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An Innovations Approach to Viterbi Decoding of

Convolutional Codes
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Abstract—We introduce the notion of innovations for Viterbi
decoding of convolutional codes. First we define a kind of innova-
tion corresponding to the received data, i.e., the input to a Viterbi
decoder. Then the structure of a Scarce-State-Transition (SST)
Viterbi decoder is derived in a natural manner. It is shown that
the newly defined innovation is just the input to the main decoder
in an SST Viterbi decoder and generates the same syndrome
as the original received data does. A similar result holds for
Quick-Look-In (QLI) codes as well. In this case, however, the
precise innovation is not defined. We see that this innovation-
like quantity is related to the linear smoothed estimate of the
information. The essence of innovations approach to a linear
filtering problem is first to whiten the observed data, and then
to treat the resulting simpler white-noise observations problem.
In our case, this corresponds to the reduction of decoding
complexity in the main decoder in an SST Viterbi decoder. We
show the distributions related to the main decoder (i.e., the
input distribution and the state distribution in the code trellis
for the main decoder) are much biased under moderately noisy
conditions. We see that these biased distributions actually lead to
the complexity reduction in the main decoder. Furthermore, it is
shown that the proposed innovations approach can be extended
to maximum-likelihood (ML) decoding of block codes as well.

Index Terms—Convolutional codes, Viterbi decoding, innova-
tions, linear filtering, linear smoothing, Scarce-State-Transition
(SST) Viterbi decoder.

I. INTRODUCTION
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Fig. 1. The structure of an SST Viterbi decoder (pre-decoder: G−1).

IN 1985, Kubota, Kohri, and Kato [17] proposed a Viterbi

decoding scheme named Scarce-State-Transition (SST) for

the purpose of decoding of Quick-Look-In (QLI) codes [23].

They also extended the scheme to general codes. The corre-

sponding Viterbi decoder consists of a pre-decoder and a main

decoder (i.e., a conventional Viterbi decoder). The structure
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of an SST Viterbi decoder is shown in Fig.1 [38], where the

inverse encoder is used as a pre-decoder. At the first stage,

the transmitted information is estimated using a rather simple

decoder (i.e., a pre-decoder) such as the inverse encoder, and

then at the second stage, the estimation error at the first

stage is decoded using a main decoder. Finally, two decoder

outputs are combined to produce the final decoder output. The

SST scheme was devised mainly for the purpose of hardware

and power-consumption reduction in Viterbi decoder VLSI

implementation. More precisely [18], [19],

1) A likelihood concentration to the all-zero state1 occurs in

the main decoder.

2) In the main decoder, a maximum-likelihood decision cir-

cuit, which is used to determine the most likely survivor

from among all survivors at each depth, is omitted within

a very small performance degradation.

3) On-off switching rarely occurs in the path-memory circuit

in the main decoder when a decoder LSI is implemented

using the CMOS technology.

Since the estimation “error” is decoded in the main decoder,

it is natural to think that the SST scheme is closely related

to syndrome decoding [2], [3], [4], [28], [29], [30] based on

an error trellis. Later [37], [38], we showed that SST Viterbi

decoding based on a code trellis and syndrome decoding

based on the corresponding error trellis are equivalent under

a general condition.

On the other hand, in connection with stochastic processes,

the problem of extracting the innovations [1], [10], [11], [16],

[20], [41] from a given (complex) process has been discussed

for a long time (see [10], [11]). Let X(t) be a stochastic

process. Suppose that during an infinitesimal interval [t, t+dt),
X(t) obtains new information which is independent of the

information obtained by X(t) prior to time t. The newly

obtained information is called the “innovation” associated with

X(t). Kailath [14] applied the notion of innovations to a

linear filtering problem [5], [12], [14], [20], [27], [40]. Also,

Kailath and Frost [15] extended the idea to a linear smoothing

problem [12], [15], [27]. In the linear filtering theory, the

innovation associated with an observation is defined by the

difference between the observation and the estimate of a

signal, or equivalently, the sum of the estimation error and a

noise [14], [15]. Hence, we thought the notion of innovations

has some connection with SST Viterbi decoding in the coding

theory.

1The state in the code trellis for the main decoder consists of errors and is
regarded as a discrete random variable. We call its distribution simply a state

distribution. Then a likelihood concentration means that the state distribution
is not uniform but biased.

http://arxiv.org/abs/1710.11310v3
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In this paper, by comparing with the results in the linear

filtering theory, we define a kind of innovation corresponding

to the received data for a Viterbi decoder. Then the structure

of an SST Viterbi decoder is derived in a natural manner. We

see that the newly defined innovation is just the input to the

main decoder in an SST Viterbi decoder. A similar result is

obtained in connection with QLI codes as well. In the latter

case, however, the precise innovation is not defined. It is shown

that the obtained innovation-like quantity is related to linear

smoothing of the information. Moreover, for a QLI code, we

examine the relationship between the two estimates of the

information, i.e., the linear filtered estimate and the linear

smoothed estimate. Then it is shown that the latter has higher

accuracy as compared with the former. These are discussed in

Section II.

Now the main purpose of introducing the innovations in a

filtering problem is to whiten the observed data [14]. As a

result, the given problem is transformed to a simpler white-

noise observations problem. We thought this corresponds to

the reduction of decoding complexity in the main decoder

in an SST Viterbi decoder. The reduction of hardware and

power-consumption of an LSI is also considered as a related

simplification. Then we thought all of these reductions are

caused by biased distributions related to the main decoder.

Hence, in Section III, we focus our arguments mainly on these

distributions. We see that the distribution of the input to the

main decoder is biased under moderately noisy conditions.

The state distribution in the code trellis for the main decoder

is also biased under the same channel conditions. Moreover,

we observe that the state distribution in the error trellis is

equally biased.

Subsequently, in Section IV, we show those biased distri-

butions actually lead to the reduction of decoding complexity

in the main decoder. Since there have been several related

works [2], [4], [25], [33], [35], [36], the discussion is mainly

based on these known works. We remark that syndrome decod-

ing based on an error trellis has less complexity as compared

with Viterbi decoding based on a code trellis [2], [4]. Since

the SST scheme is equivalent to syndrome decoding based on

the error trellis, this is quite reasonable. In connection with

the subject, we derive an approximate criterion for complexity

reduction in the main decoder.

The fundamental feature of the SST scheme lies in its

structure where an estimation error is decoded in the main

decoder. Then we see that a similar scheme (i.e., two-stage

decoding) can be applied to block codes as well. In Section

V, it is shown that a kind of innovation can also be extracted in

connection with maximum-likelihood (ML) decoding of block

codes [22].

Let us close this section by introducing the basic notions

needed for this paper. We always assume that the underlying

field is GF(2). Let G(D) be a generator matrix for an

(n0, k0) convolutional code, where G(D) is assumed to be

canonical [13], [24] (i.e., minimal [6]). A corresponding check

matrix H(D) is also assumed to be canonical. Hence, they

have the same constraint length, denoted ν. Denote by i={ik}
and y={yk} an information sequence and the corresponding

code sequence, respectively, where ik = (i
(1)
k , · · · , i(k0)

k ) is

the information block at t= k and yk = (y
(1)
k , · · · , y(n0)

k ) is

the encoded block at t= k. In this paper, it is assumed that

a code sequence y is transmitted symbol by symbol over a

memoryless AWGN channel using BPSK modulation [9]. Let

z={zk} be a received sequence, where zk=(z
(1)
k , · · · , z(n0)

k )
is the received block at t = k. Each component zj of z is

modeled as

zj = xj

√

2Es/N0 + wj . (1)

Here, xj takes ±1 depending on whether the code symbol yj
is 0 or 1. Es and N0 denote the energy per channel symbol

and the single-sided noise spectral density, respectively. (Let

Eb be the energy per information bit. Then the relationship

between Eb and Es is defined by Es=REb, where R is the

code rate.) Also, wj is a zero-mean unit variance Gaussian

random variable with probability density function

q(y) =
1√
2π

e−
y2

2 . (2)

Each wj is independent of all others. Let p(zj |yj) be the

conditional probability density function of zj given yj . The

hard-decision (denoted “h”) data of zj is defined by

zhj
△
=

{

0, L(zj|yj) ≥ 0
1, L(zj|yj) < 0,

(3)

where

L(zj|yj)
△
= log

p(zj |yj = 0)

p(zj |yj = 1)
(4)

is the log-likelihood ratio conditioned on yj (“log” denotes

the natural logarithm). In our case, this is equivalent to

zhj
△
=

{

0, zj ≥ 0
1, zj < 0.

(5)

Note that in Fig.1, the main decoder input r
(l)
k (1 ≤ l ≤ n0)

is given by

r
(l)
k =

{

|z(l)k |, r
(l)h
k = 0

−|z(l)k |, r
(l)h
k = 1.

(6)

Let vk=(v1k, · · · , vnk ) be an n-tuple of variables. Also, let

p(D) = (p1(D), · · · , pn(D)) be an n-tuple of polynomials

in D. Since each pi(D) is a delay operator with respect to

k,
∑n

i=1 pi(D)vik is well defined, where Dmvik = vik−m. In

this paper, noting that vk is a row vector, we express the

above variable as vkp
T (D) (“T ” means transpose). Using this

notation, we have

yk = ikG(D). (7)

Also, the syndrome at t=k is defined by

ζk = zh
kH

T (D). (8)

Note that ζk=ekH
T (D) holds, where ek=(e

(1)
k , · · · , e(n0)

k )
is the error at t=k.
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II. AN INNOVATIONS APPROACH TO VITERBI DECODING

OF CONVOLUTIONAL CODES

As stated in the preceding section, it seems that the no-

tion of innovations introduced for linear filtering/smoothing

problems has some connection with SST Viterbi decoding of

convolutional codes. In the following, based on this conjecture,

we investigate Viterbi decoding of convolutional code from an

innovation viewpoint.

A. Innovations Associated with the Received Data for a Viterbi

Decoder

First consider a linear filtering problem [5], [12], [14], [20],

[27], [40]. Let

y(t) = C(t)x(t) + w(t) (9)

be the observation corresponding to a signal x(t), where C(t)
is a coefficient matrix and w(t) is a white Gaussian noise.

In this case, the innovation ν(t) [14] associated with y(t) is

defined as

ν(t) = y(t)− C(t)x̂(t|t), (10)

where x̂(t|t) is a linear function of all the data {y(s), s <
t} that minimizes the mean-square error E[(x(t) −
x̂(t|t))T (x(t)− x̂(t|t))] (“E[·]” is the expectation) [14].

