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Abstract

In this paper we propose a new model for arbitrarily varying classical-quantum channels. In this model a jammer

has side information. We consider two scenarios. In the first scenario the jammer knows the channel input, while in

the second scenario the jammer knows both the channel input and the message. The transmitter and receiver share a

secret random key with a vanishing key rate. We determine the capacity for both average and maximum error criteria

for both scenarios. We also establish the strong converse. We show that all these corresponding capacities are equal,

which means that additionally revealing the message to the jammer does not change the capacity.
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I. INTRODUCTION

Quantum information theory has developed into a very active field of reseach in the last years and its study

provide an enormous amount of potential advantages. Quantum channels differs significantly from communica-

tion over classical channels. Quantum communication allow us to exploit possibilities for new applications for

communications. To name a few: message transmission, secret message transmission, entanglement transmission,

entanglement generation. secure communications over quantum channels is one of the first practical applications of

quantum communications. In such systems one usually consider active jamming and passive eavesdropping attacks.

Communication models including a jammer who tries to disturb the legal parties’ communication have received

a lot of attention in recent years. These publications concentrated on the model of message transmission over an

arbitrarily varying channel where a third channel user, the jammer, may change his input in every channel use.

This model captures completely all possible jamming attacks and is not restricted to use a repetitive probabilistic

strategy. The arbitrarily varying channel was introduced in [9]. In the model of message transmission over arbitrarily

varying channels it is understood that the sender and the receiver have to select their coding scheme first. In the

conventional model it is assumed that this coding scheme is known by the jammer, and he may choose the most

advantaged jamming attacking strategy depending on his knowledge, but the jammer has neither knowledge about

the transmitted codeword nor knowledge about the message. Ahlswede showed in [2] the surprising result, that

either the deterministic capacity of an arbitrarily varying channel is zero or it is equal to its random correlated

capacity (Ahlswede dichotomy). For this dichotomy it is essential that the average error criterion was used. After

that discovery, it remained an open question exactly when the deterministic capacity is nonzero. In [17] Ericson

gave a sufficient condition for that, and in [16] Csiszár and Narayan proved that this is condition is also necessary.

Ahlswede dichotomy demonstrates the importance of resources (shared randomness) in a very clear form. It is

required that both sender and receiver have access to a perfect copy of the outcome of a random experiment,

and thus we should assume an additional perfect channel. The legal channel users’ knowledge about the shared

randomness is very helpful for message transmission through an arbitrarily varying channel (random correlated

capacity), where we assume that the resource is only known by the legal channel users, since otherwise it will be

completely useless (cf. [12]).

In this work we consider classical quantum channels, i.e., the sender’s inputs are classical symbols and the

receiver’s outputs are quantum systems. The capacity of classical-quantum channels under average error criterion

has been determined in [19], [23], and [24]. The capacity of arbitrarily varying classical-quantum channels has

been delivered in [5]. An alternative proof of [5]’s result and a proof of the strong converse have been given in [7].

In [4] Ahlswede dichotomy for the arbitrarily varying classical-quantum channels was established, and a sufficient

and necessary condition for the zero deterministic capacity has been given. In [13] a simplification of this condition

was delivered. See also [20] and [21] for a classical quantum channel model with a benevolent third channel user

instead of with a jammer. These results are basis tools for secure communication over arbitrarily varying wiretap

channels. An arbitrarily varying wiretap channel is a channel with both a jammer and an eavesdropper. Classical

arbitrarily varying wiretap channels have been studied extensively in the context of classical information theory.
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The secrecy capacity of arbitrarily varying wiretap classical quantum channels has been determined in [12].

As already mentioned the message transmission capacity of an arbitrarily varying channel depends on the

demanded error criterion. The deterministic capacities of classical arbitrarily varying channel under maximal error

criterion and under the average error criterion are in general, not equal. The deterministic capacity formula of

classical arbitrarily varying channels under average error criterion is already well studied in the context of classical

information theory. The deterministic capacity formula of classical arbitrarily varying channels under maximal

error criterion is still an open problem. It has been shown by Ahlswede in [1] that the capacity under maximal

error criterion of certain arbitrarily varying channels can be equal to the zero-error capacity of related discrete

memoryless channels. Furthermore the random correlated capacities of arbitrarily varying quantum to quantum

channels under maximal error criterion and under the average error criterion are equal. Interestingly, [13] shows

that the deterministic capacities of arbitrarily varying quantum to quantum channels under maximal error criterion

and under the average error criterion are equal, since randomness for encoding is available for quantum to quantum

channels, i.e., quantum encoding is very powerful. By the above facts there is no Ahlswede dichotomy for arbitrarily

varying channels under maximal error criterion: It may occur that the deterministic capacity of a classical arbitrarily

varying channel under maximal error criterion is not zero, but on the other hand, unequal to its random correlated

capacity. We will provide a example in Section III.

In all the above mentioned works it is assumed that the jammer knows the coding scheme, but has neither

side information about the codeword nor side information about the message of the legal transmitters. In many

applications, especially for secure communications, it is too optimistic to assume this. Thus in this paper we

want to consider two scenarios, where the jammer has side information: In the first one the jammer knows both

coding scheme and input codeword. In the second one the jammer knows additionally the message (cf. Figure

1 and 2). The jammer can make use of this knowledge in each scenario to advance his attacking strategy. We

require that information transmission can be guaranteed even in the worst case, when the jammer chooses the most

advantageous attacking strategy according to his knowledge. For classical arbitrarily varying channels this was first

considered by [22]. In this paper we extend this result to arbitrarily varying classical-quantum channels, where we

use techniques different to these used in [22] (cf. Section IV). In this work we consider for both scenarios the

random correlated capacities under average and maximal error criteria. Detailed descriptions for both scenarios are

given in Section II. In Section III the message transmission capacities for both scenarios and both error criteria are

completely characterized. In Section IV, Section V, and Section VI we deliver proofs for the capacities results for

both scenarios and both error criteria. A vanishing rate of the key is sufficient for our codes since the resource we

use here is only of polynomial size of the code length (cf. Remark 2, and also [13] and [11] for a discussion about

the difference between various forms of shared randomness).

II. PROBLEM FORMULATION

A: Basic notations

Throughout the paper random variables will be denoted by capital letters e. g., S,X, Y, and their realizations

(or values) and domains (or alphabets) will be denoted by corresponding lower case letters e. g., s, x, y, and script
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letters e.g., S,X ,Y , respectively. Random sequences will be denoted a by capital bold-face letters, whose lengths

are understood by the context, e. g., S = (S1, S2, . . . , Sn) and X = (X1, X2, . . . , Xn), and deterministic sequences

are written as lower case bold-face letters e. g., s = (s1, s2, . . . , sn),x = (x1, x2, . . . , xn).

PX is distribution of random variable X . Joint distributions and conditional distributions of random variables X

and S will be written as PSX , etc and PS|X etc, respectively and PnXS and PnS|X are their product distributions

i. e., PnXS(x, s) :=
∏n
t=1 PXS(xt, st), and PnS|X(s|x) :=

∏n
t=1 PS|X(st|xt). Moreover T nX , T nXS and T nS|X(x) are

sets of (strongly) typical sequences of the type PX , joint type PXS and conditional type PS|X , respectively. The

cardinality of a set X will be denoted by |X |. For a positive integer L, [L] := {1, 2, . . . , L}. “Q is a classical

channel, or a conditional probability distribution, from set X to set Y” is abbreviated to “Q : X → Y”. “Random

variables X,Y and Z form a Markov chain” is abbreviated to “X ↔ Y ↔ Z”. E will standard for the operator of

mathematical expectation.

Throughout the paper dimensions of all Hilbert spaces are finite, and the identity operator in a Hilbert space H

is denoted by IH.

Throughout the paper the base(s) of logarithm is 2. For a discrete random variable X on a finite set X and a dis-

crete random variable Y on a finite set Y, we denote the Shannon entropy of X by H(X) = −
∑
x∈X px(x) log px(x)

and the mutual information between X and Y by I(X;Y ) =
∑
x∈X

∑
y∈Y px,y(x, y) log

(
px,y(x,y)
px(x)py(y)

)
. Here px,y

is the joint probability distribution function of X and Y , and px and py are the marginal probability distribution

functions of X and Y respectively.

Let P and Q be quantum systems. We denote the Hilbert space of P and Q by GP and GQ, respectively. Let

φPQ be a bipartite quantum state in S(GPQ). We denote the partial trace over GP by

trP(φPQ) :=
∑
l

〈l|PφPQ|l〉P ,

where {|l〉P : l} is an orthonormal basis of GP. We denote the conditional entropy by

S(P | Q)ρ := S(φPQ)− S(φQ) .

Here φQ = trP(φPQ).

For a finite-dimensional complex Hilbert space H, we denote the (convex) set of density operators on H by

S(H) := {ρ ∈ L(H) : ρ is Hermitian, ρ ≥ 0H , tr(ρ) = 1} ,

where L(H) is the set of linear operators on H, and 0H is the null matrix on H. Note that any operator in S(H)

is bounded.

