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Feedback Capacity of Gaussian Channels Revisited
Ather Gattami

Abstract—In this paper, we revisit the problem of finding the
average capacity of the Gaussian feedback channel. First, we
consider the problem of finding the average capacity of the analog
Gaussian noise channel where the noise has an arbitrary spectral
density. We introduce a new approach to the problem where we
solve the problem over a finite number of transmissions and
then consider the limit of an infinite number of transmissions.
Further, we consider the important special case of stationary
Gaussian noise with finite memory. We show that the channel
capacity at stationarity can be found by solving a semi-definite
program, and hence computationally tractable. We also give
new proofs and results of the non stationary solution which
bridges the gap between results in the literature for the stationary
and non stationary feedback channel capacities. It’s shown that
a linear communication feedback strategy is optimal. Similar
to the solution of the stationary problem, it’s shown that the
optimal linear strategy is to transmit a linear combination of the
information symbols to be communicated and the innovations for
the estimation error of the state of the noise process.

Index Terms—Gaussian channel, capacity, feedback, convex
optimization.

I. INTRODUCTION

A. Background and Previous Work

We revisit the problem of communication over a Gaussian
feedback channel with possibly colored noise z = (z1, z2, ...),
zk = 0 for k ≤ 0 (see Figure 1). More precisely, let W ∈
{1, 2, 3, ..., 2nR} be the message to be transmitted over the
Gaussian communication channel

yk = xk + zk

for the time horizon k = 1, ..., n, where xn ,
(x1, x2, x3, ..., xn) are the transmitted code words and yn ,
(y1, y2, y3, ..., yn), y0 , 0, are the channel outputs. Each trans-
mitted symbol xk is a deterministic function of the message
W , the past transmitted symbols xk−1, and the past channel
outputs yk−1 which accounts for the channel feedback. For
block length n, we specify a (2nR, n) feedback code with the
encoding maps

fk : {1, 2, ..., 2nR} × Rk−1 → R, for k = 1, 2, ..., n

Thus, the code words are xk = fk(W, yk−1) for some time-
varying function fk to be optimized. The transmitted symbols
are subject to the average power constraint

1

n

n∑
k=1

x2
k ≤ P. (1)
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Figure 1. The system studied in the paper. The feedback channel is assumed to
be noiseless and the measurement noise zk is given by some colored Gaussian
process with statistics known at the transmitter and receiver.

The noise process is a single-input-single-output (SISO)
linear dynamical system given by

zk = H(z)uk,

where

H(z) =

∞∑
l=0

hlz
−l

hl ∈ R, {uk} are independent and identically distributed (i.
i. d.) Gaussian variables with uk ∼ N (0, 1), and z−1 is the
backward shift operator, that is z−1uk = uk−1.

Let W be uniformly distributed over {1, 2, 3, ..., 2nR}. The
decoding map Ŵn(yn) is chosen to minimize the average error
probability

P (n)
e =

1

2nR

2nR∑
i=1

Pr
{
Ŵn(yn) 6= W |W = i

}
= Pr

{
Ŵn(yn) 6= W

}
.

The rate R is achievable if there exists a sequence of (2nR, n)

codes with P
(n)
e → 0 as n → ∞. The average feedback

capacity C is defined as the supremum of all achievable rates.
It’s well known that for the case where the Gaussian noise

is white (uncorrelated over time, that is H(z) = h0 ∈ R),
feedback does not improve the capacity of the channel. How-
ever, feedback can indeed increase the capacity when the noise
is colored. In the seminal work by Cover and Pombra [1],
the authors introduced the quantity (where they refer to it as
capacity although it does not possess the functional meaning
of a capacity)

Cn = sup
fn

1

n
I(W ; yn)

under the expected value of the average power constraint

1

n

n∑
k=1

E
(
x2
k

)
≤ P (2)

where I(x; y) denotes the mutual information between x and y.
It was shown that for an arbitrary Gaussian stochastic process
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z, there exists a sequence of
(
2n(Cn−ε), n

)
feedback codes

with P (n)
e → 0 as n→∞ for ε > 0. The converse holds also.

It was shown that any sequence of
(
2n(Cn+ε), n

)
codes has

P
(n)
e bounded away from zero for all n. Furthermore, it was

shown that Cn can be found by taking the supremum over
xn = Bnz

n+vn, where Bn ∈ Tn, Tn is the space of strictly
lower triangular n×n matrices, and vn is a Gaussian process.
That is, for zn ∼ N (0, Zn), Zn � 0 (where Zn � 0 means
that Zn is positive definite), and vn ∼ N (0,Vn), Vn � 0
(where Vn � 0 means that Vn is positive semi-definite), we
have

Cn =

sup
Bn∈Tn
Vn�0

Tr(BnZnB
ᵀ
n+Vn)≤nP

1

2n
log

det (Vn + (Bn + I)Zn(Bn + I)ᵀ)

det(Zn)

The value of Cn was shown to be feasible to compute using
semi-definite programming [2, Equation (2.16)]. However, the
semi-definite program size grows linearly with n, and it’s not
possible to use the approach of [2, Equation (2.16)] to compute
the average feedback capacity, that is Cn as n goes to infinity
when the limit exists. For the stricter case of average power
constraints (1) (and not its expected value as in (2)), one needs
to ensure that for ε > 0 there exists an integer n such that

Pr

{
1

n

n∑
k=1

x2
k > P

}
< ε (3)

This can be guaranteed, for instance if the noise process z
is stationary (that is Rkl , E (zkzl) = E (zj+kzj+l) =
R(j+k)(j+l) for all j, k, l). Note that if (3) is satisfied, then
as n → ∞, (1) and (2) become equivalent. Since we will
consider stationary noise process z, we will consider the
power constraint given by (2) (See also section VIII in [1]
for discussion on the stricter power inequality)

For the case of stationary noise process z with spectral
density function Sz(e

iθ), it was shown in [3, Theorem 3.2],
that the average feedback capacity at stationarity, C =
limn→∞ Cn, is given by

C = sup
B,Sv

∫ π

−π

1

2
log

Sv(e
iθ) + |B(eiθ) + 1|2Sz(eiθ)

Sz(eiθ)

dθ

2π

where the supremum is taken over all power spectral densities
Sv(z) and strictly causal linear operators

B(z) =

∞∑
l=1

blz
−l

satisfying the power constraint∫ π

−π

(
Sv(e

iθ) + |B(eiθ)|2Sz(eiθ)
) dθ

2π
≤ P

Also, [3] considered the important special case of a Gaus-
sian process z of finite order, given by the state space equations

sk+1 = Fsk +Guk

zk = Hsk + uk

uk ∼ N (0, 1)

E (ukul) = 0 ∀k, l | k 6= l

(4)

where F ∈ Rm×m, G ∈ Rm, H ∈ R1×m, and uk, sk, and zk
take values in R, Rm, and R, respectively. It was shown in [3,
Theorem 6.1] that the average feedback capacity at stationarity
is given by

C =
1

2
log2(Y )

and Y ∈ R is the solution to the nonconvex optimization
problem

max
X,Y
Σ�0

Y

s.t. P ≥ XΣXᵀ

Σ = FΣF ᵀ +GGᵀ − ΓY Γᵀ

Γ = (FΣ(X +H)ᵀ +G)Y −1

Y = (X +H)Σ(X +H)ᵀ + 1

The solution relies on considering the stationary problem
directly instead of solving the problem over a finite horizon
n and then letting n → ∞. The stationarity property in
turn allows for using problem formulations and mathematical
tools in the frequency domain. However, a solution to the
above optimization problem is intractable in practice since the
equalities are nonlinear in the optimization variables. Thus,
one needs a different approach in order to get a practical
solution.