Next, consider convolutional encoding based on G(D). Let

zh
k = ikG(D) + ek (11)

be the received data, where ik and ek are an information

block and an error, respectively. By comparison with the linear

filtering theory, it is reasonable to think that

rh
k = zh

k − î(k|k)G(D)

= zh
k + î(k|k)G(D) (12)

corresponds to ν(t), where î(k|k) denotes an estimate of

ik based on {zh
s , s ≤ k}. Suppose that î(k|k) is a linear

combination of the received data {zh
s , s ≤ k} and has the

form

î(k|k) = zh
kP (D), (13)

where P (D) is a polynomial matrix. Then we have

rhk = zh
k + zh

kP (D)G(D)

= (ikG(D) + ek) + (ikG(D) + ek)P (D)G(D)

= ik(Ik0
+G(D)P (D))G(D)+ekP (D)G(D)+ek,

where Ik0
is the identity matrix of size k0 × k0. Note that if

(Ik0
+G(D)P (D))G(D)=G(D)+G(D)P (D)G(D)=0

or

G(D)P (D)G(D) = G(D) (14)

holds, then rhk is independent of ik. Here G(D)P (D)G(D)=
G(D) implies that P (D) is a generalized inverse [26] of

G(D). Then a right inverse G−1(D) of G(D) can be taken

as P (D). In this case, rh
k is independent of ik and we have

rh
k = (ekG

−1)G+ ek (15)

= ukG+ ek (16)

= ek(G
−1G+ In0

), (17)

where uk
△
= ekG

−1. We think this quantity corresponds to

an innovation in the linear filtering theory. We remark that the

right-hand side is just the input to the main decoder in an SST

Viterbi decoder, where the inverse encoder G−1 is used as a

pre-decoder (see Fig.1). Also, note that

rh
kH

T (D) = zh
kH

T (D) + zh
kP (D)G(D)HT (D)

= zh
kH

T (D) = ζk (18)

holds irrespective of P (D). Hence, rhk and zh
k generate the

same syndrome ζk.

On the other hand, rhk has another expression. Let

G = A× Γ×B (19)

be an invariant-factor decomposition [6] of G(D). Since G(D)
is canonical (accordingly, basic), we can assume [6] that the

first k0 rows of B coincide with G(D) and the last (n0 − k0)
columns of B−1 coincide with the syndrome former HT (D).
As a result, we have

In0
= B−1B

=
(

G−1 HT
)

(

G
(H−1)T

)

= G−1G+HT (H−1)T . (20)

Then

rh
k = ek(G

−1G+ In0
)

= ekH
T (H−1)T = ζk(H

−1)T (21)

is obtained. Thus we have again

rhkH
T = ζk(H

−1)THT = ζk.

Therefore, rhk has the following properties:

1) rhk=ek(G
−1G+In0

) holds. Hence, rhk consists of errors

{es, s ≤ k}. There is a correspondence between ek and

rhk in the sense that they generate the same syndrome ζk.

2) {rhs , s ≤ k} and {zh
s , s ≤ k} generate the same

syndrome sequence {ζs, s ≤ k}.

Property 1) corresponds to the fact that an innovation process

is a white-noise process in the linear filtering theory. Property

2) is the most important one and corresponds to the fact

that the original received data and the associated innovations

have the same information. In the case of error correction,

if two quantities generate the same syndrome sequence, then

we can conclude that they have the equal information. Here

we remark that {rhk} does not have the same properties as

those of innovations in the linear filtering theory. Hence, we

may call {rhk} the innovations associated with {zh
k} in a weak

sense [20]. All of this leads to the following notation.

Definition 2.1: Let {zh
k} be the received data. Here assume

the following: For zh
k , there exists rhk which consists of errors

{es, s ≤ k} such that for each k, {rh
s , s ≤ k} and {zh

s , s ≤
k} generate the same syndrome sequence {ζs, s ≤ k}. In this

case, we call {rhk} the innovations associated with {zh
k}.

The above argument implies that we may call

rhk = zh
k + (zh

kG
−1)G

= zh
k(In0

+G−1G) (22)
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the innovation corresponding to zh
k .

Here note the mapping: zh
k 7→ rh

k . In the innovations

approach to linear filtering problems, the observed data is

whitened by a causal [6] and invertible operation. With respect

to the above mapping, we have the following.

Proposition 2.2: The mapping: zh
k 7→ rhk=zh

k(In0
+G−1G)

is not invertible.

Proof: We will show that det(In0
+ G−1G) =

det
(

HT (H−1)T
)

= 0 (“det(·)” is the determinant). Since H
is assumed to be canonical (accordingly, basic), we have a

following invariant-factor decomposition:

H = Â× Γ̂× B̂,

where

Γ̂ =











1 0 ... 0 0 ... 0
0 1 ... 0 0 ... 0
...

...
. . .

...
...

. . .
...

0 0 ... 1 0 ... 0











△
=

(

In0−k0
On0−k0,k0

)

.

Here, On0−k0,k0
denotes the zero matrix of size (n0−k0)×k0.

Then [13] we have

H−1 = B̂−1 × Γ̂−1 × Â−1,

where

Γ̂−1 =

























1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 ... 1
0 0 ... 0
...

...
. . .

...

0 0 ... 0

























△
=

(

In0−k0

Ok0,n0−k0

)

.

Hence, it follows that

H−1H = B̂−1Γ̂−1Â−1ÂΓ̂B̂

= B̂−1Γ̂−1Γ̂B̂

= B̂−1

(

In0−k0

Ok0,n0−k0

)

×
(

In0−k0
On0−k0,k0

)

B̂

= B̂−1

(

In0−k0
On0−k0,k0

Ok0,n0−k0
Ok0,k0

)

B̂.

Accordingly,

HT (H−1)T = B̂T

(

In0−k0
On0−k0,k0

Ok0,n0−k0
Ok0,k0

)

(B̂−1)T .

Hence, we have

det
(

HT (H−1)T
)

= det
(

B̂T
)

det

(

In0−k0
On0−k0,k0

Ok0,n0−k0
Ok0,k0

)

× det
(

(B̂−1)T
)

= det(B̂)det

(

In0−k0
On0−k0,k0

Ok0,n0−k0
Ok0,k0

)

× det(B̂−1)

= det

(

In0−k0
On0−k0,k0

Ok0,n0−k0
Ok0,k0

)

.

Finally, note that

det

(

In0−k0
On0−k0,k0

Ok0,n0−k0
Ok0,k0

)

= 0.

The following shows that the innovation rh
k corresponding

to zh
k cannot be further reduced.

Proposition 2.3: In the relation rhk = zh
k(In0

+G−1G),
replace zh

k on the right-hand side by rh
k . Then we have rh

k

again.

Proof:

rh
k(In0

+G−1G)

= rh
kH

T (H−1)T

= ζk(H
−1)T = rhk . (23)

B. Relationship Between General Codes and QLI Codes

   pre-
decoder

       re-
   encoder

 delay

    main-
  decoderz

h
k=ikG+ek

ik-L+uk

+ +
uk

G

 DL

z
h
k-L

ηh
k-L=ukG+ek-L

F=(1, 1)
T

ik-L

Fig. 2. The structure of an SST Viterbi decoder for a QLI code (pre-decoder:
F =(1, 1)T ).

We remark that the first paper [17] on SST Viterbi decoding

dealt with QLI codes. Let

G(D) = (g1(D), g2(D)) (24)

(g1 + g2 = DL, 1 ≤ L ≤ ν − 1)

be a generator matrix for a QLI code, where ν is the constraint

length of G(D). The corresponding SST Viterbi decoder is

shown in Fig.2 [38].

Here consider the following quantity:

ηh
k−L = zh

k−L − î(k − L|k)G(D)

= zh
k−L + î(k − L|k)G(D), (25)

where î(k − L|k) denotes an estimate of ik−L based on

{zh
s , s ≤ k}. In the linear filtering/smoothing theory, this

corresponds to

y(t)− C(t)x̂(t|b) (t < b). (26)



TAJIMA : AN INNOVATIONS APPROACH TO VITERBI DECODING OF CONVOLUTIONAL CODES 5

Hence, ηh
k−L is slightly different from the innovation associ-

ated with the observation zh
k−L. We can call î(k−L|k) a linear

smoothed estimate of ik−L. Note that x̂(t|b) is the estimate of

x(t) (t < b) based on the observations y(s) (s < b) [15].

That is, more observations are used for the estimation of x(t)
as compared with x̂(t|t). Accordingly, the accuracy of x̂(t|b)
may increase as compared with x̂(t|t). Then it is reasonable

to think a similar result holds with respect to î(k − L|k) (see

Proposition 2.8).

Now suppose that î(k − L|k) has the form

î(k − L|k) = zh
kQ(D), (27)

where Q(D) is a polynomial matrix. Then we have

ηh
k−L = zh

k−L + zh
kQ(D)G(D)

= (ik−LG(D) + ek−L)

+(ikG(D) + ek)Q(D)G(D)

= ik(D
L +G(D)Q(D))G(D)

+ekQ(D)G(D) + ek−L.

Note that if

(DL+G(D)Q(D))G(D)=DLG(D)+G(D)Q(D)G(D)=0

or

G(D)D−LQ(D)G(D) = G(D) (28)

holds, then ηh
k−L is independent of ik. Here

G(D)D−LQ(D)G(D) = G(D) implies that D−LQ(D)
is a generalized inverse [26] of G(D). Then we can take

F
△
=

(

1
1

)

as Q(D). In this case, ηh
k−L is independent of

ik and we have

ηh
k−L = (ekF )G+ ek−L (29)

= ukG+ ek−L (30)

= ek(FG+DLI2), (31)

where uk
△
= ekF . We remark that the right-hand side is just

the input to the main decoder in an SST Viterbi decoder, where

F is used as a pre-decoder (see Fig.2). Also, note that

ηh
k−LH

T (D) = zh
k−LH

T (D)+zh
kQ(D)G(D)HT (D)

= zh
k−LH

T (D) = ζk−L (32)

holds irrespective of Q(D). Hence, ηh
k−L and zh

k−L generate

the same syndrome ζk−L.

On the other hand, ηh
k−L has another expression. We have

FG+DLI2 =

(

g1+DL g2
g1 g2+DL

)

=

(

g2 g2
g1 g1

)

= (HT , HT ), (33)

where HT =

(

g2
g1

)

is the syndrome former corresponding

to G=(g1, g2). Then

ηh
k−L = ek(H

T , HT ) = (ζk, ζk) (34)

is obtained. Thus we have again

ηh
k−LH

T = (ζk, ζk)

(

g2
g1

)

= ζk(g1 + g2)

= ζkD
L = ζk−L.

Therefore, ηh
k−L has the following properties:

1) ηh
k−L = ek(FG+DLI2) holds. Hence, ηh

k−L depends

not only on errors {es, s ≤ k − L} but also on

errors {es, k − L < s ≤ k} in general. There is

a correspondence between ek and ηh
k−L in the sense

that the former generates the syndrome ζk and the latter

generates the syndrome ζk−L.

2) {ηh
s , s ≤ k − L} and {zh

s , s ≤ k − L} generate the

same syndrome sequence {ζs, s ≤ k − L}.

The above argument implies that

ηh
k−L = zh

k−L + (zh
kF )G

= zh
k(D

LI2 + FG) (35)

is not the innovation corresponding to zh
k−L in the meaning

of Definition 2.1.

Now with respect to the mapping: zh
k 7→ ηh

k−L, we have

the following.

Proposition 2.4: The mapping: zh
k 7→ ηh

k−L = zh
k(D

LI2+
FG) is not invertible.

Proof: It follows from

DLI2 + FG =

(

g2 g2
g1 g1

)

that det(DLI2+FG)=0.

The following shows that ηh
k−L cannot be further reduced

as in the case of rh
k .

Proposition 2.5: In the relation ηh
k−L = zh

k(D
LI2+FG),

replace zh
k on the right-hand side by ηh

k . Then we have ηh
k−L

again.

