s2), φ̂(s1, s2)+φ(1|2)(s1, s2)

+ φ(2|1)(s1, s2)} −M1M2 max
ŝ1,ŝ2

φ̂(ŝ1, ŝ2)

−M2

∑
s1

max
ŝ2

φ(2|1)(s1, ŝ2)−M1

∑
s2

max
ŝ1

φ(1|2)(ŝ1, s2)

}
,

(29)

where the supremum is over φ̂, φ(1|2), φ(2|1) : S1 × S2 →
[0, 1] such that 0 ≤ φ̂(s1, s2), φ(1|2)(s1, s2), φ(2|1)(s1, s2) ≤
PS1,S2

(s1, s2) for all s1 ∈ S1, s2 ∈ S2.
Proof : The proof is included in Appendix B.

In particular, choosing

φ̂(s1, s2) = min{PS1,S2
(s1, s2), η1(s1, s2)}

φ(1|2)(s1, s2) = min{PS1,S2(s1, s2), η2(s1, s2)}
φ(2|1)(s1, s2) = min{PS1,S2

(s1, s2), η3(s1, s2)}

in (29), where η1, η2, η3 : S1 × S2 → [0,∞), we get the
following bound.

E[I{(S1, S2) 6= (Ŝ1, Ŝ2)}] ≥ OPT(SW) ≥ OPT(DPSW) ≥

sup
η1,η2,η3≥0

{∑
s1,s2

min{PS1,S2
(s1, s2), η1(s1, s2) + η2(s1, s2)+

η3(s1, s2)} −M1M2 max
ŝ1,ŝ2

min{PS1,S2(ŝ1, ŝ2), η1(ŝ1, ŝ2)}

−M2

∑
s1

max
ŝ2

min{PS1,S2(s1, ŝ2), η3(s1, ŝ2)}

−M1

∑
s2

max
ŝ1

min{PS1,S2
(ŝ1, s2), η2(ŝ1, s2)}

}
(30)

Further, the new converse in (30) improves on the information
spectrum based converse of Miyake and Kanaya [2] as shown
in the following corollary.

Corollary 4.5 (Improvements on Miyake-Kanaya Converse):
The converse in (30) implies the following improvement on

the converse of Miyake and Kanaya,

E[I{(S1, S2) 6= (Ŝ1, Ŝ2)}] ≥ OPT(SC) ≥ OPT(DP) ≥

sup
β>0

{
P
[
hS1,S2(S1, S2) ≥ logM1M2 + β or hS1|S2

(S1|S2)

≥ logM1 + β or hS2|S1
(S2|S1) ≥ logM2 + β

]
+∑

s1,s2

max

{
exp(−β)

M1M2
,

exp(−β)

M1
PS2

(s2),
exp(−β)

M2
PS1

(s1)

}
× I
{
PS1|S2

(s1|s2) >
exp(−β)

M1
, PS2|S1

(s2|s1) >
exp(−β)

M2
,

PS1,S2(s1, s2) >
exp(−β)

M1M2

}
− 3 exp(−β)

}
, (31)

where hA|B(a|b) ≡ − logPA|B(a|b) is the conditional entropy
density and hA,B(a, b) ≡ − logPA,B(a, b) is the joint entropy
density.
Proof : To obtain the above converse, weaken (30)
by choosing η1(s1, s2) ≡ exp(−β)

M1M2
, η2(s1, s2) ≡

PS2
(s2)

exp(−β)
M1

, η3(s1, s2) ≡ PS1
(s1)

exp(−β)
M2

and bound
min{P (s1, s2), η1(s1, s2) + η2(s1, s2) + η3(s1, s2)} by
min{P (s1, s2),max{η1(s1, s2), η2(s1, s2), η3(s1, s2)}}.
Further, bound min{PS1,S2(ŝ1, ŝ2), η1(ŝ1, ŝ2)} by
η1(s1, s2), min{PS1,S2(ŝ1, ŝ2), η2(ŝ1, ŝ2)} by η2(s1, s2) and
min{PS1,S2

(ŝ1, ŝ2), η3(ŝ1, ŝ2)} by η3(s1, s2). Subsequently,
employing the definition of hA|B(a|b), hA,B(a, b) and taking
supremum over β > 0, we get the required converse.

