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Abstract—Fast polarization is crucial for the performance
guarantees of polar codes. In the memoryless setting, the rate
of polarization is known to be exponential in the square root
of the block length. A complete characterization of the rate of
polarization for models with memory has been missing. Namely,
previous works have not addressed fast polarization of the high
entropy set under memory. We consider polar codes for processes
with memory that are characterized by an underlying ergodic
finite-state Markov chain. We show that the rate of polarization
for these processes is the same as in the memoryless setting, both
for the high and for the low entropy sets.

Index Terms—Polar codes, rate of polarization, fast polariza-
tion, channels with memory, Markov processes

I. INTRODUCTION

MEMORY is prevalent in many communication scenar-

ios. Examples include finite-state channels (FSCs) such

as intersymbol interference channels and correlated fading

channels, and coding for input-constrained systems. In this

research we show that polar codes can be used directly for

a large class of scenarios with memory. This allows one to

leverage the attractive properties of polar codes — such as

low complexity encoding and decoding, explicit construction,

and sound theoretical basis — for scenarios with memory.

A fundamental problem of information theory is estimating

a block XN
1 = (X1,X2, . . . ,XN ) from observations YN

1 =
(Y1,Y2, . . . ,YN ). In a channel-coding scenario, XN

1 may be

the input to a channel and YN
1 its output. In a source-coding

scenario, XN
1 may be an information source to be compressed

and YN
1 observations available to the decompressor. In either

case, there is redundancy in XN
1 : added redundancy in channel

coding, or removed redundancy in source coding. A good

channel code needs to add the least amount of redundancy

while still allowing for correct decoding, whereas a good

source code eliminates as much redundancy as possible while

still allowing reconstruction subject to a distortion criterion.

Polar codes [1] were first developed for binary-input, sym-

metric, memoryless, channels. They provide a systematic

framework to handle this fundamental problem. They are

block codes, whose encoding operation consists of an explicit

invertible transformation between XN
1 and UN

1 . A portion of

UN
1 is revealed to the decoder or decompressor. The decoder

employs successive cancellation (SC) decoding, recovering

UN
1 incrementally: first U1, then U2, and so on. Each suc-

cessive decoding operation uses the observations YN
1 and the

outcome of the previous decoding operations as well as the

An abbreviated version of this article will be submitted to ISIT 2018.

revealed portion of UN
1 . The polarization phenomenon implies

that for large enough N , the decoding operations polarize

to two sets: a ‘low entropy’ set and a ‘high entropy’ set.

These sets can be determined beforehand, and prescribe which

portion of UN
1 to reveal to the decoder or decompressor.

The rate of polarization is particularly important for the

analysis of polar codes. Their error-free performance at any

achievable rate is due to polarization happening sufficiently

fast. Fast polarization to the low entropy set for the memory-

less setting was established in [1, Theorem 2], [2].

Remarkably, polar codes were extended to a plethora of

other memoryless scenarios, including non-binary channels [3],

[4], source coding [5], [6], wiretap channels [7], [8], asym-

metric channels and sources [9], and more. See the survey

paper [10, Section IV] for a large list of extensions and appli-

cations. Many of these applications are contingent upon fast

polarization to the high-entropy set; for memoryless settings,

this was established in [5].

The main tools used for polar code analysis in the mem-

oryless case are the focus of Section III. In particular, we

present Arıkan’s probabilistic approach, which is at the heart

of many polarization results. It is this approach that we extend

to settings with memory.

The study of polar codes for scenarios with memory began

with [4, Chapter 5]. Şaşoğlu was able to show that polarization

indeed occurs for a certain class of processes with memory. In

the subsequent work [11] (see also the journal version, [12]),

the authors were able to prove polarization for a more general

class of processes with memory. One advancement made in

that paper was regarding the rate of polarization under memory.

The authors showed that polarization to the low entropy set is

fast even for processes with memory. Fast polarization to the

high entropy set was not addressed.

A practical decoding algorithm for polar codes for FSCs

was suggested in [13] (see also [14] for an earlier version,

specific to intersymbol interference channels). This algorithm

is an extension of SC decoding, taking into account the

underlying state structure. Its increase in complexity relative to

the complexity of SC decoding is polynomial with the number

of states. Thus, it is practical for a moderate number of states.

The authors also showed [13, Theorem 3] that their elegant

scheme from [9] can be applied to models with memory.

To this end, they required the additional assumption of fast

polarization both to the low and high entropy sets.

This paper completes the picture. We show that for a large

class of processes with memory, polarization is fast both to

the low entropy and high entropy sets. Fast polarization to the

http://arxiv.org/abs/1710.02849v3
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low entropy set will follow from a specialization of [11]. Fast

polarization to the high entropy set, Theorem 13, is the main

result of this paper. Consequently, polar codes can be used in

settings with memory with vanishing error probability.

Specifically, we consider stationary processes whose mem-

ory can be encompassed by an underlying finite-state ergodic1

Markov chain. This Markov chain governs the joint distribu-

tion of XN
1 and YN

1 , and is assumed to be hidden. The model

is described in detail in Section IV. This family of processes

includes, as special cases, finite-state Markov channels [15,

Chapter 4.6] with an ergodic state sequence, discrete ergodic

sources with finite memory, and many input-constrained sys-

tems (e.g., (d, k)-runlength limited (RLL) constraint [16], with

and without noise).

The tools we develop for this family of processes with

memory are the subject of Section V. Our tools mirror those

used in the memoryless construction. Thus, we expect that this

addition to the ‘polar toolbox’ will enable natural adaptation

of many polar coding results to settings with memory.

II. NOTATION

A set of elements is denoted as a list in braces, e.g.,

{1, 2, . . . , L}. The number of elements in a set A is denoted

by |A|. The disjoint union of two sets A0, A1 is denoted by

A0 ·∪ A1. To use this notation, A0 and A1 must indeed be

disjoint. Open and closed intervals are denoted by (a, b) and

[a, b], respectively.

We denote ykj =
[

yj yj+1 · · · yk
]

for j < k. For an

arbitrary set of indices F we denote yF = {yj, j ∈ F}.

In a summation involving multiple variables, if only one

variable is being summed, we will make this explicit by

underlining it. For example, in
∑

a 6=b f(a, b) we sum over

the values of a that are different than b, and b is fixed. In

particular,
∑

a 6=b f(a, b) =
∑

b

∑

a 6=b f(a, b).
For a sequence of binary numbersB1, B2, . . . , Bn we define

(B1B2 · · ·Bn)2 ,
∑n

j=1 Bj2
n−j . Thus, the rightmost digit

Bn is the least significant bit. Addition of binary numbers is

assumed to be an XOR operation (i.e., modulo-2 addition).

The probability of an event A is denoted by P(A). Ran-

dom variables are denoted using a sans-serif font, e.g., X

and their realizations using lower-case letters, e.g., x. The

distribution of random variable X is denoted by PX = PX(x).
When marginalizing distributions, we will sometimes use the

shorthand
∑

x PX,Y ≡∑x PX,Y(x, y); the summation variable

will denote which random variable is being marginalized. The

expectation of X is denoted by E [X].

III. THE POLAR TOOLBOX

A. Various Parameters of Distributions

In this section we introduce several parameters that may be

computed from the joint distribution of two random variables:

probability of error, Bhattacharyya parameter, conditional en-

tropy, and total variation distance. These parameters are useful

for the analysis of polar codes. These parameters are not

1I.e., aperiodic and irreducible.

random variables; they are deterministic quantities computed

from the joint distribution.

Consider a pair of random variables (U,Q) with joint dis-

tribution PU,Q(u, q) = PQ(q)PU|Q(u|q). The random variable

U is binary2 and Q is some observation dependent on U that

takes values in a finite alphabet Q.

Definition 1 (Probability of error). The probability of error

Pe(U|Q) of optimally estimating U from the observation Q, in

the sense of minimizing the probability of error, is given by

Pe(U|Q) =
∑

q

min{PU,Q(0, q), PU,Q(1, q)}

=
∑

q

PQ(q)min{PU|Q(0|q), PU|Q(1|q)}.

Definition 2 (Bhattacharyya parameter). The Bhattacharyya

parameter of U given Q, Z(U|Q), is defined as

Z(U|Q) = 2
∑

q

√

PU,Q(0, q)PU,Q(1, q)

= 2
∑

q

PQ(q)
√

PU|Q(0|q)PU|Q(1|q).
(1)

Definition 3 (Total Variation Distance). The total variation

distance of U given Q, K(U|Q), is defined as

K(U|Q) =
∑

q

|PU,Q(0, q)− PU,Q(1, q)|

=
∑

q

PQ(q)
∣

∣PU|Q(0|q)− PU|Q(1|q)
∣

∣ .
(2)

The parameters defined above all required that U be binary.

They can be extended to the non-binary case, as described in

Appendix B. A final parameter we will use is the conditional

entropy. Unlike the other parameters, the conditional entropy is

also defined when U takes values in an arbitrary finite alphabet

U, not necessarily binary.

Definition 4 (Conditional Entropy). The conditional entropy

of U given Q, H(U|Q), is defined as

H(U|Q) = −
∑

q

∑

u

PU,Q(u, q) log2
PU,Q(u, q)

∑

u PU,Q(u, q)

= −
∑

q

PQ(q)
∑

u

PU|Q(u|q) log2 PU|Q(u|q).
(3)

It is easily seen that all four parameters take values in [0, 1]
when U is binary. They are all related, as established in the

following lemma.

Lemma 1. The total variation distance, probability of error,

conditional entropy, and Bhattacharyya parameter are related

by

K(U|Q) = 1− 2Pe(U|Q) ≥ 1−H(U|Q), (4a)

Z(U|Q)2 ≤ H(U|Q) ≤ Z(U|Q), (4b)

K(U|Q) ≤
√

1− Z(U|Q)2 ≤
√

1−H(U|Q)2. (4c)

2This assumption is for the sake of simplicity. See Remark 2 at the end of
this subsection for a discussion of the implications of non-binary U.
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The proof of Lemma 1 is relegated to Appendix A. We

note that the right-most inequality of (4b) was also shown

in [6, Proposition 2] and the left-most inequality of (4c) was

also shown in [1, Appendix A]; our proof of the latter is more

general. Due to (4a), we shall concentrate in the sequel on

K(U|Q) rather than Pe(U|Q).
In [6], Arıkan used the inequality

Z(U|Q)2 ≤ H(U|Q) ≤ log2(1 + Z(U|Q)) (5)

to show that if the Bhattacharyya parameter approaches 0 or

1 then the conditional entropy approaches 0 or 1 as well and

vice versa. An alternative proof of this can be had by (4b).

This yields

Z(U|Q)2 ≤ H(U|Q) ≤ Z(U|Q) ≤
√

H(U|Q),
which indeed implies that the Bhattacharyya parameter and

conditional entropy approach 0 and 1 in tandem. This inequal-

ity is tighter than (5); however, as discussed in Appendix B,

an advantage of inequality (5) is that it has a natural extension

to the case where U is non-binary.

An additional consequence of Lemma 1 is that (a) if

Z(U|Q) → 0 or H(U|Q) → 0 then K(U|Q) → 1 and (b)

if Z(U|Q) → 1 or H(U|Q) → 1 then K(U|Q) → 0.

Remark 1. By combining (4a) and (4b) we obtain

1− 2Pe(U|Q) ≥ 1−H(U|Q) ≥ 1− Z(U|Q).
Rearranging, we obtain the well-known bound, Pe(U|Q) ≤
Z(U|Q)/2.

The definitions above naturally extend to the case where

instead of Q there are multiple random variables related to U.