Proof:

ηh
k(D

LI2 + FG)

= ηh
k(H

T , HT )

= (ζk, ζk) = ηh
k−L. (36)

Consider a QLI code defined by G(D). It can be regarded

as a general code as well. Hence, we can apply the argument

in the preceding section to it. Let î(k − L|k) be the estimate

of ik−L derived as a QLI code, whereas let î(k − L|k − L)
be the estimate of ik−L derived as a general code. Then we

have the following.

Proposition 2.6: Let G = (g1, g2) (g1 + g2 = DL) be a

generator matrix for a QLI code. Define as follows:

î(k − L|k) △
= zh

kF (37)

î(k − L|k − L)
△
= zh

k−LG
−1. (38)

Then we have

î(k − L|k) = î(k − L|k − L) + ζk, (39)
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where ζk=ekH
T =ek

(

g2
g1

)

is the syndrome.

Proof: From

î(k − L|k) = zh
kF = ik−L + ekF

î(k − L|k − L) = zh
k−LG

−1= ik−L+ek−LG
−1,

the difference between î(k−L|k) and î(k−L|k−L) is given

by

ekF + ek−LG
−1 = ek(F +DLG−1). (40)

Let

G−1 =

(

b1
b2

)

.

Then we have

F +DLG−1 =

(

1+DLb1
1+DLb2

)

. (41)

We show that the above is equal to HT . In fact, we have

(g1, g2)

(

1+DLb1
1+DLb2

)

= (g1 + g2) +DL(g1b1 + g2b2)

= DL +DL = 0.

Corollary 2.7: Under the same conditions as in Proposition

2.6,

ηh
k−L = rhk−L + ζkG (42)

holds.

Proof: From

zh
kF = zh

k−LG
−1 + ζk,

it follows that

zh
k−L+(zh

kF )G = zh
k−L+(zh

k−LG
−1)G+ζkG.

Here, it suffices to note the following equalities:

ηh
k−L = zh

k−L + (zh
kF )G

rh
k−L = zh

k−L + (zh
k−LG

−1)G.

On the analogy of the linear filtering/smoothing theory, it

is expected that the linear smoothed estimate î(k − L|k) has

higher accuracy as compared with the linear filtered estimate

î(k−L|k−L). In the following, P (·) denotes the probability

and

ǫ =
1√
2π

∫ ∞

√
2Es/N0

e−
y2

2 dy
△
= Q(

√

2Es/N0) (43)

is the channel error probability. We have the following.

Proposition 2.8: Let

pf
△
= P (̂i(k − L|k − L) 6= ik−L)

= P (ek−LG
−1 = 1) (44)

ps
△
= P (̂i(k − L|k) 6= ik−L)

= P (ekF = 1). (45)

Then ps ≤ pf for 0 ≤ ǫ ≤ 1/2.

Proof: Let G−1 =

(

b1
b2

)

. Then ek−LG
−1 = 1 is

expressed as

e
(1)
k−Lb1(D) + e

(2)
k−Lb2(D) = 1.

We can rewrite the above as e1+e2+· · ·+em=1, where errors

ej (1 ≤ j ≤ m, 3 ≤ m) are statistically independent of each

other. Also, note that under this condition,

P
(

e
(1)
k +e

(2)
k =1

)

= P (e1+e2=1)

holds. Hence, the comparison between pf and ps is reduced

to that between P (e1+e2+· · ·+em=1) and P (e1+e2=1).
Now we have

P (e1+e2+· · ·+em=1)

= P (e1+e2+eb=1)

= P (e1+e2=1, eb=0) + P (e1+e2=0, eb=1)

= P (e1+e2=1)P (eb=0) + P (e1+e2=0)P (eb=1),

where eb
△
= e3+· · ·+em. Hence, we have

P (e1+e2+eb=1)− P (e1+e2=1)

= −P (e1+e2=1)
(

1− P (eb=0)
)

+P (e1+e2=0)P (eb=1)

= P (eb=1)
(

P (e1+e2=0)− P (e1+e2=1)
)

= P (eb=1)(1− 2ǫ)2 ≥ 0 (0 ≤ ǫ ≤ 1/2). (46)

Example 1: Consider the QLI code C1 defined by G(D)=
(1 +D +D2, 1 +D2) (L = 1). From an invariant-factor

decomposition of G(D),

G−1(D) =

(

D
1+D

)

(47)

is obtained. Hence, we have

F +DLG−1 =

(

1
1

)

+D

(

D
1+D

)

=

(

1+D2

1+D+D2

)

= HT . (48)

First compare the two estimates of ik−1. Note the following:

î(k − 1|k) = z
(1)h
k + z

(2)h
k = ik−1 + ekF

î(k − 1|k − 1) = z
(1)h
k−2+z

(2)h
k−2+z

(2)h
k−1 = ik−1+ek−1G

−1.

From the first equation, the error probability of î(k − 1|k) is

given by

ps
△
= P (e

(1)
k + e

(2)
k = 1)

= 2ǫ− 2ǫ2. (49)

On the other hand, from the second equation, the error

probability of î(k − 1|k − 1) is given by

pf
△
= P (e

(1)
k−2 + e

(2)
k−2 + e

(2)
k−1 = 1)

= 3ǫ− 6ǫ2 + 4ǫ3. (50)
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TABLE I
AN EXAMPLE OF ENCODING BASED ON G(D)=(1+D+D2, 1+D2)

k 1 2 3 4 5 6 7 8
ik 1 0 0 1 0 1 0 0
yk 11 10 11 11 10 00 10 11
ek 00 10 00 01 00 10 00 00
z
h
k

11 00 11 10 10 10 10 11
ζk 0 1 0 0 1 0 0 1

î(k − 1|k) 0 0∗ 0 1∗ 1 1∗ 1 0

î(k − 1|k − 1) 0 1 0 1∗ 0∗ 1∗ 1 1∗

ik−1 0 1 0 0 1 0 1 0

Hence, we have

pf − ps = (3ǫ− 6ǫ2 + 4ǫ3)− (2ǫ− 2ǫ2)

= ǫ(1− 2ǫ)2 ≥ 0. (51)

This inequality implies that î(k− 1|k) has higher accuracy as

compared with î(k − 1|k − 1).
Next, we show an example of encoding (see Table I). In this

example, the encoder is terminated in state (00) at k=8. In

Table I, “∗” denotes that the information ik−1 and its estimate

are different. We observe that the relation

î(k − 1|k) = î(k − 1|k − 1) + ζk

actually holds.

III. DISTRIBUTIONS RELATED TO THE MAIN DECODER IN

AN SST VITERBI DECODER

It is stated [14] that the innovations approach to linear

filtering problems is first to convert the observed process to

a white-noise process, and then to treat the resulting simpler

white-noise observations problem. In our case, we think this

corresponds to the reduction of decoding complexity in the

main decoder in an SST Viterbi decoder. We also think the

reduction is caused by biased distributions related to the main

decoder. First we show that the distribution of the input to the

main decoder is biased under low to moderate channel noise

level. Next, we show that the state distribution in the code

trellis for the main decoder is also biased under the same

channel conditions. In either case, a QLI code is used in the

discussion. This is because a QLI code is regarded as a general

code as well and then we can compare two distributions, i.e.,

the one obtained as a general code and the other obtained as

a QLI code. Furthermore, we show that the state distribution

in the error trellis is equally biased.

A. Information Obtained through Observations [5]

Consider the channel model in Section I:

zj = xj

√

2Es/N0 + wj = cxj + wj ,

where c
△
=

√

2Es/N0. The conditional entropy H [z|x] of the

observation zj given xj is equal to the entropy H [w] of wj ,

where H [w] is given by

H [w] =
1

2
log(2πe). (52)

Suppose that yj has values 0 and 1 with equal probability.

Then the probability density function of zj , denoted p(y), is

given by

p(y) =
1

2
q(y − c) +

1

2
q(y + c), (53)

where

q(y) =
1√
2π

e−
y2

2 .

Remark 1: When there is no danger of confusion, we call

the probability density function of a random variable X simply

the distribution of X .

Let us calculate the entropy H [z] of zj [39]. Since
∫ ∞

−∞

yq(y)dy =
c

2
+

(−c)

2
= 0

and
∫ ∞

−∞

y2q(y)dy =
1 + c2

2
+

1 + c2

2
= 1 + c2,

the entropy H [z] associated with p(y) [39] is computed as

H [z] = −
∫ ∞

−∞

p(y) log p(y)dy ≤ 1

2
log

(

2πe(1 + c2)
)

, (54)

with equality when p(y) is Gaussian.

Hence, we have

H [x; z] = H [z]−H [w]

≤ 1

2
log

(

2πe(1 + c2)
)

− 1

2
log(2πe)

=
1

2
log(1 + c2), (55)

where H [x; z] represents the information obtained through the

observation [5].

Remark 2: H [x; z] is the channel capacity of the

binary-input AWGN channel [39]DSuppose that c →
0 (

√

2Es/N0 → 0). Then the inequality almost becomes an

equality. Also, note that

log(1 + c2) ≈ c2 (c → 0).

Then we have

H [x; z] ≈ 1

2
2Es/N0 = Es/N0 (c → 0). (56)

B. Entropy Associated with the Distribution of the Input to

the Main Decoder

1) General codes: Suppose that the inverse encoder

G−1(D) is used as a pre-decoder. Let rk =(r
(1)
k , · · · , r(n0)

k )
be the input to the main decoder in an SST Viterbi decoder.

We have the following.

Proposition 3.1: The distribution of r
(l)
k (1 ≤ l ≤ n0) is

given by

pr(y) = (1 − α)q(y − c) + αq(y + c), (57)

where

α
△
= P (e

(l)
k =0, r

(l)h
k =1) + P (e

(l)
k =1, r

(l)h
k =0). (58)
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Proof: We can assume that the all-zero code sequence is

transmitted. In this case, the distribution of z
(l)
k is given by

q(y − c) and we have

z
(l)
k =

{

|z(l)k |, e
(l)
k = 0

−|z(l)k |, e
(l)
k = 1.

On the other hand, from the structure of the SST Viterbi

decoder (cf. Fig.1), it follows that

r
(l)
k =

{

|z(l)k |, r
(l)h
k = 0

−|z(l)k |, r
(l)h
k = 1.

Hence, there are four cases:

1) e
(l)
k =0, r

(l)h
k =0 → z

(l)
k = |z(l)k |, r(l)k = |z(l)k |

2) e
(l)
k =0, r

(l)h
k =1 → z

(l)
k = |z(l)k |, r(l)k =−|z(l)k |

3) e
(l)
k =1, r

(l)h
k =0 → z

(l)
k =−|z(l)k |, r(l)k = |z(l)k |

4) e
(l)
k =1, r

(l)h
k =1 → z

(l)
k =−|z(l)k |, r(l)k =−|z(l)k |.

In cases 2) and 3), r
(l)
k =−z

(l)
k holds and the distribution of

r
(l)
k =−z

(l)
k becomes q(y + c). Hence, the distribution of r

(l)
k

is given by

pr(y) = (1− α)q(y − c) + αq(y + c),

where

α = P (e
(l)
k =0, r

(l)h
k =1) + P (e

(l)
k =1, r

(l)h
k =0).

