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Quantum Rate-Distortion Coding of Relevant
Information

Sina Salek, Daniela Cadamuro, Philipp Kammerlander and Karoline Wiesner

Abstract—Rate-distortion theory provides bounds for com-
pressing data produced by an information source to a specified
encoding rate that is strictly less than the source’s entropy. This
necessarily entails some loss, or distortion, between the original
source data and the best approximation after decompression. The
so-called Information Bottleneck Method is designed to compress
only ‘relevant’ information. Which information is relevant is
determined by the correlation between the data being compressed
and a variable of interest, so-called side information. In this
paper, an Information Bottleneck Method is introduced for
the compression of quantum data. The channel communication
picture is used for compression and decompression. The rate of
compression is derived using an entanglement assisted protocol
with classical communication, and under an unproved conjecture
that the rate function is convex in the distortion parameter.
The optimum channel achieving this rate for a given input
state is characterised. The conceptual difficulties arising due
to differences in the mathematical formalism between quantum
and classical probability theory are discussed and solutions are
presented.

I. INTRODUCTION

One of the most central results in classical information
theory is Shannon’s data compression theorem [13] which
gives a fundamental limit on lossless compressibility of data.
Due to statistical redundancies, data can be compressed at
a rate bounded below by the source entropy, such that after
decompression the full information is recovered without loss.
Rate-distortion theory (RDT) is the branch of information
theory that compresses the data produced by an information
source down to a specified encoding rate that is strictly less
than the source entropy [14]. This necessarily entails some
loss, or distortion, between the original source data and the
best approximation after decompression, according to some
distortion measure. RDT is frequently used in multimedia data
compression where a large amount of data can be discarded
without any noticeable change to a listener or viewer.

Whilst RDT is an important and widely used concept in
information theory, there are cases where only part of the
information in the data to be compressed is relevant. For
instance in speech signal processing one might be interested
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only in information about the spoken words in audio data. The
Information Bottleneck Method (IBM), introduced by Tishby
et al., achieves a lossy compression rate even lower than the
rate given by RDT by keeping only ‘relevant’ information [16].
Which information is relevant is determined by the correlation
between the data being compressed and a variable of interest.
The information to be recovered after decoding is only the
relevant part of the source data. For example, one might have
access to the transcript of an audio recording which has an
entropy by orders of magnitude lower than the original audio
data. The transcript here can be used as side information to
compress the audio data further than what can be achieved
by RDT, without increasing the distortion of the relevant
information.

Loss of information in the context of a compression-
decompression scheme is mathematically equivalent to trans-
mission of information through a noisy channel. Rather than
characterising the information lost by encoding, one charac-
terises the information lost during transmission. The Infor-
mation Bottleneck Method is formulated as a communication
problem with the relevant variable acting as side information.
Iterative algorithms to compute the optimum channel achiev-
ing the task are also provided in [16].

In [12], a first quantum extension of the Information Bottle-
neck Method was developed and applied to predictive filtering.
In this paper we extend the Information Bottleneck Method to
the quantum case by considering the transmission of quantum
information through a quantum channel with side information.
We derive the compression rate for an entanglement-assisted
protocol with classical communication for our quantum exten-
sion of the IBM. Our derivation relies on the conjecture that
the rate function is convex in distortion. The optimum quantum
channel that can achieve this rate is also characterised.

A quantum extension to RDT was introduced by Barnum
[3]. However, the results were unsatisfactory since the bound
on the rate was given in terms of coherent information which
can be negative. The results were improved and a complete
characterisation of quantum channels achieving rate-distortion
coding in a number of settings was given by Datta et al.
[8]. Various settings of quantum RDT in the presence of
auxiliary information were discussed in the work of Wilde et
al. [18]. However, the specific question of transmitting relevant
information asked in the IBM with its choice of distance
measure and the specifics of the optimisation problem have
not been considered yet.

The setting of the classical IBM is as follows. A correlated
pair of random variables X and Y is given with a joint
probability distribution P (X,Y ). The task is to find the
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optimum channel with input X and output X̃ such that X̃
retains a fixed amount of correlation, C, with variable Y . The
amount of correlation is quantified by the Shannon mutual
information I(X̃;Y ) := H(X̃) + H(Y ) − H(X̃Y ), where
H(·) is the Shannon entropy. For a successful completion of
the IBM task it is required that I(X̃;Y ) ≥ C. Representing the
channel by the conditional probability distribution P (X̃|X),
one can show that the classical rate of compression for a given
minimum amount of correlation C, Rcls(C), is given by

Rcls(C) = min
P (X̃|X):I(X̃;Y )≥C

I(X; X̃), (1)

as it was first proposed in [16] and proved in [11].
The IBM, however, is concerned not with an output dis-

tribution close to the input distribution but with an output
characterised by its information about some other variable Y .
The task of the IBM is to find the lowest value of I(X; X̃)
such that I(X̃;Y ) is still above some given threshold. The
value of I(X; X̃) can be reinterpreted as a communication
rate, namely the number of transmitted bits needed to specify
an element of X̃ , per element of X [16, Sec. 2]. Minimising
the mutual information with respect to all channels that satisfy
the threshold criterion achieves the task.1

The channel that achieves the rate in Eq. (1) can be found
by the Lagrangian technique. The Lagrangian is defined as

Lcls = I(X; X̃)− βI(X̃;Y )−
∑
x,x̃

λ(x)P (x̃|x), (2)

where β is the Lagrange multiplier for the information con-
straint and λ(x) are the Lagrange multipliers for the normalisa-
tion constraint of the conditional distribution P (X̃|X). Taking
the derivative of the Lagrangian with respect to the channel
and setting it to 0 gives the expression for the channel as

P (x̃|x) = P (x̃)
e−βD(P (Y |x)||P (Y |x̃))

Z
. (3)

D(.||.) in the exponent on the right hand side is the Kullback-
Leibler divergence of two probability distributions P (Y |x) and
P (Y |x̃), and Z is the normalising factor.