For finite-dimensional complex Hilbert spaces H and H′ a quantum channel N : S(H)→ S(H′), S(H) 3 ρ→

N(ρ) ∈ S(H′) is represented by a completely positive trace-preserving map which accepts input quantum states in

S(H) and produces output quantum states in S(H′).

B: Code definitions

If the sender wants to transmit a classical message of a finite set X to the receiver using a quantum channel N ,

his encoding procedure will include a classical-to-quantum encoder to prepare a quantum message state ρ ∈ S(H)
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suitable as an input for the channel. If the sender’s encoding is restricted to transmit an indexed finite set of

quantum states {ρx : x ∈ X} ⊂ S(H), then we can consider the choice of the signal quantum states ρx as a

component of the channel. Thus, we obtain a channel σx := N(ρx) with classical inputs x ∈ X and quantum

outputs, which we call a classical-quantum channel. This is a map N: X → S(H′), X 3 x → N (x) ∈ S(H′)

which is represented by the set of |X | possible output quantum states {σx = N(x) := N(ρx) : x ∈ X} ⊂ S(H′),

meaning that each classical input of x ∈ X leads to a distinct quantum output σx ∈ S(H′). In view of this, we

have the following definition.

Definition 1: Let H be a finite-dimensional complex Hilbert space. A classical-quantum channel is a mapping

W : X → S(H), specified by a set of quantum states {ρ(x), x ∈ X} ⊂ S(H), indexed by “input letters” x in a finite

set X . X and H are called input alphabet and output space respectively. We define the n-th extension of classical-

quantum channel W as follows. The channel outputs a quantum state ρ⊗n(x) := ρ(x1)⊗ ρ(x2)⊗ . . . ,⊗ρ(xn), in

the nth tensor power H⊗n of the output space H, when an input codeword x = (x1, x2, . . . , xn) ∈ Xn of length

n is input into the channel.

Let V: X → S(H) be a classical-quantum channel. For P ∈ P (X ), the conditional entropy of the channel for

V with input distribution P is denoted by

S(V|P ) :=
∑
x∈X

P (x)S(V(x)) .

Let Φ := {ρx : x ∈ X} be a be a classical-quantum channel, i.e., a set of quantum states labeled by elements

of X . For a probability distribution Q on X , the Holevo χ quantity is defined as

χ(Q; Φ) := S

(∑
x∈A

Q(x)ρx

)
−
∑
x∈A

Q(x)S (ρx) .

For a probability distribution P on a finite set X and a positive constant δ, we denote the set of typical sequences

by

T nP,δ :=

{
xn ∈ Xn :

∣∣∣∣ 1nN(x′ | xn)− P (x′)

∣∣∣∣ ≤ δ

|X |
∀x′ ∈ X

}
,

where N(x′ | xn) is the number of occurrences of the symbol x′ in the sequence xn.

Let H be a finite-dimensional complex Hilbert space. Let n ∈ N and α > 0. We suppose ρ ∈ S(H) has the

spectral decomposition ρ =
∑
x P (x)|x〉〈x|, its α-typical subspace is the subspace spanned by

{
|xn〉, xn ∈ T nP,α

}
,

where |xn〉 := ⊗ni=1|xi〉. The orthogonal subspace projector which projected onto the typical subspace is

Πρ,α =
∑

xn∈T nP,α

|xn〉〈xn| .

Similarly, let X be a finite set, and G be a finite-dimensional complex Hilbert space. Let V: X → S(H) be

a classical-quantum channel. For x ∈ X , suppose V(x) has the spectral decomposition V(x) =
∑
j V (j|x)|j〉〈j|

for a stochastic matrix V (·|·). The α-conditional typical subspace of V for a typical sequence xn is the subspace

spanned by
{⊗

x∈X |jIx〉, jIx ∈ T
Ix
V (·|x),δ

}
. Here Ix := {i ∈ {1, · · · , n} : xi = x} is an indicator set that selects

the indices i in the sequence xn = (x1, · · · , xn) for which the i-th symbol xi is equal to x ∈ X . The subspace
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is often referred to as the α-conditional typical subspace of the state V⊗n(xn). The orthogonal subspace projector

which projected onto it is defined as

ΠV,α(xn) =
⊗
x∈X

∑
jIx∈T Ix

V(·|xn),α

|jIx〉〈jIx | .

The typical subspace has following properties:

For σ ∈ S(H⊗n) and α > 0 there are positive constants β(α), γ(α), and δ(α), depending on α and tending to

zero when α→ 0 such that

tr (σΠσ,α) > 1− 2−nβ(α) , (1)

2n(S(σ)−δ(α)) ≤ tr (Πσ,α) ≤ 2n(S(σ)+δ(α)) , (2)

2−n(S(σ)+γ(α))Πσ,α ≤ Πσ,ασΠσ,α ≤ 2−n(S(σ)−γ(α))Πσ,α . (3)

For an ∈ T nP,α there are positive constants β(α)′, γ(α)′, and δ(α)′, depending on α and tending to zero when

α→ 0 such that

tr
(
V⊗n(xn)ΠV,α(xn)

)
> 1− 2−nβ(α)′ , (4)

2−n(S(V|P )+γ(α)′)ΠV,α(xn) ≤ ΠV,α(xn)V⊗n(xn)ΠV,α(xn)

≤ 2−n(S(V|P )−γ(α)′)ΠV,α(xn) , (5)

2n(S(V|P )−δ(α)′) ≤ tr (ΠV,α(xn)) ≤ 2n(S(V|P )+δ(α)′) . (6)

For the classical-quantum channel V : X → S(H) and a probability distribution P on X we define a quantum

state PV :=
∑
x P (x)V(x) on S(H). For α > 0 we define an orthogonal subspace projector ΠPV,α fulfilling (1),

(2), and (3). Let xn ∈ T nP,α. For ΠPV,α there is a positive constant β(α)′′ such that following inequality holds:

tr
(
ρ⊗n(xn) ·ΠPV,α

)
≥ 1− 2−nβ(α)′′ . (7)

We give here a sketch of the proof. For a detailed proof please see [26].

proof

(1) holds because tr (σΠσ,α) = tr (Πσ,ασΠσ,α) = Pn(T nP,α). (2) holds because tr (Πσ,α) =
∣∣T nP,α∣∣. (3) holds

because 2−n(S(σ)+γ(α)) ≤ Pn(xn) ≤ 2−n(S(σ)−γ(α)) for x ∈ T nP,α and a positive γ(α). (4), (5), and (6) can be

obtained in a similar way. (7) follows from the permutation-invariance of ΠPV,α.

�
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Definition 2:

A arbitrarily varying classical-quantum channel (AVCQC) W is specified by a set {{ρ(x, s), x ∈ X}, s ∈ S} of

classical quantum channels with a common input alphabet X and output space H, which are indexed by elements

s in a finite set S. Elements s ∈ S usually are called the states of the channel. W outputs a quantum state

ρ⊗n(x, s) := ρ(x1, s1)⊗ ρ(x2, s2)⊗ . . . ,⊗ρ(xn, sn), (8)

if an input codeword x = (x1, x2, . . . , xn) is input into the channel, and the channel is governed by a state sequence

s = (s1, s2, . . . , sn), while the state varies from symbol to symbol in an arbitrary manner.

We assume that the channel state s is in control of the jammer. Without loss of generality we also assume that

the jammer always chooses the most advantageous attacking strategy according to his knowledge.

Definition 3: A code γ := (U , {D(i), i ∈ I}) of length n for a classical quantum channel consists of its code

book U and decoding measurement {D(i), i ∈ I}, where the code book U := {u(i), i ∈ I} is a subset of input

alphabet Xn indexed by messages i in the message set I, and the decoding measurement {D(i), i ∈ I} is a

quantum measurement in the output space H⊗n that is, D(i) ≥ 0 for all i ∈ I and
∑
i∈I ,D(i) = IH.

Definition 4:

A random correlated code Γ for a AVCQC W is a uniformly distributed random variable taking values in a set

of codes {(U(k), {D(j, k), j ∈ J }), k ∈ K} with a common message set J , where U(k) = {u(j, k), j ∈ J } and

{D(j, k), j ∈ J } are the code book and decoding measurement of the kth code in the set respectively. |K| is called

the key size.

Remark 1: Usually a random correlated code is defined as any random variable taking values in a set of codes.

Here we restrict ourselves to uniformly distributed random variables, since it is sufficiently for our purpose (cf.

[25]).

C: Capacity definitions and basic relations

One of the fundamental task of quantum Shannon theory is to characterize performance measurements maximizing

the efficiency of quantum communication. Hence we introduce here capacity for message transmission and simple

relations between different quantities.

As already mentioned this work concentrates on message transmission over classical quantum channels with

a jammer with additonal side information. It is clear that this side information are encoded by the same coding

scheme, which is known by the jammer by assumption, as the legal transmitters use for their communication. We

assume that the jammer chooses the most advantageous attacking strategy according to his side information. We

now distinguish two scenarios depending on the jammer’s knowledge (cf. Figure 1 and 2). We consider for each

scenario both average and maximum error criteria.
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Fig. 1. The jammer knows both the coding scheme and the input codeword (scenario 1)

Scenario 1

In this scenario jammer knows coding scheme and input codeword but not the message to be sent.

