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Abstract—Sparse superposition codes, or sparse regression
codes (SPARCs), are a recent class of codes for reliable com-
munication over the AWGN channel at rates approaching the
channel capacity. Approximate message passing (AMP) decoding,
a computationally efficient technique for decoding SPARCs, has
been proven to be asymptotically capacity-achieving for the
AWGN channel. In this paper, we refine the asymptotic result
by deriving a large deviations bound on the probability of
AMP decoding error. This bound gives insight into the error
performance of the AMP decoder for large but finite problem
sizes, giving an error exponent as well as guidance on how the
code parameters should be chosen at finite block lengths. For
an appropriate choice of code parameters, we show that for any
fixed rate less than the channel capacity, the decoding error
probability decays exponentially in n/(logn)>”, where T, the
number of AMP iterations required for successful decoding, is
bounded in terms of the gap from capacity.

I. INTRODUCTION

A long-standing goal in information theory is to construct
efficient codes for the memoryless additive white Gaussian
noise (AWGN) channel, with provably low probability of
decoding error at rates close to the channel capacity. The input-
output relationship of the real-valued AWGN channel is given
by
(1.1)

where v is the input symbol, y is the output symbol, and w
is independent Gaussian noise with zero mean and variance
o2, There is an average power constraint P on the input:
if wuq,u9,...,u, are transmitted over n channel uses, it
is required that + 3" w? < P. Then the signal-to-noise
ratio is given by snr = P/o? and the channel capacity is
C := $log(1 + snr).

Sparse superposition codes, or sparse regression codes
(SPARCs), are a class of codes introduced by Barron and
Joseph [[1]], [2] for reliable communication over the AWGN
channel at rates close to C. In [2], the authors proposed the
first feasible SPARC decoder, called the ‘adaptive successive
decoder’, and showed for any fixed rate R < C, the probability
of decoding error decays to zero exponentially in . Despite

y=u+uw,
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these strong theoretical guarantees, the rates achieved by this
decoder for practical block lengths are significantly less than
C. Subsequently, a adaptive soft-decision iterative decoder
was proposed by Cho and Barron [3|], with improved finite
length performance for rates closer to capacity. Theoretically,
the decoding error probability of the adaptive soft-decision
decoder was shown to decay exponentially in n/(logn)?T,
where 1" is the minimum number of iterations [4], [5].

Recently, decoders for SPARCs based on Approximate
Message Passing (AMP) techniques were proposed in [6]]—
[8]. AMP decoding has several attractive features, notably,
the absence of tuning parameters, its superior empirical per-
formance at finite block lengths, and its low complexity
when implemented using implicitly defined Hadamard design
matrices [7]], [8]. Furthermore, its decoding performance in
each iteration can be predicted using a deterministic scalar
iteration called ‘state evolution’.

In this paper, we provide a non-asymptotic analysis of
the AMP decoder proposed in [7]. In [7], it was proved
that the state evolution predictions for the AMP decoder are
asymptotically accurate, and that for any fixed rate R < C,
the probability of decoding error goes to zero with growing
block length. However this result did not specify the rate of
decay of the probability of error. In this paper, we refine the
asymptotic result in [[7], and derive a large deviations bound
for the probability of error of the AMP decoder (Theorem
[I). This bound gives insight into the error performance of
the AMP decoder for large but finite problem sizes, giving an
error exponent as well as guidance on how the code parameters
should be chosen at finite block lengths.

The error probability bound for the AMP decoder is
of the same order as the bound for the Cho-Barron soft-
decision decoder [4], [5]]: both bounds decay exponentially in
n/(logn)?", where T is the minimum number of iterations.
However, the AMP decoder has slightly lower complexity and
has been empirically found to have better error performance
(see Remark 6 on plo).

In the rest of this section, we describe the sparse regression
codebook, briefly review the AMP decoder, and then list the
main contributions of this paper.

A. The sparse regression codebook

A sparse regression code (SPARC) is defined in terms of a
design matrix, or ‘dictionary’, A of dimension n x M L. The
entries of A are i.i.d. V'(0, 1). Here n is the block length, and
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Fig. 1: A is an n x ML matrix and 3 is a ML x 1 vector. The
positions of the non-zeros in 3 correspond to the gray columns of
A which combine to form the codeword ApS.
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M and L are integers whose values will be specified below in
terms of n and the rate R. As shown in Fig. [T} we think of the
matrix A as being composed of L sections with M columns
each.

Each codeword is a linear combination of L columns,
with one column selected from each of the L sections. The
codeword is formally expressed as A3, where 3 is an ML x 1
vector (f31,...,08nr) with the following property: there is
exactly one non-zero ﬁj for 1 < j < M, one non-zero Bj
for M +1 < j < 2M, and so forth. The non-zero value of
(3 in section / is set to \/nP,, where Pi, ..., P; are positive
constants that satisfy Zle P, = P. Denote the set of all
B’s that satisfy this property by Bus,r.(Pi,...,Pr). For the
main result in this paper, we use an exponentially decaying
allocation of the form P, oc e=2¢4/L for ¢ € {1,2,...,L}.

Both the design matrix A and the power allocation are
known to the encoder and the decoder before communication
begins.

As each of the L sections contains M columns, the to-
tal number of codewords is MZ%. To obtain a rate of R
nats/sample, we require

MY =e"® or  LlogM =nR. (1.2)

(Throughout the paper, rate will be measured in nats un-
less otherwise mentioned.) An important case is when M
equals L2, for some constant @ > 0. Then (L.Z) becomes
aLlogL = nR. In this case, L = O(g;), and the size
of the design matrix A (given by n x ML = n x L3t1) now
grows polynomially in n.

Given a sequence of information bits, the encoder maps
them to a message vector ,80 € BM, 1 and generates the
codeword AB, € R". At the decoder, the task is to recover
B, from the channel output sequence

y = AB, +w. (1.3)

Assuming that the transmitted message vector is uniformly
distributed over B)y,,, the maximum-likelihood decoder min-
imizes the probability of the decoded message vector not
being equal to the transmitted one. The maximum-likelihood
decoding rule for a SPARC is given by

BuL = argmin [y — AS|,

BeEBM,L

where || - || denotes the £o-norm. This decoder was analyzed in
[1] and shown to have probability of error decaying exponen-
tially in n for any fixed R < C. However, it is infeasible as the
decoding complexity is exponential in n. This motivates the
need for low-complexity SPARC decoding techniques such as
AMP.

B. Notation

For a positive integer m, we use [m] to denote the set
{1,...,m}. Throughout the paper, we use boldface to denote
vectors or matrices, plain font for scalars, and subscripts to
denote entries of a vector or matrix. Bold lower case letters
or Greek symbols are used for vectors, and bold upper case
for matrices. For example, x denotes a vector, with z; being
the i*" element of x. Similarly, X is a matrix,and its (i,7)""
entry is denoted by X; ;. The transpose of X is denoted by
X*. The number of columns in the design matrix A is denoted
by N = ML, so A has dimensions n x N.

For length-INV vectors such as 3, we will need to refer to
specific entries as well as sections. Indices such as 7 will be
used to denote specific entries, while the subscript (¢) will be
used to denote the entire section ¢ € [L]. Therefore 3; denotes
the jth entry of 3, for j € [M L], and B, denotes the length-
M vector containing the entries in the (th section of 3, for
¢ € [L]. For example, By = {Br+1,---, P20} is the vector
containing the entries in the second section of 3.

We will use a mapping ind : [L] — [ML]M that maps a
section index to the indices of the entries corresponding to
that section. For example ind(¢) = [({—1)M +1,({—1)M +
1,...,¢M] is the length-M vector of indices contained in sec-
tion ¢. We define a complementary function sec : [M L] — [L]
that maps the index of an entry to the section containing it. For
example, sec(i) = ¢ indicates that ¢ € ind(¢), and ind(sec(7))
returns the length-A vector of the indices for the section to
which ¢ belongs.

In the analysis, we will treat the message as a random vector
B which is uniformly distributed over Bys, (P, ..., Pr). We
will denote the true message vector by 3, noting that 3, is
a realization of the random vector 3.

The indicator function of an event A is denoted by 1(A).
The ¢ x t identity matrix is denoted by |; and we suppress
the subscript if the dimensions are clear from context. log
and In are both used to denote the natural logarithm. We will
use k, K, K, Ko, K1, - - . , kg to denote generic universal positive
constants.

C. The AMP channel decoder

Approximate message passing refers to a class of iterative
algorithms obtained via quadratic or Gaussian approximations
of standard message passing algorithms such as belief prop-
agation or min-sum. Approximations of loopy belief prop-
agation were first used for CDMA multiuser detection [9],
[10]. AMP was then proposed in the context of compressed
sensing [11]-[15]], and has since been applied to other high-
dimensional estimation problems represented by dense factor
graphs where standard message passing is infeasible, e.g. low-
rank matrix estimation [[16[]-[19].



AMP techniques were used to develop efficient SPARC
decoders in [6]—[8]. The problem of recovering the SPARC
message vector 3 from the channel output sequence y in (1.3))
is similar to the compressed sensing recovery problem, with
one key difference: in a SPARC we know that 3 € By, 1, and
an effective decoder must take advantage of this structure.

We now describe the AMP decoder from [7]] and give some
insight into its working. Given the received vector y = A3+
w, the AMP decoder generates successive estimates of the
message vector, denoted by {3'};>0, where 3" € RML. We
initialize the algorithm with 3° = 0, the all-zeros vector. For

t=0,1,..., the decoder computes
gt—1 £)|2
2=y - AB' + 5 (P - ”ﬂn” ) (1.4)
i—1
Bt = (B + A*z"), fori=1,...,ML, (1.5)

where quantities with negative indices are set equal to zero.
The constants {7¢ }+>0, and the estimation functions {n}(-)}+>¢
are defined as follows. Define

e =0’+P, 2 =02+ P(l—2441), t>0, (1.6)
where x;1 = (1), with
L P,

P
(=1

x(7) =

T T

N pr {7 (Ut ) f e e {@Ufl}w

In (T77), the expectation is over {Uf}, which are i.i.d. V'(0, 1)
random variables for j € [M] and ¢ € [L]. Hence z(7) is a
deterministic function of 7. For consistency, we define zg = 0.
Recall that sec(i) returns a value in [L] indicating the section
to which index ¢ belongs and ind(sec(i)) returns the vector
of section indices for i’s section. For ¢ € [M L], define

exp{s; \/ nPsec(i)/TtQ}
) Zjeind(sec(i)) exp{s; nPseC(i)/th(}l 5
Notice that n!(s) depends on all the components of s in the
section containing ¢, i.e. all components of s belonging to
ind(sec(z)).

For any rate R < C, the AMP decoder is run for a finite
number of iterations 7', where T is specified later in Section
After T iterations, the maximum value in each section
¢ € [L] of BT is set to v/nP,, and remaining entries to 0 to
obtain the decoded message B

The relation (T.6), which describes how 7;41 is obtained
from 7, is called “state evolution”. We now explain the
significance of the state evolution parameters z;, 77, and the
choice of the estimation function 7°.

o {5 o )

nf(S) = nPSGC(i

State evolution interpretation: To understand the decoder,
first consider the AMP update step (I.3) in which 3'*' is
generated from the “effective observation” st := 3" + A*z!.
The update in (1.5) is underpinned by the following key
property of the effective observation: s' is approximately

distributed as 3y + T4, where Z is a length-M L standard
Gaussian random vector independent of the message vector
Bo.

In light of the above property, a natural way to generate
Bt from st = s is B! (s) = E[B|B + Z = s, ie.,
Bt is the Bayes optimal estimate of 3 given the observation
st = B + 7;Z. This conditional expectation can be computed
using the independence of 3 and Z, with Z being a standard
normal vector, and the location of the non-zero entry in each
section of B uniformly distributed within the section. Then,
for ¢ € [M L], we obtain

Bl (s) = E[Bi|B + 1Z = 5]

\ npsec(z‘) exp{s; npsec(i)/th} (1.9)
> jeind(sec(i)) eXP{sj/ nPseci) /T7}
which is the expression in (L.8). Furthermore,

ﬂf“(s) /\/"Psec(iy is the posterior probability of f;
being the non-zero entry in its section, conditioned on the
observation s = 3 + 1, Z.

It is shown in [7, Proposition 1] that under the assumption
that s* has the distributional representation 3 + 7;Z, we have
vn = SEIBEYY, BB = P w).

nP n

(1.10)
The expectation in (1.10) is again computed over 3 and Z,
which are independent. Using in (I.6), we see that the
effective noise variance 77 is the sum of the channel noise
variance and the expected squared error in the estimate after
step t. The parameter x; can be interpreted as the power-
weighted fraction of sections correctly decodable after step
t: starting from xy = 0 we wish to ensure that at the
termination step 7', the parameter zr is very close to one,
implying that the expected squared error LE||3 — BTI2~ 0
under the distributional assumption for s®. This is done in
Lemma [2| which provides a strictly positive lower bound on
the difference (z:41 — 2:) for each iteration ¢ until x; reaches
a value close to 1.

The other part of the proof is establishing the validity of
the key distributional assumption on the effective observation
st. The asymptotic result in [7] is proven by showing that the
distributional assumption holds in the large system limit (with
a suitable notion of convergence). The large system limit refers
to taking L, M,n — oo, while satisfying Llog M = nR.
In this paper, we obtain a non-asymptotic bound on the
probability of decoding error by showing that the average
squared error in each iteration ¢, given by +[3, — B2,
concentrates around the state evolution prediction P(1 — x;).
This concentration inequality also specifies the performance
trade-offs incurred by different scaling choices for M vs. L,
as both tend to infinity.

