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Abstract—The conventional channel resolvability problem
refers to the determination of the minimum rate required for
an input process so that the output distribution approximates
a target distribution in either the total variation distance or
the relative entropy. In contrast to previous works, in this
paper, we use the (normalized or unnormalized) Rényi divergence
(with the Rényi parameter in [0, 2] ∪ {∞}) to measure the
level of approximation. We also provide asymptotic expressions
for normalized Rényi divergence when the Rényi parameter is
larger than or equal to 1 as well as (lower and upper) bounds
for the case when the same parameter is smaller than 1. We
characterize the Rényi resolvability, which is defined as the min-
imum rate required to ensure that the Rényi divergence vanishes
asymptotically. The Rényi resolvabilities are the same for both
the normalized and unnormalized divergence cases. In addition,
when the Rényi parameter smaller than 1, consistent with the
traditional case where the Rényi parameter is equal to 1, the
Rényi resolvability equals the minimum mutual information over
all input distributions that induce the target output distribution.
When the Rényi parameter is larger than 1 the Rényi resolvability
is, in general, larger than the mutual information. The optimal
Rényi divergence is proven to vanish at least exponentially
fast for both of these two cases, as long as the code rate is
larger than the Rényi resolvability. The optimal exponential rate
of decay for i.i.d. random codes is also characterized exactly.
We apply these results to the wiretap channel, and completely
characterize the optimal tradeoff between the rates of the secret
and non-secret messages when the leakage measure is given by
the (unnormalized) Rényi divergence. This tradeoff differs from
the conventional setting when the leakage is measured by the
traditional mutual information.

Index Terms—Channel resolvability, Rényi divergence, Expo-
nent, Soft covering, Wiretap channel, Effective secrecy, Stealthy
communication

I. INTRODUCTION

How much information is required to simulate a random
process through a given channel so that it mimics a target
output distribution? This is the so-called channel resolvability
problem, studied by Han and Verdú [2]. In [2], the total
variation (TV) distance and the normalized relative entropy
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(Kullback-Leibler divergence) were used to measure the level
of approximation. The resolvability problem with the unnor-
malized relative entropy was studied by Hayashi [3], [4]. In
[2]–[4] it was shown that in the memoryless case the minimum
rates of randomness needed for simulating a channel output
under the TV, normalized relative entropy, or unnormalized
relative entropy measures are the same, and are all equal to
the minimum mutual information over all input distributions
that induce the target output distribution. Recently, Liu, Cuff,
and Verdú [5] extended the theory of resolvability by using
Eγ metric with γ ≥ 1 to measure the level of approximation.
The Eγ metric reduces to the TV distance when γ = 1,
but it is weaker than the TV distance when γ > 1. Hence,
the Eγ metric generalizes the TV distance by weakening the
measure. In contrast, we generalize the channel resolvability
problem by strengthening the relative entropy measure and
considering a continuum of secrecy measures indexed by the
Rényi parameter. Furthermore, random variable simulation
problems under Rényi divergence measures of all orders in
[0,∞], including the source resolvability problem (the resolv-
ability problem with the identity channel), were studied by the
present authors recently in [6]. The exact channel resolvability
problem was studied by the present authors in [7], in which the
output distribution is required to be exactly equal to the target
distribution, and meanwhile, the input process is allowed to be
an “asymptotic function” (i.e., not restricted to be a function)
of a uniform random variable (or the input process is allowed
to be compressed by variable-length codes, not restricted to
fixed-length codes).

While the term “channel resolvability” was coined by Han
and Verdú in [2], the problem of approximating a given
product measure was first studied by Wyner [8]. In [8] Wyner
investigated the minimum rate of common randomness to sim-
ulate two correlated sources in a distributed fashion such that
the distance (e.g., TV distance or relative entropy) between
the code-induced distribution and the target source distribution
vanishes asymptotically; this rate was coined the common
information rate between the two sources. For the achievabil-
ity part, both channel resolvability and common information
problems rely on the so-called soft-covering lemmas [9]. The
channel resolvability and common information problems have
several interesting applications—including secrecy, channel
synthesis, and source coding. For example, in [10] it was
used to study the performance of a wiretap channel system
under different secrecy measures. In [11] it was used to study
the reliability and secrecy exponents of a wiretap channel
with cost constraints. In [12] it was used to study the exact
secrecy exponents of random code ensembles for the wiretap
channel. In [13], Hou and Kramer used ideas from the channel
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resolvability problem to study the effective secrecy capacity
(the stealth-secrecy capacity) of wiretap channels. This work
is contrasted to the present work in greater detail in Section III.
Furthermore, the perfectly stealthy (or covert) communication
problem, in which the distribution of the signal overheard by
the eavesdropper is required to be exactly equal to the target
distribution, was studied by the present authors in [7]. The
exact common information problem was studied in [14]–[16],
in which the code-induced distribution is required to be exactly
equal to the target source distribution, and meanwhile, the
common randomness is allowed to be compressed by variable-
length codes, not restricted to fixed-length codes.

In contrast to the aforementioned works, we use the (nor-
malized or unnormalized) Rényi divergence to measure the
level of approximation between the simulated and target output
distributions. As expounded by Iwamoto and Shikata [17], we
can quantify equivocation using Rényi measures, thus obtain-
ing a continuum of fundamental limits of information leakage
under the effect of various hash functions. These fundamental
limits are indexed by the Rényi parameter. Our work is also
partly motivated by Shikata [18] who quantified lengths of
secret keys in terms of Rényi entropies of general orders
and Bai et al. [19] who showed that the Rényi divergence
is particularly suited for simplifying some security proofs.
Furthermore, it is worth noting that it is quite natural to
use various divergences to measure the discrepancy between
two distributions. Wyner [8] and Yu and Tan [16], [20], [21]
respectively used the KL divergence and the Rényi divergence
to measure the level of approximation in the distributed source
synthesis problem; Hayashi [3], [4] used the KL divergence
to study the channel resolvability problem, and showed the
optimal decay exponents of the KL divergence and the total
variation are upper bounded by an expression involving the
Rényi divergence. In probability theory, Barron [22] and
Bobkov, Chistyakov and Götze [23] respectively used the KL
divergence and the Rényi divergence to study the central limit
theorem, i.e., they used them to measure the discrepancy
between the induced distribution of sum of i.i.d. random
variables and the normal distribution with the same mean and
variance. Furthermore, special instances of Rényi entropies
and divergences—including the KL divergence, the Rényi di-
vergence, the collision entropy (the Rényi entropy of order 2),
and min-entropy (the Rényi entropy of order ∞)—were used
to study various information-theoretic problems (including
security, cryptography, and quantum information) in several
works in the recent literature [10], [13], [24]–[29]; and these
give some operational meanings of the Rényi divergence.
For example, in [28], the normalized Rényi entropy of order
2 was used to express an achievable rate for the secret
communication over the wiretap channel with non-uniform
sources. In [29], the Rényi divergence was used to express
an achievable exponent for secure multiplex coding with the
leakage measured by mutual information.