Definition 5: By assuming that the random message J is uniformly distributed, we define the average probability

of error by

pa(Γ)

= max
s

Etr[ρ⊗n(u(J,K), s(u(J,K)))(IH −D(J,K))]

= max
s

1

|J |
∑
j∈J

∑
k∈K

Pr{K = k}

tr[ρ⊗n(u(i, k), s(u(j, k)))(IH −D(j, k))]. (9)

This can be also rewritten as

pa(Γ)

=
∑
x

Pr{u(J,K) = x}max
s∈Sn

E{tr[ρ⊗n(u(J,K), s)

(IH −D(J,K))]|u(J,K) = x}. (10)

The maximum probability of error is defined as

pm(Γ)

= max
j∈J

max
s

Etr[ρ⊗n(u(j,K), s(u(j,K)))(IH −D(j,K))]. (11)

Definition 6: A non-negative number R is an achievable rate for the arbitrarily varying classical-quantum channel

W under random correlated coding in scenario 1 under the average error criterion and under the maximal
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error criterion if for every δ > 0 and ε > 0, if n is sufficiently large, there is an random correlated code Γ of

length n such that log |J |
n > R− δ, and pa(Γ) < ε and pm(Γ) < ε, respectively.

The supremum on achievable rate under random correlated coding of W under the average error criterion and

under the maximal error criterion in scenario 1 is called the random correlated capacity of W under the average

error criterion and under the maximal error criterion in scenario 1, denoted by C∗(W) and C∗m(W), respectively.

Definition 7: Let ε ∈ [0, 1). A non-negative number R is an ε - achievable rate for the arbitrarily varying

classical-quantum channelW under random correlated coding in scenario 1 under the average error criterion

and under the maximal error criterion if for every δ > 0 if n is sufficiently large, there is an random correlated

code Γ of length n such that log |J |
n > R− δ, and pa(Γ) < ε and pm(Γ) < ε, respectively.

The supremum on achievable rate under random correlated coding of W under the average error criterion and

under the maximal error criterion in scenario 1 is called the random correlated ε - capacity of W under the

average error criterion and under the maximal error criterion in scenario 1, denoted by C∗(W, ε) and C∗m(W, ε),

respectively.

By (10) it is clear, that to employ a “mixed strategy” for the jammer may not do better than only to use

deterministic strategy. That is, the jammer may not enlarge the average probability of error, if he randomly chooses

a state sequence with any conditional distribution Q : Xn → Sn, according to the input codeword, instead chooses

a fixed state sequence with the best deterministic strategy, because∑
s∈Sn

Q(s|x)E{tr[ρ⊗n(u(J,K), s)(IH −D(J,K))]|u(J,K) = x}

≤ max
s∈Sn

E{tr[ρ⊗n(u(J,K), s)(IH −D(J,K))]|u(J,K) = x}

for all Q and all x (with Pr{u(J,K) = x} > 0).

Fig. 2. The jammer knows coding scheme, input codeword, and message (scenario 2)

Scenario 2
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Now the jammer has more benefit and he can choose the state sequence according to both input codeword and

message which sender wants to transmit, or a function ψ : ∪k∈KU(k)× J → Sn.

Definition 8: We define the average probability of error in scenario 2 by

p∗∗a (Γ) = max
ψ

∑
j∈J

1

|J |
Etr[ρ⊗n

(u(j,K), ψ(u(j,K), j))(IH −D(j,K))]. (12)

The maximum probability of error in scenario 2 is defined as

p∗∗m (Γ) = max
j∈J

max
ψ

Etr[ρ⊗n

(u(j,K), ψ(u(j,K), j))(IH −D(j,K))]. (13)

Definition 9: A non-negative number R is an achievable rate for the arbitrarily varying classical-quantum channel

W under random correlated coding in scenario 2 under the average error criterion and under the maximal

error criterion if for every δ > 0 and ε > 0, if n is sufficiently large, there is an random correlated code Γ of

length n such that log |J |
n > R− δ, and p∗∗a (Γ) < ε and p∗∗m (Γ) < ε, respectively.

The supremum on achievable rate under random correlated coding of W under the average error criterion and

under the maximal error criterion in scenario 2 is called the random correlated capacity of W under the average

error criterion and under the maximal error criterion in scenario 2, denoted by C∗∗(W) and C∗∗m (W), respectively.

Definition 10: Let ε ∈ [0, 1). A non-negative number R is an ε - achievable rate for the arbitrarily varying

classical-quantum channelW under random correlated coding in scenario 2 under the average error criterion

and under the maximal error criterion if for every δ > 0, if n is sufficiently large, there is an random correlated

code Γ of length n such that log |J |
n > R− δ, and p∗∗a (Γ) < ε and p∗∗m (Γ) < ε, respectively.

The supremum on ε - achievable rate under random correlated coding of W under the average error criterion

and under the maximal error criterion in scenario 2 is called the random correlated ε - capacity of W under the

average error criterion and under the maximal error criterion in scenario 2, denoted by C∗∗(W, ε) and C∗∗m (W, ε),

respectively.

Obviously

C∗∗(W) ≤ C∗(W).

It is easy to show that

C∗m(W) = C∗∗m (W),

because both (11) and (13) are equal to

max
j

∑
x

Pr{u(j,K) = x}max
s∈Sn

E{tr[ρ⊗n(u(j,K), s)(IH −D(j,K))]|u(j,K) = x}.

Moreover, the average probability of error (12) can rewritten as∑
j∈J

1

|J |
∑
x

Pr{u(j,K) = x}max
s∈Sn

Etr[ρ⊗n(u(j,K), s)(IH −D(J,K))|u(j,K) = x].
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Thus, in the standard way, by Markov inequality one may conclude that the message set J of any code with average

probability of error λ in scenario 2 contains a subset J ′ such that |J ′| ≥ |J |2 and

max
j

∑
x

Pr{u(j,K) = x}max
s∈Sn

E{tr[ρ⊗n(u(j,K), s)(IH −D(j,K))]|u(j,K) = x} ≤ 2λ,

for all j ∈ J ′. That is,

C∗∗(W) = C∗∗m (W),

thus

C∗(W) ≥ C∗m(W) = C∗∗(W) = C∗∗m (W). (14)

III. MAIN RESULTS

For a given AVCQC W = {{ρ(x, s), x ∈ X}, s ∈ S} with set of state S, let

¯̄W := {{ ¯̄ρQ(x) :=
∑
s

Q(s|x)ρ(x, s), x ∈ X} : for all Q : X → S}. (15)

Theorem 1: (Direct Coding Theorem for Scenario 1) Given a AVCQC W = {{ρ(x, s), x ∈ X}, s ∈ S} and a

type PX , for all ε > 0, and λ > 0, there is a b > 0, such that for all sufficiently large n, there exists a code Γ of

length n with a rate larger than min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·))− ε, average probability of error in scenario 1 smaller than

λ, and key size of the random correlated code smaller then bn2. Moreover codewords of code books in support set

of the random correlated code Γ, all are in T nX .

Remark 2: In particular, there is a constant a > 0 (depending only on the AVCQC) such that for any sequence of

positive real numbers {λn}, lower bounded by λn ≥ 2−nα for an α > 0 (depending on ε), with limn→∞ λn = 0,

there exists a sequence of random correlated codes with a rate larger than min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·)) − ε, average

probability of error smaller than λn and the amount of common randomness upper bounded by an2

λ3
n

.

Theorem 2: (Strong Converse Coding Theorem for Scenario 1)

For every ε ∈ [0, 1) we have

C∗(W, ε) ≤ max
P

min
¯̄ρ(·)∈ ¯̄W

χ(P, ¯̄ρ(·)). (16)

Let

W̄ := {{ρ̄P (x) :=
∑
s

P (s)ρ(x, s), x ∈ X} : for all probability distributions P on S}. (17)

Then obviously

max
P

min
¯̄ρ(·)∈ ¯̄W

χ(P, ¯̄ρ(·)) ≤ max
P

min
ρ̄(·)∈W̄

χ(P, ρ̄(·)). (18)

The following Example 1 shows that the inequality is strict already in classical arbitrarily varying channels,

as a special case of AVCQC. It was shown the random correlated capacities of a AVCQC under maximum error

probability and average error probability when the jammer does not know the channel input are the same and

both equal to maxP minρ̄(·)∈W̄ χ(P, ρ̄(·)). Recalling that to employ the criterion of average probability of error

corresponds to scenario 1 and the criterion of maximum probability of error corresponds to scenario 2, we conclude

that knowing the message to be sent may not help a jammer who only know the coding scheme, for reduction the

capacity, if random correlated codes are allowed to be used by the communicators side.
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Example 1: Let X = Y = {0, 1} and S = {s0, s1}. We define a classical arbitrarily varying channel W

represented by the transmission matrices  3
4

1
4

1
2

1
2

 ,

 1
4

3
4

0 1

 .

The jammer may choose Q by setting Q(s0|0) = Q(s1|0) = 1
2 , Q(s0|1) = 1 and Q(s1|1) = 0. Since

1

2
·
(

3
4

1
4

)
+

1

2
·
(

1
4

3
4

)
= 1 ·

(
1
2

1
2

)
+ 0 · (0, 1) ,

we have

C∗(W) = 0.