D. Structure of the paper and main contributions

o In Section [ we derive a lower bound on the minimum
increase in each step of the state evolution parameter x;,
for an exponentially decaying power allocation (Lemma
[2). This in turn yields an upper bound on the number of
iterations 7'. This upper bound is inversely proportional



to Ag + A%, where Ag =
gap from capacity.

e The main result of the paper (Theorem is a large
deviations bound on the probability of AMP decoding
error. Using this bound, in Section we investigate
the error exponent with AMP decoding, i.e., how fast
does the error probability decay with growing block
length, with R < C held fixed. We show that for an
appropriate choice of code parameters, the complexity of
the AMP decoder scales as a low-order polynomial in
the block length n, while the decoding error probability
decays exponentially in n/(log n)??. Here T, the number
of AMP iterations required for successful decoding, is
bounded in terms of the gap from capacity. In Section
I[I-C| we examine how fast the error probability can
decay when R approaches C as n — oc.

o The proof of the main result is given in Section
and has two main ingredients: a conditional distribution
lemma (Lemma [3) specifying distributional representa-
tions for the iterates (vectors) produced by the AMP
decoder, and a concentration lemma (Lemma , which
uses these distributional representations to obtain concen-
tration inequalities for various inner products involving
the AMP iterates. The conditional distribution lemma was
already proved in [7[], so the key technical contribution
is Lemma 7

« The proof of the concentration lemma (Lemma[7) is given
in Section [V] In addition to strengthening the asymptotic
convergence results in [[7], Lemma 7] also simplifies some
technical aspects of the proof. The techniques used to
derive the concentration inequalities in Lemma [/| are
broadly similar to those used for the non-asymptotic
analysis of the standard AMP recursion in [20, Lemma
4.5]. However, there are a few important differences:
due to the SPARC message vector 3 having a section-
wise structure (with one non-zero per section), the results
derived in [20]] for i.i.d. signal priors cannot be directly
applied here.

(C = R)/C is the fractional

In this paper, we only consider the standard SPARC con-
struction described in Section Extending the analysis to
the spatially-coupled SPARCs proposed in []], [21]], [22] is an
interesting research direction and part of ongoing work.

II. BOUNDS FOR STATE EVOLUTION PARAMETERS

We first derive a lower bound for z(7) defined in (L.7).
This lower bound will be used to specify the number of AMP
iterations 7' required for successful decoding (in terms of
L, M, R). The number of iterations 7" determines how the error
probability bound in Theorem [I] depends on the rate R.

Lemma 1. Consider any non-increasing power allocation
{Pi}ee(r), and let vy := LPy/(R7?). Assume that there exist
absolute positive constants a, a (not depending on L) such that
azvz2vy...2VL > a

(@) We have xz(7) > x.(7), where x (T) is defined as
Sollows in terms of constants o € [0,1),v > 0, that may

be arbitrarily chosen.

, [ Qs yiog )
1+ M-A-a)(we/2-1)

1{2(1—

where Kk is a universal positive constant, and Q() is the
complementary distributiozn function of a standard Gaussian,
ie, Qx f F e~ /2y,

(b) For sufficiently large M and any § € (0, %),

L

’ P
zr (1) > (1—Nbg7M)z:1;1{yg>2+§}

=

+iz%1{2(1—¢%) SV@§2+(5}

1{v, > 2}

\/bziM) <y sz}]
2.1

1+ efv\/log M

=1
2.2)
where ko, k3 are universal positive constants.
Proof: In Appendix [A] [ |

Eq. 2.2) can be interpreted as follows for large M, L: if the
effective noise variance at the end of step ¢ is 77 = 72, then
any sections ¢ that satisfy LP, > 2R7? will be decodable in
stept+1,ie., 6“1 € RM will have most of its mass on the
correct non-zero entry.

We now evaluate the lower bound of Lemma [I] for the
following exponentially decaying power allocation:

€2C/L -1
1—e2¢

For this allocation, we have

(P+o>)L((1+snn)/F —1) (1 4+snr)~F | re[L].
2.4
The next lemma uses Lemma [I] to obtain a lower bound on
how much the state evolution parameter x; increases in each
iteration, for the exponentially decaying power allocation.

(C-R)/C.
" 2
Let f(M) := éw\/m% where ko is the universal constant

in Lemma [I{b). Consider the sequence of state evolution
parameters xog = 0,x1,... computed according to and
(1.7) with the exponentially decaying power allocation in Z3).
For sufficiently large L, M, we have:

e

P,=P. (e L) (2.3)

LP, =

Lemma 2. Let § € (0, min{Ag, }], where Ag :=

2
S (1—f(M))P;U (1_ (1 +g/2)R B %)’
2.5)
and for t > 1:
Tt — Tt—1
o2
>y = (1_f(M))[F(1_w>

(1+36/2)R

- pan

)

(2.6)

}_5RQ+UWP)

f(M)).

until xy reaches (or exceeds) (1 —



Proof: In Appendix [B] [ |

A. Number of iterations and the gap from capacity

We want the lower bounds x; and x in (2.3) and (2.6) to
be strictly positive and depend only on the gap from capacity
Ar = (C— R)/C as M,L — occ. For all 6 € (0,Ag], we
have

(1+4/2)R
— .

2.7
Therefore, the quantities on the RHS of (2.5)) and (2.6)) can be
bounded from below as

P 2 /A A2 5R
= (1 pa e ( nt R—), 2.8)

_ AR-I-A%%

21—(1+%)(1—AR) -

1-—

P 2 L
= (- 500) [ 5 (B2EEE) - s

2
2
—5R(1_;U /P) 2.9)

We take § = Apr, which gives the smallest value for f(M)
among § € (0, Ag]. E] We denote this value by

ay e MR 2.10
fr(M) = Apvlog M (2.10)
From @29), if fr(M)/Ar — 0 as M — oo, then

2
= % will be the dominant term in x for large enough

L, M. The condition fr(M)/Agr — 0 will be satisfied if we
choose A g such that

log log M
AR > | ———
r= \/ kolog M’

where k2 is the universal constant from Lemma [I{b) and

Lemma 2] From here on, we assume that Ap satisfies Z.11)).
Let T be the number of iterations until x; exceeds (1 —

fr(M)). We run the AMP decoder for T iterations, where

T:= mtin{t: x> 1— fr(M)}

@ 1 fp(M)

= Y (2.12)

®) P/o?

" Garappt oWk
where o(1) — 0 as M, L — oo. In (2.12)), inequality (a) holds
for sufficiently large L, M due to Lemma [2, which shows for
large enough L, M, the z; value increases by at least x in
each iteration. The equality (b) follows from the lower bound
on x in (2.9), and because fr(M)/Ar = o(1).

After running the decoder for 7' iterations, the decoded
message B is obtained by setting the maximum of B” in each
section ¢ € [L] to /nP, and the remaining entries to 0. For a
given snr, from (2.12) we note that the number of iterations
T depends only on the gap from capacity Ag = (C — R)/C,

@2.11)

As Lemmaassumes that § € (0, min{%, AR}, by taking 6 = AR we
have assumed that Ap < %, i.e., R > C/2. This assumption can be made
without loss of generality — as the probability of error increases with rate,
the large deviations bound of Theorem |l|evaluated for A = % applies for
all R such that Ap < %

and does not grow with the problem dimensions M, L, or n.
The number of iterations increases as R approaches C. The
definition of T' guarantees that x1 > (1 — fr(M)). Therefore,
using 72 = o + P(1 — x7) we have

02 <713 <o+ Pfr(M). (2.13)

III. PERFORMANCE OF THE AMP DECODER

The section error rate of a decoder for a SPARC S is
defined as Egeo(S) = %25:1 1{By) # By, }- Our main
result is a bound on the probability of the section error rate
exceeding any fixed € > 0.

Theorem 1. Fix any rate R < C. Consider a rate R SPARC
S, with block length n, design matrix parameters L and M
determined according to (1.2), and an exponentially decaying
power allocation given by 2.3). Furthermore, assume that M
is large enough that

Ap> /loglogM7
Ko log M

where ko is the universal constant used in Lemmas |I{b) and

. —koA
Fix any € > 2ST”."]‘R(M), where fr(M) = %.
Then, for sufficiently large L, M, the section error rate of

the AMP decoder satisfies

P (Esec(Sn) >¢€)

—kpL (602C 2

- Pfa(M)) "}

(log M)2T-1\ 2 fr(M)
where T is defined in (2.12). The constants k7 and K in
(1) are given by kr = [T (T 7! and Kr = C?T (T
where ¢,C > 0 are universal constants (not depending on
AMP parameters L, M, n, or €) but are not explicitly specified.

3.1

< Krp exp{

Proof: The proof is given in Section [ ]

In the discussion that follows we refer to the probability

P(Esec(Sn) > €) on the left side of (3.1) as the ‘deviation

probability’ (of the section error rate), and the upper bound

given by the right side of (3.1)) as the ‘bound on the deviation
probability’.

Remarks:

1) The probability measure in (3.I) is over the Gaussian
design matrix A, the Gaussian channel noise w, and the
message 3 distributed uniformly in By (P, ..., PL).

2) Given L, M, the bound on the deviation probability given
in depends on the rate R only through 7.

3) Asymptotic convergence results of the kind given in [7]

are implied by Theorem [I] Indeed, for any fixed R <
C, consider a sequence of SPARCs {S,, },>¢ indexed by
block length n with M = L2 for some constant a > 0.
Then, from Theorem [I| we have Y~ | P(Esec(Sn) >
€) < oo. Therefore the Borel-Cantelli lemma implies that
hmn%oo gsec(Sn) = 0.
We note that for a fixed R < C, there are many choices for
scaling M vs. L that guarantee that lim,, o Esec(Sn) =
0. Some examples, along with the tradeoffs they imply,
are discussed in the following subsection.



4) The dependence of the constants K, v on T'! arises due
to the induction-based proof of the concentration lemma.
These constants have not been optimized, but we believe
that the dependence of these constants on 7! is inevitable
in any induction-based proof of the result.

5) As described in [1]], one can obtain a small probability of
codeword error, i.e., P([i' # 3), by using a concatenated
code with the SPARC as the inner code and an outer
Reed-Solomon code. A suitably chosen Reed-Solomon
code of rate (1 — 2¢) ensures that 3 = 8 whenever the
section error rate Eg.. < €, for any ¢ > 0. For such a
concatenated code, the overall rate is (1 — 2¢) R and the
probability P(3 # 3) is bounded by the RHS of (3.1).

6) The deviation probability of the section error rate for
the Cho-Barron adaptive successive soft-decision de-
coder has also been shown to decay exponentially in
L/(log M)?T—1 [4, Lemma 7]. When implemented with
Gaussian design matrices, both the AMP decoder and the
adaptive successive soft-decision decoder have running
time and memory of O(nML). However, the latter re-
quires an orthonormalization step in each iteration, hence
the AMP decoder is faster in practice. Moreover, the
complexity and memory requirement of the AMP decoder
can be greatly improved by replacing the Gaussian design
matrix with a Hadamard-based one [7], [8]]. However,
there is currently no theoretical analysis of the section
error rate with a Hadamard-based AMP decoding scheme.

7) Though Theorem [I] is stated and proved for the expo-
nentially decaying allocation with P, oc e=2¢¢/L a result
similar to (3.T) holds for any power allocation for which
a state evolution lower bound analogous to Lemma [2| can
be established. More precisely, consider a fixed R < C
and an allocation {P;},c(z) such that the state evolution
parameter x; monotonically increases until it reaches
(1— f(M)) in a finite number of iterations 7”. Then the
deviation probability bound holds for that allocation,
with T replaced by T".

A. Effects of L, M on decoding performance

We now examine how varying the parameters L, M affects
the performance of the AMP decoder. Recall from that
L, M determine the block length via n = (Llog M)/R. For
a fixed M and a target section error rate eg > 2 fr(M),
the bound on the deviation probability given in (3.I)) shows
that the probability of decoding greater than a fraction ¢y of
sections in error decreases exponentially in L.

Next, consider fixing L and increasing M. This has sev-
eral effects. First, M controls how small the target section
error rate in Theorem |I| can be, via the requirement ¢ >
2500 f(M ). Hence, in order to bound the deviation probability
P(Esec(Sn) > €o) for a fixed R, there is a corresponding
requirement that M is large enough that ¢y > % fr(M).
Thus, the larger the M, the smaller we can make the target
section error rate. Also notice from Lemmas [Tl and R that
increasing M tightens the lower bound on the state evolution
parameter x; in each step.

On the other hand, the bound on the deviation probability
in Theorem [I] Eq. (3.I) worsens with increasing M (with L

Average Section Error Rate
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Fig. 2: AMP error performance with increasing M, for fixed L =
1024, R = 1.5 bits, and snr = 11.1 (2 dB from Shannon limit). The
solid line is the empirical section error rate, obtained by averaging
over 200 trials for each point. The dashed line is the section error
rate predicted by state evolution. See 23| Sec. III.A] for details.

fixed). Moreover, as R gets closer to C, the weakening of
the bound in (3:I) due to increasing M is more acute since
T increases with AR' = C/(C — R) (see 2.12)). Therefore,
increasing M allows the AMP decoder to have a smaller target
section error rate, but increases the probability of the observed
section error rate deviating from the target by a large amount.
This prediction, based on Theorem [I] has been empirically
verified recently in [23] Sec. IIL.A]. Fig. 2] shows a plot from
[23]], with the solid curve representing the empirical section
error rate for different values of M with L = 1024. We
observe that the dashed curve, representing the state evolution
prediction for the section error rate, approaches zero with
increasing M. However, beyond a certain value of M, the
empirical performance begins to diverge sharply from the state
evolution prediction. This is due to the benefit of a lower
predicted section error rate being outweighed by the loss of
concentration around the prediction.

As M increases with L held fixed, numerical simulations
for a range of rates suggest that the empirical section error
rate starts diverging from the state evolution prediction close
to M = L (as in Fig. . However, a theoretical analysis of
how M should be chosen for a fixed L in order to ensure the
smallest section error rate (while maintaining concentration
around the state evolution prediction) remains open. The
challenge here is that the constants k7, K7 in Theorem E]
are not optimal, and the exact dependence of the deviation
probability on 7' is not known.