A related problem is that of communciation over a Gaussian
channel with inter-symbol interference that was considered in
[4]. The inter-symbol interference was modeled as a finite
order filter where the concept of directed information was
used to obtain a dynamic programming formulation with
constraints. Beyond the first order filter case, there is no known
tractable solution to find the average feedback channel capacity
numerically.

In this paper, we will use insights from systems theory
in general and linear systems theory in particular to derive
new formulaes and results for the feedback capacity of Gaus-
sian channels. Inspired by previous results for the stationary
Gaussian noise channels and ideas of the innovation process
approach in Kalman filter theory, we show that communicating
an affine function of the innovations process of the state of
the noise process is optimal. The intuition for the structure
of an optimal communication scheme is that you need to
communicate a combination of the information bits and at the
same time improve on the estimate of the state of the process
noise. The former is important since the information bits carry
the message whereas the latter reduces the uncertainty about
the channel measurement noise. Also, for the stationary noise
process, we use techniques from the theories of linear systems,
Riccati equations, and linear matrix inequalities to transform
the optimization problem of the feedback capacity to semi-
definite programming.

B. Contributions

First, we consider the problem of finding the average
capacity of the analog Gaussian noise channel where the
noise has an arbitrary spectral density. We introduce a new
approach where we solve the problem over a finite number
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of transmissions and then consider the limit of the average
capacity as the number of transmissions tend to infinity. We
show that the maximum average feedback capacity C over an
infinite time horizon can be obtained by optimizing over linear
strategies xk = B(z)zk + vk with

B(z) =

∞∑
l=1

blz
−l

and v a white noise process with vk ∼ N (0, V ) and V > 0.
The capacity C is the optimal value of

sup
V >0

B(z)=
∑∞

l=1 blz
−l

∫ π

−π

1

2
log

V + |B(eiθ) + 1|2Sz(eiθ)
Sz(eiθ)

dθ

2π

s.t. V +

∫ π

−π
|B(eiθ)|2Sz(eiθ)

dθ

2π
≤ P

This is a simplification compared to the result in [3, Theorem
3.2], where the capacity is optimized over white noise pro-
cesses v instead of all admissible processes with spectral den-
sities Sv(eiθ). Also, the proofs reveal a special structure of the
optimal feedback strategy. In particular, we show that the struc-
ture of an optimal strategy is given by xk = Lkžk+vk, where
Lk is some real number, žk = ẑk− z̄k, ẑk = E

(
zk|zk−1

)
, and

z̄k = E
(
ẑk|yk−1

)
. Thus, an optimal communication strategy

structure is shown to be linear in the stochastic variable žk
which is the difference between the estimate ẑk of the noise
zk based on the previous measurements of the noise process
zk−1 and the estimate of ẑk based on the channel output
measurements yk−1. This strategy is identical to the one found
in [3] for the stationary case, with the simplification that we
can restrict v to be a white Gaussian process.

We then consider the important special case of stationary
Gaussian noise with finite memory. We show that the average
feedback channel capacity at stationarity can be found by
solving a semi-definite program, and hence computationally
tractable. In particular, we show that the channel capacity is
given by

C =
1

2
log2(Y )

where Y ∈ R is the optimal solution to the convex optimiza-
tion problem

sup
K

Σ�0

Y

s.t.

0 ≺
(
P K
Kᵀ Σ

)
0 �

(
FΣF ᵀ − Σ +GGᵀ FKᵀ + FΣHᵀ +G

(FKᵀ + FΣHᵀ +G)ᵀ Y

)
Y =KHᵀ +HKᵀ +HΣHᵀ + P + 1

C. Paper Outline

In section II, we introduce the notation used in this paper
and give some known results from system theory and informa-
tion theory. In section III, we formulate the general problem
of finding the average capacity of the Gaussian channel with
feedback where we derive results similar to those obtained in

[1] and [3] for the non stationary and stationary Gaussian noise
processes, respectively. We then consider the special case of
the stationary Gaussian noise process of finite order in sections
IV and V. There, we give new proofs that also show that we
can find the average feedback capacity for this case by solving
a semi-definite program, and hence making it computationally
tractable. Finally, we provide an example in section VI with a
Matlab code in the appendix that can be used to compare the
results of this paper with exisiting solutions for the first order
Gaussian process case. Most of the proofs are relegated to the
appendix.

II. PRELIMINARIES

A. Notation
N The set of positive integers.
R The set of real numbers.
C The set of complex numbers.
Sn The set of n× n symmetric matrices.
Sn+ The set of n× n symmetric positive

semidefinite matrices.
Sn++ The set of n× n symmetric positive

definite matrices.
� A � B ⇐⇒ A−B ∈ Sn+.
� A � B ⇐⇒ A−B ∈ Sn++.
A† The Moore-Penrose pseudo-inverse

of the matrix A.
sk sk = (s1, s2, ..., sk) and s0 , 0.
|s| For a vector s = (s1, s2, ..., sk),

|s|2 =
∑k
i=1 |si|2.

B. System Theory

The material here can be found in [5].

Definition 1 (Detectability). Let F ∈ Rm×m and H ∈ Rp×m.
The pair of matrices (H,F ) is detectable if(

F − λI
H

)
has full column rank for all λ ∈ C such that |λ| ≥ 1.

Definition 2 (Controllability). Let F ∈ Rm×m and G ∈
Rm×r. The pair of matrices (F,G) is controllable if(

F − λI G
)

has full row rank for all λ ∈ C.

Definition 3 (Stability). Let F ∈ Rm×m. The matrix F is
stable if and only if its eigenvalues have modulus strictly less
than 1.

