
1

Codes Correcting Two Deletions
Ryan Gabrys∗ and Frederic Sala†

∗Spawar Systems Center †Stanford University
ryan.gabrys@navy.mil fredsala@stanford.edu

Abstract

In this work, we investigate the problem of constructing codes capable of correcting two deletions. In particular, we construct a
code that requires redundancy approximately 8 log2 n+O(log2 log2 n) bits of redundancy, where n denotes the length of the code.
To the best of the authors’ knowledge, this represents the best known construction in that it requires the lowest number of redundant
bits for a code correcting two deletions.

I. INTRODUCTION

This paper is concerned with deletion-correcting codes. The problem of creating error-correcting codes that correct one or more
deletions (or insertions) has a long history, dating back to the early 1960’s [13]. The seminal work in this area is by Levenshtein,
who showed in [9] that the Varshamov-Tenengolts asymmetric error-correcting code (introduced in [14]) also corrects a single
deletion or insertion. For single deletion-correcting codes, Levenshtein introduced a redundancy lower bound of log2(n)−O(1)
bits, demonstrating that the VT code, which requires at most log2(n) redundancy bits, is nearly optimal.

The elegance of the VT construction has inspired many attempts to extend this code to correct multiple deletions. Such an
approach is found in [7] where the authors introduce a number-theoretic construction that was later shown in [1] to be capable
of correcting two or more deletions. Unfortunately, even for the case of just two deletions, the construction from [7] has a rate
which does not converge to one. Other constructions for multiple insertion/deletion-correcting codes such as those found in [11],
[12] rely on (d, k)-constrained codes, and consequently, these codes also have rates less than one.

To the best of the authors’ knowledge, the best known construction for two deletions (in terms of the minimum redundancy)
can be found in the recent work by Brakensiek et al. [2]. The authors show that it possible to construct a t deletion-correcting
code with ct · log2 n bits of redundancy where ct = O(t2 log2 t). The construction from [2] is for general t and does not report
any specialized constructions for the case where t is small. However, it will be shown in the next section that these methods
result in a construction requiring at least 128 log2 n bits of redundancy for the case of t = 2.

The best known lower bound for the redundancy of a double deletion-correcting code is 2 log2 n−O(1) ([8]) bits; thus, there
remains a significant gap between the upper and lower bounds for t deletion-correcting codes even for the case where t = 2. This
motivates the effort to search for more efficient codes.

We note that using a counting argument such as the one found in [9], one can show that there exists a t deletion-correcting
code with redundancy at most 2t log2 n−O(t). However, these codes require the use of a computer search to form the codebooks
along with a lookup table for encoding/decoding. Such codes do not scale as n becomes large and there is no efficient search
mechanism that scales sub-exponentially with n.

The contribution of the present work is a double deletion-correcting code construction that requires 8 log2 n+O(log2 log2 n)
bits of redundancy. To the best of the authors’ knowledge this represents the best construction for a double deletion-correcting

10 11 12 13 14 15 16 17 18 19 20

Code Length in Bits

0

500

1000

1500

2000

2500

3000

Bi
ts

 o
f R

ed
un

da
nc

y

Redundancy of Codes
Codes from [2]
Our Two Deletion Code

Fig. 1. Comparison of new codes with codes from [2].

ar
X

iv
:1

71
2.

07
22

2v
2

 [
cs

.I
T

]
 3

0
A

pr
 2

01
8

2

10 11 12 13 14 15 16 17 18 19 20

Code Length in Bits

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
at

e

Rates of Codes

Codes from [2]
Our Two Deletion Code

Fig. 2. Comparison of rate of new codes with codes from [2].

code in terms of the redundancy; it is within a factor of four of the optimal redundancy. In Figures 1 and 2, we compare our
construction and the construction from [2], where make use of the expressions (1), (2), and (3), which are derived later in
Section IV. To ease the comparison we assume that log2 |CT2(n, s)| = n, and that the number of mixed strings from [2] of length
n is 2n.

The paper is organized as follows. In Section II, we provide the main ideas behind our construction and provide an outline of
our approach. Section III introduces our first construction. Afterwards, an improved construction is described in Section IV. We
discuss the issue of run-length-limited constrained codes in Section V and conclude with Section VI.

II. MAIN IDEAS AND OUTLINE

The idea behind our approach is to isolate the deletions of zeros and ones into separate sequences of information, and to then
use error correction codes on the substrings appearing in the string. We also use a series of constraints that allow us to detect
what types of deletions occurred, and consequently we are able to reduce the number of codes in the Hamming metric which are
used as part of the construction. As a result, we present a construction which achieves the advertised redundancy.

Let C(n) ∈ Fn
2 denote our codebook of length n that is capable of correcting two deletions. Suppose y ∈ Fn−2

2 is received
where y is the result of two deletions occurring to some vector x ∈ C(n), denoted y ∈ D2(x). Then, we have the following 6
scenarios:

1) Scenario 1: Two zeros were deleted from x.
2) Scenario 2: Two ones were deleted from x.
3) Scenario 3: A zero was deleted from a run of of length > 4 and a one was deleted from a run of length > 4 in x.
4) Scenario 4: A symbol b ∈ F2 was deleted from a run of length > 4 and another symbol b̄ was deleted from a run of length

` ∈ {1, 2, 3}. Furthermore, if ` = 1, then b̄ is adjacent to runs of lengths `1, `2 where `1 + `2 < 4.
5) Scenario 5: A symbol b ∈ F2 was deleted from a run of length > 4, and a symbol b̄ is deleted from a run of length 1, where

b̄ is adjacent to runs of lengths `1, `2 where `1 + `2 = 4.
6) Scenario 6: Scenarios 1)-5) do not occur.

The first 5 of these scenarios are shown in Figure 3.
Our approach is to use a series of detection codes to attempt to delineate between the 6 scenarios enumerated above. In addition,

and similar to [2], we make use of substrings that are not affected by the deletions. The main difference between our approach here
and the one used by [2] is that we use a series of detection codes that allow us to place error-correcting codes on fewer substrings
occuring in our codewords. We provide an example which illustrates the basic ideas behind the approach in [2] and it highlights
some subsequent notation used throughout the paper. In the next example, let L(x,w) be an integer which denotes the maximum
number of bits between any two occurrences of the substring w ∈ {0, 1}∗ in x, and let fs : {∅} ∪ F1

2 ∪ · · · ∪ Fs
2 → [2s+1 − 1] be

an injective mapping where ∅ denotes the null string.

Example 1. Suppose x = (0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0) is transmitted. Notice that L(x, 00) = 4. For shorthand, let L(x, 00) = s.
Then,

Ffs(x, 00) = Ff4(x, 00) = (f4(0, 1, 1), f4(∅), f4(1, 0, 1, 1), f4(∅)).