For example, consider a triplet of random variables (U,Q, S)
with joint distribution PU,Q,S(u, q, s) such that U is binary and

Q, S take values in finite alphabets Q, S. We call S the ‘state’.

Then,

K(U|Q, S) =
∑

q,s

|PU,Q,S(0, q, s)− PU,Q,S(1, q, s)|;

the remaining parameters are similarly extended. We say that

K(U|Q, S) is a state-informed (SI) version of K(U|Q).
How do the SI parameters compare to their non-SI counter-

parts? For the entropy, the answer lies in [17, Theorem 2.6.5],

the well known property that conditioning reduces entropy. In

the following lemma, proved in Appendix A, we consider the

other parameters as well.

Lemma 2. Let (U,Q, S) be a triplet of random variables with

joint distribution PU,Q,S(u, q, s). Then

K(U|Q) ≤ K(U|Q, S), (6a)

Z(U|Q) ≥ Z(U|Q, S), (6b)

H(U|Q) ≥ H(U|Q, S). (6c)

Remark 2. In this paper, we assume for simplicity that U is

binary. It is possible to extend our results to the non-binary

case. To this end, a suitable extension of the distribution

parameters is required. The key properties that need to be

preserved are (a) that they be bounded between 0 and 1; (b)

that they approach their extreme values in tandem; and (c) that

they satisfy Lemma 2. In Appendix B we suggest a suitable

extension that satisfies these requirements.

B. Polarization

We review some basics of polarization in this section. The

concepts introduced here will be useful in the sequel.

1) General Definitions: Consider a strictly stationary pro-

cess (Xj ,Yj), j = 1, 2, . . . with a known joint distribution.

We assume that Xj are binary and Yj ∈ Y, where Y is a

finite alphabet. The random variables Xj are to be estimated

from the observations Yj . In a channel coding setting, Xj is

the input to a channel and Yj its output. In a lossless source

coding setting [6], Xj is a data sequence to be compressed

and Yj is side information available to the decompressor.

In a lossy compression setting [5], the compressor takes a

source sequence and distorts it to obtain a sequence XN
1 that

is ultimately recovered by the decompressor.3

We denote Arıkan’s polarization matrix by GN = BNG
⊗n
2 ,

where N = 2n, BN is the N × N bit-reversal matrix, and

G2 =

[

1 0
1 1

]

. Recall that G−1
N = GN . Following [11], we

define

UN
1 = XN

1 GN , (7a)

VN
1 = X2N

N+1GN , (7b)

Qi = (Ui−1
1 ,YN

1 ), (7c)

Ri = (Vi−1
1 ,Y2N

N+1), (7d)

where i = 1, 2, . . . , N .

Due to the recursive nature of polar codes, the above

equations will be key for passing from a block of length N
to a block of length 2N . First, however, let us concentrate on

a length-N block. For such a block, equations (7a) and (7c)

are pertinent. Although we have described several different

communication scenarios, they all share the same succinct

description that follows.

A certain subset of indices F ⊂ {1, 2, . . . , N} is preselected

according to some rule; the set F dictates the performance

of the code. When encoding (compressing), one produces a

sequence UN
1 . The relationship between the sequence UN

1 and

the sequence XN
1 is given by (7a). Then, UF is made available

to the decoder.4 The decoding (decompressing) operation is

iterative. For i = 1, 2, . . ., the decoder estimates Ui from Qi;

it uses its previous estimates of Ui−1
1 to form Qi. Whenever it

encounters an index in F , it returns as its estimate the relevant

value from UF . After estimating UN
1 , the decoder recovers XN

1

via (7a).

The polarization phenomenon is that for large enough n,

the fraction of indices with moderate conditional entropy,

|{i : H(Ui|Qi) ∈ (ǫ, 1 − ǫ)}|/N , becomes negligibly small

for any ǫ > 0. One approach [1], [6] to derive such results

is probabilistic. Rather than counting the number of indices

3In fact, in a lossy compression setting, with side information known to both
compressor and decompressor, the process is (Xj ,Yj), where Yj = (Y′

j ,Y
′′

j ).
The random variables Y′ are the sequence to be compressed and the random
variables Y′′ are the side information.

4Depending on the application, this can be done either explicitly, by shared
randomness, or both.
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with moderate conditional entropy, a sequence of random

variables Hn, n = 1, 2, . . . is defined. The random variable

Hn assumes the value H(Ui|Qi), with i selected uniformly

from {1, 2, . . . , N}. Thus, the probability that Hn lies in a

certain range equals the fraction of indices whose conditional

entropies lie in this range.

The recursive nature of the polarization transform is at the

heart of the probabilistic approach. Concretely, let B1,B2, . . .
be a sequence of independent and identically distributed

(i.i.d.) Bernoulli-1/2 random variables. We set i − 1 =
(B1B2 · · ·Bn)2; indeed, i assumes any value in {1, 2, . . . , N}
with equal probability. Define the random variables

Kn = K(Ui|Ui−1
1 ,YN

1 ) = K(Ui|Qi),

Zn = Z(Ui|Ui−1
1 ,YN

1 ) = Z(Ui|Qi),

Hn = H(Ui|Ui−1
1 ,YN

1 ) = H(Ui|Qi)

(8)

whenever (i − 1) = (B1B2 · · ·Bn)2. That is, they denote

the relevant distribution parameters for a uniformly chosen

index after n polarization steps. We call Kn,Zn, and Hn, n =
1, 2, . . . the total variation distance process, the Bhattacharyya

process, and the conditional entropy process, respectively.

When passing from a length-N block to a block of length

2N , by the properties of GN [1, Section VII],

Kn+1 =

{

K(Ui + Vi|Qi,Ri) if Bn+1 = 0

K(Vi|Ui + Vi,Qi,Ri) if Bn+1 = 1.
(9)

Similar relationships hold for Hn+1 and Zn+1. We shall use

the mnemonics K−
n and K+

n to denote K(Ui + Vi|Qi,Ri) and

K(Vi|Ui + Vi,Qi,Ri), respectively. I.e., Kn+1 assumes the

value K−
n when Bn+1 = 0 and the value K+

n when Bn+1 = 1.

We shall use similar mnemonics for Hn and Zn.

The probability law of (Ui,Vi,Qi,Ri) can be obtained from

the probability law of (X2N
1 ,Y2N

1 ) using (7). Moreover, for

fixed i, there exists a function f , which depends solely on i,
such that

(Ui,Qi) = f(XN
1 ,Y

N
1 ),

(Vi,Ri) = f(X2N
N+1,Y

2N
N+1).

(10)

This can be seen by comparing (7a) and (7c) with (7b) and

(7d). Due to stationarity, PUi,Qi
= PVi,Ri

.

Denote Ti = Ui + Vi, as in Figure 1. The mapping

(Ui,Vi) 7→ (Ti,Vi) is one-to-one and onto. Hence,

PTi,Vi,Qi,Ri
(t, v, q, r) = PUi,Vi,Qi,Ri

(t+ v, v, q, r). (11)

We now formally define polarization and fast polarization.

Definition 5. Let An, n = 1, 2, . . . be a sequence of random

variables that take values in [0, 1].

1) The sequence An polarizes if it converges almost surely

to a {0, 1}-random variable A∞ as n → ∞. We will

sometimes abbreviate this by saying that “An polarizes

to A∞.”

2) The sequence An polarizes fast to 0 with β > 0 if it

polarizes and

lim
n→∞

P

(

An < 2−2nβ
)

= P (A∞ = 0) .

3) The sequence An polarizes fast to 1 with β > 0 if it

polarizes and

lim
n→∞

P

(

An > 1− 2−2nβ
)

= P (A∞ = 1) .

When the precise value of β is either obvious from the context

or not needed, we will write that An polarizes fast to, say, 0,

without mentioning the value of β.

The following lemma, first obtained by Arıkan and Telatar

in [2] and later adapted to the general case by Şaşoğlu in [4],

is an important tool for establishing fast polarization for a

sequence of random variables.

Lemma 3. [2],[4, Lemma 4.2] Let Bn, n = 1, 2, . . . be an

i.i.d. Bernoulli-1/2 process and An, n = 1, 2, . . . be a [0, 1]-
valued process that polarizes to a {0, 1}-random variable A∞.

Assume that there exist k ≥ 1 and d0, d1 > 0 such that for

i = 0, 1,

An+1 ≤ kAdi
n if Bn+1 = i.

Then, for any 0 < β < E = (log2 d0 + log2 d1)/2, we have

lim
n→∞

P

(

An < 2−2nβ
)

= P (A∞ = 0) . (12)

Remark 3. It was shown in [18] that Lemma 3 can be

strengthened. Namely, equation (12) can be replaced with the

stronger assertion limn0→∞ P(An ≤ 2−2nβ

for all n ≥ n0) =
P(A∞ = 0). Hence, any result based on Lemma 3, such as

Theorems 7 and 13, can be strengthened similarly.

2) The Memoryless Case: The memoryless case is char-

acterized by PXN
1
,YN

1
(xN1 , y

N
1 ) =

∏N
j=1 PX,Y(xj , yj). Arıkan

showed in [1] that in the memoryless case the process Hn

polarizes. Consequently, when n is large enough, for all but a

negligible fraction of indices i, H(Ui|Ui−1
1 ,YN

1 ) is either very

close to 0 or very close to 1.

To achieve this, Arıkan had shown that the sequence Hn,

n = 1, 2, . . . is a bounded martingale sequence and thus

converges almost surely to some random variable H∞. By

showing that H∞ can only assume the values 0 and 1,

polarization is obtained.

The Bhattacharyya process, in the memoryless case, is a

bounded supermartingale that converges almost surely to a

{0, 1}-random variable Z∞. The process Zn satisfies Lemma 3

with E = 1/2 by virtue of [1, Proposition 5], by which

Zn+1 =

{

≤ 2Zn if Bn+1 = 0

Z2
n if Bn+1 = 1.

Thus, the Bhattacharyya process polarizes fast to 0 with any

β < 1/2.

Fast polarization of the Bhattacharyya parameter is impor-

tant for the performance analysis of polar codes. In particular,

this was instrumental in Arıkan’s proof that polar codes are

capacity-achieving for binary-input, memoryless, symmetric,

channels [1]. Arıkan had upper-bounded the probability of er-

ror of polar codes by the union-Bhattacharyya bound. Thanks

to fast polarization of the Bhattacharyya process to 0, the

bound converges to 0.

The additional requirement of fast polarization of Zn to 1 is

important for many applications of polar codes. For example,
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· · · Qi

· · · Ri

+Ti Ui

Vi Vi

Fig. 1. Illustration of a polarization transform. Random variables (Ui,Qi)
have joint distribution PUi,Qi

and random variables (Vi,Ri) have joint
distribution PVi,Ri

.

it is integral to source coding applications [5] and to channel

coding without symmetry assumptions [9]. In [5, Theorem

16], this fast polarization was established by showing that the

process Z̃n = 1−Z2
n polarizes fast to 0 with β < 1/2. Another

way to see this, which we pursue in the sequel, is via the total

variation process Kn.

A consequence of Lemma 1 is that if Kn polarizes fast to 0
then Zn must polarize fast to 1. The total variation process Kn

can be shown to polarize (we show this in Corollary 11 for a

more general setting). Fast polarization of Kn to 0 is obtained

from Lemma 3 and the following proposition.

Proposition 4. Assume that (Xj ,Yj), j ∈ Z is a memoryless

process, where Xj is binary and Yj ∈ Y. Then,

Kn+1 =

{

K2
n if Bn+1 = 0

≤ 2Kn if Bn+1 = 1.
(13)

In the sequel, we shall generalize this proposition to a non-

memoryless case. The proof for the memoryless case serves

as preparation for the more general case, which uses similar

techniques. For an extension of Proposition 4 to the case where

Xj is non-binary, see Appendix B.