In the next two subsections, we consider the behavior of
the deviation probability bound of Theorem [I]in two different
regimes. The first is where R < C is held constant as L, M —
oo (with n = Llog M/R) — the so-called “error exponent”
regime. In this case, Ap is of constant order, so fr(M) in
decays polynomially with growing M. The other regime
is where R approaches C as L, M — oo (equivalently, Ag
shrinks to 0), while ensuring that the error probability remains

small or goes to 0. Here, specifies that A should be
of order at least W.
g



B. Error exponent of AMP decoding

For any ensemble of codes, the error exponent specifies
how the codeword error probability decays with growing code
length n for a fixed R < C [24]. In the SPARC setting, we
wish to understand how the bound on the deviation probability
in Theorem (1| decays with n for fixed values of ¢ > 0 and
R < C. (As explained in Remark 5 following Theorem [T}
concatenation using an outer code can be used to extend
the result to the codeword error probability.) With optimal
encoding, it was shown in [1] that deviation probability decays
exponentially in nmin{eA, A%}, where A = (C — R). For the
AMP decoder, we consider two choices for (M, L) in terms
of n to illustrate the trade-offs involved:

1) M = L2, for some constant @ > 0. Then, implies
that L = ©(15z;;) and M = O((g;;)?). Therefore, the
bound on the deviation probability in Theorem [I] decays
exponentially in n/(logn)?7.

2) L = kn/loglogn, for some constant x, which implies
M = Zlogn. With this choice the bound on the
deviation probability in Theorem || decays exponentially

in n/(loglogn)?7.

Note from (2.12) that for a fixed R < C, the number of
AMRP iterations T is an ©(1) quantity that does not grow with
L, M, or n. The deviation probability decays more rapidly
with n for the second choice above, but this comes at the
expense of much smaller M (for a given n). Therefore, the
first choice allows for a much smaller target section error
rate (due to smaller fr(M)), but has a larger probability
of deviation from the target. One can also compare the two
cases in terms of decoding complexity, which is O(nM LT)
with Gaussian design matrices. The complexity in the first
case is O(n?72/(logn)**?), while in the second case it is
O(n?logn/loglogn).

C. Gap from capacity with AMP decoding

We now consider how fast R can approach the capacity C
with growing n, so that the deviation probability still decays
to zero. Recall that lower bound on the gap from capacity is
already specified by (Z.11): for the state evolution parameter
xp to converge to 1 with growing M (predicting reliable
decoding), we need Ap > lsfllggg ]JC[{ When Ap takes this
minimum value, the minimum target section error rate fr(M)
in Theorem [] is

) =

Jr(M) = log M +/loglog M’
(We note that in the lower bound for Ag in 2.11), we can
replace ko by ko /Ko, for any ko > % This would change the
factor of log M in the denominator of (3.2)) to (log M)"°. We
do not pursue this generalization in the interest of keeping the
exposition simple. We just note that increasing kg allows a
smaller target section error rate fr(M) at the expense of a
larger gap Ag.)
We evaluate the bound on the deviation probability of

Theorem |1| with Ap at the minimum value of ,/lszgllggg ]]\\j ,

(3.2)

for € > 23 fp (M), with fr(M) given in (3:2). From (2.12),
we have the bound

T< 2snr < K log M
AR log log M

for large enough L, M. Then, using Stirling’s approximation
to write log(T"!) = T'logT — T 4 O(log T'), Theorem 1| yields
—log P(Esec(Sn) > €)
S k5 Le?
= 2T (TN (log M)2T—1
= ks L€’ exp { —2Tlogc—17(T'1logT — T)
— (2T — 1) loglog M — O(log T')} — O(T'log T)
Lé?

- exp {HG\/(log M)(loglog M)(l + O(m))}
- O(\/(log M)(loglog M))

where the last inequality above follows from (3.3)).

We now evaluate the bound in (3.4) for the case M = L2
considered in Sec|[II-B| We then have L = ©(-2—-) and M =

| logn
O((f5g7)7)- Substituting these in (3.4), we obtain

—log P(Esec(Sn) > €)
2

(3.3)

—O(TlogT)

(3.4)

S K7me
= {logn) exp{rs v/ (log m) oz log 1)}

= kyexp{logn — kgy/(logn)(loglogn) — loglogn}e?

— ! O 2, (3.5

Therefore, for the case M = L2, with a gap from capacity

(ApR) that is of order mlg(:%’

probability that decays as exp{—xn'~C(VIcglogn/logn) 21
Furthermore, from (3.2) we see that ¢ must be of order at

least m.

We note that this gap from capacity is of a larger order
than polar codes, which have a polynomial gap to capacity
[25]]. Guruswami and Xia showed in [25] that for binary input,
symmetric memoryless channels, polar codes of block length
n with gap from capacity of order n% can achieve a block error
probability decaying as 277" Wwith a decoding algorithm
whose complexity scales as n - poly(logn). (Here 0 < p < %
is a universal constant.) We remark that for AWGN channels,
there is no known coding scheme that provably achieves a
polynomial gap to capacity with efficient decoding.

we can achieve a deviation

Recall the lower bound on the gap to capacity arises from
the condition (2.9) which is required to ensure that the (de-
terministic) state evolution sequence x1, o, ... is guaranteed
to increase by at least an amount proportional to Ag in each
iteration. It was shown in [26, Sec. 4.18] that for the iterative
hard-decision decoder that the gap to capacity can be improved
to O( loi g’ ngM) by modifying the exponential power allocation:
the idea is to flatten the power allocation for a certain number
of sections at the end. We expect such a modification to yield a
similar improvement in the capacity gap for the AMP decoder,
but we do not detail this analysis as it is involves additional




technical details.

To summarize, the AMP decoder (as well as the adaptive
hard-decision/soft-decision decoders) are efficient and achieve
near-exponential decay of error probability in the regime
where R < C remains fixed. When Apg shrinks to 0 with
growing M, these decoders are no longer efficient as they
require M to increase exponentially in 1/Ag (cf. (Z.11)). An
interesting open question is whether spatially coupled SPARCs
with AMP decoding have a smaller gap from capacity. The
analysis of the state evolution equations for spatially coupled
SPARCs (via potential functions) in [21]], [22] indicates that
they achieve capacity with AMP decoding, but a rigorous
analysis of the error probability of these spatially coupled
SPARC:s is still an open question.

IV. PROOF OF THEOREM(]]

The main ingredients in the proof of Theorem [I| are two
technical lemmas (Lemma [5|and Lemma[7). After laying down
some definitions and notation that will be used in the proof,
we state the two lemmas and use them to prove Theorem [T}

A. Definitions and Notation for the Proof

For consistency with earlier analyses of AMP, we use
notation similar to [7], [[13]. Define the following column
vectors recursively for t > 0, starting with ﬁo =0andz° = y.

h'tt =g, - (A*2' +8Y), q' =8 -8,
t

b! :=w — 2, m' = —z

A.1)

Recall that 3, is the message vector chosen by the transmitter.
The vector h'*! is the noise in the effective observation
A*z! + 3", while q' is the error in the estimate 3°. The proof
will show that h**! is approximately i.i.d. N'(0,77?), while b
is approximately i.i.d. (0,77 — o2).

Define .#;, +, to be the sigma-algebra generated by

0 ti—1 0 ti—1 11 ta 0 t
b", ..,b" " m", .. m"" " h',... h" q,..q%, By w.

Lemma [3] iteratively computes the conditional distributions

b’|s,, and h'™!| 5, . Lemma [7| then uses this conditional

distributions to show the concentration of various inner prod-

ucts involving h'*1, q*, b?, and m? to deterministic constants.
For t > 1, let

-1 12
A= — (P _ 18] ) 4.2)
TE n
We then have
b’ + \m'! = Aq’, and h'T'+q'=A"m’, 4.3)

which follows from (1.4) and (.1). From (4.3), we have the
matrix equations

B,+[0M, 1JA; = AQ, and H,+Q, = A*"M,, (4.4)
where for ¢t > 1
M= [m® [ mY, Q= [d] ... g
B, :=[b%...[b"Y], H, =[h'|...|h!], (4.5)

At = diag()\o, ey )\t—1)~

The notation [¢; | ¢ | ... | ¢x] is used to denote the matrix
with columns ¢y, ..., c;. We define Mg, Qq, Bg, Hg, and Ag
to be all-zero vectors.

t t

We use m! and q‘ﬁ to denote the projection of m? and q'
onto the column space of M; and Qq, respectively. Let a; :=
(af,...,at_)* and v, := (¥§,...,7i_1)* be the coefficient
vectors of these projections, i.e.,

t—1 t—1
t _ t 7 t _ t 1
mufzo%m’ qu*Z%q-
i=0 1=0

The projections of m! and q' onto the orthogonal comple-
ments of M and QF, respectively, are denoted by

(4.6)

m! :=m’

t t t t
—my, q]:=q —q 4.7

Lemma [/| shows that for large n, the entries of o and ~,
concentrate around constants. We now specify these constants.

With 72 and x; as defined in (T.6) and (T.7), for ¢t > 0 define
(4.8)

Define matrices C?,Ct € R**? for ¢ > 1 such that for 0 <
1, <t—1,

o =12 —0%>=P(l —xy).

Cli1j+1 = Omax(ij),  and (4.9)

St _ 2
Oi+1,j+1 = Tmax(i,5)"
The concentrating values for 4% and ! are

(a)
B

&= 2(CH YL, 1) 2 (0,...,0,72/72 ) e R
(4.10)

(0,...,0,07 /07 )" € RY,

—~

To see that (a) holds, we observe that (C!)~!C! = I,
implies that (C*)~(67_,,...,02 )" = (0,...,0,1) € R%,
The equality (b) is obtained similarly. Let (05 )? := 02 and
(155)% := 73, and for ¢ > 0 define

1\2 2 a7 12 2 7
(07)° :=o0; (1 ~ 2 ), and (77)° =7 (1 = )
t—1 t—1
4.11)

Lemma 3. For sufficiently large L, M, the constants (oi-)?
and (1i-)? are bounded below by a positive constant c, > 0
for 0 < k < T. The value of c. depends on the ratio R/C,
with c, approaching 0 as the rate approaches the capacity.

Proof: For k = 0, the lower bounds are immediate since
(1) =02+ P and (07 )? = 02 For 1 < k < T, we write

152 i
(7)° = = (P(zr — k1))
Ti—1

(;) 2P (;) o’P
~ o024+ P X=52 + P
where ko > 0 is a universal constant. Here, (a) is due to @,
and (b) follows from (2.9) for large enough L, M because

f(M) is of smaller order than A when 2.11)) is satisfied.

(4.12)
K()(AR + A%/QL

The lower bound on (o;-)? follows in a similar manner by



writing
(o) = T (o — o) = T Py — )
CTk 1 1-— Th—1

(@)

> y - Py ¢ Pri(AR + A% /2)%, (4.13)

where (a) is obtained as follows. Since T is the first iteration
in which the = value exceeds (1 — f(M)), and the increase in
each iteration is at least y, for 1 < k < T we have 1 > zj, >
Zk—1 + Xx. The inequality (b) follows from the same argument

as the last inequality in @.12). From (@.12) and @I3), it is

clear that the bounds tend to 0 as R approaches C. ]

Lemma 4. If the (o;-)? and (1i-)* are bounded below by
some positive constants for 0 < k: < T, then the matrices C*
and CF defined in are invertible for 1 < k < T.

Proof: The proof can be found in [20, Lemma 2]. ]

We use the following notation. Given two random vec-
tors X,Y and a sigma-algebra .7, we write X|y 4y
when the conditional distribution of X given .% equals the
distribution of Y. For a matrix A with full column rank,
Po := A(A*A)"!A* denotes the orthogonal projection
matrix onto the column space of A, and Pj =1 —Pa. We
also recall that N = M L.

The following lemma, which was also used for the asymp-
totic result in [7]], characterizes the conditional distribution of
the vectors h'™! and b’ given the matrices in {#.3) as well as
By and w.

Lemma 5 (Conditional Distribution Lemma [/, Lemma 4]).
For the vectors h'™ and b! defined in [@]1), the following
hold for 1 <t < T, provided n > T, and My and Q; have
full column rank.

hllyl,UiTozo+Alo, (4.14)
h'ty,,, 2L ——h' T2+ Ay, (4.15)

t 1

and
d

b5, 0= 00Z, (4.16)

a o2
by, = —=b" + 0 Zj + Ay 4.17)

t—1

where Zo,Z, € RN and Z),Z, € R" are iid. standard

Gaussian random vectors that are independent of the corre-

sponding conditioning sigma algebras. The deviation terms
[[m

are Ao =0,
_ | —
TO) Jn

N Kl\m
+ qo(\\qollz)*l((ﬁo)*mo

I °l

qu} Zo

19°|?
i ) (4.18)

Jn
n n

and for t > 0,
- 3o+ (o
=0
t t

ey
vn vn
Y (M M, >—1<thi

2
ag
t t—1
L
1

n

M * t—1
_ [Atmt’l - waﬁm”}), (4.19)
r=1
t—2 -2
Apprp= Y alh™ 4+ (Oéi—l - Tgt )ht
r=0 t—1

(-

Qi1 Qi1 [ Bfm!
+Qt+1( t+1n t+) t+11 )

n

<l -]

(4.20)

The next lemma uses the representation in Lemma 5to show
that for each ¢t > 0, h'™! is the sum of an i.i.d. N(0,77)
random vector plus a deviation term. Similarly b? is the sum
of an i.i.d. N(0,0?) random vector and a deviation term.

Lemma 6. For t > 0, the conditional distributions in Lemma
Bl can be expressed as

W'y, SR 4 Ay, by S B4 A, @21
where

~ Lok ~ ¢ 1

b= sz_% (?})er Appy = sz_;) (?TQ)AT+1,T»
(4.22)

t
vt 2 2
b =02y (az )z’ Av=0?Y ( )Am. (4.23)

Here Z, € RN, Z! € R" are the independent standard
Gaussian vectors defined in Lemma

Consequently, hi+1 4 7.7, and bt 4 o1Zy, where Z, €
RY and Z,; € R™ are standard Gaussian random vectors such
that for any j € [N] and i € [n], the vectors (Zojs-- s Z15)

and (Zo,w .. Zt i) are each jointly Gaussian with
E[ZTJZSJ] = E? E[Znizs,i] = Is for0 <r<s<t.
Tr Oy

(4.24)

Proof: We give the proof for the distributional representa-
tion of ht‘|r1 with the proof for b? being similar. The represen-
tation in ( can be directly obtained by using Lemma 5| Eq.
@15 to recurswely write h' in terms of ('™, Z;_1, Ay 1),
then h*~! in terms of (h'=2,Z;_», At_u_g), and so on.