Thus, if there are k occurrences of the substring 00, then the sequence Ff4(x, 00) has length k + 1. To see this, note that k − 1
symbols in Ffs(x, 00) are created by hashing substrings located between every two consecutive appearances of 00 in x. Note

3

0,1,0,0,0,0,1,1,1,1,0,1,0,1,0,0,0

0,1,0,0,0,0,1,1,1,1,0,1,0,1,0,0,0

0,1,0,0,0,0,1,1,1,1,0,1,0,1,0,0,0

0,1,0,0,0,0,1,1,1,1,0,1,0,1,0,0,0

Scenario 1
0,1,0,0,0,0,1,1,1,1,0,1,0,1,0,0,0

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Fig. 3. First 5 scenarios

that in this example this corresponds to the symbols f4(∅), f4(1, 0, 1, 1). In addition, the first symbol in Ffs(x, 00) is formed by
hashing the substring which appears before the first occurrence of 00 and the last symbol in Ffs(x, 00) is formed by hashing the
substring which occurs after the last occurrence of 00.

Suppose y = (1, 1, 0, 0, 0, 1, 0, 1, 0, 0) is received where y is the result of two deletions occurring to x. Notice that

Ff4(y, 00) = (f4(1, 1), f4(∅), f4(1, 0, 1), f4(∅)).

In particular, notice that dH(Ff4(x, 00), Ff4(y, 00)) = 2, where dH denotes the Hamming distance. Thus, if Ff4(x, 00) belongs
to a double error-correcting code, it is possible to recover Ff4(x, 00) from y and in particular, it is possible to then recover x.

Notice in the previous example that all occurrences of the substring 00 were preserved (we will more rigorously define this
notation shortly). It is not too hard to see that if (in the previous example) a deletion occurred where a substring 00 is deleted
in x and therefore does not appear in y, then we can no longer claim dH(Ff4(x, 00), Ff4(y, 00)) = 2.

In order to overcome this issue, the approach taken in [2] was to require that the sequence Ff4(x,w) belongs to a double
error-correcting code for many different choices of w. In particular, the approach in [2] is to enforce that Ffs(x,w) holds for
every binary string w of length m where according to Theorem 5 from [2] we need 2m > 2t · (2m − 1). Since any two-error
correcting code of length n requires approximately 2 log2 n bits of redudancy and t = 2 for our setup, this implies that using the
construction from [2], we need m > 6 and so the overall construction requires approximately 26 · (2 log2 n) = 128 log2 n bits of
redudancy.

The approach taken here is to use a series of detection codes along with different mappings and more carefully choose which
substrings to place error-correcting codes on. Consequently, we show it is possible to construct a code with fewer redundant bits
than the approach outlined in [2] for the case of two deletions.

From the above example if we use the constraints Ffs(x,w1), Ffs(x,w2), Ffs(x,w3) , and Ffs(x,w4) (for some appropri-
ately chosen substrings w1, . . . ,w4), then this would require the use of a series of double error-correcting codes defined over an
alphabet of size approximately 2s. To reduce the size of this alphabet, we make use of the following lemma.

Lemma 1. (c.f., [2]) There is a hash function hs : {0, 1}s → {0, 1}v for v 6 4 log2 s + O(1), such that for all x ∈ {0, 1}s, given
any y ∈ D2(x) and hs(x), the string x can be recovered.

Codes constructed according to Lemma 1 can be found using brute force attempts such as finding an independent set on a
graph with 2n vertices for which no polynomial-time algorithms (with respect to n) exist. Note, however, that if s = O(log2 n),
then using an algorithm for determining a maximal independent set on a graph which is polynomial with respect to the number
of vertices in the graph (such as [6] for instance) results in a code of length s that can be constructed in polynomial time with
respect to n.

At first, we will make use of the sequences Fhs
(x, 0000), Fhs

(x, 1111), Fhs
(x, 11011), and Fhs

(x, 110011) where x ∈ C(n).
In particular, we will require that each of these sequences belongs to a code with minimum Hamming distance 5 over an alphabet
of size approximately s. Assuming s = O(log2 n), then these constraints together require approximately 4 · 73 log2(n) bits of
redundancy if we use the non-binary codes from Dumer [5]. Afterwards, we alter one of the maps used in conjunction with our
Hamming codes and show it is possible construct a code with 8 log2 n+O(1) bits of redudancy. We now turn to some additional
notation before presenting the construction.

4

For a vector x ∈ Fn
2 , let D(i1, i2,x) ∈ Fn−2

2 be the result of deleting the symbols in x in positions i1 and i2 where 1 6
i1 < i2 6 n. For example if x = (0, 1, 0, 1, 0, 0), then D(2, 4,x) = (0, 0, 0, 0). Using this notation, we have D2(x) = {y :
∃i1,∃i2,y = D(i1, i2,x)}.

Let w ∈ {0, 1}m. Suppose y ∈ D2(x). Then we say that the substring w ∈ {0, 1}m is preserved from x to y if, for every
occurrence of w, there exists indices i1 and i2 such that D(i1, i2,x) = y and the following holds:

1) w 6∈ {(xi1 , xi1+1, . . . , xi1+m−1), (xi1−1, xi1 , . . . , xi1+m−2),
. . . , (xi1−m+1, xi1−m+2,. . . , xi1)},

2) w 6∈ {(xi2 , xi2+1, . . . , xi2+m−1), (xi2−1, xi2 , . . . , xi2+m−2),
. . . , (xi2−m+1, xi2−m+2,. . . , xi2)},

3) w 6∈ {(yi1−1, yi1 , . . . , yi1+m−2), (yi1−2, yi1−1, . . . , yi1+m−3),. . . , (yi1−m+1, yi1−m+2,. . . , yi1)},
4) w 6∈ {(yi2−2, yi2−1, . . . , yi2+m−3), (yi2−3, yi2−2, . . . , yi1+m−4),. . . , (yi2−m, yi1−m+1,. . . , yi2−1)}.

In words, the first two statements above require that any substring w is not deleted from x and the last two statements require
that no new appearances of w are in y that were not also in x. If w is not preserved from x to y, and the first two conditions
above are violated, then we say that w was destroyed from x to y. If w is not preserved, and the last two conditions above are
violated, then we say that w was created from x to y. Notice that in order for w to be preserved from x to y, 1)-4) has to hold
for at least one pair of i1, i2 such that we can write y = D(i1, i2,x) since the choice of i1, i2 may not be unique. The following
example shows this.

Example 2. Suppose x = (0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0) and y = (0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0). Then we say that
(1, 0, 1) is preserved from x to y since there are three occurrences of 101 in x and D(6, 15,x) = D(5, 15,x) = y. In particular,
the first occurrence of (1, 0, 1) is preserved since we can write y = D(6, 15,x) and the second occurrence of (1, 0, 1) is preserved
since we can write y = D(5, 15,x). Notice that (1, 1, 1) is not preserved from x to y and in particular (1, 1, 1) is destroyed.