Proof: Fix B1, . . . ,Bn and let i − 1 = (B1B2 · · ·Bn)2.

This also fixes the value of Kn. Using (10) and the memoryless

assumption, we denote P ≡ PUi,Qi
= PVi,Ri

, by which

PUi,Vi,Qi,Ri
(u, v, q, r) = P (u, q)P (v, r).

Note that Kn = K(Ui|Qi) = K(Vi|Ri).
Set Ti = Ui + Vi; by (11),

PTi,Vi,Qi,Ri
(t, v, q, r) = P (t+ v, q)P (v, r),

and PTi,Qi,Ri
(t, q, r) =

∑1
v=0 PTi,Vi,Qi,Ri

(t, v, q, r). A single-

step polarization from Kn to Kn+1, (9), becomes

Kn+1 =

{

K(Ti|Q,Ri) if Bn+1 = 0

K(Vi|Ti,Qi,Ri) if Bn+1 = 1.
(14)

Assume first that Bn+1 = 0. Then

Kn+1 =
∑

q,r

|PTi,Qi,Ri
(0, q, r) − PTi,Qi,Ri

(1, q, r)|

=
∑

q,r

∣

∣

∣

∣

∣

1
∑

v=0

P (v, r)(P (v, q) − P (v + 1, q))

∣

∣

∣

∣

∣

=
∑

q,r

∣

∣

∣

∣

(

P (0, q)− P (1, q)
)(

P (0, r)− P (1, r)
)

∣

∣

∣

∣

(a)
=
∑

q,r

|P (0, q)− P (1, q)| · |P (0, r)− P (1, r)|

=
∑

q

|P (0, q)− P (1, q)| ·
∑

r

|P (0, r)− P (1, r)|

= K
2
n,

where (a) is because |ab| = |a| · |b| for any two numbers

a, b. Next, assume that Bn+1 = 1. Observe that for any four

numbers a, b, c, d,

(ab− cd) =
(a+ c)(b − d) + (b+ d)(a− c)

2
. (15)

With a slight abuse of notation, we denote P (q) = PQi
(q) =

P (0, q) + P (1, q). Then, P (r) = PRi
(r) = P (0, r) + P (1, r).

Thus,

Kn+1 =
∑

t,q,r

|PTi,Vi,Qi,Ri
(t, 0, q, r)− PTi,Vi,Qi,Ri

(t, 1, q, r)|

=
∑

t,q,r

|P (t, q)P (0, r)− P (t+ 1, q)P (1, r)|

≤ 1

2

∑

t,q,r

P (q) |P (0, r)− P (1, r)|

+
1

2

∑

t,q,r

P (r) |P (t, q)− P (t+ 1, q)|

=
1

2

∑

t,r

|P (0, r)− P (1, r)|

+
1

2

∑

t,q

|P (t, q)− P (t+ 1, q)|

= 2Kn,

where the inequality is due to a combination of (15) with the

triangle inequality.

We have shown that Kn+1 = K2
n if Bn+1 = 0 and Kn+1 ≤

2Kn if Bn+1 = 1, completing the proof.

Remark 4. Several other authors have independently looked

at the polarization of the total variation distance. For exam-

ple, [19, Proposition 5.1] derives relations similar to (13);

the top equality of (13) is also shown in [20, Equation 12].

Those results were derived for binary-input, memoryless, and

symmetric channels. Our Proposition 4, on the other hand,

does not require symmetry. We note in passing that it is

also easily extended to a non-stationary case (similar to [21,

Appendix 2.A] for the Bhattacharyya process), but that is

outside the scope of this paper.

IV. FINITE-STATE APERIODIC IRREDUCIBLE MARKOV

PROCESSES

In this section we introduce a class of processes with mem-

ory that we call Finite-state Aperiodic Irrecducible Markov

processes (FAIM processes). This is the class of processes for

which we establish polarization and fast polarization.

These processes are described using an underlying state

sequence. Often, however, the state sequence is hidden. The

polarization results we obtain apply to processes with a hidden

state sequence.
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A. Definition

Let (Xj ,Yj , Sj), j ∈ Z be a strictly stationary process,

where Xj is binary, Yj ∈ Y, and Sj ∈ S. The alphabets Y

and S are finite; in particular, S = {1, 2, . . . , |S|}. We call

Sj , j ∈ Z the state sequence; it governs the distribution of

sequences Xj and Yj , j ∈ Z.

We may think of Xj as a state-dependent input to a state-

dependent channel with output Yj . Alternatively, Xj may be

some state-dependent source to be compressed, and Yj an

observation that the decoder may use as a decompression aid.

The state sequence encompasses the memory of the process.

The process is described by the conditional probability

PXj ,Yj,Sj |Sj−1
, which, by the stationarity assumption, is in-

dependent of j. We assume a Markov property: conditioned

on Sj−1, the random variables Xk,Yk, Sk are independent of

Xl,Yl, Sl−1 for any l < j ≤ k. Thus, for any N > M > 0,

PXN
1
,YN

1
,SN |S0

=
∑

b

PXM
1

,YM
1

,SM ,XN
M+1

,YN
M+1

,SN |S0

=
∑

b

PXN
M+1

,YN
M+1

,SN |SM ,XM
1

,YM
1

,S0
· PXM

1
,YM

1
,SM |S0

=
∑

b

PXN
M+1

,YN
M+1

,SN |SM
· PXM

1
,YM

1
,SM |S0

,

(16)

where b in the sum represents the value of the middle state

SM .

The state sequence is a finite-state homogeneous Markov

chain. We denote its marginal distribution by π, and use the

shorthand

πN (a) = PSN
(a)

πN |M (b|a) = PSN |SM
(b|a)

πN,M (b, a) = PSN ,SM
(b, a),

(17)

where N > M . Note that πN (a) = π0(a) and πN |M (b|a) =
πN−M|0(b|a).

A finite-state homogeneous Markov chain is aperiodic and

irreducible (ergodic) if and only if there is some N0 > 0 such

that for any N ≥ N0, πN |0(b|a) > 0 for any a, b ∈ S. It

can be shown that it has a unique stationary distribution π0
and π0(a) > 0 for any a ∈ S. Moreover, πN |0(b|a) → π0(b)
exponentially fast as N → ∞ for any a, b ∈ S. See, e.g., [22,

Section 8].

The process (Xj ,Yj , Sj), j ∈ Z is called a finite-state ape-

riodic irreducible Markov process if the underlying Markov

process Sj , j ∈ Z is homogenous, finite-state, strictly station-

ary, aperiodic, and irreducible.5 In the sequel, we assume that

(Xj ,Yj , Sj), j ∈ Z is a FAIM process.

At this point, the reader may wonder why we have imposed

aperiodicity and irreducibility. In [11, Theorem 3], it was

demonstrated that periodic processes may not polarize. We

assume aperiodicity to ensure that polarization indeed happens.

As for irreducibility, note that since the number of states is

finite, the state sequence Sj , j ∈ Z must reach an irreducible

sink after sufficient time. Hence, the irreducibility assumption

5We remark that the process (Xj ,Yj), j ∈ Z is not necessarily Markov.

is equivalent to assuming that the state sequence begins in

some irreducible sink.

Our model applies to many problems in information theory

that can be described using states. For example, compression

of finite memory sources and coding for input constrained

channels. Additionally, our model may be applied to finite-

state channels; in this case, the FAIM state sequence describes

both the channel state and input state. That is, FAIM processes

enable us to model non-i.i.d. input sequences.

One famous example of a finite state model is the in-

decomposable FSC model considered in [15, Section 4.6].

There are some differences between this model and ours. Most

importantly, a FAIM process has a specified input distribution,

whereas an indecomposable FSC is devoid of such specifica-

tion. Instead, an indecomposable FSC imposes conditions that

should hold for all input sequences. That said, once a hidden

Markov input distribution has been specified, we can define a

process in which the state space is the Cartesian product of

the state spaces of the input distribution and the channel. In

many important cases, e.g. a Gilbert-Elliot channel [23], this

combined process falls under the FAIM framework.

B. Blocks of a FAIM Process

Typically, the state sequence is not observed. The joint

distribution of (XN
1 ,Y

N
1 ) is given by

PXN
1
,YN

1
(xN1 , y

N
1 ) =

∑

b,a

PXN
1
,YN

1
,SN |S0

(xN1 , y
N
1 , b|a)π0(a),

where π0 is the stationary distribution of the initial state.

Definition 6 (Block). Let (Xj ,Yj , Sj), j ∈ Z be a FAIM

process and assume M > L. We call (XM
L+1,Y

M
L+1) a block

of the FAIM process. Its length is M − L.

State SL is called the initial state of the block. State SM is

called the final state of the block.

We emphasize that the initial state of the block

(XM
L+1,Y

M
L+1) is SL and not SL+1.

The following lemma holds for any two non-overlapping

blocks of a FAIM process. It establishes that FAIM processes

are a special case of the family of processes considered in [11].

Lemma 5. Assume that (Xj ,Yj , Sj), j ∈ Z is a FAIM process.

Then, there exists a non-increasing sequence ψ(N), ψ(N) → 1
as N → ∞, such that for any N > M ≥ L ≥ 1,

PXL
1
,YL

1
,XN

M+1
,YN

M+1
≤ ψ(M−L) ·PXL

1
,YL

1
·PXN

M+1
,YN

M+1
, (18)

and ψ(0) <∞.

We relegate the proof to Appedix C. We remark, however,

that

ψ(N) =















max
a,b

πN |0(b|a)
π0(b)

if N > 0

max
a

1

π0(a)
if N = 0.

(19)

I.e., ψ(·) is completely determined by the distribution of the

underlying state sequence. Indeed, ψ(N) → 1 as N → ∞.



7

(Ui,Qi) = f(XN
1 ,Y

N
1 ) (Vi,Ri) = f(X2N

N+1,Y
2N
N+1)

S0

a

SN

b

S2N

c

Fig. 2. Two adjacent length-N blocks of a FAIM process. When i − 1 =
(B1B2 · · ·Bn)2, there is a function f such that (Ui,Qi) = f(XN

1
,YN

1
) and

(Vi,Ri) = f(X2N
N+1

,Y2N
N+1

). The initial state of the first block, S0, assumes

value a ∈ S. The final state of the first block, SN , which is also the initial
state of the second block, assumes value b ∈ S. The final state of the second
block, S2N , assumes value c ∈ S.

A process satisfying (18) with ψ(N) → 1 as N → ∞
is called ψ-mixing.6 The function ψ(·) is called the mixing

coefficient. The operational meaning of (18) is that as L and

M becomes more separated in time, the blocks (XL
1 ,Y

L
1 ) and

(XN
M+1,Y

N
M+1) become almost independent.7

Two adjacent blocks of the process share a state. The final

state of the first block is the initial state of the second block.

Given the shared state, the two blocks are independent. We

capture this in the following lemma.

Lemma 6. For any N > M ≥ 1,

PXM
1

,YM
1

,XN
M+1

,YN
M+1

|SM
= PXM

1
,YM

1
|SM

PXN
M+1

,YN
M+1

|SM
,

(20a)

PXM
1

,YM
1

,XN
M+1

,YN
M+1

|S0,SM ,SN
= PXM

1
,YM

1
|S0,SM

PXN
M+1

,YN
M+1

|SM ,SN
.

(20b)

This is a direct consequence of the Markov property. A

formal derivation can be found in Appendix C.

A notational convention concludes this section. Our analysis

involves the use of some states of blocks of a FAIM process.

We will use ascending letters to denote values of ordered states.

