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Function Computation through a Bidirectional Relay
Jithin Ravi and Bikash Kumar Dey

Abstract

We consider a function computation problem in a three node wireless network. Nodes A and B observe two

correlated sources X and Y respectively, and want to compute a function f(X,Y ). To achieve this, nodes A and

B send messages to a relay node C at rates RA and RB respectively. The relay C then broadcasts a message to

A and B at rate RC . We allow block coding, and study the achievable region of rate triples under both zero-error

and ε-error. As a preparation, we first consider a broadcast network from the relay to A and B. A and B have

side information X and Y respectively. The relay node C observes both X and Y and broadcasts an encoded

message to A and B. We want to obtain the optimal broadcast rate such that A and B can recover the function

f(X,Y ) from the received message and their individual side information X and Y respectively. For this problem,

we show equivalence between ε-error and zero-error computations– this gives a rate characterization for zero-error

computation. As a corollary, this also gives a rate characterization for the relay network under zero-error for a

class of functions called component-wise one-to-one functions when the support set of pXY is full. For the relay

network, the zero-error rate region for arbitrary functions is characterized in terms of graph coloring of some suitably

defined probabilistic graphs. We then give a single-letter inner bound to this rate region. Further, we extend the

graph theoretic ideas to address the ε-error problem and obtain a single-letter inner bound.

Index Terms

Distributed source coding, function computation, zero-error information theory.

I. INTRODUCTION

Distributed computation of distributed data over a network has been investigated in various flavours for a long

time. Gathering all the data at the nodes where a function needs to be computed is wasteful in most situations. So

intermediate nodes also help by doing some processing of the data to reduce the communication load on the links.

Such computation frameworks are known as distributed function computation or in-network function computation
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Fig. 1: Function computation in bidirectional relay network (RN)

We consider the problem of function computation in a wireless relay network (RN) with three nodes as shown

in Fig. 1. Nodes A and B have two correlated random variables X and Y respectively. They have infinite i.i.d.

realizations of these random variables. They can communicate directly to a relay node C over independent error-

free links. The relay node C can send a message to both A and B over a noise-less broadcast link. Nodes A and B

want to compute a function f(X,Y ) = Z . We allow block coding of arbitrarily large block length n. We allow

two phases of communication. In the first phase, both A and B send individual messages to C at rates RA and RB

over the respective independent links. In the second phase, the relay broadcasts a message to A and B at rate RC .

The broadcasting relay in the model captures one aspect of wireless networks. We consider our function com-

putation problem over this network under zero-error and ε-error criteria. Under zero-error, both nodes want to

compute the function with no error. Under ε-error, the probability of error in computing the function should go to

zero as block length tends to infinity. A special case of this problem have been studied in [7], [8]. Exchanging X

and Y was considered in [7], and the rate region was characterized in the ε-error setting. For this problem, some

single-letter inner and outer bounds were given for the rate-distortion function in [8].

As a preparation to address the problem in Fig. 1, we first consider the broadcast function network with

complementary side information (BFN-CSI) shown in Fig. 2. This problem arises as a special case of the function

computation problem in the relay network, when A and B communicate X and Y to the relay node. In the relay

network, rate RC attains its minimum when the relay has X and Y . So the optimal broadcast rate for the problem

in Fig. 2 is the minimum possible rate RC in the relay network. For the broadcast function network, the optimal

ε-error rate can be shown to be max{H(Z|Y ), H(Z|Y )} using the Slepian-Wolf result. We study this problem

under zero-error criteria.

The problem of zero-error source coding with receiver side information was first studied for fixed length coding

by Witsenhausen in [9] using a “confusability graph” GX|Y . The minimum rate was characterized in terms of the

chromatic number of its AND product graphs G∧nX|Y . The same problem was later considered in [10] under variable
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Fig. 2: Broadcast function network with complementary side information (BFN-CSI)

length coding, and the minimum rate was shown to be the limit of the normalized chromatic entropy of G∧nX|Y .

This asymptotic rate was later shown [11] to be the complementary graph entropy [12] of GX|Y . However, A

single-letter characterization for complementary graph entropy is still unknown.

In the absence of a single-letter characterization of zero-error source coding problems, many authors have studied

their problems under a stricter decoding requirement, known as the “unrestricted input” setup [10], [14], [15]. In

this setup, even for a source vector which has some zero-probability components (and thus the vector itself having

probability 0), the decoder is required to reproduce the desired symbols for the other components of the vector.

Unrestricted input setup was introduced in [10], and for the problem addressed in [10], the optimum rate under

unrestricted input setup was shown to be the graph entropy of the confusability graph which has a single letter

characterization. On one hand, under unrestricted input setup, computation problems are sometimes tractable when

the original zero-error computation problems are not. On the other hand, protocols for the unrestricted input setup

are clearly also valid protocols for the original zero-error decoding problem. So achievable rates under unrestricted

input setup give upper bounds on the optimal zero-error rates. Shayevitz [15] also studied the unrestricted input

version of their problem. In all these models, the unrestricted input setup is represented by the OR product of a

suitable confusability graph. In contrast, for our function computation problem in the relay network, the unrestricted

input setup is not represented by the OR products of the confusability graph.

For distributed coding of two sources and joint decoding, a single-letter characterization was given for the

unrestricted input version in [14]. Most related recent work to our present work is [15], where a decoder having

side information Z wants to compute a function f(X,Y, Z) using a message encoded by a relay, which in turn

receives two messages encoded by two sources X and Y . Single-letter inner and outer bounds were given for the

unrestricted input setup.

The problem of broadcast with side information, has been studied extensively in the literature (see [16]- [21]

and references therein). Index coding (see [22]- [26]) is a special case of broadcast with side information, and it is

related to our work. In index coding, a server has access to K binary independent and uniformly distributed random

variables and the receivers have access to different subsets of these messages. Each receiver wants to recover an

arbitrary subset of the messages using its side information and the message broadcasted by the server. The goal is
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to minimize the broadcast rate of the message sent by the server. A computable characterization of the optimum

broadcast rate for the general index coding problem is still unknown. For our broadcast function network (Fig. 2),

instead of recovering the messages, we consider the problem of computing a function of the messages. For this

problem, the optimal ε-error rate is max{H(Z|X), H(Z|Y )} (using Slepian-Wolf result), thus it is a lower bound

for the optimal zero-error rate. We show that the rate max{H(Z|X), H(Z|Y )} is achievable under zero-error.

For the relay network, we study the function computation problem under zero-error. Suitable graphs are defined

to address the problem. We first consider computing a component-wise one-to-one function at both the end nodes.

Note that computing a component-wise one-to-one function in the relay network is the equivalent to exchanging

X and Y through the relay. Building on our results on the broadcast function network, we give a single-letter

characterization of the rate region for computing a component-wise one-to-one function when the support set of

pXY is full. For arbitrary functions, we study the problem under unrestricted input setup and provide a multiletter

characterization of the rate region. Then we provide a single-letter inner bound for this region, which is also an

inner bound for the zero-error problem.

Next, we consider the function computation problem in the relay network under ε-error. For this problem, we

use the graph theoretic ideas developed for zero-error, to get a single-letter inner bound for the rate region.

A. Contributions and organization of the paper

We list the contributions of this paper below.

• For the zero-error function computation problem shown in Fig. 2, in Theorem 1, we show that the optimal

zero-error broadcast rate is same as optimal ε-error rate which has a a single-letter characterization. Using this

result, we give a single-letter characterization of the rate region for computing a component-wise one-to-one

function in the relay network (Fig. 1) when the support set of pXY is full. We then argue that when X and

Y are independent, exchanging (X,Y ) in the relay network has the same rate region under zero-error and

ε-error.

• We consider the zero-error function computation problem in the relay network (Fig. 1) under the unrestricted

input setup. This setup is a more constrained version of the zero-error problem. We give a multiletter charac-

terization of the rate region under this setup as well as for the zero-error problem (Theorem 2). The multiletter

characterization is obtained using coloring of some suitably defined graphs. Our arguments based on coloring

are similar to [15]. We show that if pXY has full support, then the relay can also compute the function if A

and B can compute it with zero-error (Theorem 4).

• For the unrestricted input setup, we propose two achievable schemes whose time sharing gives a single-letter

inner bound for the corresponding rate region (Theorem 3).
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• The function computation problem in Fig. 1 is then addressed under ε-error. We extend the graph theoretic ideas

used for zero-error computation to ε-error computation. Similar to the two achievable schemes for zero-error

computation, we give an inner bound for the rate region using two achievable schemes for ε-error computation

(Theorem 5). The cutset outer bound is given in Lemma 1.

• For two functions f1, f2 of (X,Y ), we give a graph theoretic sufficient condition under which the rate region

for computing f1 is a subset of the rate region for computing f2. This condition holds for both zero-error and

ε-error computations (Theorem 6). Using this result, we give a class of functions for which the rate region is

the same as the region for exchanging (X,Y ).

The organization of the paper is as follows. Problem formulations for zero-error and ε-error are given in

Section II-A and in Section II-B respectively. Some graph theoretic definitions are given in Section II-C. We

provide our results for zero-error computation in Section III-A. The ε-error results are given in Section III-B. The

proof of the results for zero-error computation and ε-error computation are given in Section IV and Section V

respectively. We conclude our paper in Section VI.