For a vector x ∈ Fn
2 , let N0(x) denote the number of zeros in x. Similarly, let N1(x) be the number of ones that appear

in x. Furthermore, let N0000(x), N1111(x), N11011(x) be the number of appearances of the substrings 0000, 1111, and 11011
respectively. We illustrate these notations in the following example.

Example 3. Let x = (0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1 , 1, 0, 0, 0). Then, N0(x) = 11, N1(x) = 10, N0000 = 2, N1111 = 1,
and N11011(x) = 1. Notice that two occurrences of the substring 0000 overlap.

As discussed earlier, in the next section we consider a construction of a code C(n) capable of correcting two deletions where
for any x ∈ C(n) we have that Fhs

(x, 0000), Fhs
(x, 1111), Fhs

(x, 11011), and Fhs
(x, 110011) each belong to a code with

minimum Hamming distance 5. We now give some intuition behind the choice of the substrings 0000, 1111, 11011, and 110011.
First, the substrings 0000 and 1111 were chosen initially because they have large distance between them. More precisely, let
y = D1(x), so that y is the result of one deletion occurring to x. Then, it can be shown that if the substring 0000 is not
preserved from x to y after one deletion, the substring 1111 is preserved. Similarly, if the substrings 1111 and 0000 are each not
preserved, then at least one of the substrings {11011, 110011} is preserved (these ideas are formalized in Claims 1 and 2). Thus,
we will show in the next section that it is possible to always recover x provided Fhs

(x, 0000), Fhs
(x, 1111), Fhs

(x, 11011),
and Fhs

(x, 110011) each belong to a code with minimum Hamming distance 5 (along with some additional constraints) since at
least one of the substrings {0000, 1111, 11011, 110011} is preserved from x to y.

III. CONSTRUCTION - FIRST ATTEMPT

We now turn to describing out code. Let CT (n, s) denote the following set

CT (n, s) = {x ∈ Fn
2 : L(x, 0000) 6 s, L(x, 1111) 6 s, L(x, 110011) 6 s, L(x, 11011) 6 s}.

As we will see shortly, our main construction will be a sub-code of CT (n, s).
Let c ∈ F6

7. Suppose q the smallest odd prime greater than the size of the image of the hash function hs from Lemma 1.
Suppose N is the smallest positive integer such that qN−1 > n. Let a0000,a1111,a110011,a11011 ∈ Fr

q where r 6 2N + dN−13 e.
Our construction is the following:

5

C(n,a0000,a1111,a110011,a11011, c, s) =
{
x ∈ CT (n, s) :

N0(x) mod 7 = c1, N1(x) mod 7 = c2,

N1111(x) mod 7 = c3, N0000(x) mod 7 = c4,

N110011(x) mod 7 = c5, N11011(x) mod 7 = c6

Fhs(x, 0000) ∈ C2(n, q,a0000),

Fhs(x, 1111) ∈ C2(n, q,a1111),

Fhs(x, 110011) ∈ C2(n, q,a110011),

Fhs
(x, 11011) ∈ C2(n, q,a11011)

}
,

where C2(n, q,a) is a code over Fq of length n. If any of the sequences above that are required to be in codes of length n have
lengths M < n, then we simply assume the last n−M components of the sequences are equal to zero.

Let H be a parity check matrix for a double error-correcting code (minimum Hamming distance 5) from [5] so that H ∈
Fr×qN−1

q . We define the double error correcting code C2(n, q,a) so that

C2(n, q,a) = {x ∈ FqN−1

q : H · x = a}.

We now show that given any y ∈ D2(x), it is possible to recover x ∈ C(n,a0000,a1111,a110011,a11011, c, s). For shorthand,
we refer to C(n,a0000,a1111,a110011,a11011, c, s) as C(n). For the remainder of the section, we always assume x is a codeword
from C(n) and y ∈ D2(x).

This section is organized as follows. First, Claims 1 and 2 establish some useful properties regarding the substrings 0000,
1111, 11011, and 110011. Then, we show that y can be recovered from x by considering the following cases:

1) Lemmas 2 and 3 consider Scenarios 1 and 2 from Figure 3 where either two zeros are deleted or two ones are deleted.
2) Lemma 4 considers a special case of Scenario 3 where a zero and a one are both deleted from runs of length 4.
3) Lemma 8 handles instances of Scenarios 4, 5, and 6 where symbols b, b̄ are deleted from x and either 1) b is from a run

of length 4 and b̄ is adjacent to runs of lengths `1, `2 such that `1 + `2 = 4 or 2) The substrings 0000, 1111 are preserved
from x to y.

4) Lemmas 5, 6, and 7 address the remaining cases.
The following claims will be used throughout the section.

Claim 1. Suppose a zero is deleted from a run of length one in x and the deletion causes
1) 11011 to be created/destroyed,
2) 1111 to be created,

then the substring 110011 is preserved from x to y.

As an example, the previous claim will be concerned with the following type of deletion:

(×,×,×, 1, 0, 1, 1, �0, 1, 1,×,×,×,×,×),

where ′×′ indicates a symbol which is either a zero or a one and �0 represents a deletion (in this case of a symbol with value 0).
Proof: The deletion of a zero from a run of length 1 can destroy a 11011 substring only if the middle zero is deleted. In

this case, the 110011 substring is preserved. The deletion of a zero from a run of length 1 can create a 11011 substring only if
either the first zero is deleted from the substring 11101011 in x or if the second zero is deleted from the substring 11010111 in
x. In either case, the substring 110011 is preserved from x to y.

Claim 2. Suppose a symbol with value b ∈ F2 is deleted from a run of length > 4 and a symbol with value b is deleted from a run of
length 1 where

N1111(x) 6= N1111(y), N0000(x) 6= N0000(y).

Under this setup, if b = 1, the substring 110011 is preserved. Otherwise, if b = 0 and 11011 is not preserved from x to y, then
110011 is preserved.

For example, the previous claim will be concerned with the following setups. If b = 0, then one instance of the setup from this
claim is

(×,×, 0, �0, 0, 0,×,×,×,×,×, 1, �0, 1,×,×,×)

6

and if b = 1, then another example is

(×,×, 1, �1, 1, 1,×,×,×,×,×, 0, �1, 0,×,×,×).

Proof: Suppose that a symbol with value b = 0 is deleted from a run of length > 4 and another symbol with value 0 is
deleted from a run of length 1. To begin, notice that the zero which was deleted from the run of length > 4 cannot create/destroy
the substrings 11011, 110011, 1111 from x to y. Then, according to Claim 1, if the deletion of a zero from a run of length 1 a)
creates/destroys the substring 11011 and b) creates the substring 1111 from x to y, then the substring 110011 is preserved from
x to y.

Suppose b = 1. Under this setup, the substring 110011 is preserved, and so we can recover x from the constraint Fhs
(x, 110011) ∈

C2(n, q,a110011). To see this, we first note that an occurrence of the substring 110011 is destroyed only if a one is deleted from
a run of length 2 which is not possible under this setup. In addition, an occurrence of the substring 110011 cannot be created
by deleting a one from a run of length 1 (since this would require that the one is also adjacent to runs of lengths `1, `2 with
`1 + `2 > 4 since a 0000 substring is created from x to y) or by deleting a one from a run of length 4. Therefore, 110011 is
preserved from x to y when b = 1.