That is, a state with value a occurs before a state with value b,
which, in turn, occurs before a state with value c. In Figure 2

we illustrate a particular case that will be used in the sequel.

A block of length 2N comprises two adjacent blocks of length

N . State S0, the initial state of the first block, may take value

a, state SN , at the end of the first block and the beginning

of the second block, may take value b, and state S2N , at the

end of the second block, may take value c. We emphasize that

a, b, c ∈ S are not random variables, but values of the relevant

states.

C. Boundary-State-Informed Parameters for FAIM Processes

Let (XN
1 ,Y

N
1 ) be a block of a FAIM process with state

sequence Sj . Let f(·, ·) be some function independent of the

state sequence such that

(U,Q) = f(XN
1 ,Y

N
1 )

6In some literature, e.g. [24], the term used is ψ∗-mixing.
7Let A and B be two σ-algebras. If for any two events A ∈ A and B ∈ B

we have P(A∩B) ≤ P(A)P(B) then P(A∩B) = P(A)P(B). Assume to the
contrary that for some events A0, B0, P(A0 ∩B0) < P(A0)P(B0). Denote
the complement of A0 by Ā0. Since Ā0 ∈ A, we obtain a contradiction:
P(B0) = P(Ā0 ∩ B0) + P(A0 ∩ B0) < P(A0)P(B0) + P(Ā0)P(B0) =
P(B0).

and U is binary. We denote

P b
a(u, q) , PU,Q|SN ,S0

(u, q|b, a) = PU,Q,SN |S0
(u, q, b|a)

πN |0(b|a)
.

(21)

I.e., this is the distribution of U and Q, functions of a block

of length N , conditioned on the initial state being S0 = a and

the final state being SN = b. We further define

P b
a(q) = P b

a(0, q) + P b
a(1, q). (22)

I.e., P b
a(q) = PQ|SN ,S0

(q|b, a), and
∑

q P
b
a(q) = 1.

We denote the results of replacing PU,Q(u, q) with P b
a (u, q)

in Equations (1) to (3) by Zb
a(U|Q), Kb

a(U|Q), and Hb
a(U|Q),

respectively. For example,

Kb
a(U|Q) =

∑

q

∣

∣P b
a(0, q)− P b

a(1, q)
∣

∣ . (23)

Since PU,Q,SN ,S0
(u, q, b, a) = P b

a(u, q) · πN,0(b, a), we have

K(U|Q, SN , S0) =
∑

a,b πN,0(b, a)K
b
a(U|Q). This leads to the

following definition.

Definition 7. Let (U,Q) = f(XN
1 ,Y

N
1 ) with U binary. The

boundary-state-informed (BSI) total variation distance, Bhat-

tacharyya parameter, and conditional entropy are respectively

defined as

K(U|Q, SN , S0) =
∑

a,b

πN,0(b, a)K
b
a(U|Q),

Z(U|Q, SN , S0) =
∑

a,b

πN,0(b, a)Z
b
a(U|Q),

H(U|Q, SN , S0) =
∑

a,b

πN,0(b, a)H
b
a(U|Q).

BSI parameters are defined for blocks of the process; they

depend on the initial and final states of the block. Invoking (6)

we relate the distribution parameters to their BSI counterparts,

K(U|Q) ≤ K(U|Q, SN , S0),
Z(U|Q) ≥ Z(U|Q, SN , S0),
H(U|Q) ≥ H(U|Q, SN , S0).

(24)

V. FAST POLARIZATION FOR FAIM PROCESSES

This section contains our main result: fast polarization

for FAIM processes. First, we show that they polarize by

leveraging the results of [11]. Then, we show fast polarization

of the Bhattacharyya parameter and of the total variation

distance to zero.

The notation of Section III-B holds, without change, for

FAIM processes. That is, UN
1 ,V

N
1 ,Qi,Ri, i = 1, . . . , N are

defined using (7). The random variables B1, . . . ,Bn are used

for a random, iterative, uniform selection of an index after n
polarization steps. That is, they constitute the binary expansion

of i− 1, through which the random variables Kn = K(Ui|Qi),
Hn = H(Ui|Qi), and Zn = Z(Ui|Qi) are defined. Random

variable Kn+1 is related to Kn by (9). I.e., Kn+1 = K−
n if

Bn+1 = 0 and Kn+1 = K+
n if Bn+1 = 1. Similar relationships

hold for Hn and Zn.
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Let K̂n, Ĥn, and Ẑn denote the boundary-state-informed

versions of Kn,Zn, and Hn, respectively. That is,

K̂n = K(Ui|Qi, SN , S0),

Ẑn = Z(Ui|Qi, SN , S0),

Ĥn = H(Ui|Qi, SN , S0),

(25)

where i − 1 = (B1B2 · · ·Bn)2. By (24), Kn ≤ K̂n, Zn ≥ Ẑn,

and Hn ≥ Ĥn for any n. Similar to (9), we have

K̂n+1 =

{

K(Ui + Vi|Qi,Ri, S0, S2N ) if Bn+1 = 0

K(Vi|Ui + Vi,Qi,Ri, S0, S2N ) if Bn+1 = 1.
(26)

Relationships akin to (26) hold for Ẑn+1 and Ĥn+1, with K

replaced with Z and H, respectively. We use the mnemonic

K̂
−
n+1 = K(Ui + Vi|Qi,Ri, S0, S2N ) and K̂

+
n+1 = K(Vi|Ui +

Vi,Qi,Ri, S0, S2N ), and similar mnemonics for the BSI Bhat-

tachryya and conditional entropy processes.

A. Existing Polarization Results for FAIM Processes

In [11], a class of processes with memory was considered.

For this class, the authors showed that the conditional entropy

process polarizes and that the Bhattacharyya process polarizes

fast to 0.

Specifically, let

H⋆(X|Y) , lim
N→∞

1

N
H(XN

1 |YN
1 ).

This limit exists due to stationarity [17, Section 4.2] and the

identity H(XN
1 |YN

1 ) = H(XN
1 ,Y

N
1 )−H(YN

1 ).

Theorem 7. [11, Theorems 1,2,4,5] For a strictly stationary

ψ-mixing process (Xj ,Yj), j ∈ Z, with ψ(0) <∞:

1) Hn polarizes to H∞ with P (H∞ = 1) = H⋆(X|Y);
2) Zn polarizes fast to 0 with β < 1/2.

In particular, for any ǫ > 0,

lim
N→∞

1

N
|{i : H(Ui|Qi) > 1− ǫ}| = H⋆(X|Y), (27a)

lim
N→∞

1

N
|{i : H(Ui|Qi) < ǫ}| = 1−H⋆(X|Y), (27b)

and for any β < 1/2,

lim
N→∞

1

N

∣

∣

∣

{

i : Z(Ui|Qi) < 2−Nβ
}∣

∣

∣ = 1−H⋆(X|Y). (28)

To prove Theorem 7, the conditional entropy process Hn

was shown to be a bounded supermartingale, so it converges

almost surely to some random variable H∞. This latter random

variable was shown to be a {0, 1}-random variable with

P(H∞ = 1) = 1− P(H∞ = 0) = H⋆(X|Y). This yields (27).

Equation (28) is based on the observation that

P

(

Zn < 2−Nβ
)

=
1

N

∣

∣

∣

{

i : Z(Ui|Qi) < 2−Nβ
}∣

∣

∣ . (29)

First, the Bhattacharyya process Zn was also shown to con-

verge almost surely to H∞. Next, using the mixing property,

the authors showed that Z−
n ≤ 2ψ(0)Zn and Z+

n ≤ ψ(0)Z2
n.

This allowed them to invoke Lemma 3 and obtain (28).

Corollary 8. Let (Xj ,Yj , Sj), j ∈ Z be a FAIM process. Then,

1) Its conditional entropy process Hn polarizes to H∞ with

P (H∞ = 1) = H⋆(X|Y).
2) Its Bhattacharyya process Zn polarizes fast to 0 with

any β < 1/2.

Proof: By Lemma 5, blocks of FAIM processes are ψ-

mixing and satisfy the requirements of Theorem 7.

Theorem 7, and consequently Corollary 8, are silent on the

rate of polarization of Zn to 1. In the sequel we establish a

compatible claim for FAIM processes. To do this, we exploit

the structure of FAIM processes by calling upon the BSI

processes Ĥn and K̂n.

B. Polarization of the BSI Distribution Parameters

This section is concerned with proving that the BSI distribu-

tion parameters polarize. We achieve this by first showing that

the BSI conditional entropy polarizes and then using Lemma 1

to establish polarization of the BSI Bhattacharyya parameter

and BSI total variation distance.

Theorem 9. Let (Xj ,Yj , Sj), j ∈ Z be a FAIM process.

The BSI conditional entropy process Ĥn polarizes to Ĥ∞ and

Ĥ∞ = H∞ almost surely.

In particular, for any ǫ > 0,

lim
N→∞

1

N
|{i : H(Ui|Qi, S0, SN ) > 1− ǫ}| = H⋆(X|Y),

lim
N→∞

1

N
|{i : H(Ui|Qi, S0, SN ) < ǫ}| = 1−H⋆(X|Y).

Proof: Consider two adjacent blocks of length N = 2n

and let i − 1 = (B1B2 · · ·Bn)2. Recall from (10) that

(Ui,Qi) = f(XN
1 ,Y

N
1 ) and (Vi,Ri) = f(X2N

N+1,Y
2N
N+1),

where the function f depends on the index i (see Figure 2).

Using (20b) we obtain

PUi,Vi|Qi,Ri,S0,SN ,S2N
= PUi|Qi,S0,SN

PVi|Ri,SN ,S2N
. (30)

Thus,

Ĥn
(a)
=

1

2

(

H(Ui|Qi, S0, SN ) +H(Vi|Ri, SN , S2N )
)

(b)
=

1

2
H(Ui,Vi|Qi,Ri, S0, SN , S2N )

(c)
=

1

2
H(Ui + Vi,Vi|Qi,Ri, S0, SN , S2N )

(d)
=

1

2

(

H(Ui + Vi|Qi,Ri, S0, SN , S2N )

+H(Vi|Ui + Vi,Qi,Ri, S0, SN , S2N )
)

(e)

≤ 1

2

(

H(Ui + Vi|Qi,Ri, S0, S2N )

+H(Vi|Ui + Vi,Qi,Ri, S0, S2N )
)

=
1

2

(

Ĥ−
n + Ĥ+

n

)

,

where (a) is by stationarity, (b) is by (30), (c) is because the

mapping (U,V) 7→ (U + V,V) is one-to-one and onto, (d) is

by the chain rule for entropies, and (e) is by (6c).
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By (26) (applied to the BSI conditional entropy), Ĥn is a

submartingale sequence:

1

2

(

Ĥ−
n + Ĥ+

n

)

= E

[

Ĥn+1

∣

∣

∣Ĥn, Ĥn−1, . . . , Ĥ1

]

≥ Ĥn.

It is also bounded, as Ĥn ∈ [0, 1] for any n. Thus, it converges

almost surely to some random variable Ĥ∞ ∈ [0, 1], [22,

Theorem 35.4].

Denote ∆Hn = Hn − Ĥn. The sequence ∆Hn converges

almost surely to the random variable ∆H∞ = H∞ − Ĥ∞.

This is because Ĥn converges almost surely to Ĥ∞, and,

by Corollary 8, Hn converges almost surely to H∞. By (6),

∆Hn ≥ 0 for any n, which implies that ∆H∞ ≥ 0 almost

surely. We now show that ∆H∞ = 0 almost surely. To this end,

we will need the following lemma, whose proof is postponed

to the end of this theorem.

Lemma 10. The sequence ∆Hn satisfies

lim
n→∞

E [∆Hn] = 0.