Remark IV.2. (Recovering the Converse of Miyake and
Kanaya) Lower bounding the non-negative term in (31) cor-

responding to I
{
PS1|S2

(s1|s2) >
exp(−β)
M1

, PS2|S1
(s2|s1) >

exp(−β)
M2

, PS1,S2(s1, s2) >
exp(−β)
M1M2

}
with zero, we recover

the converse of Miyake and Kanaya given as,

E[I{(S1, S2) 6= (Ŝ1, Ŝ2)}] ≥ sup
β>0

{
P
[
hS1,S2

(S1, S2)

≥ logM1M2 + β or hS1|S2
(S1|S2) ≥ logM1 + β

or hS2|S1
(S2|S1) ≥ logM2 + β

]
− 3 exp(−β)

}
. (32)

�

Before we conclude, we note that the relevance of (27),
particularly in the analysis of second-order asymptotics is
limited. As pointed out in [12, Section 6.2], the second-
order analysis centered at a corner point of the first order
rate region of Slepian-Wolf problem, is determined by the
multivariate Gaussian CDF with respect to jointly encoded and
side-information problems together. Consequently, the lower
bound in (29) or the union bound in (31) are more relevant.
In fact, with the flexibility of choosing η1, η2, η3 which are
functions of (s1, s2), the converse in (29) may even yield
refined third order terms in the asymptotic analysis.
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B. Illustrative Example:Doubly Symmetric Binary Sources

In this section, we consider the example of a Doubly
Symmetric Binary Source (DSBS) with S1 = S2 = {0, 1}n
and the joint probability distribution given as,

PS1,S2(s1, s2) ≡ 1

2n
pd(s1,s2)(1− p)n−d(s1,s2), (33)

where p < 0.5 and d(s1, s2) represents the Hamming distance
between s1 ∈ S1 and s2 ∈ S2. Further, M1 = 2nR1 ,
M2 = 2nR2 , PS1|S2

(s1|s2) = PS2|S1
(s2|s1) ≡ pd(s1,s2)(1 −

p)n−d(s1,s2) and PS1
(s1) = PS2

(s2) = 1
2n . The optimal rate

region for this DSBS is given by [13],

RSW = {(R1, R2) | R1, R2 ≥ H(p), R1 +R2 ≥ 1 +H(p)}.

Particularizing the converse in (30) to the case of DSBS by
choosing η2(s1, s2) ≡ PS2(s2) 2−β

M1
, η3(s1, s2) ≡ PS1(s1) 2−β

M2

and η1(s1, s2) ≡ 2−β

M1M2
results in the following converse.

E[I{(S1, S2) 6= (Ŝ1, Ŝ2)}] ≥ OPT(DPSW)

≥ sup
β>0

{ n∑
k=0

nCk min

{
pk(1− p)n−k, 2−β

M1
+

2−β

M2
+

2−β+n

M2M1

}
−M12n max

k∈{0,...n}
min

{
pk(1− p)n−k

2n
,

2−β

2nM1

}
−M22n max

k∈{0,...n}
min

{
pk(1− p)n−k

2n
,

2−β

2nM2

}
−M1M2 max

k∈{0,...n}
min

{
pk(1− p)n−k

2n
,

2−β

M1M2

}}
. (34)

The above bound follows from (29) since for any s1 ∈ S1,
the number of s2’s at a Hamming distance of k ∈ {0, . . . , n}
is given by nCk.

Figure 4 and Figure 5 compare our improved converse (34)
with the Miyake-Kanaya converse in (32). It is seen see that
the improved converse in (34) shows a nontrivial improvement
on the Miyake-Kanaya converse. Note the differences in scale
in both Figure 4 and Figure 5.
Remark IV.3. For the case of DSBS whose joint distribution

depends only on the Hamming distance, choosing η1, η2, η3 in
(30) to be independent of (s1, s2) results in (34) performing
weaker than (27). To see this, lower bound (27) with the
converse from jointly encoded sources i.e., (8), and choose

φ̂(s1, s2) = min

{
pd(s1,s2)(1− p)n−d(s1,s2) 1

2n
,

min

{
pd(s1,s2)(1− p)n−d(s1,s2) 1

2n
,

2−β

2nM1

}
+ min

{
pd(s1,s2)(1− p)n−d(s1,s2) 1

2n
,

2−β

2nM2

}
+ min

{
pd(s1,s2)(1− p)n−d(s1,s2) 1

2n
,

2−β

M1M2

}}
(35)

and subsequently, upper bound maxŝ1,ŝ2 φ̂(ŝ1, ŝ2) with

max
ŝ1,ŝ2

{
min{pd(ŝ1,ŝ2)(1− p)n−d(ŝ1,ŝ2) 1

2n
,

2−β

2nM1
}+

min{pd(ŝ1,ŝ2)(1− p)n−d(ŝ1,ŝ2) 1

2n
,

2−β

2nM2
}

+ min{pd(ŝ1,ŝ2)(1− p)n−d(ŝ1,ŝ2) 1

2n
,

2−β

M2M1
}
}
.

