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Abstract

It is well known that the problem of computing the feedback capacity of a station-
ary Gaussian channel can be recast as an infinite-dimensional optimization problem;
moreover, necessary and sufficient conditions for the optimality of a solution to this
optimization problem have been characterized, and based on this characterization, an
explicit formula for the feedback capacity has been given for the case that the noise is
a first-order autoregressive moving-average Gaussian process. In this paper, we further
examine the above-mentioned infinite-dimensional optimization problem. We prove
that unless the Gaussian noise is white, its optimal solution is unique, and we propose
an algorithm to recursively compute the unique optimal solution, which is guaran-
teed to converge in theory and features an efficient implementation for a suboptimal
solution in practice. Furthermore, for the case that the noise is a k-th order autore-
gressive moving-average Gaussian process, we give a relatively more explicit formula
for the feedback capacity; more specifically, the feedback capacity is expressed as a
simple function evaluated at a solution to a system of polynomial equations, which is
amenable to numerical computation for the cases k = 1, 2 and possibly beyond.

1 Introduction

We consider the following additive Gaussian channel with feedback

Yi = Xi(M,Y i−1
1 ) + Zi, i = 1, 2, . . . (1)

where M denotes the message to be communicated through the channel, the noise {Zi},
which is independent of M , is a zero mean stationary Gaussian process, and Xi, the channel
input at time i, may depend on M and previous channel outputs Y i−1

1 . And we assume the
channel input {Xi} satisfies the following average power constraint: there is P > 0 such that
for all n,

1

n

n∑
i=1

E[(Xi(M,Y i−1
1 ))2] ≤ P.

∗Results in this paper have been partially presented in the 2017 IEEE ISIT [14].
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Let CFB denote the capacity of the channel (1), which is often referred to as Gaussian
feedback capacity in the literature.

It is well known that the non-feedback capacity of (1) can be obtained through the power
spectral density (PSD) water-filling method [22]. As a matter of fact, when the channel
noise is white (i.e., {Zi} is i.i.d.), Shannon [23] showed that feedback does not increase
capacity, which means, like its non-feedback counterpart, the feedback capacity features an
explicit and simple formula (Here we note that in [8], [9], Kadota, Zakai and Ziv also proved
this statement for continuous-time white Gaussian channels). On the other hand though, if
the channel is not white, feedback may increase capacity (see [15], [16]), and little has been
known about its feedback capacity despite a number of papers [4], [17], [6], [3] relating the two
capacities. Computing CFB has been a long-standing open problem that is of fundamental
importance in information theory.

An prominent approach to tackle Gaussian feedback capacity can be found in a pioneering
work [3], where Cover and Pombra characterized the capacity through the sequence of the
so-called “n-block feedback capacity”:

CFB,n = max
tr(KX,n)≤nP

1

2n
log

det(KY,n)

det(KZ,n)
, (2)

whereKX,n, KY,n, KZ,n stand for the covariance matrices ofXn, Y n and Zn, respectively. It is
also shown that the maximization can be taken over Xn of the special form Xn = BnZ

n+V n,
whereBn is a strictly lower-triangular n×nmatrix and the Gaussian vector V n is independent
of Zn. So, (2) can be rewriten as

CFB,n = max
Bn,KV,n

1

2n
log

det((Bn + I)KZ,n(Bn + I)T +KV,n)

det(KZ,n)
, (3)

subject to the constraint
tr(BnKZ,nB

T
n +KV,n) ≤ nP,

where KV,n is a negative semi-definite n×n matrix. Then, using the asymptotic equipartition
property for arbitrary (non-stationary non-ergodic) Gaussian processes, a coding theorem
can then be proved to characterize the Gaussian feedback capacity as the limiting expression
below:

CFB = lim
n→∞

CFB,n. (4)

Though considerable efforts have been devoted to follow up the Cover-Pombra formulation,
a “computable” formula for the Gaussian feedback capacity does not seem to be within sight:
it is already difficult to find the sequence of the optimal {Bn, KV,n} acheiving {CFB,n}, and
its limiting behavior seems to be as evasive.

Another prominent approach came along in a recent work of Kim [11], which led to a num-
ber of breakthroughs deepening our understanding of Gaussian feedback capacity. Roughly
speaking, instead of examining the channel (1) over a finite time window, Kim justifies cer-
tain interchanges between limits and integrals when evaluating (3) and (4) and recast the
problem of computing CFB as an infinite-dimensional optimization problem. Below, we state
one of the theorems in [11] that is relevant to our results.
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Theorem 1.1 (Theorem 4.1 of [11]). Suppose that the power spectral density SZ(eiθ) of
the Gaussian noise process {Zi}∞i=1 is bounded away from 0, and has a canonical spectral
factorization SZ(eiθ) = |HZ(eiθ)|2, where HZ(eiθ) ∈ H2. Then the feedback capacity CFB is
given by

CFB = max
B

1

2

∫ π

−π
log |1 +B(eiθ)|2SZ(eiθ)

dθ

2π
, (5)

where the maximum is taken over all strictly causal B(eiθ) satisfying the power constraint∫ π

−π
|B(eiθ)|2SZ(eiθ)

dθ

2π
≤ P.

Furthermore, a filter B?(eiθ) attains the maximum in (5) if and only if

i) Power: ∫ π

−π
|B?(eiθ)|2SZ(eiθ)

dθ

2π
= P ;

ii) Output spectrum:
η := essinf

θ∈[−π,π)

|1 +B?(eiθ)|2SZ(eiθ) > 0;

iii) Strong orthogonality: For some 0 < λ ≤ η

λ

1 +B?(eiθ)
−B?(e−iθ)SZ(eiθ) (6)

is causal.

Using Theorem 1.1 and relevant tools from the theory of Hardy spaces, Kim further
characterized the capacity achieving B(eiθ) for the special case that {Zi} is a k-th order au-
toregressive moving-average (ARMA(k)) Gaussian process. Roughly speaking, the following
theorem says that the optimal B must be rational satisfying three conditions corresponding
to those in Theorem 1.1.

Theorem 1.2 (Proposition 5.1 of [11]). Suppose the noise {Zi} is not white and is an
ARMA(k) Gaussian process with parameters αi, βi, |αi| < 1, |βi| < 1 for all i = 1, 2, . . . , k,
namely, it has the power spectral density

SZ(eiθ) = |HZ(eiθ)|2 =

∣∣∣∣P (eiθ)

Q(eiθ)

∣∣∣∣2 =

∣∣∣∣∣
∏k
i=1(1 + αie

iθ)∏k
i=1(1 + βieiθ)

∣∣∣∣∣
2

. (7)

Then the feedback capacity CFB in (5) is necessarily achieved by a filter B of the form

B(eiθ) = b(eiθ)
R(eiθ)

P (eiθ)
− 1, (8)

where R(z) is a stable polynomial whose degree is at most k, and

b(z) =
A(z)

A#(z)
=

∏
n(1− γ−1

n z)∏
n(1− γnz)

is a normalized Blaschke product of at most k zeros. Furthermore, a filter B?(eiθ) of the
form (8) is optimal if and only if the following hold:
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i) Power: ∫ π

−π
|B?(eiθ)|2SZ(eiθ)

dθ

2π
= P ;

ii) Output spectrum: For all zeros γn of b(z)

0 < S?Y (γn) = λ ≤ min
θ∈[−π,π)

S?Y (eiθ);

iii) Factorization:
P (z)A#(z)−R(z)A(z)

has a factor Q(z).

When applied to the case k = 1, Theorem 1.2 readily yields a rather tractable expression
for the capacity achieving B and gives a simple and explicit formula for CFB, as detailed in
the following theorem.