Since ∆Hn converges to ∆H∞ almost surely, we specif-

ically have lim infn→∞ ∆Hn = ∆H∞ almost surely. Using

Fatou’s lemma8 for the non-negative sequence ∆Hn, n =
1, 2, . . . we obtain

0 ≤ E [∆H∞] = E

[

lim inf
n→∞

∆Hn

]

≤ lim inf
n→∞

E [∆Hn] = lim
n→∞

E [∆Hn] = 0.

Thus, E [∆H∞] = 0. By Markov’s inequality, P(∆H∞ ≥ δ) ≤
E [∆H∞] /δ = 0 for any δ > 0; consequently, P(∆H∞ =
0) = P(H∞ = Ĥ∞) = 1. Put another way, Ĥ∞ = H∞ almost

surely.

Recall that H∞ is a {0, 1} random variable with P(H∞ =
1) = H⋆(X|Y). Since Ĥ∞ = H∞ almost surely, and

P

(

Ĥn > 1− ǫ
)

=
1

N
|{i : H(Ui|Qi, S0, SN ) > 1− ǫ}| ,

P

(

Ĥn < ǫ
)

=
1

N
|{i : H(Ui|Qi, S0, SN ) < ǫ}| ,

the proof is complete.

Proof of Lemma 10: By (6), ∆Hn ≥ 0, so E [∆Hn] ≥ 0
as well.

Using the chain rule for conditional entropies and since the

transformation UN
1 = XN

1 GN is one-to-one and onto,

E [Hn] =
1

N

N
∑

i=1

H(Ui|Qi) =
H(UN

1 |YN
1 )

N
=

H(XN
1 |YN

1 )

N
.

Similarly, E
[

Ĥn

]

= H(XN
1 |YN

1 , S0, SN )/N . Thus,

E [∆Hn] =
1

N

(

H(XN
1 |YN

1 )−H(XN
1 |YN

1 , S0, SN )
)

(a)
=

1

N

(

H(S0, SN |YN
1 )−H(S0, SN |XN

1 ,Y
N
1 )
)

(b)

≤ 2 log2(|S|)
N

.

8Fatou’s lemma [22, Theorem 16.3] states that if An, n = 1, 2, . . . is
a sequence of non-negative random variables then E [lim infn→∞ An] ≤

lim infn→∞ E [An].

To see (a), note that for any 3 random variables A,B,C
we have H(A,B|C) = H(A|C) + H(B|A,C) = H(B|C) +
H(A|B,C). Rearranging and setting A = XN

1 , B = (S0, SN )
and C = YN

1 yields (a). Inequality (b) is since S0, SN take

values in the finite alphabet S and the conditional entropy is

non-negative.

Combining these inequalities, and recalling that N = 2n,

we obtain

0 ≤ E [∆Hn] ≤ 2 log2(|S|)/2n.
This holds for any n. We take limits and use the sandwich

rule to yield limn→∞ E [∆Hn] = 0, as desired.

The following corollary is a direct consequence of the

definition of almost-sure convergence, Lemma 1, Corollary 8,

and Theorem 9.

Corollary 11.

1) The sequences Zn and Ẑn polarize to random variables

Z∞ and Ẑ∞, respectively. Moreover, Z∞ = Ẑ∞ = H∞

almost surely.

2) The sequences Kn and K̂n polarize to random variables

K∞ and K̂∞, respectively. Moreover, K∞ = K̂∞ = 1−
H∞ almost surely.

Proof: The proofs of both items are essentially the same,

so we prove only the first item.

Recall the definition of almost-sure convergence of a se-

quence of random variables. Let (Ω,F,P) be a probability

space, and let A,A1,A2, . . . be a sequence of F-measurable

random variables defined on this space. A random variable is a

deterministic function from Ω to R. We say that An converges

to A almost surely if the set

A =
{

ω ∈ Ω : lim
n→∞

An(ω) = A(ω)
}

satisfies P (A) = 1.

Now, let (Ω,F,P) be the probability space in which

Hn, Ĥn,Zn, Ẑn, n = 1, 2, . . . as well as H∞ and Ĥ∞ are

defined.

By Corollary 8 and Theorem 9, Hn and Ĥn converge almost

surely to H∞ and Ĥ∞, respectively, and H∞ = Ĥ∞ almost

surely. Thus, we denote

H =
{

ω ∈ Ω : lim
n→∞

Hn(ω) = lim
n→∞

Ĥn(ω) = H∞(ω)
}

.

By definition of almost sure convergence, P(H) = 1.

Since H∞(ω) ∈ {0, 1} almost surely, we split H = H0 ·∪
H1 ·∪H∅, such that H∞(ω) = 0 for any ω ∈ H0; H∞(ω) = 1
for any ω ∈ H1; and H∅ is a set of measure zero. By Lemma 1,

we have Hn(ω) ≤ Zn(ω) ≤
√

Hn(ω) for any ω. Thus,

limn→∞ Zn(ω) = 0 for all ω ∈ H0 and limn→∞ Zn(ω) = 1
for all ω ∈ H1. We conclude that Zn converges almost

surely to a {0, 1}-random variable Z∞ and Z∞ = H∞ almost

surely. Using similar arguments, Ẑn converges almost surely

to a random variable Ẑ∞ and Ẑ∞ = Ĥ∞ almost surely. By

Theorem 9, Ĥ∞ = H∞ almost surely.

C. Fast Polarization of the Bhattacharyya Process to 1

In this section, we prove that the Bhattacharyya process Zn

of a FAIM process polarizes fast to 1.
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Theorem 13, the main theorem of this section, relies on an

inequality akin to (13) for the BSI total variation distance. We

state the inequality in Proposition 12, and postpone its proof

to the end of the section.

Proposition 12. Let (Xj ,Yj , Sj), j ∈ Z be a FAIM process.

Then,

K̂n+1 ≤
{

ψ(0)K̂2
n if Bn+1 = 0

2K̂n if Bn+1 = 1.
(31)

Here, ψ(0) is as defined in (19), i.e.,

ψ(0) = max
a

1

π0(a)
= max

b

1

πN (b)
≥ 1. (32)

Since the state sequence is stationary, finite-state, aperiodic,

and irreducible, ψ(0) <∞.

Theorem 13. Let (Xj ,Yj , Sj), j ∈ Z be a FAIM process. Then

Zn polarizes fast to 1 and for any β < 1/2,

lim
N→∞

1

N

∣

∣

∣

{

i : Z(Ui|Qi) > 1− 2−Nβ
}∣

∣

∣ = H⋆(X|Y). (33)

Proof: Fix β < 1/2. By Corollary 11 and (31), we can

invoke Lemma 3 for K̂n with E = 1/2. Consequently, K̂n

polarizes fast to 0, i.e.,

lim
n→∞

P

(

K̂n < 2−Nβ
)

= P

(

K̂∞ = 0
)

= P (H∞ = 1) = H⋆(X|Y).

For any n, by (4a), (4b), and (24),

1− Zn ≤ 1− Hn ≤ Kn ≤ K̂n.

Thus,

P

(

Zn > 1− 2−Nβ
)

≥ P

(

K̂n < 2−Nβ
)

.

Taking limits, we obtain that

lim inf
n→∞

P(Zn > 1− 2−Nβ

) ≥ H⋆(X|Y).

On the other hand, by Corollary 8,

lim
n→∞

P(Zn < 2−Nβ

) = 1−H⋆(X|Y).

Recalling that P(Zn < 2−Nβ

)+P(Zn > 1−2−Nβ

) ≤ 1 for any

n, we take limits to obtain lim supn→∞ P(Zn > 1−2−Nβ

) ≤
H⋆(X|Y). Therefore, we conclude that

lim
n→∞

P

(

Zn > 1− 2−Nβ
)

= H⋆(X|Y).

To obtain (33), note that by definition of the Bhattacharyya

process,

P

(

Zn > 1− 2−Nβ
)

=
1

N

∣

∣

∣

{

i : Z(Ui|Qi) > 1− 2−Nβ
}∣

∣

∣ .

Taking limits completes the proof.

Proof of Proposition 12: The proof follows along the

lines of the proof of Proposition 4.

Consider two adjacent blocks of length N = 2n and let

i− 1 = (B1B2 · · ·Bn)2. This is illustrated in Figure 2. Recall

from (10) that there is a function f that depends on i such

that (Ui,Qi) = f(XN
1 ,Y

N
1 ) and (Vi,Ri) = f(X2N

N+1,Y
2N
N+1).

By stationarity,

K̂n =
∑

a,b∈S

πN,0(b, a)K
b
a(Ui|Qi) =

∑

b,c∈S

π2N,N(c, b)Kc
b(Vi|Ri).

(34)

As in (21), we denote

P c
a (u, q) = PUi,Qi|SN ,S0

(u, q|c, a) = PVi,Ri|S2N ,SN
(u, q|c, a).

The right-most equality is due to stationarity. We further

denote P c
a (s) = P c

a (0, s)+P
c
a(1, s); in particular,

∑

s P
c
a (s) =

1.

Denote

µ(b) = π2N |N (c|b)πN |0(b|a)π0(a)

=
π2N,N(c, b) · πN,0(b, a)

πN (b)
.

We deliberately omitted the dependence on a, c from this

notation to simplify the expressions that follow. Observe that

by (32),

µ(b) ≤ ψ(0) · π2N,N (c, b) · πN,0(b, a). (35)

Also, since πN (b) =
∑

a∈S
πN,0(b, a) =

∑

c∈S
π2N,N (c, b),

we have
∑

a∈S

µ(b) = π2N,N (c, b),
∑

c∈S

µ(b) = πN,0(b, a). (36)

By (16) and (21),

π2N,0(c, a)PUi,Vi,Qi,Ri|S2N ,S0
(u, v, q, r|c, a)

= π0(a)π2N |0(c|a)PUi,Vi,Qi,Ri|S2N ,S0
(u, v, q, r|c, a)

= π0(a)PUi,Vi,Qi,Ri,S2N |S0
(u, v, q, r, c|a)

= π0(a)
∑

b∈S

PUi,Qi,SN |S0
(u, q, b|a)PVi,Ri,S2N |SN

(v, r, c|b)

= π0(a)
∑

b∈S

πN |0(b|a)P b
a(u, q)π2N |N (c|b)P c

b (v, r)

=
∑

b∈S

µ(b)P b
a(u, q)P

c
b (v, r). (37)

Set Ti = Ui+Vi. Using (9), a single-step polarization from

K̂n to K̂n+1 becomes

K̂n+1 =















∑

a,c∈S

π2N,0(c, a)K
c
a(Ti|Qi,Ri) if Bn+1 = 0

∑

a,c∈S

π2N,0(c, a)K
c
a(Vi|Ti,Qi,Ri) if Bn+1 = 1.