A. Main Contributions
Our main contributions are as follows:
1) We provide finite length and asymptotic expressions for

the Rényi divergence between the simulated and target

output distributions. We distinguish between the case
when the Rényi parameter is at least 1—in which case
we have a tight expression—and the case when the same
parameter is smaller than 1—in which case we only have
bounds (which are tight in some regime).

2) We characterize the Rényi resolvability, which is defined
as the minimum rate needed to guarantee that the (nor-
malized or unnormalized) Rényi divergence vanishes
asymptotically. Interestingly, these two Rényi resolv-
abilities are the same regardless of whether we employ
the normalized or unnormalized Rényi divergences. The
Rényi resolvability when the Rényi parameter is at most
1 is just equal to the minimum mutual information
over all input distribution that induce target output
distribution. This is similar to the traditional case [2]–
[4]. In contrast if the Rényi parameter is greater than
1, the Rényi resolvability is, in general, larger than the
minimum mutual information.

3) We prove that the optimal Rényi divergence between
the simulated and target output distributions vanishes (at
least) exponentially fast as long as the code rate is larger
than the Rényi resolvability (cf. previous point). We
also exactly characterize the optimal (ensemble tight)
exponential decay rate for the ensemble of i.i.d. random
codes. These results are generalizations of the work by
Parizi, Telatar and Merhav [12] in which the optimal
exponent (leading to an ensemble tight secrecy exponent
for the wiretap channel) for the relative entropy was
studied. See Remark 22 for further comparisons and
contrasts to [12].

4) As a concrete application of the above mathematical
results, we consider the wiretap channel and completely
characterize the optimal tradeoff between the rates of
the secret and non-secret messages when the leakage is
measured by the unnormalized Rényi divergence. Note
that different from Csiszár and Körner’s work (with
secrecy measured by the mutual information) [30], the
optimal rates tradeoff provided by us are achieved by a
single-layered code. Hence, it has a different expression
from the one given in [30]. See Remark 26 for a detailed
discussion.

It is also worth noting that our work is partly motivated by the
work of Hayashi and Tan [26], [27]. In their work, the Rényi
divergence was used to measure the level of approximation of
a distribution induced by a hash function, typically used for
source compression; in our work, it is used to measure the
level of approximation of an input process that is sent through
a channel. Hence our work can be considered as a counterpart
of theirs, just as the channel coding is a counterpart of the
source hashing.

B. Notation

In this paper, we use PX(x) to denote the probability distri-
bution of a random variable X , which is also shortly denoted
as P (x) (when the random variable X is clear from the con-
text). We also use PX , P̃X , and QX to denote various probabil-
ity distributions with alphabet X . All alphabets considered in
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the sequel are finite. The set of probability distributions on X
is denoted as P (X ), and the set of conditional probability dis-
tributions on Y given a variable in X is denoted as P (Y|X ) :={
PY |X : PY |X (·|x) ∈ P (Y) , x ∈ X

}
. Given PX and PY |X ,

we write [PY |X ◦ PX ](y) :=
∑
x PY |X(y|x)PX(x).

We use Txn (x) := 1
n

∑n
i=1 1 {xi = x} to denote the type

(empirical distribution) of a sequence xn, TX and VY |X to re-
spectively denote a type of sequences in Xn and a conditional
type of sequences in Yn (given a sequence xn ∈ Xn). For a
type TX , the type class (set of sequences having the same
type TX ) is denoted by TTX . For a conditional type VY |X and
a sequence xn, the V -shell of xn (the set of yn sequences
having the same conditional type VY |X given xn) is denoted
by TVY |X (xn). The set of types of sequences in Xn is denoted
as P(n) (X ) := {Txn : xn ∈ Xn}. The set of conditional types
of sequences in Yn given a sequence in Xn with the type TX is
denoted as P(n) (Y|TX) := {VY |X ∈ P (Y|X ) : VY |X×TX ∈
P(n) (X × Y)}. For brevity, sometimes we use T (x, y) to
denote the joint distributions T (x)V (y|x) or T (y)V (x|y).

The ε-typical set relative to QX is denoted as T nε (QX) :=
{xn ∈ Xn : |Txn (x)−QX (x)| ≤ εQX (x) ,∀x ∈ X}. The
conditionally ε-typical set relative to QXY is denoted as
T nε (QXY |xn) := {yn ∈ Xn : (xn, yn) ∈ T nε (QXY )}. For
brevity, we sometimes write T nε (QX) and T nε (QXY |xn)
as T nε and T nε (xn) respectively. Other notation generally
follows the book by Csiszár and Körner [31].

The total variation distance between two probability mass
functions P and Q with a common alphabet X is defined by

|P −Q| := 1

2

∑
x∈X
|P (x)−Q(x)|. (1)

By the definition of ε-typical set, we have that for any xn ∈
T nε (QX), |Txn −QX | ≤ ε

2 .