Further, noting that φ̂(s1, s2) is equivalent to,
min{pd(s1,s2)(1 − p)n−d(s1,s2) 1

2n ,
2−β

M12n + 2−β

2nM2
+ 2−β

M2M1
}

and
∑
s1,s2

φ̂(s1, s2) =
∑n
k=0

nCk min

{
pk(1−p)n−k, 2−β

M1
+

2−β

M2
+ 2−β+n

M2M1
} the following lower bound follows from (27),

n∑
k=0

nCk min

{
pk(1− p)n−k, 2−β

M1
+

2−β

M2
+

2−β+n

M2M1

}
−M1M2 max

k∈{0,...,n}

{
min{pk(1− p)n−k 1

2n
,

2−β

2nM1
}+

min{pk(1− p)n−k 1

2n
,

2−β

2nM2
}+ min{pk(1− p)n−k 1

2n
,

2−β

M2M1
}
}

≥
n∑
k=0

nCk min

{
pk(1− p)n−k, 2−β

M1
+

2−β

M2
+

2−β+n

M2M1

}
−M1M2 max

k∈{0,...,n}
min{pk(1− p)n−k 1

2n
,

2−β

2nM1
}

−M1M2 max
k∈{0,...,n}

min{pk(1− p)n−k 1

2n
,

2−β

2nM2
}

−M1M2 max
k∈{0,...,n}

min{pk(1− p)n−k 1

2n
,

2−β

M2M1
}
}
. (36)

It is now easy to see that when M1,M2 ≤ 2n, (36) outper-
forms (34). Note, however, that this outperformance relies on a
particular choice of the η1, η2, η3 in Theorem 4.4 which leads
to (34) and on the structure of the DSBS. In particular, it does
not imply that Theorem 4.4 is weaker than (27). �

V. DISCUSSION

The tightest finite blocklength converse derivable for
the SW problem employing the LP-based framework is
OPT(DPSW), the exact evaluation of which is difficult.
However, since the framework poses the tightest converse as
an optimization problem, a hierarchy of lower bounds on it can
be derived through a series of optimization problems. This also
helps us conceptually situate the metaconverse in (29) and the
Miyake-Kanaya converse in the hierarchy, as discussed below.
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Fig. 4: DSBS with (R1, R2) 6∈ RSW .
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Fig. 5: DSBS with (R1, R2) ∈ RSW .

Recall that OPT(DPSW) evaluates to the following opti-
mization problem,

max
Θ̄

{∑
s1

min
x1

{∑
y1,y2

µ(1)
c (s1, x1, y1, y2)+

∑
s2

µ(1|2)
c (x1, s1, s2)

}
+
∑
s2

min
x2

{∑
y1,y2

µ(2)
c (s2, x2, y1, y2) +

∑
s1

µ(2|1)
c (x2, s1, s2)

}
+
∑
y1,y2

min
ŝ1,ŝ2

{∑
s2

µ(2)
s (s2, ŝ1, ŝ2, y1, y2)

+
∑
s1

µ(1)
s (s1, ŝ1, ŝ2, y)

}}
,

s.t. (D4)-(D7) hold.

Note that in the above equation, the source flow µ
(1)
s and

channel flow µ
(1)
c , though along the same path are under

two different minimum’s. So are the pairs (µ
(2)
s , µ

(2)
c ) and

(µ
(1|2)
c , µ

(2|1)
c ). Consequently, we first try to bring the terms

in each of the above pairs together. Towards this, we first
separate out the terms inside the minimum’s in OPT(DPSW)

OPT(DPSW)

Converse (38)

Converse (40)

Converse (41)

Metaconverse (29)

Miyake-Kanaya Converse (32)

min(sum′s) ≥ sum(min′ s) as in (37)

min(sum′s) ≥ sum(min′ s) as in (39)

∑
s1
λ
(1|2)
s ⊥⊥ŝ1,∑

s2
λ
(2|1)
s ⊥⊥ŝ2

dualvariables
in (49)

λ
(1|2)
s ,

λ
(2|1)
s

as in (42)

Fig. 6: Hierarchy of lower bounds derived. An arrow from
A→ B implies that A ≥ B, the heading above the arrow in-
dicate how B is obtained from A. min(sum′s) ≥ sum(min′ s)
represent that minimum of sums is atleast equal to the sum of
minimums.
by employing that

∑
s1

min
x1

{∑
y1,y2

µ(1)
c +

∑
s2

µ(1|2)
c

}
≥
∑
s1

[
min
x1

∑
y1,y2

µ(1)
c

+ min
x1

∑
s2

µ(1|2)
c

]
,

∑
s2

min
x2

{∑
y1,y2

µ(2)
c +

∑
s1

µ(2|1)
c

}
≥
∑
s2

[
min
x2

∑
y1,y2

µ(2)
c

+ min
x2

∑
s1

µ(2|1)
c

]
,

∑
y1,y2

min
ŝ1,ŝ2

{∑
s2

µ(2)
s +

∑
s1

µ(1)
s

}
≥
∑
y1,y2

[
min
ŝ1,ŝ2

∑
s2

µ(2)
s

+ min
ŝ1,ŝ2

∑
s1

µ(1)
s

]
. (37)