Here, Kc
a(Ti|Qi,Ri) and Kc

a(Vi|Ti,Qi,Ri) are computed as

in (23), only for a block of length 2N with initial state S0 = a
and final state S2N = c. At the middle of the block we have

state SN = b. Using (11), we denote

P̄ c
a (t, v, q, r) = PTi,Vi,Qi,Ri|S2N ,S0

(t, v, q, r|c, a) (38)

= PUi,Vi,Qi,Ri|S2N ,S0
(t+ v, v, q, r|c, a)

and

P̄ c
a (t, q, r) = PTi,Qi,Ri|S2N ,S0

(t, q, r|c, a) (39)

=
1
∑

v=0

P̄ c
a(t, v, q, r).
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Consider first the case Bn+1 = 0:

π2N,0(c, a)K
c
a(Ti|Qi,Ri)

= π2N,0(c, a)
∑

q,r

∣

∣P̄ c
a (0, q, r)− P̄ c

a(1, q, r)
∣

∣

=
∑

q,r

∣

∣π2N,0(c, a)P̄
c
a (0, q, r)− π2N,0(c, a)P̄

c
a(1, q, r)

∣

∣

(a)
=
∑

q,r

∣

∣

∣

∣

∣

∑

b∈S

µ(b)

1
∑

v=0

P c
b (v, r)(P

b
a (v, q)− P b

a(v + 1, q))

∣

∣

∣

∣

∣

(b)

≤
∑

q,r,
b∈S

µ(b)

∣

∣

∣

∣

∣

1
∑

v=0

P c
b (v, r)(P

b
a (v, q)− P b

a(v + 1, q))

∣

∣

∣

∣

∣

=
∑

q,r,
b∈S

µ(b)
∣

∣

∣P b
a (0, q)− P b

a(1, q)
∣

∣

∣ ·
∣

∣

∣P c
b (0, r)− P c

b (1, r)
∣

∣

∣

=
∑

b∈S

µ(b)Kb
a(Ui|Qi)K

c
b(Vi|Ri)

(c)

≤ ψ(0)
∑

b∈S

(

π2N,N(c, b)Kc
b(Vi|Ri)

)

·
(

πN,0(b, a)K
b
a(Ui|Qi)

)

(d)

≤ ψ(0)
∑

b∈S

π2N,N (c, b)Kc
b(Vi|Ri)

∑

b′∈S

πN,0(b
′, a)Kb′

a (Ui|Qi),

where (a) first expands P̄ c
a (0, q, r) and P̄ c

a (1, q, r) according

to (39) and then (38), and finally applies (37); (b) is by the

triangle inequality; (c) is by (35); and (d) is by the inequality
∑

j ajbj ≤ ∑

j aj
∑

j′ bj′ , which holds for aj , bj ≥ 0.

By (34), the sum over a, c ∈ S yields

∑

a,c∈S

π2N,0(c, a)K
c
a(Ti|Qi,Ri) ≤ ψ(0)K̂2

n.

Next, let Bn+1 = 1. We have

π2N,0(c, a)K
c
a(Vi|Ti,Qi,Ri)

= π2N,0(c, a)
∑

t,q,r

∣

∣P̄ c
a (t, 0, q, r)− P̄ c

a (t, 1, q, r)
∣

∣

=
∑

t,q,r

∣

∣π2N,0(c, a)P̄
c
a (t, 0, q, r)− π2N,0(c, a)P̄

c
a (t, 1, q, r)

∣

∣

(a)
=
∑

t,q,r

∣

∣

∣

∣

∣

∑

b∈S

µ(b)(P b
a (t, q)P

c
b (0, r)− P b

s (t+ 1, q)P c
b (1, r))

∣

∣

∣

∣

∣

(b)
=

1

2

∑

t,q,r

∣

∣

∣

∣

∑

b∈S

µ(b)P b
a (q)(P

c
b (0, r)− P c

b (1, r))

+
∑

b∈S

µ(b)P c
b (r)(P

b
a (t, q)− P b

a(t+ 1, q))

∣

∣

∣

∣

(c)

≤
∑

q,
b∈S

µ(b)P b
a(q)

(

∑

r

∣

∣

∣

∣

P c
b (0, r) − P c

b (1, r)

∣

∣

∣

∣

)

+
∑

r,
b∈S

µ(b)P c
b (r)

(

∑

q

∣

∣

∣

∣

P b
a(0, q)− P b

a (1, q)

∣

∣

∣

∣

)

=
∑

b∈S

µ(b)Kc
b(Vi|Ri) +

∑

b∈S

µ(b)Kb
a(Ui|Qi),

where (a) first expands P̄ c
a (t, 0, q, r) and P̄ c

a (t, 1, q, r) accord-

ing to (38), and then applies (37); (b) is by (15); and (c) is by

the triangle inequality. Since µ(b) depends on a, c, we use (36)

to obtain

∑

a,b,c∈S

µ(b)Kc
b(Vi|Ri) =

∑

b,c∈S

π2N,N(c, b)Kc
b(Vi|Ri) = K̂n,

∑

a,b,c∈S

µ(b)Kb
a(Ui|Qi) =

∑

a,b∈S

πN,0(b, a)K
b
a(Ui|Qi) = K̂n.

Thus,

∑

a,c∈S

π2N,0(c, a)K
c
a(Vi|Ti,Qi,Ri) ≤ 2K̂n.

This completes the proof.

D. Fast Polarization of the BSI Bhattacharyya Process

Fast polarization of the Bhattacharyya process was estab-

lished in Corollary 8 and Theorem 13. Implicitly, however, we

have also obtained fast polarization of the BSI-Bhattacharyya

process Ẑn, both to 0 and 1. We now make this explicit.

Corollary 14. Let (Xj ,Yj , Sj), j ∈ Z be a FAIM process.

Then Ẑn polarizes fast both to 0 and to 1 with any β < 1/2.

Proof: Polarization of Ẑn was obtained directly in Corol-

lary 11. By (24), Zn ≥ Ẑn. Since Zn polarizes fast to 0 with

any β < 1/2, so must Ẑn. We obtain fast polarization of Ẑn

to 1 by replacing the Bhattacharyya parameter with its BSI

counterpart in the proof of Theorem 13.

APPENDIX A

AUXILIARY PROOFS FOR SECTION III

For θ ∈ [0, 1/2] we denote

k(θ) = |θ − (1− θ)| = 1− 2θ,

h(θ) = −θ log2 θ − (1− θ) log2(1− θ),

z(θ) = 2
√

θ(1− θ).

We will need the following lemmas.

Lemma 15. For θ ∈ [0, 1/2], we have z2(θ) ≤ h(θ) ≤ z(θ).

Proof: We plot z2(θ), h(θ) and z(θ) in Figure 3; indeed

z2(θ) ≤ h(θ) ≤ z(θ) for 0 ≤ θ ≤ 1/2. We now prove this

formally.

The left-most inequality is obvious for θ = 0. Next, observe

that h(θ)/θ is convex-∪ in (0, 1/2]. To see this, we turn to its

second order derivative:
(

h(θ)

θ

)′′

=
−(θ + 2(1− θ) ln(1− θ))

(1− θ)θ3 ln 2
.

We claim that it is nonnegative for θ ∈ (0, 1/2], which

will imply that h(θ)/θ is indeed convex-∪ in (0, 1/2]. The

denominator is nonnegative, so it remains to show that the

numerator is nonnegative as well. Negating the numerator

yields τ(θ) = θ + 2(1 − θ) ln(1 − θ), which is convex-∪ in
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[0, 1/2] as it is a positive sum of two convex-∪ functions. Since

τ(0) = 0 and τ(1/2) = 1/2− ln 2 < 0, by Jensen’s inequality,

τ(θ) = τ((1 − 2θ) · 0 + 2θ · 1/2)
≤ (1− 2θ) · τ(0) + 2θ · τ(1/2)
< 0

for any θ ∈ (0, 1/2]. This implies that the numerator of the

second-order derivative is nonnegative, establishing convexity

of h(θ)/θ.

Consequently, h(θ)/θ satisfies the gradient inequality ([25,

Theorem 7.6]) by which

h(θ)

θ
≥ h(1/2)

1/2
+

(

h(θ)

θ

)′
∣

∣

∣

∣

∣

θ=1/2

(θ − 1/2)

= 2− 4(θ − 1/2)

= 4(1− θ).

This holds for any θ ∈ (0, 1/2]. Rearranging yields h(θ) ≥
4θ(1− θ) = z2(θ), which holds for any θ ∈ [0, 1/2].

For the right-most inequality, denote g(θ) = h(θ) − z(θ).
Since g(0) = g(1/2) = 0, it suffices to show that g(θ) has

a single stationary point in (0, 1/2), and that this point is a

minimum.

The stationary points of g(θ) are the zeros of its derivative

g′(θ) = log2

(

1− θ

θ

)

− 1− 2θ
√

θ(1 − θ)
.

Recalling that θ ∈ [0, 1/2],

g′′′(θ) =
(1− 2θ)(4

√

θ(1 − θ)− ln 8)

4
(

√

θ(1 − θ)
)5

ln 2
≤ 0,

since

4
√

θ(1− θ)− ln 8 < 4
√

θ(1− θ)− 2 ≤ 0.

Hence, g′(θ) is concave-∩ in [0, 1/2]. Observe that g′(1/2) =
0 and limθ→0 g

′(θ) = −∞, so g′(θ) can assume the value

0 for at most one point in (0, 1/2). Assume to the contrary

that g′(θ) < 0 for all θ ∈ (0, 1/2). Then, g(θ) has no sta-

tionary points in (0, 1/2), which, by the mean value theorem,

contradicts g(0) = g(1/2) = 0. We conclude that g′(θ0) = 0
for some θ0 ∈ (0, 1/2). Consequently, θ0 is a stationary point

of g(θ). Since g′(θ) is concave-∩ and g′(1/2) = g′(θ0) = 0,

then g′(θ) > g′(θ0) for θ0 < θ < 1/2 and g′(θ) < g′(θ0)
for 0 < θ < θ0. This implies that g(θ) ≥ g(θ0) for any

θ ∈ [0, 1/2]; i.e., θ0 is the single minimum of g(θ) in [0, 1/2].

Lemma 16. For θ ∈ [0, 1/2], we have k(θ) + h(θ) ≥ 1.

Proof. Both k(θ) and h(θ) are continuous and concave-∩
functions in [0, 1/2]. Therefore, η(θ) = k(θ) + h(θ) is also

concave-∩ in this region. Observe that η(0) = η(1/2) = 1.

Any θ ∈ [0, 1/2] can be written as a convex combination

of 0 and 1/2, since θ = (1 − 2θ) · 0 + (2θ) · (1/2). Thus,

by Jensen’s inequality for concave-∩ functions, η(θ) ≥ (1 −
2θ)η(0) + (2η)η(1/2) = 1 for any θ ∈ [0, 1/2]. �

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

θ

z(θ)

h(θ)

z2(θ)

Fig. 3. Illustration that z2(θ) ≤ h(θ) ≤ z(θ) for 0 ≤ θ ≤ 1/2.

Proof of Lemma 1: For any q, denote

θ = θ(q) = min{PU|Q(0|q), PU|Q(1|q)}.
Accordingly, 1 − θ = max{PU|Q(0|q), PU|Q(1|q)} and θ ∈
[0, 1/2]. The various distribution parameters are expectations

of functions of θ:

Pe(U|Q) =
∑

q

PQ(q)θ,

K(U|Q) =
∑

q

PQ(q)k(θ),

H(U|Q) =
∑

q

PQ(q)h(θ),

Z(U|Q) =
∑

q

PQ(q)z(θ).

We directly obtain the equality in (4a), as

K(U|Q) =
∑

q

PQ(q)(1 − 2θ)

= 1− 2
∑

q

PQ(q)θ

= 1− 2Pe(U|Q).
The inequality of (4a) is a consequence of Lemma 16, as

K(U|Q) +H(U|Q) =
∑

q

PQ(q)(k(θ) + h(θ))

≥ 1.

The right-most inequalities of (4b) and (4c) are immediate

consequences of Lemma 15. Thus, we concentrate on the left-

most inequalities.

For the left-most inequality of (4b), we employ Jensen’s

inequality for the convex-∪ function x 7→ x2 and the inequality

z2(θ) ≤ h(θ) from Lemma 15 to obtain

Z(U|Q)2 =

(

∑

q

PQ(q)z(θ)

)2

≤
∑

q

PQ(q)z
2(θ)

≤
∑

q

PQ(q)h(θ)
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= H(U|Q).
For the left-most inequality of (4c), observe that

z2(θ) + k2(θ) = 4θ(1− θ) + (θ − (1− θ))2

= θ2 + 2θ(1− θ) + (1− θ)2

= (θ + (1− θ))2

= 1.