The setting of the quantum IBM is as follows. The input
to the channel is the system X which is described by a state
ρXY with side information Y . The channel acts on the X
part of this state, ρX . The output of the quantum channel
is the system X̃ which is also an entangled state with the
side information Y , ρ̃X̃Y . Correlations in the state ρ̃X̃Y are
measured by the quantum mutual information I(X̃;Y )ρ̃ :=
S(X̃)ρ̃ + S(Y )ρ̃ − S(X̃Y )ρ̃ where S(·) is the von Neumann
entropy to base e. The Bottleneck constraint in the quantum
case is I(X̃;Y )ρ̃ ≥ J , that is, a minimum amount of
correlation J between systems X̃ and Y must be retained. This
choice of measure for correlation between X̃ and Y naturally
generalizes the setup of the classical Bottleneck method; it
includes both classical correlation and quantum entanglement
between the two systems.

1Note that the analogy between IBM and RDT is in spirit only. The
technical difference is the distortion measure, which is a function of the output
alphabet in the case of RDT while it is a function of the probability distribution
of the outputs in the case of IBM.

Fig. 1. The protocol for the entanglement assisted Quantum Infor-
mation Bottleneck Method. The compression encoding En acts on n
copies of the state of the system X . The n copies of the state of
the system Y are used as the relevance variable and are entangled
with the system X . However, as the system Y is not transmitted
through the channel, we do not depict the system in the figure. TX

and TX̃ are the two entangled systems that the input and the output
of the protocol share to assist the transmission. The output of the
compressing map En is classical system W which is transferred to
the output section for decompression, Dn, via the noiseless channels
“id”. The reference, labeled X ′, is what purifies the state ρX . The
state ρX is the reduced density operator of the given initial state
ρXY .

In the next section we provide the protocol for the quantum
IBM which results in a conjecture for the quantum counterpart
of the compression rate in Eq. (1). Section III contains the
channel optimisation, resulting in the quantum counterpart of
Eq. (3).

II. A PROTOCOL FOR THE QUANTUM INFORMATION
BOTTLENECK METHOD

In this section we explicitly describe a protocol that simu-
lates the action of the channel in the setting discussed in the
introduction by compression and decompression channels and
classical communication with the assistance of entangled re-
sources. We then define the compression rate for this protocol,
before proving our main result.

Following the usual approach in RDT we call a rate-
distortion pair (r, J) achievable, where r ≥ 0 is the rate and
J ≥ 0 is the distortion, if, roughly speaking, a lossy channel
exists such that it can transmit a message, i.e., a state of the
given input system, by sending r bits with at the amount of
distortion not exceeding J . The rate function R(J) is then
given as an infimum over achievable pairs. Of course, it is
crucial to specify what exactly is meant by “lossy channel” and
“achievable” in our context, and this is what we will discuss
now.

Let us consider the entanglement-assisted protocol with
noiseless classical communication illustrated in Fig. 1. The
information of system X to be compressed is represented by
n independently and identically distributed (i.i.d.) copies, ρ⊗nX ,
of the density operator ρX , with a purification τX′X . The
input, however, is correlated with a system Y which contains
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our relevant information, and the state is denoted ρXY . The
sender and receiver of the information share an entangled
resource ΦTXTX̃ , where the system TX is with the sender
and the system TX̃ is with the receiver. The sender acts on
the input state, ρ⊗nX , and the state of half of the entangled
pair, TX , with the compression map En := EXnTX→W , where
W is a classical system of size at most enr, and r is the
communication rate. Then, the receiver acts on W and the
state of the other half of the entangled pair, TX̃ , with the
decompression channel Dn := DWTX̃→X̃n

. The overall action
Fn := Dn ◦ En of the compression-decompression channel,
as specified above, defines an (n, r) quantum rate-distortion
code.

Given such Fn, we consider the marginal operation, 1 ≤
i ≤ n,

F (i)
n (ξX) :=

TrX̃1,...,X̃i−1,X̃i+1,...,X̃n
[Fn(ρ

⊗(i−1)
X ⊗ ξX ⊗ ρ⊗(n−i)

X )].
(4)

Then, for any i, we can define

σ̃X̃iYi := F (i)
n ⊗ IY (ρXY ), (5)

where IY is the identity channel acting on the system Y , and
its partial traces are

σ̃X̃i = F (i)
n (ρX), σ̃Yi = ρY . (6)

Using Eqs. (5) and (6) we can define the mutual information

Ii(X̃;Y ) := S(σ̃X̃i) + S(σ̃Yi)− S(σ̃X̃iYi), (7)

and its average over many uses of the channel,

Īn(X̃;Y ) :=
1

n

n∑
i=1

Ii(X̃;Y ). (8)

Now, for any r, J ≥ 0, we call (r, J) an achievable rate-
distortion pair (for the Quantum Information Bottleneck
Method) if there exists a sequence of (n, r) quantum rate-
distortion codes such that

lim
n→∞

Īn(X̃;Y ) > J. (9)

Finally, the rate function R(J) is defined as

R(J) := inf{r : (r, J) is achievable}. (10)

Given these definitions, we can now express R(J) in a more
direct way in terms of one copy of the input state ρXY .

Conjecture 1. Consider a memoryless quantum information
source ρXY , where system X is to be compressed such that
after decompression it retains an amount of correlation 0 ≤
J ≤ 1 with system Y . The asymptotic Bottleneck rate function
for entanglement-assisted lossy source coding with noiseless
classical communication is given by

R(J) = min
NX→X̃ :I(X̃;Y )ρ̃≥J

I(X ′; X̃)τ̃ , (11)

under the conjecture that the expression on the right hand
side of Eq. (11) is convex in J . Here, the quantum mutual
information I(X ′; X̃) is evaluated over the state

τ̃X′X̃ := (IX′ ⊗NX→X̃)(τX′X), (12)

such that τX′X is the purification of the reduced state ρX of
the state ρXY , and

ρ̃X̃Y := (NX→X̃ ⊗ IY )(ρXY ) (13)

.

While we are currently unable to remove the extra convexity
assumption, we have verified it in numerical examples which
are discussed in Appendix B.

Proof. Here we follow the approach of [8, Theorem 2]. We
temporarily denote the right-hand side of Eq. (11) as

M(J) := min
NX→X̃ :I(X̃;Y )ρ̃≥J

I(X ′; X̃)τ̃ . (14)

We need to show achievability of the rate , R(J) ≤M(J), as
well as optimality, R(J) ≥ M(J). We start with optimality.
Let (r, J) be an achievable rate-distortion pair and Fn a
corresponding sequence of codes. We have for large n,

nr ≥ S(W )

≥ S(W |TX̃)

≥ S(W |TX̃)− S(W |X ′nTX̃)

= I(W ;X ′n|TX̃)

= I(W ;X ′n|TX̃) + I(X ′n;TX̃)

= I(WTX̃ ;X ′n)

≥ I(X̃n;X ′n)

≥
n∑
i=1

I(X̃i;X
′
i)

≥
n∑
i=1

M(Ii(X̃;Y ))

= n

n∑
i=1

1

n
M(Ii(X̃;Y ))

≥ nM(Īn(X̃;Y ))

≥ nM(J).