Zero-error ε-error

BFN-
CSI

• Complete characterization (Theorem 1) • Follows directly from Slepian-Wolf
results

RN • Multiletter characterization (Theorem 2) • Cutset outer bound (Lemma 1)
• Single-letter characterization for CWOOF when
support set is full (Corollary 1)

• Single-letter inner bound (Theo-
rem 5)

• Single-letter inner bound for unrestricted inputs
(Theorem 3)
• A sufficient condition on pXY under which the
relay can compute the function in any zero-error
scheme (Theorem 4)

• Graph-based sufficient condition for “rate region for f1 ⊇ rate region for f2” (Theorem 6)

TABLE I: Summary of our results

II. PROBLEM FORMULATION AND PRELIMINARIES

Nodes A and B observe X and Y respectively from finite alphabet sets X and Y . Let function Z = f(X,Y )

take values in a finite alphabet set Z . (X,Y ) have a joint distribution pXY (x, y), and their different realizations

are i.i.d. In other words, n consecutive realizations (Xn, Y n) are distributed as Pr(xn, yn) =
∏n
i=1 pXY (xi, yi)

for all xn = (x1, x2, · · · , xn) and yn = (y1, y2, · · · , yn).

The support set of (X,Y ) is defined as SXY = {(x, y) : pXY (x, y) > 0}. We use the notion of robust typicality

[3] in the following. For xn ∈ X n, let us denote the number of occurrences of x ∈ X in xn by N(x|xn). The set
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of sequences xn ∈ X n satisfies ∣∣∣∣ 1nN(x|xn)− p(x)

∣∣∣∣ ≤ ε.p(x) (1)

for ε > 0, is called ε-robustly typical sequences and is denoted by Tnε (X).

Definition 1 A function f(x, y) is called component-wise one-to-one function (CWOOF) if it satisfies the following:

1) f(x, y) 6= f(x, y′) for all x ∈ X , y, y′ ∈ Y, y 6= y′,

and

2) f(x, y) 6= f(x′, y) for all y ∈ Y, x, x′ ∈ X , x 6= x′.

This class of functions includes the binary XOR function, and in general, the function a + b mod max(x, y),

where x and y are positive integers and 0 ≤ a ≤ x − 1, 0 ≤ b ≤ y − 1. Note that computing a component-wise

one-to-one function either in the broadcast network or in the relay network is equivalent to recovering both X and

Y at nodes A and B.

A. Zero-error function computation

Relay Network: On observing Xn and Y n respectively, A and B send messages MA and MB using prefix

free codes such that E|MA| = nRA and E|MB| = nRB . Here |.| denotes the length of the respective message

in bits. C then broadcasts a message MC with E|MC | = nRC to A and B. Each of A and B then decode

f(Xi, Yi); i = 1, 2, · · · , n from the information available to them. For the relay network, a (2nRA , 2nRB , 2nRC , n)

variable length scheme consists of three encoders

φA : X n −→ {0, 1}∗, φB : Yn −→ {0, 1}∗, φC : φA(X n)× φB(Yn) −→ {0, 1}∗,

and two decoders

ψA :X n × φC (φA(X n)× φB(Yn)) −→ Zn, (2)

ψB :Yn × φC (φA(X n)× φB(Yn)) −→ Zn. (3)

Here {0, 1}∗ denotes the set of all finite length binary sequences. Let us define ẐnA = ψA (Xn, φC(φA(Xn), φB(Y n)))

and ẐnB = ψB(Y n, φC(φA(Xn), φB(Y n))) to be the decoder outputs. The probability of error for a n length scheme

is defined as

P (n)
e , Pr{(ẐnA, ẐnB) 6= (Zn, Zn)}. (4)
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The rate triple (RA, RB, RC) of a code is defined as

RA =
1

n

∑
xn

Pr(xn) | φA(xn) |

RB =
1

n

∑
yn

Pr(yn) | φB(yn) |

RC =
1

n

∑
(xn,yn)

Pr(xn, yn) | φC(φA(xn), φB(yn)) | .

A rate triple (RA, RB, RC) is said to be achievable with zero-error if for any ε > 0, there exists a scheme with

P
(n)
e = 0 for a large enough n such that 1

nE|MA| ≤ RA + ε, 1
nE|MB| ≤ RB + ε and 1

nE|MC | ≤ RC + ε. The

rate region RRN(0) (f,X, Y ) is the closure of the convex hull of all achievable rate triples. The above setup is known

as restricted input setup in the literature.

We now define the function computation in the relay network under a stricter setting, known as the unrestricted

input setup. A (2nRA , 2nRB , 2nRC , n) code for unrestricted input setup consists of three encoders and two decoders

which are defined as before. Let (ψA(·))i and (ψB(·))i denote the i-th components of ψA(·) and ψB(·) respectively.

A scheme is called a unrestricted input scheme if for each xn ∈ X n, yn ∈ Yn, and i = 1, 2, · · · , n,

(ψA(xn, φC(φA(xn), φB(yn))))i = f(xi, yi)

and

(ψB(yn, φC(φA(xn), φB(yn))))i = f(xi, yi)

if (xi, yi) ∈ SXY . Note that this is a stricter condition than P
(n)
e = 0. A pair of vectors (xn, yn) for which a

component (xi, yi) is outside the support set SXY , does not contribute to P
(n)
e , and thus in the original zero-

error problem setup, the decoders are also not required to correctly compute the other components. However, the

unrestricted setup requires the decoders to compute the function correctly on all the components where (xi, yi) ∈

SXY . Achievable rates and the rate region RRN(u) (f,X, Y ) under the unrestricted setup are defined similarly as

before.

Broadcast Function Network: For the broadcast function network shown in Fig. 2, a variable length code for

the function computation problem consists of one encoder

φC :X n × Yn −→ {0, 1}∗,
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and two decoders

ψA :φC(X n × Yn)×X n −→ Zn, (5)

ψB :φC(X n × Yn)× Yn −→ Zn. (6)

The rate of a code is defined as 1
n

∑
(xn,yn) Pr(x

n, yn)|φC(xn, yn)|, and the outputs of the decoders are given by

ẐnA = ψA (Xn, φC(Xn, Y n)) and ẐnB = ψB(Y n, φC(Xn, Y n)). A rate R is said to be achievable with zero-error

if for any ε > 0, there is a code of some length n with rate R + ε and P (n)
e , Pr{(ẐnA, ẐnB) 6= (Zn, Zn)} = 0.

The optimal zero-error rate R∗(BFN)
(0) (f,X, Y ) is defined as the infimum of the set of all achievable rates. Note

that R∗(BFN)
(0) (f,X, Y ) is the optimal rate under restricted input setup.

B. ε-error function computation

Relay Network: A fixed length (2nRA , 2nRB , 2nRC , n) code for function computation in the relay network consists

of three encoder maps

φA :X n −→ {1, 2, · · · , 2nRA},

φB :Yn −→ {1, 2, · · · , 2nRB},

φC :φA(X n)× φB(Yn) −→ {1, 2, · · · , 2nRC}

and two decoder maps as defined in (2), (3). A rate triple (RA, RB, RC) is said to be achievable with ε-error if

there exists a sequence of (2nRA , 2nRB , 2nRC , n) codes such that probability of error P (n)
e → 0 as n → ∞. The

achievable rate region RRN(ε) (f,X, Y ) is the closure of the convex hull of all achievable rate triples.

Broadcast Function Network: For the broadcast function network, a (2nR, n) code consists of one encoder map

φC :X n × Yn −→ {1, 2, · · · , 2nR}

and the two decoder maps as defined in (5), (6). A rate R is said to be achievable with ε-error if there exists a

sequence of (2nR, n) codes for which P (n)
e → 0 as n→∞. The optimal broadcast rate R∗(BFN)

(ε) (f,X, Y ) in this

case is the infimum of the set of all achievable rates.

Zero-error ε-error

BFN-CSI - optimal rates • R∗(BFN)
(0) (f,X, Y ) • R∗(BFN)

(ε) (f,X, Y )

RN - rate regions • RRN(0) (f,X, Y ) • RRN(ε) (f,X, Y )

• RRN(u) (f,X, Y ) - For unrestricted i/p setup

TABLE II: Notations for different rate regions
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C. Graph theoretic definitions

Let G be a graph with vertex set V (G) and edge set E(G). For two graphs G1 and G2 with V (G1)∩V (G2) = ∅,

union graph G1 ∪ G2 is defined as the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). If

V (G1) = V (G2), then the union graph is defined to be the graph with vertex set V (G1) and edge set E(G1)∪E(G2).

A set I ⊆ V (G) is called an independent set if no two vertices in I are adjacent in G. Let Γ(G) denote the set

of all independent sets of G. A clique of a graph G is a complete subgraph of G. A clique of the largest size

is called a maximum clique. The number of vertices in a maximum clique is called clique number of G and is

denoted by ω(G). The chromatic number of G, denoted by χ(G), is the minimum number of colors required to

color the graph G. A graph G is said to be perfect if for any vertex induced subgraph G′ of G, ω(G′) = χ(G′).

Note that the vertex disjoint union of perfect graphs is also perfect.

The n-fold OR product of G, denoted by G∨n, is defined by V (G∨n) = (V (G))n and E(G∨n) = {(vn, v′n) :

(vi, v
′
i) ∈ E(G) for some i}. The n-fold AND product of G, denoted by G∧n, is defined by V (G∧n) = (V (G))n

and E(G∧n) = {(vn, v′n) : vn 6= v′n, and either vi = v′i or (vi, v
′
i) ∈ E(G) for all i}.

For a graph G and a random variable X taking values in V (G), (G,X) represents a probabilistic graph. Chromatic

entropy [10] of (G,X) is defined as

Hχ(G,X) = min{H(c(X)) : c is a coloring of G}.

Let W be distributed over the power set of X . The graph entropy [27], [28] of the probabilistic graph (G,X)

is defined as

HG(X) = min
X∈W∈Γ(G)

I(W ;X), (7)

where Γ(G) is the set of all independent sets of G. Here the minimum is taken over all conditional distributions

pW |X which are non-zero only for X ∈W . The following result was shown in [10].

lim
n→∞

1

n
Hχ(G∨n, Xn) = HG(X). (8)

Let TnPX ,ε
denote the ε-typical set of length n under the distribution PX , and let G∧n(TnPX ,ε

) be the vertex induced

subgraph of G∧n with vertex set TnPX ,ε
. The complementary graph entropy of (G,X) is defined as

H̄G(X) = lim
ε→0

lim sup
n→∞

1

n
log2{χ(G∧n(TnPX ,ε))}.