This results in the following optimization problem, the optimal
value of which yields a lower bound on OPT(DPSW),

OPT(DPSW) ≥ max
Θ̄

{∑
s1

min
x1

∑
y1,y2

µ(1)
c (s1, x1, y1, y2)+∑

s1

min
x1

∑
s2

µ(1|2)
c (x1, s1, s2)+

∑
s2

min
x2

∑
y1,y2

µ(2)
c (s2, x2, y1, y2)

+
∑
s2

min
x2

∑
s1

µ(2|1)
c (x2, s1, s2)

+
∑
y1,y2

min
ŝ1,ŝ2

∑
s2

µ(2)
s (s2, ŝ1, ŝ2, y1, y2)

+
∑
y1,y2

min
ŝ1,ŝ2

∑
s1

µ(1)
s (s1, ŝ1, ŝ2, y)

}}
s.t. (D4)-(D7) hold. (38)



15

We now further lower bound (38) by using,

min
x1

∑
y1,y2

µ(1)
c ≥

∑
y2

min
x1

∑
y1

µ(1)
c

min
x2

∑
y1,y2

µ(2)
c ≥

∑
y1

min
x2

∑
y2

µ(2)
c , (39)

to get the following optimization problem, whose optimal
value is a lower bound on (38),

max
λ(2|1)
s ,λ(1|2)

s ,λc
s.t (D4) holds

{
max

µ(2)
s ,µ(2)

c
s.t (D5) holds

{∑
y1

[∑
s2

min
x2

∑
y2

µ(2)
c (s2, x2, y1, y2)

+
∑
y2

min
ŝ1,ŝ2

∑
s2

µ(2)
s (s2, ŝ1, ŝ2, y1, y2)

]}
+ (40)

max
µ(1)
s ,µ(1)

c
s.t (D6) holds

{∑
y2

[∑
s1

min
x1

∑
y1

µ(1)
c (s1, x1, y1, y2)

+
∑
y1

min
ŝ1,ŝ2

∑
s1

µ(1)
s (s1, ŝ1, ŝ2, y1, y2)

]}
+

max
µ(2|1)
c ,µ(1|2)

c
s.t (D7) holds

{∑
s1

min
x1

∑
s2

µ(1|2)
c (x1, s1, s2)

+
∑
s2

min
x2

∑
s1

µ(2|1)
c (x2, s1, s2)

}}
.

Note that (40) now has an outer optimization over
λ

(1|2)
s , λ

(2|1)
s , λc satisfying the error density bottleneck (D4)

and three inner optimization problems over each of the pairs,
(µ

(1)
s , µ

(1)
c ), (µ

(2)
s , µ

(2)
c ) and (µ

(1|2)
c , µ

(2|1)
c ) with bottlenecks

imposed by constraints (D6), (D5) and (D7) respectively.
We further lower bound (40) by restricting the choice

of λ
(1|2)
s and λ

(2|1)
s such that

∑
s1
λ

(1|2)
s is independent

of ŝ1 and
∑
s2
λ

(2|1)
s is independent of ŝ2. Under this

assumption, constraints (D5) and (D6) imply that µ(2)
s and

µ
(1)
s are independent of ŝ1 and ŝ2, respectively. Hence,

for each y1 ∈ Y1,
∑
s2

minx2

∑
y2
µ

(2)
c (s2, x2, y1, y2) +∑

y2
minŝ1,ŝ2

∑
s2
µ

(2)
s (s2, ŝ1, ŝ2, y1, y2) represents

the objective corresponding to the packing of
source flow µ

(2)
s and channel flow µ

(2)
c through

the path S2 → X2 → Y2 → Ŝ2 satisfying the
bottleneck, µ

(2)
s (s2, ŝ1, ŝ2, y1, y2) + µ

(2)
c (s2, x2, y1, y2) ≤∑

s1
λ

(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) for all s2, x2, y2, ŝ2.