But when the jammer has no knowledge about the channel input, we can always achieve positive capacity, since

zero capacity means there is a a ∈ (0, 1) such that

a ·

 3
4

1
4

1
2

1
2

 + (1− a) ·

 1
4

3
4

0 1


has rank 1, which can only be true when

a ·
(

3
4

1
4

)
+ (1− a) ·

(
1
4

3
4

)
= a ·

(
1
2

1
2

)
+ (1− a) · (0, 1) .

But there is clearly no such a ∈ (0, 1) since else we would have

3

4
a+

1

4
(1− a) =

1

2
a

⇒ 1

4
=

1

2
a+

1

4
a− 3

4
a

⇒  .

Thus when the jammer has no knowledge about the channel input, this channel has a positive deterministic

capacity.

Example 1 shows that the jammer really benefits from his knowledge about the channel input.

The following example was first presented at the IEEE International Symposium on Information Theory 2010 in

a talk by N. Cai, T. Chen, and A, Grant.

Example 2: Let X = Y = {a, 0, 1, 2} and S = {s0, s1}. We define a classical arbitrarily varying channel W

such that W (a|a, s0) = W (a|a, s1) = 1, W (y|x; si) = 1 if y = x + i (mod3) for x, y ∈ {0, 1, 2}. That is the

transmission matrices in W are 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

 .

At first we have that the deterministic capacity of W under maximum error probability is larger or equal to 2

because for all n, {a, 0}n there is a zero-error code of length n and therefore a code with criterion of maximum

probability of error. Secondly let g be a mapping from Xn → {a, 0}n for arbitrary n sending xn to yn such that
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yi = a if xi = a and otherwise xi = 0, for i = 1, 2, · · · , n. Then no pair of codewords in a code with criterion of

maximum probability of error have the same image under the mapping g because in probability one the decoder may

not separate the two codewords with the same image if the jammer properly chooses the state sequence according

to the input codeword. Thus the deterministic capacity of W under maximum error probability is equal to 2.

On other hand let P be a input distribution such that P (a) = 2
5 and P (i) = 1

5 for i = 0, 1, 2. Let X and Y

be the input and output random variables for P and ¯̄W , the channel in ¯̄W , minimizing I(P ; ¯̄W ). Then H(X) =

2
5 log 5

2 + 3
5 log 5. Next by considering the support sets of conditional distributions, we have H(X|Y = a) = 0 and

H(X|Y = i) ≤ 1 for i = 0, 1, 2. Thus H(X|Y ) ≤ 3
5 and therefore I(X;Y ) = H(X)−H(X|Y ) = log 5

2 . Moreover

by simple calculation, I(P ;W ) = log 5
2 for W (·|·) := 1

2W (·|·, s0)+ 1
2W (·|·, s1). Thus min ¯̄W∈ ¯̄W I(P ; ¯̄W ) = log 5

2 .

and maxP∈P (X ) min ¯̄W∈ ¯̄W I(P ; ¯̄W ) ≥ log 5
2 .

Example 2 show that the legal transmitters really benefits from the resource even when the deterministic capacity

under the maximal error criterion is positive.

Now one may concern the same question in scenario 2. This is answered by the following Theorem, which can

be proven by modifying the proof of Theorem 1:

Theorem 3: The same conclusion for scenario 2, as that for scenario 1 in Theorem1, holds.

The above three Theorems and the facts that

C∗(W) ≤ C∗(W, ε), C∗m(W) ≤ C∗m(W, ε) ≤ C∗(W, ε),

C∗∗(W) ≤ C∗∗(W, ε) ≤ C∗(W, ε), C∗∗m (W) ≤ C∗∗m (W, ε) ≤ C∗(W, ε),

yield the coding theorem:

Corollary 1: For all ε ∈ [0, 1) we have

C∗(W) = C∗∗(W) = C∗m(W) = C∗∗m (W)

= C∗(W, ε) = C∗∗(W, ε) = C∗m(W, ε) = C∗∗m (W, ε)

= max
P

min
¯̄ρ(·)∈ ¯̄W

χ(P, ¯̄ρ(·)). (19)

Moreover the both capacity C∗∗(W) and C∗(W) can be achieved by codes with vanishing key rates.

Thus we conclude that:

• Further knowing message to be sent, may help a jammer to reduce the capacity neither in the scenario that

the jammer knows coding scheme nor in the scenario that the jammer knows both coding scheme and input

codeword.

• knowing input codeword is more effectual than knowing the message for a jammer, who knows coding scheme,

for attack the communication.

IV. PROOF THEOREM 1

Although coding for classical arbitrarily varying channels is already a challenging topic with a lot of open

problems, coding for AVCQC is even much harder. Due to the non-commutativity of quantum operators, many
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techniques, concepts and methods of classical information theory, for instance, non-standard decoder and list

decoding, may not be extended to quantum information theory. Sarwate used in [22] list decoding to prove the

coding theorem for classical arbitrarily varying channels when the jammer knows input codeword. However since

how to apply list decoding for quantum channels is still an open problem, the technique for classical channels in

[22] can not be extended to AVCQC. We need a different approach for our scenario 1.

If the jammer would have some information about the outcome k of the random key through the input codeword,

to which he has access in scenario 1, he could apply a strategy against the kth deterministic coding for AVCQC

by choosing the worst state sequence to attack the communication, which we do not want. To this end a codeword

must be used by “many” outcomes γ(k) of a random correlated code Γ, if it is used by at least one of γ(k). This

is the main idea of our proof. We divide the proof into 5 steps. At the first step we derive a useful auxiliary result

from known results. Next with the auxiliary result and Chernoff bound, we shall generate a ground set of code

books from a typical set T nX . Then our code Γ is constructed through the ground set and analyzed at the 3th and 4th

steps, respectively. To simplify the statement, we shall not fix the values of parameters at the 2-4th steps exactly,

but only set up necessary constraints to them. So finally we have to assign values to the parameters appearing in

the proof at the last step.

A. An Auxiliary Result

We first derive a useful auxiliary result from known projections in previous work.

To construct decoding measurements of codes for classical quantum compound channel the authors in [6] and

[18] introduced two kinds of projections for a set of classical quantum channels and input codewords x ∈ T nX
respectively. Although the two projections are quite different, they share the same properties. We summary their

properties, which will be used in the paper, as the following lemma.

Lemma 1: For a set of classical quantum channels W̃ with a common input alphabet X and a common output

Hilbert space H and any an input codeword x ∈ T nX , there exits a projection P(x) in H such that,

(i) For all ρ̃(·) ∈ W̃ ,

tr(ρ̃⊗n(x)P(x)) > 1− 2−nη (20)

for an η > 0;

(ii)

tr(ρ̃⊗nX P(x)) < 2−n[minρ̃(·)∈W̃ χ(PX ,ρ̃(·))−ν], (21)

for all ν > 0, ρ̃(·) ∈ W̃ and sufficiently large n, where

ρ̃X :=
∑
x∈X

PX(x)ρ̃(x).

(iii) Moreover, for all permutation π on [n] = {1, 2, . . . , n} with x = (x1, x2, . . . , xn) = (xπ(1), xπ(2), . . . , xπ(n)),

P(x) keeps invariant when permutation π acts on coordinates of nth tensor power Hn of Hilbert space H.

Let W = {ρ(·, s) = {ρ(x, s), x ∈ X}, s ∈ S} be a finite set of classical quantum channels, indexed by elements

of S and let ¯̄W is defined by (15). Then
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Corollary 2: Let P(x′) be the projection in Lemma 1 for W̃ = ¯̄W , x ∈ T nX , s ∈ Sn and X′ be randomly and

uniformly distributed on T nX , then

Etr(ρ⊗n(x, s)P(X′)) < 2−n[min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·))−ν−ξ], (22)

for all ξ > 0 and sufficiently large n.

Proof: Let PXS be joint type of (x, s). Let (X,S) be randomly and uniformly distributed on T nXS and X′ be

random variable with uniform distribution on T nX , and independent of (X,S). Then by Lemma 1 (ii), we have that

Etr(ρ⊗n(X,S)P(X′))

=
∑

x′∈T nX

Pr(X′ = x′)
∑

(x,s)∈T nXS

Pr[(X,S) = (x, s)]tr[ρ⊗n(x, s)P(x′)]

<
∑

x′∈T nX

Pr(X′ = x′)2nξ
∑

x∈Xns∈Sn
PnXS(x, s)]tr[ρ⊗n(x, s)P(x′)]

= 2nξ
∑

x′∈T nX

Pr(X′ = x′)tr{[
∑

x∈Xns∈Sn

n∏
t=1

PXS(xt, st)

n⊗
t=1

ρ(xt, st)]P(x′)}

= 2nξ
∑

x′∈T nX

Pr(X′ = x′)tr{[
∑
x∈X

PX(x)(
∑
s∈S

PS|X(s|x)ρ(x, s))]⊗nP(x′)}

< 2nξ
∑

x′∈T nX

Pr(X′ = x′)2−n[min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·))−ν]

= 2−n[min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·))−ν−ξ], (23)

for x = (x1, x2, . . . , xn) and s = (s1, s2, . . . , sn), where the first inequality holds because

Pr[(X,S) = (x, s)] =
1

|T nXS |
< 2−n(H(X,S)− ξ2 ) < 2nξPnXS(x, s)

for all ξ > 0 and sufficiently large n, if (x, s) ∈ T nXS , and equal to zero otherwise; and by (21) the last inequality

holds, because by (15), {
∑
s∈S PS|X(s|x)ρ(x, s), x ∈ X} ∈ ¯̄W .