Fix distributions PX , QX ∈ P(X ). Then the relative en-
tropy and the Rényi divergence of order 1+s ∈ (0, 1)∪(1,∞)
are respectively defined as

D(PX‖QX) :=
∑
x∈X

PX(x) log
PX(x)

QX(x)
, and (2)

D1+s(PX‖QX) :=
1

s
log
∑
x∈X

PX(x)1+sQX(x)−s, (3)

and the conditional versions are respectively defined as

D(PY |X‖QY |X |PX) := D(PXPY |X‖PXQY |X) (4)
D1+s(PY |X‖QY |X |PX) := D1+s(PXPY |X‖PXQY |X), (5)

where throughout, log is to the natural base e and s ≥ −1.The
Rényi divergences of order 0, 1, and ∞ are respectively

defined as

D0(PX‖QX) := lim
s↓−1

D1+s(PX‖QX) (6)

= − log{QX(PX > 0)}; (7)
D1(PX‖QX) := lim

s→0
D1+s(PX‖QX) (8)

= D(PX‖QX); (9)
D∞(PX‖QX) := lim

s→∞
D1+s(PX‖QX) (10)

= log sup
x

PX(x)

QX(x)
. (11)

Hence a special case of the Rényi divergence is the usual
relative entropy.

Finally, we write f(n) ≤̇ g(n) if lim supn→∞
1
n log f(n)

g(n) ≤
0. In addition, f(n)

.
= g(n) means f(n) ≤̇ g(n) and g(n) ≤̇

f(n). We use o(1), δn, δ
′
n, δ
′′
n to denote generic sequences

tending to zero as n → ∞. For a ∈ R, [a]+ := max{a, 0}
denotes positive clipping.

C. Problem Formulation

We consider the channel resolvability problem illustrated in
Fig. 1. Given a channel PY |X and a target distribution QY ,
we wish to minimize the alphabet size of a random variable
Mn that is uniformly distributed over1 Mn := {1, . . . , enR}
(R is a positive number known as the rate), such that given
common randomness Cn, the output distribution

PY n|Cn (yn|cn) :=
1

|Mn|
∑

m∈Mn

n∏
i=1

PY |X (yi|fcn,i (m))

(12)
forms a good approximation to the product distribution QnY .
Here Cn is a random variable independent of the random
variable Mn. If we set Cn = {Xn (m)}m∈Mn

with Xn(m) ∼
PXn for all m ∈ Mn, and set fCn(m) = Xn(m), then the
random mapping is known as a conventional random code. If
the input distribution is i.i.d., i.e., PXn = PnX , then it is known
as an i.i.d. random code. In contrast to previous works on the
channel resolvability problem [2], here we employ the Rényi
divergence

D1+s(PY nCn‖QnY PCn) (13)

to measure the discrepancy between PY n and QnY .
Observe that

esD1+s(PY nCn‖Q
n
Y PCn )

= ECn
[∑
yn

∑
m

P (m)P (yn|fCn(m))

×
(∑

m P (m)P (yn|fCn(m))

Q(yn)

)s]
. (14)

Hence to guarantee that D1+s(PY nCn‖QnY PCn) is finite for
s ≥ 0, we assume PY |X=x � QY for all x ∈ X ; otherwise,
we can remove all the values x such that PY |X=x 6� QY
from X . However, it is worth noting that we do not need to
do so for −1 ≤ s < 0, since D1+s(PY nCn‖QnY PCn) is always

1For simplicity, we assume that enR and similar expressions (such as eR)
are integers.
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Fig. 1. Channel resolvability problem: Cn is independent of the message
Mn ∈Mn, and fCn is a random function (induced by Cn).

finite regardless of whether PY |X=x � QY for all x ∈ X or
PY |X=x 6� QY for some x ∈ X . Furthermore, for simplicity,
for the case s = −1 we assume PY |X=x � QY for some
x ∈ X .2 Hence D0(PY nCn‖QnY PCn) = 0 if the channel input
is fixed to xn.

Traditionally, the code Cn is deterministic and so the mea-
sure D1+s(PY n‖QnY ) is analyzed. However, in our setting,
especially in Section II-D, we are interested in questions con-
cerning the ensemble performance of random codes Cn. Hence,
we analyze the discrepancy measure D1+s(PY nCn‖QnY PCn),
which represents the conditional Rényi divergence between the
simulated and target distributions given the random code Cn.
Besides, we are also interested in another related discrepancy
measure3 ECn

[
D1+s(PY n|Cn‖QnY )

]
. Since for s = 0,

ECn
[
D1+s(PY n|Cn‖Q

n
Y )
]

= D1+s(PY nCn‖QnY PCn) (15)
= D(PY nCn‖QnY PCn), (16)

these measures are consistent with the one used in Parizi et
al.’s paper [12] (which is D(PY nCn‖QnY PCn)). Furthermore,
the three measures above satisfy the relationship

inf
f
D1+s(PY n‖QnY ) ≤ inf

fCn
ECn

[
D1+s(PY n|Cn‖Q

n
Y )
]

(17)

≤ inf
fCn

D1+s(PY nCn‖QnY PCn). (18)

In fact, for the achievability parts, we bound
inffCn D1+s(PY nCn‖QnY PCn) from above and for the
converse parts, we bound inff D1+s(PY n‖QnY ) from below.
This implies, by the chain of inequalities above, that our
results in this paper hold for all these three measures.

II. MAIN RESULTS

A. One-Shot/Finite Blocklength Bounds

We first consider the one-shot (i.e., blocklength n equal to
1) or finite blocklength version of the problem. For this case,
we provide several bounds in the following two lemmas, the
proofs of which are given in Appendix B. These one-shot
bounds will be used to derive asymptotic results in the next
subsection. We believe that similar techniques used to obtain
these bounds can be employed to derive second-order results,
just as in [26], [27].