(15)

The first inequality follows from the fact that the entropy of
the uniform distribution, nr, is the upper bound of S(W ). The
second inequality follows because entropy is nondecreasing
under conditioning. The third inequality follows because the
state of the system WX ′nTX̃ is separable with respect to
the classical system W and therefore S(W |X ′nTX̃) ≥ 0 [7,
footnote 10]. The first equality follows from the definition
of mutual information. The second equality follows since
the state ΦTXTX̃ is in a tensor product with the state of
the remaining input and therefore I(X ′n;TX̃) = 0. In the
third equality we use the chain rule for mutual informa-
tion. The fourth inequality follows from the data processing
inequality. The fifth inequality follows from superadditivity
of quantum mutual information [8, Lemma 15]. The sixth
inequality follows from the definition of M(J), where we
use the channel NX→X̃ = F (i)

n . In the seventh inequality
we have used conjecture of convexity of M . Finally the
last inequality follows for large n from Eq. (9), using that
M(J) is a nondecreasing function of J . The rate function is
nondecreasing in J , because for any J ′ > J the domain of
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minimisation in Eq. (11) becomes smaller, which implies that
the rate function can only become larger. Thus, since (r, J)
was arbitrary, (15) implies R(J) ≥M(J).

Achievability follows from an application of the Quantum
Reverse Shannon Theorem (QRST) [4], [5], [10]. The general
form of the QRST states that a quantum channel can be
simulated by an unlimited amount of shared entanglement and
an amount of classical communication equal to the channel’s
entanglement-assisted classical capacity. Specifically, in our
case, fix J > 0 and let NX→X̃ be the optimum channel
at which the minimum in Eq. (14) is attained. For a given
ε > 0, we use the QRST to construct a sequence of channels
Fn = Dn◦En such that they are close to an n-fold application
of NX→X̃ , in the sense that

‖σ̃X′nX̃n − τ̃
⊗n
X′X̃
‖1 ≤ ε, (16)

where τX′X̃ is defined in Eq. (12) and

σ̃X′nX̃n := IX′n ⊗Fn(τ⊗nX′X). (17)

According to the QRST we can construct such a sequence
of channels, Fn, using classical communication at rate r =
I(X ′; X̃)τ̃ , given an unlimited amount of entanglement for a
known tensor power input, which is our setting, c.f. [4, Fig.2,
top right]2 3. From Eq. (16) and the fact that I(X̃;Y ) ≥ J
for the channel NX→X̃ , one can show (see Lemma 1 in
Appendix A) that Eq. (9) is fulfilled with J − δ instead of
J , where δ → 0 as ε→ 0. Hence, (r, J − δ) is achievable and
R(J − δ) ≤M(J).

We have now shown that

∀δ > 0 : M(J − δ) ≤ R(J − δ) ≤M(J). (18)

From this it follows that

lim
δ↘0

R(J − δ) = M(J). (19)

Since R is nondecreasing, by Eqs. (9) and (10), and M is
continuous (a property that follows from the conjecture of
convexity), M(J) = R(J) for all J .

2Notice that the QRST in Fig. 2 of [4] was done in two ways, a so-called
feedback and a non-feedback simulation, respectively. The former means that
the environment of the simulated channel is in the possession of the sender,
while the latter means some part of the environment of the channel will end
up on the receiver’s side. In both cases, if unlimited entanglement is available,
the rate is given by the single-letter formula, the above mutual information. In
the case of the non-feedback simulation of the channel NX→X̃ , the feedback
simulation protocol [4, Theorem 3(a)] is used, namely the isometry UX→EX̃

N
composed with the isometry V En→EAEB , is simulated by QRST, such
that systems EA and X are with the sender and the systems EB and X̃
are with the receiver. Tracing out the environment from this channel gives
the desired channel, NX→X̃ . The result listed in Fig. 2 of [4] can be
obtained from Theorem 3(b) there as follows. In the presence of an unlimited
shared entanglement, condition (21) in [4] trivially holds and the maximum
in Eq. (23) there is always attained by the first of the two terms. To obtain
the desired expression of the mutual information from (20) and (23) there, it
is enough to choose En, EA and EB such that the isometry V acts trivially
and we have I(Rn : BnEB) = I(Rn : Bn). Finally, the single letter
formula I(R : B) that we use follows from the fact that we have a known
tensor-power input.

3Notice that the rates shown in Fig. 2 of [4] are quantum communication
rates which is why they are different by a factor of 1/2 from what we use.
The extra factor drops because 1-qubit channels can be simulated with 2
bit classical channels in the presence of entanglement using the teleportation
protocol.

Remark 1: In Eq. (11) the Quantum Reverse Shannon
Theorem is used, which in addition uses shared entangle-
ment (“entanglement assistance”) to generate a protocol that
achieves the rate. However, the requirements for the Quantum
Reverse Shannon Theorem are much more stringent than those
of the Bottleneck method. Therefore, it might be possible to
find a rate function without entanglement assistance. This is
still an open problem.

Remark 2: The systems XY and XX ′ are understood
to be in separate setups; the states ρ̃X̃Y and τ̃X′X̃ are not
partial traces of a common parent state, but they involve an
identical channel N (“two separate experiments using the
same apparatus”). The QRST applies only to the system XX ′.
To prove Eq. (11), these two setups need to be connected,
which is done in Lemma 1 in Appendix A.

Remark 3: Generally, rate distortion functions obtained from
the definition in Eq. (10) are non-increasing functions of the
distortion, whereas the RHSs of Eqs. (11) and (1) are both
non-decreasing functions. This is not a fundamental difference
between RDT and the Bottleneck method. It is merely due to
the fact that in the IBM the constraint of minimisation is cho-
sen to be the amount of correlation preserved, I(X̃;Y ) ≥ J ,
while in RDT the constraint of minimisation is the average
loss of information, 〈d(X; X̃)〉 ≤ D, for some fixed D and
some distortion measure d(X; X̃), characterising the noise
introduced by a channel NX→X̃ to a state ρX .