Taking the maximum over µ(2)
s , µ

(2)
c inside the summation

over y1, we can express the optimal packing of these flows as
OPT(DP,

∑
s1
λ

(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2)), defined as in

(1). Note that here, the RHS of the bottleneck is not necessarily
an error density, but a function of (s2, x2, y1, y2, ŝ2)

and OPT(DP,
∑
s1
λ

(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2)) is not

necessarily the relaxation of a source coding problem.
Similarly, for each y2 ∈ Y2,∑
s1

minx1

∑
y1
µ

(1)
c (s1, x1, y1, y2) +∑

y1
minŝ1,ŝ2

∑
s1
µ

(1)
s (s1, ŝ1, ŝ2, y1, y2) represents the

objective corresponding to the packing of source
flow µ

(1)
s and the channel flow µ

(1)
c through the path

S1 → X1 → Y1 → Ŝ1 satisfying the bottleneck imposed

by (D6). The resultant optimal packing can be expressed as
OPT(DP,

∑
s2
λ

(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2)). Employing

these yields the following lower bound on (40),

max
λ(1|2)
s ,λ(2|1)

s ,λc
s.t (D4) holds∑

s1
λ(1|2)
s ⊥⊥ŝ1,∑

s2
λ(2|1)
s ⊥⊥ŝ2

{∑
y1

OPT(DP,
∑
s1

λ(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2))

+
∑
y2

OPT(DP,
∑
s2

λ(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2))

+ max
µ(1|2)
c ,µ(2|1)

c
s.t (D7) holds

{∑
s1

min
x1

∑
s2

µ(1|2)
c (x1, s1, s2)

+
∑
s2

min
x2

∑
s1

µ(2|1)
c (x2, s1, s2)

}}
. (41)

Note that for a given choice of λ(1|2)
s , λ

(2|1)
s the bound in

(41) comprises of optimal value of the duals of point-to-point
problems, OPT(DP,

∑
s1
λ

(1|2)
s ) and OPT(DP,

∑
s2
λ

(2|1)
s ).

However, the objective of these problems is necessarily source
coding since RHS of (D5) (or (D6)) is not the source coding
error density.

Thus, the bounds in (38), (40) and (41) illustrate a hierarchy
of lower bounds on the optimal value of DPSW. We now
show that the Miyake and Kanaya converse falls lower in this
hierarchy than our converse. Considering the choice of flows
as in the proof of Theorem 4.4 with

λ(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) = −

[
φ(1|2)(s1, s2)I{s1 = ŝ1}×

I{x2 = y2}+ αφ̂(s1, s2)

]
I{(s1, s2) = (ŝ1, ŝ2)},

λ(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) = −

[
φ(2|1)(s1, s2)I{s2 = ŝ2}×

I{x1 = y1}+ (1− α)φ̂(s1, s2)

]
I{(s1, s2) = (ŝ1, ŝ2)},

for α ∈ (0, 1), it is easy to verify that our metaconverse in
(29) follows via the construction of a feasible solution to the
optimization problem in (40). Note that here,

∑
s1
λ

(1|2)
s in

general depends on ŝ1 and
∑
s2
λ

(2|1)
s depends on ŝ2, whereby

this construction is not feasible for (41). On the other hand,
we find that the derivation of the Miyake and Kanaya converse
from (31) corresponds to the following choice of variables,

λ(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) = −I{(s1, s2) = (ŝ1, ŝ2)}[

I{y2 = x2}PS2
(s2)

exp(−β)

M1

]
, (42)

λ(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) = −I{(s1, s2) = (ŝ1, ŝ2)}[

I{y1 = x1}PS1
(s1)

exp(−β)

M2
+

exp(−β)

M1M2

]
,

for β > 0. In this case,
∑
s1
λ

(1|2)
s is independent of ŝ1 and∑

s2
λ

(2|1)
s is independent of ŝ2. Hence, with the following
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choice for the remaining dual variables satsifying (D4)–(D7),

λc(s1, s2, x1, x2, y1, y2)= I{(y1, y2) = (x1, x2)}PS1,S2(s1, s2)×

I
{
PS1,S2

(s1, s2) ≤ max

{
PS2

(s2)
exp(−β)

M1
,

PS1
(s1)

exp(−β)

M2
,

exp(−β)

M1M2

}}
,

µ(2)
c (s2, x2, y1, y2) = −exp(−β)

M1
PS2(s2)I{y2 = x2},

µ(1)
c (s1, x1, y1, y2) = −exp(−β)

M2
PS1(s1)I{y1 = x1},

µ(1)
s (s1, ŝ1, ŝ2, y1, y2) = −exp(−β)

M1M2
I{s1 = ŝ1},

µ(2|1)
c (s1, s2, x2) =

∑
y1,y2

λc(s1, s2, x1, x2, y1, y2),

and µ
(2)
s , µ

(1|2)
c ≡ 0, it becomes clear that the resulting

Miyake-Kanaya converse follows as a lower bound on the
lower level optimization problem in (41). This also implies
that the converse of Miyake and Kanaya can be thought to
be obtained by the λ’s in DPSW as inducing source-coding
like problems in the DP’s in (41). On the other hand our
metaconverse in (29) follows from a more complicated bound.

In summary, our metaconverse in (29) and the Miyake-
Kanaya converse in (32) can be placed in the hierarchy of
lower bounds as illustrated in Fig 6. Moreover, this hierarchy
also provides structured avenues for obtaining tighter bounds
on the finite blocklength Slepian-Wolf coding problem – by
appropriately bounding optimization problems lying higher in
the hierarchy in (38).