Next, let us calculate the entropy of r
(l)
k , denoted H [r]. For

the purpose, we calculate the variance σ2
r of pr(y). Note the

following:

mr =

∫ ∞

−∞

ypr(y)dy

= (1− α)

∫ ∞

−∞

yq(y − c)dy + α

∫ ∞

−∞

yq(y + c)dy

= (1− α)c+ α(−c)

= c(1− 2α)

∫ ∞

−∞

y2pr(y)dy

= (1 − α)

∫ ∞

−∞

y2q(y − c)dy + α

∫ ∞

−∞

y2q(y + c)dy

= (1 − α)(1 + c2) + α(1 + c2)

= 1 + c2.

Then

σ2
r =

∫ ∞

−∞

y2pr(y)dy −m2
r

= (1 + c2)− c2(1− 2α)2

= 1 + 4c2α(1 − α)

is obtained. Hence, we have

H [r] = −
∫ ∞

−∞

pr(y) log pr(y)dy

≤ 1

2
log

(

2πe(1 + 4c2α(1 − α))
)

, (59)

with equality when pr(y) is Gaussian. We remark that the

right-hand side contains a parameter α which depends on e
(l)
k

and r
(l)h
k . Hence, α inevitably depends on G(D) (cf. rh

k =
ek(G

−1G+In0
)).

We have already calculated H [z] and H [r]. However, all

of the obtained expressions are inequalities. First consider the

difference H [z]−H [r]. Let ǫ=Q(
√

2Es/N0) be the channel

error probability. We need the following.

Lemma 3.2: For 0 ≤ ǫ ≤ 1/2, we have 0 ≤ α ≤ 1/2.

Proof: See Appendix A.

Note that pr(y) is biased and that the smaller ǫ becomes

(i.e., α → 0), the more pr(y) is biased. Hence, it is expected

that H [z]−H [r] ≥ 0 and H [z]−H [r] increases as ǫ decreases.

On the other hand, let us evaluate the difference between

the right-hand sides of H [z] and H [r], i.e.,

1

2
log

(

2πe(1 + c2)
)

−1

2
log

(

2πe(1 + 4c2α(1 − α))
)

=
1

2
log

(

1 + c2

1 + 4c2α(1 − α)

)

. (60)

Since 0 ≤ α ≤ 1/2, we have

0 ≤ 4α(1 − α) ≤ 1.

Hence, from

1 + 4c2α(1− α) ≤ 1 + c2,

it follows that

1

2
log

1 + c2

1 + 4c2α(1− α)
=

1

2
log(1 + θ) (θ ≥ 0).

Moreover, consider the special cases, 1) ǫ → 0 and 2) ǫ →
1/2.

1) ǫ → 0: We see that pr(y) → q(y − c), where q(y − c) is

Gaussian. Hence, we have

H [r] ≈ 1

2
log

(

2πe(1 + 4c2α(1 − α))
)

.

Then we approximately have

H [z]−H [r] ≤ 1

2
log

(

1 + c2

1 + 4c2α(1 − α)

)

≈ 1

2
log(1 + c2) (c → ∞).

2) ǫ → 1/2: We see that p(y) → q(y), where q(y) is

Gaussian. Hence, we have

H [z] ≈ 1

2
log

(

2πe(1 + c2)
)

.

Then we approximately have

H [z]−H [r] ≥ 1

2
log

(

1 + c2

1 + 4c2α(1 − α)

)

≈ 1

2
log

(

1 + c2

1 + c2

)

= 0 (c → 0).

Furthermore, observe that as ǫ (0 ≤ ǫ ≤ 1/2) decreases,
1
2 log

(

1+c2

1+4c2α(1−α)

)

increases (cf. Table II). We see that this

is consistent with the expected behavior of H [z]−H [r].
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We have not derived the exact value of H [z] − H [r].
However, the above argument implies that the two quantities

H [z]−H [r] and 1
2 log

(

1+c2

1+4c2α(1−α)

)

have a close relation and

the latter can be regarded as an approximation of H [z]−H [r].
Hence, in the following, we will compute the latter in order to

evaluate H [z]−H [r]. Also, the relationship between the two

quantities is denoted as

H [z]−H [r] ≈ 1

2
log

(

1 + c2

1 + 4c2α(1 − α)

)

, (61)

where the notation “≈” is used in the above meaning.

We remark that the above calculation applies to a single

component of the branch code. However, in order to know

the bias of the composite distribution, we should calculate

the entropy corresponding to the whole branch. Note that in

our channel model, the branch code is transmitted symbol by

symbol. Then the distributions corresponding to each code

symbol are statistically independent of each other. Hence, the

entropy associated with the composite distribution, denoted

H [r1, r2, · · · , rn0
], is the sum of the entropies associated with

the distributions corresponding to each code symbol. That is,

we have

H [r1, r2, · · · , rn0
] = H [r1]+H [r2]+· · ·+H [rn0

]. (62)

2) QLI codes: Let

G(D) = (g1(D), g2(D)) (g1 + g2 = DL)

be a generator matrix for a QLI code. Suppose that F =(1, 1)T

is used as a pre-decoder. Let ηk−L = (η
(1)
k−L, η

(2)
k−L) be the

input to the main-decoder in an SST Viterbi decoder (see

Fig.2). We have the following.

Proposition 3.3: The distribution of η
(l)
k−L (l=1, 2) is given

by

pη(y) = (1− β)q(y − c) + βq(y + c), (63)

where

β
△
= P (e

(l)
k−L=0, ζk=1) + P (e

(l)
k−L=1, ζk=0). (64)

Proof: Suppose that the all-zero code sequence is trans-

mitted as before. In this case, the distribution of z
(l)
k−L is given

by q(y − c) and we have

z
(l)
k−L =

{

|z(l)k−L|, e
(l)
k−L = 0

−|z(l)k−L|, e
(l)
k−L = 1.

On the other hand, we already have ηh
k−L=(ζk, ζk). Then it

follows that

η
(l)
k−L =

{

|z(l)k−L|, ζk = 0

−|z(l)k−L|, ζk = 1.

Hence, there are four cases:

1) e
(l)
k−L=0, ζk = 0 → z

(l)
k−L= |z(l)k−L|, η

(l)
k−L= |z(l)k−L|

2) e
(l)
k−L=0, ζk = 1 → z

(l)
k−L= |z(l)k−L|, η

(l)
k−L=−|z(l)k−L|

3) e
(l)
k−L=1, ζk = 0 → z

(l)
k−L=−|z(l)k−L|, η

(l)
k−L= |z(l)k−L|

4) e
(l)
k−L=1, ζk = 1 → z

(l)
k−L=−|z(l)k−L|, η

(l)
k−L=−|z(l)k−L|.

In cases 2) and 3), η
(l)
k−L=−z

(l)
k−L holds and the distribution

of η
(l)
k−L =−z

(l)
k−L becomes q(y + c). Hence, the distribution

of η
(l)
k−L is given by

pη(y) = (1 − β)q(y − c) + βq(y + c),

where

β = P (e
(l)
k−L=0, ζk=1) + P (e

(l)
k−L=1, ζk=0).

The rest of the argument follows as in the preceding section.

Let H [η] be the entropy of η
(l)
k−L. Then we have

H [η] = −
∫ ∞

−∞

pη(y) log pη(y)dy

≤ 1

2
log(2πe(1 + 4c2β(1 − β))), (65)

with equality when pη(y) is Gaussian. Also, we have

H [z]−H [η] ≈ 1

2
log(2πe(1 + c2))

−1

2
log(2πe(1 + 4c2β(1− β)))

=
1

2
log

(

1 + c2

1 + 4c2β(1− β)

)

, (66)

where the notation “≈” is employed in the same meaning as

in the case of general codes. Furthermore, we have used the

following (cf. Lemma 3.2).

Lemma 3.4: For 0 ≤ ǫ ≤ 1/2, we have 0 ≤ β ≤ 1/2.

Proof: See Appendix B.

3) An example: Consider the QLI code C1 defined in

Example 1. First we regard C1 as a general code (G−1 is used

as a pre-decoder). Let us evaluate the parameter α defined in

the previous section. For the first component of a branch, we

have

α1 = 5ǫ− 20ǫ2 + 40ǫ3 − 40ǫ4 + 16ǫ5,

where ǫ=Q(
√

2Es/N0)=Q(
√

Eb/N0) is the channel error

probability. Similarly, for the second component of the branch,

we have

α2 = 6ǫ− 30ǫ2 + 80ǫ3 − 120ǫ4 + 96ǫ5 − 32ǫ6.

Hence,

H(1)
r

△
= H [z1]−H [r1] ≈

1

2
log

(

1 + c2

1 + 4c2α1(1− α1)

)

(67)

H(2)
r

△
= H [z2]−H [r2] ≈

1

2
log

(

1 + c2

1 + 4c2α2(1− α2)

)

(68)

are obtained, where c=
√

2Es/N0=
√

Eb/N0.

Next, we regard C1 as a QLI code (F is used as a pre-

decoder) and evaluate the parameter β. In this case, we have

β1 = 6ǫ− 30ǫ2 + 80ǫ3 − 120ǫ4 + 96ǫ5 − 32ǫ6 (= α2)

for the first component of a branch. Similarly, for the second

component of the branch, we have

β2 = 4ǫ− 12ǫ2 + 16ǫ3 − 8ǫ4.
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TABLE II
ENTROPIES ASSOCIATED WITH INPUT DISTRIBUTIONS (AS A GENERAL

CODE)

Eb/N0 (dB) c ǫ α1 α2 H
(1)
r H

(2)
r H

(1)
r +H

(2)
r

0 1.000 0.1587 0.4259 0.4494 0.0055 0.0026 0.0081
1 1.122 0.1309 0.3904 0.4191 0.0136 0.0075 0.0211
2 1.259 0.1040 0.3442 0.3766 0.0307 0.0190 0.0497
3 1.413 0.0788 0.2879 0.3213 0.0639 0.0445 0.1084
4 1.585 0.0565 0.2255 0.2565 0.1214 0.0929 0.2143
5 1.778 0.0377 0.1621 0.1876 0.2131 0.1759 0.3890
6 1.995 0.0230 0.1049 0.1231 0.3456 0.3027 0.6483
7 2.239 0.0126 0.0599 0.0710 0.5191 0.4756 0.9947
8 2.512 0.00600 0.0293 0.0349 0.7241 0.6870 1.4111
9 2.818 0.00242 0.0120 0.0143 0.9355 0.9103 1.8458
10 3.162 0.00078 0.0039 0.0047 1.1266 1.1131 2.2397

TABLE III
ENTROPIES ASSOCIATED WITH INPUT DISTRIBUTIONS (AS A QLI CODE)

Eb/N0 (dB) c ǫ β1 β2 H
(1)
η H

(2)
η H

(1)
η +H

(2)
η

0 1.000 0.1587 0.4494 0.3914 0.0026 0.0119 0.0145
1 1.122 0.1309 0.4191 0.3515 0.0075 0.0252 0.0327
2 1.259 0.1040 0.3766 0.3033 0.0190 0.0498 0.0688
3 1.413 0.0788 0.3213 0.2482 0.0445 0.0926 0.1371
4 1.585 0.0565 0.2565 0.1905 0.0929 0.1602 0.2531
5 1.778 0.0377 0.1876 0.1346 0.1759 0.2602 0.4361
6 1.995 0.0230 0.1231 0.0858 0.3027 0.3975 0.7002
7 2.239 0.0126 0.0710 0.0485 0.4756 0.5694 1.0450
8 2.512 0.00600 0.0349 0.0236 0.6870 0.7654 1.4524
9 2.818 0.00242 0.0143 0.0096 0.9103 0.9634 1.8737
10 3.162 0.00078 0.0047 0.0031 1.1131 1.1406 2.2536

Hence,

H(1)
η

△
= H [z1]−H [η1] ≈

1

2
log

(

1 + c2

1 + 4c2β1(1− β1)

)

(69)

H(2)
η

△
= H [z2]−H [η2] ≈

1

2
log

(

1 + c2

1 + 4c2β2(1− β2)

)

(70)

are obtained.