Theorem 1.3 (Theorem 5.3 in [11]). Suppose the noise process {Zi} is an ARMA(1) Gaus-
sian process with parameters α and β, |α| < 1, |β| < 1. Then, the Gaussian feedback capacity
is given by

CFB = −1

2
log x2, (9)

where x is the unique root of the following fourth-order polynomial

Px2 =
(1− x2)(1 + αx)2

(1 + βx)2
, (10)

satisfying

x ∈

{
(−1, 0) if α ≥ β,

(0, 1) if α < β.
(11)

We now digress a bit to briefly mention related results on the ARMA(1) Gaussian feed-
back capacity in the literature: Generalizing the celebrated Schalkwijk-Kailath scheme [20], [21],
Butman [2] obtained a lower bound of the feedback capacity of AR(1) channel (a special
ARMA(1) channel with α = 0). Butman’s bound was shown to be optimal under some
cases of linear feedback schemes by Wolfowitz [27] and Tiernan [25]. Tiernan and Schalk-
wijk [26] also found an upper bound of AR(1) Gaussian channel capacity, which is equal to
Butman’s lower bound at very low and very high signal-to-noise ratio. It was shown [10]
that Butman’s lower bound is indeed the capacity, and the capacity of MA(1) channel (a
special ARMA(1) channel with β = 0) was also derived in the same paper. More recently,
Yang, Kavčić and Tatikonda [28] studied the ARMA(k) Gaussian channel by analyzing the
structure of the optimal input distribution and reformulating the problem as a stochastic
control optimization problem. And based on a speculation of the limiting behavior of the
optimal input distribution, they derived the formula (9) and conjectured that it gives the
ARMA(1) Gaussian feedback capacity.

As mentioned above, the power of the variational formulation as in Theorem 1.1 has
been showcased in Theorem 1.3, where the conjecture of [28] has been confirmed and the
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ARMA(1) Gaussian feedback capacity is given as an explicit and simple formula. To the best
of our knowledge, the ARMA(1) Gaussian feedback channel is the only non-trivial scenario
whose Gaussian feedback capacity is “explicit”. The success by the variational formulation
approach, contrasted by all the above-mentioned other approaches that have been struggling
dealing with special cases of an ARMA(1) channel, naturally posed the question of whether
it can be extended to deal with more general channels, for instance, ARMA(k) Gaussian
feedback channels. Attempts in this direction, however, have somehow encountered certain
technical barriers, due to the fact that the form in (8) is “less manageable” (see Page 78
in [11]). As a matter of fact, instead of following the variational formulation framework, an
alternative state-space representation approach has been proposed in [11] to deal with the
ARMA(k) Gaussian feedback capacity, only to yield an intractable optimization problem
(see Theorem 6.1 in [11]). Here we remark that prior to [11], a result of similar nature has
also been derived in Theorem 6 of [28], which however appears to be equally intractable.

In this paper, we will position ourselves within Kim’s framework [11] and further examine
feedback capacity of a stationary Gaussian channel as in (1). Our starting point is precisely
Theorem 1.1, but instead of considering the filter B(eiθ), we use the method of “change of
variables” and consider

C(eiθ) , B(eiθ)HZ(eiθ); (12)

here we note that since B(eiθ) is strictly causal and HZ(eiθ) ∈ H2, it is obvious that C(eiθ) is
also strictly causal, and thereby can be written as C(eiθ) =

∑∞
k=1 cke

ikθ for some c1, c2, · · · ∈
R. Apparently, (12) can be used to reformulate other quantities, such as the PSD of the
channel output

SY (eiθ) = |C(eiθ) +H(eiθ)|2, (13)

and eventually reformulate Theorem 1.1 as follows:

Theorem 1.4 (Theorem 4.1 of [11] reformulated). Suppose that the power spectral density
SZ(eiθ) of the Gaussian noise process {Zi}∞i=1 is bounded away from 0, and has a canonical
spectral factorization SZ(eiθ) = |HZ(eiθ)|2, where HZ(eiθ) ∈ H2. Then the feedback capacity
CFB is given by

CFB = max
C

1

2

∫ π

−π
log |C(eiθ) +H(eiθ)|2 dθ

2π
, (14)

where the maximum is taken over all strictly causal C(eiθ) satisfying the power constraint∫ π

−π
|C(eiθ)|2 dθ

2π
≤ P. (15)

Furthermore, a C?(eiθ) attains the maximum in (14) if and only if

i) Power: ∫ π

−π
|C?(eiθ)|2 dθ

2π
= P ; (16)

ii) Output spectrum:
η := essinf

θ∈[−π,π)

|C?(eiθ) +H(eiθ)|2 > 0; (17)
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iii) Strong orthogonality: For some 0 < λ ≤ η

λ

C?(eiθ) +H(eiθ)
− C?(e−iθ) (18)

is causal.

The remainder of the paper is organized as follows. In Section 2, we review relevant
results from complex analysis and the theory of Hardy spaces as mathematical preliminaries
that will be used in our proofs. Section 3 contains the main results of this paper, which can
roughly summarized below:

• We prove in Section 3.1 that unless the noise {Zn} is white, the optimal solution to
the optimization problem (14) is unique; see Theorem 3.2.

• In Section 3.2, we propose an algorithm to recursively compute the optimal solution,
which is guaranteed to converge to the unique optimal solution in theory and features
an efficient implementation for a suboptimal solution in practice; see Algorithm 3.5.

• In Section 3.3, we will establish Theorem 3.9, a “more manageable” version of The-
orem 1.2 and a natural extension to Theorem 1.3 combined, and derive a relatively
more explicit formula for the ARMA(k) Gaussian feedback capacity as a simple func-
tion evaluated at a solution to a system of equations, which is amenable to numerical
computation for the cases k = 1, 2 and possibly beyond.

Several examples are given in Section 4. More specifically, Example 4.1 details the fact
that Theorem 3.9 naturally extends Theorem 1.3, and Example 4.2 use Theorem 3.9 to nu-
merically compute the feedback capacity of ARMA(k) Gaussian channels. Focusing on the
application of Algorithm 3.5 to ARMA(k) Gaussian channels, we discuss its efficient imple-
mentation and numerically compute lower bounds on the feedback capacity of ARMA(3)
Gaussian channels.

2 Mathematical Preliminaries

In this section, we review a number of important theorems in complex analysis and the
theory of Hardy spaces, which will be used in our proofs and may not be stated in the most
general form.

Let D denote the open unit disk on the complex plane C, that is,

D = {z ∈ C : |z| < 1},

and let ∂D and D denote its boundary and closure, respectively, that is,

∂D = {z ∈ C : |z| = 1}, D = {z ∈ C : |z| ≤ 1}.

We first review two fundamental theorems in complex analysis, which are relatively
better-known yet still included for self-containedness.

The following theorem gives the classical Cauchy’s integral formula for an analytic func-
tion on D.
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Theorem 2.1 (Cauchy’s integral formula). Let U be an open subset of the complex plane C
which contains D, and let f : U → C be an analytic function. Then for any n ≥ 0 and any
z0 ∈ D, we have ∮

∂D

f(z)

(z − z0)n+1

dz

2πi
=
f (n)(z0)

n!
,

where the contour integral is taken counter-clockwise, and the superscript (n) denotes the
n-th order complex derivative.

The Cauchy integral formula can be used to establish the following Jensen’s formula.

Theorem 2.2 (Jensen’s formula). Let U be an open subset of the complex plane C which
contains D. Let f : U → C be an analytic function, and let z1, z2, . . . , zn denote the zeros of
f in D repeated according to multiplicity. Suppose that f(0) 6= 0. Then, we have

log |f(0)| =
n∑
k=1

log (|zk|) +
1

2π

∫ 2π

0

log |f(eiθ)| dθ.

Next, we will review some basic notions, terminology and needed results from the theory
of Hardy spaces.

Let 1 ≤ p < ∞ and let f(z) be an analytic function on D. The function f(z) is said to
be of class Hp = Hp(D) if

‖f‖Hp , sup
0<r<1

(∫ π

−π
|f(reiθ)|p dθ

2π

)1/p

<∞.

It is well known that by taking the pointwise radial limit, any f(z) ∈ Hp can be extended
to a function f(eiθ) ∈ Lp = Lp(∂D), where

Lp(∂D) ,

{
f(eiθ) :

(∫ π

−π
|f(eiθ)|p dθ

2π

)1/p

<∞

}
.

When there is no risk of confusion, we will follow the usual convention and identify f(z) and
f(eiθ), which we may oftentimes simply denote by f . Then, Hp can be viewed as a closed
vector subspace of Lp.

For any f ∈ Hp, we say that f is causal (or strictly causal) if its Fourier coefficients cn
is equal to 0 for all n < 0 (or n ≤ 0), where

cn =

∫ π

−π
f(eiθ)e−inθ

dθ

2π
= 0, n = 0,±1,±2, . . . .