Using @22), we write h't! = 7,Z,, where Z; =



t . . . ..
Tt > oreo(Ti/T2)Z, is a Gaussian random vector with i.i.d.
entries, with zero mean and variance equal to

t
2 7
T, =
i E : 7_4

r=0 T r=1 Tfl

For j € [N] the covariance between the jth entries of Z, and
Zg, for 0 <r <s<t,is

E[Z,;Z 'TrTsZZ(Tg)(:?)]E{Z%ZW}

u=0v=0 w

(a) — (75)? @) 7
= TrTs Z v = 7_7747

u=0 u

(4.26)

where (a) follows from the independence of Z,; and Z,, and
(b) from the calculation in @.23). [

The next lemma shows that the deviation terms in Lemma
[] are small, in the sense that their section-wise maximum
absolute value and norm concentrate around 0. Lemma [7] also
provides concentration results for various inner products and
functions involving {h'*! qf, b!, m'}.

Let ¢,C' > 0 be universal constants not depending on n, €,
ort. Fort > 0, let

1
lit = C2t(t!)11, Ry = TN Ni7’
et o (4.27)
K, =C(t+1)°K. =
t ( ) t; Ky C(t 1)7

To keep the notation compact, we use K, K’ , x, and &’ to
denote generic positive universal constants throughout the
lemma statement and proof.

Lemma 7. The following statements hold for 1 < t < T,
where T is defined in 2.12) and € € (0,1). Let X,, = ¢ be
shorthand for

— ki1 Le? }

3
P(|X, —c|>¢) <t KKt*leXP{W ’

and let X, = c be shorthand for

—HH’_ L€2
P(|X, —c| > ¢) <t*KK]_ exp {W}
(a)
1 L 2
+ . >
(5 3 ] =0
1 L
< p(L Avri 12> 428
- PKK! exp{M} (4.29)
> t—1 t4(log M )2t ‘
*H P = (4.30)

(b)
1
(o] =
n
—kk,_Le?
< 3 ! t—1 )
<BKK!_ exp {7754(1% T } 4.31)
1 1
—(b)*w =0, —(m')'w=—0" (4.32)
n n
(c) Forall 0 <r <t
1, ... . 1 .
E(Cf) qt+1 = Ut2+17 EHCIH_IH2 = Ut2+17 (4.33)
1 .
ﬁ(br)*bt = ol (4.34)
(d) Forall 0 <r,s <t,
1 . O-T‘ Tmax s
L (4.35)
n T2
1
—(b")*m® = o, 4.36
n( ) m Umax(r,s)’ ( )
(e) Forall 0 <r <t,
2
Lo
Aig1 ;;1, (4.37)
i
1
—(m")*m’ = 77, (4.38)

(f) Let Qt+1 = %Q:+1Qt+1 and Mt = %M:Mt Then

—kky_ L

(log M)2t+1 }
(4.39)

—kKi_1L

(log M)2t—1 }
(4.40)

P(Qy41 is singular) < tK;_, exp{
P(M, is singular) < tK; 4 exp{

Forall1 <i,j<t+1land1<7,j <t:

P(‘[Q;rll — (CH'I)_l]i,j > ’ Qi1 invertible)

—kk,_ Lé?
< KKi_jexp {W} 4.41)
P( 7?11 ﬁfﬂ‘ > € ‘ Qi1 invertible)
5 ! _55271L62
SUKK, eXP{W}, (4.42)
P(‘[Mfl —(CH My | > € | M, invertible)
— kK1 Le?
< KKy 1 exp {W} (4.43)

u

al, - ézi/_1’ >€ ’ M, invertible)

—kky_1Le?
5 (log M)2t—1

Terms Cyyq and C; are defined in @9) and A+
are defined in @.10).

(g) For terms (oi5)? and (1;-)? defined in @I1) and shown

< t4KKt_1eXp{ } t>1. (4.44)

and &'



to be positive in Lemma [3]

P(| M a1 = (07| > €
—kk)_ Le? }
th (log M)Qt—‘,—l )
P L I - ()2 > €)
—kky_1Le? }
t7(log M)2t=1J

< SKK!_, exp { (4.45)

< KK, exp { (4.46)

(h)

L
max

1
P(— i+ > 701/3log M )
L ez;jeind(f)| iz Tovslog M e

_ / L 2
A i } (4.47)

S t4KK£71 exp {W

1
P(— B2 > 672 log M )
Léﬂjénm%@)( ¥ )* > 675 logM + ¢

L

/!
—kky_qLe }

S t4KK£71 exp {W

(4.48)
The lemma is proved in Section

B. Comments on Lemma [

The proof of Lemmal[7)is inductive: the concentration results
for time step ¢ depend on the results at times ¢t = 0,1,...,t—1.
To prove Theorem|I] the main result we need from Lemmal[7]is
that for each ¢ < T, the squared error 2||q‘[|2 = ||8"— 3,2
concentrates on 2. This result is used in Section below
to prove Theorem (I} The concentration of 2|/q’||* is shown
in part (c) of Lemma [/| but the proof of part (c) requires the
other concentration results in the lemma to hold. For example,
we prove part (c) by noting that g* = n'~1(8, — h?) — B,
appealing to Lemma [3] to find the conditional distribution of
h, and then using other parts of the induction to show that
the terms in the conditional distribution of h? concentrate.

While the concentration inequalities in Lemma([7]are broadly
similar to those in [20, Lemma 4.5], there are a few important
differences. The first is that the denoising functions {n'}¢>¢
(defined in (I.8)) act section-wise on their vector input due
to the fact that the message vector (3, has a section-wise
structure. In contrast, the analysis in [20] considers only
separable denoising functions that act component-wise on
vector inputs. This is because it is assumed in [20] that the
signal has i.i.d. entries. However, the ‘“signal” (the message
vector) considered here is only section-wise independent, with
the section size M approaching infinity in the large system
limit. (In the large system limit L, M,n all tend to infinity,
with the constraint Llog M = nR.) A related consequence
is that the sampling ratio (n/N) of the measurement matrix
[20] is assumed to be of constant order, while in the SPARC
setting, & = 377 — 0 in the large system limit.

The concentration constants: The dependence on ¢ of the
constants k¢, £, K, K in (.27) is determined by the induc-
tion used in the proof: the concentration results for step ¢
depend on those corresponding to all the previous steps. The

t! terms in the constants arise due to quantities that can be
expressed as a sum of ¢ terms with step indices 1,...,¢, e.g.,
Ay and Ayiq g in and (@.20). The concentration results
for such quantities have 1/t and ¢ multiplying the exponent and
pre-factor, respectively, in each step ¢ (see Lemma|C.2), which
results in the ¢! terms in K; and k;. Similarly, the (C3)? and
(Cg)t terms in k¢, K; arise due to quantities that are the product
of two terms, for each of which we have a concentration result
available from the induction hypothesis. (see Lemma [C.J).

Finally, the log M factor in the denominator of the exponent
in each of the concentration inequalities is due to a dependence
on the magnitude of the largest entry in each section of Ay ;.
(Each section has M entries, and the maximum of M i.i.d.
standard Gaussians is close to /2 log M.)

C. Proof of Theorem [I|

The event that the segtion error rate exceeds € is
{Euce(Sn) > ¢} = { £ 1By # Bo,, } > Le . s shown
in [7, Sec. V.E] that

17— Bul? , cr’Cy
- 2 b

n

(Esee(Sn) > €} = { (4.49)

where 87 is the AMP estimate at the termination step 7.
(Recall that the largest entry within each section of B is
chosen to produce B.)

Now, from of Lemma [7[c), we know that for any
€€ (0,1):

T 2 T2
P(IIB Bol ZU%+€) :P(Ilq I 20%%)
n n
7I€TL€2

From the definition of 7" and (2:13), we have 02 = 72 — 0?2 <
Pfr(M). Hence, (.50) implies

T 2
P(M > PfR(M)+€)

T _ 2
< p(w > o+ ¢) 4.51)
—KJTL€2 }

< Krexp { (log M)2T-1

Now take é = <2€ — Pfp(M), noting that this € is strictly
positive whenever e > 2snrfr(M)/C, the condition specified
in the theorem statement. Finally, combining (4.49) and (4.51))
we obtain

P(Esec(Sn) > €)

—kpL (602(3

< Krexp { (log M)2T-1\" 2 PfR(M)>2}'

V. PROOF OF LEMMA[7]

The proof proceeds by induction on t. We label as H!*!
the results (4.28), (#.29), @.31), @.33), @.35), @.37), @39,
@41), @42), @.43), @47, and @48). We similarly label
as B! the results @.30), #32), @34), @F36), @38), @40),




@#43), (@44, @46). The proof consists of four steps: (1) By
holds, (2) H1 holds, (3) if B,., H, hold for all » < t and s < ¢,
then B, holds, and (4) if B,., H hold for all » < ¢ and s < t,
then H;4; holds.

Appendix [C] lists a few basic concentration inequalities,
and Appendix |D| contains other lemmas that are used in the
proof. To keep the notation compact, we use K, K’, k, and &'
to denote generic positive universal constants throughout the
proof, with the values changing as the proof progresses.

A. Step 1: Showing By holds

(a) [Eq. @30) for ¢ = 0]. Ay, = 0 so there is nothing to
prove.
(b) [Eq. (8.32) for ¢t = 0]. We first show concentration of
(b%)*w /n. From Lemma and the distribution of the channel

. d d
noise, we note that b’ = 0¢Z{, and w = 0Z, where Z{,Z €
R™ are independent standard Gaussian random vectors. Then

applying Lemma [C.7] we obtain
1

P(Rl0%w] 2 ) = P(Sfzrz| > )

n 000
<> { —ne> }
expi —5—5 (-

= 2O 30202
To show concentration for (m®)*w/n recall m® = b® —w,
and therefore (m°)*w = (b%)*w — ||w]|? 4 (b%)*w —

02||Z||*>. The result then follows by applying Lemma

(31), and Lemma [C.7}
(c) [Eq. .34) for t = 0]. From Lemma it follows ||b?||2 <
02||Z;||* and therefore by Lemma

(2 -] 0) = #(( 12 5)

ne?
< 2exp{ — %}.
(d) [Eq. #36) for ¢ = 0]. Recall that m° = b® — w. The
result follows from Lemma By (b) and By(c).

(e) [Eq. (&38) for ¢ = 0]. Since w 4 oZ, where Z € R" is
standard Gaussian, we have

(5.1)

[m®| = [b° — w|* = [b%]* + [w]* — 2(b%)"w
L B0 + 02|12 - 2(b°)"w
Using the above,
0|2
(‘ e 2‘ > o)
bO 2 2 7 2 2 bO *
ITNJ|+UtH b0)w WM”WZQ

Y

) ([P0 o) e 1Z] €
<P etz g)+ (( -1z 33)
(b%)*w
P %= 5)
+ 6
(b) —ne> —ne> —ne>
< —_— —_—s -
< 2exp { 7208 } 2exp { 720 } 2exp { 1080202 }
Step (a) follows from Lemma and step (b) from B(b),
B(c), and Lemma

m

(f) [Eqs. (#40), (#.43), and (@.44) for ¢t = 0]. There is nothing

to prove here.

(g) [Eq. @A43) for t = 0]. Since m9
same as B(e).

= mY this result is the

B. Step 2: Showing H1 holds

(a) [Eqgs. (4.28) - (4.29) for ¢t = 0]. Eq. (4.28) follows from
the Cauchy-Schwarz inequality. We now prove (#.29). From
the definition of A given in Lemma [ @.18), and noting
that ||q°||2 = nP, we can write

Aro (Ilﬁll TO) _

g

[m®|| _q°

NIRRT

where we have used the fact that P40 Z 4 qTOPZ where Z ~
N(0,1) by Lemma Consider a single element j € [N] of

A o. Using Lemma and the bound q? < V" Phnd(sec(j))
it follows

Il _ e
f
1Ping(sec(j)) ’(bo)*mO
P2 n
|m°||> nPngsecti) Z°
n P n’
Using (5.2)), we have the following bound:

(Ar0ls)? < 3|20l -

_p (5.2)

2
+3 ’

+3

L
1
P(— Arol)2 > )
7 jg;%@)([ 1005)° > €
=1
[m|| 21

Vil L

+P(clogM‘(7
n

max

(a)
< P(
JElnd( )

 ([20),)? > 5)

+ P(clogM- (5.3)

n n
where the inequality follows from Lemma [C.2] and the fact
that nP,/P < clog M for all £ € [L], where ¢ > 0 is an
absolute constant. Label the terms on the RHS of (3.3) as
Ty,T5,Ts. To complete the proof, we show that each term is
upper bounded by K|, exp{—r{ Le}. First,

oy (L R

— 3v3log M
L

P(— Zol,I* = 31og M)
+ L;jm@)l[ ol;I* > 3log
S Kée_HGLE—Fe_KLlOgM.

The above follows from Lemma result By(e), and Lemma
[C77] Next, the second term 75 in (3.3) has the desired bound



from By(d). Finally, for the last term T5 we have

T3§P<(‘”0”2—7’0‘+70>75290106g]\4)
m02
I
Z ¢ 1
+P(f| 3«% w{ )

b
(S) K(l)e—HOLe + Qe—RLE.

Step (b) follows from result By(e), and Lemma This
completes the proof of (4.29).