Tables II and III show entropy versus Eb/N0. From these

tables, we observe that

H(1)
r +H(2)

r < H(1)
η +H(2)

η . (71)

That is, when C1 is regarded as a QLI code, the distribution

of the input to the main decoder is more biased.

C. State Distribution in the Code Trellis for the Main Decoder

In the preceding section, it was shown that the distribution

of the input to the main decoder is biased under moderately

noisy conditions. In this section, we show that the state distri-

bution in the code trellis for the main decoder is also biased

under the same channel conditions. For the purpose, we will

take a QLI code. Since a QLI code can be regarded as a general

code as well, we have two state expressions for the main

decoder. Hence, we can evaluate a likelihood concentration in

the main decoder more precisely by comparing the two state

distributions.

Remark 1: Note that the code trellis module can be con-

structed as an error trellis module based on the syndrome

former. We remark that for a high-rate code, the resulting code

trellis module has less complexity than that of the conventional

one [31], [42]. Lee et al. [21] used this method when they

applied the SST scheme to (n0, n0 − 1) convolutional codes.

Consider a QLI code defined by G(D)=(g1(D), g2(D)). A

likelihood concentration in the main decoder depends heavily

on the choice of a pre-decoder. Roughly speaking, if the

information uk for the main decoder consists of smaller

number of error terms, then a higher likelihood concentration

occurs. First apply F as a pre-decoder. Then we have

uk = e
(1)
k + e

(2)
k (72)

and uk consists of two error terms. Next, apply the inverse

encoder G−1 as a pre-decoder. Suppose that

G−1 =

(

b1
b2

)

, (73)

where b1 and b2 are polynomials in D. If these polynomials

consist of small number of terms, then uk = ekG
−1 also

consists of small number of error terms, which results in a

high likelihood concentration in the main decoder. Let ne be

the number of error terms in uk. Since ne > 2 in general,

QLI codes are preferable from a likelihood concentration

viewpoint. On the other hand, for any fixed ν, the free distance,

denoted dfree, of the best QLI codes is a little less than that

of the best overall codes. (Here the optimality criterion first

maximizes dfree and then minimizes Ndfree
, where Ndfree

is

the number of codewords with weight dfree [22].) In order

to cope with this problem in application of the SST scheme,

Ping et al. [25] searched for a good non-systematic encoder

whose inverse consists of polynomials with small number of

terms. For ν=6, they found the generator matrix

G(D)=(1+D+D4+D5+D6, 1+D2+D3+D4+D6) (74)

with

G−1 =

(

D
1+D

)

.

Note that the above G(D) is an optimum distance profile

(ODP) encoding matrix [13, Table 8.1] and the corresponding

code has dfree=10. It is shown that

G(D) = (1+D+D4, 1+D2+D3+D4) (75)

has the same inverse encoder. Note that the above is also an

ODP encoding matrix.

Example 2: Consider the QLI code C1 defined in Example

1. First we regard C1 as a general code (G−1 is used as a

pre-decoder). In this case, the information uk for the main

decoder is given by

uk = ek

(

D
1+D

)

= e
(1)
k−1 + e

(2)
k−1 + e

(2)
k . (76)

Accordingly, the trellis state becomes

sk=(uk−1, uk)=(e
(1)
k−2+e

(2)
k−2+e

(2)
k−1, e

(1)
k−1+e

(2)
k−1+e

(2)
k ).
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Hence, we have

P00
△
= P (sk=(00)) = 1− 5ǫ+ 12ǫ2 − 12ǫ3 + 4ǫ4

P01
△
= P (sk=(01)) = 2ǫ− 6ǫ2 + 8ǫ3 − 4ǫ4

P10
△
= P (sk=(10)) = 2ǫ− 6ǫ2 + 8ǫ3 − 4ǫ4

P11
△
= P (sk=(11)) = ǫ− 4ǫ3 + 4ǫ4,

where ǫ=Q(
√

Eb/N0) is the channel error probability.

Next, we regard C1 as a QLI code (F is used as a pre-

decoder). Then the information uk for the main decoder is

given by

uk = ek

(

1
1

)

= e
(1)
k + e

(2)
k .

Accordingly, the trellis state becomes

sk = (uk−1, uk) = (e
(1)
k−1+e

(2)
k−1, e

(1)
k +e

(2)
k ).

Hence, we have

P00 = 1− 4ǫ+ 8ǫ2 − 8ǫ3 + 4ǫ4

P01 = 2ǫ− 6ǫ2 + 8ǫ3 − 4ǫ4

P10 = 2ǫ− 6ǫ2 + 8ǫ3 − 4ǫ4

P11 = 4ǫ2 − 8ǫ3 + 4ǫ4.

In either case, the entropy H associated with the state

distribution is given by

H = −P00 log2 P00 − P01 log2 P01

−P10 log2 P10 − P11 log2 P11. (77)

The results are shown in Tables IV and V. We observe that

a higher likelihood concentration to state (00) occurs when

the code is regarded as a QLI code. Denote by s
p
k and s

q
k the

states for the main decoder obtained as a general code and as

a QLI code, respectively. Note that uk consists of three error

terms in s
p
k, whereas uk consists of two error terms in s

q
k.

As was stated above, a likelihood concentration in the main

decoder depends on the number of error terms (ne) forming

uk in general. Hence, the results are reasonable.

Remark 2: Note that the components of the state are not

statistically independent of each other in general. For example,

take s
p
k=(uk−1, uk)=(e

(1)
k−2+e

(2)
k−2+e

(2)
k−1, e

(1)
k−1+e

(2)
k−1+e

(2)
k ).

We see that e
(2)
k−1 is contained in both components. Hence, ne

alone does not affect the state distribution. Nevertheless, ne

provides useful information about a likelihood concentration

in the main decoder.

D. State Distribution in the Error Trellis

It has been shown [37], [38] that SST Viterbi decoding

based on a code trellis and syndrome decoding based on the

corresponding error trellis are equivalent. In the following, k0
is assumed to be (n0−1) for simplicity. Then the size of H(D)
is 1×n0. Let ν be the constraint length of H(D). Denote by

sk and σk the state at t= k in the code trellis for the main

decoder and the state at t=k in the error trellis, respectively.

Based on an adjoint-obvious realization (observer canonical

TABLE IV
STATE DISTRIBUTIONS FOR THE MAIN DECODER (AS A GENERAL CODE)

Eb/N0 (dB) ǫ P00 P01 P10 P11 H
0 0.1587 0.4633 0.1957 0.1957 0.1452 1.8398
1 0.1309 0.5253 0.1758 0.1758 0.1231 1.7418
2 0.1040 0.5968 0.1516 0.1516 0.1000 1.6019
3 0.0788 0.6746 0.1243 0.1243 0.0768 1.4153
4 0.0565 0.7536 0.0953 0.0953 0.0558 1.1864
5 0.0377 0.8279 0.0673 0.0673 0.0375 0.9273
6 0.0230 0.8912 0.0429 0.0429 0.0230 0.6631
7 0.0126 0.9389 0.0243 0.0243 0.0126 0.4255
8 0.00600 0.9704 0.0118 0.0118 0.0060 0.2376
9 0.00242 0.9880 0.0048 0.0048 0.0024 0.1121
10 0.00078 0.9961 0.0016 0.0016 0.0008 0.0436

TABLE V
STATE DISTRIBUTIONS FOR THE MAIN DECODER (AS A QLI CODE)

Eb/N0 (dB) ǫ P00 P01 P10 P11 H
0 0.1587 0.5372 0.1957 0.1957 0.0713 1.6745
1 0.1309 0.5967 0.1758 0.1758 0.0518 1.5476
2 0.1040 0.6620 0.1516 0.1516 0.0347 1.3875
3 0.0788 0.7306 0.1243 0.1243 0.0209 1.1953
4 0.0565 0.7981 0.0953 0.0953 0.0113 0.9790
5 0.0377 0.8601 0.0673 0.0673 0.0053 0.7511
6 0.0230 0.9121 0.0429 0.0429 0.0020 0.5288
7 0.0126 0.9509 0.0243 0.0243 0.00062 0.3363
8 0.00600 0.9763 0.0118 0.0118 0.00014 0.1868
9 0.00242 0.9904 0.0048 0.0048 0.000023 0.0882
10 0.00078 0.9969 0.0016 0.0016 0.000003 0.0344

form [7]) of the syndrome former HT , σk can be expressed

as

σk = ekU(D), (78)

where U(D) is an n0×ν matrix whose entries are polynomials

in D. Then we have

σk = (ukG+ rhk)U

= ukGU + ζk(H
−1)TU. (79)

Note that the first term ukGU corresponds to the syndrome

former state obtained by inputting the encoder output ukG
directly to the syndrome former HT . That is, ukGU is the

dual (physical) state [7] corresponding to the encoder state sk.

Since the space of encoder states and that of the corresponding

dual states are isomorphic, the correspondence between sk and

ukGU is one-to-one. Here note that the term ζk(H
−1)TU is

common to every state sk. Hence, the correspondence between

sk and σk is also one-to-one. This fact implies that the state

distribution in a code trellis for the main decoder is closely

related to that in the corresponding error trellis.

Example 2 (Continued): Consider the QLI code C1 again.