Lemma 1 (One-Shot Bounds for Direct Part). Consider a
random mapping fC : M = {1, . . . , eR} → X . We set C =
{X (m)}m∈M with X (m) ,m ∈M drawn independently for
different m’s and according to a same distribution PX , and set

2Note that this condition is missing in the conference version [1].
3Here we would like to thank Prof. Masahito Hayashi for inspiring us to

consider the measure ECn
[
D1+s(PY n|Cn‖Q

n
Y )
]
.

fC (m) = X (m). This forms a random code. For this random
code, we have for s ∈ [0, 1] and any distribution QY ,

esD1+s(PY C‖QY PC)

≤ esD1+s(PXY ‖PXQY )−sR + esD1+s(PY ‖QY ) (19)

≤ 2esΓ1+s(PX ,PY |X ,QY ,R), (20)

where

Γ1+s

(
PX , PY |X , QY , R

)
:= max {D1+s (PXY ‖PXQY )−R,D1+s(PY ‖QY )} . (21)

In the other direction with s ∈ [0, 1), we have for any
distribution QY ,

e−sD1−s(PY C‖QY PC)

≥ 2−s
[
esR

∑
x,y

P (x)P 1−s (y|x)Qs (y) 1

{
P (y|x)

P (y)
≥ eR

}
+
∑
x,y

P (x)P (y|x)P−s (y)Qs (y) 1

{
P (y|x)

P (y)
< eR

}]
.

(22)

Remark 1. A similar result to (19) was shown by Hayashi and
Matsumoto [29, Thm. 14], but their result is a special case of
ours with the setting QY = PY .
Remark 2. Since in the proof we require Lemma 6 (see (93))
and the fact that x 7→ xs is a concave function (see (99)), the
proof does not apply to the case in which the Rényi divergence
is of order > 2.

Lemma 2 (One-Shot Bounds for Converse Part). For any
deterministic mapping f : M = {1, . . . , eR} → X and any
s ∈ [0,∞], we have for any distribution QY ,

esD1+s(PY ‖QY ) ≥ esΓ1+s(PX ,PY |X ,QY ,R) (23)

where

P (x) :=
∑
m

P (m) 1 {f (m) = x} (24)

P (y) :=
∑
x

P (x)P (y|x) (25)

respectively denote the distributions of X and Y induced
by the mapping f , and Γ1+s

(
PX , PY |X , QY , R

)
is given by

(21). In the other direction with s ∈ [0, 1), we have for any
distribution QY ,

e−sD1−s(PY ‖QY )

≤ esR
∑
x,y

P (x)P 1−s (y|x)Qs (y) 1

{
P (y|x)

P (y)
≥ eR

2

}
+
∑
x,y

P (x)P (y|x)P−s (y)Qs (y) 1

{
P (y|x)

P (y)
<

eR

2

}
(26)

where PX and PY are given in (24)-(25).

Remark 3. Note that the direct and converse parts for the 1+s
case only differ by a factor of 2. Similarly, the direct and
converse parts for the 1− s case differ by a factor of 2−s and
R is replaced by R− log 2.
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Remark 4. For any random mapping fC : M =
{1, . . . , eR} → X , observe that for s ∈ [0,∞],

esD1+s(PY C‖QY ×PC) = EC
∑
y

P 1+s (y)Qs (y) (27)

≥ min
c

∑
y

P 1+s (y|c)Qs (y) (28)

= min
c

esD1+s(PY |C=c‖QY ), (29)

and for s ∈ [0, 1),

e−sD1−s(PY C‖QY ×PC) ≤ max
c

e−sD1−s(PY |C=c‖QY ). (30)

Therefore, the one-shot bounds in (23) and (26) still hold for
any random codes.
Remark 5. By checking our proofs, it can be seen that Lemmas
1 and 2 hold not only for channels with finite (input and
output) alphabets, but also for channels with countably infinite
or continuous alphabets (e.g., Gaussian channels).

B. Asymptotic Expressions

We now consider the asymptotics of the Rényi divergence
as the blocklength n tends to infinity. The one-shot bounds
can be used to prove the following theorem, in which the
asymptotics of the Rényi divergences are characterized by
multi-letter expressions. The proof of this theorem is provided
in Appendix C.

Proposition 1 (Multi-letter Characterization). For any s ∈
[0, 1], we have

1

n
inf
fCn

D1+s(PY nCn‖QnY PCn) = Γ
(n)
1+s

(
PY |X , QY , R

)
+ o (1) ,

(31)

where

Γ
(n)
1+s

(
PY |X , QY , R

)
:= inf

PXn
max

{
1

n
D1+s (PXnY n‖PXnQnY )−R, 1

n
D1+s(PY n‖QnY )

}
. (32)

Furthermore, for any s ∈ (0, 1), and any fixed positive integer
k, we have

Γ
(n)
1−s

(
PY |X , QY , R

)
+ o (1)

≤ 1

n
inf
fCn

D1−s(PY nCn‖QnY PCn) (33)

≤ Γ
(k)
1−s

(
PY |X , QY , R

)
+ o (1) , (34)

where in (34), o (1) is a term depending on both n and k, and
vanishing as n→∞ for any fixed k, and

Γ
(n)
1−s

(
PY |X , QY , R

)
:= inf

PXn
max
t∈[0,s]

{
− t
s
R

− 1

ns
log

∑
xn,yn

P (xn, yn)P−t (yn|xn)P t−s (yn)Qs (yn)

}
.

(35)

The infima in (31) and (34) are achieved by a sequence of
random codes described in Lemma 1.

Remark 6. The converse part in (31) also holds for s ∈ (1,∞].
That is, for any s ∈ (1,∞],

1

n
inf
fCn

D1+s(PY nCn‖QnY PCn) ≥ Γ
(n)
1+s

(
PY |X , QY , R

)
+ o (1) .

(36)

Remark 7. Note that in (33) and (34), the lower bound and
the upper bounds differ only in the parameter of Γ

(·)
1−s.

Remark 8. Proposition 1 holds even when the alphabets are
not necessarily discrete.

Remark 9. From the definition of Γ
(n)
1+s

(
PY |X , QY , R

)
, we

have

Γ
(n)
1+s

(
PY |X , QY , R

)
= inf
PXn

max
t∈[0,s]

{
− t
s
R

+
1

ns
log

∑
xn,yn

P (xn, yn)P t (yn|xn)P s−t (yn)Q−s (yn)

}
.

(37)

Therefore, the notations Γ
(n)
1+s and Γ

(n)
1−s are consistent in the

sense that if we set s to be −s in Γ
(n)
1+s, we obtain Γ

(n)
1−s. That

is to say, Γ
(n)
1+s for s ∈ [0,∞] and Γ

(n)
1−s for s ∈ (0, 1) can be

unified as in (37) for s ∈ (−1,∞].