We begin with the cases where either y is the result of deleting two zeros or two ones from x. The first two lemmas handle
Scenarios 1) and 2) from the previous section.

Lemma 2. Suppose N1(x)−N1(y) mod 7 = 2. Then, x can be recovered from y.

For example, the previous claim will be concerned with the following setup:

(×,×,×,×, �1,×,×,×,×,×,×,×,×, �1,×,×,×).

Proof: Since N1(x)−N1(y) mod 7 = 2, two ones were deleted from x to obtain y. If N0000(x)−N0000(y) ≡ 0 mod 7, then
0000 is preserved since the deletion of a 1 can create at most 3 0000s and so the deletion of two ones can create at most 6 0000s.
Thus, we conclude that 0000 is preserved from x to y. Since two ones were deleted, clearly no 0000 substrings were destroyed.
Therefore, 0000 is preserved from x to y, and so we can recover x from y using the constraint Fhs(x, 0000) ∈ C2(n, q,a0000).

If N1111(x)−N1111(y) ≡ 0 mod 7, then 1111 is preserved, and so we can recover x from y using the constraint Fhs(x, 1111) ∈
C2(n, q,a1111).

Now we assume that both N1111(x) − N1111(y) 6≡ 0 mod 7 and N0000(x) − N0000(y) 6≡ 0 mod 7. Note that this is only
possible if a one is deleted from a run of length > 4 and a one is deleted from a run of length 1. According to Claim 2, we can
determine x from Fhs

(x, 110011) ∈ C2(n, q,a110011).

Next we turn to the case where two zeros have been deleted.

Lemma 3. Suppose N0(x)−N0(y) mod 7 = 2. Then, x can be recovered from y.

For example, we will be concerned with the following setup:

(×,×,×,×, �0,×,×,×,×,×,×,×,×, �0,×,×,×).

Proof: Since N0(x)−N0(y) mod 7 = 2, two zeros were deleted from x to obtain y. If N1111(x)−N1111(y) ≡ 0 mod 7,
then we can recover x from y using the constraint Fhs

(x, 1111) ∈ C2(n, q,a1111) using the same logic as the previous lemma.
In addition, if N0000(x) −N0000(y) ≡ 0 mod 7, then 0000 is preserved, and so we can recover x from y using the constraint
Fhs(x, 0000) ∈ C2(n, q,a0000).

Now we assume that both N1111(x) − N1111(y) 6≡ 0 mod 7 and N0000(x) − N0000(y) 6≡ 0 mod 7. Similar to the previous
lemma, this is only possible if a zero is deleted from a run of length > 4 and a zero is deleted from a run of length 1. We
can use the constraint N11011(x) mod 7 = c6 to determine whether the substring 11011 is preserved from x to y. Notice that if
11011 is not preserved from x to y, then a 11011 is destroyed, and the middle zero is deleted. In this case, N11011(y) mod 7 =
c6 − 1 mod 7, and so we can use the constraint N11011(x) mod 7 = c6 to determine whether the substring 11011 is preserved
from x to y. If 11011 is preserved, then we can determine x from Fhs(x, 11011) ∈ C2(n, q,a11011). If 11011 is not preserved
then we can determine x from Fhs(x, 110011) ∈ C2(n, q,a110011) according to Claim 2.

As a result of the previous two lemmas, we assume in the remainder of this section that y is the result of deleting a symbol with
a value 1 and a symbol with a value 0. The next 3 lemmas handle the case where N0000(x) > N0000(y) or N1111(x) > N1111(y).
The next lemma covers Scenario 3).

Lemma 4. Suppose N0000(x)−N0000(y) mod 7 = 1, and N1111(x)−N1111(y) mod 7 = 1. Then, x can be recovered from y.

For example, we will be concerned with the following setup:

(×,×, 0, 0, �0, 0,×,×,×,×,×,×, 1, �1, 1, 1,×).

7

Proof: Since N0000(x)−N0000(y) mod 7 = 1 and N1111(x)−N1111(y) mod 7 = 1, y is the result of deleting a 1 and a
0 from x where both symbols belong to runs of lengths > 4. Since both symbols were deleted from runs of lengths at least 4, it
follows that no 110011 substrings were created/destroyed and so we can recover x from Fhs

(x, 110011) ∈ C2(n, q,a110011).

The next two lemmas handle Scenario 4).

Lemma 5. Suppose N0000(x)−N0000(y) mod 7 = 1 and N1111(x)−N1111(y) mod 7 = 0. Then, x can be recovered from y.

For example, we will be concerned with the following setup:

(×,×, 0, 0, �0, 0,×,×,×,×,×,×, 0, �1, 1, 0,×).

Proof: Since N0000(x) − N0000(y) mod 7 = 1, clearly a zero was deleted from a run of zeros of length at least 4 in x.
Since N1111(x) − N1111(y) mod 7 = 0 and there are exactly two deletions (of a zero and a one), no ones were deleted from
runs of ones of length > 4. Thus, we can recover x from Fhs

(x, 1111) ∈ C2(n, q,a1111).

Lemma 6. Suppose N1111(x)−N1111(y) mod 7 = 1 and N0000(x)−N0000(y) mod 7 = 0. Then, x can be recovered from y.

For example, the previous lemma is concerned with the following setup:

(×,×, 1, 1, �1, 1,×,×,×,×,×,×, 1, �0, 0, 1,×).

Finally, we turn to the case where either Scenario 5) or Scenario 6) occurs. The next two lemmas handle the case where either
N0000(y) > N0000(x) or N1111(y) > N1111(x).

Lemma 7. Suppose N0000(y)−N0000(x) mod 7 ∈ {1, 2, 3} or N1111(y)−N1111(x) mod 7 ∈ {1, 2, 3}. Then, x can be recovered
from y.

For example, we will be concerned with the following setup:

(×, 0, 0, 0, �1, 0,×,×,×,×,×,×, 1, �0, 0, 1,×),

or
(×, 1, 1, 1, �0, 1,×,×,×,×,×,×, 0, �1, 1, 0,×).

Proof: Suppose first that N0000(y)−N0000(x) mod 7 ∈ {1, 2, 3}. Then, clearly a one from a run of length 1 was deleted
in x resulting in the creation of new 0000 substrings. If N1111(y)−N1111(x) mod 7 = 0, then 1111 is preserved from x to y
and so we can recover x.