The formulation of the IBM can easily be changed to using
a constraint on the loss of correlation such as I(X;Y ) −
I(X̃;Y ) ≤ D, in which case the rate function is a non-
increasing function of D. Rather than changing it, the structure
of the minimisation constraint is kept in line with the classical
IBM.

Remark 4: As discussed above, in a lossy compression-
decompression protocol the minimisation is performed over all
channels satisfying a certain criterion, see Eq. (11). Although
the functions I(X̃;X ′) and I(X̃;Y ) are convex in the channel,
the optimisation problem in Eq. (11) is not of convex type
due to the sign of the inequality in the constraint (≥ rather
than ≤). Just as in the classical case, it is a so-called “reverse
convex problem” (see, e.g., [15]), for which many of the
standard results, such as strong duality or convexity of the
resulting function in J , are not known to hold or apply only
in a weaker form. Nevertheless, we present numerical evidence
for convexity of the RHS in Appendix B. We also show that
the minimum in Eq. (11) is actually attained at the boundary
I(X̃;Y )ρ̃ = J (see Lemma 2 in Appendix C), which makes it
useful to search for local optima with the method of Lagrange
multipliers, as we show in the next section.

III. THE OPTIMISATION PROBLEM FOR THE QUANTUM
INFORMATION BOTTLENECK METHOD

We now proceed to the optimisation problem. In order
to formulate the Lagrangian corresponding to the quantum
counterpart of Eq. (2), we need to choose a suitable way of
representing the channel N , e.g., the Kraus operators or the
Choi-Jamiołkowski representation. It turns out that indeed the
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most compact and convenient way to compute the derivatives
of the Lagrangian is with respect to the Choi-Jamiołkowski
representation defined as

ΨX′X̃ :=
(
IX′ ⊗NX→X̃

)
(Φ̃X′X), (20)

where Φ̃X′X :=
∑d−1
i,j=0 |i〉〈j|X′ ⊗ |i〉〈j|X . For the rate

function given in Eq. (11) one can write the Lagrangian

L := I(X ′; X̃)τ̃ − βI(X̃;Y )ρ̃ − TrXX̃(ΨtX
XX̃

(ΛX ⊗ IX̃)),
(21)

where tX denotes the partial transpose with respect to the
basis {|i〉X}i on X; here β is the Lagrange multiplier for
the constraint of minimisation and the Hermitian operator
ΛX is the Lagrange multiplier to guarantee that the channel
is a completely positive trace preserving map. The states in
Eq. (21) can be written as functions of the Choi-Jamiołkowski
state of the channel ΨXX̃ . The joint state τX′X in Eq. (21)
can be written as

τ̃X′X̃ = TrX
{

ΨtX
XX̃

τX′X
}

= (ρXX′ ⊗ IX̃)1/2Ψ
tX′

X′X̃
(ρXX′ ⊗ IX̃)1/2,

(22)

where ρXX′ is the same state as ρX acting on the Hilbert space
HX′ of the system X ′.

By similar considerations, one can show that the joint state

ρ̃X̃Y := (NX→X̃ ⊗ Iy)(ρXY ) (23)

can be written as

ρ̃X̃Y = TrX
{

ΨtX
XX̃

ρXY
}

= TrX′Y ′
{

(ρXYX′Y ′ ⊗ IX̃Y )1/2(Ψ
tX′

X′X̃
⊗ Φ

tY ′
Y ′Y )

(ρXYX′Y ′ ⊗ IX̃Y )1/2
}
,

where we have chosen a maximally entangled state ΦY ′Y and
a corresponding transpose tY ′ . In the third term of Eq. (21)
the dependence on the channel state is already explicit.

Let

DβY

XX̃
:=β log ρ̃X̃ ⊗ IX
− β TrY

{
(ρ
−1/2
X ρXY ρ

−1/2
X (log ρ̃X̃Y ⊗ IX)

}
,
(24)

and
Λ̃X := ρ

−1/2
X ΛXρ

−1/2
X . (25)

Taking the derivative of the Lagrangian in Eq. (21) with
respect to the channel and setting it to zero (for details, see
Appendix C) gives the optimum channel as

ΨtX
XX̃

=(ρX ⊗ IX̃)−1/2

elog ρ̃X̃⊗IX−D
βY

XX̃
+Λ̃X⊗IX̃ (ρX ⊗ IX̃)−1/2.

(26)

Note that this determines ΨtX
XX̃

implicitly since it also appears
on the right hand side of this equation in ρ̃X̃ and in the
definition of DβY

XX̃
(for details, see Appendix C). In order to

find the optimum channel, Eq. (26) needs to be solved itera-
tively for ΨtX

XX̃
. The solution also depends on the unknown

Lagrange multipliers ΛX , β associated with the constraints
of the problem; these need to be determined in a further

optimisation step. We comment on a possible algorithm to
that end in Appendix C.

Eq. (26) reduces to its classical counterpart in Eq. (3) in the
case of diagonal density operators. To see this, consider the
diagonal case where the density operators reduce to probability
distributions. From Eq. (26) it follows that

P (x̃|x) =
1

P (x)
exp

{
logP (x̃)− β

(
logP (x̃)

−
∑
y

P (y|x) logP (x̃y)
)

+
λ(x)

P (x)

}
,

(27)

with λ(x) being the same normalisation Lagrange multi-
plier as in Eq. (2). Notice that since H(Y |X = x) =
−
∑
y P (y|x) logP (y|x) depends only on x but not on x̃, it

can be absorbed into λ(x). Defining

λ̃(x) :=
λ(x)

P (x)
− βH(Y |X = x)− logP (x) , (28)

Eq. (27) becomes

P (x̃|x) = P (x̃)e−βD(P (Y |x)||P (Y |x̃))+λ̃(x), (29)

which is the same classical channel as Eq. (3), with all the
extra terms being absorbed into the normalisation factor. This
also shows that Dβy

XX̃
is a quantum operator corresponding

to the distance measure in the classical Bottleneck method.
The idea of distance operators has been used in a number of
quantum information processing tasks [17], [9], however the
DβY

XX̃
is particular to the present setting. Eq. (26) can be used

in principle to compute numerical values of quantum channels
using iterative algorithms, akin to their classical counterparts
by methods introduced by Blahut and Arimoto [6], [2].