Next, the asymptotics of the Rényi divergence is character-
ized by single-letter expressions. We have an exact/tight result
when the Rényi parameter ∈ [1, 2] and upper and lower bounds
when the Rényi parameter ∈ (0, 1). This result is proved in
Appendix D.

Theorem 1 (Asymptotics of Rényi Divergence). For any s ∈
[0, 1], we have

lim
n→∞

1

n
inf
fCn

D1+s(PY nCn‖QnY PCn)

= min
P̃X

max

{∑
x

P̃X (x)D1+s

(
PY |X (·|x) ‖QY

)
−R,

max
P̃Y |X

η1+s

(
PY |X , QY , P̃X , P̃Y |X

)}
, (38)

where

η1+s

(
PY |X , QY , P̃X , P̃Y |X

)
:=

(
−1

s
− 1

)
D
(
P̃Y |X‖PY |X |P̃X

)
+D

(
P̃Y ‖QY

)
.

(39)

For any s ∈ (0, 1), we have

ΓLB
1−s

(
PY |X , QY , R

)
≤ lim inf

n→∞

1

n
inf
fCn

D1−s(PY nCn‖QnY PCn) (40)

≤ lim sup
n→∞

1

n
inf
fCn

D1−s(PY nCn‖QnY PCn) (41)

≤ ΓUB
1−s

(
PY |X , QY , R

)
, (42)
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where

ΓLB
1−s

(
PY |X , QY , R

)
:= min

P̃X ,P̃Y |X

max

{(
1

s
−1

)
D
(
P̃Y |X‖PY |X |P̃X

)
+D

(
P̃Y |X‖QY |P̃X

)
−R,(

1

s
− 1

)
D
(
P̃Y |X‖PY |X |P̃X

)
+D

(
P̃Y ‖QY

)}
,

(43)

ΓUB
1−s

(
PY |X , QY , R

)
:= min

P̃X ,P̃Y |X

max

{(
1

s
−1

)
D
(
P̃Y |X‖PY |X |P̃X

)
+D

(
P̃Y |X‖QY |P̃X

)
−R,

1

s
D
(
P̃Y |X‖PY |X |P̃X

)
+D

(
P̃Y ‖QY

)
− min
P̂Y |X :P̂Y |X◦P̃X=P̃Y |X◦P̃X

D
(
P̂Y |X‖PY |X |P̃X

)}
.

(44)

We also have

lim
n→∞

1

n
inf
fCn

D0(PY nCn‖QY nPCn) = 0. (45)

Furthermore, the infima in (38) and ΓUB
1−s

(
PY |X , QY , R

)
are

achieved by a sequence of constant composition codes.

Remark 10. Similar to Remark 6, the converse part in (38)
also holds for s ∈ (1,∞]. That is, for any s ∈ (1,∞],

lim inf
n→∞

1

n
inf
fCn

D1+s(PY nCn‖QnY PCn)

≥ min
P̃X

max

{∑
x

P̃X (x)D1+s

(
PY |X (·|x) ‖QY

)
−R,

max
P̃Y |X

η1+s

(
PY |X , QY , P̃X , P̃Y |X

)}
. (46)

Remark 11. The expression in (38) for s ∈ [0, 1] and
ΓLB

1−s
(
PY |X , QY , R

)
or ΓUB

1−s
(
PY |X , QY , R

)
for s ∈ (−1, 0)

may appear to be inconsistent; however, this is not true. It can
be easily shown that

∑
x

P̃X (x)D1+s

(
PY |X (·|x) ‖QY

)
= max
P̃Y |X

{(
−1

s
− 1

)
D
(
P̃Y |X‖PY |X |P̃X

)
+D

(
P̃Y |X‖QY |P̃X

)}
. (47)
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Fig. 2. Illustration of the Rényi divergence measure
1
n

inffCn D1+s(PY nCn‖QnY PCn ) for s ∈ [0, 1] in (38) and the
upper ΓUB

1−s
(
PY |X , QY , R

)
and lower bounds ΓLB

1−s
(
PY |X , QY , R

)
for

s ∈ (−1, 0) in (43) and (44), for the BSC Y = X ⊕ V, V ∼ Bern (0.2)
and the target distribution QY = Bern (0.5).

Hence we can rewrite (38) as

lim
n→∞

1

n
inf
fCn

D1+s(PY nCn‖QY nPCn)

= min
P̃X

max
P̃Y |X

max

{(
−1

s
−1

)
D
(
P̃Y |X‖PY |X |P̃X

)
+D

(
P̃Y |X‖QY |P̃X

)
−R,(

−1

s
− 1

)
D
(
P̃Y |X‖PY |X |P̃X

)
+D

(
P̃Y ‖QY

)}
.

(48)

In other words, the expression in (38) for s ∈ [0, 1] is
consistent with ΓLB

1−s
(
PY |X , QY , R

)
for s ∈ (−1, 0).

Note that ΓUB
1−s

(
PY |X , QY , R

)
and ΓLB

1−s
(
PY |X , QY , R

)
differ only in the second term in the maximization. Moreover,
when R is large enough, they are both equal to zero; see
Theorem 2 in the next subsection.

We numerically calculate the asymptotics of the normal-
ized Rényi divergence for binary symmetric channel (BSC)
Y = X ⊕ V, V ∼ Bern (0.2) and QY = Bern (0.5), and
display the result in Fig. 2. From this figure, we observe
that the normalized Rényi divergence decays as R increases,
and finally vanishes for large enough R. Moreover, the rate
at which the normalized Rényi divergence transitions from a
positive quantity to zero increases in s for the Rényi parameter
1 + s ∈ [1, 2], and remains the same when 1 + s ∈ (0, 1]. A
rigorous statement of this point will be provided in the next
subsection.

C. Rényi Resolvability

We now compute the Rényi resolvability, which is defined
as the minimum rate R of the input process {Xn(m) :
m ∈ Mn} to ensure that the unnormalized Rényi divergence
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D1+s(PY nCn‖QnY PCn) or the normalized Rényi divergence
1
nD1+s(PY nCn‖QnY PCn) vanishes. We assume that

P
(
PY |X , QY

)
:=
{
PX : PY |X ◦ PX = QY

}
6= ∅. (49)

Otherwise, there does not exist a code such that
1
nD1+s(PY nCn‖QnY PCn) vanishes. By Theorem 1 we
easily obtain the following result. The proof is provided in
Appendix E.