It is well known thatHp is precisely the subset of causal functions in Lp. For a quick example,
we note that H2, represented by infinite sequences indexed by N ∪ {0} as

H2 =

{
∞∑
n=0

ane
inθ :

∞∑
n=0

a2
n <∞

}
,
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sits naturally inside the space L2, which can be represented by bi-infinite sequences indexed
by Z as

L2 =

{
∞∑

n=−∞

ane
inθ :

∞∑
n=−∞

a2
n <∞

}
.

Now, we recall the inner-outer decomposition theorem in the theory of Hardy spaces.

Theorem 2.3 (Theorem 2.8 in [5]). Every function f(z) 6≡ 0 in Hp has a unique factorization
of the form f(z) = B(z)S(z)F (z), where

• B(z) is a Blaschke product taking the following form:

B(z) = zm
∏
n

|zn|
zn

zn − z
1− z̄nz

= zm
∏
n

|zn|
1− z−1

n z

1− z̄nz
, (19)

where m is a nonnegative integer and {zn} is the set of all the zeros of f(z) in D,

• S(z) is a singular inner function, which can be represented by the following Poisson-
Stieltjes integral:

S(z) = exp

{
−
∫ π

−π

eiθ + z

eiθ − z
dµ(θ)

}
, (20)

where µ(θ) is a bounded nondecreasing singular function with µ′(t) = 0 a.e.,

• F (z) is an outer function taking the following form:

F (z) = eiγ exp

{∫ π

−π

eiθ + z

eiθ − z
log |f(eiθ)|dθ

2π

}
, (21)

where γ is a real constant.

Remark 2.4. Note that it can be shown that B(z) as in (19) is analytic on D with the
same set of zeros as f(z), and S(z) and F (z) are also analytic without any zeros in D.
Furthermore, it is well known (see, e.g., Page 84 of [12]) that S(z) ≡ 1 if and only if∫ π

−π
log |B(reiθ)S(reiθ)|dθ → 0 as r → 1.

Roughly speaking, the following theorem says that a function in Hp is uniquely deter-
mined by its boundary values on any set of positive measure.

Theorem 2.5 (Theorem 2.2 in [5]). Let f(eiθ) ∈ Hp be not identically 0. Then {eiθ|f(eiθ) =
0} has measure 0 (with respect to the Lebesgue measure on ∂D). Furthermore, if f(eiθ), g(eiθ) ∈
Hp and f(eiθ) = g(eiθ) for all θ in a positive measure subset T ⊂ [−π, π), then f(eiθ) = g(eiθ)
almost everywhere.
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3 Main Results

3.1 Uniqueness of Optimal C(eiθ)

Recall that C(eiθ) is defined as in (12), and we say C(eiθ) is an optimal solution if it solve
the optimization problem (14), namely, it satisfies (15) and achieves the maximum in (14).
In this section, we will establish the uniqueness of optimal C(eiθ).

We will first need the following lemma.

Lemma 3.1. Let C?(eiθ) be an optimal solution to (14). Then, for any C(eiθ) satisfying
(15), we have ∫ π

−π

|C(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
≤ 1.

Proof. Note that∫ π

−π

|C +HZ |2

|C? +HZ |2
dθ

2π
=

∫ π

−π

|C? +HZ + C − C?|2

|C? +HZ |2
dθ

2π

(a)
=

∫ π

−π

|C? +HZ |2 + |C − C?|2 + 2(C? +HZ)(C − C?)

|C? +HZ |2
dθ

2π

= 1 +

∫ π

−π

|C − C?|2

|C? +HZ |2
dθ + 2

∫ π

−π

C

C? +HZ

dθ

2π
− 2

∫ π

−π

C?

C? +HZ

dθ

2π
,

where in deriving (a) we have used the easily verifiable fact that∫ π

−π

(C? +HZ)(C − C?)

|C? +HZ |2
dθ

2π
=

∫ π

−π

(C? +HZ)(C − C?)

|C? +HZ |2
dθ

2π
.

Moreover, by (18), we have for almost all θ,

|C∗ +HZ |2 ≥ λ,

and ∫ π

−π

(
1

C? +HZ

− C?

λ

)
C?dθ = 0,

∫ π

−π

(
1

C? +HZ

− C?

λ

)
Cdθ = 0.

It then follows that for any C(eiθ) satisfying (15),∫ π

−π

|C +HZ |2

|C? +HZ |2
dθ

2π

(b)

≤ 1 +
1

λ

∫ π

−π
|C − C?|2 dθ

2π
− 2P

λ
+

2

λ

∫ π

−π
CC?

dθ

2π

= 1 +
1

λ

∫ π

−π
|C|2 dθ

2π
+

1

λ

∫ π

−π
|C?|2 dθ

2π
− 2

λ

∫ π

−π
CC?

dθ

2π
− 2P

λ
+

2

λ

∫ π

−π
CC?

dθ

2π

≤ 1,

where we have used (16) in deriving (b).

The following theorem first shows that all optimal C(eiθ) give rise to the same SY (eiθ), the
corresponding channel output PSD, and then establishes the uniqueness of optimal C(eiθ)
when the channel noise is not white.

9



Theorem 3.2. a) For any two optimal C?(eiθ) and C??(eiθ), we have, almost everywhere,

S?Y (eiθ) = S??Y (eiθ).

b) Suppose that {Zn} is not white, that is, SZ(eiθ) is not a constant function. Then, for any
two optimal C?(eiθ) and C??(eiθ), we have, almost everywhere,

C?(eiθ) = C??(eiθ).

Proof. a) Using the well-known fact that for any x > 0,

log x ≤ x− 1, (22)

we deduce that for all θ,

log
S??Y (eiθ)

S?Y (eiθ)
≤ S??Y (eiθ)

S?Y (eiθ)
− 1, (23)

and thereby∫ π

−π
logS??Y (eiθ)

dθ

2π
≤
∫ π

−π

(
S??Y (eiθ)

S?Y (eiθ)
− 1 + logS?Y (eiθ)

)
dθ

2π

(a)

≤
∫ π

−π
logS?Y (eiθ)

dθ

2π

(b)
=

∫ π

−π
logS??Y (eiθ)

dθ

2π
,

(24)
where (a) follows from Lemma 3.1 and (b) follows from the fact the optimal solutions C?(eiθ)
and C??(eiθ) give rise to the same optimal value. It then follows that the first inequality in
(24) is in fact an equality, or equivalently,∫ π

−π
log

S??Y (eiθ)

S?Y (eiθ)

dθ

2π
=

∫ π

−π

(
S??Y (eiθ)

S?Y (eiθ)
− 1

)
dθ

2π
,

which, together with (23), immediately implies that almost everywhere,

log
S??Y (eiθ)

S?Y (eiθ)
=
S??Y (eiθ)

S?Y (eiθ)
− 1.

Now, using the fact that log x = x− 1 if and only if x = 1, we deduce that for almost all θ

S??Y (eiθ)

S?Y (eiθ)
= 1,

which immediately implies a), as desired.
b) We first consider the optimal solution C?, which satisfies i), ii) and iii) in Theorem 1.4,

which can be alternatively stated below:

• ∫ π

−π
|C?(eiθ)|2 dθ

2π
= P ; (25)

• For some λ? > 0
λ?

C?(eiθ) +HZ(eiθ)
− C?(eiθ) (26)

is causal;

10



• For almost all θ ∈ [−π, π),

λ? ≤ |C?(eiθ) +HZ(eiθ)|2, (27)

where λ? is as in (26).

From (26), straightforward computations yield that∫ π

−π

(
C?(eiθ)(C?(eiθ) +HZ(eiθ))

|C?(eiθ) +HZ(eiθ)|2
− 1

λ?
|C?(eiθ)|2

)
dθ

2π
= 0, (28)

∫ π

−π

(
C??(eiθ)(C?(eiθ) +HZ(eiθ))

|C?(eiθ) +HZ(eiθ)|2
− 1

λ?
C??(eiθ)C?(eiθ)

)
dθ

2π
= 0. (29)

Now, we consider the optimal solution C??, which similarly satisfies:

• ∫ π

−π
|C??(eiθ)|2 dθ

2π
= P ; (30)

• For some λ?? > 0
λ??

C??(eiθ) +HZ(eiθ)
− C??(eiθ) (31)

is causal;

• For almost all θ ∈ [−π, π),

λ?? ≤ |C??(eiθ) +HZ(eiθ)|2, (32)

where λ?? is as in (26).