Unlike graph entropy, no single-letter characterization of the complementary graph entropy is known. It was shown
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in [11] that

lim
n→∞

1

n
Hχ(G∧n, Xn) = H̄G(X). (9)

The definition of graph entropy was extended to the conditional graph entropy in [3]. For a pair of random

variables (X,Y ) and for a graph G defined on the support set of X , the conditional graph entropy of X given Y

is defined as

HG(X|Y ) = min
W−X−Y
X∈W∈Γ(G)

I(W ;X|Y ), (10)

where the minimization is over all conditional distribution pW |X (= pW |X,Y ) which is non-zero only for X ∈W .

We now define some graphs suitable for addressing our problem. For a function f(x, y) defined over X × Y ,

we define a graph called f -modified rook’s graph. A rook’s graph GXY over X × Y is defined by the vertex set

X × Y and edge set {((x, y), (x′, y′)) : x = x′ or y = y′, but (x, y) 6= (x′, y′)}.

Definition 2 For a function f(x, y) the f -modified rook’s graph RGfXY has its vertex set X ×Y , and two vertices

(x1, y1) and (x2, y2) are adjacent if and only if i) they are adjacent in the rook’s graph GXY , ii) (x1, y1), (x2, y2) ∈

SXY , and iii) f(x1, y1) 6= f(x2, y2).

f -confusability graph GfX|Y of X,Y and f was used in [3], [15] to study some function computation problems.

Its vertex set is X , and two vertices x and x′ are adjacent if and only if ∃ y ∈ Y such that f(x, y) 6= f(x′, y) and

(x, y), (x′, y) ∈ SXY . GfY |X is defined similarly.

0

0

1

2

3

4

1 2 43x
y

(a) f -modified rook’s graph for f(x, y) in (11)

0

1

2 3

4

(b) f -confusability graphs Gf
X|Y , G

f
Y |X for f(x, y) in (11)

Fig. 3: f -modified rook’s graph and f -confusability graph

Example 1 Let us consider X,Y ∈ {0, 1, 2, 3, 4} with distribution

p(x, y) =


1
10 if y = x or y = x+ 1 mod 5

0 otherwise
,
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and the equality function

f(x, y) =

 1 if x = y

0 if x 6= y.
(11)

The f -modified rook’s graph for this function is shown in Fig. 3a. Both GfX|Y and GfY |X are the pentagon graph

which is shown in Fig. 3b.

Next we extend the definition of RGfXY to n instances:

Definition 3 RGfXY (n) has its vertex set X n × Yn, and two vertices (xn, yn) and (x′n, y′n) are adjacent if and

only if

(i) xn = x′n or yn = y′n,

(ii) Pr(xn, yn).P r(x′n, y′n) > 0,

(iii) ∃ an i ∈ {1, · · · , n} such that f(xi, yi) 6= f(x′i, y
′
i).

To address the unrestricted input setup, we define the following graph for n instances.

Definition 4 RG
f,(u)
XY (n) has its vertex set X n × Yn, and two vertices (xn, yn) and (x′n, y′n) are adjacent if and

only if

(i) xn = x′n or yn = y′n,

(ii) ∃ an i ∈ {1, · · · , n} such that f(xi, yi) 6= f(x′i, y
′
i) and (xi, yi), (x

′
i, y
′
i) ∈ SXY .

It is easy to see that the graph RGfXY (n) is a subgraph of RGf,(u)
XY (n). Note that for n = 1, these two graphs are

the same.

Consider a graph G with vertex set V , where V has a Cartesian representation given by a one-to-one mapping

π : V → X ×Y . For such a graph, the chromatic entropy region was defined in [15] as follows. If c1 and c2 are two

maps of X and Y into {0, 1}∗ respectively, then c1× c2 denotes the map given by (c1× c2)(x, y) = (c1(x), c2(y)).

A triple (c1, c2, c) of functions of respectively X ,Y,V into {0, 1}∗ is called a color cover for G if

i) (c1 × c2) ◦ π and c are colorings of G.

ii) c1 × c2 is a refinement of c, i.e., ∃ a mapping θ : (c1 × c2)(X × Y)→ {0, 1}∗ such that θ ◦ (c1 × c2) = c.

Let C denote the set of all color covers for G. For a probabilistic graph (G,V ), with vertex set V having a Cartesian

representation π : V → X × Y , let us denote (X,Y ) = π(V ). Chromatic entropy region is defined as

Hχ(G,V, π) ,
⋃

(c1,c2,c)∈C
{(b1, b2, b) : b1 ≥ H(c1(X)), b2 ≥ H(c2(Y )), b ≥ H(c(V ))}.
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Graph entropy region was defined in [15] from the definition of chromatic entropy region as follows,

H(G,V, π) ,
⋃
n

1

n
Hχ (Gn, V n, πn) , (12)

where Gn denotes the n-fold OR product graph of G.

Let Rχ(RGfXY , X, Y ) denote the chromatic entropy region for f -modified rook’s graph RGfXY . Motivated from

the graph entropy region, we define the following three dimensional regions for f -modified rook’s graph

ZfX,Y ,
⋃
n

1

n
Rχ

(
RGfXY (n), Xn, Y n

)
, (13)

Z
f,(u)
X,Y ,

⋃
n

1

n
Rχ

(
RG

f,(u)
XY (n), Xn, Y n

)
. (14)

The graph in the following definition is used to give an inner bound for the zero-error computation in the relay

network (Theorem 3).

Definition 5 Let U1 and U2 be two random variables such that X ∈ U1 ∈ Γ(GfX|Y ) and Y ∈ U2 ∈ Γ(GfY |X).

The random variable (U1, U2) over U1 × U2 has joint distribution with (X,Y ) as pX,U1,Y,U2
(x, u1, y, u2) =

p(x, y)p(u1|x)p(u2|y). We define a graph R̃G
f

U1U2
with vertex set U1 × U2. Two vertices (u1, u2) and (u′1, u

′
2)

in R̃G
f

U1U2
are connected if ∃ (x, y) and (x′, y′) such that

1) pXU1Y U2
(x, u1, y, u2), pXU1Y U2

(x′, u′1, y
′, u′2) > 0,

2) x = x′, u1 = u′1 and f(x, y) 6= f(x′, y′)

or

y = y′, u2 = u′2 and f(x, y) 6= f(x′, y′).

Note that by Definition 5, two nodes (u1, u2) and (u′1, u
′
2) are connected in R̃G

f

U1U2
only if either u1 = u′1 or

u2 = u′2, i.e., all connections are either row wise or column wise. Next we give an example to illustrate the above

definitions. The function in Example 2 was used in [3] to explain the conditional graph entropy. Let us consider

the same function for our function computation problem in the relay network.

Example 2 [3] Consider X,Y ∈ {1, 2, 3}

p(x, y) =


1
6 if x 6= y

0 otherwise

and

f(x, y) =

 1 if x > y

0 if x ≤ y.
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Both the confusability graphs are the same graph which is shown in Fig. 4a. The f -modified rook’s graph for this

function is shown in Fig. 4b.

In Example 2, the distribution of (X,Y ) is symmetric in X and Y and the function values are also symmetric. For

this example, let us consider an instance of U1 and U2 as follows. Let U1 be {{1, 2}, {2, 3}} and let us denote it by

{a, b} where a = {1, 2} and b = {2, 3}. Similarly, we choose U2 and we denote it by {c, d}, where c = {1, 2} and

d = {2, 3}. The conditional distributions are given by pU1|X(a|2) = pU1|X(b|2) = pU2|Y (c|2) = pU2|Y (d|2) = 1
2 .

Now let us consider the graph R̃G
f

U1U2
for this function. The nodes (a, c) and (a, d) are connected in R̃G

f

U1U2

because pXU1Y U2
(2, a, 1, c), pXU1Y U2

(2, a, 3, d) > 0 and f(2, 1) 6= f(2, 3). By considering other pairs of nodes in

R̃G
f

U1U2
, we can verify that the graph R̃G

f

U1U2
is a “square” graph which is shown in Fig. 4c.

1

2

3

(a) Graphs Gf
X|Y , Gf

Y |X

1 2 3

1

2

3

x
y

(b) Graph RGf
XY

u2

a

c du1

b

(c) Graph R̃G
f

U1U2

Fig. 4: Graphs for Example 2

III. RESULTS

A. Results for zero-error computation

We first give the results for the broadcast function computation problem shown in Fig. 2. For this problem, we

show that the optimal rate under zero-error and ε-error are the same. Proofs of all the theorems in this subsection

are given in Section IV.

Theorem 1 For the broadcast function computation problem with complementary side information shown in Fig. 2,

the optimal zero-error broadcast rate R∗(BFN)
(0) (f,X, Y ) for computing Z = f(X,Y ) is given by

R
∗(BFN)
(0) (f,X, Y ) = max{H(Z|X), H(Z|Y )}.

Computing a CWOOF in the relay network is equivalent to exchanging X and Y . Hence using Theorem 1, we

get a single-letter characterization for computing component-wise one-to-one function in the relay network (Fig. 1)

when the support set SXY is the full set.
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Corollary 1 (CWOOF in RN) If SXY = X ×Y , then the zero-error rate region for computing a component-wise

one-to-one function at nodes A and B in the relay network is given by

RRN(0) (f,X, Y ) ,{(RA, RB, RC) : RA ≥ H(X), RB ≥ H(Y ), RC ≥ max{H(Y |X), H(X|Y )}}.

We note that the problem of exchanging X and Y through a relay has been addressed in [7] under ε-error criteria.