VI. CONCLUSION

We presented a new finite blocklength converse for the
Slepian-Wolf coding problem which improves on the converse
of Miyake and Kanaya. The converse was derived by employ-
ing the linear programming based framework discussed in [3].
The proposed framework was shown to imply new metacon-
verses for lossy source coding and lossless source coding with
side information problems, and recover the tightest hypothesis
testing based converse of Kostina and Verdú [5]. For finite
blocklength Slepian-Wolf coding, a systematic approach was
developed to synthesize new LP-based converses from those
of lossless source coding problems with side information. By
appropriately combining the metaconverses for these point-
to-point problems, our metaconverse for Slepian-Wolf coding
was derived.

VII. APPENDICES

APPENDIX A
HYPOTHESIS TESTING BASED CONVERSE FOR LOSSY

SOURCE CODING

For a source S with distribution PS , distortion function d :
S × Ŝ → [0,+∞] and distortion level d, the rate-distortion
function is defined as

RS(d) = inf
PŜ|S :E[d(S,Ŝ)]≤d

I(S; Ŝ), (43)

where the infimum is over PŜ|S ∈ P(Ŝ|S). Assume that the
infimum in (43) is achieved by a unique PŜ∗|S and dmin =

inf{d : RS(d) < ∞}. The hypothesis testing based converse
of Kostina and Verdú [5, Theorem 8] is then obtained as below.

Converse A.1 (KV-hypothesis testing): Consider problem
SC with X = Y = {1, . . . ,M}. Any code (f, g) such that
E[I{d(S, Ŝ) > d}] ≤ ε and d > dmin must satisfy,

M ≥ sup
Q∈P(S)

inf
ŝ∈Ŝ

β1−ε(PS , Q)

MQ[d(S, ŝ) ≤ d]
, (44)

where β1−ε(PS , Q) is the minimum type-II error∑
sQ(s)T (s) over all tests T such that the type-I error,∑
s P (s)(1 − T (s)) ≤ ε. Moreover, the converse in (44) is

equivalent to the following lower bound on the probability of
error (see [14, Equation 72]),

ε ≥ sup
QS∈P(S)

αM∗(PS , QS), (45)

with M∗ = M maxŝQ[d(S, ŝ) ≤ d].
Corollary A.1: The following relationship holds,

sup
QS∈P(S)

{
αM∗(PS , QS)

}
= sup
QS∈P(S)

sup
β≥0

{∑
s

min{PS(s), βQS(s)} − βM∗
}
. (46)

Proof : To see the above equivalence, we consider the
Neyman-Pearson (NP) optimal test for αM∗(PS , QS). The NP
optimal test is given by T ∗(s) = I{ PSQS (s) ≤ γ∗} such that

αM∗(PS , QS) =
∑
s

PS(s)I
{
PS
QS

(s) ≤ γ∗
}

and (47)

∑
s

QS(s)I
{
PS
QS

(s) ≤ γ∗
}

= 1−M∗. (48)

Now, consider αM∗(PS , QS) − γ∗(1 −M∗) which evaluates
to∑
s

PS(s)I
{
PS
QS

(s) ≤ γ∗
}
− γ∗

∑
s

Q(s)I
{
PS
QS

(s) ≤ γ∗
}

=
∑
s

PS(s)I
{
PS
QS

(s) ≤ γ∗
}
− γ∗

+ γ∗
∑
s

QS(s)I
{
PS
QS

(s) > γ∗
}

=
∑
s

min{PS(s), γ∗Q(s)} − γ∗,

which implies that,

αM∗(PS , QS) =
∑
s

min{PS(s), γ∗Q(s)} − γ∗M∗.

Moreover, the RHS of the above equality can be equivalently
written as,∑

s

min{PS(s), γ∗Q(s)} − γ∗M∗

= sup
β≥0

{∑
s

min{PS(s), βQ(s)} − βM∗
}
.
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The proof for the last equality follows in the same line as in
the proof of [15, Lemma 1] and we skip the proof here. Now,
taking the supremum over QS ∈ P(S) yields the required
result.