(b) [Eq. @.31) for ¢t = 0]. Using the conditional distribution
of h' stated in Lemma [5| and Lemma we have

P 20 = p( %

< P(|BL] 2 )y p(| Rl 5 0

Label the two terms on the right side of the above as 77 and
T5. To complete the proof we will show each term is upper
bounded by K/ exp{—ryLe?}. Since q is independent of
Zo, we have Z5q® £ [|q°[|Z, where Z is a A'(0,1) random
variable. Therefore,

P(|2] >

Is1171, ey _
§2exp{ —

0 AF g’
q T 1,09 ’26)
n

ev/n )
270V P

ne2 }
8re Pl

where the last inequality follows from Lemma [C.6] Finally,

L
T, = P(’% > 1Avwaly| = 5)
1
< P(;Z

lep(ff_QTo

€
\/nP, Ayols >7)
n ejgl}%@)\[ 10l = 5

=1
(1 XL: max |[As o] e\/logM)
=t « j€ind(¢) 0= ""9Rec

(b)
< K} exp{—r{Lmin{e?log M,1}}.

Step (a) follows from the fact that for all ¢ € [L], v/nP, <
cy/log M for some constant ¢ > 0 and the fact that nR =
Llog M and step (b) from H;(a).

(c) [Eq. (4.33) for ¢ = 0]. We begin by showing the result for
llat||?/n . Recalling that ' = 1°(8, — h') — 3,, and using
the conditional distribution of h' stated in Lemma [5] we write

Lo 12 2‘
= - >
P(|- a2 = o?| = )
1
= P(|=In"(8, Byl —ot| > ¢)
€
< P(|51n°(80 = 7oZ0) — Boll* = o3| = 7)
1
+ P(=|In°(By = 70Zo = A1) = Bl
€
— In°(By = 7oZo) = Boll?| > 5).

—T0Zo — A1)

—3

Label the two terms on the RHS as 77 and 75. We w111 show
that each of these is upper bounded by K/, exp{ IF”OLE }. The
bound for T is obtained using Hoeffding’s 1nequa11ty (Lemma
[C.I). To verify the conditions to apply Hoeffding’s inequality,
first write

1
ﬁHUO(ﬁo —10Zo) — By

L
1 1

:*E —— (R|In°
Le:1 logM( ||77(z)(ﬁ0

and note that for each ¢ € [L]:
R

— 10Zo) — Bo ||2)7

2
0< 1ogM”n(£ (Bo —70Zo) — 160(()”
2R
< to 37 080 = 0Z0) I + 180, )
nPy
<4R <
- (10gM) =6

for some absolute constant ¢ > 0. Next, the expectation given
by Hoeffding’s inequality can be written as

Ez, |7 (By — T0Zo) — Bol? — 10Zo)

=Epz,[n"(B - Bl

= no;

where the first equality is true for each 3, € By, 1, because of
the uniform distribution of the non-zero entry in each section
of 3 over the M possible locations and the i.i.d. distribution
of Zg. The second equality follows from Lemma

Next, we bound term 7T5. First, write

||770(/30 —10Zo — A1) — rBOH2 - ||770(/30
= [°(By — T0Zo — A1,0) — Byl
[°(By — T0Z0 — A10) —1°(By — T02Z0)]
+ [1°(Bo — 10Z0) — Bol*
[Wo(ﬁo —10Zo — A1) — ﬁo(ﬁo — 10Z0)].

Now using the above and Lemma [C.2}

—10Z0o) — BolI”

To <Th,+Toy
where
TQ,(L
11, .
= P(g’[n (Bo — 10Zo — A1,0) — By

(8o — %0 — Av0) =1 (By — Zo)]| >

B~
~—

1
= P(ﬁ’['ﬂo(ﬁo - TOZO) - ﬁ()]*

°(Bo — T0Zo — A1,0) —1°(By — TOZO)}‘ >

N
N———



Then,

L
1 .
To0 = P(g Z ‘[77?5)(30 —T0Zo — A1) — By,,]

~
Il
—

[77?@) (Bo — T0Zo — A1) — 77(5) (By — TOZO)}‘ > 2)

L
< P(% ZQ\/TLP@ Z ‘n?(ﬂo —10Zo — AI,O)

=1 icind(¢)
0
= (Bo — TOZO)’ > )

W~ o

(a) 1 & €T,
< pl= > =0
= (L ;ﬁ%ﬁ)” volsl 2 16Rc\/1ogM*)

®) Lé?
<K0exp{ rio Le }

log M

Step (a) follows from Lemma applied to each section
using (nP)%/? < ¢(log M)3/? for ¢ € [L)], for some constant
¢ > 0. Step (b) follows from H;j(a). Term T, has the same
upper bound which can be shown as above using Lemma
This proves the result for ||qt||?/n.

Proving the concentration result for (q°)*q!/n is similar:
we use Lemma followed by Hoeffding’s inequality and
Lemma

(d) [Eq. 33) for t = 0]. Recalling that q* = 1°(3, —h') —
By, we write

(hl)*ql _ (hl)* 770(,60 o hl)

— ()"’ (By ~h') +

- By

(h')*q"

Using the above,
* .1

S

:p(’(h ) (fo_h)Jr(hr):q +of| 2 )

<[P
+P<‘ ) q’ ‘> ) (5.4)

By Hi(b), the second term in (5.4) is bounded by
K{ exp{—rk{ne?}. To bound the first term, using the condi-
tional distribution of h' stated in Lemma [§| we write

P(|1<h1>* °(8, — ') +o—1]> )

%’A1 o1’ (Bo — 10Zo — A1 0)| > ;)
P(’%Tozoﬂ Bo — 10Zo) + 07| > %)
(%’ 10Zg[n°(By — T0Zo — Ay )
—1°(Bo —Tozo)]‘ %) (5.5)

Label the terms of the above as T%,7>,73. To complete
the proof, we will show that each term is bounded by

K} exp{—k{Le*/log M'}. We begin by bounding 77.

€

- P(l EL: ’([ALO](Z))*”&)('@O —70Z0 — Al’O)’ = 5>

n
€
<P( P, A )
< Z\/n e max [[Asol;] 2
(1) ev/1log M
<P( A >7)
= Z]g}%’&)‘ volil = =g pe

(€)]

< K} exp{—rHLmin{e*log M,1}}.
Step (i) follows from the fact that v/nP; < ¢y/log M for some
constant ¢ > 0 and all ¢ € [L], and step (j) from 1 (a).

Next consider 75. Because of the uniform distribution of the
non-zero entry in each section of 3 over the M possible loca-
tions and the i.i.d. distribution of Z, for any 3, € By, 1., we

have Ez,{70Z§n" (B —10Z0)} = Ez,,6{10Z§n°(B—10Z0)}.
This expectation can then computed as
1 1
~E{noZn"(8 — 7oZo)} “ ~E|ln(8 - roZo) > — P
© —P(1 —x) = —0},
(5.6)

where equality (a) is obtained using Stein’s lemma, Lemma
(see [7, p.1491, Egs. (102) — (104)] for details). The
equality (b) follows from Lemma Now, from Lemma

and (5.6), we have

T =

1 N N €
P(ﬁ‘ToZoUO(ﬂo — 10Zo) — E{10Zgn° (B — Tozo)}‘ 2 6>
< exp{—rLe®}.

Finally consider the term 75.
1L
=P(5 > |(Zolo)" [1e) (Bo = T0Z0 — Ado)
r=1

z%)

—T0Zo — A1)

- U?z)(ﬂo - TOZO>}

WD (B

zelnd(é)
(B — €
(8o — 10Zo) | = 6)

max
n keind K
= €ind(¢)

(e) 1 & €To
< P(— )
= L;kgln%%” olel max |[Arolil = 55
(f) —k) Le2

< K! { 0 }

= Bo®xp log M

Step (e) follows from Lemma applied to each section and
the fact that nP; < clog M for some constant ¢ > 0 and all



¢ e [L]. Step (f) is obtained as follows.

L
1
P(i A Zolu| > )
L Z:rj&%@)u 1.00; ‘kglr%)((e)u olk| > €
(9) 1 & I
< P(f max max ')2 > 62)
L 4= keind( z) jemd(e) 1,0
1L
< P(f Z:1:)2 > 31 M)
o L — jgﬁd}&)([ 0]3) > 3log
1 & 2
P(* Aq o)) > )
+ L e ]éllln%}(([)([ 1,0]]) = 310gM
(%) e—rLlogM 4 K{)e_%'

Step (g) follows from Cauchy-Schwarz and step (h) from
Lemma and H;(a). Using the bounds for Ty, T, T3, the
three terms in (3.3), completes the proof.

(e) [Eq. for ¢t = 0]. By definition,
18 H2>

n

A :—%(P—

To

and so it follows that:
2 1
> )= (B0 - ) ot 2 ).
(5.7

]
7o

Note that, [|q'[|* ~2(q°)*q" = 8" By [ +265 (8" ~ By) =

HﬂlHQ — nP. Using this in -

2
P(‘Al + %‘ > e)
To

la'l*>  ,(@@")*q'
(I8 )

la'l> o _ e (@*)*q" 5 _ e
<P( =) +P(|F et 2 )
- n =9 + n ] = 4

— Kk Le?
< K! { "o }
OeXp lgM )

where the last inequality follows from #; (c).

() [Eqs. @39), @[), andN(]E[) for ¢ = 0]. Note that

Q, = 2|[q°|]> = P = 0% = C' so the inverse concentration

in @) is terlally true. Recall that v§ = = @)a ) 9’ Then using
H1(c) we have

o2 (@)*q" o2
P(pi- %129 =P(5F - 5l=9)
"o odl — ‘ nP o2l ~ ‘
(@)da" , —K)Le?
=P etz er) < e {5 )

(g) [Eq. @43) for ¢ = 0]. By definition, ||q’ [|? = [|q*||* —
(v¢)21d°)1? = la*||* = nP(7¢)?. Using this and the fact that

(01)? = 0?(1—(0?/a?)), we find the following upper bound.

P(’ la [I? _ (U%)2‘ > 6)
e
= p(|ME - pd-at(1-2)| = )
2 (2 ]2 5) o 52
2 oo {48

Step (a) follows from Lemma and step (b) from H;(c)
and H,(f) along with Lemma

(h) [Eqgs. @47)- (@48) for ¢ = 0]. For any element i € [N],
using the conditional distribution of h' stated in Lemma [5|and
the Triangle Inequality, it follows |h}| < 70|[Zo]i| + |[A1.0]4]-
We then have the following upper bound:

L
1
P(— B > rov/31log M )
L;gg}%}(eJ | > 7o og M + €
1 L
<p(= Z Ayl
< (L;Imé%@[d|+£m%uLwﬂ
310gM+e)
1 L
<P(— Zol:| > /31 M)
< L;jéﬂ%)” olj| > /3log
L

1

< efnL log M _|_K(/)67/{0L62

where the last inequality is obtained using Lemma [C.7] and
Hi(a). The result for the squared terms can be shown simi-
larly.

C. Step 3: Showing B; holds

We prove the statements in B; assuming that By, ..., B;_1,
and Hi,...,H; hold due to the induction hypothesis. We
begin with a lemma that is used to prove B;(a). Parts (a)—(g)
of step B; assume the invertibility of My, ..., M,, but for the
sake of brevity, we do not explicitly specify the conditioning.

Lemma 8. Let

1 1
= “Hjq| — ~M; [Am' ! -
Vo= e dL T oV [Adm

t—1
> Aim'
i=1

and M := 1 M;M,. For j € [t],

u

<t?KK,_, exp {

M, 1V]J

‘ My,... .M, invertible)

—kky_1Le? }
t2(log M)2t—1

Proof: The proof is similar to that of [20, Lemma 5.1]
and is therefore omitted. ]

(a) [Eq. @30)]. The proof of B;(a) follows closely to that of
[20, B;(a)] and is therefore omitted.



(b) [Eq. (@32)]. We begin by showing concentration for
(b")*w/n. From the conditional representation of b’ given
in Lemma [5| Eq. @.17), we have

P[] 2

e e
(OS50 ) (52 )
-r(127)25).

Label the three terms on the right side of the above as
Ty,T,,Ts. The proof is completed by showing each is upper

bounded by t*K K;_; exp {%} First, T} has the

desired upper bound by inductive hypothesis B;_1(b). For T5,
we recall that Z/ is independent of w, and o} is bounded
from below (Lemma [3). Hence, using Lemma T, is
upper bounded by 2exp{—rne?} . Finally, using |A; ,w| <
1AL |llw]l, T5 can be bounded as

T, < P(HAt,tHHWH > )
n 3

SP(HAt,tH<M }_’_ ) ;)
o1z vt 1) (| 5o 2 )
® tsKKt_lexp{%} Py

Step (a) follows from Lemma and step (b) from By (a)
and Lemma

Now consider concentration for (m?)*w/n. By definition,
m' = b’ — w and so the result follows from Lemma the
concentration result for (b*)*w/n, and Lemma
(c) [Eq. (@34)]. We prove the concentration result for
|b?||?/n, with the proof for (b?)*b" /n with 0 < r < ¢t—1 fol-
lowing s1m11ar]y Usmg the conditional distribution of b? from

LemmaIEq we have |[b'[|* = |[(o7 /07 1)B" +
L7+ A“H2 Expandmg this expression for |b||?, and

recalhng that (0-)% = 02(1 — 02 /0?_ ), we use Lemma

to write
~ot|2¢)

bt 2
P(‘II |
bt—1]|2
<r((2-) W Eoozi=9)
o? n

1Z; €
e (et PP a2 ) e p(120E 2 )
_|_P(2Uf |(bt 1) Zj| + 207 1ALz |
Ut2—1
QUt |Artﬁt_l| €
— > ). 5.8
* o’ | n - 4) 58)

Label the probabilities in as Ty,Ty,T3,Ty. To prove
the result we show each term is upper bounded by

2
3K K, 1 exp { —rriy—1Le

W}' This is true for term 73 and

T3 using inductive hypothesis B;_1(c) and Bt(a), respectively.
Next, Ty < 2exp{—#rne?} using Lemma

For T}, we note that (bt~1)*Z; £ ||bt= 1||Z and A} ,Z; = 4
|A¢ || Z, where Z, Z are standard normal random variables.
We therefore have

t—1
< P2, )
o | n 12
+ P(QCTtJ‘ ||At,t|||Z| > i) (5.9)
n 12
P(oz )
* o? | n 12
2
Letting ¢; = 5 2 L , the first term on the RHS of (5.9) can

be written as

P(IIbt‘lll 2 . )

Viooovn
P o) D s )
|Z\ clr€ )

N e
\/7’7, t—1 — Ut—1 \/>_ 20_t 1
—kki—1L 2¢2

(a) —ne“c

T O e LS 0 BT G Y

= t—1 €Xp 13 (log M)21 + 2exp 80t-1
where step (a) follows from Lemma inductive hypothesis
Bi—1(c), and Lemma

Letting ¢ = 57, the second term on the RHS of
t
can be bounded as

IN

( T n cae)
< (II?II>F)+P(|Z|>\/@)

3 — kK1 Le? —Mnecy
< KK e { oy | + 2w {5

where the last inequality follows from B;(a) and Lemma [C.6]
The concentration inequality for the last term in (5.9)

follows in a similar manner using the concentration results
for ||As.ll/y/n and ||b'=1||/\/n. We have therefore shown

that Ty is bounded by *K K1 exp {W , which

completes the proof of the concentration result for |[b?||?/n.
(d) [Eq. @36)]. We show concentration of (b")*m?®/n for
0 <r,s <t when either r =t, s =t, or both r = s =1t. By
definition, m®* = b* — w so (b")*m?® = (b")*b® — (b")*w
Then it follows:
P[0 > o)

n max(r,s)

:P(‘(b)b SIS () 2")

n n ’

(a) T\*]hS T\ %

£ P[0 | 2 5) P (15 2 5)
n max(r,s 2 n 2

(b) —kky_1Le?