Using Jensen’s inequality twice for the convex-∪ function x 7→
x2,

Z(U|Q)2 +K(U|Q)2 ≤
∑

q

PQ(q)(z
2(θ) + k2(θ)) = 1.

This implies the left-most inequality of (4c).

Proof of Lemma 2: We obtain the joint distribution of

(U,Q) by marginalizing PU,Q,S,

PU,Q(u, q) =
∑

s

PU,Q,S(u, q, s).

The triangle inequality yields (6a):

K(U|Q) =
∑

q

|PU,Q(0, q)− PU,Q(1, q)|

=
∑

q

∣

∣

∣

∣

∣

∑

s

(

PU,Q,S(0, q, s)− PU,Q,S(1, q, s)
)

∣

∣

∣

∣

∣

≤
∑

q,s

|PU,Q,S(0, q, s)− PU,Q,S(1, q, s)|

= K(U|Q, S).
We derive (6b) using the Cauchy-Schwartz inequality:

Z(U|Q) = 2
∑

q

√

PU,Q(0, q)PU,Q(1, q)

= 2
∑

q

√

∑

s

PU,Q,S(0, q, s)
∑

s′

PU,Q,S(1, q, s′)

≥ 2
∑

q,s

√

PU,Q,S(0, q, s)
√

PU,Q,S(1, q, s)

= Z(U|Q, S).
Inequality (6c) is a consequence of Jensen’s inequality for

the concave-∩ function x 7→ −x log2 x. A proof can be found

in [17, Theorem 2.6.5].

APPENDIX B

EXTENSION TO THE NON-BINARY CASE

Our results are readily extended to the non-binary case.

Here, Xj , j ∈ Z take values in an alphabet U with |U| = L.

As in [3], we use Arıkan’s polarization transform in the non-

binary case, replacing addition of L-ary numbers with modulo-

L addition. Thus (7) applies in the non-binary case; addition

in (7a) and (7b) is modulo-L.

First, we extend the distribution parameters from Sec-

tion III-A to non-binary U. We do this while keeping key

properties that allows their use in polar code analysis. Then,

we consider their fast polarization. Fast polarization of the

Bhattacharyya process was established in [4, Chapter 3]. We

show that the total variation process satisfies the conditions

for fast polarization required for Lemma 3.

A. Non-Binary Distribution Parameters

The three distribution parameters we consider — Bhat-

tacharyya parameter, total variation distance, and conditional

entropy — were all defined for random variable pairs (U,Q)
where U is binary. We now show how to extend them to the

case where U may take values in an arbitrary finite alphabet

U. We denote |U| = L.

There are two properties of the distribution parameters that

are crucial for the analysis of polar codes. First, they are to

take values in [0, 1]. Second, when each of them approaches

one of the extreme values, so should the others. The suggested

non-binary extension satisfies these properties. The extension

for the Bhattacharyya parameter and conditional entropy are

based on [3], which ensued the study of non-binary polar codes

(see also [4, Chapter 3]).

Denote

ZL(U|Q) =
∑

q

∑

u′ 6=u

PQ(q)

L− 1

√

PU|Q(u|q)PU|Q(u′|q),

KL(U|Q) =
∑

q

∑

u′ 6=u

PQ(q)

L− 1

∣

∣PU|Q(u|q)− PU|Q(u
′|q)
∣

∣

2
,

HL(U|Q) = −
∑

q

∑

u

PQ(q)PU|Q(u|q) logL PU|Q(u|q).

As expected, when L = 2 these coincide with (1)–(3). All three

parameters are in [0, 1]. This is well-known for the conditional

entropy (see, e.g., [17, Chapter 2]); for the total variation

distance and the Bhattacharyya parameter, see the proof of

Lemma 17, below. The three parameters achieve their extreme

values either when PU|Q(u|q) = 1/L for all u or when there

is some u0 ∈ U such that PU|Q(u0|q) = 1 and PU|Q(u|q) = 0
for u 6= u0.

The consequences of Lemma 1 apply in the non-binary case

as well. That is, when one of the three parameters approaches

an extreme values, so do the other two. This is a consequence

of the following lemma.

Lemma 17. The non-binary total variation distance, probabil-

ity of error, conditional entropy, and Bhattacharyya parameter

are related by

ZL(U|Q)2 ≤ HL(U|Q) ≤ logL(1 + (L− 1)ZL(U|Q)),
(40a)

1− ZL(U|Q) ≤ KL(U|Q) ≤
√

1− ZL(U|Q)2. (40b)

Remark 5. Inequality (40b) was also independently derived

for the binary symmetric case in [20], using a different proof.

Proof: The inequalities in (40a) were derived in [4,

Proposition 3.3]. Thus, we concentrate on showing (40b).

To see the right-most inequality of (40b), note that

∑

q

∑

u′ 6=u

PQ(q)

L(L− 1)
=
∑

q,u

∑

u′ 6=u

PQ(q)

L(L− 1)
= 1.
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Thus, by Jensen’s inequality,

ZL(U|Q)2
L2

≤
∑

q,u

∑

u′ 6=u

PQ(q)

L(L− 1)

(√

PU|Q(u|q)PU|Q(u′|q)
)2

,

KL(U|Q)2
L2

≤
∑

q,u

∑

u′ 6=u

PQ(q)

L(L− 1)

(

PU|Q(u|q)− PU|Q(u
′|q)

2

)2

.

Next, observe that

(√

PU|Q(u|q)PU|Q(u′|q)
)2

+

(

PU|Q(u|q)− PU|Q(u
′|q)

2

)2

=

(

PU|Q(u|q) + PU|Q(u
′|q)

2

)2

and that subject to the constraint
∑

u PU|Q(u|q) = 1, we have

∑

u

∑

u′ 6=u

(

PU|Q(u|q) + PU|Q(u
′|q)

2

)2

≤ L(L− 1)

L2
.

This can be seen using Lagrange multipliers; the maximum

value is obtained with equality when PU|Q(u|q) = 1/L for all

u ∈ U. Thus, we obtain

ZL(U|Q)2 +KL(U|Q)2 ≤ 1,

which implies the right-most inequality of (40b). This also

shows that indeed ZL(U|Q) ≤ 1 and KL(U|Q) ≤ 1.

For the left-most inequality of (40b), observe that for any

a, b ≥ 0 we have
√
ab ≥ min{a, b}, by which

|a− b|
2

+
√
ab =

max{a, b} −min{a, b}
2

+
√
ab

≥ max{a, b} −min{a, b}+ 2min{a, b}
2

=
max{a, b}+min{a, b}

2

=
a+ b

2
.

Since
∑

u′ 6=u

PU|Q(u|q) =
∑

u′ 6=u

PU|Q(u
′|q) = L− 1,

we have

ZL(U|Q) +KL(U|Q) ≥
∑

q

PQ(q)
∑

u′ 6=u

PU|Q(u|q) + PU|Q(u
′|q)

2(L− 1)

= 1.

This yields the left-most inequality of (40b).

Indeed, inequalities (40) imply that when either ZL(U|Q)
or HL(U|Q) approach 0 or 1 then KL(U|Q) approaches 1 or

0, respectively, and vice versa.

In the binary case, the total-variation distance and the

probability of error were related by (4a). In the non-binary

case, the probability of error is given by

Pe,L(U|Q) =
∑

q

PQ(q)(1 −max
u

PU|Q(u|q)).

The non-binary probability of error and total variation distance

are related, as shown in the following lemma.

Lemma 18. The non-binary probability of error and total

variation distance are related by

KL(U|Q) ≤ 1− 2

L− 1
Pe,L(U|Q).

Proof: Let U = {0, 1, . . . , L − 1}. Without loss of

generality we assume that, for a given q ∈ Q,

PU|Q(0|q) ≤ PU|Q(1|q) ≤ · · · ≤ PU|Q(L− 1|q). (41)

We then have

∑

u′ 6=u

|PU|Q(u|q)− PU|Q(u
′|q)|

2

(a)
=

L−1
∑

u=0

uPU|Q(u|q)−
L−1
∑

u=0

(L− 1− u)PU|Q(u|q)

(b)
= L−

L−1
∑

u=0

(L− u)PU|Q(u|q)−
L−1
∑

u=0

(L− 1− u)PU|Q(u|q)

= (L− 1)− 2

L−1
∑

u=0

(L− 1− u)PU|Q(u|q)

≤ (L− 1)− 2

L−1
∑

u=0

min{1, L− 1− u}PU|Q(u|q)

= (L− 1)− 2
L−2
∑

u=0

PU|Q(u|q)

(c)
= (L− 1)− 2(1−max

u
PU|Q(u|q)).

To see (a), note that |a− b| = max{a, b}−min{a, b}. Using

the ordering (41), we construct two L×L matrices: one with

constant columns, with value PU|Q(u|q) in column (u+1), and

one with constant rows, with value PU|Q(u|q) in row (u+ 1),
u = 0, 1, . . . , L − 1 . We compute the difference of the two

matrices; the desired sum equals the sum of elements above

the diagonal. Then, (b) is because
∑

uPU|Q(u|q) +
∑

(L −
u)PU|Q(u|q) = L, and (c) is by the ordering (41) and since
∑

u PU|Q(u|q) = 1. Thus, for any q ∈ Q,

∑

u′ 6=u

|PU|Q(u|q)− PU|Q(u
′|q)|

2(L− 1)
≤ 1− 2(1−maxu PU|Q(u|q))

L− 1
.

(42)

Using (42) in the definition of KL(U|Q) and recalling the

expression for Pe,L(U|Q), we obtain the desired inequality.

The following corollary tightens [4, Proposition 3.2].

Corollary 19. The non-binary Bhattacharyya parameter

upper-bounds the probability of error according to

Pe,L(U|Q) ≤
L− 1

2
ZL(U|Q).

Proof: This is a consequence of the left-hand inequality

of (40b) and Lemma 18.

The non-binary distribution parameters are all natural ex-

tensions of their versions when U is binary. In particular, the

non-binary parameters have the same form as their binary

counterparts. As shown above, the consequences of Lemma 1

apply to the non-binary parameters as well. They also satisfy

Lemma 2; the extension of its proof is straightforward. Thus,
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the non-binary distribution parameters may be used to define

the relevant processes as in (8) and (25).

B. Polarization of the Distribution Parameters

In the binary case, fast polarization is obtained by Lemma 3,

which requires polarization bounds on the Bhattacharyya and

total variation distance processes. In the non-binary case,

the Bhattacharyya process and the total variation distance

process are defined similarly to their binary counterparts,

with the relevant parameters replaced with their non-binary

form presented above. The relevant polarization bounds for

the non-binary Bhattacharyya process were obtained in [4,

Lemma 3.5]. We now establish polarization bounds for the

total variation distance process that extend Proposition 4 to the

non-binary case; we abuse notation and use Kn to denote the

non-binary counterpart of the total variation distance process.

Proposition 12 is similarly extended; we omit the derivation.

Proposition 20. Assume that (Xj ,Yj), j ∈ Z is a memoryless

process, where Xj ∈ U such that |U| = L, and Yj ∈ Y. Then,

Kn+1 ≤















2(L− 1)

L
K
2
n if Bn+1 = 0

(

1 +
L

2

)

Kn if Bn+1 = 1.
(43)

Observe that when L = 2, the right-hand-side of (43)

coincides with that of (13).

Proof: As in Proposition 4, we fix B1, . . . ,Bn and let

i − 1 = (B1B2 · · ·Bn)2. This also fixes the value of Kn.