And parallel to (28) and (29), we have∫ π

−π

(
C??(eiθ)(C??(eiθ) +HZ(eiθ))

|C??(eiθ) +HZ(eiθ)|2
− 1

λ??
|C??(eiθ)|2

)
dθ

2π
= 0, (33)

∫ π

−π

(
C?(eiθ)(C??(eiθ) +HZ(eiθ))

|C??(eiθ) +HZ(eiθ)|2
− 1

λ??
C?(eiθ)C??(eiθ)

)
dθ

2π
= 0. (34)

Note that, by a), we have almost everywhere,

|C?(eiθ) +HZ(eiθ)|2 = |C??(eiθ) +HZ(eiθ)|2. (35)

Now, using (25), (30) and (35), we deduce that (28)-(29)+(33)-(34) can be simplified as∫ π

−π

(
|C??(eiθ)− C?(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
− 1

2

(
1

λ?
+

1

λ??

)
|C??(eiθ)− C?(eiθ)|2

)
dθ

2π
= 0, (36)

11



or equivalently,∫ π

−π

(
1

λ?
+

1

λ??
− 2

|C?(eiθ) +HZ(eiθ)|2

)
|C??(eiθ)− C?(eiθ)|2 dθ

2π
= 0. (37)

Note that, by (27), (32) and (35), we have, for almost all θ,

1

λ?
≥ 1

|C?(eiθ) +HZ(eiθ)|2
,

1

λ??
≥ 1

|C??(eiθ) +HZ(eiθ)|2
, (38)

which means the integrand in (37) is non-negative, and thereby must be 0, that is,(
1

λ?
+

1

λ??
− 2

|C?(eiθ) +HZ(eiθ)|2

)
|C??(eiθ)− C?(eiθ)|2 = 0 (39)

for almost all θ ∈ [−π, π).
We now claim that there exists a positive measure set T ⊂ ∂D such that on T

1

λ?
+

1

λ??
>

2

|C?(eiθ) +HZ(eiθ)|2
. (40)

To see this, by way of contradiction, we suppose the opposite is true, that is, almost every-
where,

1

λ?
+

1

λ??
≤ 2

|C?(eiθ) +HZ(eiθ)|2
,

which, together with (38), immediately implies that almost everywhere

1

λ?
=

1

λ??
=

1

|C?(eiθ) +HZ(eiθ)|2
.

Some straightforward computations employing this yield

λ?

C?(eiθ) +HZ(eiθ)
− C?(eiθ) =

λ?(C?(eiθ) +HZ(eiθ))

|C?(eiθ) +H(eiθ)|2
− C?(eiθ)

= C?(eiθ) +HZ(eiθ)− C?(eiθ)

= HZ(eiθ),

which, together with (26), immediately implies thatHZ(eiθ) is causal. SinceHZ(eiθ) is causal,
we deduce that HZ(eiθ) is a constant, and thereby SZ(eiθ) is also a constant, a contradiction
to the assumption that {Zn} is not white.

Now, with the claim in (40), we infer from (39) that on the positive measure set T ⊂ ∂D,

C?(eiθ) = C??(eiθ),

which, by Theorem 2.5, immediately implies b).

12



3.2 Computation of Optimal C(eiθ)

Assuming {Zn} is not white, we give in this section a recursive algorithm to compute the
unique optimal solution C(eiθ).

We will first consider the the following optimization problem and establish the uniqueness
of its optimal solution:

maximize

∫ π

−π

|C(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π

subject to

∫ π

−π
|C(eiθ)|2 dθ

2π
≤ P, (41)

where C?(eiθ) is the unique optimal solution to (14).

Theorem 3.3. A solution C??(eiθ) to (41) is optimal if and only if the following conditions
are satisfied:

i) ∫ π

−π
|C??(eiθ)|2 dθ

2π
= P ; (42)

ii) For some λ > 0

λ(C??(eiθ) +HZ(eiθ))

|C?(eiθ) +H(eiθ)|2
− C(eiθ) (43)

is causal;

iii) For almost all θ ∈ [−π, π),

λ ≤ |C??(eiθ) +HZ(eiθ)|2 (44)

where λ is as in (43).

Proof. The proof is very similar to that of Theorem 1.1, and thus postponed to Appendix A.

Theorem 3.4. Assume that {Zn} is not white. Then the optimal solution to (41) is unique.

Proof. Note that by Lemma 3.1, we have for any C(eiθ) satisfying (15),∫ π

−π

|C(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
≤ 1.

In other words, other than being the unique optimal solution to (14), C?(eiθ) is also one of
the optimal solution to (41). Let C??(eiθ) be another optimal solution to (41). Then, by
Theorem 3.3, C?(eiθ) and C??(eiθ) satisfy (42), (43) and (44) with λ? and λ??, respectively.
Now, a completely parallel argument as in the proof of Theorem 3.2 will yield∫ π

−π

(
C?(eiθ)(C?(eiθ) +HZ(eiθ))

|C?(eiθ) +HZ(eiθ)|2
− 1

λ?
|C?(eiθ)|2

)
dθ

2π
= 0,

13



∫ π

−π

(
C??(eiθ)(C?(eiθ) +HZ(eiθ))

|C?(eiθ) +HZ(eiθ)|2
− 1

λ?
C??(eiθ)C?(eiθ)

)
dθ

2π
= 0,

∫ π

−π

(
C??(eiθ)(C??(eiθ) +HZ(eiθ))

|C?(eiθ) +HZ(eiθ)|2
− 1

λ??
|C??(eiθ)|2

)
dθ

2π
= 0,

∫ π

−π

(
C?(eiθ)(C??(eiθ) +HZ(eiθ))

|C?(eiθ) +HZ(eiθ)|2
− 1

λ??
C?(eiθ)C??(eiθ)

)
dθ

2π
= 0,

which will collectively imply∫ π

−π

(
|C??(eiθ)− C?(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
− 1

2

(
1

λ?
+

1

λ??

)
|C??(eiθ)− C?(eiθ)|2

)
dθ

2π
= 0, (45)

and furthermore(
1

λ?
+

1

λ??
− 2

|C?(eiθ) +HZ(eiθ)|2

)
|C??(eiθ)− C?(eiθ)|2 = 0. (46)

for almost all θ ∈ [−π, π). The remainder of the proof then uses exactly the same argument
as in the proof of Theorem 3.2 to establish

C?(eiθ) = C??(eiθ)

almost everywhere and thereby the uniqueness of the optimal solution to (41).

Now, we consider the following algorithm to compute the optimal Ciθ via recursively
solving a sequence of optimization problems:

Algorithm 3.5. 1) Arbitrarily choose C(0)(eiθ) ∈ H2 satisfying∫ π

−π
|C(0)(eiθ)|2 dθ

2π
≤ P.

2) For n = 0, 1, . . . , solve the following optimization problem

minimize

∫ π

−π

|C(n)(eiθ) +HZ(eiθ)|2

|C(eiθ) +HZ(eiθ)|2
dθ

2π

subject to

∫ π

−π
|C(eiθ)|2 dθ

2π
≤ P, (47)

and then set C(n+1)(eiθ) to be one of the optimal solutions.

3) Set n = n+ 1 and repeat 2).

Obviously, the above recursive procedure yields a sequence of functions {C(n)(eiθ)} in H2.
The following theorem discusses the convergence behavior of this sequence.
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Theorem 3.6. Assume that {Zn} is not white. If there is a pointwise convergent subsequence
{C(nk)(eiθ)} such that

lim
k→∞

∫ π

−π
|C(nk)(eiθ)|2 dθ

2π
=

∫ π

−π
| lim
k→∞

C(nk)(eiθ)|2 dθ
2π
, (48)

then {C(nk)(eiθ)} must converge to C?(eiθ), the unique optimal solution to (14), almost ev-
erywhere.

Proof. First of all, we will show that

lim
n→∞

∫ π

−π

|C(n)(eiθ) +HZ(eiθ)|2

|C(n+1)(eiθ) +HZ(eiθ)|2
dθ

2π
= 1. (49)

Apparently, we have, for all i = 0, 1, . . . ,∫ π

−π

|C(n)(eiθ) +HZ(eiθ)|2

|C(n+1)(eiθ) +HZ(eiθ)|2
dθ

2π
≤ 1,

which immediately implies that

lim sup
n→∞

∫ π

−π

|C(n)(eiθ) +HZ(eiθ)|2

|C(n+1)(eiθ) +HZ(eiθ)|2
dθ

2π
≤ 1.