3 t—1
S t KKt_l eXP{W}

Step (a) follows from Lemma and step (b) using B:(c)
and By (b) - B:(b).



(e) [Eq. @38)]. By definition, m* = b’ —w, and so it follows:

P(| ] 2

- g
2 (0 ] (2 ]

— kK1 Le? }
#3(log M)2t—1

Step (a) follows from Lemma and step (b) from By(d)
and By(b) - B:(b).

(0, (g) [Eqs. @40), @#43), @44), and @.46)]. The proofs
of B:(f), (g) follow closely to that of [20, B;(g), (k)] and are
not included here. For result (#.40) we note that (7;-) > 0
for 0 < ¢t < T by Lemma [3] while [20] used the stopping
criterion to show this fact.

® .
< t°KK;_ 1 exp{

D. Step 4: Showing Hy1 holds

We begin with a lemma that is used in the proof of H;1(a).
Parts (a) — (h) of step H:y1 assume the invertibility of
Q1,...,Q;11, but for the sake of brevity, we do not explicitly
specify the conditioning.
Lemma 9. Let vi= 1B M} - 1Q;,[q
and Qui1 := 1Q; 1 Qu41. Forr € [t +1],

P(‘ [Qt_ﬁlv]r >e€ Qe invertible)
2 / —ktky_ L
< KK o { g i )

Proof: The proof follows similarly to that of Lemma |§|
and [20, Lemma 5.2].

(a) [Egs. @23) - @29)1. Eq. (&28) follows from the Cauchy—

Schwarz inequality. To show (@.29), we recall the definition
of A¢y1, from Lemma 5 Eq. (#.20):

— it ald’]

t—1 t
_ t atyprtl [[m’, || 1
At+1,t = ;)(OZT — Ol,r)h + ( \/’E — T Zt
~ 5 t
_ |m’ [|Qe+1Z

+> q @], (510

n
r=0

where we have used that Q;1Q'v = 3! q"[Q V], 11
d <~ e .
and (||mi||/\/ﬁ)+1zt =_(Ilm’, [|Q¢+1Z)/n which fol-

lows by Lemma where Z € R'*! is a vector of i.i.d.
standard Gaussians and

Qt+1[q0|...|qt];\/g[ q’,

q(J)_ | |
o, |

lad |

Consider a single element j € [N] of Ay Using the
triangle inequality to bound the expression in (3.10), we obtain

} . (5.11)

t—1
) At (1Tl HmL”
|[At+1t]|<2|a _04||h |+ 112 Jn
t+1

|Zs H

IImLH Z

+\/TZ’

_Tt

(5.12)

In the last term above, we have used the fact that for each for
i € [N] we have the upper bound |gj| < 2,/nPng(sec(s)) <

cy/log M for constant ¢ > 0. Squaring (5.12) and applying
Lemma [D-1] to bound the RHS, we obtain

<3(t+1) Z|a

+3(t+1)([Z

([Arg1;)? *(hf*1)?

2
2‘ [[m’, | L

Im % 5~ 22 e
3t+1)——— — (g
+3(t+1)— 2::0 —=(35)
t+1
+3(t+ 1)clogM > [Q"

u=1
Therefore, setting ¢’ = o and using Lemma | we have

the following upper bound:

L
1 2
— N2 >
P(L > jg}\ad@)([Am,tb) > 6)

=1
t—1 21
< P( t — hr+1 2 > /)
fz al —at I Jéﬂ%’&)( ) >e
r=0 =1
L
Hmi_” J_21 2 /
P( - Z,)? > ) 5.13
+ Jn T Lzﬂjglm%@)([ i;)” =€) (5.13)
t = L
jm'|> Z7 1 N2 <
+’; n n L;jgﬁ%}((e)(qj) =€
t+1 W
€
Pl 2 7 2e):
Jrugl Q| 2 2+/clog M

Label the terms on the RHS of (5.13) as Ty, T%, T3, Ty. To
complete the proof, we will show that each term is upper

bounded by t*K K|_, exp {7;52;}2;;;
First, for 0 <r <t -1,

t—1
<y P( > \J¢//Tr31og M)
r=0
t—1

1
P(— BT > 7,21 M)

t ~t
Q. —

~

—kki—1Le
(t+1)2(t — 1)°(log M )2 }
—kki—1L

(log M)2t— 2}

Step (b) follows from B;(f) and inductive hypotheses H; (h)
- Hy(h). Next consider T.

(b) 4
<t-t KKt,lexp{

+tKK;_ 1exp{

t
T, SP( ”mLH TtL) >

L
( Z]Glﬂd([

max
=1

(c) —kki—1Le
< KK,
LT D)2 (log M

31013:M)

2> 3logM)

—rLlog M
)21&} +e .



Step (c¢) follows from B;(g), Lemma |C.4] and Lemma
From Lemma term Ty is upper bounded by
3 i 7&/{;Le2
t° K Kj exp {7)54(10?{ R

Finally, consider 75 for 0 < k < t. Recall that 61’“ =
vnd" ||q% ||, and for each section ¢ € [L] we have

~k1 \2 < k 2 < k 12 <P, < cl M
jg}%ﬁ)([QL]J) < lalloll” < llagll” < 2nP < clog M,

for a universal constant ¢ > 0. Recalling ¢ =
therefore have

€
oDz W€

/

. -
lm® > Z; €

Ty < P(i ks 7)

8= Z n n — clogM

k=0
7 ¢ |
P(—k> ) P( L >2L2)
n — 2(ri)2clog M + n - (7i")
—kki_1L }
#7(log M )21

where step (d) is obtained using B;(g) Lemma (and
recalling that nR/log M = L). Thus, using the definitions
of ky, K} in (@27), we have the required bound for each of the

terms in (3.13).

(b) [Eq. (#31)]. Using the conditional distribution of h**! in
Lemma 5| Eq. @I3)), and Lemma [C.2] we have

1 t+1ys 0‘ )
— >
P(n‘(h €

]~

<

ol
Il

0

(d) _
< 2(t+1)exp {

L
) E} + t5KKt_1 exp{

1 * *
:P(n Tt 1(ht) O_|_7-tJ-th +At+1 +d ‘ >e)
€T
<P(*) ht * 0’ > t— 1) P( 7 O‘ )
- n (b))} > 377 + td] = 3Tt

1 €
P(f‘A* 0‘ > 7).
+ g Y AS WA W e
Label the terms on the right side of the above as 77,75, T5.
First, by the induction hygpothesis Hy (), Ty is bounded by

t3KK]_; exp { g Le

T (log M)ZF7 (- Next consider term 75. Since

q° and Z; are independent, we have Z:q® < ||q°||Z, where
Z € R is standard Gaussian. Therefore, using Lemma [C.6]and

recalling that ||q°||?> = n.P, we obtain
lo®ll 2] _ e 2l o €
e (1 (s
AR T Vi 3riVP
<200 {1
= SOPAsP(R2 S
Finally,

L A *qO
- p(| 3 oy o
/=1 n

(a) 1 & ev/log M
< P(— max [[A 1> 7)
< :ljein%@)\[ t+1,t)5] > Y
(b) — kK, Lé?

3 t—1
=t KKé_leXp{t‘l(logM)?t*l}

Step (a) follows since nR = Llog M with Zieind(£)|q?\ =
vnP, and \/nP; < cy/log M for some constant ¢ > 0 and

each ¢ € [L] and step (b) from H;41(a).

(c) [Eq. @33)]. We will show the concentration result for
(@")*q'™'/n when 0 < r < ¢ + 1. Recalling that q" =
7" 1(By — h") — By, it follows that

P(‘%(qr)*qt+l _ Ugﬂ’ > e)
= (|5 07180 — 1) = B0)" (80 — 1) — By)
- Ut2+1‘ = 6)'

Using the representation in Lemma [6| Eq. #2), and Lemma
we write

P(| Lo (3, )

n
= P(‘ ("' (By —h" — A,) — By)*
(nt(ﬁo —h" - At+1) —By) — Ut2+1’ > e)

< P( |8y~ B~ &) - )"

- Bo)*(nt(ﬁo - htH) - 50)

o2

S|

[n (B, — B+ — Atm—nt(ﬂo—ﬁ”w] > 1)
+ (][ A -8y~ 0]
W( ~h) - )| > 1)
+ (|20 By~ )~ Byl (B~ ) - 3]
otal29)
(5.14)

We label the three terms on the RHS of (3.14) as T}, 75, T3 and
bound each term separately. We first note the following bound
about A, that will be used repeatedly. For 1 <r <t +1,

L
1 _
P> ’AT ‘ > )
(L;jg}%@)[ li| > €
1 L r—1 7_2
r—1
= — max (—)A 7>"Z€>
(L ;jeind(z)‘kz_o T2 [Akt1nls
(a)rfl 1 L
< ’;)P(L[Z max

— j€ind(¢)

(5.15)

‘[Akﬂ,k]j’ > ;)

—kk)_ Le }
t4(t + 1)%(log M )2t
In the above step (a) follows by the triangle inequality,

Lemma and the fact that 72, /72 < 1 for k < r —1,
and step (b) from H;y1(a) and the fact that r < (¢ + 1).

® , ,
<t"KK,_; exp{



First consider 77, the first term of (5.14).

1 r 1.7 A *
I = P(ﬁ’ 2[77(5)1(50 —h"—A;) =By,
(=
€
{77&) By —h" — A ) - 77&) (Bo — ht“)] ’ > §)
L
1 .
(5Z2V”PZ Z 7t (By —h' — Aypa)
=1 j€ind(€)
€
(8o~ hf“)\ > £)
@ (1 Loy nPg 3/2 - €
! e
SP(L M [ = §
®) 1 & er?
<P ’ A ¢
< P(1 Zm() (Beaal eR/eTT)
©) —kKL_ Lé?
< HKK! { t—1 }
= t—1 €XP #4(t + 1)2(log M )2+
(5.16)

In the above, step (a) follows from Lemma applied to each
section, step (b) from the fact that (nP)3/? < c(log M)>/?
for some constant ¢ > 0 and all ¢ € [L], and step (c) from
(5.15). The same upper bound as that shown in (5.16) for T}
also holds (shown similarly) for term T% of (3.14).

Finally, consider the last term 75 of (5.14). Using the
definition of h” in (@.22)), we have

T3 = P(’%[ﬁr_l(,@() - Trflzrfl) - /80}*

W(ﬂo - tht) = Bol — Ut2+1 2 g)
(‘ Z logM 7](@) ﬁo + Ty 1Zr 1) ﬁo(e)]*
€
5):

where the last inequality is obtained using Hoeffding’s in-
equality (Lemma [C.I)), which can be applied after verifying
two conditions. First,

Bz, .z "By + Trflzrfl) — Bol* 7" (8o + tht) — Bl
= EZT_LZ,,,@[UT_I(K'} + Tr71zr—1) - B [n"(B+ tht) — 3]

_ 2
- nat+17

[060) (Bo +7tZe) = Bo,,, ] — Uz£2+1‘ >

< 2exp{—Le?/(9¢H)}, (5.17)

where the first equality is true for each 3, € By, 1, because of
the uniform distribution of the non-zero entry in each section
of B over the M possible locations and the entrywise i.i.d.
distributions of Z,_; and Z, and the second equality by
Lemma Second, for each section ¢ € [L], there exists
a constant ¢ > 0 such that,

0<

R [77&31(#30 + Trflzrfl) - ﬁom]*mf@) (Bo + TtZt) - ﬂo(@]
log M

<ec.

We have thus shown that each term of (5.14) is upper

’ 2
Kky_ 1 Le

bounded by t*KK]_;exp {W}, which gives the
desired result.