The rate region for this problem under the ε-error criteria is given by

{(RA, RB, RC) : RA ≥ H(X|Y ), RB ≥ H(Y |X), RC ≥ max{H(Y |X), H(X|Y )}}. (15)

When the sources are independent, the rate regions are clearly the same under ε-error and zero-error criteria.

When the sources are dependent with full support, smaller rates are possible for RA and RB under ε-error compared

to zero-error. Even in this case, the minimum possible rate for RC is the same in both the cases.

Theorem 2 (RN, multiletter characterization) (a) The zero-error rate region is given by, RRN(0) (f,X, Y ) = ZfX,Y .

(b) The rate region under unrestricted input setup is given by, RRN(u) (f,X, Y ) = Z
f,(u)
X,Y ,

where ZfX,Y and Zf,(u)
X,Y are as defined in (13) and (14) respectively.

Since a scheme under the unrestricted input setup is also a zero-error scheme, RRN(u) (f,X, Y ) ⊆ RRN(0) (f,X, Y ).

The multi letter expressions for the rate regions given in Theorem 2 are difficult to compute. We give a single-letter

inner bound for RRN(u) (f,X, Y ) in Theorem 3. This bound is proved by considering the problem under unrestricted

input setup. Our proof technique is similar to the ones in [15].

Theorem 3 (RN, zero-error inner bound)

(a) Let

RI ,{(RA, RB, RC) : RA ≥ I(X;U1|Q), RB ≥ I(Y ;U2|Q),

RC ≥ min{I(W ;U1, U2|Q),max{I(X;U1|Q), I(Y ;U2|Q)}}}

for some p(q)p(w|u1, u2, q)p(u1|x, q)p(u2|y, q) such that

(i) X ∈ U1 ∈ Γ(GfX|Y )

(ii) Y ∈ U2 ∈ Γ(GfY |X)

(iii) (U1, U2) ∈W ∈ Γ(R̃G
f

U1U2
).

Then RI ⊆ RRN(u) (f,X, Y ).

(b) The two upper bounds for RC above, namely I(W ;U1, U2) and max{I(X;U1), I(Y ;U2)}, are not comparable

in general.
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The proof of Theorem 3 is given in Section IV-C. To prove part (b), we show the following. For the function com-

putation problem in Example 1, ∃ (U ′1, U
′
2,W

′) s.t. I(W ′;U ′1, U
′
2) < max{I(X;U1), I(Y ;U2)} for any (U1, U2),

and for the function computation problem in Example 2 ∃ (U ′1, U
′
2) s.t. max{I(X;U ′1), I(Y ;U ′2)} < I(W ;U1, U2)

for any (U1, U2,W ).

The following corollary follows from Theorem 3.

Corollary 2 Any rate triple (RA, RB, RC) such that

RA ≥ HGf
X|Y

(X), RB ≥ HGf
Y |X

(Y ), RC ≥ max{HGf
X|Y

(X), HGf
Y |X

(Y )}

is achievable.

Next we provide a sufficient condition on the joint distribution pXY under which the relay can also compute the

function whenever nodes A and B compute it with zero-error.

Theorem 4 (RN, relay’s knowledge) If p(x, y) > 0 ∀ (x, y) ∈ X × Y , then for any zero-error scheme the relay

can also compute the function with zero-error.

Theorem 4 does not hold if SXY 6= X ×Y . We show an instance of encoding for the function given in Example 2

to demonstrate this. Let φA, φB and φC be as follows.

φA =

 1 if x = 1

0 otherwise.

φB =

 1 if y = 1

0 otherwise.

φC =

 1 if φA = φB

0 otherwise.

Here nodes A and B recover the function with zero-error, but the relay can not reconstruct the function. When

φA = φB = 0 ((x, y) is either (2, 3) or (3, 2)), the function value can be both 0 and 1. So H(f |φA, φB) > 0.

B. Results for ε-error computation

In this section, we give our results for ε-error function computation in the relay network (RN). Using Lemma 9

given in the appendix, we can observe that in RN, if a rate triple (RA, RB, RC) is achievable under zero-error,

then (RA + δ,RB + δ,RC + δ) is achievable under ε-error for any δ > 0. This shows that in general the rate region

for computing a function in RN with ε-error is equal to or larger than the rate region for computing the function
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with zero-error. In Example 3, we give an instance for which the rate region under ε-error is strictly larger than

the rate region under zero-error. Proofs of all the theorems in this subsection are given in Section V.

Example 3 Let us consider computing X ⊕ Y for a doubly symmetric binary source (DSBS(p)) (X,Y ) where

pX,Y (0, 0) = pX,Y (1, 1) = (1 − p)/2 and pX,Y (0, 1) = pX,Y (1, 0) = p/2. From Corollary 1, we have the zero-

error rate region as {(RA, RB, RC) : RA ≥ 1, RB ≥ 1, RC ≥ H(p)}. As noted before, computing X ⊕ Y in the

relay network is same as exchanging X and Y . The ε-error rate region for exchanging X and Y through the relay is

given in (15). Computing this for DSBS(p) (X,Y ) gives the rate region as {(RA, RB, RC) : RA, RB, RC ≥ H(p)}.

For arbitrary functions, we do not have a single-letter characterization for the ε-error rate region. Next lemma

gives a cutset outer bound for the ε-error rate region.

Lemma 1 (a) [Cutset outer bound] Any achievable rate triple (RA, RB, RC) ∈ RRN(ε) (f,X, Y ) for RN satisfies

the following :

RA ≥ HGf
X|Y

(X|Y ), RB ≥ HGf
Y |X

(Y |X), RC ≥ max{H(Z|X), H(Z|Y )}. (16)

(b) Equality in (16) can be achieved individually for either (RA, RB) or RC .

Remark 1 We suspect the cutset bound to be loose, though we do not have an example to show this. For all the

example functions where we have a single-letter characterization of the rate region, the cutset outer bound in (16)

is seen to be tight. Example 4 provides a class of functions for which the cutset outer bound is tight.

Next we propose two achievable schemes for the ε-error computation problem. These two schemes are the

extensions of the zero-error schemes given in Theorem 3.

Theorem 5 (RN, ε-error inner bound) (a) Let

RεI1 ,{(RA, RB, RC) : RA ≥ I(X;U1|U2, Q), RB ≥ I(Y ;U2|U1, Q),

RA +RB ≥ I(X,Y ;U1, U2|Q), RC ≥ max{I(W ;U1|U2, Y,Q), I(W ;U2|U1, X,Q)}}

for some p(q)p(w|u1, u2, q)p(u1|x, q)p(u2|y, q) such that

(i) X ∈ U1 ∈ Γ(GfX|Y )

(ii) Y ∈ U2 ∈ Γ(GfY |X)

(iii) (U1, U2) ∈W ∈ Γ(R̃G
f

U1U2
).
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Let RεI2 ,{(RA, RB, RC) : RA ≥ HGf
X|Y

(X|Y ), RB ≥ HGf
Y |X

(Y |X),

RC ≥ max{HGf
X|Y

(X|Y ), HGf
Y |X

(Y |X)}}.

Let RεI be the convex closure of RεI1 ∪ RεI2. Then RεI ⊆ RRN(ε) (f,X, Y ).

(b) Neither of RεI1 and RεI2 is a subset of the other in general.

The proof of Theorem 5 is given in Section V-A. To prove part (b), we show that for computing AND for a

DSBS(p) source, the rate triple (H(p), H(p), H(p)) ∈ RεI2 \ RεI1 , and (1, H(p), 1
2H(p)) ∈ RεI1 \ RεI2 .

Example 4 Let us consider the functions where one of the confusability graphs is empty. W.l.o.g., let us assume

that GfY |X is empty. Then on the support set SXY , the function f can be computed from X alone. This implies that

node A can compute the function with zero-error from X , and HGf
Y |X

(Y |X) = 0. Let us consider HGf
X|Y

(X|Y ).

In general, HGf
X|Y

(X|Y ) ≥ H(Z|Y ). For a given Z = z, let us consider the set of all x, Az = {x : f(x, y) =

z, for some y s.t. (x, y) ∈ SXY }. Since here for X = x, f(x, y′) = f(x, y′′) for any (x, y′), (x, y′′) ∈ SXY , Az is

an independent set of GfX|Y . Let A denote the set of all Az , and W = AZ . Since Z is a function of X , we have

W = g(X) for some function g. This W in (10) gives that I(W ;X|Y ) = H(Z|Y ). So we get HGf
X|Y

(X|Y ) =

H(Z|Y ). Then we get RεI2 in Theorem 5 as {(RA, RB, RC) : RA ≥ H(Z|Y ), RB ≥ 0, RC ≥ H(Z|Y )}. It is easy

to check that the cutset outer bound in (16) also gives the same rate region. This shows that for functions where

one of the confusability graph is empty, the cutset outer bound is tight.

Theorem 6 Let f1, f2 be two functions of (X,Y ).

(a) If E(RGf1XY ) ⊆ E(RGf2XY ), then (i) RRN(0) (f1, X, Y ) ⊇ RRN(0) (f2, X, Y ), (ii) RRN(ε) (f1, X, Y ) ⊇ RRN(ε) (f2, X, Y ).

(b) If RGf1XY is isomorphic to RGf2XY , then (i) RRN(0) (f1, X, Y ) = RRN(0) (f2, X, Y ), (ii) RRN(ε) (f1, X, Y ) = RRN(ε) (f2, X, Y ).

For any arbitrary function f of (X,Y ), if RGfXY is isomorphic to the the f -modified rook’s graph for exchanging

X and Y (i.e. computing a component-wise one-to-one function ), then the rate region RRN(ε) (f,X, Y ) is given by

(15). RRN(ε) (f1, X, Y ) = RRN(ε) (f2, X, Y ) does not imply the isomorphism between RGf1XY and RGf2XY . We show

this through the following example.