Otherwise, if N0000(y)−N0000(x) mod 7 ∈ {1, 2, 3} and N1111(y)−N1111(x) mod 7 ∈ {1, 2, 3}, it follows that a one was
deleted from a run of length 1 and also a zero was deleted from a run of length 1, so that we have the following type of setup:

(×, 0, 0, 0, �1, 0,×,×,×,×,×, 1, 1, �0, 1, 1,×),

The deletion of a one from a run of length 1 cannot or create destroy a 110011 substring or a 11011 substring since the 1 needs to
be adjacent to two runs of lengths `1, `2 where `1 + `2 > 4 since at least one 0000 substring is created from x to y. Furthermore,
the deletion of the one from a run of length 1 clearly cannot create a 1111 substring from x to y. Therefore, the deletion of
the zero from a run of length 1 creates a 1111 substring from x to y and from Claim 1, if 11011 is not preserved from x to
y, then 110011 is preserved. Thus, we can use the constraints N11011(x) mod 7 = c6, Fhs

(x, 110011) ∈ C2(n, q,a110011) and
Fhs

(x, 11011) ∈ C2(n, q,a11011) to determine x.
Notice that it is not possible to have N0000(y) − N0000(x) mod 7 ∈ {1, 2, 3} and N1111(x) − N1111(y) mod 7 ∈ {1, 2, 3}.

This is because in order to have N0000(y)−N0000(x) mod 7 ∈ {1, 2, 3}, a one is deleted from a run of length 1 and this creates
a new run of zeros of length at least 4. Then, the deletion of the zero (which also occurs by assumption) can only create 1111
substrings from x to y and so N1111(x)−N1111(y) mod 7 6∈ {1, 2, 3}.

The case where N1111(y) − N1111(x) mod 7 ∈ {1, 2, 3}, but N0000(y) − N0000(x) mod 7 6∈ {1, 2, 3} can be handled using
the same logic as before.

We have one case left to consider.

Lemma 8. Suppose N1111(x)−N1111(y) mod 7 = 0, and N0000(x)−N0000(y) mod 7 = 0. Then, x can be recovered from y.

Proof: Using the same logic as before, N1111(x) −N1111(y) mod 7 = 0 and N0000(x) −N0000(y) mod 7 = 0, there are
two setups to consider:

1) A symbol b was deleted from a run of length > 4 and another symbol b̄ from a run of length 1 was deleted which was
adjacent to a run of length `1 and another run of length `2 such that `1 + `2 = 4.

2) The 0000 and 1111 substrings were preserved from x to y.

8

The decoding procedure is the following. Suppose N110011(x) ≡ N110011(y) mod 7. Then we estimate x to be the sequence
which agrees with at least two of the following three constraints:

{
Fhs

(x, 0000) ∈ C2(n, q,a0000), Fhs
(x, 1111) ∈ C2(n, q,a1111),

Fhs
(x, 110011) ∈ C2(n, q,a110011)

}
. Otherwise, if N110011(x) 6≡ N110011(y) mod 7, we estimate x to be the sequence which

agrees with the constraint Fhs
(x, 0000) ∈ C2(n, q,a0000).

First suppose that N110011(x) ≡ N110011(y) mod 7 and suppose that 1) holds. If b = 0, then the decoding is correct since
in this case x agrees with the constraints Fhs

(x, 1111) ∈ C2(n, q1,a2) and Fhs
(x, 110011) ∈ C2(n, q,a110011), since it is not

possible to create a 0000 substring and also to create/destroy 110011. Now, suppose b = 1. In this case, if N110011(x) ≡
N110011(y) mod 7, then the deletion of a zero from a run of length 1 did not create/destroy the substring 110011 and so x agrees
with at least two of the three constraints from

{
Fhs(x, 0000) ∈ C2(n, q,a0000), Fhs(x, 1111) ∈ C2(n, q,a1111), Fhs(x, 110011) ∈

C2(n, q,a110011)
}

. Thus, the decoding is correct when N110011(x) ≡ N110011(y) mod 7 and 1) holds.
Next consider the case where N110011(x) ≡ N110011(y) mod 7 and suppose that 2) holds. Then clearly, x agrees with two of

the three constraints
{
Fhs

(x, 0000) ∈ C2(n, q,a0000), Fhs
(x, 1111) ∈ C2(n, q,a1111), Fhs

(x, 110011) ∈ C2(n, q,a110011)
}

and
so the decoding is correct in this case.

Suppose now that N110011(x) 6≡ N110011(y) mod 7 and that 1) holds. Notice that under this setup, b 6= 0, since the deletion of
a 0 from a run of length at least 4 and the deletion of a 1 from a run of length 1 that creates a 0000 substring cannot create/destroy
any substrings 110011 from x to y. If b = 1 and N110011(x) 6≡ N110011(y) mod 7, then a zero was deleted from a run of length
one and a one was deleted from a run of length > 4 so that the substring 0000 was preserved and so the decoding is correct in
this case.

Finally, we consider the case where N110011(x) 6≡ N110011(y) mod7 and 2) holds. If 2) holds and the 0000 substring is
preserved then clearly x agrees with the constraint Fhs(x, 0000) ∈ C2(n, q,a0000), and so the decoding procedure is correct in
this case as well.

As a consequence of Lemmas 2-8, we have the following theorem.

Theorem 9. The code C(n,a0000,a1111,a110011,a11011, c, s) can correct two deletions.

Recall that if we assume s = O(log2 n), then C(n) requires at least 4 · 7
3 log2(n) bits of redundancy if we use the non-

binary codes from Dumer [5] as a result of the constraints Fhs(x, 0000) ∈ C2(n, q,a0000), Fhs(x, 1111) ∈ C2(n, q,a1111),
Fhs

(x, 110011) ∈ C2(n, q,a110011), and Fhs
(x, 11011) ∈ C2(n, q,a11011). In the next section, we make some modifications to

the code discussed in this section and afterwards we discuss the redundancy of the resulting code.

IV. AN IMPROVED CONSTRUCTION

In this section, we modify the construction in the previous section to obtain a code with redudancy 8 log2 n+O(log2 log2 n).
Our construction uses the same substrings to partition our codewords as in the previous section, but we make use of a different hash
function in place of hs from Lemma 1, denoted h(R)

s . Consequently we show that we can replace the constraint Fhs(x, 11011) ∈
C2(n, q,a11011) with the constraint that F

h
(R)
s

(x, 11011) belongs to a code with Hamming distance 3 (rather than Hamming
distance 5). Our analysis and the subsequent proof will mirror the previous section in light of these modifications. This section is
organized as follows. We first describe our code construction in detail and then show it has the advertised redudancy. Afterwards,
we prove the code can correct two deletions.

Let CT2(n, s) denote the following set where for a binary vector v, τ(v) is the length of the longest run of of zeroes or ones
in v,

CT2(n, s) = {x ∈ Fn
2 : L(x, 0000) 6 s, L(x, 1111) 6 s,

L(x, 110011) 6 s, L(x, 11011) 6 s,

τ(x) 6 s}.

In the following, for a vector v ∈ Fn
2 , let τ1(v) denote the run-length representation of the runs of ones in v. For example, if

v = (1, 1, 0, 1, 0, 1, 1, 1), then τ1(v) = (2, 1, 3). Furthermore, let τ>2 be the run-length representation of ones in v with lengths
at least 2. For example, τ>2(v) = (2, 3).