Now by Lemma 1 (iii), we note that for all (x, s) ∈ T nXS ,x′ ∈ T nX , the value of tr[ρ⊗n(x, s)P(x′)] depends

only on the joint type of (x,x′, s), and therefore for all (x, s) ∈ T nXS , the value of∑
x′∈T nX

Pr(X′ = x′)tr[ρ⊗n(x, s)P(x′)]

is a constant (only depending on the joint type of (x,s). Thus (22) follows from (23) and the fact that

Etr(ρ⊗n(X,S)P(X′)) =
∑

(x,s)∈T nXS

Pr[(X,S) = (x, s)]{
∑

x′∈T nX

Pr(X′ = x′)tr[ρ⊗n(x, s)P(x′)]}.

Thus, the proof is completed.

B. Generation Ground Set for Code books

Let

An ≥ 2−n[min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·))−ν−ξ] (24)
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and In be a finite index set with the cardinality

|In| >
n loge |X ||S|
(3− e)An

, (25)

which will be specified in Subsection IV-E. Let X(i), i ∈ In be randomly, independently and uniformly distributed

on T nX . Then by Corollary 2 and Chernoff bound, we have that for all x ∈ T nX , s ∈ Sn

Pr{
∑
i∈In

tr[ρ⊗n(x, s)P(X(i))] > 3AnIn}

= Pr{expe[−3AnIn +
∑
i∈In

tr[ρ⊗n(x, s)P(X(i))]] > 1}

≤ e−3AnIn
∏
i∈In

Eetr[ρ
⊗n(x,s)P(X(i))]

≤ e−3AnIn
∏
i∈In

[1 + eEρ⊗n(x, s)P(X(i))]

≤ e−3AnIn [1 + eAn]|In|

≤ expe{−3An|In|+ eAn|In|} = e−(3−e)An|In|, (26)

where the first inequality is Chernoff bound, the second inequality holds because ez is a monotone increasing and

convex function and so ez ≤ 1+ez for z ∈ (0, 1); the third inequality holds by (22) and (24); and the last inequality

follows from inequality 1 + z ≤ ez . Thus by union bound and (25), we obtain that

Pr{∪x∈T nX ,s∈Sn [
∑
i∈In

tr[ρ⊗n(x, s)P(X(i))] > 3An|In|]} < |X |n|S|ne−(3−e)An|In| < 1.

Consequently we have that there exists a subset B = {x(i), i ∈ In]} ⊂ T nX , with∑
x(i)∈B

tr[ρ⊗n(x, s)P(x(i))] ≤ 3An|In|, (27)

for all x ∈ T nX , s ∈ Sn.

C. Construction of Code

1) Generation of Code books: Let Jn and Kn be two finite set and their cardinalities (depending on n) will be

specified in Subsection IV-E, but at this moment, we only assume that

|Jn| ≤ A−1
n . (28)

Let (U(j, k), j ∈ Jn), k ∈ Kn be randomly uniformly and independently generated from

{(x(i1),x(i2), . . . ,x(i|Jn|)) : ij ∈ In, for j = 1, 2, . . . , |Jn|, with ij 6= ij′ for j 6= j′}.
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Then by (27) we have that for all i ∈ In, s ∈ Sn, j, j′ ∈ Jn, with j 6= j′ and k ∈ Kn

Etr[ρ⊗n(U(j, k)), s)P(U(j′, k))|U(j, k)) = x(i)]

=
∑

i′∈In\{i}

Pr[U(j′, k) = x(i′)|U(j, k)) = x(i)]tr[ρ⊗n(x(i), s)P(x(i′))]

=
1

|In| − 1

∑
i′∈In\{i}

tr[ρ⊗n(x(i), s)P(x(i′))]

≤ 1

|In| − 1

∑
i′∈In

tr[ρ⊗n(x(i), s)P(x(i′))] ≤ 3An|In|
|In| − 1

. (29)

Consequently by Markov inequality we have that

Pr{
∑

j′∈Jn\{j}

tr[ρ⊗n(U(j, k), s)P(U(j′, k))] > µn|U(j, k) = x(i)}]

≤
E{
∑
j′∈Jn\{j} tr[ρ

⊗n(U(j, k), s)P(U(j′, k))]|U(j, k) = x(i)}
µn

=

∑
j′∈Jn\{j} E{tr[ρ

⊗n(U(j, k), s)P(U(j′, k))]|U(j, k) = x(i)}
µn

≤ 3An(|Jn| − 1)||In|
(|In| − 1)µn

<
3An|Jn|
µn

(30)

for all i ∈ In, s ∈ Sn, j ∈ Jn, k ∈ Kn and µn ∈ (0, 1), where the last inequality holds because by (25) and (28),

|Jn| < |In| and therefore |Jn|−1
|In|−1 <

|Jn|
|In| . Therefore

Pr{E(i, s, k;µn)} =
∑
j∈Jn

Pr(U(j, k) = x(i))Pr{
∑

j′∈Jn\{j}

tr[ρ⊗n(x(i), s)P(U(j′, k))] > µn|U(j, k) = x(i)}

<
3An|Jn|2

|In|µn
, (31)

for all i ∈ In, s ∈ S, k ∈ Kn and µn ∈ (0, 1), if we define E(i, s, k;µn) as the random event that there exists a

j ∈ Jn such that U(j, k) = x(i) and ∑
j′∈Jn\{j}

tr[ρ⊗n(x(i), s)P(U(j′, k))] > µn.

In the sequel, we shall use the following version of well known Chernoff Bound.

Lemma 2: (Chernoff Bound) Let B1, B2, . . . , BL be i.i.d. random binary sequence taking values in {0, 1}, with

Pr(Bl = 1) = p. Then for all α ∈ (0, 1), p0 ≤ p ≤ p1

Pr{
L∑
l=1

Bl > Lp1(1 + α)} < e−
α2

8 Lp1 , (32)

and

Pr{
L∑
l=1

Bl < Lp0(1− α)} < e−
3α2

8 Lp0 . (33)

For self-contained we prove it in Appendix A, although (32) was shown in [15] and (33) can be shown in a similar

way.

Next for a fixed i ∈ In, we define random sets

K(i) := {(k : there exists a j ∈ Jn with U(j, k) = x(i)} (34)
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and for all s ∈ Sn,

K0(i, s)) := {k : there exists a j with U(j, k) = x(i) and
∑
j′∈Jn\{j} tr[ρ

⊗n(x(i), s)P(U(j′, k))] > µn}. (35)

Let ι(E(i, s, k;µn)) be the indicator of the random event of E(i, s, k;µn) (i.e., ι(E(i, s, k;µn)) = 1 if E(i, s, k;µn)

occurs and otherwise ι(E(i, s, k;µn)) = 0) and random variables

Zi(k) =

 1 if exists a j with U(j, k) = x(i)

0 else.

Then by (31) we have that Pr(ι(E(i, k;µn)) = 1) < 3An|Jn|2
|In|µn . By the definition of Zi(k) we have that

Pr(Zi(k) = 1) =
∑
j∈Jn

Pr[U(j, k) = x(i)] =
|Jn|
|In|

,

as by the definition of U(j, k)’s, the random events {U(j, k) = x(i)}, j ∈ Jn are pairwise disjoint.

For each fixed i ∈ In, we apply (33) to [L] = Kn, Bk = Zi(k), k ∈ Kn and p0 = |Jn|
|In| and obtain that

Pr{|K(i)| < |Kn||Jn|
|In|

(1− α)}

= Pr{
∑
k∈Kn

Zi(k) < |Kn|
|Jn|
|In|

(1− α)}

< expe{−
3α2

8

|Kn||Jn|
|In|

}. (36)

Similarly, by apply (32) to [L] = Kn, Bk = ι(E(i, s, k;µ)), k ∈ Kn and p1 = 3An|Jn|2
|In|µn , we have that

Pr{|K0(i, s))| > 3An|Jn|2|Kn|
|In|µn

(1 + α)}

= Pr{
∑
k∈Kn

ι(E(i, s, k;µn)) > |Kn|
3An|Jn|2

|In|µn
(1 + α)}

< expe{−
α2

8

3An|Jn|2|Kn|
|In|µn

}, (37)

for all i ∈ In, s ∈ S and µn ∈ (0, 1). Now choose α = 1
2 , |Jn| and µn properly such that (28) holds and

λ′n :=
An|Jn|
µn

< 1 (38)

sufficiently small, |Kn| sufficiently large such that

3

32
λ′n
|Kn||Jn|
|In|

> 2n loge |S||X |, (39)

and

|In| < |X |n, (40)

(all to be specified in Subsection IV-E)). Thus, by the union bound and (36), (37), (38), (39) and (40), we have that