Example 5 For a DSBS(p) (X,Y ), let functions f1, f2 of (X,Y ) be defined as∗ f1 = X+Y and f2 = Y ·(X+Y ).

For these functions, RGf1XY and RGf2XY are shown in Fig. 5. The graph RGf1XY is same as as the f -modified

rook’s graph for computing a component-wise one-to-one function . Using Theorem 6, we get RRN(ε) (f1, X, Y ) =

{(RA, RB, RC) : RA, RB, RC ≥ H(p)}. For function f2, since graphs Gf2X|Y and Gf2Y |X are complete graphs,

HG
f2
X|Y

(X|Y ) = H(X|Y ), and HG
f2
Y |X

(Y |X) = H(Y |X). Further, we have H(Z2|X) = H(p) and H(Z2|Y ) =

∗Here + is sum, not XOR. In particular, f1(1, 1) = 2.
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1
2H(p). This implies that max{HGf

X|Y
(X|Y ), HGf

Y |X
(Y |X)} = max{H(Z|X), H(Z|Y )} = H(p). Then the region

given by RεI2 in Theorem 5 is same as the region given by the cutset outer bound in (16). So we get RRN(ε) (f2, X, Y ) =

{(RA, RB, RC) : RA, RB, RC ≥ H(p)} which is same as RRN(ε) (f1, X, Y ). Here, even though RRN(ε) (f1, X, Y ) =

RRN(ε) (f2, X, Y ), RGf1XY is not isomorphic to RGf2XY .

y
x 0 1

1

0

(a) RGf1
XY

y
x 0 1

1

0

(b) RGf2
XY

Fig. 5: Graphs RGf1XY and RGf2XY in Example 5

In [2], Han and Kobayashi considered the function computation problem where two encoders encode Xn and

Y n, and a decoder wants to compute f(X,Y ) from the encoded messages. They gave necessary and sufficient

conditions under which the function computation rate region coincides with the Slepian-Wolf region. The conditions

were based on a probability-free structure of the function f(X,Y ), assuming that SXY = X ×Y . For our function

computation problem, in general, if RGfXY is not the same as the f -modified rook’s graph for a component-wise

one-to-one function, then the equality RRN(ε) (f,X, Y ) = RRN(ε) (CWOOF,X, Y ) also depends on pXY even when

SXY = X×Y . In particular, for the function f2 in Example 5, the equality RRN(ε) (f,X, Y ) = RRN(ε) (CWOOF,X, Y )

depends on the distribution pXY . This is illustrated in Example 6. Thus we observe that the characterization of

RRN(ε) (f,X, Y ) = RRN(ε) (CWOOF,X, Y ) in the relay network cannot have a probability-free structure.

Example 6 Let us consider the function f2 in Example 5. When pXY is DSBS(p), it is shown in Example 5 that

RRN(ε) (f,X, Y ) = RRN(ε) (CWOOF,X, Y ) . Let us consider the same function for the following distribution

p(0, 0) = p(1, 0) =
1

6
,

p(0, 1) = p(1, 1) =
1

3
.

We have H(X|Y ) = H(X) = 1 and H(Y |X) = H(Y ) = H(1
3). So we get RRN(ε) (CWOOF,X, Y ) = {(RA, RB, RC) :

RA ≥ 1, RB ≥ H(1
3), RC ≥ 1}. For Z = f2(X,Y ), H(Z|Y ) = 2

3 , and H(Z|X) = H(1/3) ≈ 0.91. Let us

consider an instance of encoding where A and B communicate Xn and Y n to the relay with rates RA = H(X)

and RB = H(Y ) respectively; and the relay computes Zn and use Slepian-Wolf binning to compress it at a

rate RC = max{H(Z|X), H(Z|Y )}. Then the function computation at A and B follows from the Slepian-Wolf

decoding. For this scheme, the rate triple (1, H(1/3), H(1/3)) is achievable. Clearly, (1, H(1/3), H(1/3)) /∈

RRN(ε) (CWOOF,X, Y ) and we get RRN(ε) (f,X, Y ) 6= RRN(ε) (CWOOF,X, Y ).
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IV. ZERO ERROR COMPUTATION: PROOFS OF THEOREMS 1- 4

A. Proof of Theorem 1

The optimal ε-error rate R∗(BFN)
(ε) (f,X, Y ) is given by max{H(Z|X), H(Z|Y )} which follows from the Slepian-

Wolf result [13]. Using Lemma 9, we can observe that R∗(BFN)
(ε) (f,X, Y ) ≤ R

∗(BFN)
(0) (f,X, Y ). Next we show

that R∗(BFN)
(0) (f,X, Y ) ≤ max{H(Z|X), H(Z|Y )}. The code has two constituents: a subset S ⊆ X n ×Yn, and a

random binning of all sequences zn into 2R
′n bins, where R′ = max{H(Z|Y ), H(Z|X)}+ δ

2 . Let S be the set of

all (xn, yn) satisfying at least one of the following:

E1: (xn, f(xn, yn)) /∈ Tnε (XZ),

E2: (yn, f(xn, yn)) /∈ Tnε (Y Z),

E3: ∃ z′n 6= f(xn, yn) such that (z′n, xn) ∈ Tnε (ZX), and it is in the same bin as f(xn, yn),

E4: ∃ z′n 6= f(xn, yn) such that (z′n, yn) ∈ Tnε (ZY ), and it is in the same bin as f(xn, yn).

The sequences in S are indexed by a fixed length code of length at most n(log |X | + log |Y|). The overall code

consists of the indices of S and the indices of the bins, distinguished by an additional prefix bit.

The encoder sends the bin index of f(Xn, Y n) if (Xn, Y n) ∈ S{. Otherwise, it sends the index of (Xn, Y n) in

S. If node A receives a bin index, then it finds the unique Zn which is jointly typical with Xn. Otherwise, node

A gets to know (Xn, Y n) from its index in S, and computes Zn = f(Xn, Y n). Node B follows similar decoding.

There is no decoding error either for node A or B under this scheme, as all sequences (xn, yn) which could have

resulted in a decoding error are separately transmitted using their index in S. From the Slepian-Wolf result [13], we

know that the probability Pr(E1∪E3) is less than or equal to 2−nδ/2 for large enough n. Similarly, Pr(E2∪E4)

is less than or equal to 2−nδ/2. Thus by union bound, Pr(S) ≤ Pr(E1∪E3) +Pr(E2∪E4) ≤ 2× 2−nδ/2. Since

log |S| is linear in n, the overall average length of the code is at most

Pr(S)n(log |X |+ log |Y|) + Pr(S{)nR′

≤ 2× 2−nδ/2n(log |X |+ log |Y|) + n

(
max{H(Z|Y ), H(Z|X)}+

δ

2

)
≤ nδ

2
+ n

(
max{H(Z|Y ), H(Z|X)}+

δ

2

)
= n(max{H(Z|Y ), H(Z|X)}+ δ)

for large enough n. This completes the proof of the theorem.

Proof of Corollary 1: First let us consider the converse for the rate region. For RA, let us consider the cut

between node A and a super node consisting of B and C. This situation arises when the relay node broadcasts the
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message sent by node A. Then the problem reduces to the problem of decoding with side information studied in

[10], where the decoder with side information Y wants to recover X . Lemma 6 in [10] shows that the optimal rate

is equal to lim
n→∞

1
nHχ(G∧n, Xn) = H̄G(X). Since the support set is full, the graph (G,X) is a complete graph with

vertex set X . It can be easily verified that for a complete graph, H̄G(X) = H(X). So here we get RA ≥ H(X).

Similarly, RB ≥ H(Y ). Now let us consider the rate RC . Any relay encoding φC(φA(xn), φB(yn)) is also a

function of (xn, yn) and so any achieved rate RC can also be achieved if the relay has the full information (xn, yn).

So the optimum RC attains its minimum value when the relay has X and Y . For a component-wise one-to-one

function Z, H(Z|X) = H(Y |X) and H(Z|Y ) = H(X|Y ). Theorem 1 shows that if relay has both X and Y , the

minimum achievable broadcast rate is max{H(Y |X), H(X|Y )}. This completes the converse. Now let us consider

a scheme where nodes A and B communicate X and Y respectively to the relay. The relay can recover X and

Y with zero-error if RA > H(X) and RB > H(Y ). If the relay has X and Y , Theorem 1 shows that the rate

max{H(Y |X), H(X|Y )} is achievable for RC for computing a component-wise one-to-one function. This proves

the achievability of the rate region.

B. Proof of Theorem 2

To prove Theorem 2, we first present some lemmas.

Lemma 2 For any n ≥ 1, and given the encoding functions φA, φB, φC , the nodes A and B can recover f(Xn, Y n)

with zero-error if and only if φC ◦ (φA × φB) is a coloring of RGfXY (n).

Proof: Let E(RGfXY (n)) denote the set of edges of RGfXY (n). Note that

E(RGfXY (n)) = {((xn, yn), (xn, y′n)) ∈ SXnY n ; f(xi, yi) 6= f(xi, y
′
i) for some i}

∪ {((xn, yn), (x′n, yn)) ∈ SXnY n ; f(xi, yi) 6= f(x′i, yi) for some i}. (17)

Observe that each edge is of the form ((xn, yn), (xn, y′n)) or ((xn, yn), (x′n, yn)). We note that

(i) A can recover f(Xn, Y n) with zero-error ⇔ for any (xn, yn), (xn, y′n) ∈ SXnY n with f(xi, yi) 6= f(xi, y
′
i)

for some i, φC(φA(xn), φB(yn)) 6= φC(φA(xn), φB(y′n)).