Theorem 2. (Rényi Resolvability) For s ∈ [−1, 1]∪ {∞}, we
have4

inf

{
R : inf

fCn
D1+s(PY nCn‖QnY PCn)→ 0

}
= inf

{
R :

1

n
inf
fCn

D1+s(PY nCn‖QnY PCn)→ 0

}
(50)

= R1+s

(
PY |X , QY

)
, (51)

where

R1+s

(
PY |X , QY

)

:=



min
PX∈P(PY |X ,QY )

∑
x PX (x)

×D1+s

(
PY |X (·|x) ‖QY

)
, s ∈ (0, 1] ∪ {∞}

min
PX∈P(PY |X ,QY )

D(PY |X‖QY |PX), s ∈ (−1, 0]

0, s = −1.

(52)

Remark 12. Similar to Remarks 6 and 10, the converse part in
(51) also holds for any s ∈ (1,∞). That is, for any s ∈ (1,∞),

inf

{
R : inf

fCn
D1+s(PY nCn‖QnY PCn)→ 0

}
≥ inf

{
R :

1

n
inf
fCn

D1+s(PY nCn‖QnY PCn)→ 0

}
(53)

≥ min
PX∈P(PY |X ,QY )

∑
x

PX (x)D1+s

(
PY |X (·|x) ‖QY

)
.

(54)

Remark 13. The Rényi resolvabilities for the normalized or
unnormalized Rényi divergence are the same.
Remark 14. Note that for the case s ∈ (−1, 0],
R1+s

(
PY |X , QY

)
can be also expressed as

minPX∈P(PY |X ,QY ) I(X;Y ) where (X,Y ) ∼ PXPY |X ,
since PX ∈ P

(
PY |X , QY

)
.

Remark 15. Since P
(
PY |X , QY

)
is nonempty,

R1+s

(
PY |X , QY

)
is finite. Hence it can be shown

lims↓0R1+s

(
PY |X , QY

)
= R1

(
PY |X , QY

)
(by using

the continuity of Rényi divergence [35]). Hence
R1+s

(
PY |X , QY

)
is continuous in s for s ∈ (−1,∞].

See the bottom subfigure of Fig. 3.

Remark 16. This result for the case s = 0 and the normalized
divergence (i.e., the normalized relative entropy) was first
shown by Wyner [8] for stationary memoryless channels,
and was extended to general channels by Han and Verdú

4We thank an anonymous reviewer for providing the achievability proof for
the case s =∞ in Appendix E-B2. Similar proof ideas can be found in [16],
[32]–[34].

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

1+s=2
1+s=1.5
1+s∈(0,1]

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

s

R
en

yi
 R

es
ol

va
bi

lit
y 

Fig. 3. Illustration of the Rényi resolvability in (51) for the BSC Y =
X ⊕ V, V ∼ Bern (p) and QY = Bern (0.5). For the bottom subfigure,
p = 0.2.

[2]. Hence our result for the normalized divergence is an
extension of theirs to the Rényi divergence D1+s of all orders
s ∈ [−1, 1]∪{∞}. For the normalized divergence, our results
for s ∈ (0, 1] ∪ {∞} and converse parts for s ∈ (−1, 0) are
new. The case s = 0 and the unnormalized divergence (i.e.,
the unnormalized relative entropy case) has been shown in
other works, such as those by Hayashi [3], [4], which also
imply the achievability result part for s ∈ (−1, 0) (since the
approximation measure D1+s for s ∈ (−1, 0) is weaker than
D1). By Pinsker’s inequality for the Rényi divergence [35], the
resolvability result under the TV distance measure [2] implies
the converse for s ∈ (−1, 0]. For the unnormalized divergence,
our results for s ∈ (0, 1]∪{∞} are new. All the results above
are summarized in Table I.

Remark 17. The first clause in (52) is the
minimization of an expectation of Rényi divergences∑
x PX (x)D1+s

(
PY |X (·|x) ‖QY

)
but it is not (and in

general smaller than) the conventional conditional Rényi
divergence D1+s (PXY ‖PXQY ) (see Verdú [36] or Fong
and Tan [37]). An optimal i.i.d. code can achieve a rate



8

TABLE I
SUMMARY OF RESULTS FOR NORMALIZED AND UNNORMALIZED RÉNYI RESOLVABILITY WITH DIFFERENT PARAMETERS.

Cases Results

Normalized Divergence

s = 0 Wyner [8] and Han-Verdú [2]
s ∈ (−1, 0) Achievability: Wyner [8] and Han-Verdú [2]; Converse: Theorem 2

s ∈ (0, 1] ∪ {∞} Theorem 2

Unnormalized Divergence s = 0 Hayashi [3], [4]
s ∈ (−1, 0) Combining Pinsker’s inequality [35] and Han-Verdú [2]

s ∈ (0, 1] ∪ {∞} Theorem 2

equal to the minimization of conventional conditional Rényi
divergence D1+s(PXY ‖PXQY ) [29, Thm. 14], while an
optimal constant composition code for the normalized Rényi
divergence or an optimal typical set code (a code with
channel input distributed according to the target distribution
QnX but truncated to an appropriate typical set) for both the
unnormalized and normalized Rényi divergences can achieve
a better (smaller) rate equal to the first clause in (52). This
shows that the expectation of Rényi divergences also admits
an operational interpretation as the minimum rate needed to
drive the Rényi divergence to zero when its parameter is ≥ 1.
Besides, a similar definition for the conditional Rényi entropy
can be found in [38], [39]. In addition, observe that any
constant composition code can be approximated arbitrarily
well by a typical set code by setting the typical set parameter
ε arbitrarily close to 0. But conversely, compared to typical
set codes, constant composition codes are easier to analyze.
This simplifies the proofs of our results significantly (e.g.,
that of Theorem 1). Furthermore, for constant composition
codes, the codewords are each independently drawn from the
uniform distribution on a type class. It is worth noting that
in Han and Verdú s paper [2, Example 1], the extremal input
process that results in the worst (largest) resolvability is also
the uniform distribution on a type class.