C. Optimal Estimation of Gaussian Processes

Consider a Gaussian process z given by the state space
equations in (4). Let ŝk = µk(zk−1) be an estimate of sk based
on the measurements zk−1 and let s̃k = sk− ŝk. Suppose that
we want to minimize the average squared estimation error

1

n

n∑
k=1

E
(
|s̃k|2

)
.
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It’s well known ([6]) that the optimal estimator is given by
ŝk = E

(
sk|zk−1

)
which obeys the Kalman filter recursions

Sk = E (s̃ks̃
ᵀ
k)

S1 = 0

Sk+1 = FSkF
ᵀ +GGᵀ

− (FSkH
ᵀ +GEᵀ)(HSkH

ᵀ + 1)−1

× (HSkF
ᵀ +Gᵀ)

Kk = (FSkH
ᵀ +G)(HSkH

ᵀ + 1)−1

ŝk+1 = F ŝk +Kk(zk −Hŝk)

s̃k+1 = (F −KkH)s̃k +Guk −Kkuk

z̃k = Hs̃k + uk

(5)

A property of the Kalman filter is that the innovations z̃k =
zk −Hŝk = Hs̃k + uk are independent for all k ∈ N.

D. Entropy Properties of Gaussian Variables and Processes
The differential entropy of the Gaussian process given by

(4) over a time horizon k = 1, ..., n is h(zn) which may be
rewritten as a sum of conditional differential entropies using
the differential entropy chain rule

h(zn) =

n∑
k=1

h(zk|zk−1)

with zk , 0 if k = 0. The differential entropy rate is given
by

h(z) = lim
n→∞

1

n
h(zn).

Proposition 1. Consider a Gaussian process z with spectral
density function Sz(z). Then, the differential entropy rate of
z is given by

h(z) =

∫ π

−π

1

2
log
(
Sz
(
eiθ
)) dθ

2π
.

Proof. Consult [7].

Proposition 2. Consider a Gaussian process given by (4) over
a finite time horizon k = 1, ..., n. The differential entropy of
zn is given by

h(zn) =
1

2

n∑
k=1

log2 (2πe(HSkH
ᵀ + 1))

where Sk is given by the recursion

S1 = E (s1s
ᵀ
1)

Sk+1 = FSkF
ᵀ +GGᵀ

− (FSkH
ᵀ +G)(HSkH

ᵀ + 1)−1

× (HSkF
ᵀ +Gᵀ)

(6)

Furthermore, if (H,F ) is detectable, then the stationary
differential entropy rate is given by

h(z) = lim
n→∞

1

n
h(zn) =

1

2
log2 (2πe(HSHᵀ + 1))

where S is the unique solution to the Riccati equation

S = FSF ᵀ +GGᵀ

− (FSHᵀ +G)(HSHᵀ + 1)−1

× (HSF ᵀ +Gᵀ)

(7)

Proof. See Appendix B.

III. FEEDBACK CAPACITY OF GAUSSIAN CHANNELS WITH
COLORED NOISE OF ARBITRARY ORDER

In this section, we will study the general problem of finding
the feedback capacity with respect to Gaussian noise with an
arbitrary spectral density function. More precisely, we consider
the following problem.

Problem 1. Let W be the message to be transmitted and
consider the Gaussian communication channel

yk = xk + zk

over a time horizon n, where xk = fk(W, yk−1) is the
transmitted signal over the channel with the average power
constraint

1

n

n∑
k=1

E
(
x2
k

)
≤ P,

where y is the measurement signal at the receiver, and z is the
stationary Gaussian measurement noise process with spectral
density function Sz(z). Find the value of

Cn = sup
fn

1

n
I(W ; yn).

where fn are deterministic functions. In particular, find the
average feedback channel capacity C = limn→∞ Cn.

It has been shown in [1] that for a noise sequence zn, the
mutual information I(W ; yn) is given by

I(W ; yn) = h(yn)− h(zn)

To make this paper self contained, we state this result.

Proposition 3. Consider the Gaussian feedback channel as
described in Problem 1. Then,

I(W ; yn) = h(yn)− h(zn)

Proof. See Appendix C.

For a Gaussian noise sequence zn with zero mean and
covariance Zn, it was further shown in [1] that the optimal
input distribution of the sequence xn that maximizes Cn is
obtained for xn = Bnz

n + vn, where Bn ∈ Rn×n is strictly
lower triangular, vn is a Gaussian sequence with covariance
Vn ∈ Sn+, and the pair (Bn,Vn) satisfies the power constraint

Tr(BnZnB
ᵀ
n + Vn) = E

(
|xn|2

)
≤ nP

Proposition 3 gives the relation I(W ; yn) = h(yn)−h(zn).
Thus, the mutual information between W and yn satisfies

I(W ; yn) = h(yn)− h(zn)

≤ 1

2
log2

det(Vn + (Bn + I)Zn(Bn + I)ᵀ)

det(Zn)

=
1

2
log2 det(Vn + (Bn + I)Zn(Bn + I)ᵀ)

− 1

2
log2 det(Zn)

, I(Bn,Vn, Zn)
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The value of Cn over the time horizon n is given by

Cn = sup
Bn
Vn�0

Tr(BnZnB
ᵀ
n+Vn)≤nP

1

n
I(Bn,Vn, Zn)

where the maximum is taken over Bn ∈ Rn×n being strictly
lower triangular.

Theorem 1. The average feedback capacity C in Problem 1
over an infinite time horizon can be obtained by optimizing
over linear strategies xk = B(z)zk + vk with

B(z) =

∞∑
l=1

blz
−l,

vk ∼ N (0, V ), and V > 0. The capacity C is the optimal
value of

sup
V >0

B(z)=
∑∞

l=1 blz
−l

∫ π

−π

1

2
log

V + |B(eiθ) + 1|2Sz(eiθ)
Sz(eiθ)

dθ

2π

s.t. V +

∫ π

−π
|B(eiθ)|2Sz(eiθ)

dθ

2π
≤ P

(8)
In particular, the structure of an optimal strategy is given by
xk = Lkžk + vk, where žk = ẑk− z̄k, ẑk = E

(
zk|zk−1

)
, and

z̄k = E
(
ẑk|yk−1

)
.

Proof. See Appendix D.

Theorem 1 provides a somewhat simplified formulation of
the Gaussian average feedback channel capacity compared
to the result in [3, Theorem 3.2], where we find that the
capacity is optimized over white noise processes v instead
of all admissible processes with spectral densities Sv(e

iθ) as
in [3]. Also, an optimal communication strategy structure is
revealed, and it’s linear in the stochastic variable žk which is
the difference between the estimate ẑk of the noise zk, based
on the previous measurements of the noise process zk−1, and
the estimate of ẑk based on the channel output measurements
yk−1.

IV. GAUSSIAN CHANNEL WITH NOISE PROCESS OF FINITE
ORDER

Let z be a Gaussian process of finite order given by the state
space equations (4). In [3], by using the results of [1] above,
it was shown that the optimal affine strategy of the transmitted
symbols xk to maximize the capacity at stationarity (that is,
as n→∞), is given by

xk = X(sk −E
(
sk|yk−1

)
) + vk

where v is a white Gaussian process independent of u with
vk ∼ N (0, V ), and Xᵀ is some vector in Rm. In fact, it
was shown that v = 0 is optimal, but we will keep it as
an optimization parameter as it will simplify the optimization
problem considerably.

We give here and in section V new (and shorter) proofs that
summarize the results of [1] and [3] on the value of Cn and
the value of the average feedback capacity C.