Pr{∪i∈In [|K(i)| < |Kn||Jn|
2|In|

]} < 1

2
,

and

Pr{∪s∈S ∪i∈In [|K0(i, s))| > 9|Jn||Kn|λ′n
2|In|

} < 1

2
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respectively. Consequently

Pr{[∩i∈In(|K(i)| ≥ |Kn||Jn|
2|In|

)] ∩ [∩s∈S ∩i∈In (|K0(i, s)| ≤ 9|Jn||Kn|λ′n
2|In|

)]} > 0 (41)

Thus {U(j, k) ∈ Jn}, k ∈ Kn has a realization

U(k) := {u(j, k), j ∈ Jn}, k ∈ Kn,

such that

for all k ∈ Kn and j 6= j′,[u(j, k) = x(i),u(j′, k) = x(i′)]⇒ i 6= i′ (42)

|K(i)| ≥ |Kn||Jn|
2|In|

and |K0(i, s)| ≤ 9|Jn||Kn|λ′n
2|In|

(43)

for all i ∈ In and s ∈ Sn, where

K(i) := {k : there exists a j ∈ Jn with u(j, k) = x(i)} (44)

and

K0(i, s) := {k : there exists a j with u(j, k) = x(i) and
∑
j′∈Jn\{j} tr[ρ

⊗n(x(i), s)P(u(j′, k))] > µn}. (45)

Now we choose U(k) as the code book of our kth code γ(k).

2) Define Decoding Measurements: We define its decoding measurement {D(j, k), j ∈ Jn} for the kth code

γ(k), such that

D(j, k) := [
∑
j′∈Jn

P(u(j′, k))]−
1
2P(u(j, k)[

∑
j′∈Jn

P(u(j′, k))]−
1
2 (46)

for its jth codeword u(j, k).

3) Define the Random Correlated Code: Let our random code Γ be randomly uniformly generated from the set

of codes {γ(k), k ∈ Kn}.

D. Error Analysis

At first we have to estimate tr[ρ⊗n(u(j, k), s)P(u(j, k))] for all j ∈ Jn, k ∈ Kn and s ∈ Sn. To the end let us

first fix j ∈ Jn, k ∈ Kn and s ∈ Sn. Let PXS be joint type of (u(j, k), s) and

¯̄ρS|X(x) :=
∑
s′∈S

PS|X(s′|x)ρ(x, s′), (47)

for all x ∈ X . Then by (15) we have that { ¯̄ρS|X(x), x ∈ X} ∈ ¯̄W . Therefore by (20) we obtain that for u(j, k) :=

(u1(j, k), u2(j.k), . . . , un(j, k))∑
s′∈Sn

PnS|X(s′|u(j, k))tr[ρ⊗n(u(j, k), s′)P(u(j, k))]

= tr{{
∑

s′∈Sn
[

n∏
t=1

PS|X(s′t|ut(j, k))][

n⊗
t=1

ρ(ut(j, k), s′t)]}P(u(j, k))}

= tr{[
n⊗
t=1

(
∑
s′t∈S

PS|X(s′t|ut(j, k))ρ(ut(j, k), s′t))]P(u(j, k))}

= tr[ ¯̄ρ⊗nS|X(u(j, k))P(u(j, k))] > 1− 2−nη, (48)
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where

¯̄ρ⊗nS|X(u(j, k)) = ¯̄ρS|X(u1(j, k))⊗ ¯̄ρS|X(u2(j, k))⊗ . . . ,⊗ ¯̄ρS|X(un(j, k)).

However by Lemma 1 (iii), the value of tr[ρ⊗n(u(j, k), s′)P(u(j, k))] depends only on the joint type of (u(j, k), s′)

and so does tr[ρ⊗n(u(j, k), s′)(IH − P(u(j, k)))]. Therefore (48) yields that

2−nη >
∑

s′∈Sn
PnS|X(s′|u(j, k))tr[ρ⊗n(u(j, k), s′)(IH − P(u(j, k)))]

≥
∑

s′∈T n
S|X(u(j,k))

PnS|X(s′|u(j, k))tr[ρ⊗n(u(j, k), s′)(IH − P(u(j, k)))]

= PnS|X [T nS|X(u(j, k))|u(j, k)]tr[ρ⊗n(u(j, k), s)(IH − P(u(j, k)))], (49)

for the particular u(j, k) and s, since PXS is the joint type of u(j, k) and s. That is,

tr[ρ⊗n(u(j, k), s)(IH − P(u(j, k)))] < 2−
nη
2 (50)

or

tr[ρ⊗n(u(j, k), s)P(u(j, k))] ≥ 1− 2−
nη
2 ,

for all u(j, k) and s, as PnS|X [T nS|X(u(j, k))|u(j, k)] > 2−
nη
2 for any η > 0 and sufficiently large n.

Let J and K be two independent random variables taking values in Jn and Kn according uniform distributions,

respectively. Since (42) and (44) yield that for very k ∈ K(i) there is exactly one j := j(i, k) (say) in Jn, such

that u(k, j(i, k)) = x(i), by (43) we have that for all x(i) ∈ B, s ∈ Sn Pr[u(J,K) = x(i)] = |K(i)|
|Jn||Kn| > 0 for all

i ∈ In and

E{tr[ρ⊗n(u(J,K), s)D(J,K)]|u(J,K) = x(i)} =
1

|K(i)|
∑
k∈K(i)

tr[ρ⊗n(x(i), s)D((j(i, k)), k)]. (51)

Next we shall apply Hayashi-Nagaoka inequality

IH − (S + T )]−
1
2S(S + T )−

1
2 ≤ 2(IH − S) + 4T (52)

for any positive operators S and T with 0 ≤ S ≤ IH and T ≥ 0, to estimate

max
s∈Sn

E{tr[ρ⊗n(u(J,K), s)(IH −D(J,K))]|u(J,K) = x(i)}.

To this end let K1(i, s) := K(i) \ K0(i, s) for all i and s. Then it follows from (43) that

|K0(i, s)|
|K(i)|

≤ 9λ′n and
|K1(i, s)|
|K(i)|

≥ 1− 9λ′n. (53)

Consequently we have

1

|K(i)|
∑

k∈K0(i,s)

tr[ρ⊗n(x(i), s)(IH −D((j(i, k)), k))]

≤ |K0(i, s)|
|K(i)|

≤ 9λ′n, (54)
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for all x ∈ B and s ∈ Sn. On the other hand, by (45), (46), (50), (52) and the definitions of K1(i, s) and j(i, k),

we obtain that

1

|K(i)|
∑

k∈K1(i,s)

tr[ρ⊗n(x(i), s)(IH −D((j(i, k)), k))]

≤ 1

|K(i)|
∑

k∈K1(i,s)

{2tr[ρ⊗n(u(j(i, k)), s)(IH − P(u(j(i, k))))] + 4tr[ρ⊗n(x(i), s)
∑

j′∈Jn\{j(i,k)}

P(u(j′, k))]}

<
1

|K(i)|
∑

k∈K1(i,s)

{2−
nη
2 +1 + 4µn} ≤ 2−

nη
2 +1 + 4µn, (55)

where to have the first inequality, we first apply (46) and (52) to break (IH − D((j(i, k)), k)) to two terms and

then by the definition of j(i, k) substitute ρ⊗n(x(i), s) by ρ⊗n(u(j(i, k)), s) in the first term; the second inequality

holds by (50), (45) and the facts that K1(i, s) := K(i) \K0(i, s) and ρ⊗n(x(i), s) = ρ⊗n(u(j(i, k)), s); and finally

the last inequality follows from that |K1(i, s)| ≤ |K(i)|. Now (51), (54) and (55) together yield that

E{tr[ρ⊗n(u(J,K), s)(IH −D(J,K))]|u(J,K) = x(i)}

=
1

|K(i)|
∑

k∈K0(i,s)

tr[ρ⊗n(x(i), s)(IH −D((j(i, k)), k))]

+
1

|K(i)|
∑

k∈K1(i,s)

tr[ρ⊗n(x(i), s)(IH −D((j(i, k)), k))]

< 9λ′n + 2−
nη
2 +1 + 4µn, (56)

for all x(i) ∈ B and all s ∈ Sn. That is,

max
s∈Sn

E{tr[ρ⊗n(u(J,K), s)(IH −D(J,K))]|u(J,K) = x(i)} < 9λ′n + 2−
nη
2 +1 + 4µn, (57)

for all x(i) ∈ B, or∑
x(i)

Pr{u(J,K) = x(i)}max
s∈Sn

E[tr[ρ⊗n(u(J,K), s)(IH−D(J,K))]|u(J,K) = x(i)] < 9λ′n+2−
nη
2 +1+4µn (58)

Consequently, by (10), we conclude that

pa(Γ) < 9λ′n + 2−
nη
2 +1 + 4µn. (59)

Finally we notice that like in the standard way to apply random choice for showing direct coding theorem in

classical and quantum Shannon Theory, we have not excluded the case that for i 6= i′ in In, x(i) and x(i′) take

the same input codeword as their values, formally distinguish them by their indices, and consider them as different

members of B even in the case that it occurs. (It is the reason why we do not write “u(j, k) 6= u(j′, k) for j 6= j′”

in (42).) This slightly makes a difference in (57) and (58). That is, if x(i) = x(i′) = x and x is sent, by our

assumption jammer only knows the input codeword x, but does not know which index in B leads to the input

codeword. On the other hand the expressions at left hand sides of (57) and (58) mean that jammer may choose

state sequence according to the index, which implies the jammer has more information than our assumption. Thus,

in this case left hand side of (58) in fact is an upper bound of conditional expectation at right hand side of (10).