Based on an adjoint-obvious realization of the syndrome

former HT =

(

1+D2

1+D+D2

)

, the state in the error trellis

becomes

σk = (σk1, σk2) = (e
(1)
k−1+e

(2)
k−1+e

(2)
k , e

(1)
k +e

(2)
k )

= (e
(1)
k , e

(2)
k )

(

D 1
1+D 1

)

△
= ekU(D). (80)
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TABLE VI
STATE DISTRIBUTIONS IN THE ERROR TRELLIS

Eb/N0 (dB) ǫ P̃00 P̃01 P̃10 P̃11 H̃
0 0.1587 0.5255 0.1335 0.2075 0.1335 1.7344
1 0.1309 0.5874 0.1138 0.1851 0.1138 1.6150
2 0.1040 0.6552 0.0932 0.1584 0.0932 1.4590
3 0.0788 0.7263 0.0726 0.1285 0.0726 1.2649
4 0.0565 0.7956 0.0533 0.0978 0.0533 1.0416
5 0.0377 0.8589 0.0363 0.0685 0.0363 0.8009
6 0.0230 0.9117 0.0225 0.0434 0.0225 0.5645
7 0.0126 0.9507 0.0124 0.0244 0.0124 0.3570
8 0.00600 0.9763 0.0060 0.0118 0.0060 0.1980
9 0.00242 0.9904 0.0024 0.0048 0.0024 0.0926
10 0.00078 0.9969 0.0008 0.0016 0.0008 0.0358

Hence, we have

P̃00
△
= P (σk=(00)) = 1− 4ǫ+ 7ǫ2 − 4ǫ3

P̃01
△
= P (σk=(01)) = ǫ− ǫ2

P̃10
△
= P (σk=(10)) = 2ǫ− 5ǫ2 + 4ǫ3

P̃11
△
= P (σk=(11)) = ǫ− ǫ2,

where ǫ=Q(
√

Eb/N0). The entropy H̃ associated with the

above distribution is given by

H̃ = −P̃00 log2 P̃00 − P̃01 log2 P̃01

−P̃10 log2 P̃10 − P̃11 log2 P̃11. (81)

The result is shown in Table VI. From Tables IV, V, and VI,

we see that H̃ lies between the value of entropy obtained by

regarding C1 as a general code and that obtained by regarding

C1 as a QLI code. This observation comes from the state

expressions for s
p
k, s

q
k, and σk:

s
p
k = (uk−1, uk)

= (e
(1)
k−2+e

(2)
k−2+e

(2)
k−1, e

(1)
k−1+e

(2)
k−1+e

(2)
k )

s
q
k = (uk−1, uk) = (e

(1)
k−1+e

(2)
k−1, e

(1)
k +e

(2)
k )

σk = (σk1, σk2) = (e
(1)
k−1+e

(2)
k−1+e

(2)
k , e

(1)
k +e

(2)
k ).

(Also, see Remark 2 at the end of Section III-C.)

Finally, examine the correspondence between the state in the

code trellis for the main decoder and that in the error trellis.

First consider the correspondence between s
p
k = (uk−1, uk)

and σk. Note the relation

σk = (ukG+ rhk)U

= ukGU + ζk(H
−1)TU.

Since

GU = (1+D+D2, 1+D2)

(

D 1
1+D 1

)

= (1, D)

(H−1)TU = (1+D,D)

(

D 1
1+D 1

)

= (0, 1),

it follows that

σk = ukGU + ζk(H
−1)TU

= uk(1, D) + ζk(0, 1)

= (uk, uk−1+ζk).

Hence, we have

s
p
k = (uk−1, uk) ↔ σk = (uk, uk−1+ζk), (82)

where

uk−1 + ζk = (e
(1)
k−2+e

(2)
k−2+e

(2)
k−1)

+(e
(1)
k−2+e

(1)
k +e

(2)
k−2+e

(2)
k−1+e

(2)
k )

= e
(1)
k + e

(2)
k .

Next, consider the correspondence between s
q
k=(uk−1, uk)

and σk. This time (cf. Section II-B), note the relation

σk = (uk+LG+ ηh
k)U

= uk+LGU + (ζk+L, ζk+L)U.

Letting L=1, it follows that

σk = uk+1GU + (ζk+1, ζk+1)U

= uk+1(1, D) + (ζk+1, ζk+1)

(

D 1
1+D 1

)

= (uk+1+ζk+1, uk).

Hence, we have

s
q
k = (uk−1, uk) ↔ σk = (uk+1+ζk+1, uk), (83)

where

uk+1 + ζk+1 = (e
(1)
k+1+e

(2)
k+1)

+(e
(1)
k−1+e

(1)
k+1+e

(2)
k−1+e

(2)
k +e

(2)
k+1)

= e
(1)
k−1 + e

(2)
k−1 + e

(2)
k .

These results are consistent with the concrete state expressions

for s
p
k, s

q
k, and σk.

IV. COMPLEXITY REDUCTION IN THE MAIN DECODER IN

AN SST VITERBI DECODER

We have shown that the state distribution in the code trellis

for the main decoder in an SST Viterbi decoder is biased

under moderately noisy conditions. In this section, we show

that those biased distributions actually lead to complexity

reduction in the main decoder. Two reduction methods will be

discussed. In the first one, biased state distributions are directly

used for complexity reduction, whereas in the second one,

those distributions are indirectly used. There have been several

related works [2], [4], [25], [33], [35], [36] since the SST

scheme was proposed. Hence, the discussion in the former part

is mainly based on these known works. The known material

is also dealt with in the latter part, but some original results

are contained. In particular, we give an approximate criterion

for complexity reduction in the main decoder in relation to the

second reduction method.
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A. Complexity Reduction Using State Distributions

So far biased state distributions have been directly used

in order to reduce the decoder complexity [25], [33]. In the

following, k0 = 1 is assumed for simplicity. First we briefly

review the generalized Viterbi algorithm (GVA) [8]. Let

uk △
= u1u2 · · ·uk (84)

be the transmitted information sequence, where k is the current

depth. In the usual Viterbi algorithm, a trellis diagram is drawn

by regarding the latest ν symbols (uk−ν+1 · · ·uk) as a state

(i.e., encoder state). On the other hand, in the GVA, the latest ν̃
symbols (uk−ν̃+1 · · ·uk) is considered as an algorithm’s state

(i.e., decoder state), where ν̃ (> 0) can be chosen independent

of ν. ν̃ is called a constraint length of the algorithm. By

choosing ν̃ smaller that ν, the number of decoder states can

be reduced. In this case, however, it is not guaranteed that

the overall ML path can be chosen if a single survivor is

preserved for each decoder state. Note that a decoder state

consists of multiple encoder states. Hence, when a survivor

for the decoder state is determined, the most likely path for

each component encoder state has to be selected beforehand.

This procedure is called pre-selection [8].

In [33], the GVA was applied to the main decoder by

taking account of a biased state distribution. The method is

based on the conjecture that, if a likelihood concentration

to some particular states is occurring in the main decoder,

then a great deal of decoding complexity reduction can be

realized by applying the GVA to the main decoder with ν̃
smaller than ν and by slightly increasing the number of total

survivors as compared with that of decoder states. The method

is formulated as follows:

1) The SST scheme is used to produce a likelihood concen-

tration in the main decoder.

2) The GVA is applied to the main decoder with ν̃ smaller

than ν.

3) In order to avoid a performance degradation due to

choosing ν̃ smaller than ν, more than one survivors are

preserved for those decoder states with high probabilities.

The above method was applied to the QLI code C2 defined

by

G(D)=(1+D+D3+D4+D6, 1+D+D2+D3+D4+D6). (85)

Note that this code has dfree=9. We observe that there occurs

a likelihood concentration to the all-zero state and the states

containing only one “1” (e.g., (000001)). Then ν̃ is set to

5 and two survivors are preserved for each of the decoder

states with high probabilities and only one survivor for each

of the other decoder states. Hence, the number of decoder

states is 32 and 38 survivors are preserved. Simulation results

show that the method can reduce the decoding complexity to

almost 1/2 of that of the conventional one within a very small

performance degradation, where 8-level receiver quantization

is assumed. It is also shown that a small increase of the number

of survivors (i.e., additional 6 survivors) significantly improves

the performance. This fact comes from a much biased state

distribution in the code trellis for the main decoder.

Ping et al. [25] also used the SST scheme to reduce the

decoder complexity. Note that C2 is a QLI code and has not

the best dfree with ν=6. On the other hand, the number of

error terms in uk=ekG
−1 must be small in order to produce a

high likelihood concentration in the main decoder. As a result

(see Section III-C), they chose the generator matrix

G(D)=(1+D+D4+D5+D6, 1+D2+D3+D4+D6)

with

G−1 =

(

D
1+D

)

.

Note that the corresponding code C3 has dfree = 10. Next,

they applied a simplifying scheme to the main decoder. Since

the state distribution in the code trellis for the main decoder is

biased, they eliminated those states whose occurring probabil-

ities are nearly zero. (Hence, the scheme is called PSS (prob-

ability selecting states).) More precisely, from among 26=64
states, 22 states with lowest probabilities are eliminated for

the above code. Then the number of states used for decoding

is 42 and 42 survivors are preserved. Computer simulations

show that the performance of a PSS-type decoder is as good as

that of the conventional Viterbi decoder, whereas the hardware

complexity of the former decoder is almost 1/2 of that of the

latter one.

B. Trellis Degeneration Using Zero-Strings

There exists a method where biased state distributions are

indirectly used for complexity reduction in the main decoder.

First consider an error trellis. Given a received data z={zk},

let Te be the corresponding error trellis. Note that unlike the

code trellis Tc, the paths through Te have different a priori

probabilities in general. Consequently, when Te is constructed

based on the syndrome ζ = {ζk} (which is computed using

zh={zh
k}), Te usually has many redundant paths that can be

deleted in advance. Using this fundamental property of error

trellises, Ariel and Snyders [2], [4] proposed several methods

to simplify Te. Among them trellis degeneration using zero-

strings [2], [4] is most effective.

In the following, k0 is assumed to be (n0−1) for simplicity.

Let ζ = {ζk} be the syndrome. An interval [t, t′] is called a

zero-string if ζk = 0, t + 1 ≤ k ≤ t′. Note that within a

zero-string, any two consecutive zero states (denoted 0) are

connected by a zero-weight branch. Hence, if state 0 has

the least weight at s ∈ [t, t′], then state 0 continues to have

the least weight in [s + 1, t′]. We remark that this principle

also holds in the reverse direction. Here suppose that we can

identify a sub-interval [τ, τ ′] of [t, t′] such that the all-zero

path connecting state 0 at depth τ and state 0 at depth τ ′

is a portion of the overall ML path. In this case, all but the

all-zero path connecting those states can be deleted. That is,

Te is simplified in the interval [τ, τ ′]. This procedure is called

trellis degeneration [2], [4].

On the other hand, we already know that SST Viterbi

decoding based on a code trellis and syndrome decoding based

on the corresponding error trellis are equivalent. Hence, it is

reasonable to think that trellis degeneration is equally possible
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in the code trellis for the main decoder in an SST Viterbi

decoder [35], [36].

Remark 1: The following argument is almost the same

as that in [36]. Also, the material is taken from it. To the

best of our knowledge, however, when the work of [36]

was published (1997), the equivalence between SST Viterbi

decoding based on a code trellis and syndrome decoding based

on the corresponding error trellis had not been obtained. On

the other hand, since the equivalence between the two schemes

has been shown by now, the results about an error trellis can be

transformed to the associated code trellis for the main decoder.

That is, the application of the results in [2], [4] to the code

trellis for the main decoder is justified.

First (see Section II) note that the hard-decision input to the

main decoder is given by

rh
k = ζk(H

−1)T .

Also, in the case of QLI codes, the hard-decision input to the

main decoder becomes

ηh
k−L = (ζk, ζk).

Hence, an interval with ζk = 0 is transformed to an interval

with rh
k=0 (or ηh

k−L=0). In this paper, we call the latter (i.e.,

an interval where the hard-decision input to the main decoder

is consecutively zero) a zero-string as well. We describe the

trellis degeneration in the code trellis for the main decoder in

more detail.

Code trellis degeneration using zero-strings [36]:

1) Given a zero-string [t, t′], decode forward the code trellis

from state x (6= 0) at depth t. Let τ(x) be the first depth

at which the metric of state 0 is largest.