Theorem 2. The average feedback capacity in Problem 1 over
a finite horizon k = 1, ..., n with the noise process z given by
(4) is achieved by xk = Xks̃k + vk for some set of vectors
{Xᵀ

k }, where ŝk = E
(
sk|yk−1

)
, s̃k = sk − ŝk, and {vk} is a

white Gaussian process with vk ∼ N (0, Vk), independent of
u. The value of Cn is given by

Cn = sup
X1,...,Xn
V1,...,Vn≥0

1

2n

n∑
k=1

log2(Yk) (9)

subject to Σ1 = 0,

P ≥ XkΣkX
ᵀ
k + Vk,

Yk = (Xk +H)Σk(Xk +H)ᵀ + Vk + 1, (10)

Γk = (FΣk(Xk +H)ᵀ +G)Y −1
k (11)

and

Σk+1 = (F − Γk(Xk +H))Σk(F − Γk(Xk +H))ᵀ

+ (G− Γk)(G− Γk)ᵀ + ΓkVkΓᵀ
k

= FΣkF
ᵀ +GGᵀ − ΓkYkΓᵀ

k

(12)

Proof. See Appendix E.

Remark 1. The recursive optimization problem in Theorem
2 given by equations (9)–(12) can be solved by introducing
a Lagrange multiplier corresponding to the power constraint
and use the bisection method with respect to that Lagrange
mulitplier and then solve the optimization problem using
dynamic programming for each fixed value of the Lagrange
mulitplier. For further details, consult [8].

V. FEEDBACK CAPACITY WITH PROCESS NOISE OF FINITE
ORDER AT STATIONARITY

Now consider a stationary finite order Gaussian noise pro-
cess z given by

sk+1 = Fsk +Guk

zk = Hsk + uk

uk ∼ N (0, 1)

E (ukul) = 0 ∀k, l | k 6= l

(13)

where uk, sk, and zk take values in R, Rm, and R, respectively,
and we have replaced s1 = 0 in (4) with its stationary
distribution. From linear system theory [5], we know that the
pair (H,F ) must be detectable in order for the variance of the
estimation error zk − E

(
zk | zk−1

)
to be bounded (which is

necessary for the capacity to be positive otherwise the signal
to noise ratio will be zero). Since we assumed that F is stable,
the pair (H,F ) will be detectable.

The following result states how to compute the Gaussian
average feedback channel capacity by using finite-dimensional
nonlinear programming. This result is similar to the one given
in [3], and the computational complexity of the nonlinear
programming (nonlinear semidefinite programming) problem
is NP-hard in general.
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Theorem 3. The average feedback channel capacity in Prob-
lem 1, with the process z given by (13), is

C =
1

2
log2(Y )

where Y is the solution to the optimization problem

sup
V >0,Y

sup
X

Σ�0

Y

s.t. P ≥ XΣXᵀ + V

Σ = FΣF ᵀ +GGᵀ − ΓY Γᵀ

Γ = (FΣ(X +H)ᵀ +G)Y −1

Y = (X +H)Σ(X +H)ᵀ + V + 1

(14)

Proof. See Appendix F.

Note that taking V = 0 renders the same (nonconvex)
optimization problem as that in [3]. However, this case is not
achievable since the mutual information vanishes for V = 0.

Lemma 1. Optimization problem (14) is equivalent to

sup
V >0

sup
X

Σ�0

Y

s.t. P ≥ XΣXᵀ + V

Σ � FΣF ᵀ +GGᵀ − ΓY Γᵀ

Γ = (FΣ(X +H)ᵀ +G)Y −1

Y = (X +H)Σ(X +H)ᵀ + V + 1

(15)

Proof. See Appendix G.

Now we turn to the recursion

Σk+1 = (F − Γk(Xk +H))Σk(F − Γk(Xk +H))ᵀ

+ (G− Γk)(G− Γk)ᵀ + ΓkVkΓᵀ
k

= FΣkF
ᵀ +GGᵀ − ΓkYkΓᵀ

k

Γk = (FΣk(Xk +H)ᵀ +G)Y −1
k

at stationarity where for all k,

Yk = Y

Xk = X,

Vk = V,

Γk = Γ,

Σk = Σ,

and Σ is the unique solution to the Riccati equation

Σ = (F − Γ(X +H))Σ(F − Γ(X +H))ᵀ

+ (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ

= FΣF ᵀ +GGᵀ − ΓY Γᵀ

with
Γ = (FΣ(X +H)ᵀ +G)Y −1.

We will utilize that V > 0 to show that the pair

(F − Γ(X +H), (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ)

is controllable.

Lemma 2. Suppose that (F,G) is controllable and V > 0.
Then, the pair

(F − Γ(X +H), (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ)

is controllable.

Proof. See Appendix H.

Lemma 3. Suppose that (F,G) is controllable, V > 0, and

Σ = (F − Γ(X +H))Σ(F − Γ(X +H))ᵀ

+ (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ

Then, F − Γ(X +H) is stable.

Proof. See Appendix I.

Lemma 4. Suppose that (F,G) is controllable and V > 0
and let Σ satisfy the Riccati equation

Σ = (F − Γ(X +H))Σ(F − Γ(X +H))ᵀ

+ (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ

Then, Σ � 0.

Proof. See Appendix J.

Since Lemma 4 established the invertibility of Σ, we see that
optimization problem (14) is equivalent to that of optimizing
over strictly positive definite matrices Σ, that is

sup
V >0

sup
X

Σ�0

Y

s.t. P ≥ XΣXᵀ + V

Σ � FΣF ᵀ +GGᵀ − ΓY Γᵀ

Γ = (FΣ(X +H)ᵀ +G)Y −1

Y = (X +H)Σ(X +H)ᵀ + V + 1

(16)

Optimization problem (16) can now be transformed to
a semi-definite program. The trick is to first eliminate the
dependence on V and obtain the desired inequalities instead of
equalities. Then, by making a variable substitution according
to K = XΣ, which is possible since Σ is invertible, we will be
able to use a Schur complement argument in order to transform
the constraints in (16) into a set of linear matrix inequalities
(LMI:s).

We are now ready to state the main result of this paper.

Theorem 4. The average feedback capacity of the Gaussian
channel is given by

C =
1

2
log2 (Y )

where Y is the optimal solution of

sup
K

Σ�0

Y

s.t.

0 ≺
(
P K
Kᵀ Σ

)
0 �

(
FΣF ᵀ − Σ +GGᵀ FKᵀ + FΣHᵀ +G

(FKᵀ + FΣHᵀ +G)ᵀ Y

)
Y =KHᵀ +HKᵀ +HΣHᵀ + P + 1

(17)
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Proof. See Appendix K.

Theorem 4 shows that the Gaussian feedback channel ca-
pacity can be computed efficiently using semidefinite program-
ming as opposed to the nonlinear programming formulation
for the computation of the feedback channel capacity in [3],
which is not tractable in practice based on the optimization
tools to date.