APPENDIX B
PROOFS OF THEOREMS IN SECTION IV

Proof of Proposition 4.1: Let (γ̄a, γ̄b, λ̄
(1|2)
s , λ̄

(1|2)
c ) ∈

FEA(DPSI1|2). We now show that the choice of dual variables
in (26) is feasible for DPSW. We first verify the feasibility of
the choice of dual variables with respect to constraint (D1) of
DPSW. We get that,∑

y1,y2

µ(1)
c (s1, x1, y1, y2) +

∑
s2

µ(1|2)
c (x1, s1, s2)

=
∑
s2

∑
y1

λ̄(1|2)
c (x1, s1, s2, y1)

(c)

≥ γ̄a(s1) = γa(s1),

thereby satisfying (D1). The inequality in (c) follows from
the constraint (B1) of DPSI1|2. For checking feasibility with
respect to constraint (D2), we get that∑

y1,y2

µ(2)
c (x2, s2, y1, y2) +

∑
s1

µ(2|1)
c (x2, s1, s2)

=
∑
y1,y2

γ̄b(s2, y1)I{x2 = y2} =
∑
y1

γ̄b(s2, y1) = γb(s2),

thereby satisyfing (D2). The feasibility with respect to (D3)
is trivially satisfied. For feasibility with respect to (D4), the
LHS of (D4) becomes

λ(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) + λc(s1, s2, x1, x2, y1, y2)

= λ̄(1|2)
s (s1, s2, ŝ1, y1)I{x2 = y2}
+ λ̄(1|2)

c (x1, s1, s2, y1)I{x2 = y2}
(a)

≤ P (s1, s2)I{y1 = x1}I{y2 = x2}I{s1 6= ŝ1}
≤ P (s1, s2)I{(y1, y2) = (x1, x2)}I{(s1, s2) 6= (ŝ1, ŝ2)},

which is the RHS, thereby satisfying (D4). Here, the
inequality in (a) follows from the constriant (B3) of
DPSI1|2. To verify feasibility with respect to (D5), we have,
µ

(2)
s (s2, ŝ1, ŝ2, y1, y2) + µ

(2)
c (x2, s2, y1, y2) =

γ̄b(s2, y1)I{x2 = y2}
(b)

≤
∑
s1

λ̄(1|2)
s (s1, s2, ŝ1, y1)I{x2 = y2}

=
∑
s1

λ(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2),

which is the RHS of (D5), thereby satisfying it. The in-
equality in (b) follows from constraint (B2) of DPSI1|2.
Since λ

(2|1)
s , µ

(1)
s , µ

(1)
c ≡ 0, the constraint (D6) is trivially

satisfied. To verify feasibility with respect to (D7), we have,
µ

(2|1)
c (x2, s1, s2) + µ

(1|2)
c (x1, s1, s2) =∑

y1

λ̄(1|2)
c (x1, s1, s2, y1) =

∑
y1,y2

λ̄(1)
c (x1, s1, s2, y1)I{x2 = y2}

=
∑
y1,y2

λc(s1, s2, x1, x2, y1, y2),

thereby satisfying (D7). Thus, the considered choice of dual
variables is feasible for DPSW.

Proof of Theorem 4.3: It is enough to show that the
above choice of dual variables are feasible with respect to
the constraints (D4)-(D7) of DPSW. To verify the feasibility
of dual variables with respect to (D4), consider the following
two cases.
Case 1: I{(s1, s2) 6= (ŝ1, ŝ2)} = 1.
In this case, λ

(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) = 0 and

λ
(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) = 0. The LHS of (D4) be-

comes, λc(s1, s2, x1, x2, y1, y2) ≤ P (s1, s2)I{(y1, y2) =
(x1, x2)}, which is the RHS of (D4) thereby satisfying the
constraint.
Case 2: I{(s1, s2) 6= (ŝ1, ŝ2)} = 0.
In this case, s1 = ŝ1, s2 = ŝ2, the RHS of (D4) is zero and
the LHS becomes,

λ(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) + λ(2|1)

s (s1, s2, x1, y1, y2, ŝ1, ŝ1)

+ λc(s1, s2, x1, x2, y1, y2)

= λ̄(1|2)
s (s1, s2, ŝ1, y1)I{x2 = y2}+ αλ̂s(s1, s2, ŝ1, ŝ2, y1, y2)

+ λ̃(2|1)
s (s1, s2, ŝ2, y2)I{x1 = y1}+ λc(s1, s2, x1, x2, y1, y2)

+ (1− α)λ̂s(s1, s2, ŝ1, ŝ2, y1, y2)

≤ [λ̄(1|2)
s (s1, s2, ŝ1, y1) + λ̄(1|2)

c (s1, s2, x1, y1)]I{x2 = y2}
+ [λ̃(2|1)

s (s1, s2, ŝ2, y2) + λ̃(2|1)
c (s1, s2, x2, y2)]I{x1 = y1}

+ λ̂c(s1, s2, x1, x2, y1, y2) + λ̂s(s1, s2, ŝ1, ŝ2, y1, y2)

which is non-positive, thereby satisfying the constraint (D4).
The non-positivity follows since (λ̄

(1|2)
s , λ̄

(1|2)
c ), (λ̃

(2|1)
s , λ̃

(2|1)
c )

and (λ̂s, λ̂c) satisfy the constraints (B3), (C3) and (A3) (cor-
responding to the case when (s1, s2) = (ŝ1, ŝ2)) of dual
programs DPSI1|2, DPSI2|1 and DPJE respectively.