(d) [Eq. @33)]. Recalling that g**! = n*(3, — h*T1)
we have

(0741 g+ = (074 (B — )
= W) (B — B + ()
Using the above and Lemma [C.2] we obtain

P(‘ (h'+1)* g+ . 6)

2
n TS
2 2
Ost1 Tmax(r,s)

(LR

2
n Tz

— Bo-

= Byl

2 2
US+1Tmax(7',s)

€
23)
-2

—hstl — As+1)

v P(| 255> 5).
(5.18)

where the last equality is obtained using the representation
in Lemma [6] Eq. @#2I). The second term on the RHS of

Kk, Le

(5-18) is upper bounded by t3*K K|_, exp {W} by
Hi41(b). In what follows we upper bound the first term of
(3-18), denoted by T;. Using Lemma [C.2] we have

= 2 2
het! ) O—S-‘rl’rmax(r,s)

(BT+1)*775(/30 - €
< S €
T, < P(’ . 7—52 > 6)
+p(| o’ (By BT - As+1)‘ > %)
n
T
n

€
> 6). (5.19)
We label the terms on the RHS of (5.19) as 1%, T1p, Tic, and
bound each separately. Using Lemma [6] the first term can be
written as

> 5 2 2
Z;n’ - Z Os 7—max r,s
Tla, = P( R (160 L S) + = 50 2 E);
n 72 6
- (5.20)
whgr Z Z. € RV are standard Gaussian vectors, with
E(Z,,, Zs, ] ?L;T;, for j € [N]. We then observe that
TTEZT,ZS{Z:HS(/BO - TSZS)}
n ~ ~
(i) TTEZT,ZS,B{Z:nS(/B - Tszs)}
= - :
(b) max(r s) EZS,gHUS (ﬁ + 7—szs) H2 P:|
5 _
7'3 n

72
© ~Ti Tnax(re) ;“a"“ Ji (5.21)

TS
In the above, step (a) follows for each B, € Bas, 1, because of
the uniform distribution of the non-zero entry in each section

of B over the M possible locations and the entry-wise i.i.d.



distributions of Z, and Z,, step (b) by Stein’s Lemma (see
(7, p.1491, Egs. (102) — (104)] for details), and step (c) from

Lemma[D.6] Using (3.21)) in (5:20), it is shown in Lemma D]

that Ty, < exp{—rLe?}.

Next consider T}j:

€

= P(% i ’([Am]w)* M (B =B = AS“)’ = 5>

~ €
/nP, Al > <
n ej.gjg@l[ +1lil > 6)

GW)

Al >
max |[A41];] > R

jeind(e)

AT
g
/N
S
1M

—kk)_ Le? }
t6(log M)2—1 "
Here, step (a) follows from the fact that \/nP; < c¢y/log M

for some constant ¢ > 0 for each section ¢ € [L] and nR =
Llog M, and step (b) from (5.15). Finally, consider the last

term T of (3.19).
— P( ‘Z hr+1 |:na

—Ai1) =iy (Bo — ESH)} ‘ 2 %)

® , ,
<t°"KK, ; exp{

fls+1

L
1 ~ i .
< P<f i+l ‘ (8, — h*tl — A,
<P max |h; \'Z 3 (Bo +1)
(=1 j€ind(£)
s .S €
—13(8y — 0| = ¢
1 L €T,
L hr+ . i )
(L 17313:&)‘ |Jénmadﬁ>|[ wlil = R
(d) /T, = er?
9 p(Tn . ).
L & iéﬂﬂﬁ)” il max [Bsialil 2 52

(5.22)

In the above, step (¢) follows from Lemma applied to
each section ¢ € [L], using nP; < clogM for a universal

constant ¢ > 0; step (d) holds since he £ Tu—1Zy—1 Where
Z._1 € RY is standard Gaussian, as shown in Lemma|6| Now

20

considering the probability on the RHS of (5.22), we find:

2

~ €T,
Z’ri s i > u )
— ieind?ﬁ) 12:] |jg}1d)((/)|[ il 2 12Rc

Ts
Te< P

- Zr [ 2
L — igi}%%) Ji)

LS e (A 2 (120 )Y)
- max |[A, ]2 >
L [leein%(e) +ili 121 Re

1 ~
<p(= 7,1,)2 > 3log M
< (Le-lig‘%([ Ji)* > 3log )

1 L
+P(L; ‘max

- j€ind(¢)

2
(1271R§\7}W)2>

—kk)_q L€ }
#6 (log M)2tH1

Step (e) follows by Cauchy-Schwarz and step (f) from
Lemma [C.7] and the fact that for 0 < s < ¢,

1
P(— max
L = jeind(£)

[Agi)? >

)]
< erblosM 4 A KK exp{

Benls] =€)

L
1 1 2
T ;jgﬁ%@) Ts ; TTQ[ +1li| =€

— Kk} _q Le }
t4(t 4+ 1)%(log M)t

In the above, step (g) follows by Lemma Lemma
and the fact that 72/72 < 1 for 0 < i < s and step
(h) from H;+1(a) and the fact that 0 < s < ¢. We have
now shown that the three terms of (5.19) are bounded by

Kk, Le

t*KK]_, exp {W }, which completes the proof.

D) 4 /
< t"KK, exp{

(e) [Eq. @37)]. This result follows similarly to #;(e) by
noting [|B"||> —nP = [[q""*||> = 2(q°)*q' ™" and appealing
to Ht+1(c).

(0, (g) [Egs. @39), @@41), @42), @A43)]. These results
follow along the same lines as B:(f), (g).

(h) [Eqs. @#47) - [@48)]. Using the representation of h'*1



from Lemma [6| Eq. 21), we write

L

1
P(— R > 700/3Tog M )
T3 12 o T

= +1 >
( nglnad@)h + [Apa]] > 70 3logM+e)

< Zjénm% |

+ = Z]érl}%}(zJAtH il >0 3logM+e)

( ng]adﬁ)h+1|>7-m/310g )
1 L
+P(; szg}%@)l[ﬁml ED

(a) —knK}_ Le?

< N KK ep (G S
In step (a), the first term on the RHS follows from Lemma
since ht*+! £ 7.7, where 7, < 79 and Z; € RY is standard
Gaussian. The second term on the RHS follows from the bound
in (3.23). where the final inequality follows since 7;/7p < 1.
The result for the squared terms follows similarly.

APPENDIX A
PROOF OF LEMMA[I]

(a) Recall the definition of x(7) given in (I.7) which can
be written as

L p,
x(r) = Z F&(T)’ (A.D
=1
where
(VIR
&ifr)=E VIV 4 e=npe/r* M eUNTPe/T] '

Using the relation nR = Lln M, we write ”T—}? =y InM,
where v, = LP;/(R7?). Then &:(7) can be expressed as

M
Ee(T) = ]EKl 4 e VI MUY v ZBWU;Z)*I]

j=2
(A.2)
Letting
M
X :=M" exp{\/veIn M UL},
jz:; { i} (A.3)

V = exp{—/veIn M U},

we use iterated expectation and the independence of X,V to
write

Eo(T)

where the last step follows from Jensen’s inequality. The

=EyE[(1+VX) " HV] > Ey[(1+VEX) '], (A4)

21

expectation of X is

M
EX = M~ ZE[eXp{\/W lnMUf}}
j=2

(;) M_W(M— 1)Ml/g/2 < Ml—ug/2

where (a) is obtained using the moment generating function
of a Gaussian random variable. We therefore have

_1] > Ev[(l + VMl_W/Z)_l].
(AS)
For any «a € [0,1), when {V < M®*/2=1D1 we have (1 +
VMI7ve/2)y <14 M~(=*)we/2=1)_ Using this in (A3), for
¢ such that v, > 2 we have
P(V < Ma(ug/Zfl))
54(7_) = 1 +M—(1—a)(w/2—1)
i N a(ve/2—-1)
w P(U1 > o220 M)
B 14+ M-(-a)(e/2-1)
where step (a) follows from the definition of V' in (AZ3).

1> &(7) > By[(1+ VEX)

(A.6)

Next consider ¢ such that 2(1—ep;) < vp < 2, where ey :=
\/W for some constant v > 0. Then, as (1 —v,/2) < ey,
from (A.3) we have

Eo(T) > Ey[(1+ VM)

:E{(1+66Mln1\4*Uf\/m)71 > P(Ulz > 2’(}/\/72)
~ 1+ exp(—vvIin M)
(A.7)

(b) For § € (0, ) first con51der { such that v, > 2 + 4.
Using the bound Q( ) < = exp{ =5~ } for x > 0, the
relevant term in (2.I) can be Boanded from below as

o - 2 o)
1+ M-1- a)(w/2 1)

\/>M 2(ve/2-1)2 20 1
2 |1 e J
27 In M (Vg/Q —Dad 1+ M-0-)0e/2-1)
2(ve/2-1)2 /20 y
> [1 Ve~ Hl _ M—u—a)(%—n}
V2rIn M(ve/2 — Do

\/WM—QZ(Ve/Q—l)z/%z
- V2rln M(ve/2 — 1o

—(-a)(4-1),

(A.8)

where the second inequality is obtained using H% > (1—x),
for z € [0, 1]. Now choose « as follows:

1-9, 240 <y <4,
o =
%7 vg > 4.



Using this « in (A:8), for v, > 2+ ¢ we obtain

Eo(T)
AN 62 (1=6)%/32

>(1-—
N ( V2rIn M6o(1 —6)
+ (1_ \/MM—I/&M
vrlnM
> (1

M*Hgéz
— — ) 1{v, > 2+ 4},
5\/1nM) e J
for a suitably chosen universal positive constant k9. Next, if
2 <y < (2+49), using « = 0 in @) yields E(7) > 1/4.
Finally there exists a universal constant x5 such that
Q2ra/ V) 1

]_+6*N3\/W71 when z/g22<1—

7M7§)1{2+5<W <4)

- M—%)L{w > 4

K3 )
Vieg M/’
APPENDIX B
PROOF OF LEMMA [2]
Let 7,1 = = < (1 — f(M)). We will use Lemma [I{b)
with v, determined by (24). We only need to consider the

case where vy, < (24 6), because otherwise vy > (2 + ¢) for
¢ € [L], and 2.2) guarantees that z; > (1 — f(M)).

With 2, 1 = x, we have 72 | = 02 + P(1 — z). With
T =712, we have
LPg 7'02

L((1+snn)/L —1)(1 + snr)~¥/F

(B.1)
for ¢ € [L], where we have used the expression in (2.4) for
LP,. Using in 2.2),

L
xp 2 (1= f(M))

l/e = =
Rt?, R7?,

Py
—=1 246
P {ve >2+6}

L /L 2

B0 (A )
Y —f(M))fol{ﬁ - izlog(@fggﬁ)}
ST

X [1 - exp{ — log ((24356)7573_1) %H

In the above, (a) is obtained using the expression for v, in
(B-1), and inequality (b) by noting that

L((1 +snn)/L —1) = L(eX/E — 1) > 2.

Inequality (c) is obtained by using the geometric series for-
mula: for any £ € (0, 1), we have

137
> Pr=(P+0%)(1—e LT
=1

> (P +0?)(1 — e™20820/0),

22

Inequality (d) uses e?¢/% < 1 4 4C/L for large enough L.
Substituting 72 ; = 0% + P(1 — z), implies

rez - ) PR (02
T L (A
_ (1_f(M))P;02 (1_ (1+g/2)R _%)
—x(l—(l—f(M))%)‘ (B.3)

Since § < (C — R)/C, the term % is strictly less than
1, and the RHS of (BJ3) is strictly decreasing in z. Using the
upper bound of z < (1— f(M)) in (B3) and simplifying, we

obtain
0_2
w—wz (- jn) T (1 R
0.2
—pan - fon) EHDR_SRALT/T)

This completes the proof for ¢ > 1. For ¢t = 1, we start with
x = 0, and we get the slightly stronger lower bound of x; by

substituting = = 0 in (B23).

APPENDIX C
CONCENTRATION LEMMAS

In the following € > 0 is assumed to be a generic constant,
with additional conditions specified whenever needed. The
proofs of Lemmas [C.2HC.3] can be found in [20].

Lemma C.1 (Hoeffding’s inequality [27, Thm. 2.8]). If
Xi,..., X, are bounded random variables such that a; <
X; < b;, then for v =2y ,(b; — a;)*]~*

2.2

1 n
P(f X, —EX;) > )< —n’e
LS -Ex) 2 ) <

i=1
n

P(’%Z(Xi _EX;)

> e) < 9e~ V€

Lemma C.2 (Concentration of sums). If 2random variables
X1y, X satisfy P(|X;| > €) < e ™€ for 1 <i < M,
then

P MX MPX ¢
> < >
185512 <35 r(xi= 4)

< Mefn(mini Ki)e2 /M3

Lemma C.3 (Concentration of products). For random vari-

ables X,Y and non-zero constants cx,cy, if P(|X — cx|>
2

€) < Ke " and P(|Y —cy|>¢€) < Ke """ then

P(|XY —cxey| >¢€) < P(|X — ¢x| > min (\/?,€>)
3 3CY

+P(IY —ev] >mm(¢§,3§x))

2

—KMne
oo {1y
- b 9max(1, %, %)



Lemma C.4 (Concentratlon of square roots). Let ¢ # 0. If
P(IX2 = 2> ¢) < e ", then

P(|| X = Jel|> @) < eI
Lemma C.5 (Concentration of powers). Assume ¢ # 0 and

0<e<LIP(X,—c|>e) < e*"mg, then for any integer
k>2
P(IXF = ck|> ) < e—rmne?/[(1+|e))* ~|e*]?
Lemma C.6. For a standard gaussian random variable Z
1
and € >0, P(|Z] > €) < 2e™z°.

Lemma C.7. Let Z,,Zs,...,Zn and Zy, Z, . .., Zy be i.id.
standard Gaussian random variables and 0 < ¢ < 1. Then the
following concentration results hold.

( Z max Z2 >3logM+e)
jemd(é)

<exp{ 5L (2€+log%)} (C.1)
P(‘zlvézf_l'>e> §26xp{_ 62}, (C.2)
P(‘leii Ze) §2exp{_];€2}. (C.3)

Proof: Using a Cramér-Chernoff bound [27} Sec. 2.2], for
any ¢ > 0 we have

( Z max Z2 >3logM—|—e>
]Emd(é)

L
< exp ( —tL(e+ 3log M) + Z log Ee! majend(s) Z.?).
=1
(C4)

Then using the moment-generating function of a Chi-square
random variable, we obtain
]EetIIla‘Xjemd(Z) Z? < Z IEetZJ2 —
jeind(e)

when 0 < ¢ < 1/2. Using this bound in (C4) for ¢ € [L], we
find

M
1—2¢

( Z max Z >310gM+e)
gelnd(é)

< 'f[ftL 3log M) + Llog M
_eXp(te(lor,ll/z) (€4 3log M) + Llog
L
B log(1 — 2t)D.