Finally, we would like to remark that a previous result in
the domain of quantum information theory was inspired by
the classical Information Bottleneck Method [12], and indeed
some of the technical steps in Section III of our paper are very
similar. Here we clarify the difference between our contribu-
tion and that of [12]. To reflect on our contribution, consider
that in classical communication, Shannon’s channel capacity
theorem gives a single-letter formula that fully characterises
a communication channel. This allows one to interpret the
mutual information between the input and the output of a
channel as a communication rate, as was done in [16]. In
quantum communication theory the situation is different since
quantum channels (except for very few cases) are typically
not characterised by such single-letter quantities. Therefore,
in order to give a communication theoretic interpretation to
an entropic quantity such as the one that we (and [12]) use,
one has to prove that the quantity corresponds to a rate in
a communication scenario by giving a coding scenario to
which the rate refers. We have done this, up to the previously
stated conjecture, by designing a setup that is compatible
with the Quantum Reverse Shannon Theorem (notice, e.g., the
unlimited amount of entanglement), and by proving the lemma
given in Appendix A. This lemma shows that in our setting the
Quantum Reverse Shannon Theorem can be invoked. In Ref.
[12], the focus there was on applying a quantum extension
of the Information Bottleneck Method to predictive filtering,
whereas we focus here on the communication scenario.
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IV. CONCLUSION AND OUTLOOK

This paper introduced the quantum extension of the In-
formation Bottleneck Method. This method compresses the
data such that only the information relevant with respect to
some given variable is preserved. We derive a lower bound
to the compression rate of relevant quantum information. The
problem was formulated as a communication channel problem
and the rate was shown to be achievable by explicitly con-
structing a channel achieving it. Just like in the classical case,
the compression rate of the quantum Information Bottleneck
Method is lower than that given by quantum rate distortion
theory. Several conceptual issues arose from the structural
differences between the mathematical formalism of quantum
theory and classical probability theory which were discussed
and solutions were presented.

Some open questions remain. Our proof of Eq. (11) relied
on an unproven conjecture (convexity of the expression on
the right hand side of Eq. (11) in J). While this seems to be
fulfilled in examples (cf. Appendix B), a proof of this property
is currently missing.

In Appendix B a simple algorithm is used to compute the
optimum channel and thus the rate function R(J) in low
dimensional systems; but for systems of realistic size a more
efficient algorithm would be required. This might be based on
numerically solving the implicit equation (26).
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APPENDIX A
LEMMAS FOR THE PROOF OF THE BOTTLENECK RATE

FUNCTION

The following lemma is relevant for the proof of achiev-
ability of the communication rate. It has the same application
as in Theorem 19 of [19] and Lemma 1 of [8], but has been
adapted to the distortion criterion for the quantum Bottleneck
method.

Lemma 1. Let η(λ) := −λ log λ. There exists a constant
k > 0 depending only on the dimension of HX̃Y such that the
following holds:

Let 0 < J ≤ I(X;Y )ρ be fixed. Let a quantum channel
NX→X̃ be such that if we apply the channel to the system X
and an identity channel IY on the system Y the effect will
meet the condition I(X̃;Y )ρ̃ ≥ J , where ρ̃X̃Y is given by
(23). Further, let Fn be a sequence of quantum channels from
the space of density matrices D(H⊗nX′X) to D(H⊗n

X′X̃
) such

that
‖σ̃X′nX̃n − τ̃

⊗n
X′X̃
‖1 ≤ ε (30)

for some 0 ≤ ε < 1
e and large enough n, where τ̃X′X̃ and

σ̃X′nX̃n are given by (12) and (17), respectively.
Then, for large enough n and δ := kη(ε), we have

Īn(X̃;Y )σ̃ ≥ J − δ. (31)

http://arxiv.org/abs/quant-ph/0208131
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Proof. Adding and subtracting I(X̃;Y )ρ̃ to the left hand side
of Eq. (31) and using the triangle inequality, we obtain

Īn(X̃;Y )σ̃ = |I(X̃;Y )ρ̃ −
(
I(X̃;Y )ρ̃ − Īn(X̃;Y )σ̃

)
|

≥ |I(X̃;Y )ρ̃| − |I(X̃;Y )ρ̃ − Īn(X̃;Y )σ̃|.
(32)

Since we assumed that I(X̃;Y )ρ̃ ≥ J , what we need to show
is that

|I(X̃;Y )ρ̃ − Īn(X̃;Y )σ̃| ≤ kη(ε) =: δ (33)

with some k > 0 and η as above. Inserting Īn given in Eq. (8),
we have

|I(X̃;Y )ρ̃ − Īn(X̃;Y )σ̃| =
∣∣∣ 1
n
n
(
S(ρ̃X̃) + S(ρY )

− S(ρ̃X̃Y )
)
− 1

n

n∑
i=1

(
S(σ̃X̃i)

+ S(σ̃Yi)− S(σ̃X̃iYi)
)∣∣∣.

Hence, it suffices to show that for all 1 ≤ i ≤ n,

|S(ρ̃X̃) + S(ρY )− S(ρ̃X̃Y )− S(σ̃X̃i)

− S(σ̃Yi) + S(σ̃X̃iYi)| ≤ kη(ε).

In particular, we will prove bounds of the above type on
|S(ρ̃X̃)−S(σ̃X̃i)| , |S(ρ̃X̃Y )−S(σ̃X̃iYi)| and |S(ρY )−S(σ̃Yi)|
for all i. We start with the first of these. To prove this
inequality, we recall that τX′X is a purification of ρx. Now
let ρX′Y ′XY be a purification of ρXY , then there is a Hilbert
space Ĥ and a unitary U : HX′ ⊕ Ĥ → HX′Y ′Y such that

(IX ⊗ U)τX′X(IX ⊗ U)† = ρX′Y ′XY , (34)

where τX′X is extended to the orthogonal complement of HX′
by zeros. Then, (30) implies

‖ρ̃⊗n
X′Y ′X̃Y

− (IX ⊗ U†)⊗nσ̃X′nX̃n(IX ⊗ U)⊗n‖1 ≤ ε, (35)

where ρ̃X′Y ′X̃Y = (NX→X̃ ⊗ IX′Y ′Y )(ρX′Y ′XY ). Further,
one computes that

(IX ⊗ U†)⊗nσ̃X′nX̃n(IX ⊗ U)⊗n = σ̃X′nY ′nX̃nY n , (36)

σ̃X′nY ′nX̃nY n := (IX′nY ′nY n ⊗Fn)(ρ⊗nX′Y ′XY ). (37)

To summarize, we found that

‖ρ̃⊗n
X′Y ′X̃Y

− σ̃X′nY ′nX̃nY n‖1 ≤ ε. (38)

Using monotonicity of the trace norm under partial trace, we
find that

‖ρ̃X′Y ′X̃Y − σ̃X′iY ′i X̃iYi‖1 ≤ ‖ρ̃
⊗n
X′Y ′X̃Y

− σ̃X′nY ′nX̃nY n‖1.
(39)

Moreover,

‖ρ̃X̃ − σ̃X̃i‖1 ≤ ‖ρ̃X′Y ′X̃Y − σ̃X′iY ′i X̃iYi‖1. (40)

again using the monotonicity of the trace norm under partial
trace. This implies that ‖ρ̃X̃ − σ̃X̃i‖1 ≤ ε.