VI. EXAMPLE

Consider a communication feedback channel with Gaussian
noise given by a first order process according to

zk + βzk−1 = uk + αuk−1

with state space representation

sk+1 = −βsk + uk

zk = (α− β)sk + uk

yk = xk + zk

α ∈ [−1, 1], β ∈ (−1, 1), uk ∼ N (0, 1), and

σ = sign(β − α) =


1 if β > α

0 if β = α

−1 if β < α

In [3], it was shown that the feedback capacity of the above
channel with a power constraint E

(
x2
k

)
≤ P is given by

− log2(r)

where r is the unique positive real root of the polynomial
equation

(α2+β2P )r4+2σ(α+βP )r3+(P+1−α2)r2−2σαr−1 = 0

This can be compared to the solution of the semi-definite
optimization problem (17). By noting that F = −β, G = 1,
and H = α − β, one can verify numerically that the channel
capacity 1

2 log2(Y ) coincides with that of the polynomial
solution − log2(r)(see the Matlab code in Appendix L, where
we used CVX, a package for specifying and solving convex
programs [9], [10]).

VII. CONCLUSION

We considered the problem of finding the average capacity
of the Gaussian noise channel where the noise has an arbitrary
spectral density. We introduced a new approach to the problem
where we solved the problem over a finite number of transmis-
sions and then considered the limit of the average capacity as
the number of transmissions went to infinity. We also provided
new proofs and results of the non stationary solution which
bridges the gap between results in the literature [1], [3]. For
the stationary Gaussian noise, we showed that the average
feedback capacity C over an infinite time horizon can be
obtained by optimizing over linear strategies xk = B(z)zk+vk
with

B(z) =

∞∑
l=1

blz
−l

vk ∼ N (0, V ), and V > 0. The capacity C is the optimal
value of

sup
V >0

B(z)=
∑∞

l=1 blz
−l

∫ π

−π

1

2
log

V + |B(eiθ) + 1|2Sz(eiθ)
Sz(eiθ)

dθ

2π

s.t. V +

∫ π

−π
|B(eiθ)|2Sz(eiθ)

dθ

2π
≤ P

In particular, we showed that the structure of an optimal
strategy is given by xk = Lkžk + vk, where žk = ẑk − z̄k,
ẑk = E

(
zk|zk−1

)
, and z̄k = E

(
ẑk|yk−1

)
. Thus, an optimal

communication strategy structure was revealed. An optimal
strategy is linear in the stochastic variable žk which is the
difference between the the estimate ẑk of the noise zk based
on the previous measurements of the noise process zk−1 and
the estimate of ẑk based on the channel output measurements
yk−1.

We also considered the special case of stationary Gaussian
noise with finite memory. We showed that the channel capacity
at stationarity can be found by solving a semi-definite pro-
gram, and hence computationally tractable. In particular, we
showed that the average feedback channel capacity is given
by

C =
1

2
log2(Y )

where Y ∈ R is the optimal solution to the optimization
problem given by (17).
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APPENDIX

A. Results from System Theory

Proposition 4. Let Q � 0 and F stable. Then, the unique
positive semi-definite solution Σ to the Lyapunov equation

Σ = FΣF ᵀ +Q

is invertible if (F,Q) is controllable.

Proof. Consult [5].

Proposition 5. Let F ∈ Rm×m and G ∈ Rm×r. Then, the
pair (F,G) is controllable if and only if there does not exist
a vector x 6= 0 and a scalar λ ∈ C such that xᵀF = λxᵀ and
xᵀG = 0.

Proof. Consult [5].

B. Proof of Proposition 2

Note that ŝk = E
(
sk|zk−1

)
and s̃k = sk − ŝk are given

by the Kalman filter (5), so zk − E
(
zk|zk−1

)
= z̃k is the

Gaussian output estimation error given by the Kalman filter
(5). Thus, the differential entropy chain rule gives the equality

h(zn) =

n∑
k=1

h(z̃k) =
1

2

n∑
k=1

log2 (2πe(HSkH
ᵀ + 1))
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Since the pair (H,F ) is detectable, the recursion (6) has a
unique stationary positive semi-definite solution Sk = S. The
stationary differential entropy rate is then given by

h(z) = lim
n→∞

1

n
h(zn) =

1

2
log2 (2πe(HSHᵀ + 1))

where S is the unique positive semi-definite solution to the
Riccati equation (7).

C. Proof of Proposition 3

I(W ; yn) = h(yn)− h(yn |W )

= h(yn)−
n∑
k=1

h(yk |W, yk−1)

= h(yn)−
n∑
k=1

h(yk |W, yk−1, xk(W, yk−1), xk−1)

(18)

= h(yn)−
n∑
k=1

h(yk |W, zk−1, xk, x
k−1) (19)

= h(yn)−
n∑
k=1

h(zk |W, zk−1, xk, x
k−1) (20)

= h(yn)−
n∑
k=1

h(zk |W, zk−1) (21)

= h(yn)− h(zn |W )

= h(yn)− h(zn) (22)

where (18) follows from the fact that xi = fi(W, y
i−1) and so

xi is determined by (W, yi−1), (19) follows from the equality
yk−1 = xk−1 + zk−1, (20) follows from yk = xk + zk, (21)
follows from the fact that xk is determined from W and zk−1

by the recursion xi = fi(W,x
i−1 + zi−1), and (22) follows

from the independence between zn and W .

D. Proof of Theorem 1

The achievability is shown in section VII in [1]. We will
here show the converse. According to Proposition 3, we have
that

I(W ; yn) = h(yn)− h(zn)

Let ẑk = E
(
zk|zk−1

)
, z̃k = zk − ẑk, z̄k = E

(
ẑk|yk−1

)
, and

žk = ẑk − z̄k. Note that z̃k is independent of zk−1 and hence
independent of yk−1, xk, and z̄k−1. Let x̂k = E

(
xk|yk−1

)
,

x̃k = xk − x̂k, and

ỹk = yk − x̂k − z̄k = x̃k + žk + z̃k

Then,

h(yn) =

n∑
k=1

h(yk | yk−1) (23)

=

n∑
k=1

h(ỹk | yk−1) (24)

≤
n∑
k=1

h(ỹk) (25)

≤ 1

2

n∑
k=1

log2(2πeE
(
ỹ2
k

)
) (26)

where (24) follows from yk = ŷk + ỹk and ŷk is a function of
yk−1, (25) follows from the fact that conditioning only reduces
the differential entropy (with equality if ỹk is independent of
yk−1) and (26) follows from the fact that for a fixed covari-
ance, the Gaussian distribution has the maximum entropy. We
will now show that the upper bound of the differential entropy
h(yn) given by (26) can be achieved by showing that

Yk , E
(
ỹ2
k

)
can be achieved by the transmission strategy xk = Lkžk +
vk for some Lk ∈ R and temporally uncorrelated Gaussian
variables {vk}. Let E