The result in Theorem 2 for the BSC Y = X ⊕ V, V ∼
Bern (p) and QY = Bern (0.5) is illustrated in Fig. 3. For this
case,

R1+s

(
PY |X , QY

)
=


log (2 max {p, p}) s =∞
1
s log

(
p1+s2s + p1+s2s

)
s ∈ (0, 1]

1−H2 (p) s = (−1, 0]

0 s = −1

. (55)

D. Exponential Behavior

We now consider the exponent of D1+s(PY nCn‖QnY PCn)
when the codebook is generated in an i.i.d. fashion. In this
case, we can characterize the optimal exponent for this ensem-
ble exactly. The proof of the following theorem is provided in
Appendix F.

Theorem 3 (Exponential Behavior of i.i.d. Random Codes).
Let Cn = {Xn (m)}m∈Mn

with Xn (m) ∼ PnX ,m ∈ Mn,
and set fCn (m) = Xn (m), where PX ∈ P

(
PY |X , QY

)
. For

this i.i.d. code, if the rate R satisfies for s ∈ (0, 1],

R > D1+s (PXY ‖PX ×QY ) (56)

and for s ∈ (−1, 0],

R > D(PXY ‖PX ×QY ) = I(X;Y ), (57)

then we have

lim
n→∞

− 1

n
logD1+s(PY nCn‖QnY PCn) = Eiid

(
PX , PY |X , QY

)
,

(58)
where

Eiid

(
PX , PY |X , QY

)
:=


max
t∈[s,1]

t (R−D1+t (PXY ‖PX ×QY )) s ∈ (0, 1]

max
t∈[0,1]

t (R−D1+t (PXY ‖PX ×QY )) s ∈ (−1, 0]
.

(59)

Remark 18. By checking the proof, we can obtain that for
any s ∈ (1,∞], if R > D1+s (PXY ‖PX ×QY ), then the
i.i.d. code above satisfies

lim inf
n→∞

− 1

n
logD1+s(PY nCn‖QnY PCn)

≤ sup
t≥1

t (R−D1+t (PXY ‖PX ×QY )) . (60)

Remark 19. Similar to Remark 5, by checking our proofs, it
can be seen that the achievability part in this theorem

lim
n→∞

− 1

n
logD1+s(PY nCn‖QnY PCn) ≥ Eiid

(
PX , PY |X , QY

)
,

(61)
holds not only for channels with finite (input and output)
alphabets, but also for channels with countably infinite or
continuous alphabets (e.g., Gaussian channels). Hence The-
orem 3 gives an exponential achievability result for channel
resolvability problems with countable or continuous alphabets.

Remark 20. Observe that the exponent of i.i.d. random codes
cannot be negative (see Lemma 1) and the exponent is non-
decreasing in R. Hence for the i.i.d. code above with any rate
R > 0, we have

lim
n→∞

− 1

n
logD1+s(PY nCn‖QnY PCn)

= Ẽiid

(
PX , PY |X , QY

)
, (62)

where

Ẽiid

(
PX , PY |X , QY

)
:=


[

max
t∈[s,1]

t (R−D1+t (PXY ‖PX ×QY ))

]+

s ∈ (0, 1]

max
t∈[0,1]

t (R−D1+t (PXY ‖PX ×QY )) s ∈ (−1, 0]
.

(63)
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Fig. 4. Illustration of the exponent Ẽiid

(
PX , PY |X , QY

)
in (63) for the en-

semble of i.i.d. random codes and the lower bound [Ets
(
PX , PY |X , QY

)
]+

in (66) on the exponent for the ensemble of typical set codes for Rényi
parameter 1 + s ∈ (0, 2] for the BSC Y = X ⊕ V, V ∼ Bern (0.2).
For the top subfigure, QY = Bern (0.5), and for the bottom subfigure,
QY = Bern (0.23).

The result for s = 0 (relative entropy) can be found in
Parizi, Telatar and Merhav’s paper [12]. The results for the
other cases s ∈ [−1, 1] \ {0} are new. The result of Theorem
3 for a BSC is illustrated in Fig. 4.

Furthermore, for general codes, we show that the Rényi
divergence decays at least exponentially fast, as long as the
code rate is larger than the Rényi resolvability given in the
previous subsection. The proof is provided in Appendix G.

Theorem 4 (General Lower Bound on the Rényi Divergence
Exponent). Let s ∈ [−1, 1]. If

R > R1+s

(
PY |X , QY

)
, (64)

then we have

lim inf
n→∞

− 1

n
log inf

fCn
(D1+s(PY nCn‖QnY PCn))

≥ max
PX∈P(PY |X ,QY )

max
{
Ẽiid

(
PX , PY |X , QY

)
,

Ets

(
PX , PY |X , QY

)}
, (65)

where Ẽiid

(
PX , PY |X , QY

)
is defined in (63), and5

Ets

(
PX , PY |X , QY

)
:=

supε∈(0,1] min
{
ε2Pmin

3 , θ (s, ε, PX)
}

s ∈ (0, 1]

supε∈(0,1] min
{
ε2Pmin

3 , θ (0, ε, PX)
}

s ∈ (−1, 0]

(66)

with Pmin := minx PX (x), and

θ (s, ε, PX)

:= sup
t∈[s,1]

t
(
R− (1 + ε)

∑
x

PX (x)D1+t

(
PY |X (·|x) ‖QY

))
.

(67)

Remark 21. From Theorem 4 and Remark 20, it can be easily
observed that for s ∈ (0, 1], if R1+s

(
PY |X , QY

)
< R <

minPX∈P(PY |X ,QY )D1+s (PXY ‖PX ×QY ) , then

max
PX∈P(PY |X ,QY )

Ets

(
PX , PY |X , QY

)
> max
PX∈P(PY |X ,QY )

Ẽiid

(
PX , PY |X , QY

)
(68)

= 0. (69)

For this case, the optimal Rényi divergence of i.i.d. codes
increases almost linearly as n → ∞. This can be observed
from the one-shot bounds (Lemmas 1 and 2). Hence i.i.d.
codes are, in general, not optimal in achieving the best ex-
ponent for s ∈ (0, 1]. This point is unsurprising given Remark
17, since as stated in Remark 17, optimal i.i.d. codes are
not optimal in achieving even the Rényi resolvability. Hence,
optimal i.i.d. codes are certainly not optimal in achieving the
Rényi divergence exponent. This point can be seen from Fig.
4.