Now, by the Fannes Inequality the following bound holds
for all 1 ≤ i ≤ n:

|S(ρ̃X̃)− S(σ̃X̃i)| ≤ log(k′)‖ρ̃X̃ − σ̃X̃i‖1

+
1

log(2)
η
(
‖ρ̃X̃ − σ̃X̃i‖1

)
,

where k′ is the dimension of HX̃ . Then, using the bound
‖ρ̃X̃ − σ̃X̃i‖1 ≤ ε, we find for all 1 ≤ i ≤ n,

|S(ρ̃X̃)− S(σ̃X̃i)| ≤ ε log(k′) +
η(ε)

log(2)

≤ k̂′η(ε), (41)

where the last inequality uses the fact that η(ε) ≥ ε for 0 ≤
ε < 1

e , and where k̂′ is defined in terms of the constants in
the first inequality, including k′.

With a similar method, one can prove that for all 1 ≤ i ≤ n,

|S(ρ̃X̃Y )− S(σ̃X̃iYi)| ≤ k̂
′′η(ε), (42)

|S(ρY )− S(σ̃Yi)| ≤ k̂′′′η(ε), (43)

where k̂′′, k̂′′′ also depend on the dimensions of HX̃Y and
HY , respectively.

Combining Eq. (41), (42) and (43) we find for all 1 ≤
i ≤ n that Eq. (34) holds for a constant k that includes the
constants in the three estimates above and depends only on
the dimension of HX̃Y .

Hence, we obtain for large enough n that Īn(X̃;Y )σ̃ ≥
J − kη(ε).

APPENDIX B
NUMERICAL EXAMPLES

The aim of this appendix is to compute the communication
rate as a function of J for some examples, using a numerical
optimisation algorithm for evaluating the right-hand side of
Eq. (11). In particular, in all these examples the rate function
turns out to be convex in J . Consider the following normalized
version of the rate

R̂(J) := min
NX→X̃ :

I(X̃;Y )ρ̃
I(X;Y )ρ

≥J

I(X ′; X̃)τ̃
I(X ′;X)τ

, (44)

where now 0 < J < 1. In the following examples the systems
X and Y are described by two-dimensional Hilbert spaces
spanned by the basis |↑〉, |↓〉.

To find the optimum numerically, a simple random search
algorithm is used [1]. It initially chooses a number of channels
at random (in terms of their Kraus operators) and computes
the related mutual information, then randomly varies those
channels with the lowest I(X ′, X̃) further until a stable
optimum is reached.

This algorithm is applied to three classes of input states
ρXY : The first example is a “classical” state, i.e., a state
without entanglement between the systems X and Y , given
by the density matrix

ρ
(1)
XY := p1|↑↑〉〈↑↑|+ p2|↓↑〉〈↓↑|+ p3|↑↓〉〈↑↓|+ p4|↓↓〉〈↓↓| ,

where p1, p2, p3, p4 are nonnegative numbers with p1 + p2 +
p3 +p4 = 1. The second example is a state with entanglement
between X and Y , namely,

ρ
(2)
XY =

1

2
|↑↑〉〈↑↑|+ 1

4
|↑↑〉〈↓↓|+ 1

4
|↓↓〉〈↑↑|+ 1

2
|↓↓〉〈↓↓|.

Finally, the third example is again a state with entanglement
defined as

ρ
(3)
XY = p1|v〉〈v|+ p2|w〉〈w|
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Fig. 2. The function R̂(J) (in red) for the initial state ρ(1)XY with
(p1, p2, p3, p4) = (0.1, 0.2, 0.3, 0.4).

Fig. 3. The function R̂(J) (in red) for the initial state ρ(2)XY .

with the normalized vectors

v =
1√
2

(
|↑↑〉+ |↓↓〉

)
, w = |↓↓〉

and nonnegative numbers p1, p2 with p1 + p2 = 1. The plots
presented in Figs. 2–5 show the rate as a function of distortion.
The blue lines correspond to the curves R̂(J) = J and R̂(J) =
1
2J and are introduced for comparison with the actual result
(red line).

The four plots show that the function R̂(J), given by (44),
is indeed a convex function in J for the specific choices
of initial state ρXY and within the limits of the numerical

Fig. 4. The function R̂(J) (in red) for the initial state ρ(3)XY with
(p1, p2) = (0.4, 0.6).

Fig. 5. The function R̂(J) (in red) for the initial state ρ(3)XY with
(p1, p2) = (0.2, 0.8).

approximation. Note that in Figs. 3–5, the graph does not
appear to be differentiable at the point R̂ = 1

2 . This seems to
be a common feature of the examples ρ(2)

XY , ρ
(3)
XY , but we do

not currently have an analytic explanation for this behaviour.
Note that in Fig. 2, one has M(1) = 1

2 , while in Figs. 3–
5, one has M(1) = 1. In other words, in the case of a
“classical” (non entangled) state ρXY , there is a channel such
that I(X̃;Y ) = I(X;Y ) and I(X̃;X ′) = 1

2I(X;X ′). To
obtain an analytic expression of this channel we proceed as
follows.

The initial state is ρ(1)
XY . Then, ρ(1)

X = TrY ρ
(1)
XY = (p1 +
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p3)|↑〉〈↑| + (p2 + p4)|↓〉〈↓| and a purification is given by
τ

(1)
X′X = |w〉〈w| with |w〉 =

√
p1 + p3|↑↑〉 +

√
p2 + p4|↓↓〉.