So, to show (49), we only need to prove

lim inf
n→∞

∫ π

−π

|C(n)(eiθ) +HZ(eiθ)|2

|C(n+1)(eiθ) +HZ(eiθ)|2
dθ

2π
≥ 1. (50)

To show this, suppose, by way of contradiction, that

lim inf
n→∞

∫ π

−π

|C(n)(eiθ) +HZ(eiθ)|2

|C(n+1)(eiθ) +HZ(eiθ)|2
dθ

2π
< 1.

Then, there exist δ > 0 and a subsequence {C(nj)(eiθ)}∞i=0 such that∫ π

−π

|C(nj)(eiθ) +HZ(eiθ)|2

|C(nj+1)(eiθ) +HZ(eiθ)|2
dθ

2π
≤ 1− δ

for all j ∈ N. It then follows from∫ π

−π
log |C(nj)(eiθ)+HZ(eiθ)|2 dθ

2π
−
∫ π

−π
log |C(nj+1)(eiθ)+HZ(eiθ)|2 dθ

2π
≤
∫ π

−π

|C(ni)(eiθ) +HZ(eiθ)|2

|C(ni+1)(eiθ) +HZ(eiθ)|2
dθ

2π
−1 ≤ −δ,

that

lim
j→∞

∫ π

−π
log |C(nj)(eiθ) +HZ(eiθ)|2 dθ

2π
=∞.

But this would imply that optimal value of the optimization problem is infinity, a contra-
diction. And therefore we have established (50) and thereby (49).
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Now, let C∞(eiθ) denote the pointwise limit of the subsequence {C(nk)(eiθ)}∞k=0. Applying
(27), (48) and (49), we deduce that∫ π

−π

|C∞(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
= lim

n→∞

∫ π

−π

|C(n)(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
≥ lim

n→∞

∫ π

−π

|C(n)(eiθ) +HZ(eiθ)|2

|C(n+1)(eiθ) +HZ(eiθ)|2
dθ

2π
= 1.

On the other hand, by Lemma 3.1, we have∫ π

−π

|C(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
≤ 1

for any C(eiθ) satisfying (15). Therefore,∫ π

−π

|C∞(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
= 1;

in other words, C∞(eiθ) is an optimal solution to the optimization problem (41). Now, by
Theorem 3.4, we conclude that almost everywhere

C∞(eiθ) = C?(eiθ),

and thereby completing the proof of the theorem.

Remark 3.7. Roughly speaking, Theorem 3.6 says that any convergent subsequence pro-
duced by Algorithm 3.5 will converge to the optimal solution to (14). Algorithm 3.5 will
practically compute the Gaussian feedback capacity if the global minimum of the optimiza-
tion problem (47) can be computed. Although this is a feasible task for certain special
families of channels, we are not aware of any efficient way to solve the optimization problem
in (47) for a general stationary Gaussian channel, which is a great impediment for imple-
menting Algorithm 3.5. One effective way to circumvent this issue is to find a local minimum
in lieu of the global minimum of (47). Obviously, with such a replacement, the performance
of the algorithm is compromised in the sense that it will only produce a suboptimal solution.
On the other hand though, we have observed that the recursive update in Step 2) provides an
effective means to prevent the produced sequence from getting stuck at some local optimal
solution locally. As a matter of fact, for many practical channels for which we know the
capacity (see Section 3.3), the compromised algorithm appears to be quickly convergent to
the true optimal solution; see Example 4.3.

3.3 Optimal C(eiθ) for ARMA(k) Gaussian Channels

In this section, we generalize Theorem 1.3 and give a more explicit characterization of the
optimal solution C?(eiθ) for the case that {Zn} is an ARMA(k) Gaussian process.

The proof of our main result in this section will use the following lemma, whose proof
closely follows that of Proposition 4.2 in [11] and is included for completeness.

Lemma 3.8. Suppose that the assumptions of Theorem 1.4 are satisfied. If C? is an optimal
solution to (14), then C?(C? +HZ) is causal.
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Proof. Suppose, by way of contradiction, that C?(C? + HZ) is not causal, then for some
n ≥ 1, we have ∫ π

−π
C?(C? +HZ)einθ

dθ

2π
= γ 6= 0.

Let A(eiθ) = xeinθ with |x| < 1. Then, for C?? , (1 + A)(C? + HZ)−HZ , one verifies that
it is also strictly causal, and furthermore,

logS??Y = log |C?? +HZ |2

= log |1 + A|2|C? +HZ |2 = log |1 + A|2S?Y .

By Jensen’s formula, the entropy rate of S??Y is the same as that of S?Y . On the other hand,
the power of C? can be computed as follows:

P ??(x) =

∫ π

−π
|C??|2 dθ

2π

=

∫ π

−π
|C? + A(C? +HZ)|2 dθ

2π

=

∫ π

−π
|C?|2 + 2

∫
AC?(C? +HZ) +

∫ π

−π
|A|2|C? +HZ |2

dθ

2π

= P + 2γx+ PY x
2,

where PY =
∫
S?Y dθ/2π > 0. Therefore, we can choose certain x such that P ??(x) < P , i.e.,

we can achieve same information rate using less power, which is contradictory to Condition
i) of Theorem 1.4.

We are now ready to state the main result of this section.

Theorem 3.9. Suppose the noise {Zi} is not white with the power spectral density SZ(eiθ)
taking the form as in (7). Then, the feedback capacity CFB can be achieved by C(z) taking
the following form:

C(z) =
l∑

i=1

mi∑
j=1

yijz
j

(1− xiz)j
, (51)

where mi are positive integers for all i = 1, 2, . . . , l and
∑l

i=1mi ≤ k, xi ∈ C are all distinct
and |xi| < 1 for all i = 1, 2, . . . , l, yij ∈ C for all i and j. Furthermore, C(z) is optimal
yielding the capacity

CFB = − log
l∏

i=1

|xi|mi (52)

if and only if all xi, mi and yij satisfy the following four conditions:

i) Power:
l∑

i=1

mi∑
j=1

l∑
p=1

mp∑
q=1

yijypq

(
zj−1

(1− xiz)j

)(q−1)
∣∣∣∣∣
z=xp

= P,

where, as elsewhere in this paper, the parenthesized superscript means the derivative
with respect to z;
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ii) Roots: x1, x2, . . . , xl are the roots of the function

f(z) ,
l∑

i=1

mi∑
j=1

yijz
j

(1− xiz)j
+

∏k
i=1(1 + αiz)∏k
i=1(1 + βiz)

,

that are strictly inside the unit circle, while the other roots r−1
1 , r−1

2 , . . . , r−1
k are all

strictly outside the unit circle;

iii) Strong orthogonality: there exists a real number λ > 0 such that for all i = 1, 2, . . . , l
and j = 1, 2, . . . ,mi,

hij(xi) = λyij(j − 1)!,

where

hij(z) ,
mi∑
p=j

Cj−1
p−1

(p− 1)!(mi − p)!

(
(z − xi)mi∏l
s=1(z − xs)ms

)(mi−p)

×

(∏l
s=1(1− xsz)ms(−xs)ms

∏k
t=1(1 + βtz)∏k

t=1(1− rtz)

)(p−j)

;

iv) Output spectrum: For almost all θ ∈ [−π, π),

λ ≥ 1

S?Y (eiθ)
=

l∏
j=1

|xj|2mj
∣∣∣∣∣
∏k

t=1(1 + βte
iθ)∏k

t=1(1− rteiθ)

∣∣∣∣∣
2

.

Proof. Through a similar argument as in the proof of Theorem 1.2, we first show that any
capacity achieving C?(z) ,

∑∞
k=1 c

?
kz

k must take the form in (51). To this end, we consider

Ŝ∗Y (eiθ) , |Q(eiθ)|2S?Y (eiθ), which, by straightforward computations, can be rewritten as
follows:

Ŝ∗Y (eiθ) = |Q(eiθ)|2|C?(eiθ) +HZ(eiθ)|2

= |Q(eiθ)|2C?(eiθ)(C?(eiθ) +HZ(eiθ)) + |Q(eiθ)|2HZ(eiθ)(C?(eiθ) +HZ(eiθ))

= |Q(eiθ)|2C?(eiθ)(C?(eiθ) +HZ(eiθ)) + P (eiθ)Q(eiθ)C?(eiθ) + |P (eiθ)|2. (53)

Now, it follows from Lemma 3.8, (53) and the fact that P (z) and Q(z) are both polynomials

of degree at most k that Ŝ∗Y (eiθ) must be of the following form:

Ŝ∗Y (eiθ) = s−ke
−ikθ + s−k+1e

−i(k−1)θ + · · · .