(ii) B can recover f(Xn, Y n) with zero-error ⇔ for any (xn, yn), (x′n, yn) ∈ SXnY n with f(xi, yi) 6= f(x′i, yi)

for some i, φC(φA(xn), φB(yn)) 6= φC(φA(x′n), φB(yn)).

From (i) and (ii) above, it follows that A and B can recoverf(Xn, Y n) with zero-error ⇔ for any ((xn, yn),

(x′n, y′n)) ∈ E(RGfXY (n)), φC(φA(xn), φB(yn)) 6= φC(φA(x′n), φB(y′n)) ⇔ φC ◦ (φA × φB) is a coloring of

RGfXY (n).
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Lemma 3 For any n ≥ 1, and given the encoding functions φA, φB, φC , the nodes A and B can recover f(Xn, Y n)

under the unrestricted input setup if and only if φC ◦ (φA × φB) is a coloring of RGf,(u)
XY (n).

Proof: Let E(RG
f,(u)
XY (n)) denote the set of edges of RGf,(u)

XY (n). Observe that

E(RG
f,(u)
XY (n)) = {((xn, yn), (xn, y′n)) : for some i((xi, yi), (xi, y′i)) ∈ E(RG

f,(u)
XY )}

∪ {((xn, yn), (x′n, yn)) : for some i((xi, yi), (x′i, yi)) ∈ E(RG
f,(u)
XY )}. (18)

We note that

(i) A can recover f(Xn, Y n) under the unrestricted input setup⇔ for any (xn, yn), (xn, y′n) such that f(xi, yi) 6=

f(xi, y
′
i) for some i where (xi, yi), (xi, y

′
i) ∈ SXY , φC(φA(xn), φB(yn)) 6= φC(φA(xn), φB(y′n)).

(ii) B can recover f(Xn, Y n) under the unrestricted input setup⇔ for any (xn, yn), (x′n, yn) such that f(xi, yi) 6=

f(x′i, yi) for some i where (xi, yi), (x
′
i, yi) ∈ SXY , φC(φA(xn), φB(yn)) 6= φC(φA(x′n), φB(yn))

From (i) and (ii) above, it follows that A and B can recoverf(Xn, Y n) with zero-error ⇔ for any ((xn, yn),

(x′n, y′n)) ∈ E(RG
f,(u)
XY (n)), φC(φA(xn), φB(yn)) 6= φC(φA(x′n), φB(y′n)) ⇔ φC ◦ (φA × φB) is a coloring of

RG
f,(u)
XY (n).

Proof of part (a): Lemma 2 implies that for encoding functions φA, φB, φC of any zero-error scheme, φA, φB, φC◦

(φA× φB) is a color cover for RGfXY (n). Similarly, for any color cover (cA, cB, cC) of RGfXY (n), let φA, φB be

any prefix-free encoding functions of cA and cB respectively. Since cA × cB is a refinement of cC , there exists a

mapping θC such that cC = θC ◦ (cA × cB). Taking φC as any prefix-free encoding of cC yields a scheme with

encoding functions (φA, φB, φC). Thus the result follows from the definition of the region ZfX,Y .

Proof of part (b) follows along the similar lines as that of part (a) using Lemma 3.

C. Proof of Theorem 3

We first give some lemmas which are used to prove the theorem.

Lemma 4 (Covering Lemma, [32]). Let (U,X, X̂) ∼ p(u, x, x̂) and ε′ < ε. Let (Un, Xn) ∼ p(un, xn) be a pair

of random sequences with lim
n→∞

P{(Un, Xn) ∈ Tnε′ (U,X)} = 1, and let X̂n(m),m ∈ A, where |A| ≥ 2nR, be

random sequences, conditionally independent of each other and of Xn given Un, each distributed according to∏n
i=1 pX̂|U (x̂i|ui). Then, there exists δ(ε) that tends to zero as ε→ 0 such that

lim
n→∞

P{(Un, Xn, X̂n(m)) /∈ Tnε for all m ∈ A} = 0,

if R > I(X; X̂|U) + δ(ε).
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Lemma 5 (Markov Lemma, [32]). Suppose that X → Y → Z form a Markov chain. Let (xn, yn) ∈ Tnε′ (X,Y ),

and Zn ∼ p(zn|yn), where the conditional pmf p(zn|yn) satisfies the following conditions:

1) lim
n→∞

P{(yn, Zn) ∈ Tnε′ (Y,Z)} = 1.

2) For every zn ∈ Tnε′ (Z|yn) and n sufficiently large

2−n(H(Z|Y )+δ(ε′)) ≤ p(zn|yn) ≤ 2−n(H(Z|Y )−δ(ε′))

for some δ(ε′) that tends to zero as ε′ → 0.

Then, for some sufficiently small ε′ < ε,

lim
n→∞

P{(xn, yn, Zn) ∈ Tnε (X,Y, Z)} = 1.

Lemma 6 [3, Lemma 4] There exists a function g such that ∀(x, y) ∈ SXY , u2 ∈ Γ(GfY |X) s.t. y ∈ u2, g(x, u2) =

f(x, y), i.e., f(x, y) can be computed from u2 and y .

Lemma 7 There exists functions g1 and g2 such that for all (x, y, u1, u2, w) ∈ X × Y × Γ(GfX|Y ) × Γ(GfY |X) ×

Γ(R̃G
f

U1U2
) satisfying (u1, u2) ∈ w and p(x, y)p(u1|x)p(u2|y) > 0, f(x, y) = g1(x, u1, w) = g2(y, u2, w).

Proof: For a given X = x, U1 = u1 and W = w, let us consider the set of possible y, Ax,u1,w = {y′ : (x, y′) ∈

SXY , and p(u′2|y′) > 0 for some u′2 s.t. (u1, u
′
2) ∈ w}. Then we show that

Claim: f(x, y′) = f(x, y′′) ∀y′, y′′ ∈ Ax,u1,w .

Proof of the claim: Let us assume that for some y′, y′′ ∈ Ax,u1,w, f(x, y′) 6= f(x, y′′). By definition of Ax,u1,w,

∃u′2, u′′2 ∈ Γ(GfY |X), such that y′ ∈ u′2, y
′′ ∈ u′′2 , and (u1, u

′
2), (u1, u

′′
2) ∈ w. But (y′, y′′) ∈ E(GfY |X), and

so y′′ 6∈ u′2, and thus u′2 6= u′′2 . From the conditions in the lemma and the definition of Ax,u1,w, we have

p(x, u1, y
′, u′2), p(x, u1, y

′′, u′′2) > 0. Then by Definition 5, (u1, u
′
2) and (u1, u

′′
2) are connected in R̃G

f

U1U2
. This

implies that w is not an independent set of R̃G
f

U1U2
, which is a contradiction. This proves the claim.

Now, g1 (resp. g2) is defined as the unique function value f(x, y) for all y ∈ Ax,u1,w (resp. x ∈ Ay,u2,w ).

We first give the proof of part (a).

Proof of part (a): In the following, we assume ε > ε′ > ε′′ > 0 and |Q| = 1. Let {Un1 (m1)|m1 ∈ {1, · · · , 2nR
′
A}}

be a set of independent sequences, each distributed according to
∏n
i=1 pU1

(u1i). Similarly, let {Un2 (m2)|m2 ∈

{1, · · · , 2nR′
B}}, be a set of independent sequences, each distributed according to

∏n
i=1 pU2

(u2i). Let {Wn(m3)|m3 ∈

{1, · · · , 2nR′
C}}, be a set of independent sequences, each distributed according to

∏n
i=1 pW (wi).

Encoding at node A:
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For a given xn, node A chooses an index m1 (if any) such that (xn, Un1 (m1)) ∈ Tnε′′(X,U1). The encoding at

node A is given by†

φA(xn) =


m1 (xn, Un1 (m1)) ∈ Tnε′′(X,U1)

xn if (xn, Un1 (m1)) 6∈ Tnε′′(X,U1)∀m1.

By the covering lemma, if R′A > I(X;U1) + δ(ε′′) then

lim
n→∞

Pr(∃m1, (Xn, Un1 (m1)) ∈ Tnε′′(X,U1)) = 1,

where δ(ε′′) → 0 as ε′′ → 0. Rate of the overall encoding is RA < R′A + δ(ε′′) for large enough n such that

Pr(∀m1, (Xn, Un1 (m1)) 6∈ Tnε′′(X,U1)) < δ(ε′′)/ log |X |. Thus, any rate RA > I(X;U1) + 2δ(ε′′) is sufficient.

Encoding at node B is similar to that of the encoding at node A.

Encoding at relay:

If RC > I(W ;U1, U2), but RC < max{I(X;U1), I(Y ;U2)}, the the relay uses the encoding as given in case 1

below. If RC > max{I(X;U1), I(Y ;U2)}, then the relay uses the encoding as given in case 2.

Case 1: max{I(X;U1), I(Y ;U2)} > RC > I(W ;U1, U2)

The relay receives either an index m1 or a xn sequence from node A. Similarly, from node B the relay receives

m2 or a yn sequence. If m1 and m2 are received, and (un1 (m1), un2 (m2), wn(m3)) ∈ Tnε (U1, U2,W ) for some m3,

then any such m3 is broadcasted by the relay. In any other case, the relay broadcasts both the received sequences.

So the encoding at the relay is given by ‡

φC =


m3 (un1 (m1), un2 (m2), wn(m3)) ∈ Tnε (U1, U2,W )

(φA(xn), φB(yn)) otherwise.