Our ansatz for the channel is

NX→X̃(ρ) =
1

2

2∑
i=1

KiρK
†
i (45)

with K1 := |↑〉〈↑|−|↓〉〈↓| and K2 := |↑〉〈↑|+|↓〉〈↓|. Applying
this channel to ρ(1)

XY and τ (1)
X′X , we obtain ρ̃(1)

X̃Y
= ρ

(1)
XY and

τ̃
(1)

X′X̃
= (p1 + p3)|↑↑〉〈↑↑|X′X̃ + (p2 + p4)|↓↓〉〈↓↓|X′X̃ .

Note that here τ̃ (1)

X̃
= τ

(1)
X′ = τ

(1)
X = ρ

(1)
X are all matrices, but

they act on different Hilbert spaces. With this choice of chan-
nel and initial state it is clear that I(X̃;Y )ρ̃(1) = I(X;Y )ρ(1) .
In order to show that I(X̃;X ′)τ̃(1) = 1

2I(X;X ′)τ(1) we
compute the von Neumann entropies in I(X̃;X ′) = S(X̃) +
S(X ′)−S(X̃X ′) and in I(X;X ′) = S(X)+S(X ′)−S(XX ′)
using the fact that S(XX ′) = 0, since τX′X is pure, and that
ρ

(1)
X , τ̃

(1)

X′X̃
are diagonal. After evaluating the matrix functions,

we obtain

I(X̃;X ′) =− (p1 + p3) log(p1 + p3)

− (p2 + p4) log(p2 + p4)

=
1

2
I(X;X ′)

(46)

as desired. Therefore, R̂(1) ≤ 1/2 for this class of states,
consistent with the graph.

This somewhat unexpected feature may be understood as
follows: In order to transmit the X part of the non-entangled
state ρ

(1)
XY perfectly, a classical channel of 1 bit capacity

is sufficient. By the usual quantum teleportation result, this
corresponds to a quantum channel of only 1

2 qbit capacity, if
shared entanglement is available in abundance.

While the simplistic random search algorithm that we
used in this appendix is sufficient for demonstrating the
essential quantum features of the system, it would be too
inefficient to compute the rate function R(J) for systems with
larger Hilbert space dimension. More sophisticated numerical
schemes would be required to that end, e.g., taking the gradient
of the objective function into account. Appendix C describes
a Lagrangian method that may be used to this end.

APPENDIX C
THE OPTIMAL MAP

In this appendix we describe a method for finding the
optimum channel in Eq. (11). We first remark that the optimum
is actually attained at the boundary of the constraint region,
I(X̃;Y ) = J . This is heuristically clear, as for a channel in the
interior (I(X̃;Y ) > J) one could always reduce the channel’s
communication rate by a small amount at the expense of a
slightly decreased quality measure I(X̃;Y ), staying inside the
region of the constraint. We give a more formal argument to
this end.

Lemma 2. The minimum in Eq. (11) is attained on the
hypersurface I(X̃;Y ) = J .

Proof. Suppose that the minimum was attained at a channel
N1 such that I(X̃;Y )N1 > J (here the subscript denotes that
the state ρ̃X̃Y is computed with respect to the channel N1).
Let N0 be the channel N0(σ) := (dimHX̃)−1 Tr(σ) · 111; we
note that I(X̃;Y )N0

= 0 = I(X̃;X ′)N0
. For 0 < λ < 1, let

us consider a new channel Nλ := λN1 + (1 − λ)N0. From
convexity of the mutual information in the channel, it follows
that

I(X̃;X ′)Nλ ≤ λI(X̃;X ′)N1
+ (1− λ)I(X̃;X ′)N0

< I(X̃;X ′)N1 .
(47)

On the other hand, from continuity considerations we know
that I(X̃;Y )Nλ > J for λ close enough to 1, so that also
Nλ fulfills the constraint in this region. Hence M(J) <
I(X̃;X ′)N1 , and N1 is not the position of the minimum.

Therefore, we deal with an optimisation problem of a
function over a constraint hypersurface, which makes it useful
to look for local extrema with the method of Lagrange
multipliers. We use the Lagrangian in Eq. (21),

L :=I(X ′; X̃)τ̃X′X̃
− βI(X̃;Y )ρ̃X̃Y − TrXX̃(ΨtX

XX̃
(ΛX ⊗ IX̃)).

and look for zeros of its derivatives. We use the Choi-
Jamiołkowski representation

ΨX′X̃ :=
(
IX′ ⊗NX→X̃

)
(ΦX′X) (48)

of the channel in order to compute the derivative of the
Lagrangian, where ΦX′X :=

∑d−1
i,j=0 |i〉〈j|X′ ⊗ |i〉〈j|X is

the Choi-Jamiołkowski matrix corresponding to the identity
channel from the Hilbert space HX′ to HX , and NX→X̃
is the channel that simulates the compression-decompression
process. ΛX , an operator on the Hilbert space HX , is the
Lagrange multiplier introduced for the normalisation of the
channel ΨtX

XX̃
. Considering the definition of the mutual infor-

mation, to compute the derivative δL
δΨ

tX
XX̃

of the Lagrangian,

we need to compute the following derivatives,

δS(X ′)τ̃

δΨtX
XX̃

,
δS(Y )ρ̃

δΨtX
XX̃

,

δS(X̃)τ̃

δΨtX
XX̃

,
δS(X̃)ρ̃

δΨtX
XX̃

,
δS(X ′X̃)τ̃

δΨtX
XX̃

,

δS(X̃Y )ρ̃

δΨtX
XX̃

,
δTrXX̃(ΨXX̃(ΛX ⊗ IX̃))

δΨtX
XX̃

.

(49)

Notice that the functions in the numerator of the expressions
in the first two equations in (49) are independent of the channel
and, hence, the derivatives are zero. For the five remaining
ones we note that for a Hermitian operator, A, and a function,
f , which is analytic on the spectrum of A, the directional
derivative of Tr[f(A)] is given by

δTr[f(A)]

δA
[B] = Tr[f ′(A)B], (50)

with the direction given by the operator B and f ′ being the
first derivative of the function f . (This follows from analytic
functional calculus, expanding Tr f(A+εB) in a Taylor series
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around ε = 0.) Specifically, let us define f(z) := z log(z).
Since the derivative of our function f is given by f ′(·) =
(1 + log)(·), using (50) and (22), we have

δS(X̃)τ̃

δΨtX
XX̃

[BXX̃ ] = −TrX′X̃
{[

(IX̃+log τ̃X̃)⊗IX′
]
E
}
, (51)

where
E := TrX

(
BXX̃τX′X

)
. (52)

Likewise, we can compute

δS(X ′X̃)τ̃

δΨtX
XX̃

[BXX̃ ] = −TrX′X̃

{[
(IX′X̃ + log τ̃X′X̃)

]
E
}
.