Then, by the fact that Ŝ∗Y (eiθ) is symmetric, we deduce that on ∂D, Ŝ∗Y can be written as

Ŝ∗Y (eiθ) = s−ke
−ikθ + s−k+1e

−i(k−1)θ + · · ·+ s−k+1e
i(k−1)θ + s−ke

ikθ,

or alternatively, on D,

Ŝ∗Y (z) = s−kz
−k + s−k+1z

−(k−1) + · · ·+ s−k+1z
(k−1) + s−kz

k. (54)
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Note that Ŝ∗Y (eiθ) has a canonical factorization (see Page 733, 734 of [18]), namely, it can be
written as

Ŝ∗Y (eiθ) = σ2R(eiθ)R(eiθ), (55)

where σ is a positive constant and R(z) is a k-th order stable polynomial with R(0) = 1.
Now, we consider

T (z) ,
(C?(z) +HZ(z))Q(z)

σR(z)
. (56)

Since C?(z) +HZ(z) is an H2 function and Q(z), R(z) are both stable polynomials, T (z) is
an H2 function. It then follows from (55) and (56) that

T (eiθ)T (e−iθ) = 1, (57)

which, by (21), implies that the outer function in the inner-outer decomposition of T (z) is
the constant function 1. Now, by (54) and (56), we have∫ π

−π
log |T (reiθ)|dθ =

∫ π

−π
log

∣∣∣∣(C?(reiθ) +HZ(reiθ))Q(reiθ)

σR(reiθ)

∣∣∣∣ dθ
=

1

2

∫ π

−π
log
|C?(reiθ) +HZ(reiθ)|2|Q(reiθ)|2

σ2|R(reiθ)|2
dθ

=
1

2

∫ π

−π
log

Ŝ∗Y (eiθ)

σ2|R(reiθ)|2
dθ.

It then follows from (54) and the fact that R(z) is a stable polynomial that

lim
r→1

∫ π

−π
log |T (reiθ)|dθ =

∫ π

−π
log |T (eiθ)|dθ = 0,

which, by Remark 2.4, implies that T (z) is nothing but a Blaschke product, and furthermore,
C?(z) +HZ(z) must take the following form:

C?(z) +HZ(z) =

∏∞
i=1(1− x−1

i z)R(z)∏∞
i=1(1− x̄iz)Q(z)

(58)

for some complex numbers x1, x2, . . . with |xj| < 1 for all j and
∏

j |xj|2 = 1/σ2. By
Condition iii) of Theorem 1.4,

1

C?(eiθ) +HZ(eiθ)
− λC?(eiθ)

is causal, which means that

1

C?(z) +HZ(z)
− λC?(z−1) =

1− λS?Y (z) + λHZ(z−1)(C?(z) +HZ(z))

C?(z) +HZ(z)
(59)

is analytic on D, which, together with the fact that C?(z)+HZ(z) has the factor of
∏∞

i=1(1−
x−1
i z) (for this, see (58)), implies that 1 − λS?Y (z) must also have the same factor. By

symmetry, 1− λS?Y (z) must also have the factor
∏∞

i=1(1− x−1
i z−1), which means that all xi
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and x−1
1 are zeros of 1 − λS?Y (z). Since 1 − λS?Y (z) is a rational spectrum with degree at

most 2k, it has at most 2k zeros. Therefore, we conclude that

C?(z) +HZ(z) =

∏l
i=1(1− x−1

i z)miR(z)∏l
i=1(1− x̄iz)miQ(z)

, (60)

where all xi are distinct with |xi| < 1, all mi are positive integers with
∑l

i=1 mi ≤ k.
The causality of

1

C?(eiθ) +HZ(eiθ)
− λC?(eiθ)

implies that for any k = 1, 2, . . . ,∫ π

−π

(
1

C?(eiθ) +HZ(eiθ)
− λC?(eiθ)

)
eikθ

dθ

2π
= 0,

which, together with (60), yields∫ π

−π

eikθ
∏l

i=1(1− x̄ieiθ)miQ(eiθ)∏l
i=1(1− x−1

i eiθ)miR(eiθ)

dθ

2π
= λc?k.

Rewriting the above integral as a line integral, we have∮
γ

zk−1
∏l

i=1(1− x̄iz)miQ(z)∏l
i=1(1− x−1

i z)miR(z)

dz

2πi
= λc?k,

∮
γ

zk−1
∏l

i=1(1− x̄iz)mi(−xi)miQ(z)∏l
i=1(z − xi)miR(z)

dz

2πi
= λc?k, (61)

where γ is the unit circle. Denote

h(z) ,

∏l
i=1(1− x̄iz)mi(−xi)miQ(z)

R(z)
.

It’s easy to check that h(z) is an analytic function on the unit disk since R(z) is stable. Via
the Heaviside cover-up method, the integrand of the LHS of (61) can be decomposed as

zk−1

l∑
i=1

mi∑
j=1

h̃ij(z)

(z − xi)j
,

where h̃ij(z) = aijh(z) and

aij =
1

(mi − j)!

(
(z − xi)mi∏l
s=1(z − xs)ms

)(mi−j)
∣∣∣∣∣∣
z=xi
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is a constant depending on xi and mi. Thus h̃ij(z) is also an analytic function on the unit
disk for all i, j. Applying Cauchy’s integral formula, we deduce that for any k,

l∑
i=1

mi∑
j=1

(h̃ij(z)zk−1)(j−1)

(j − 1)!

∣∣∣∣∣
z=xi

= λc?k,

or equivalently,

l∑
i=1

mi∑
j=1

∑min{j,k}
p=1 Cp−1

j−1aij(h(z))(j−p)(zk−1)(p−1)

(j − 1)!

∣∣∣∣∣
z=xi

= λc?k. (62)

Hence, each c?k takes the following form

l∑
i=1

min{mi,k}∑
j=1

ỹij(k − 1) · · · (k − j + 1)xk−ji , (63)

where ỹij is a constant independent of k, which immediately implies that

C?(z) =
∞∑
k=1

c?kz
k

=
∞∑
k=1

l∑
i=1

min{mi,k}∑
j=1

ỹij(k − 1) · · · (k − j + 1)xk−ji zk

=
l∑

i=1

mi∑
j=1

∞∑
k=j

ỹij(k − 1) · · · (k − j + 1)xk−ji zk

=
l∑

i=1

mi∑
j=1

yijz
j

(1− xiz)j
, (64)

where yij , ỹij/(j − 1)!. Hence, together with (60),

C?(z) +HZ(z) =

∏l
i=1(1− x−1

i z)miR(z)∏l
i=1(1− x̄iz)miQ(z)

=
l∑

i=1

mi∑
j=1

yijz
j

(1− xiz)j
+
P (z)

Q(z)
,

where for the last equality, all x̄i are replaced by xi, which can be justified by the fact that
{xi} = {x̄i}, thanks to the fact that C?(z) has only real-valued coefficients.