(
z̃2
k

)
= σk and

E

((
žk
x̃k

)(
žk
x̃k

)ᵀ)
=

(
ζk ψk
ψk ξk

)
� 0 (27)

be an achievable covariance matrix by some strategy xk. Then,

Yk = E
(
ỹ2
k

)
= E

(
(x̃k + žk + z̃k)2

)
= E

(
(x̃k + žk)2

)
+ E

(
z̃2
k

)
= E

((
žk
x̃k

)ᵀ(
1 1
1 1

)(
žk
x̃k

))
+ σk

= E

(
Tr

((
1 1
1 1

)(
žk
x̃k

)(
žk
x̃k

)ᵀ))
+ σk

= Tr

((
1 1
1 1

)(
ζk ψk
ψk ξk

))
+ σk

The Schur complement in ξk of(
ζk ψk
ψk ξk

)
is given by

φk , ξk − ψ2
kζ
−1
k ≥ 0

By taking xk = Lkžk + vk with Lk = ψkζ
−1
k and v to be a

temporally uncorrelated Gaussian process with vk ∼ N (0, φk)
independent of uk and yk−1 (and thus independent of {žk}),
we will have x̂k = E

(
xk | yk−1

)
= E

(
Lkžk + vk | yk−1

)
=

0, since vk is independent of yk−1 and žk = ẑk−E
(
ẑk|yk−1

)
which is also independent of yk−1.
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Then, x̃k = xk − x̂k = xk, and we will get a sequence of
pairs (žk, xk) that renders the covariance matrix (27) since

E

((
žk
x̃k

)(
žk
x̃k

)ᵀ)
= E

((
žk

ψkζ
−1
k žk + vk

)(
žk

ψkζ
−1
k žk + vk

)ᵀ)
=

(
ζk ψk
ψk ψ2

kζ
−1
k + φk

)
=

(
ζk ψk
ψk ξk

)
(28)

Also, since this strategy is linear and v is a Gaussian process,
y is also a Gaussian process and hence, ỹ is Gaussian such
that ỹk is independent of yk−1, and the entropy upper bound
(26) is achieved.

Hence, an optimal strategy has the form

xk = Bk(z)zk + vk

with

Bk(z) =

∞∑
l=1

bl(k)z−l

and v is a white Gaussian process.
Now for the stationary noise process z, σk will be constant,

σk = σ. The upperbound (26) is maximized when E
(
ỹ2

1

)
=

· · · = E
(
ỹ2
n

)
since log2(·) is a concave function which implies

that
1

n
h(yn) =

1

2n

n∑
k=1

log2(2πeE
(
ỹ2
k

)
)

≤ 1

2
log2

(
2πe

1

n

n∑
k=1

E
(
ỹ2
k

)) (29)

with equality if and only if E
(
ỹ2

1

)
= · · · = E

(
ỹ2
n

)
. Now

E
(
ỹ2
k

)
= (Lk + 1)2ζk + φk + σ, and by taking Lk = L and

φk = V , we get a stationary process ž and so ζk = ζ. Thus,
we get E

(
ỹ2

1

)
= · · · = E

(
ỹ2
n

)
. This implies that we can take

Bk to be constant, Bk = B, for all k. The spectral density
function of the stationary Gaussian process y is given by

Sy(z) = V + |B(z) + 1|2Sz(z)

where V > 0. Note that the strict inequality is necessary since
V = 0 implies that v vanishes (almost everywhere), which
implies in turn that the mutual information between v and y
vanishes and it would render would render a zero achievable
rate. Now the average power of the process x is given by

V +

∫ π

−π
|B(eiθ)|2Sz(eiθ)

dθ

2π
≤ P

Furthermore, according to Proposition 1, the differential en-
tropies of y and z are given by

h(y) =

∫ π

−π

1

2
log
(
2πe

(
V + |B(eiθ) + 1|2Sz(eiθ)

)) dθ
2π

and

h(z) =

∫ π

−π

1

2
log
(
2πeSz(e

iθ)
) dθ

2π

Now the average feedback channel capacity is given by

C = lim
n→∞

1

n
h(yn)− 1

n
h(zn)

= h(y)− h(z)

Hence, the average feedback channel capacity C is the
optimal value of the optimization problem

sup
V >0

B(z)=
∑∞

l=1 blz
−l

∫ π

−π

1

2
log

V + |B(eiθ) + 1|2Sz(eiθ)
Sz(eiθ)

dθ

2π

s.t. V +

∫ π

−π
|B(eiθ)|2Sz(eiθ)

dθ

2π
≤ P

E. Proof of Theorem 2

According to Proposition 3, we have that

I(W ; yn) = h(yn)− h(zn)

Let ẑk = E
(
zk|zk−1

)
and z̃k = zk − ẑk. We have that

h(zn) =

n∑
k=1

h(zk | zk−1) =

n∑
k=1

h(z̃k)

Since s1 = 0, we get z̃1 = z1 = u1. We also have that
E (z2 | z1) = Hs2, and so z̃2 = u2. Inductively, we get that
z̃k = uk for k = 1, ..., n. Thus,

h(zn) =

n∑
k=1

h(z̃k) =

n∑
k=1

h(uk) =
1

2

n∑
k=1

log2(2πe)

Let ŝk = E
(
sk|yk−1

)
, s̃k = sk − ŝk, and

ỹk = yk −Hŝk = xk +Hs̃k + uk.

Note that similar to the proof of Theorem 1 we have that

h(yn) ≤ 1

2

n∑
k=1

log2(2πeE
(
ỹ2
k

)
) (30)

We will now show that the upper bound of the differential
entropy h(yn) given by (30) can be achieved by showing that

Yk , E
(
ỹ2
k

)
can be achieved by the transmission strategy xk = Xks̃k +
vk for some Xk ∈ R and temporally uncorrelated Gaussian
variables {vk}.

First note that E
(
ỹ2
k

)
= E

(
(xk +Hs̃k + uk)2

)
=

E
(
(xk +Hs̃k)2

)
+E

(
u2
k

)
since uk is independent of xk and

s̃k. Now let

E

((
s̃k
xk

)(
s̃k
xk

)ᵀ)
=

(
Σk Ψk

Ψᵀ
k Ξk

)
(31)
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be an achievable covariance matrix by some strategy xk. Then,

Yk = E
(
ỹ2
k

)
= E

(
(xk +Hs̃k)2

)
+ E

(
u2
k

)
= E

((
s̃k
xk

)ᵀ(
HᵀH Hᵀ

H 1

)(
s̃k
xk

))
+ 1

= E

(
Tr

((
HᵀH Hᵀ

H 1

)(
s̃k
xk

)(
s̃k
xk

)ᵀ))
+ 1

= Tr

((
HᵀH Hᵀ

H 1

)(
Σk Ψk

Ψᵀ
k Ξk

))
+ 1

The Schur complement in Ξk of(
Σk Ψk

Ψᵀ
k Ξk

)
� 0

is given by
Φk , Ξk −Ψᵀ

kΣ−1
k Ψk � 0

By taking xk = Xks̃k + vk with Xk = Ψᵀ
kΣ−1

k and vk ∼
N (0,Φk) independent of s̃k, uk, and vl for l 6= k, we will get
a sequence of pairs (s̃k, xk) that renders the covariance matrix
(31). Also, since this strategy is linear and v is a Gaussian
process, ỹ is Gaussian such that ỹk is independent of yk−1,
and the differential entropy upper bound (30) is achieved. The
mutual information becomes