Clearly this does not impede us to have (59).
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E. Set up the Parameters

Now we have to fix the parameters An, |In|, |Jn|, |Kn|, µn and λ′n and they must satisfy our previous assumptions

(24), (25), (28), (38), (39) and (40). Given ε > 0 (independent of n) and λn with λn ≥ max(2−
nη
3 , 2−

nε
5 ) (for η in

(20)), (which may or may not depend on n,) we hope to have a code with rate 1
n log |Jn| > min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·))−ε

and probability of error smaller than λn to minimize the order, of the size of random code |Kn|.

At first we note that ξ and ν in (22) can be arbitrary positive numbers, then we choose them such that 0 < ξ+ν <

ε
2 . Let An = 2−n[min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·))− ε2 ] and then (24) holds. Next we choose a1 as positive real larger than 1

3−e such

that a1
n loge |X |S|

An
is a integer and let |In| = a1

n loge |X ||S|
An

. Thus (25) and (40) hold. Let a2 = 1
27 , µn = λ′n = a2λn

so that the upper bound to the average probability of error at the right hand side of (59) is smaller than λn

when n is sufficiently large. Let |Jn| = (a2λn)2

An
=

λ′nµn
An

(or its integer part) and then (28) and (38) hold, and
1
n log |Jn| > min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·)) − ε (since by our assumption (a2λn)2 > 2−

nε
2 ) . Finally to satisfy (39), we

choose

|Kn| =
32n|In| loge |X ||S|

λ′n|Jn|
=

32a1(n loge |X ||S|)2

(a2λn)3
=
an2

λ3
n

, (60)

(or its integer part) for a constant a := 32a1(loge |X ||S|)
2

a3
2

depending only on |X ||S|, where the second equality is

obtained by substitute |In| = a1n loge |X ||S|
An

, λ′n = a2λn and |Jn| = (a2λn)2

An
. Thus the proof is completed.

V. PROOF OF THEOREM 2

In this section we prove Theorem 2. At first, we show Theorem 2 for codes with vanishing key rate as those in

Theorem 1 , i.e., when there is a positive constant B such that |K| ≤ bn2.

Suppose that we are given a random correlated code Γ taking value on {({u(j, k), j ∈ J }, {D(j, k), j ∈ J }), k ∈

K} such that the random message J is randomly uniformly distributed on J and the random key K is randomly

distributed on K with any distribution. Denote the rate and the average probability of error of the code Γ by R and

λ respectively.

As a randomizing or so-called mixed strategy may not enlarge the probability of error, without loss of generality

we assume the jammer randomly chooses state sequences, according to the input codeword. More specifically let

X′ = u(J,K) be the random input of the AVCQC and PX′ be its distribution. Then the jammer knows both the

input distribution PX′ and the outcome x of X′ = u(J,K), since we assume he knows that both coding scheme

and input codeword. Let PX′t be the tth marginal distribution of PX′ .

Let

¯̄ρ(x) :=
∑
s

Q(s|x)ρ(x, s) ∈ ¯̄W (61)

be an arbitrary classical quantum channel in ¯̄W component wise independently. That is,

Pr{S = s|X′ = x} =

n∏
t=1

Qt(st|xt),
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where Qt is the tth marginal distribution of Q. Let R be a ε-achievable rate for { ¯̄ρt(x) : t, x} with a ε ∈ [0, 1),

where ¯̄ρt(x) :=
∑
st
Q(st|xt)ρ(xt, st). By Winters strong converse for the single memoryless classical quantum

channel in [27] for any δ when n is sufficiently large it holds

nR ≤ 1

|K|
∑
k∈K

χ
(
PX′ ; ¯̄ρ⊗n(x(·, k))

)
+ nδ

Let X be the random variable taking value on u(J ) such that PnX(x(j)) =
∑
k ∈ KPX′(x(j, k)). Let Guni be the

uniformly distributed random variable with value in K. When n is sufficiently large we have

1

|K|
∑
k∈K

χ
(
PX′ ; ¯̄ρ⊗n(x(·, k))

)
− χ

(
PX ; ¯̄ρ⊗n(x(·))

)

=
1

|K|
∑
k∈K

S

 1

|J |

|J |∑
j=1

x(j, k)

− 1

|K|
1

|J |
∑
k∈K

|J |∑
j=1

S (x(j, k))

− S

 1

|K|
1

|J |
∑
k∈K

|J |∑
j=1

x(j, k)

+
1

|J |

|J |∑
j=1

S

(
1

|K|
∑
k∈K

x(j, k)

)

=
1

|J |

|J |∑
j=1

χ
(
Guni, ¯̄ρ⊗n(x(j, k))

)
− χ

Guni, |J |∑
j=1

PX(j)¯̄ρ⊗n(x(j, k))


≤ 1

|J |

|J |∑
j=1

χ
(
Guni, ¯̄ρ⊗n(x(j, k))

)
≤ 1

|J |

|J |∑
j=1

H (Guni)

= 2 log n+ log b ≤ nδ . (62)

Now we assume that the jammer chooses the tth component st of random state sequence S according to the tth

outcome of the random input X′ and the conditional distribution Qt for t = 1, 2, . . . , n. By applying first Holevo

bound to the ensemble {(PX(x), ¯̄ρ⊗n∗(x)),x ∈ Xn}, for the classical quantum channel

¯̄ρ⊗n∗(x) =

n⊗
t=1

[
∑
st

Qt(st|xt)ρ(xt, st)] =

n⊗
t=1

¯̄ρt(xt) (63)

for x = (x1, x2, . . . , xn) and s = (s1, s2, . . . , xn), and then subadditivity of von Neumann entropy we obtain that

nR ≤ χ(PX, ¯̄ρ⊗n∗(·)) + nδ(λ) = S(
∑
x

PX(x)¯̄ρ⊗n∗(x))−
∑
x

PX(x)S(¯̄ρ⊗n∗(x)) + 2nδ

≤
n∑
t=1

S(
∑
xt

PXt(xt)
∑
st

Qt(st|xt)ρ(xt, st))−
∑
x

PX(x)S(¯̄ρ⊗n∗(x)) + 2nδ

=

n∑
t=1

S(
∑
xt

PXt(xt)
∑
st

Qt(st|xt)ρ(xt, st))−
n∑
t=1

[
∑
xt

PXt(xt)S(
∑
s

Qt(st|xt)ρ(xt, st))] + 2nδ

=

n∑
t=1

[S(
∑
xt

PXt(xt)
∑
st

Qt(st|xt)ρ(xt, st))−
∑
xt

PXt(xt)S(
∑
s

Qt(st|xt)ρ(xt, st))] + 2nδ

=

n∑
t=1

[S(
∑
xt

PXt(xt)¯̄ρt(xt))−
∑
xt

PXt(xt)S(¯̄ρt(xt))] + 2nδ =

n∑
t=1

χ(PXt , ¯̄ρt(·)) + 2nδ (64)
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where the first and the last equalities follow from the definition of Holevo quantity; the first inequality holds by

(63) and the subadditivity of von Neumann entropy; and the second equality follows from (63); the second last

equality follows from (61).
¯̄W is a compact set, and χ(·, ·) is a concave-convex function, therefore by the Minimax Theorem we have

max
P

min
¯̄ρ(·)

χ(P, ¯̄ρ(·)) = min
¯̄ρ(·)

max
P

χ(P, ¯̄ρ(·)).

From (64) and (62) we have that

R ≤ min
¯̄ρ(·)

1

n

n∑
t=1

χ(PXt , ¯̄ρ(·)) + 2nδ

≤ min
¯̄ρ(·)

max
PX

χ(PPX , ¯̄ρ(·)) + 2nδ

= max
PX

min
¯̄ρ(·)

χ(PPX , ¯̄ρ(·)) + 2nδ. (65)

(65) proves Theorem 2 for codes with a vanishing key rate.

Now we want to prove Theorem 2 for codes with an arbitrary key rate For the proof of (62) we assume that

the key rate is vanishing. In fact (62) also holds with arbitrary key size |K| when we limit the amount of common

randomness. similar to the results for classical arbitrarily varying wiretap channel in [25].

Lemma 3 (cf. [11]): Let c > 0. For every q ∈ P (S) and sn ∈ Sn, let a function Iq,sn : Γ → (0, c) be given.

Assume these functions satisfy the following: for every γ ∈ Γ, sn ∈ θn, and q, q′ ∈ P (θ) satisfy ‖q − q′‖1 ≤ δ

|Iq,sn(γ)− Iq′,sn(γ)| ≤ f(δ) ,

for some f(δ) which tends to 0 as δ tends to 0. We write µ(Iq,sn) :=
∑
γ∈Γ µ(γ)Iq,sn(γ), where µ(γ) is the

probability of γ. Then for every ε > 0 and sufficiently large n, there are L = n2 realizations γ1, · · · , γL such that

1

L

L∑
l=1

Iq,sn(γl) ≥ (1− ε)µ(Iq,sn)− ε

for every q ∈ P (θ) and sn ∈ θn.