We next prove that Conditions i)-iv) are necessary and sufficient for the optimality of
C?(z), which, given (64), readily follows from Theorem 1.1 and some technical computations.
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First of all, Condition i) follows from (64) and Condition i) in Theorem 1.1:∫ π

−π
|C?(eiθ)|2 dθ

2π

=

∫ π

−π

∣∣∣∣∣
l∑

k=1

mk∑
j=1

ykje
ijθ

(1− xkeiθ)j

∣∣∣∣∣
2

dθ

2π

=

∫ π

−π

l∑
k=1

mk∑
j=1

l∑
p=1

mp∑
q=1

ykje
ijθ

(1− xkeiθ)j
ȳpqe

−iqθ

(1− x̄pe−iθ)q
dθ

2π

=

∫ π

−π

l∑
k=1

mk∑
j=1

l∑
p=1

mp∑
q=1

ykj ȳpqe
ijθ

(1− xkeiθ)j(eiθ − x̄p)j
dθ

2π

=

∮
γ

l∑
k=1

mk∑
j=1

l∑
p=1

mp∑
q=1

ykj ȳpqz
j−1

(1− xkz)j(z − x̄p)q
dz

2πi

=
l∑

k=1

mk∑
j=1

l∑
p=1

mp∑
q=1

ykj ȳpq

(
zj−1

(1− xkz)j

)(q−1)
∣∣∣∣∣
z=x̄p

(a)
=

l∑
k=1

mk∑
j=1

l∑
p=1

mp∑
q=1

ykjypq

(
zj−1

(1− xkz)j

)(q−1)
∣∣∣∣∣
z=xp

=P,

where for (a), we have replaced ȳpq by ypq, which can be justified by the fact that {ypq} =
{ȳpq}, again due to the fact that C?(z) has only real-valued coefficients.

Second, it follows from (60) and (64) that

C?(z) +HZ(z) =

∏l
i=1(1− x−1

i z)miR(z)∏l
i=1(1− xiz)miQ(z)

=
l∑

i=1

mi∑
j=1

yijz
j

(1− xiz)j
+
P (z)

Q(z)
, (65)

which immediately implies Condition ii).

Condition iii) follows from the fact that the coefficients of each xk−ji at both sides of

(61) are equal. More precisely, by (63), the coefficient of xk−ji on the right hand side is

(j − 1)!(k− 1) · · · (k− j + 1)λyij. On the other hand, via (62), the coefficient of xk−ji on the
LHS of (61) is as follows:

(k − 1) · · · (k − j + 1)

mi∑
p=j

Cj−1
p−1aip(h(z))(p−j)

(p− 1)!

∣∣∣∣∣
z=xi

.

Condition iii) then immediately follows.
Last, Condition iv) follows from Condition iii) of Theorem 1.1 and some technical com-

putations.
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Finally, noting the uniqueness of the output PSD S?Y corresponding to the optimal C?(z)
(Theorem 3.2) and applying Jensen’s formula, we obtain

CFB =
1

2

∫ π

−π
logS?Y (eiθ)

dθ

2π

=
1

2

∫ π

−π
log

l∏
j=1

|xj|−2mj

∣∣∣∣∣
∏k

t=1(1− rteiθ))∏k
t=1(1 + βteiθ)

∣∣∣∣∣
2
dθ

2π

=− log
l∏

i=1

|xi|mi .

The proof of Theorem 3.9 is then complete.

Remark 3.10. By Theorem 3.9, to compute the ARMA(k) Gaussian feedback capacity, one
needs to first find a solution to one of the following systems of rational equations: for some
positive m1,m2, . . . ,ml with

∑l
j=1mi ≤ k,

∑l
i=1

∑mi
j=1

∑l
p=1

∑mp
q=1 yijypq

(
zj−1

(1−xiz)j

)(q−1)
∣∣∣∣
z=xp

= P,

f(xj) = 0, j = 1, 2, . . . , l
yijh11(x1)(j − 1)! = y11hij(xi), i = 1, 2, · · · , l,

j = 1, 2, . . . ,mi,

(66)

such that |xi| < 1 for all i and it also satisfies Condition iv) in Theorem 3.9 to compute the
capacity with (52).

4 Examples and Numerical Results

In this section, we give a couple of examples and some numerical results.

Example 4.1. When k = 1, both l and ml are necessarily 1, and the corresponding system
of equations is: {

y211
1−x21

= P,
y11x1
1−x21

+ 1+αx1
1+βx1

= 0,

which immediately gives rise to (10). An elementary analysis (see, e.g., [11] or [13]) will show
that Condition iv) of Theorem 3.9 translates to (11), an extra condition x has to satisfy. It
turns out that for this case, x1 is unique, which, by (52), yields

CFB = − log |x1|.

So, Theorem 3.9 recovers Theorem 1.3 as a special case.

Example 4.2. When k = 2, by Theorem 3.9, we have three cases to deal with:
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1. l = 1 and m1 = 1: We need to find |x1| < 1, y11 6= 0 such that{
y211

1−x21
= P,

y11x1
1−x21

+ (1+α1x1)(1+α2x1)
(1+β1x1)(1+β2x1)

= 0,
(67)

and for all θ ∈ [−π, π),

x1(1 + β1x1)(1 + β2x1)(x21 − 1)

y11(1− r1x1)(1− r2x1)
≥ |x1|2

∣∣∣∣ (1 + β1eiθ)(1 + β2eiθ)

(1− r1eiθ)(1− r2eiθ)

∣∣∣∣2 ,
where r1 + r2 = x1 − x−1

1 − α1 − α2 − y11 and r1r2 = α1α2x
2
1 − β1β2x1y11. If such x1

exists, we have
CFB = − log |x1|.

2. l = 1 and m1 = 2: We need to find |x1| < 1 and y11, y12 6= 0 such that
y211

1−x21
+

y212(1+x21)

(1−x21)2
+ 2y11y12x1

(1−x21)2
= P,

y11x1
1−x21

+
y12x21

(1−x21)2
+ (1+α1x1)(1+α2x1)

(1+β1x1)(1+β2x1)
= 0,

y11w(x1) = y12w
(1)(x1),

(68)

and for all θ ∈ [−π, π)

w(x1)

y12

≥ |x1|4
∣∣∣∣(1 + β1e

iθ)(1 + β2e
iθ)

(1− r1eiθ)(1− r2eiθ)

∣∣∣∣2 ,
where

w(z) ,
x2

1(1− x1z)2(1 + β1z)(1 + β2z)

(1− r1z)(1− r2z)
,

and r1 + r2 = 2x1 − 2x−1
1 − α1 − α2 − y11 and r1r2 = α1α2x

4
1 − β1β2x

3
1y11 − β1β2x

2y12.
If such x1, y11, y12 exist, then we have

CFB = − log |x1|2.

3. l = 2 and m1 = 1, m2 = 1: We need to find distinct |x1|, |x2| < 1 and y11, y21 6= 0 such
that 

y211
1−x21

+
y221

1−x22
+ 2y11y21

1−x1x2 = P,
y11x1
1−x21

+ y21x1
1−x1x2 + (1+α1x1)(1+α2x1)

(1+β1x1)(1+β2x1)
= 0,

y11x2
1−x1x2 + y21x2

1−x22
+ (1+α1x2)(1+α2x2)

(1+β1x2)(1+β2x2)
= 0,

y11(1−r1x1)(1−r2x1)

(1+β1x1)(1+β2x1)(1−x21)
= − y21(1−r1x2)(1−r2x2)

(1+β1x2)(1+β2x2)(1−x22)
,

(69)

and for all θ ∈ [−π, π),

x1x2(1 + β1x1)(1 + β2x1)(1− x21)(1− x1x2)
(x1 − x2)y11(1− r1x1)(1− r2x1)

≥ |x1x2|
2

∣∣∣∣∣ (1 + β1e
iθ)(1 + β2e

iθ)

(1− r1eiθ)(1− r2eiθ)

∣∣∣∣∣
2

where r1 + r2 = x1 + x2 − x−1
1 − x−1

2 − α1 − α2 − y11 − y21 and r1r2 = α1α2x
2
1x

2
2 −

β1β2x
2
1x2y21 − β1β2x1x

2
2y11. If such x1, x2, y11, y21 exist, then we have

CFB = − log |x1x2|.
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Complicated as they may look, the systems of equations in (67), (68) and (69) all have
finitely many solutions for generic α1, α2, β1, β2 and therefore can be numerically solved (for
instance, Bertini [1], a numerical algebraic geometry package, can be used to efficiently find
their zero-dimensional roots). Below, fixing P = 1, α2 = 0.1, and β2 = 0, assuming different
values for β1, we have plotted the values of CFB against the values of α1.
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Figure 1: Plot of CFB as a function of α1 when α2 = 0.1

Example 4.3. As evidenced in Example 4.2, solving the polynomial system in (66) will
yield the ARMA(k) Gaussian feedback capacity. Nevertheless, the computational complex-
ity drastically increases as k gets larger. Our observation is that with this approach, the
computation can be measured in minutes (for moderate computing power) for k = 2, but
it will be measured in days for k = 3. In this example, we demonstrate the effectiveness
of Algorithm 3.5 in terms of computing/estimating Gaussian feedback capacity. Apparently
this algorithm works for much more general settings, but for the purpose of comparison,
we will also focus on applying the algorithm to compute the ARMA(k) Gaussian feedback
channels.