To verify feasibility with respect to (D5),∑
s1
λ

(1|2)
s (s1, s2, x2, y1, y2, ŝ1, ŝ2) evaluates to[

λ̄(1|2)
s (ŝ1, s2, ŝ1, y1)I{x2 = y2}+ αλ̂s(ŝ1, s2, ŝ1, ŝ2, y1, y2)

]
× I{s2 = ŝ2}

(a)

≥ [γ̄b(s2, y1)−
∑
s1 6=ŝ1

λ̄(1|2)
s (s1, s2, ŝ1, y1)]I{x2 = y2, s2 = ŝ2}

+ αλ̂s(ŝ1, s2, ŝ1, ŝ2, y1, y2)I{s2 = ŝ2}
≥ µ(2)

c (x2, s2, y1, y2) + µ(2)
s (s2, ŝ1, ŝ2, y1, y2),

thereby satisfying (D5). The inequality in (a) results from the
constraint (A2).

To verify the feasibility with respect to (D6),∑
s2
λ

(2|1)
s (s1, s2, x1, y1, y2, ŝ1, ŝ2) evaluates to[

λ̃(2|1)
s (s1, ŝ2, ŝ2, y2)I{x1 = y1}

+ (1− α)λ̂s(s1, ŝ2, ŝ1, ŝ2, y1, y2)

]
I{s1 = ŝ1},

(b)

≥
[
γ̃b(s1, y2)−

∑
s2 6=ŝ2

λ̃(2|1)
s (s1, s2, ŝ2, y2)

]
I{x1 = y1, s1 = ŝ1}

+ (1− α)λ̂s(s1, ŝ2, ŝ1, ŝ2, y1, y2)I{s1 = ŝ1}
≥ µ(1)

c (x1, s1, y1, y2) + µ(1)
s (s1, ŝ1, ŝ2, y1, y2),
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thereby satisfying (D6). The inequality in (b) follows from
the constraint (C2) of DPSI2|1. The feasibility with respect
to (D7) is trivially satisfied. Hence, the considered choice of
dual variables are feasible for DPSW.

Proof of Theorem 4.4: To get to the above converse,
take (λ̄

(1|2)
s , λ̄

(1|2)
c , γ̄a, γ̄b) as in (11), (λ̃

(2|1)
s , λ̃

(2|1)
c , γ̃a, γ̃b) as

in (15) and (λ̂s, λ̂c, γ̂
a, γ̂b) as in (9) and substitute in (28)

to get the values of the variables λ(1|2)
s , λ

(2|1)
s , µ

(2)
s , and µ(1)

s

of DPSW. For the remaining variables, choose the following
values of dual variables,

λc(s1, s2, x1, x2, y1, y2) = I{(y1, y2) = (x1, x2)}×
min{PS1,S2(s1, s2), φ̂(s1, s2) + φ(1|2)(s1, s2) + φ(2|1)(s1, s2)},

µ(2)
c (s2, x2, y1, y2) = −max

ŝ1
φ(1|2)(ŝ1, s2)I{x2 = y2},

µ(1)
c (s1, x1, y1, y2) = −max

ŝ2
φ(2|1)(s1, ŝ2)I{x1 = y1},

µ(2|1)
c (x2, s1, s2) ≡ min{PS1,S2(s1, s2), (49)

φ̂(s1, s2) + φ(1|2)(s1, s2) + φ(1|2)(s1, s2)},
γc(y1, y2) = −max

ŝ1,ŝ2
φ̂(ŝ1, ŝ2),

γb(s2) = −M1 max
ŝ1

φ(1|2)(ŝ1, s2)+∑
s1

µ(2|1)
c (x2, s1, s2),

γa(s1) = −M2 max
ŝ2

φ(2|1)(s1, ŝ2),

µ
(1|2)
c (x1, s1, s2) ≡ 0. The above choice of variables can be

easily verified to satisfy the constraints in (28).
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[9] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer programming.
Springer, 2014, vol. 271.

[10] C. Villani, Optimal transport: old and new. Springer, 2008, vol. 338.
[11] L. Palzer and R. Timo, “A converse for lossy source coding in the finite

blocklength regime,” 2016.
[12] V. Y. Tan et al., “Asymptotic estimates in information theory with non-

vanishing error probabilities,” Foundations and Trends R© in Communi-
cations and Information Theory, vol. 11, no. 1-2, pp. 1–184, 2014.

[13] A. El Gamal and Y.-H. Kim, Network information theory. Cambridge
university press, 2011.

[14] G. Vazquez-Vilar, A. T. Campo, A. G. i Fàbregas, and A. Martinez,
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