Let Q be the smallest prime greater than s. We now turn to describing the map h
(R)
s : Fs

2 → F2
Q. Let HR1 ∈ F2×s

Q be the
parity check matrix for a code CL with Hamming distance at least 3 over FQ. For a vector v ∈ {0, 1}s we define h(R)

s as the
vector which results by considering the run-length representation (as a vector) of the runs of ones in v of length at least 2 and
multiplying HR1 by this vector. We provide an example of this map next.

Example 4. Suppose v = (0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0). Then, the vector representing the runs of ones in v is τ1(v) = (2, 1, 2).
Notice that τ1(v) has an alphabet size which is equal to the length of the longest run in v. Then, h(R)

s (v) = HR1 · τ>2(v) =
HR1 · (2, 2).

9

Let c ∈ F6
7. Suppose q1 the smallest odd prime greater than the size of the image of the map hs, and let q2 be the smallest

prime greater than the size of the image of the map h(R)
s . As before, let N1 be the smallest positive integer such that qN1−1

1 > n,
and suppose N2 is the smallest positive integer such that qN2

2 − 1 > n. Let a0000,a1111,a110011 ∈ Fr1
q1 and let a11011 ∈ Fr2

q2

where r1 6 2N1 + dN1−1
3 e and r2 6 1 +N2. In the following, let b ∈ Zs+1.

Our construction is the following:

C(2)(n,a0000,a1111,a110011,a11011, c, b, s) =
{
x ∈ CT2(n, s) :

N0(x) mod 7 = c1, N1(x) mod 7 = c2,

N0000(x) mod 7 = c3, N1111(x) mod 7 = c4,

N110011(x) mod 7 = c5, N11011(x) mod 7 = c6

Fhs
(x, 0000) ∈ C2(n, q1,a0000),

Fhs
(x, 1111) ∈ C2(n, q1,a1111),

Fhs
(x, 110011) ∈ C2(n, q1,a110011),

F
h
(R)
s

(x, 11011) ∈ C1(n, q2,a11011),∑
i odd

τ1(x)i = b mod (s+ 1)
}
,

where C1(n, q2,a11011) is either a primitive BCH code with roots {1, α} (α ∈ F
q
N2
2

is an element of order qN2
2 − 1) or a coset

of such a code. If any of the sequences above that are required to be in codes of length n have lengths M < n, then we simply
assume the last n−M components of the sequences are equal to zero.

Since the parameters c,a0000,a1111,a110011,a11011, and b can be chosen arbitrarily, it follows using an averaging argument
that there exists a choice of c,a0000,a1111,a110011,a11011, and b that gives

|C(2)(n,a0000,a1111,a110011,a11011, c, b, s)| >
|CT2(n, s)|

76q3r11 qr22 (s+ 1)
. (1)

Assuming that the image of the map hs has cardinality 24 log2(s) and s = 1065 log2(n) then we can approximate q1 =

(1065 log2 n)4. In addition, if qN1−1
1 = n+ 1, then N1 = log2(n+1)

4 log2(1065 log2(n))
+ 1. Then, r1 6 7

3 ·N1, and so

log2 q
r1
1 6

7

3
log2(n+ 1) +

28

3
log2(1065 log2(n)) (2)

=
7

3
log2(n+ 1) +O(log2 log2 n).

Assuming Q = s + 1 = 1065 log2(n) + 1, then we approximate q2 = 2130 log2(n) + 2. In addition if qN2
2 = n + 2, then

N2 = log2(n+2)
log2(2130 log2(n)+2) . Since r2 6 1 +N2, we have

log qr22 6 log2(n+ 2) + log2(2130 log2(n) + 2) (3)
= log2(n+ 2) +O(log2 log2(n)).

Thus,

log2 |C(2)(n,a0000,a1111,a110011,a11011, c, b, s)| >
log2 |CT2(n, s)| − 8 log n−O(log2 log2 n).

In the next section, we show that when s > 1065 log2(n), log2 |CT2(n, s)| > n −O(1) and so there exists a code which meets
our lower bound.

We now prove that the code C(2)(n,a0000,a1111,a110011,a11011, c, b, s) can correct two deletions by considering the same
scenarios as in the previous section. With a slight abuse of notation, in this section C(n) will denote C(2)(n,a0000,a1111,a110011,
a11011, c, b, s) and NOT C(n,a0000,a1111,a110011,a11011, c, s) from the previous section.

Analagous to the previous section, we begin with the following claim and throughout we assume x ∈ C(n).

Claim 3. Suppose a zero is deleted from a run of length one in x and the deletion causes
1) 110011 to be created/destroyed,
2) 1111 to be created,

then the substring 11011 is preserved from x to y, and dH
(
F
h
(R)
s

(x, 11011), F
h
(R)
s

(y, 11011)
)

= 1.

10

Proof: The deletion of a zero from a run of length 1 clearly cannot destroy a 110011 substring. The only other case to
consider is when a substring 110011 is created and also the substring 1111 is created. Notice that this is only possible when
the first zero is deleted from the substring 111010011 or if the last zero is deleted from the substring 110010111. Notice that
under either setup, the substring 11011 is preserved. In addition τ>2(111010011) = (3, 2) and τ>2(11110011) = (4, 2) so that
dH

(
F
h
(R)
s

(x, 11011), F
h
(R)
s

(y, 11011)
)

= 1 (notice τ>2(110010111) = (2, 3) and τ>2(11001111) = (2, 4)).

Claim 4. Suppose that y is the result of deleting a zero in x from a run of length 1 where the zero is adjacent to runs of length 1 and
length ` where ` > 3. Then, given τ>2(x),

∑
i odd τ1(x)i mod (s+ 1), and y, it is possible to determine τ1(x).

Proof: Since y is the result of deleting a zero from a run of length 1 where the zero is adjacent to runs of length 1 and
` > 3, it follows that τ>2(y) can be obtained by substituting a symbol in τ>2(y) which has value ` with another symbol which
has value ` + 1. Since ` + 1 > 3, it follows that dH(τ>2(y), τ>2(x)) = 1 and so we can determine the location of the symbol
in τ>2(y) that was altered as a result of the deletion to y. To obtain τ1(x) from τ1(y), τ>2(x), τ>2(y), we replace the symbol,
say a, that has value ` + 1 in τ1(y) which corresponds to the same symbol in τ>2(x) (that was affected by the deletion of the
zero in x) and we replace the symbol a in τ1(y) with 2 adjacent symbols 1 and `. Given

∑
i odd τ1(x)i mod (s + 1), we can

determine whether the symbol 1 should be inserted before the symbol ` or whether ` comes before the symbol 1. Thus, we can
recover τ1(x) as stated in the claim.

We have the following lemmas which mirror the logic from the previous section. The first lemma follows immediately using
the same logic as in the proof of Lemma 2.