2) Similarly, decode backward the code trellis from state

x′ (6= 0) at depth t′. Let τ ′(x′) be the first depth at

which the metric of state 0 is largest.

3) Let τ
△
= maxx τ(x). Also, let τ ′

△
= minx′ τ ′(x′). If

τ, τ ′ ∈ [t, t′] and τ < τ ′, then delete all the sub-paths in

[τ, τ ′] except for the all-zero sub-path. (That is, the code

trellis is simplified in the interval [τ, τ ′]. In this case, we

call trellis degeneration “successful”.)

Remark 2: The starting depths of the forward and the

backward decoding can be chosen as t̃(≤ t) and t̃′(≥ t′),
respectively.

Remark 3: Suppose that the length of a zero-string [t, t′]
(denoted by ℓ) has an appropriate value. Then for hard-

decision data, the length ℓH
△
= (τ − t) + (t′ − τ ′) can

be determined in advance. Hence, for hard-decision data, if

ℓ > ℓH holds, then trellis degeneration is successful. For

example, consider the code defined by G=(1+D+D2, 1+D2).
We have ℓH=(τ − t)+(t′ − τ ′)=5+5=10.

Next, evaluate the complexity of Viterbi decoding where

the trellis degeneration procedure is employed. Since trellis

degeneration is rather complicated in a general case, we apply

the procedure to those zero-strings whose lengths are larger

than or equal to ℓ0, where ℓ0 is a predetermined value. Let

[tj , t
′
j ] be any such zero-string (j is used to distinguish zero-

strings). It is assumed that trellis degeneration is successful

for each [tj , t
′
j]. Let Ns be the number of states in the trellis.

Also, let M be the section length of the trellis. We regard the

computational complexity needed to decode one trellis section

as one unit. (Then the Viterbi decoding complexity required

to decode the whole trellis is given by M .) Under these

conditions, let us evaluate the complexity of Viterbi decoding.

Since trellis degeneration is successful for each zero-string

[tj , t
′
j ], the decoding complexity is reduced by

∆
△
=

∑

j

(τ ′j − τj) (86)

as compared with the conventional decoding. On the other

hand, in order to identify the sub-interval [τj , τ
′
j ] of [tj , t

′
j ],

the forward and the backward decoding are performed while

changing the starting state. Let ∆′ be the required compu-

tational complexity. Then the decoding complexity increases

by

∆′ ≈
∑

j

(

(Ns − 1)×(τj − tj)+(Ns − 1)×(t′j − τ ′j)
)

=
∑

j

(Ns − 1)
(

(τj − tj) + (t′j − τ ′j)
)

. (87)

Therefore, the overall decoding complexity is estimated as

Qc ≈ M +∆′ −∆. (88)

Hence, if ∆′ < ∆, then complexity reduction is realized. In

particular, if

(Ns − 1)
(

(τj − tj) + (t′j − τ ′j)
)

< τ ′j − τj (89)

holds for each j, then we have ∆′ < ∆. Here note that for

hard-decision data, we have

(τj − tj) + (t′j − τ ′j) = ℓH .

Hence, if

(Ns − 1)ℓH < τ ′j − τj

holds approximately, then we can expect to have ∆′ < ∆. In

this case, the length of the corresponding zero-string (i.e., ℓ)
becomes

ℓ ≈ (τ ′j − τj) + ℓH .

That is, if the condition

(Ns − 1)ℓH + ℓH < (τ ′j − τj) + ℓH ,

i.e.,

Ns × ℓH < ℓ (90)

holds, then complexity reduction is expected to occur. We can

use the above inequality as a criterion for the length of a zero-

string required for complexity reduction.

Example 3 [36]: In connection with the above subject,

computer simulations have been done using the QLI code C1

defined in Example 1, where M = 105 and 8-level receiver

quantization is assumed. Under these conditions, the behavior

of the main decoder was investigated. Table VII shows the

number of zero-strings whose lengths are larger than or equal

to ℓ0. Table VIII shows the average length of zero-strings

counted in Table VII. We observe that as the SNR increases,

the zero-strings become less numerous and longer.
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TABLE VII
NUMBER OF ZERO-STRINGS

Eb/N0 (dB) ℓ0=10 ℓ0=15 ℓ0=20 ℓ0=25 ℓ0=30
4 2761 1527 879 490 287
5 2948 2003 1373 936 651
6 2602 2056 1634 1290 1040
7 1808 1590 1398 1236 1080
8 1006 953 907 851 792
9 427 425 415 407 395
10 148 148 145 145 144

TABLE VIII
AVERAGE LENGTH OF ZERO-STRINGS

Eb/N0 (dB) ℓ0=10 ℓ0=15 ℓ0=20 ℓ0=25 ℓ0=30
4 18.1 23.3 28.1 33.1 37.7
5 22.6 27.7 32.7 37.8 42.6
6 31.2 36.4 41.4 46.6 51.3
7 50.3 55.5 60.8 65.9 71.5
8 95.4 100.1 104.3 109.7 115.8
9 230.7 231.7 236.9 241.1 247.6
10 672.4 672.4 685.9 685.9 685.9

The normalized decoding complexity Qc/M obtained from

simulations is given in Table IX. Since trellis degeneration is

successful for almost all zero-strings of length ℓ ≥ 15, ℓ0 ≥ 20
is assumed. In this example, the starting depths of the forward

and the backward decoding for a zero-string [t, t′] are chosen

as t−1 and t′+1, respectively.

Now evaluate the length of a zero-string required for com-

plexity reduction. Taking into account the starting depths of

the forward and the backward decoding, we have

(Ns − 1)
(

(τj − tj)+(t′j − τ ′j)+2
)

< τ ′j − τj .
(

i.e., (Ns − 1)(ℓH+2) + ℓH < (τ ′j − τj) + ℓH .
)

Note that Ns=4 and ℓH =10. Hence, if

46 < ℓ (91)

holds, then we can expect that complexity reduction is re-

alized. Accordingly, using Table VIII, let us search for the

SNR at which the average length of zero-strings is nearly

equal to 46. We see that this value is attained at an SNR

of Eb/N0 = 6 ∼ 7dB for ℓ0 = 20. Similarly, we see that

Eb/N0 ≈ 6dB for ℓ0 = 25 and Eb/N0 = 5 ∼ 6dB for

ℓ0=30. From Table IX, it is confirmed that these values are

almost equal to the SNRs at which the decoding complexity

is less than 1 for the first time. Hence, the derived criterion

for complexity reduction (i.e., Ns × ℓH < ℓ) seems to be

reasonable.

We remark that the derived criterion can be loosened. Note

that for a trellis with large Ns, the condition seems to be strict.

On the other hand, we already know that the state distribution

in the main decoder is much biased under moderately noisy

conditions. For example, consider the code trellis associated

with the QLI code C2 (cf. (85)). Here note the all-zero state

and the states containing only one “1” (e.g., (000001)). We

examined the total probability of these 7 states. As a result

(cf. [33]), we have 87% at Eb/N0 = 4dB, 94% at Eb/N0 =

TABLE IX
NORMALIZED DECODING COMPLEXITY

Eb/N0 (dB) ℓ0=20 ℓ0=25 ℓ0=30
4 1.22 1.10 1.04
5 1.25 1.12 1.05
6 1.11 1.02 0.97
7 0.79 0.76 0.73
8 0.45 0.44 0.43
9 0.18 0.18 0.18
10 0.06 0.06 0.04

5dB, and 97% at Eb/N0 = 6dB. Hence, in order to identify

the sub-interval [τj , τ
′
j ] of a zero-string [tj , t

′
j ], we need not

use all states ( 6= 0) in the trellis as the starting state. That is,

we can restrict the starting state to those 6 states (the all-zero

state is not used) under low to moderate noise level within a

very small degradation. In this way, Ns can be replaced by

some smaller number. In this case, the values of τj and τ ′j
may be slightly changed. A modified inequality can ease the

criterion for complexity reduction.

V. AN INNOVATIONS APPROACH TO ML DECODING OF

BLOCK CODES

In Section II, we have introduced the notion of innovations

for Viterbi decoding of convolutional codes. The derived

innovation is closely related to an SST Viterbi decoder which

consists of a pre-decoder and a main decoder. The fundamental

feature of the SST scheme lies in its structure where an

estimation error is decoded in the main decoder. Here we see

that a similar scheme (i.e., two-stage decoding) can be applied

to block codes as well. Then it is reasonable to think that a

kind of innovation can also be extracted in connection with

ML decoding of block codes [22]. In the following, we will

show that this is actually possible.

A. Two-Stage ML Decoding

Let G be a generator matrix for an (n, k) block code, where

its rank is assumed to be k. Let H be a corresponding check

matrix, where its rank is assumed to be (n − k). Denote

by i = {ij}kj=1 and iG = y = {yj}nj=1 a message and the

corresponding codeword, respectively. Here consider a two-

stage ML decoding algorithm.

i) First stage: Let z={zj}nj=1 be a received data. The hard-

decision received data is expressed as

zh = y + e = iG+ e, (92)

where e = {ej}nj=1 is an error. The transmitted message is

estimated by using the inverse encoder G−1. We have

zhG−1 = i + eG−1. (93)

ii) Second stage: The estimated message is re-encoded by G
and then the re-encoded data is added to the original received

data z. Let ξ={ξj}nj=1 be the result. We have

ξh = zh + (zhG−1)G (94)

ξj =

{

|zj|, ξhj = 0

−|zj|, ξhj = 1.
(95)
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At the second stage, ML decoding is performed by regarding

ξ as a received data. Note that ξ
h

is expressed as

ξh = (iG+ e) + (i+ eG−1)G

= (eG−1)G+ e (96)

= uG+ e, (97)

where u
△
= eG−1 is a message for the second-stage decoder

and uG is the corresponding codeword. Hence, u=eG−1 is

decoded by the second-stage ML decoder. Finally, two decoder

outputs are combined to produce the final decoder output, i.e.,

(i + u) + u = i.

On the other hand, ξh has another expression. Since the

rank of G is k, G can be decomposed as

G = A× Γ×B, (98)

where A=Ik , Γ=
(

Ik Ok,n−k

)

, and B is an n× n non-

singular matrix. Here the first k rows of B are equal to G and

the last (n−k) columns of B−1 are equal to HT . As a result,

we have

In = B−1B

=
(

G−1 HT
)

(

G
(H−1)T

)

= G−1G+HT (H−1)T . (99)

Then

ξh = e(G−1G+ In)

= eHT (H−1)T = ζ(H−1)T (100)

is obtained, where ζ=zhHT =eHT is the syndrome.

In particular, let G=
(

Ik S
)

, where S is a k × (n− k)
matrix. In this case, since

(H−1)T =
(

On−k,k In−k

)

,

we have

ξh = ζ(H−1)T

= ζ
(

On−k,k In−k

)

= (O1,k, ζ). (101)

B. Innovations Associated with the Received Data for an ML

Decoder

The proposed two-stage ML decoding of block codes can

also be discussed from an innovation viewpoint. In fact, the

following argument is almost the same as that in Section II-A.

Let

zh = iG+ e

be the hard-decision received data. By comparison with the

linear filtering theory, consider the quantity

rh = zh − îG

= zh + îG, (102)

where î denotes an estimate of i based on zh. Suppose that î

has the form

î = zhP, (103)

where P is an n× k matrix. Then we have

rh = zh + zhPG

= (iG+ e) + (iG+ e)PG

= i(G+GPG) + ePG+ e.