For a conditional distribution Q on S and ¯̄ρ(x) =
∑
sQ(·|x)ρ(x, s) we define

IQ,sn(k) :=
1

n
χ(PX ;χ(PX ; ¯̄ρ⊗n(x(j, k))) .

In [14] the continuity of Q(·|x)→
∑
sQ(·|x)ρ(x, s) has been shown; thus when for any conditional distribution

Q′ on S fulfilling ‖Q( |x) − Q′( |x)‖1 = δ → 0 for all x there is a f(δ) such that |IQ,sn(k) − IQ′,sn(k)|
1
n

1
|K|
∑|K|
k=1 χ(PX ; ¯̄ρ⊗n(x(j, k)) − 1

n
1
|K|
∑|K|
k=1(χ(PX ; ¯̄ρ⊗n

′
(x(j, k))) ≤ f(δ) for a f(δ) that fulfills f(δ) → 0,

where ¯̄ρ′(x) :=
∑
sQ
′(s|x)ρ(x, s). By Lemma 3 there is a set K′ ⊂ K such that |K′| = n2 and

1

|K′|
1

n

∑
k′∈K′

χ(PX ¯̄ρ⊗n(x(j, k′)))

≥ (1− ε) 1

n

1

|K|
∑
k∈K

χ(PX ; ¯̄ρ⊗n(x(j, k))) .
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Thus

1

n
log |J |

≤ 1

1− ε
1

n

1

|K′|
∑
k∈K′

(
χ(PX ; ¯̄ρ⊗n(x(j, k))) + δ

)
≤ 1

1− ε
1

n
max
PX

min
¯̄ρ(·)

χ(PPX , ¯̄ρ(·)) + 2δ . (66)

(66) shows that (62) is even then true if we do not have a vanishing key rate, i.e., when we do not have |K| ≤ bn2.

VI. PROOF OF THEOREM 3

The proof will be done by modification of the step 3 of proof of Theorem 1 in Subsection IV-C of Section IV

to have a code achieving the full capacity not only in scenario 1, but also in scenario 2, as follows.

Let a ground set of codeword B = {x(i), i ∈ I} be generated in Subsection IV-B and An, |In|, |Jn|, |Kn|, µn
and λ′n be given in Subsection IV-E. Additionally, without loss of generality, we require |In| is divided by |Jn|,

i. e.,Bn := |In|
|Jn| = na1 loge |X ||S|

(a2λn)2 is an integer. Thus we may partition |In| into |Jn| subsets, In(j), j ∈ Jn with

equal size Bn = |In|
|Jn| in an arbitrary way. Let B(j) = {x(i) : i ∈ In(j)} for j ∈ Jn. Let U′(j, k) be independently

and uniformly generated from B(j) for j ∈ Jn respectively and all k ∈ Kn. Then for all x ∈ T nX , s ∈ Sn and

k ∈ Kn, we have that

Etr[ρ⊗n(x, s)
∑
j∈Jn

P(U′(j, k))] =
∑
j∈Jn

Etr[ρ⊗n(x, s)P(U′(j, k))]

=
∑
j∈Jn

[
∑

i(j)∈In(j)

1

Bn
tr[ρ⊗n(x, s)P(x(i(j)))]

=
1

Bn

∑
i∈In

tr[ρ⊗n(x, s)P(x(i))] ≤ 3An|Jn|, (67)

where the last equality holds because {In(j), j ∈ Jn} is a partition of In; and the last inequality follows from

(27) and Bn = |In|
|Jn| . Because of the independence of U′(j, k), j ∈ Jn, by Markov inequality we have that for all

j ∈ Jn, i(j) ∈ In(j) and s ∈ Sn,

Pr{
∑

j′∈Jn\{j}

tr[ρ⊗n(U′(j, k), s)P(U′(j′, k))] > µn|U′(j, k) = x(i(j))}]

≤
E{
∑
j′∈Jn\{j} tr[ρ

⊗n(x(i(j)), s)P(U′(j′, k))]|U′(j, k) = x(i(j))}
µn

≤
E{
∑
j′∈Jn tr[ρ

⊗n(x(i(j))), s)P(U′(j′, k))]}
µn

≤ 3An|Jn|
µn

, (68)

which is analogue to (30), where the fist inequality is Markov inequality; the second inequality holds because

U′(j, k), j ∈ Jn are independent and each with probability one not small than 0; the last inequality follows from

(67).
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Next for all j ∈ Jn, i(j) ∈ In(j), k ∈ Kn and s ∈ Sn, let E ′(i(j), s, k;µn) be the random event that U′(j, k) =

x(i(j)) and ∑
j′∈Jn\{j}

tr[ρ⊗n(x(i(j)), s)P(U′(j′, k))] > µn,

and

Z ′i(j)(k) =

 1 if U′(j, k) = x(i(j))

0 else.

Then we have that for all j ∈ Jn, i(j) ∈ In(j) and k ∈ Kn

Pr{Z ′i(j)(k) = 1} =
1

Bn
=
|In|
|Jn|

, (69)

and analogously to (31)

Pr{E ′(i(i), s, k;µn)}

= Pr(U′(j, k) = x(i(j)))Pr{
∑

j′∈Jn\{j}

tr[ρ⊗n(x(i(j)), s)P(U′(j′, k))] > µn|U′(j, k) = x(i(j))}

<
3An|Jn|
Bnµn

=
3An|Jn|2

|In|µn
. (70)

Thus as we did in Subsection IV-C, by Lemma 2, U′(j, k), j ∈ Jn, k ∈ Kn has a realization u′(j, k), j ∈ Jn, k ∈ Kn
with

u′(j, k) ∈ B(j) (71)

for all j ∈ Jn and k ∈ Kn (which implies that i 6= i′ if u′(j, k) = x(i) and u′(j′, k) = x(i′) for j 6= j′),

|K′(i(j))| ≥ |Kn||Jn|
2|In|

and |K′0(i(i), s)| ≤ 9|Jn||Kn|λ′n
2|In|

for

K′(i(j)) := {k : u(j, k) = x(i(j))}

and

K′0(i(j), s) := {k : u(j, k) = x(i(j)) and
∑

j′∈Jn\{j}

tr[ρ⊗n(x(i(j)), s)P(u(j′, k))] > µn}.

Then it follows the rest part of proof of Theorem 1 in Section IV, we obtain a RCWJKI code with rate min ¯̄ρ(·)∈ ¯̄W χ(PX , ¯̄ρ(·))−

ε, average probability of error λn and size an2

λ3 . Now the scenario 1 here, for which we have now constructed a

code, is actually scenario 2, too, because by (71), that the jammer knows the input codeword u′(j, k) implies that

he knows the message j as well. Thus our proof is completed.
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APPENDIX A

PROOF OF LEMMA 2

Now let us show Lemma 2

Pr{
∑L
l=1Bj > Lp1(1 + α)}

= Pr{expe[−α2Lp1(1 + α) + α
2

∑L
j=1Bl] > 1}

≤ expe[−α2Lp1(1 + α)]
∏L
l=1 Ee

α
2Bl

= expe[−α2Lp1(1 + α)]
∏L
l=1[(1− p) + e

α
2 p]

≤ expe[−α2Lp1(1 + α)][1 + (e
α
2 − 1)p1]L

< expe[−α2Lp1(1 + α)][1 + (α2 + eα2

8 )p1]L

< expe{[−α2Lp1(1 + α)] + (α2 + eα2

8 )Lp1}

= expE{−α2Lp1[(1 + α)− (1 + eα
4 )]}

< e−
α2

8 Lp1 ,

where the first inequality follows from Markov inequality and the assumption B1, B2, . . . , BL are independent; the

third and fourth inequalities follows from the inequalities ex < 1+x+ e
2x

2 for x ∈ (0, 1) and 1+x < ex for x > 0

respectively. That is (32). Similarly instead of the inequalities ex < 1 + x+ e
2x

2 for x ∈ (0, 1) and 1 + x < ex for

x > 0 we use e−x < 1− x+ 1
2x

2 for x ∈ (0, 1) and 1− x < e−x for x > 0 and have

Pr{
∑L
l=1Bl < Lp0(1− α)}

= Pr{expe[α2Lp0(1− α)− α
2

∑L
l=1Bl] > 1}

≤ expe[
α
2Lp0(1− α)]

∏l
l=1 Ee−

α
2Bl

= expe[
α
2Lp0(1− α)]

∏L
l=1[(1− p) + e−

α
2 p]

≤ expe[
α
2Lp0(1 + α)][1− (1− e−α2 )p0]L

< expe[
α
2Lp0(1− α)][1− (α2 −

α2

8 )p0]L

< expe{[α2Lp0(1− α)]− (α2 −
α2

8 )Lp0}

= expE{α2Lp0[(1− α)− (1− α
4 )]}

< e−
3α2

8 Lp0 .

that is (33).
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