We denote PUi,Vi,Qi,Ri
(u, v, q, r) = P (u, q)P (v, r). Slightly

abusing notation, we further denote P (u, q) = P (q)P (u|q).
We set Ti = Ui + Vi; this is modulo-L addition, so

PTi,Vi,Qi,Ri
(t, v, q, r) = P (t− v, q)P (v, r),

where t− v is computed modulo-L.

We shall need the following inequality:
∑

u′ 6=u

|PU|Q(u|q)− PU|Q(u
′|q)|

(a)

≥

∣

∣

∣

∣

∣

∣

∑

u′ 6=u

(PU|Q(u|q)− PU|Q(u
′|q))

∣

∣

∣

∣

∣

∣

(b)
=
∣

∣(L− 1)PU|Q(u|q)− (1− PU|Q(u|q))
∣

∣

= L

∣

∣

∣

∣

PU|Q(u|q)−
1

L

∣

∣

∣

∣

.

(44)

Here, (a) is by the triangle inequality and (b) is because
∑

u PU|Q(u|q) = 1.

We compute Kn+1 using (14). For the case Bn+1 = 0, note

that

∑

t′ 6=t

∣

∣

∣

∣

∣

∑

v

P (v|r)(P (t − v|q)− P (t′ − v|q))
∣

∣

∣

∣

∣

(a)
=
∑

t′ 6=t

∣

∣

∣

∣

∣

∑

v

(

P (v|r) − 1

L

)(

P (t− v|q)− P (t′ − v|q)
)

∣

∣

∣

∣

∣

(b)

≤
∑

t′ 6=t

∑

v

∣

∣

∣

∣

(

P (v|r) − 1

L

)(

P (t− v|q)− P (t′ − v|q)
)∣

∣

∣

∣

(c)
=
∑

t′ 6=t

∑

v

∣

∣

∣

∣

P (v|r)− 1

L

∣

∣

∣

∣

·
∣

∣

∣

∣

P (t− v|q)− P (t′ − v|q)
∣

∣

∣

∣

=
∑

v

∣

∣

∣

∣

P (v|r) − 1

L

∣

∣

∣

∣

·
∑

t′ 6=t

∣

∣

∣

∣

P (t− v|q)− P (t′ − v|q)
∣

∣

∣

∣

(d)

≤ 1

L

∑

v′ 6=v

∣

∣

∣

∣

P (v|r) − P (v′|r)
∣

∣

∣

∣

·
∑

t′ 6=t

∣

∣

∣

∣

P (t|q)− P (t′|q)
∣

∣

∣

∣

,

where (a) is because
∑

v P (t−v|q) =
∑

v P (t
′−v|q) for any

t, t′, (b) is by the triangle inequality, (c) is because |ab| =
|a| · |b|, and (d) is by (44) and since the sum over t, t′ is

unaffected by the shift in v. Thus,

KL(Ti|Qi,Ri)

=
∑

q,r

P (q)P (r)

2(L− 1)

∑

t6=t′

∣

∣

∣

∣

∣

∑

v

P (v|r)(P (t − v|q)− P (t′ − v|q))
∣

∣

∣

∣

∣

≤ 2(L− 1)

L
K
2
n.

Recalling (14), this proves the top inequality of (43).

For the case Bn+1 = 1, note that by (15) and the triangle

inequality, when v′ 6= v we have

2
∣

∣P (t− v|q)P (v|r) − P (t− v′|q)P (v′|r)
∣

∣

=

∣

∣

∣

∣

(

P (t− v|q) + P (t− v′|q)
)(

P (v|r) − P (v′|r)
)

+
(

P (v|r) + P (v′|r)
)(

P (t− v|q)− P (t− v′|q)
)

∣

∣

∣

∣

≤
(

P (t− v|q) + P (t− v′|q)
)

·
∣

∣

∣

∣

P (v|r) − P (v′|r)
∣

∣

∣

∣

+
(

P (v|r) + P (v′|r)
)

·
∣

∣

∣

∣

P (t− v|q)− P (t− v′|q)
∣

∣

∣

∣

≤
(

P (t− v|q) + P (t− v′|q)
)

·
∣

∣

∣

∣

P (v|r) − P (v′|r)
∣

∣

∣

∣

+

∣

∣

∣

∣

P (t− v|q)− P (t− v′|q)
∣

∣

∣

∣

.

The last inequality is due to the upper bound P (v|r) +
P (v′|r) ≤ 1 when v′ 6= v. Hence,
∑

t

∑

v′ 6=v

|P (t− v|q)P (v|r) − P (t− v′|q)P (v′|r)|

≤
∑

v′ 6=v

∣

∣P (v|r) − P (v′|r)
∣

∣

+
1

2

∑

t

∑

v′ 6=v

∣

∣P (t− v|q)− P (t− v′|q)
∣

∣

=
∑

v′ 6=v

∣

∣P (v|r) − P (v′|r)
∣

∣+
L

2

∑

t′ 6=t

∣

∣P (t|q)− P (t′|q)
∣

∣.

Consequently,

KL(Vi|Ti,Qi,Ri)

=
∑

q,r,
t

∑

v′ 6=v

P (q)P (r)

2(L− 1)
|P (t− v|q)P (v|r) − P (t− v′|q)P (v′|r)|

≤
(

1 +
L

2

)

Kn.
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AL
1 = (XL

1 ,Y
L
1 ) AN

M+1 = (XN
M+1,Y

N
M+1)

S0

a

SL

b

SM

c

SN

d

Fig. 4. Two blocks of a FAIM process, not necessarily of the same length.
The initial state of the first block, S0, assumes value a ∈ S. The final state
of the first block, SL, assumes value b ∈ S. The initial state of the second
block, SM , assumes value c ∈ S. The final state of the second block, SN ,
assumes value d ∈ S.

This proves the bottom inequality of (43).

The bounds in (43) are of the form required in Lemma 3,

allowing its use to establish fast polarization of the total

variation distance process.

APPENDIX C

AUXILIARY PROOFS FOR SECTION IV

We denote Aj = (Xj ,Yj), j ∈ Z, with realization αj , and

AN
M = (XN

M ,Y
N
M ) with realization αN

M . For brevity, we denote

PAN
M

≡ PAN
M
(αN

M ), and similarly PSN
≡ PSN

(sN ).
Proof of Lemma 5: The function ψ(N) was defined

in (19). We repeat the definition below using a notation that

highlights the random variables at play. We deliberately do

not use the notation (17), to explicitly show which random

variables are being marginalized.

ψ(N) =















max
a,b

PSN |S0
(b|a)

PS0
(b)

if N > 0

max
a

1

PS0
(a)

if N = 0.

Recall that by stationarity, PS0
= PSN

for any N , so

PSN |S0
(b|a)/PS0

(b) = PSN |S0
(b|a)/PSN

(b).
Since Sj , j = 1, 2, . . . is an aperiodic and irreducible

stationary finite-state Markov chain, ψ(N) is non-increasing

and ψ(N) → 1 as N → ∞. This is evident from the properties

of such Markov chains; for a formal proof of this statement,

see [24, Theorem 7.14]. For such Markov chains PS0
(a) > 0

for any a ∈ S, so ψ(0) <∞.

It remains to show that PAL
1
,AN

M+1
≤ ψ(M −L)PAL

1
PAN

M+1
.

Consider first the case M > L. Denote by a, b, c, d the values

of states S0, SL, SM , and SN , respectively (see Figure 4).

Then,

PAL
1
,AN

M+1

=
∑

αM
L+1

PAL
1
,AM

L+1
,AN

M+1

=
∑

αM
L+1

∑

d,a

PAL
1
,AM

L+1
,AN

M+1
,SN |S0

PS0

=
∑

d,c,
b,a

∑

αM
L+1

PAN
M+1

,SN |SM
PAM

L+1
,SM |SL

PAL
1
,SL|S0

PS0

=
∑

d,c,
b,a

PAN
M+1

,SN |SM





∑

αM
L+1

PAM
L+1

,SM |SL



PAL
1
,SL|S0

PS0

=
∑

d,c,
b,a

PAN
M+1

,SN |SM
PSM |SL

PAL
1
,SL|S0

PS0

=
∑

d,c,
b,a

PAN
M+1

,SN |SM
PSM

PSM |SL

PSM

PAL
1
,SL|S0

PS0

≤ ψ(M − L)
∑

d,c,
b,a

PAN
M+1

,SN |SM
PSM

PAL
1
,SL|S0

PS0

= ψ(M − L)PAL
1
PAN

M+1
.

We proceed similarly for the case M = L. Again, a and

d represent the values of states S0 and SN . Both b and b′

represent values of state SL; this distinction is to distinguish

the summation variables of two different sums over values of

SL. Thus,

PAL
1
,AN

L+1
=
∑

a,b,
d

PAN
L+1

,SN |SL

PSL

PSL

PAL
1
,SL|S0

PS0

≤ ψ(0)
∑

d,b

PAN
L+1

,SN |SL
PSL

·





∑

b′,a

PAL
1
,SL|S0

PS0





= ψ(0)PAL
1
PAN

L+1
;

where the inequality is because PAL
1
,SL|S0

≤
∑

b′ PAL
1
,SL|S0

.

Proof of Lemma 6: Due to aperiodicity and irreducibility

of the state sequence, PSM
(a) > 0 for any a ∈ S. By the

Markov Property,

PAM
1

,AN
M+1

|SM
=
PSM ,AM

1
,AN

M+1

PSM

=
PSM

· PAM
1

|SM
· PAN

M+1
|SM ,AM

1

PSM

= PAM
1

|SM
· PAN

M+1
|SM

.

This proves (20a).

To derive (20b), some more care is required to avoid division

by 0. By the Markov property,

PS0,SM ,SN
· PAM

1
,AN

M+1
|S0,SM ,SN

= PS0,SM ,SN ,AM
1

,AN
M+1

= PS0,SM
· PAM

1
|S0,SM

· PSN ,AN
M+1

|S0,SM ,AM
1

= PS0,SM
· PAM

1
|S0,SM

· PSN ,AN
M+1

|SM

= PS0,SM
· PAM

1
|S0,SM

· PSN |SM
· PAN

M+1
|SM ,SN

= PS0,SM
· PSN |SM ,S0

· PAM
1

|S0,SM
· PAN

M+1
|SM ,SN

= PS0,SM ,SN
· PAM

1
|S0,SM

· PAN
M+1

|SM ,SN
.

Recalling the definition of conditional probability [22, Section

33], this implies (20b).
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[4] E. Şaşoğlu, “Polar Coding Theorems for Discrete Systems,” Ph.D.
dissertation, IC, Lausanne, 2011.

[5] S. B. Korada and R. L. Urbanke, “Polar codes are optimal for lossy
source coding,” IEEE Transactions on Information Theory, vol. 56, no. 4,
pp. 1751–1768, April 2010.

[6] E. Arıkan, “Source polarization,” in 2010 IEEE Int. Sym. on Information
Theory, June 2010, pp. 899–903.

[7] E. Hof and S. Shamai, “Secrecy-achieving polar-coding,” in 2010 IEEE

Information Theory Workshop, August 2010, pp. 1–5.
[8] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap

channels using polar codes,” IEEE Transactions on Information Theory,
vol. 57, no. 10, pp. 6428–6443, October 2011.

[9] J. Honda and H. Yamamoto, “Polar coding without alphabet extension
for asymmetric models,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 7829–7838, December 2013.

[10] E. Arıkan, N. ul Hassan, M. Lentmaier, G. Montorsi, and J. Sayir,
“Challenges and some new directions in channel coding,” Journal of
Communications and Networks, vol. 17, no. 4, pp. 328–338, August
2015.
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