I(W ; yn) = h(yn)− h(zn)

=
1

2

n∑
k=1

log2(2πeE
(
ỹ2
k

)
)− 1

2

n∑
k=1

log2(2πe)

=
1

2

n∑
k=1

log2(2πeYk)− 1

2

n∑
k=1

log2(2πe)

=
1

2

n∑
k=1

log2(Yk)

and

Cn = sup
f

1

n
I(W ; yn) = max

X1,...,Xn
V1,...,Vn≥0

1

2n

n∑
k=1

log2(Yk)

Now for xk = Xks̃k + vk, we have that

ỹk = yk −Hŝk = (Xk +H)s̃k + vk + uk

Let

Γk , E ((F s̃k +Guk)ỹk) (E
(
ỹ2
k

)
)−1

= (FΣk(Xk +H)ᵀ +G)Y −1
k

Then,
E (F s̃k +Guk|ỹk) = Γkỹk

The dynamics of ŝk and s̃k are given by

ŝk+1 = E
(
Fsk +Guk|yk

)
(32)

= E
(
Fsk +Guk|yk, yk−1

)
(33)

= E
(
F (ŝk + s̃k) +Guk|ỹk, yk−1

)
(34)

= F ŝk + E (F s̃k +Guk|ỹk) (35)
= F ŝk + Γkỹk (36)

where (35) follows from the orthogonality between
(uk, s̃k, ỹk) and yk−1, which implies independence since all
variables are jointly Gaussian. Hence, the error dynamics
become

s̃k+1 = F s̃k − Γkỹk +Guk

ỹk = (Xk +H)s̃k + vk + uk

which implies that

Yk = (Xk +H)Σk(Xk +H)ᵀ + Vk + 1

Finally, we have that Σ1 = E (s̃1s̃
ᵀ
1) = E (s1s

ᵀ
1) = 0 and the

recursion of Σk is given by

Σk+1 = (F − Γk(Xk +H))Σk(F − Γk(Xk +H))ᵀ

+ (G− Γk)(G− Γk)ᵀ + ΓkVkΓᵀ
k

Now let Sk = E (sks
ᵀ
k) and Ŝk = E (ŝkŝ

ᵀ
k). Then, Sk =

Ŝk+Σk (since ŝk and s̃k are independent). Also, since Sk+1 =
FSkF

ᵀ +GGᵀ and Ŝk+1 = FŜkF
ᵀ + ΓkYkΓᵀ

k , we obtain

Σk+1 = Sk+1 − Ŝk+1

= FSkF
ᵀ +GGᵀ − FŜkF ᵀ − ΓkYkΓᵀ

k

= FΣkF
ᵀ +GGᵀ − ΓkYkΓᵀ

k

F. Proof of Theorem 3

We know that the recursion given by (10)–(12) for the
optimal choice of (Xk, Vk) converge since the suboptimal
choice Xk = 0 implies a converging recursion for any bounded
sequence {Vk} by the stability of the matrix F ([5]).

Now at stationarity, the variance of ỹk is given by

Yk = Y = (X +H)Σ(X +H)ᵀ + V + 1 (37)

where for all k,
Xk = X,

Vk = V,

Γk = Γ,

Σk = Σ,

Σ is the unique solution to the Riccati equation

Σ = (F − Γ(X +H))Σ(F − Γ(X +H))ᵀ

+ (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ

= FΣF ᵀ +GGᵀ − ΓY Γᵀ

(38)

and
Γ = (FΣ(X +H)ᵀ +G)Y −1.

Recall that the power constraint at stationarity is given by

P ≥ E
(
x2
k

)
= XΣXᵀ + V.

The average feedback channel capacity is then given by

C = lim
n→∞

Cn =
1

2
log2(Y )
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and we arrive at the following optimization problem for finding
the maximum capacity at stationarity:

sup
V >0

sup
X

Σ�0

1

2
log2(Y )

s.t. P ≥ XΣXᵀ + V

Σ = FΣF ᵀ +GGᵀ − ΓY Γᵀ

Γ = (FΣ(X +H)ᵀ +G)Y −1

Y = (X +H)Σ(X +H)ᵀ + V + 1

(39)

Since Y is a scalar, we may maximize Y instead of its
logarithm and we get the equivalent optimization problem (14).

G. Proof of Lemma 1

Consider a stationary finite order Gaussian noise process z
given by

sk+1 = Fsk +Guk

zk = Hsk + uk

uk ∼ N (0, 1)

E (ukul) = 0 ∀k, l | k 6= l

(40)

In the proof of Theorem 2 we have derived the equation

Σk+1 = FΣkF
ᵀ +GGᵀ − ΓkYkΓᵀ

k

which describes the estimation error dynamics of the Kalman
filter. It’s well known that the error covariance is increasing,
that is Σk+1 � Σk. Thus,

Σk � Σk+1 = FΣkF
ᵀ +GGᵀ − ΓkYkΓᵀ

k

and at stationarity, we have that

Σ � FΣF ᵀ +GGᵀ − ΓY Γᵀ

Following the same lines as Theorem 3, the average feedback
capacity with the noise process given by (40) is

C =
1

2
log2(Y )

where Y is the solution to the optimization problem

sup
V >0

sup
X

Σ�0

Y

s.t. P ≥ XΣXᵀ + V

Σ � FΣF ᵀ +GGᵀ + εI − ΓY Γᵀ

Γ = (FΣ(X +H)ᵀ +G)Y −1

Y = (X +H)Σ(X +H)ᵀ + V + 1

and the proof is complete.

H. Proof of Lemma 2

Note first that from Proposition 5, the pair

(F − Γ(X +H), (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ)

is controllable if there does not exist a complex number λ ∈ C
and a vector x such that

xᵀ ((G− Γ)(G− Γ)ᵀ + ΓV Γᵀ) = 0

and
xᵀ(F − Γ(X +H)) = λxᵀ

Now suppose that x is such that

xᵀ ((G− Γ)(G− Γ)ᵀ + ΓV Γᵀ) = 0

Then,
xᵀ ((G− Γ)(G− Γ)ᵀ + ΓV Γᵀ)x = 0

Since (G − Γ)(G − Γ)ᵀ � 0 and ΓV Γᵀ � 0, we must have
that xᵀΓV Γᵀx = V |Γᵀx|2 = 0 and xᵀ(G−Γ)(G−Γ)ᵀx = 0.
Since V > 0, we must have Γᵀx = 0. Thus, xᵀΓ = (Γᵀx)ᵀ =
0 . Similarly, the equality xᵀ(G − Γ)(G − Γ)ᵀx = 0 implies
that xᵀ(G − Γ) = 0 and since xᵀΓ = 0, we get xᵀG = 0.
Now (F,G) is controllable, and Proposition 5 implies that
there does not exist a number λ ∈ C such that xᵀG = 0 and
λxᵀ = xᵀF = xᵀ(F − Γ(X + H)). Thus, we cannot have a
vector x and a number λ ∈ C such that

xᵀ ((G− Γ)(G− Γ)ᵀ + ΓV Γᵀ) = 0

and
xᵀ(F − Γ(X +H)) = λxᵀ

Hence, using Proposition 5 again, we conclude that

(F − Γ(X +H), (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ)

is controllable.