Lemma 10. Suppose N1(x)−N1(y) mod 7 = 2. Then, x can be recovered from y.

The next lemma requires a little more work.

Lemma 11. Suppose N0(x)−N0(y) mod 7 = 2. Then, x can be recovered from y.

Proof: Similar to the proof of Lemma 3, we focus on the case where both N1111(x)−N1111(y) 6≡ 0 mod 7 and N0000(x)−
N0000(y) 6≡ 0 mod 7, since if at most one of these two conditions hold then we can determine x from y given Fhs(x, 0000) ∈
C2(n, q,a0000), Fhs

(x, 1111) ∈ C2(n, q,a1111).
Since N1111(x)−N1111(y) 6≡ 0 mod 7 and N0000(x)−N0000(y) 6≡ 0 mod 7 hold, it follows that y is the result of deleting a

zero from a run of length 1 and another zero from a run of length at least 4. Notice that the deletion of the zero from a run of length
4 cannot create/destroy the substrings 110011, 1111. Thus, if the substring 110011 is not preserved from x to y, it is a result of the
deletion of the zero from a run of length 1. According to Claim 3, under this setup, dH

(
F
h
(R)
s

(x, 11011), F
h
(R)
s

(y, 11011)
)

= 1.
Thus, we can determine τ>2(x) from F

h
(R)
s

(x, 11011) ∈ C1(n, q2,a11011). According to Claim 4, we can then determine τ1(x)
so that we can correct the deletion of the zero from a run of length 1. The remaining deletion (of a zero from a run of length
> 4) can be corrected using the constraint Fhs

(x, 1111) ∈ C2(n, q1,a2).
Thus, we can determine x from y as follows. Suppose N1111(x) − N1111(y) 6≡ 0 mod 7, N0000(x) − N0000(y) 6≡ 0 mod

7, and N110011(x) 6≡ N110011(y) mod 7. Then, x can be recovered as described in the previous paragraph using the con-
straints F

h
(R)
s

(x, 11011) ∈ C1(n, q2,a11011), Fhs(x, 1111) ∈ C2(n, q1,a1111). Otherwise, if N1111(x) − N1111(y) 6≡ 0 mod 7,
N0000(x) − N0000(y) 6≡ 0 mod 7, and N110011(x) ≡ N110011(y) mod 7, x can be recovered from y using Fhs

(x, 110011) ∈
C2(n, q1,a110011).

The next lemma can be proven in the same manner as Lemma 4.

Lemma 12. Suppose N0000(x)−N0000(y) mod 7 = 1, and N1111(x)−N1111(y) mod 7 = 1. Then, x can be recovered from y.

The proofs of the next two lemmas are the same as Lemma 5 and Lemma 6.

Lemma 13. Suppose N0000(x)−N0000(y) mod 7 = 1 and N1111(x)−N1111(y) mod 7 = 0. Then, x can be recovered from y.

Lemma 14. Suppose N1111(x)−N1111(y) mod 7 = 1 and N0000(x)−N0000(y) mod 7 = 0. Then, x can be recovered from y.

Next, we consider the case where either N0000(y) > N0000(x) or N1111(y) > N1111(x). The result can be proven using ideas
similar to Lemma 7 and Lemma 11. The proof can be found in Appendix A.

Lemma 15. SupposeN0000(y)−N0000(x) mod 7 ∈ {1, 2, 3} orN1111(y)−N1111(x) mod 7 ∈ {1, 2, 3}. Then, x can be recovered
from y.

The next lemma follows from Lemma 8.

Lemma 16.Suppose N1111(x)−N1111(y) mod 7 = 0, and N0000(x)−N0000(y) mod 7 = 0. Then, x can be recovered from y.

11

V. CONSTRAINT REDUNDANCY

The purpose of this section is to show that there is no asymptotic rate loss incurred by starting with our constrained sequence
space where there are no more than s symbols between consecutive appearances of v1 = 0000, v2 = 1111, v3 = 11011,
v4 = 110011, v5 = 1 and v6 = 0. Our goal will be to show that the probability a sequence of length n satisfies these constraints
converges to 1 for sufficiently large n. This implies that the redundancy incurred is indeed a constant number of bits.

We first sketch our approach. We divide the sequence into subwords of length s/2. We then lower bound the probability of
the event that vi appears in each of these length s/2 subwords, so that indeed there cannot be more than s symbols between any
two appearances of vi.

Let AN,v be the probability that a sequence of length N selected uniformly at random from {0, 1}N contains the sequence v.
We show that

Lemma 17. For 1 6 i 6 6,

AN,vi
> 1− exp

(
− N

|vi|
2−|vi|−1

)
.

This enables us to lower bound the probability that vi is found in each length n/(s/2) subword. This probability is (As/2,vi
)n/(s/2),

and we have that

(As/2,vi
)n/(s/2) >

(
1− exp

(
−s/2
|vi|

2−|vi|−1
))n/(s/2)

.

It remains to show that for s = O(log2(n)) the right-hand side above goes to 1:

Lemma 18. There exists a constant c such that if s = c log2(n), then (As/2,vi
)n/(s/2) → 1.

We are nearly done. Since the probabilities AN,v1
, AN,v4

, AN,v5
, and AN,v6

all go to 1 as n → ∞, a union bound argument
shows that the probability they all hold simultaneously also converges to 1, completing the proof.

Next, we prove the two lemmas.
Proof: Lemma 17. For notational convenience, we write ` = |vi|. We break up the string of length N into N/` substrings of

length `. The probability AN,` is lower bounded by the probability of at least one of the N/` substrings being vi. Consider the
Bernoulli random variables Xj (1 6 j 6 N/`) that have value 1 if the jth substring is vi (with probability 2−`) and 0 otherwise.

Now we apply the multiplicative version of the Chernoff bound on X =
∑N/`

j=1Xj . This bound states that Pr(X 6 (1 −
δ)E[X]) 6 exp(−δ2E[X]/2). Note that the mean of X is E[X] = (N/`)2−`. Taking δ → 1, we have

Pr(X = 0) 6 exp

(
−N2−`−1

`

)
.

Thus, the probability of at least one appearance of vi is lower bounded by

1− exp

(
−N2−`−1

`

)
,

as desired.
Proof: Lemma 18. Again we set ` = |vi|. The substring length N is now s/2 = c log2(n)/2. Set

Xn =

[
1− exp

(
− (c log2 n)/2(2−`−1)

`

)] 2n
c log2 n

=

[
1− exp

(
− (c log2 n)(2−`−2)

`

)] 2n
c log2 n

so that according to Lemma 17, (As/2,vi
)n/(s/2) > Xn. We use the Taylor series expansion for log(1 + x) to write

logXn =
2n

c log2 n
log

[
1− exp

(
− (c log2 n)(2−`−2)

`

)]
=

2n

c log2 n
log

(
1− n−

2−`−2c
` log 2

)
=

2n

c log2 n

(
n−

2−`−2c
` log 2 −O

((
n−

2−`−2c
` log 2

)2
))

.