Note that if

G+GPG = 0

or

GPG = G

holds, then rh is independent of i. Here GPG=G implies

that P is a generalized inverse [26] of G. Then a right inverse

G−1 can be taken as P . In this case, rh is independent of i

and we have

rh = (eG−1)G+ e (104)

= uG+ e (105)

= e(G−1G+ In), (106)

where u
△
= eG−1. We think this quantity corresponds to an

innovation in the linear filtering theory. We remark that the

right-hand side is just the input to the second-stage decoder

in a two-stage ML decoder. Also, note that

rhHT = zhHT + zhPGHT

= zhHT = ζ (107)

holds irrespective of P , where ζ is the syndrome. Hence, rh

and zh generate the same syndrome ζ.

On the other hand, rh has another expression, i.e.,

rh = e(G−1G+ In)

= eHT (H−1)T = ζ(H−1)T . (108)

Therefore, with respect to rh, we have the following:

1) rh=e(G−1G+In) holds and there is a correspondence

between e and rh in the sense that they generate the same

syndrome ζ.

2) rh and zh generate the same syndrome ζ.

These properties imply that we can regard rh as the innovation

corresponding to zh. We remark that the variable which repre-

sents time (or depth) is not assumed explicitly in block codes.

That is, a codeword may not be regarded as a time series.

Hence, we may call the extracted quantity the innovation in a

weak sense [20].

Moreover, consider the mapping: zh 7→ rh = zh(G−1G+
In). It is shown that it is not invertible and the innovation

rh corresponding to zh cannot be further reduced. Proofs are

almost the same as those given in Section II-A.

VI. CONCLUSION

In this paper, by comparing the results in the linear filtering

theory, we have introduced the notion of innovations for

Viterbi decoding of convolutional codes. It has been shown

that the newly defined innovations are closely related to the

structure of an SST Viterbi decoder. We have also shown that a

similar result holds with respect to QLI codes. In this case, we

have seen that the innovation-like quantity has a connection
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with linear smoothing of the information. Moreover, for a

QLI code, we have clarified the relationship between the

filtered estimate and the smoothed estimate of the information.

We think the obtained results are due to having introduced

innovations associated with the received data. With respect to

innovations, it is written in [10], [11] as follows:

Consider a complex system. Suppose that we have gener-

ated some simpler system composed of mutually independent

elements. Also, suppose that for a given time t, the new

system has the same information as the original one has by

time t. Then the newly generated simpler system is called

the innovations. It is not easy to obtain such an ideal system.

For typical problems, however, the corresponding innovations

have been derived. Obtaining innovations for a given complex

system provides a method for the reduction of time series or

stochastic processes.

In those books, the innovations method is regarded as

an essentially important tool for reduction → synthesis →
analysis of a given complex system. In our case, the known

SST scheme has been more clarified using innovations. Fur-

thermore, we have shown the proposed innovations approach

can be extended to block codes as well. In fact, a kind of

innovation has been extracted in connection with ML decoding

of block codes.

APPENDIX A

PROOF OF LEMMA 3.2

Without loss of generality, for

α1
△
= P (e

(1)
k =0, r

(1)h
k =1) + P (e

(1)
k =1, r

(1)h
k =0),

we will show that 0 ≤ α1 ≤ 1/2. In the following, we omit

the delay operator D for simplicity. Let

G =









g1,1 g1,2 . . . g1,n0

g2,1 g2,2 . . . g2,n0

. . . . . . . . . . . .
gk0,1 gk0,2 . . . gk0,n0









(A.1)

be the generator matrix. Also, let

G−1 =









b1,1 b1,2 . . . b1,k0

b2,1 b2,2 . . . b2,k0

. . . . . . . . . . . .
bn0,1 bn0,2 . . . bn0,k0









(A.2)

be a right inverse of G. Then the first column of

G−1G+ In0
=









b1,1 b1,2 . . . b1,k0

b2,1 b2,2 . . . b2,k0

. . . . . . . . . . . .
bn0,1 bn0,2 . . . bn0,k0









×









g1,1 g1,2 . . . g1,n0

g2,1 g2,2 . . . g2,n0

. . . . . . . . . . . .
gk0,1 gk0,2 . . . gk0,n0









+









1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1









is given by








b1,1g1,1+b1,2g2,1+· · ·+b1,k0
gk0,1+1

b2,1g1,1+b2,2g2,1+· · ·+b2,k0
gk0,1

· · ·
bn0,1g1,1+bn0,2g2,1+· · ·+bn0,k0

gk0,1









.

Hence, it follows that

r
(1)h
k = e

(1)
k (b1,1g1,1+b1,2g2,1+· · ·+b1,k0

gk0,1+1)

+e
(2)
k (b2,1g1,1+b2,2g2,1+· · ·+b2,k0

gk0,1)

· · ·
+e

(n0)
k (bn0,1g1,1+bn0,2g2,1+· · ·+bn0,k0

gk0,1)

= r̃
(1)h
k + e

(1)
k , (A.3)

where

r̃
(1)h
k

△
= e

(1)
k (b1,1g1,1+b1,2g2,1+· · ·+b1,k0

gk0,1)

+e
(2)
k (b2,1g1,1+b2,2g2,1+· · ·+b2,k0

gk0,1)

· · ·
+e

(n0)
k (bn0,1g1,1+bn0,2g2,1+· · ·
+bn0,k0

gk0,1). (A.4)

Here note the definition of α1.

1) e
(1)
k =0, r

(1)h
k =1: This is equivalent to e

(1)
k =0, r̃

(1)h
k =1.

2) e
(1)
k =1, r

(1)h
k =0: This is equivalent to e

(1)
k =1, r̃

(1)h
k =1.

Hence, we have

α1 = P (e
(1)
k =0, r

(1)h
k =1) + P (e

(1)
k =1, r

(1)h
k =0)

= P (e
(1)
k =0, r̃

(1)h
k =1) + P (e

(1)
k =1, r̃

(1)h
k =1)

= P (r̃
(1)h
k = 1). (A.5)

Since r̃
(1)h
k is the sum of error terms, we can assume that α1

has the form

α1 = P (e1+e2+· · ·+en=1), (A.6)

where errors ej are mutually independent. In the following, n
is assumed to be even without loss of generality.

In order to evaluate the right-hand side, consider the binom-

inal expansion:
(

(1− ǫ) + ǫ
)n

= nC0(1− ǫ)n + nC1ǫ(1− ǫ)n−1 + · · ·
+nCn−1ǫ

n−1(1− ǫ) + nCnǫ
n

=
(

nC0(1− ǫ)n + nC2ǫ
2(1− ǫ)n−2 + · · ·

+nCn−2ǫ
n−2(1− ǫ)2 + nCnǫ

n
)

+
(

nC1ǫ(1− ǫ)n−1 + nC3ǫ
3(1 − ǫ)n−3 + · · ·

+nCn−1ǫ
n−1(1− ǫ)

)

= h(ǫ) + f(ǫ), (A.7)

where

h(ǫ)
△
= nC0(1− ǫ)n + nC2ǫ

2(1− ǫ)n−2 + · · ·
+nCn−2ǫ

n−2(1− ǫ)2 + nCnǫ
n (A.8)

f(ǫ)
△
= nC1ǫ(1− ǫ)n−1 + nC3ǫ

3(1− ǫ)n−3 + · · ·
+nCn−1ǫ

n−1(1− ǫ). (A.9)
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Note that α1=f(ǫ). We will show the following:

1) f(0) = 0
2) f(1/2) = 1/2
3) f(ǫ) is monotone increasing for 0 ≤ ǫ ≤ 1/2.

1) is obvious. Let us show 2). Note that

f(1/2) = nC1

(

1

2

)n

+nC3

(

1

2

)n

+· · ·+nCn−1

(

1

2

)n

=
(

nC1+nC3+· · ·+nCn−1

)

(

1

2

)n

= 2n−1 ×
(

1

2

)n

= 1/2, (A.10)

where the equality nC1+nC3+ · · ·+nCn−1 = 2n−1 [32] is

used.

Finally, we will show 3). Since h(ǫ)+f(ǫ)=1,

h′(ǫ) + f ′(ǫ) = 0

holds (“′” means differentiation with respect to ǫ). Hence,

f ′(ǫ) ≥ 0 is equivalent to h′(ǫ) ≤ 0. Then we will show

the latter for 0 ≤ ǫ ≤ 1/2. From the definition of h(ǫ), we

have

h′(ǫ) = −n(1− ǫ)n−1 + n(n− 1)ǫ(1− ǫ)n−2

−n(n− 1)(n− 2)

2× 1
ǫ2(1− ǫ)n−3

+ · · ·+ n(n− 1)(n− 2)

2× 1
ǫn−3(1 − ǫ)2

−n(n− 1)ǫn−2(1− ǫ) + nǫn−1

= (−n)×
(

(1− ǫ)n−1 − (n− 1)ǫ(1− ǫ)n−2

+
(n− 1)(n− 2)

2× 1
ǫ2(1 − ǫ)n−3

− · · · − (n− 1)(n− 2)

2× 1
ǫn−3(1 − ǫ)2

+(n− 1)ǫn−2(1− ǫ)− ǫn−1
)

= −n
(

(1− ǫ)− ǫ
)n−1

= −n(1− 2ǫ)n−1 ≤ 0 (0 ≤ ǫ ≤ 1/2). (A.11)

Thus 3) is proved. This completes the proof of the lemma.

APPENDIX B

PROOF OF LEMMA 3.4

Without loss of generality, for

β1
△
= P (e

(1)
k−L=0, ζk=1) + P (e

(1)
k−L=1, ζk=0),

we will show that 0 ≤ β1 ≤ 1/2. Let

G = (g1, g2), g1 + g2 = DL (B.12)

be a generator matrix of a QLI code. Since the check matrix

is given by H=(g2, g1), we have

ζk = ekH
T = (e

(1)
k , e

(2)
k )

(

g2
g1

)

= e
(1)
k g2 + e

(2)
k g1.

First consider the case 1) e
(1)
k−L = 0, ζk = 1. Since ζk is

rewritten as

ζk = e
(1)
k (g1+g2) + e

(1)
k g1 + e

(2)
k g1

= e
(1)
k−L + e

(1)
k g1 + e

(2)
k g1,

1) is equivalent to e
(1)
k−L=0, e

(1)
k g1+e

(2)
k g1=1.

Next, consider the case 2) e
(1)
k−L = 1, ζk = 0. We see that

this is equivalent to e
(1)
k−L=1, e

(1)
k g1+e

(2)
k g1=1. Hence, we

have

β1 = P (e
(1)
k−L=0, ζk=1) + P (e

(1)
k−L=1, ζk=0)

= P (e
(1)
k−L=0, e

(1)
k g1+e

(2)
k g1=1)

+P (e
(1)
k−L=1, e

(1)
k g1+e

(2)
k g1=1)

= P (e
(1)
k g1 + e

(2)
k g1 = 1). (B.13)

As in the case of Lemma 3.2, the right-hand side is less than

or equal to 1/2 for 0 ≤ ǫ ≤ 1/2. This proves the lemma.
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