We first discuss a couple of technical issues for the implementation of Algorithm 3.5.
The first issue is about the form that C(z) should take for implementing the algorithm.

Note that, albeit explicit, the expression as in (51) gives different forms for different l and
m1,m2, . . . ,ml, which will create technical problems for Step 2), where the recursive compu-
tation of {C(n)(eiθ)} is conducted. One way to circumvent this issue is to adopt the following
unified form: ∑k

n=1 ŷne
inθ∏k

n=1(1− x̂neiθ)
, (70)

where ŷn are complex numbers and x̂n are complex numbers inside unit circle. One verifies
that the above form encompasses all the possible cases in (51).

As in Remark 3.7, as there does not seem to exist an effective way to find the global
minimum for (47), we instead update the sequence {C(n)(eiθ)} by a local minimum in (47)
via some gradient-descent like method. This, however, create another problem for choosing
the initial C(0)(eiθ); more specifically, if C(0)(eiθ) is chosen such that C(0)(eiθ) +HZ(eiθ) has
no zeros inside the unit circle, and thereby any C(eiθ) “close” to C(0)(eiθ), C(eiθ) +HZ(eiθ)
will likely not have zeros inside the unit circle either. Then by Jensen’s formula,∫ π

−π

|C(0)(eiθ) +HZ(eiθ)|2

|C(eiθ) +HZ(eiθ)|2
dθ

2π
≥
∫ π

−π
log
|C(0)(eiθ) +HZ(eiθ)|2

|C(eiθ) +HZ(eiθ)|2
dθ

2π
+ 1 ≥ 1.
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Therefore, it is difficult to use a gradient-like method to find a feasible C(1)(eiθ) such that∫ π

−π

|C(0)(eiθ) +HZ(eiθ)|2

|C(1)(eiθ) +HZ(eiθ)|2
dθ

2π
< 1,

not to mention to find a local minimum point C(1)(eiθ). To overcome this issue, one can
further assume C(0)(eiθ) is chosen such that C(0)(eiθ) +HZ(eiθ) has at least one zero (denote
by s below) inside the unit circle, that is,

C(0)(eiθ) +HZ(eiθ) =

∑k
n=1 ŷne

inθ∏k
n=1(1− x̂neiθ)

+

∏k
n=1(1 + αne

iθ)∏k
n=1(1 + βneiθ)

=
(1− s−1eiθ)(1 +

∑2k−1
n=1 γne

inθ)∏k
n=1(1− x̂neiθ)(1 + βneiθ)

, (71)

where |s| < 1, γ1, γ2, . . . , γ2k−1 are appropriately chosen complex numbers.
With these two issues addressed, Algorithm 3.5 can be efficiently implemented to yield

a lower bound (denoted by C
(low)
FB ) on the Gaussian feedback capacity. We observe that

for the ARMA(k) channels, k = 1, 2, the implemented algorithm actually quickly converges
to the true capacity; moreover, it can also handle larger k’s within reasonably short time
(measured in hours with moderate computing pwoer). Below, fixing P = 10, α1 = 0.3,
α2 = 0.4, β1 = −0.3, β2 = 0.7, assuming different values for α3, we have plotted the values

of C
(low)
FB against the values of β3.
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Figure 2: Plot of C
(low)
FB as a function of β3

Appendices

A Proof of Theorem 3.3

For the necessity part, we directly use the method of Lagrangian multiplier. Consider the
Lagragian of (41)

L(c, λ) =

∫ π

−π

λ|C(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
−
(∫ π

−π
|C(eiθ)|2 dθ

2π
− P

)
. (72)
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Apparently C??(eiθ) satisfies the KKT condition, that is,∫ π

−π
|C??(eiθ)|2 dθ

2π
= P,

and for any k = 1, 2, . . . ,∫ π

−π
2eikθ

(
λ(C??(eiθ) +HZ(eiθ))

|C?(eiθ) +H(eiθ)|2
− C??(eiθ)

)
dθ

2π
= 0,

which yield (30) and (31), respectively. Furthermore, the infinite-dimensional Hessian matrix
H of L(c, λ) can be computed as

Hk,k =

∫ π

−π

2λ

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
− 2,

for all feasible k, and

Hk,j =

∫ π

−π

2λei|j−k|θ

|C?(eiθ) +HZ(eiθ)|2
dθ

2π

for all all feasible j 6= k. Note that H can be decomposed as 2λA− 2I, where

Ak,j =

∫ π

−π

2ei|j−k|θ

|C?(eiθ) +HZ(eiθ)|2
dθ

2π

for all feasible j, k. Now, at the global maximum solution C??(eiθ) =
∑∞

j=1 c
??
j e

ijθ, H must

satisfy: for any n and any z = (z1, z2, . . . , zn) 6= 0 with
∑n

i=1 c
??
i zi = 0,

zHzT =
n∑
j=1

n∑
k=1

H
(n)
k,j zjzk ≤ 0,

where H(n) the leading principle n × n submatrix of H, i.e., H(n) = (Hj,k)
n
j,k=1. It then

follows that at most 1 eigenvalue of H(n) is positive, or equivalently, at most 1 eigenvalue of
A(n) is larger than 1/λ, where A(n) is the leading principle n× n submatrix of A. Denote by

λ
(n)
2 the second largest eigenvalue of A(n), then λ

(n)
2 ≤ 1/λ for all n. It then follows from the

well-known fact on the eigenvalue distribution of Toeplitz forms (see, Page 63 of [7]), λ
(n)
2

converges to esssup
θ∈[−π,π)

|C?(eiθ) +HZ(eiθ)|−2 as n tends to infinity. Therefore, we conclude that

λ ≤ |C?(eiθ) +H(eiθ)|2 (73)

for almost all θ ∈ [−π, π).
For the sufficiency part, we use the same idea as given in the proof in Theorem 4.1 in

[11]. More precisely, we need to prove that for any C(eiθ) satisfying (15),∫ π

−π

|C(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
≤
∫ π

−π

|C??(eiθ) +HZ(eiθ)|2

|C?(eiθ) +HZ(eiθ)|2
dθ

2π
.
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To see this, note that∫ π

−π

|C +HZ |2

|C? +HZ |2
dθ

2π
=

∫ π

−π

|C?? +HZ + C − C?|2

|C?? +HZ |2
dθ

2π

=

∫ π

−π

|C?? +HZ |2 + |C − C??|2 + 2(C?? + H̄Z)(C − C??)

|C? +HZ |2
dθ

2π

=

∫ π

−π

|C?? +HZ |2

|C? +HZ |2
dθ

2π
+

∫ π

−π

|C − C??|2

|C? +HZ |2
dθ

2π
+ 2

∫ π

−π

C(C?? +HZ)

|C? +HZ |2
dθ

2π

− 2

∫ π

−π

C??(C?? +HZ)

|C? +HZ |2
dθ

2π
.

Note that by (31), we have for almost all θ,

|C∗ +HZ |2 ≥ λ,

and ∫ π

−π

(
(C?? +HZ)

C?? +HZ

− C?

λ

)
C??dθ = 0,

∫ π

−π

(
(C?? +HZ)

C? +HZ

− C??

λ

)
Cdθ = 0.

It then follows that for any C(eiθ) satisfying (15), we have∫ π

−π

|C +HZ |2

|C? +HZ |2
dθ

2π
≤
∫ π

−π

|C?? +HZ |2

|C? +HZ |2
dθ

2π
+

1

λ

∫ π

−π
|C − C??|2 dθ

2π
− 2P

λ
+

2

λ

∫ π

−π
CC??

dθ

2π

=

∫ π

−π

|C?? +HZ |2

|C? +HZ |2
dθ

2π
+

1

λ

∫ π

−π
|C|2 dθ

2π
+

1

λ

∫ π

−π
|C??|2 dθ

2π

− 2

λ

∫ π

−π
CC??

dθ

2π
− 2P

λ
+

2

λ

∫ π

−π
CC??

dθ

2π

≤
∫ π

−π

|C?? +HZ |2

|C? +HZ |2
dθ

2π
.

The proof of the theorem is then complete.
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