12

The last step follows from the expansion of log(1 + x). Now, if

2−`−2c

` log 2
> 1,

the terms inside the parentheses will dominate the 2n factor outside and we will have limn→∞ logXn → 0, so that Xn → 1,
as desired. For our constraints, the largest length ` of a constraint string vi is ` = 6. We just need c such that c > `2`+2 log 2;
therefore we can take any c > 1065.

We note that the value of the constant c can be reduced by bounding the probability As/2,vi
more tightly; this is possible

through a more involved argument based on recursive bounds.

VI. CONCLUSION

In this work, we provided a construction for a code capable of correcting two deletions that improved upon existing art in
terms of the number of redundant bits. Our approach relied on requiring that for any codeword x we have that Fhs

(x, 0000),
Fhs(x, 1111), Fhs(x, 11011), and Fhs(x, 110011) each belong to a code with minimum Hamming distance 5. A natural extension
of this work would be to consider the construction of codes capable of correcting three or more deletions. As a starting point,
it can be shown that if y = D3(x) is the result of 3 deletions occurring to x, then at least one of the following substrings is
preserved from x to y:{

(1, 1, 1, 1, 1, 1), (0, 0, 0, 0, 0, 0), (1, 1, 1, 0, 1, 1, 1), (1, 1, 1, 0, 0, 1, 1, 1), (1, 1, 1, 0, 0, 0, 1, 1, 1)
}
.

Therefore, using the same ideas as in this work, we would require Fhs
(x, 000000), Fhs

(x, 111111), Fhs
(x, 1110111), Fhs

(x, 11100111),
and Fhs

(x, 111000111) each belong to a code with minimum Hamming distance 7. Note that this would require at least (3 log n) ·
4 = 12 log n bits of redundancy. The challenge in establishing this result for t > 3 is to handle the extensive amount of case-
work which would be required if the techniques in this paper were adopted, and it is not immediately clear how to proceed for
general t.

Another area of future work involves devising efficient encoding algorithms. This will likely require a two step process, one
for generating the initial sequences that satisfy our constraints, and the other for the error-correction properties required for the
constructions. One angle of attack would be to use a similar approach to error-correcting constrained codes, which concatenate
the error-correction encoder with the constrained encoder; however, finding an efficient technique is likely to be challenging.

REFERENCES

[1] K.A.S. Abdel-Ghaffar, F. Paluncic, H.C. Ferreira, and W.A. Clarke, “On Helberg’s generalization of the Levenshtein code for multiple deletion/insertion
error correction,” IEEE Transactions on Information Theory, vol. 58, no. 3, pp. 1804-1808, 2012.

[2] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy codes for correcting multiple deletions,” in Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1884-1892, SIAM, 2016.

[3] S. Datta and S. W. McLaughlin, “An enumerative method for runlength-limited codes: permutation codes,” IEEE Transactions on Information Theory, vol.
45, no. 6, pp. 2199-2204, 1999.

[4] S. Datta and S. W. McLaughlin, “Optimal block codes for M -ary runlength-constrained channels,” IEEE Transactions on Information Theory, vol. 47, no.
5, pp. 2069-2078, 2001.

[5] I. Dumer, “Nonbinary double-error-correcting codes designed by means of algebraic varieties,” IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 1657–1666, Nov.
1995.

[6] F. V. Fomin, F. Grandoni, and D. Kratsch, “A measure & conquer approach for the analysis of exact algorithms,” Journal of the ACM (JACM), vol. 56, no.
5, pp. 25, 2009

[7] A.S.J. Helberg and H.C. Ferreira, “On multiple insertion/deletion correcting codes,” IEEE Transactions on Information Theory, vol. 48, no. 1, pp. 305-308,
2002.

[8] A.A. Kulkarni, and N. Kiyavash, “Nonasymptotic upper bounds for deletion correcting codes,” IEEE Transactions on Information Theory, vol. 59, no. 8,
pp. 5115-5130, 2013.

[9] V.I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals” Soviet Physics-Doklady, vol. 10, no. 8, pp. 707-710, 1966.
[10] V.I. Levenshtein, “Asymptotically optimal binary code correcting loss of one or two adjacent bits,” (in Russian), Probl. Cybern., pp. 293-298, 1967.
[11] F. Paluncic, Khaled A.S. Abdel-Ghaffar, H.C. Ferreira, and W.A. Clarke, “A multiple insertion/deletion correcting code for run-length limited sequences,”

IEEE Transactions on Information Theory, vol. 58 no. 3, pp. 1809-1824, 2012.
[12] R. M. Roth and P.H. Siegel, “Lee-metric BCH codes and their application to constrained and partial-response channels,” vol. 40, no. 4, pp. 1083-1096,

1994.
[13] F. F. Sellers, Jr., “Bit loss and gain correction codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 35-38, 1962.
[14] R. R. Varshamov and G. M. Tenengolts, “A code for correcting a single asymmetric error,” Avtomatika i Telemekhanika, vol. 26, no. 2, pp. 288-292, 1965.

APPENDIX A
PROOF OF LEMMA 15

Lemma 15. Suppose N0000(y) − N0000(x) mod 7 ∈ {1, 2, 3} or N1111(y) − N1111(x) mod 7 ∈ {1, 2, 3}. Then, x can be
recovered from y.

Proof: We consider the case where N0000(y) − N0000(x) mod 7 ∈ {1, 2, 3} and N1111(y) − N1111(x) mod 7 ∈ {1, 2, 3}
since otherwise x can be recovered from y using the same ideas as in the proof of Lemma 7. The deletion of a one from a run
of length 1 cannot create/destroy a 110011 substring or a 11011 substring since the 1 needs to be adjacent to two runs of lengths

13

`1, `2 where `1 + `2 > 4 since at least one 0000 substring is created from x to y. Furthermore, the deletion of the one from a run
of length 1 clearly cannot create a 1111 substring from x to y. Therefore, the deletion of the zero from a run of length 1 creates
a 1111 substring from x to y. If, in addition, the deletion of the zero does also does not preserve the 110011 substring from x

to y, then according to Claim 3, the substring 11011 is preserved from x to y and dH
(
F
h
(R)
s

(x, 11011), F
h
(R)
s

(y, 11011)
)

= 1.
Using the same logic as in the proof of Lemma 11, according to Claim 4 we can correct the deletion of a zero from a run of
length 1 using the constraints F

h
(R)
s

(x, 11011) ∈ C1(n, q2,a11011) and
∑

i odd τ1(x)i = b mod (s + 1) and the deletion of the
one from a run of length > 4 can be corrected with the constraint Fhs(x, 0000) ∈ C2(n, q1,a0000). Thus, the decoding in this
case is the same as described in the last paragraph of Lemma 11.

	I Introduction
	II Main Ideas and Outline
	III Construction - First Attempt
	IV An Improved Construction
	V Constraint Redundancy
	VI Conclusion
	References
	Appendix A: Proof of Lemma ??