We choose ¢ = 2/5 to obtain the desired bound:
max Z > 3logM+e)
j€ind(£)

(z
2Le L L )

§exp<—?——logM+—1og5

< exp ( 5L (26 + log %))

23

The bounds in (C.2) and (C.3) can be similarly obtained us-
ing Cramér-Chernoff bounds. The relevant moment generating
functions are

1
EetZi = 0<t<1/2
VI—2t’ ’
; 1
Ee'i% = ——— 0<t<1, foric][N].
1_t27 )

The steps to obtain the bounds in (C.2) and (C.3) using these
moment generating functions are similar to those for sub-
Gamma random variables; see, e.g., [27, Sec. 2.4]. |

APPENDIX D
OTHER USEFUL LEMMAS

Lemma D.1. For any scalars aq, ..
m, we have (lai| + ...+ \at\)
sequently, for any vectors uy, ..

£ .

Proof: The first result is obtained by applying Holder’s in-
equality to the length-¢ vectors (|a1],...,|a:|) and (1,...,1).
The second statement is obtained by applying the result with
m = 2. [ ]

.,a; and posmve integer
< " 1Zz 1|a1‘m Con-
ut e RY, _ugl)? <

Lemma D.2 (Stein’s lemma). For zero-mean jointly Gaussian
random variables Zy,Z>, and any function f : R — R
for which E[Z,f(Zs)] and E[f'(Z2)] both exist, we have
E[Z1f(Z2)] = E[Z1 Z5]E[f"(Z2))]-

Lemma D.3. Ler u € RY be a deterministic vector, A €
R™*N be a matrix with i.id. N'(0, L) entries, and W be a d-
dimensional subspace of R™ for d < n. Let (w1, ...,wq) be an
orthogonal basis of W with |w,.||> = n for r € [d], and let Pll/v
denote the orthogonal projection operator onto W. Then for
D =[wy|...|wq], we have PAu 4 %PWZU 4 %Dx
where x € R? is a random vector with i.i.d. N'(0,1/n) entries.

Lemma D.4 (#(d) concentration). Let Z,Z € RN each be
standard Gaussian random vectors such that (Z;, Z;) are i.i.d.
bivariate Gaussian, for 1 < i < N. For { € [L], let vyt =
mﬁ . Z&)n(se)(ﬁo — 75Zy), where 0 < s < T. Then for k, a
universal positive constant,

P()% i(w - E[Yf])] > e) < exp{—rLé?).

Proof: We first note that Y is a (scalar) random variable
with an ¢ dependence. (It is not an M-length vector.) We
represent Y as a sum of a bounded random variable and an
unbounded random variable.

vt _ LTy (Bo — 72

sw)
@ 1{ max |Z;| <z
i€ind(£)

log M
2 (B — 7o) ®-b
0"e)\Po ~ Tsh(0) {
1 A
+ log M zéﬁw{z}f{eJ | x}

where we specify the value of x later. Label the first term on
the right side of (D.I) as Y}’ for ‘bounded’ and the second



term as Yé for ‘unbounded’. Therefore, using Lemma

(|3 S0 - mr| > 2
- mi B )+ ;3] 220
< r(; 30 - w\zwu;;w =)

(D.2)

Define (1, = ¢ ZZ LE[Y,f]. Noting that E[Y*] = E[Y}{] +

E[Y], we write

P<\zi<w—w>!za

=1

| L
{02 -2
- (D.3)
r(3 s an=cea)
-1
+p(+ fjm" BB < —e+ ).
=1
From (D:2) and (D:3) we have
P(‘% ZL:(W - E[Y‘f])‘ > 26)
=1

< P(% EL:(Yf ~E[Y]) 2 e+ ) +P(\% EL:YU“ >
=1

(=1

+P(3 i(y —E[Y]) € —e+G).

=1
Label the terms on the right side of (D:4) as T}, T%, and T5.
The rest of the proof proceeds as follows:

(D.4)

1) We show that —M ~% < (5, < M~ for some universal
constant cg > 0.

2) We apply Hoeffding’s inequality to show that 7} and
T; are bounded by exp{—riLe?} for some universal
constant x; > 0.

3) We show that 75 is also exponentially small in L.

To show item (1), recalling that (;, = + Z;:l E[Yf], we will
obtain an upper bound for |E[Y;/]|.

Z 77 (ﬁo (/))
E[Y! = | QO 1 7| >
[¥V.] [ logM {én.n%ﬁ)‘ | xH
C
< 71}3[ Z, 1{ 7| > H
S Toaar el max 121 max |Zi] = @

(D.5)

where we have used \/nP < cy/log M for some constant ¢ >
0. Let W = max;
Then since W is non- negatlve we have IE fo

24

w)dw. Note that

P(W > w) = {ZZE?V/ i ;U))

Then it follows from (D.3)) and (D.6),

ifw>zx

. (D.6)
if0<w< 2.

’E[Yf] < \/mcgw [/OIP(W > 2)du + /:OP(W > u)du}
< ﬁ [:cP(W > 1) + /;O P(W > u)du}

< \/loziMPMe_”Z)/Q + /£ h 2Me_“2/2du}. (D.7)
< \/mcgﬁ [2Me*12/2 + %aﬂﬁz/ﬂ. (D.8)

where (D.7) is obtained by noting that for y > 0,

P( max|Z|>y> ({ley}u...U{Zsz}

i€ind(£)
U{Z1 Sy}U...U{Z]V[ Sy})
1

< 2Me V)2 min{l, 7}

N YV 2T
Inequality (D-8) also uses the above bound for the Gaussian
tail probability.

Now choose © = kv/2log M for k > 1 to be fixed later.
Then (D-8) implies
2c
BV < s

log M (1+ k\/2lloW)

We have therefore shown ’E ‘ < 2cM —(F*=1) for M large
enough (M > e suffices). So it follows that

1 2c
CLSZZ“E[ ]|—Mk2 1
=1 (D.9)
71 ¢ 720
CL 2 TZHE[YuH Z T
=1

Next we bound the terms 73 and 73 in (D4) using
Hoeffding’s inequality (Lemma [C.I). First notice that for

¢ € [L], the random variable Y/ € [=Z " b Ilovg"]?], where
x = k+/2log M. To apply Hoeftding’s inequality, we also note
that
> (i)~ [~ S ))
— log M log M
L
42°nPy 8k’2nP 9
= 8k“PRL.
Zl (log M)2  log M
Therefore it follows that
L
1 —L(e+ CL)Q
7= P 0GB > e4¢r) < exp (TR0

(=1

where ¢ = 4k?P/R. From (D.9), (;, can be made arbitrarily
small by choosing M large enough. Therefore, we have T <
exp{—r1Le?} for large enough M. Similarly, for sufficiently



large M we also have
L

T3 = P(% ZZ(YJ ~E[YY]) < —e+ CL) < exp{—r1Le’}.
=1

Finally we bound the second term in (D.4). Using the Cramér-
Chernoff bound, for t > 0 we have

(1 S EO RS S}

, (D.10)
We bound EetlYe!l as follows. We have
Eexp{t|Y, |}

Z *
= Eexp {t‘ ( (e))

nff)(ﬁO_Ts () )

1{ max |Z;| > m}‘}

IOgM i€ind(£)
ct
<E {7 1 Zi| > } U],
SEow | o ) 12 max 1 7] 2 @} p = E{U]
(D.11)
where we have defined U =
exp \/%E;Mmaxieind(g)\Zﬂl{maxieind(mZﬂ > x}} and

used vnP; < cy/log M. Also recall that © = kv/2log M. As
before, let W = i

1 it W< a
exp{ CtW =} if W>uz.
It follows that
PU > w)
1 fo<u<l1
=L P(W >ux) if1<u§exp{\/lfgLM}
P(W > Gosthoelly - if u > exp{ )
(D.12)

Let 7 = exp{ \/li)tgLM} = exp{v/2kct}. Then using (D.11) and
(D.12), we have

Eet!Yul
< E[U] :/OOP(UZu)dUS 1+ @Z-1)PW >x)
0
+ /OOP(W > —(logu)m)du

ct

_ 2
(logw) logM}du

<14 (x—-1)2Me™ 7 4+ QM/i exp{ 522

=1+ Qexp(\/ikct)M_(k2_1)

e —v2log MY
exp{T}e dv.
\/§k:ct 2C t

Now by completing the square and simplifying, the integral
in can be bounded as

/°° ) {M}evdv
\/ikct Xp 2C2t2
242
= Xp{21 t } (k/2logM — 1) < ey M~ k*

for some absolute positive constant ¢; < 2. In (D:14), Q(a) =

+2M (D.13)

(D.14)

25

(2m)=1/2 [ e~v*/2qu is the Gaussian upper tail probability
function. Using in (D.13) and taking t = ﬁ, we

obtain EetlYx! < 1+62M*(k2*1), where co > 0 is an absolute
positive constant. Substituting this into (D.10) we find:

1 L
R UPMED
ke S

/2
—Le

< exp{ }exp{CQLM (K*~1) } < e rle
V2

< exp{

for some absolute positive constant x, when M is sufficiently
large. This completes the proof. [ ]

Lemma D.5. /5| Lemma 9] For the function 77§- RV 5 R
defined in (L.8) for any j € [N] and s, A € RY, the following
is true for all £ € [L]:

> i) —mits + A) <

i€ina(e)

2nP,
not max |A|.
Tt i€ind(£)

Proof: From the multivariate version of Taylor’s theorem,
for any j € [IN] we have

ni(s + A) = nj(s) + ATVn§ (s + cA),

for some ¢ € (0,1). Noting that for j € [N], n} depends
only on the subset of its input also belonging to section

(D.15)

ind(sec(j)), using (D-I3) we have
Z i (s) — (s + A
i€ind(¥)

- Z ‘ Z A]aa nl(ercA)‘

i€ind(£) jeind(¢)

(a) v/ P
! Z ‘772 (s+cA)A,;
t i€ind(£)
1

+ = Z ‘nf(s+cA) Z Ajn§(s+cA)‘

Tt icind(e) j€ind(e)

(2) 2nby max |A],

- 7152 i€ind(¢)

where inequality (a) uses the fact that for 4,5 € ind(¢),
32] ni(s) = 2771( s)[vVnPy 1{j = i} — n(s)]. Inequality (b
uses the fact that delnd |77j (s+cA)| = Zjeind(z) 77;(5 +
cA) = \/nP. [

Lemma D.6. Let ZT, Zs € RY each be standard Gaussian
random vectors such that the pairs (Zyi, Zs,), i € [N],
are i.i.d. bivariate Gaussian with covariance IE[ZMZ“] =
(1s/7r). Then for 0 <r < s <T,

CE{ (8- 2] (B~ 2]} = Pres, (DI6)
R (B - 70Z) — A" (B~ 7. Z) — ]} = o,

(D.17)



Proof: We will use the following fact [[7, Proposition 1]:

E{B*n" (B )} =nPxriq, (D.18)

Letu" =3 — 7.2, and v® = B —1,Z,. Recall from (T.9) that
n" (8 — 1Z,) = E[B | u"] and n*(B — 7:Zs) = E[B | u®].
Therefore, for r < s

—TT for 0 <r <t.

E{[n" (B = 7Z,)]"n"(B — 75Z)}

= E{[E[8 | u"]]"E[3 | v’]}

=E{[E[8 | u']]"[E[8 [ v’ u"] - B+ B]} (D.19)
=E{[E[3 | u"]]"B8}, (D.20)
=nPx,11. (D.21)

which proves (D.T6). In the above, (D.19) holds because E[3 |
v’ ,u"] = E[3 | u®] as shown below, (D.20) holds because
E{(E[B|u®,u"] — B)*E[B[u"]} = 0 due to the orthogonality

principle, and (D:21) follows from (D.18).
The result (D17) follows from (D.16) and (D-18), noting

that ||3||*> = nP. Therefore, the proof is complete once we
show that E[3 | u®,u"] = E[3 | u®]. Consider an index i €
[N], and for brevity let ¢ := sec(i). We then have

E[B; | B — 7sZs :us,ﬁ*Trzr =u']
=E[Bi | {8 — 7sZs,j = uj, Bj — TrZ J = W} }icind(o)
= /nPP(B; = \/nPy | {B; — 725 = u,

Bi = 1 Zr; = i }ieind(v))

VP f ({us, uf }einae) | Bi = VnPy)P(B; = VnP)

Ekemd ({ujvu Yieinde) | Br = VnPg)P(Br. = Vnby)
(D.22)

where we have used Bayes Theorem with

FHu5, vl jeinde | Br = V/nP)
denoting the joint conditional density function of {B; —
TsZs,j ul, B — T2y u}jcindey given B =
v/nP,. Now, 3 is independent of Z, and Z,, and the pairs
(Zr.is Zs.4), i € [N], are i.i.d. bivariate Gaussian with covari-
ance E[Z”Z“] = % We therefore have

J({us, uj}ieinde) | Br = VnPe)

[l VAR | = VT
<Pl w2
B ( — Vnby)(uy vnPe)”
TT
2t e 2y
XH eXp{_Q(TE 7'52)[ T2 + T2 T2 }}
JEind(?), j#k
2/npb, uy,  ug +ul
:exp{Tz 7'2[7'24_7]6_ S

72 T”
{_2(73711%[1 L_z}}

=)

2
r Ts Ty

jeind(e)
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Using (D:23) in (D.22), together with the fact that P(8) =
VnPy) = 55 for each k € ind(£), we obtain

[ﬂz|5 Ts e_uaﬁ rzr:ur}
e {655+ ]
= N ut ustul
Zjeind(e) exp{ 212 |:7é + % - ]Tf : :|}
V/nP; exp {ui ”"P}
uiv/nP,
2 jeind(e) OXP {7J 72 Z}
=E[5 | B-7.Z

as required. [ ]

s :us]v
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