Let En,ε′ be the event (Un1 (m1), Un2 (m2)) ∈ TnU1U2,ε′
at the relay. Then from the Markov lemma, we have

lim
n→∞

Pr(En,ε′) = 1. By the covering lemma, if R′C > I(W ;U1, U2) + δ(ε) then

lim
n→∞

Pr(∃m3, (Un1 (m1), Un2 (m2),Wn(m3)) ∈ Tnε (U1, U2,W ) | En,ε′) = 1,

where δ(ε)→ 0 as ε→ 0. Rate of the overall encoding is RC < R′C + 2δ(ε) for large enough n such that

Pr(En,ε′ ∩ ∀m3, (U
n
1 (m1), Un2 (m2),Wn(m3)) /∈ Tnε (U1, U2,W )) < δ(ε)/ log(U1 · U2),

and Pr
(
Ecn,ε′) < δ(ε)/ log(a · b

)
, where a = max{|X |, |U1|} and b = max{|Y|, |U2|}. Thus, any rate RC >

† Transmission of an xn sequence is done by first converting the sequence to a binary sequence of maximum length n log |X | bits. An
extra prefix bit is added to distinguish the sequences xn and m1. Similar operation is done for a yn sequence too.
‡ This encoding can be represented by a prefix-free code using standard techniques, as outlined in the previous footnote.
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I(W ;U1, U2) + 3δ(ε) is sufficient.

Case 2: RC > max{I(X;U1), I(Y ;U2)}

Let us consider the case where the relay receives m1 and m2 from node A and B respectively, such that

(un1 (m1), un2 (m2)) ∈ TnU1U2,ε′
. Then the relay broadcasts the XOR of the binary representations of m1 and m2

(after padding zeros to the shorter sequence). In any other case, as in scheme 1, the relay broadcasts both the

received sequences. So the encoding at the relay is given by§

φC =


m1 ⊕m2 (un1 (m1), un2 (m2)) ∈ Tnε′ (U1, U2)

(φA(xn), φB(yn)) otherwise.

By using the Markov lemma as before, rate of the overall encoding is RC < max{RA, RB}+2δ(ε′) for large enough

n such that Pr((Un1 (m1), Un2 (m2)) /∈ TnU1U2,ε′
) < δ(ε′)/ log(|U1|.|U2|). Thus any rate RC > max{RA, RB}+2δ(ε′)

is sufficient.

Decoding at node A:

If the relay follows the encoding scheme given in case 1, then node A performs the decoding procedure given

in case 1 below. Othersiwe, it follows the decoding operation given in case 2.

Case 1:

Node A receives either m3,m2 or yn. We show that node A computes f(xi, yi) with zero-error ∀i for which

(xi, yi) ∈ SXY . Let us consider a pair (xn, yn) such that (xi, yi) ∈ SXY for some i.

Subcase 1: Node A receives m3

In this case, node A and node B had chosen m1 and m2 such that (xn, un1 (m1)) ∈ Tnε′′(X,U1) and (yn, un2 (m2)) ∈

Tnε′′(Y, U2) respectively, and at the relay (un1 (m1), un2 (m2), wn(m3)) ∈ Tnε (U1, U2,W ).

As a robustly typical sequence can not have a zero-probability component (see (1)), the sequence un1 (m1) chosen

by node A satisfies p(u1i|xi) > 0 ∀i, since (xn, un1 (m1)) ∈ Tnε′′(X,U1). Similarly, the sequence un2 (m2) chosen by

node B satisfies p(u2i|yi) > 0 ∀i, and the sequence wn(m3) chosen by the relay satisfies p(wi|u1i, u2i) > 0 ∀i.

Hence p(u1i|xi)p(u2i|yi)p(wi|u1i, u2i) > 0. Thus by Lemma 7, if p(xi, yi) > 0 then node A can compute f(xi, yi)

from xi, u1i and wi with zero-error.

Subcase 2: Node A receives m2

In this case node B had m2 such that (yn, un2 (m2)) ∈ Tnε′′(Y,U2). This shows that p(u2i(m2)|yi) > 0 for all i.

Thus by Lemma 6, node A can recover f(xi, yi) with zero-error for all i such that p(xi, yi) > 0.

Subcase 3: Node A receives yn

In this case node A can compute f(xi, yi) for all i.

§ This encoding can be represented by a prefix-free code using standard techniques, as outlined in the footnote in page 23.
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Case 2:

Node A receives either m1 ⊕ m2,m2 or yn. Let us first consider the case where node A receives m1 ⊕ m2.

Since node A has m1, it can decode m2 from m1 ⊕ m2 by XORing the received message with m1. Zero-error

function computation at node A from m2 and xn follows from Lemma 6. Decoding for all other cases is the same

as decoding in scheme 1.

Node B follows the similar decoding procedure as that of node A. Now using time sharing random variable Q

gives the achievability of every triple (RA, RB, RC) in RI for some p(q)p(w|u1, u2, q)p(u1|x, q)p(u2|y, q). This

completes the proof of part (a).

Proof of part (b): For the function computation problem in Example 1, we show that ∃ (U ′1, U
′
2,W

′) s.t.

I(W ′;U ′1, U
′
2) = log 2, and max{I(X;U1), I(Y ;U2)} > log 2 for any choice of (U1, U2). In this example,

graphs GfX|Y and GfY |X are pentagon graphs.The complementary graph entropy of a pentagon graph with uniform

distribution is shown to be 1
2 log 5 [11]. Since the graph entropy is greater than or equal to the complementary

graph entropy, we get max{I(X;U1), I(Y ;U2)} > 1
2 log 5 for any choice of (U1, U2). Let us consider a scheme for

the choice of U1 = {X} and U2 = {Y }. Then RA = RB = log 5. For this choice of (U1, U2), the graph R̃G
f

U1U2

is same as the graph RGfXY which is shown in Fig. 3a. Let us choose

W =


{(u1, u2)|u1 = u2} if U1 = U2

{(u1, u2)|u1 6= u2} if U1 6= U2.

Then W is a binary random variable with uniform distribution and satisfies all the conditions in Theorem 3. Here,

since W is a function of (U1, U2), we get I(W ;U1, U2) = H(W ) = log 2, and we have max{I(X;U1), I(Y ;U2)} >

log 2. Then we have the desired result.

For the function computation problem in Example 2, we show that ∃ (U ′1, U
′
2) s.t. max{I(X;U ′1), I(Y ;U ′2)} = 2

3 ,

and I(W ;U1, U2) > 2
3 for any (U1, U2,W ). To prove this, we consider the same of choices of U1 and U2 given

in Section III-A and we use the following claim.

Claim 1 The only conditional distribution pU1|X achieving RA = 2
3 for the function computation problem in

Example 2, is pU1|X(a|2) = pU1|X(b|2) = 1
2 .

Proof: To prove the above claim, we need to show that I(X;U1) is strictly convex in pU1|X . Let us take

pU1|X(a|2) = p, for 0 < p < 1. Then I(X;U1) is a function of p which can be written as

I(X;U1) = f(p) = −1

3
(1 + p) log

1

3
(1 + p)− 1

3
(2− p) log

1

3
(2− p) +

1

3
p log p+

1

3
(1− p) log(1− p).
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Next we show that f ′′(p) > 0, for 0 < p < 1.

f ′(p) =
1

3
log

1

3
(1 + p)− 1

3
log

1

3
(2− p) +

1

3
log p− 1

3
log(1 + p).

f ′′(p) =
1

1 + p
+

1

2− p
+

1

3

1

p
+

1

3

1

1− p
.

Then we have f ′′(p) > 0, for 0 < p < 1. This proves the claim.

For Example 2, the confusability graphs GfX|Y and GfY |X are the same and it is shown in Fig. 4a. For uniform

distribution on its vertices, the graph entropy of the graph shown in Fig. 4a, is computed as 2
3 in Example 1 in

[3]. So we have HGf
X|Y

(X) = HGf
Y |X

(Y ) = 2
3 . Then we get (2

3 ,
2
3 ,

2
3) ∈ RI2. Claim 1 shows that we have to

choose pU1|X(a|2) = pU1|X(b|2) = pU2|Y (c|2) = pU2|Y (d|2) = 1
2 to achieve the rates RA = RB = 2

3 . For this

choice of (U1, U2), let us compute the joint distribution of (U1, U2). Note that (U1, U2) = (a, c) has non zero joint

probability with (X,Y ) when either (X,Y ) = (1, 2) or (X,Y ) = (2, 1). By marginalizing over (X,Y ), we get

pU1,U2
(a, c) = 1

6 . Similarly, we get pU1,U2
(b, d) = 1

6 , pU1,U2
(a, d) = pU1,U2

(b, c) = 1
3 .

As we have seen before the graph R̃G
f

U1U2
is a “square” graph which is shown in Fig. 4c. The minimum RC

achievable by Scheme 1 in this case is HGf
U1U2

(U1, U2). For this graph R̃G
f

U1U2
, the only two maximal independent

sets are {(a, c), (b, d)} and {(a, d), (b, c)}. Let W be a random variable distributed over {{(a, c), (b, d)}, {(a, d), (b, c)}}.

Since each node of the graph R̃G
f

U1U2
is contained in only one of the maximal independent set, we have w as a

function of (u1, u2). Then RC = I(W ;U1, U2) = H(W ) = H(1
3) ≈ 0.91. This shows that for the above choice of

(U1, U2), the minimum RC achievable using scheme 1 is H(1
3). Since H(1

3) > 2
3 , we get (2

3 ,
2
3 ,

2
3) /∈ RI1. This

completes the proof of part (b).

D. Proof of Theorem 4

Since p(x, y) > 0 ∀ (x, y) ∈ X × Y , p(xn, yn) > 0 for any xn ∈ X n and yn ∈ Yn. Let fn(xn, yn) denote

(f(x1, y1), · · · , f(xn, yn)). If the relay node cannot compute the function with zero-error, it implies that there exists

xn, yn, x′n, y′n such that φA(xn) = φA(x′n), φB(yn) = φB(y′n) and fn(xn, yn) 6= fn(x′n, y′n). We either have

fn(xn, yn) 6= fn(xn, y′n) or fn(xn, y′n) 6= fn(x′n, y′n). W.l.o.g., let us assume that fn(xn, yn) 6= fn(xn, y′n).