(53)
In order to compute the derivative for S(X̃)ρ̃ and S(X̃Y )ρ̃
we use Eqs. (24) and (50), and we find

δS(X̃)ρ̃

δΨtX
xX̃

[BXX̃ ] = −TrX̃Y

{[(
IX̃ + log ρ̃X̃

)
⊗ IY

]
G
}

(54)

and

δS(X̃Y )ρ̃

δΨtX
XX̃

[BXX̃ ] = −TrX̃Y

{(
IX̃Y + log ρ̃X̃Y

)
G
}
, (55)

where
G := TrX

(
BXX̃ρXY

)
. (56)

For the last derivative we have

δTrXX̃
{

ΨtX
XX̃

(ΛX ⊗ IX̃)
}

δΨtX
XX̃

[BXX̃ ] =

TrXX̃
{

(ΛX ⊗ IX̃)BXX̃
}
.

Putting all the terms together we have

δL
δΨtX

XX̃

[BXX̃ ] =
δS(X̃)τ̃

δΨtX
XX̃

[BXX̃ ]− δS(X ′X̃)τ̃

δΨtX
XX̃

[BXX̃ ]

− β δS(X̃)ρ̃

δΨtX
XX̃

[BXX̃ ] + β
δS(X̃Ỹ )ρ̃

δΨtX
XX̃

[BXX̃ ]

−
δTrXX̃(ΨtX

XX̃
(ΛX ⊗ IX̃))

δΨtX
XX̃

[BXX̃ ]

= TrX′X̃

{[
− IX′ ⊗ (IX̃ + log τ̃X̃)

+ (IX′X̃ + log τ̃) + βIX′

⊗ (IX̃ + log τ̃X̃)
]
E
}

− β TrX̃Y

{
(IX̃Y + log ρ̃X̃Y )G

}
− TrXX̃

{
(ΛX ⊗ IX̃)BXX̃

}
.

(57)
Setting this expression to zero ( δL

δΨ
tX
xX̃

[BXX̃ ] = 0), we find

TrX′X̃
{

log τ̃X′X̃E
}

=

TrX′X̃

{[
IX′ ⊗ log τ̃X̃ − βIX′ ⊗ log τ̃X̃

]
E
}

+ β TrX̃Y

{
log ρ̃X̃YG

}
+ TrXX̃

{
(ΛX ⊗ IX̃)BXX̃

}
.

(58)

Rearranging left and right hand sides of this equation, we find

TrXX̃

{
BXX̃ TrX′

{
τX′X(log τ̃X′X̃ ⊗ IX)

}}
=

TrXX̃

{
BXX̃ TrX′

{
τX′X

[(
IX′ ⊗ log τ̃X̃ − βIX′ ⊗ log τ̃X̃

)
⊗ IX

]}}
+ β TrXX̃

{
BXX̃ TrY

{
ρXY

(
log ρ̃X̃Y ⊗ IX

)}}
+ TrXX̃

{
BXX̃(ΛX ⊗ IX̃)

}
.

This holds for all directions BXX̃ , which implies

TrX′
{
τX′X(log τ̃X′X̃ ⊗ IX)

}
=

TrX′
{
τX′X

[(
IX′ ⊗ log τ̃X̃

− βIX′ ⊗ log τ̃X̃
)
⊗ IX

]}
+ β TrY

{
ρXY

(
log ρ̃X̃Y ⊗ IX

)}
+ ΛX ⊗ IX̃ .

(59)

By performing the partial trace on the left hand side of this
expression, we obtain

ρ
1/2
X (log τ̃XX̃)tXρ

1/2
X =τX

(
log τ̃X̃ − β log τ̃X̃

)
+ β TrY

{
ρXY

(
log ρ̃X̃Y ⊗ IX

)}
+ ΛX ⊗ IX̃ .

(60)
Simplifying this expression further, we find

(log τ̃XX̃)tX =IX ⊗
(

log τ̃X̃ − β log τ̃X̃
)

+ β TrY

{
ρ
−1/2
X ρXY ρ

−1/2
X

(
log ρ̃X̃Y ⊗ IX

)}
+ ρ
−1/2
X ΛXρ

−1/2
X ⊗ IX̃ .

(61)
Let us denote

DβY

XX̃
:=βIX ⊗ log τ̃X̃

− β TrY

{
ρ
−1/2
X ρXY ρ

−1/2
X

(
log ρ̃X̃Y ⊗ IX

)}
,

(62)
and the normalisation term Λ̃X := ρ

−1/2
X ΛXρ

−1/2
X . Exponen-

tiating both sides of Eq. (61), we obtain

τ̃ tX
XX̃

= elog τ̃X̃⊗IX−D
βY

XX̃
+Λ̃X⊗IX̃ . (63)

Using Eq. (22), we arrive at the expression for the Choi-
Jamiołlkowski matrix corresponding to the channel,

ΨtX
XX̃

=(ρX ⊗ IX̃)−1/2elog τ̃X̃⊗IX−D
βY

XX̃
+Λ̃X⊗IX̃

(ρX ⊗ IX̃)−1/2.
(64)

Note that this is an implicit equation in ΨXX̃ since it also
appears on the right hand side of this expression. To find the
optimum channel, Eq. (64) needs to be solved iteratively for
ΨXX̃ . Note that the unknown Lagrange multiplier ΛX , which
is associated with the normalisation constraint, is still con-
tained in this equation. An algorithm that recursively computes
the channel might work as follows. Starting with a guess for
the channel ΨXX̃ and normalising it, this guess is inserted
into Eq. (60) to compute a self-consistent value for ΛX . This
would allow to compute ρ̃X̃ and ρ̃X̃Y from the channel, and
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hence give an approximation for all quantities that enter the
right hand side of Eq. (26). Thus, a new approximation for
the left-hand side is obtained, i.e., the channel ΨXX̃ . When
this procedure is repeated iteratively, an optimal channel ΨXX̃

is obtained at a given value for β. Repeating this procedure
for different values of β and optimising under the constraint
I(X̃;Y )ρ̃ ≥ J yields the minimum in (11).
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