I. Proof of Lemma 3

Since the pair (F,G) is controllable and V > 0, Lemma 2
implies that

(F − Γ(X +H), (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ)

is controllable. Suppose that there exists a vector x such that
xᵀ(F − Γ(X +H)) = xᵀλ for |λ| ≥ 1. Then,

xᵀΣx = xᵀ(F − Γ(X +H))Σ(F − Γ(X +H))ᵀx

+ xᵀ(G− Γ)(G− Γ)ᵀx+ xᵀΓV Γᵀx

= |λ|2xᵀΣx+ xᵀ(G− Γ)(G− Γ)ᵀx+ xᵀΓV Γᵀx

≥ xᵀΣx+ xᵀ(G− Γ)(G− Γ)ᵀx+ xᵀΓV Γᵀx

which implies that xᵀ((G − Γ)(G − Γ)ᵀ + ΓV Γᵀ) = 0. But
then, we obtain that

xᵀ(F − Γ(X +H)− λI (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ) = 0

which contradicts the fact that the pair

(F − Γ(X +H), (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ)

is controllable. Thus, we conclude that |λ| < 1 and the closed
loop matrix F − Γ(X +H) must be stable.

J. Proof of Lemma 4

Since the pair (F,G) is controllable and V > 0, Lemma 2
implies that

(F − Γ(X +H), (G− Γ)(G− Γ)ᵀ + ΓV Γᵀ)

is controllable and Lemma 3 implies that F − Γ(X + H) is
stable. Taking Q = (G−Γ)(G−Γ)ᵀ+ΓV Γᵀ � 0, we conclude
from Proposition 4 that Σ is invertible and thus, Σ � 0.
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K. Proof of Theorem 4

We can make the variable substitution K = XΣ and
maximize with respect to V , K and Σ � 0. This gives the
optimization problem

sup
V >0

sup
K

Σ�0

Y

s.t. P ≥ KΣ−1Kᵀ + V

Σ � FΣF ᵀ +GGᵀ − ΓY Γᵀ

Γ = (FKᵀ + FΣHᵀ +G)Y −1

Y = KΣ−1Kᵀ +KHᵀ +HKᵀ +HΣHᵀ

+ V + 1

(41)

First we show the intuitive result that for any K and Σ, taking
V such that equality is achieved for the power constraint, P =
KΣ−1Kᵀ + V , is optimal. Suppose that V is such that P >
KΣ−1Kᵀ + V . Introduce V ′ = P − KΣ−1Kᵀ > V . Then,
we have that

Y ≤ KΣ−1Kᵀ +KHᵀ +HKᵀ +HΣHᵀ + V ′ + 1

= KHᵀ +HKᵀ +HΣHᵀ + P + 1

Furthermore, with Γ′ , (FKᵀ + FΣHᵀ + G)(Y ′)−1, Y ′ =
KΣ−1Kᵀ +KHᵀ +HKᵀ +HΣHᵀ + V ′+ 1, the constraint

Σ � FΣF ᵀ +GGᵀ − ΓY Γᵀ

� FΣF ᵀ +GGᵀ − Γ′Y ′(Γ′)ᵀ

is satisfied. Thus, increasing V to V ′ increases the value of Y
to Y ′. Hence, (41) is equivalent to

sup
V >0

sup
K

Σ�0

Y

s.t. P = KΣ−1Kᵀ + V

Σ � FΣF ᵀ +GGᵀ − ΓY Γᵀ

Γ = (FKᵀ + FΣHᵀ +G)Y −1

Y = KHᵀ +HKᵀ +HΣHᵀ + P + 1

(42)

Now we have that

P ≥ KΣ−1Kᵀ + V > KΣ−1Kᵀ

Thus, any parameters satisfying the constraints in (42) also
satisfy the constraints in

sup
K

Σ�0

Y

s.t. P > KΣ−1Kᵀ

Π = FKᵀ + FΣHᵀ +G

Y = KHᵀ +HKᵀ +HΣHᵀ + P + 1

Σ � FΣF ᵀ +GGᵀ −ΠY −1Πᵀ

(43)

Similarly, if K,Σ satisfy the constraints in (43), then they
also satisfy the constraints in (42) with V = P −KΣ−1Kᵀ.

The power inequality

P > KΣ−1Kᵀ

is equivalent to the linear matrix inequality (LMI)(
P K
Kᵀ Σ

)
� 0

The error covariance inequality

Σ � FΣF ᵀ +GGᵀ −ΠY −1Πᵀ

can be recast as the LMI

0 �
(
FΣF ᵀ − Σ +GGᵀ Π

Πᵀ Y

)
=

(
FΣF ᵀ − Σ +GGᵀ FKᵀ + FΣHᵀ +G

(FKᵀ + FΣHᵀ +G)ᵀ Y

)
Summing up, the maximum differential entropy of the chan-

nel output is given by the value of the following optimization
(maximization) problem

sup
K

Σ�0

Y

s.t.

0 ≺
(
P K
Kᵀ Σ

)
Y =KHᵀ +HKᵀ +HΣHᵀ + P + 1

0 �
(

FΣF ᵀ − Σ +GGᵀ FKᵀ + FΣHᵀ +G
(FKᵀ + FΣHᵀ +G)ᵀ Y

)
(44)

L. Matlab Code

alpha = 0.7;
beta = -0.25;
sigma = sign(beta-alpha);
P = 1;
d = 1;
F = -beta;
G = 1;
H = alpha-beta;

a4 = alphaˆ2+betaˆ2*P;
a3 = 2*sigma*(alpha+beta*P);
a2 = P+1-alphaˆ2;
a1 = -2*sigma*alpha;
a0 = -1;
r = roots([a4 a3 a2 a1 a0]);

cvx_begin sdp
variable S(d,d) symmetric
variable K(1,d)
variable Y
S > 0
[P K; K’ S] > 0
[F*S*F’ - S + G*G’ F*K’ + F*S*H’ + G;

K*F’ + H*S*F’ + G’ Y] > 0
Y == K*H’ + H*K’ + H*S*H’ + P + 1
maximize Y;

cvx_end

C_sdp = 0.5*log2(Y)
C_poly = -log2(r(4))
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