For both pairs (xn, yn) and (xn, y′n), node A receives φC(φA(xn), φB(yn)) from the relay. Then node A cannot

compute the function since the relay’s message and Xn are the same for these pairs, but the values of the function

are different. So we get a contradiction. This proves the result.

V. ε-ERROR COMPUTATION: PROOFS OF THEOREMS 5- 6

Proof of Lemma (1), part (a): Let us consider the cut between node A and the super-node consisting of B and C.

Then it is the function computation problem with side information considered in [3] where the decoder with side



27

information Y wants to compute a function f(X,Y ). They showed that the optimal ε-error rate for this problem

is HGf
X|Y

(X|Y ). This implies that RA ≥ HGf
X|Y

(X|Y ). Similarly, RB ≥ HGf
Y |X

(Y |X). The lower bound for RC

follows from the cut set bound by considering the cut ({C}, {A,B}) and assuming that the relay knows (X,Y ).

Proof of part (b): Let us consider a scheme where nodes A and B encode Xn and Y n to messages m1 and

m2 by the scheme given by Orlitsky and Roche in [3], and the relay broadcasts both these messages. From the

result of [3], RA = HGf
X|Y

(X|Y ),RB = HGf
Y |X

(Y |X), and RC = HGf
X|Y

(X|Y ) + HGf
Y |X

(Y |X) are achievable

using this scheme. Now let us consider another scheme where X and Y are communicated to the relay from

A and B. Then the relay first computes f(X,Y ) and then uses Slepian-Wolf binning to compress it at a rate

RC = max{H(Z|X), H(Z|Y )}. Then nodes A and B can compute f(X,Y ) with negligible probability of error.

The rates RA = H(X), RB = H(Y ), and RC = max{H(Z|X), H(Z|Y )} are achievable for this scheme.

A. Proof of Theorem 5

Proof of part (a): The scheme used to prove the achievability of RεI1 is similar to that of RI in Theorem 3.

Nodes A and B follow Berger-Tung coding scheme [33]. (We refer the reader to Theorem 12.1 in [32].) At node

A, like in scheme 1 in Theorem 3, a codebook {Un1 (m1)|m1 ∈ {1, · · · , 2nR
′
A}} is used. The codebook is randomly

binned into 2nRA bins. If a un1 (m1) is found which is jointly typical with xn, then its bin index b1 is sent. If no

such un1 is found in the codebook, then a randomly chosen bin index is sent. Node B encodes in a similar way.

The relay can correctly recover (m1,m2) from b1 and b2 with high probability if RA > I(X;U1|U2), RB >

I(Y ;U2|U1) and RA + RB > I(X,Y ;U1, U2). Let the reconstructed messages be (m̂1, m̂2). The relay follows

Wyner-Ziv coding scheme where a codebook {Wn(m3)|m3 ∈ {1, · · · , 2nR
′
C}} is randomly binned into 2nRC bins.

If the relay finds a wn(m3) which is jointly typical with (un1 (m̂1), un2 (m̂2)), then it broadcasts the bin index of

wn(m3). Otherwise a randomly chosen bin index is broadcasted. Node A can decode m3 correctly with high

probability if

RC
(a)
=I(W ;U1, U2)− I(W ;X,U1) + ε

=H(W |X,U1)−H(W |U1, U2) + ε

(b)
=H(W |X,U1)−H(W |U1, U2, X) + ε

=I(W ;U2|X,U1) + ε.

Here in (a), we have taken the size of the bin as 2n(I(W ;X,U1)+ε′), and (b) follows from the Markov chain W −

U1U2 −X . Similarly node B can decode m3 with high probability if RC ≥ I(W ;U1|Y,U2).

Let the reconstructed messages at nodes A and B be m̂A
3 and m̂B

3 respectively. Then wn(m̂A
3 ) will be jointly

typical with (xn, un1 (m1), yn, un2 (m2)) with high probability. For such a wn(m̂A
3 ), for all i such that p(xi, yi) > 0,
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we get p(u1i|xi)p(u2i|yi)p(wi|u1i, u2i) > 0 using robust typicality. Thus by Lemma 7, node A can compute f(xi, yi)

from xi, u1i and wi. Node B computes the function in a similar way.

Now let us consider the encoding schemes used to obtain the rate region RεI2. Node A encodes Xn to an

index m1 using the scheme given by Orlitsky and Roche in [3]. Using the same scheme, node B encodes Y n

to an index m2 with rate RB . Once the relay receives both the messages, it broadcasts the XOR of the binary

representation of m1 and m2 (after appending zeros to the shorter sequence). Nodes A recovers message m2

from (m1,m1 ⊕m2). Then node A follows the decoding operation given in [3] to compute the function. Similar

decoding operation is performed at node B. By the result of [3], RA = HGf
X|Y

(X|Y ),RB = HGf
Y |X

(Y |X), and

RC = max{HGf
X|Y

(X|Y ), HGf
Y |X

(Y |X)} are achievable using this scheme.

Proof of part (b): Let us consider computing X · Y (AND function) for DSBS(p) (X,Y ). Here both the confus-

ability graphs GfX|Y and GfY |X are complete. This implies HGf
X|Y

(X|Y ) = H(X|Y ) and HGf
Y |X

(Y |X) = H(Y |X).

Since H(X|Y ) = H(Y |X) = H(p), we get RεI2 = {(RA, RB, RC) : RA, RB, RC ≥ H(p)}. Now let us consider

the achievable scheme of RεI1 in Theorem 5 for this example. Since both the confusability graphs are complete, the

only choice for U1 and U2 are U1 = {X} and U2 = {Y }. For this choice of U1 and U2, the relay can recover X

and Y by Berger-Tung coding scheme. Then the relay can compute the function Z = f(X,Y ). For a given Z = z,

let us consider the set of all (x, y), Az = {(x, y) : f(x, y) = z, and (x, y) ∈ SXY }. Let us choose W = AZ . Then

we get RC = max{H(Z|X), H(Z|Y )} = 1
2H(p), which is the minimum possible RC by Lemma 1. So we get

RεI1 as

{(RA, RB, RC) : RA ≥ H(p), RB ≥ H(p), RA +RB ≥ 1 +H(p), RC ≥
1

2
H(p)}.

Then we have (H(p), H(p), H(p)) ∈ RεI2 \ RεI1 and (1, H(p), 1
2H(p)) ∈ RεI1 \ RεI2.

B. Proof of Theorem 6

We use the following lemma to prove Theorem 6. For f1, f2 of (X,Y ), let the random variables Z1 and Z2

denote f1(X,Y ) and f2(X,Y ) respectively.

Lemma 8 If E(RGf1XY ) ⊆ E(RGf2XY ), then H(Z1|Z2, X) = 0 and H(Z1|Z2, Y ) = 0.

Proof: We prove that if E(RGf1XY ) ⊆ E(RGf2XY ), then H(Z1|Z2, X) = 0. The other case follows similarly.

For a given X = x and Z2 = z2, let us consider the set of all y, Axz2 = {y′ : f2(x, y′) = z2 and (x, y′) ∈ SXY }.

Then by the definition of RGf2XY , f2(x, y′) = f2(x, y′′) ∀y′, y′′ ∈ Axz2 . Further, since E(RGf1XY ) ⊆ E(RGf2XY ),

f1(x, y′) = f1(x, y′′). Let us denote this unique value by z1 := f1(x, y′). Then we have Pr{Z1 = z1|X = x, Z2 =

z2} = 1 and H(Z1|Z2, X) = 0.
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Proof of part (a): Lemma 8 shows that if E(RGf1XY ) ⊆ E(RGf2XY ), then Z1 is a function of (Z2, X) as well

as a function of (Z2, Y ). This implies that if node A can recover Zn2 from MC and Xn with some probability of

error, then it can compute Zn1 with at most the same probability of error. Similar arguments hold for computing

Zn1 at node B. This shows that RRN(0) (f1, X, Y ) ⊇ RRN(0) (f2, X, Y ) and RRN(ε) (f1, X, Y ) ⊇ RRN(ε) (f2, X, Y ).

Part (b) follows from part (a).

VI. CONCLUSION

In this work, we studied the function computation problem in a bidirectional relay network (Fig. 1). Function

computation problem has been addressed from an information theoretic point of view for unidirectional networks

before, e.g. [1]–[3], [15]. To the best of our knowledge, this is the first work which addressed the function

computation problem for a bidirectional network from an information theoretic point of view. We considered

our function computation problem on this network for correlated sources under zero-error and ε-error criteria and

proposed single-letter inner and outer bounds for achievable rates. We studied the function computation problem

in a broadcast network (Fig. 2), where we showed that the optimal broadcast rate is the same under zero-error and

ε-error criteria.

APPENDIX A

SOURCE CODING UNDER ZERO-ERROR VS. ε-ERROR

We now mention a result which connects zero-error with ε-error. We believe this result is folklore. We provide

it here for completeness. The result in the following lemma can be extended/applied to our source coding network.

Lemma 9 Let us consider a source coding problem with side information where the encoder knows X and the

decoder has the side information Y and wants to recover X . If there is a zero-error prefix free code of rate R,

then for any δ > 0, the rate R+ δ is achievable under ε-error.

Proof: Consider a zero-error prefix free code of length n and rate R. Let MA denote the encoded message.

Since the average length of any prefix free encoding is lower bounded by the entropy of the source, we get

nR ≥ H(MA). Now let us consider a block encoding of N messages MA under ε-error. For any δ > 0, there

exists an N such that by random binning of MN
A symbols at a rate H(MA) + δ, the decoder can reconstruct MA

with arbitrarily small probability of error. Since the source vectors Xn can be reconstructed with zero-error from

MA, the decoder can decode X with arbitrarily small probability of error. This proves the lemma.
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