Remark 22. The optimal exponent of constant composition
codes [31] has been studied by Parizi, Telatar, and Merhav
[12], but different from our case, they consider the relative
entropy between the channel output and the corresponding
expected version (over the codebook) as the channel resolv-
ability. Note that according to [12, Equation (13)], even in the
s = 0 case, this quantity is weaker than the Rényi divergence
considered by us. They obtained ensemble tight results for
constant composition and i.i.d. codes (and applied these results
to the wiretap channel) but we are only able to do the same
for the simpler i.i.d. codes.

III. APPLICATION TO THE WIRETAP CHANNEL

We apply the preceding results to the wiretap channel [40],
[30]. In [13], Hou and Kramer proposed a new security
measure, termed effective secrecy, for wiretap channels by
exploiting the unnormalized KL divergence to quantify not
only (the wiretapper’s) confusion but also stealth. In this
section, we generalize Hou and Kramer’s result to a general-
ized divergence measure—the Rényi divergence. We provide a

5Here the subscript of Ets refers to typical set. The achievability scheme
for this exponent is one with channel input following a truncated version of
the target distribution QnY to some typical set; hence we term this typical set
code.
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complete characterization of the secrecy capacity region under
this new and generalized leakage measure.

Consider a discrete memoryless wiretap channel PY Z|X ,
and two messages (M0,M1) that are uniformly distributed
over M0 := {1, . . . , enR0} and M1 := {1, . . . , enR1}
respectively. A sender wants to transmit the pair (M0,M1)
to a legitimate user, and, at the same time, ensure that M1 as
almost independent from the wiretapper’s observation Zn.

Definition 1. An (n,R0, R1) secrecy code is defined by two
stochastic mappings PXn|M0M1

: M0 × M1 → Xn and
P
M̂0M̂1|Y n : Yn →M0 ×M1.

Given a target distribution QZ , we wish to maximize
the alphabet size (or rate) of M1 such that the distribution
PM1Zn induced by the code is approximately equal to the
target distribution PM1

QnZ and M1 can be decoded correctly
asymptotically.

Definition 2. The tuple (R0, R1) is (QZ , 1 + s)-achievable
if there exists a sequence of (n,R0, R1) secrecy codes with
induced distribution P such that

1) Error constraint:

lim
n→∞

P
(

(M0,M1) 6= (M̂0, M̂1)
)

= 0; (70)

2) Secrecy constraint (generalized effective secrecy):

lim
n→∞

D1+s(PM1Zn‖PM1
QnZ) = 0. (71)

It is worth noting that (71) is a generalized version of the
notion of effective secrecy considered in [13]. Here we assume
QZ satisfies P

(
PZ|X , QZ

)
6= ∅ (P

(
PZ|X , QZ

)
is defined in

(49)); otherwise, (71) cannot be satisfied by any secrecy code.

Definition 3. The (QZ , 1 + s)-admissible region is defined as

R1+s(QZ) := Closure {QZ-achievable (R0, R1)} . (72)

It is worth noting that our secrecy metric (even when
s = 0) is stronger than the unnormalized relative entropy
D(PM1Zn‖PM1

PZn) (or I (M1;Zn)) considered in Bloch and
Laneman [10], since

D(PM1Zn‖PM1
QnZ) = I (M1;Zn) +D(PZn‖QnZ) (73)

≥ I (M1;Zn) . (74)

For our secrecy metric, in addition to requiring that M1 and
Zn are approximately independent, we also require that the
wiretapper’s observation Zn is close to the product distribution
QnZ . This is similar to Hou and Kramer’s work [13] and
Csiszár and Narayan’s work [41, Eqn. (6)], but we consider a
continuum of secrecy measures indexed by s ∈ [−1, 1].

The interpretation of our secrecy measure with s = 0 can be
found in [13], where the authors interpreted I(M1;Zn) in (74)
as a measure of “non-confusion” and D(PZn‖QnZ) in (73) as a
measure of “non-stealth”. Under this interpretation, we set QnZ
to be the distribution of the signal that the wiretapper observes
if the sender is not sending useful information. Hence if the
secrecy constraint (71) is satisfied then we can say that useful
information is being transmitted stealthily.

A. Main Result for Deterministic Encoders

Before solving the problem, in this subsection we consider
a simpler version of the problem—namely, a system with a
deterministic encoder. That is, the encoder is restricted to a
deterministic (non-stochastic) function f :M0 ×M1 → Xn
(denote the (QZ , 1 + s)-admissible region for this case as
Rdet

1+s(QZ)). Using Theorem 2, we obtain the following theo-
rem. The detailed proof is provided in Appendix H.

Theorem 5. For s ∈ [−1, 1] ∪ {∞}, we have

Rdet
1+s(QZ)

=
⋃

PX∈P(PZ|X ,QZ)

{
(R0, R1) : R0 +R1 ≤ I (X;Y )

R0 ≥ R̃1+s

(
PX , PZ|X , QZ

) }
,

(75)

where R̃1+s

(
PX , PZ|X , QZ

)
is defined as

R̃1+s

(
PX , PZ|X , QZ

)
:=


∑
x PX (x)D1+s

(
PZ|X (·|x) ‖QZ

)
s ∈ (0, 1] ∪ {∞}

D(PZ|X‖QZ |PX) s ∈ (−1, 0]

0 s = −1

.

(76)

Remark 23. This theorem provides an expression for the
admissible rate region for the case with no extra randomness
(i.e., the case with deterministic encoders). Related works
on determining the amount of randomness needed to realize
stochastic encoding include Watanabe and Oohama’s work
[42] and Chou, Vellambi, Bloch, and Kliewer’s work [28].
Hence studying the deterministic encoder case is of indepen-
dent interest.

Remark 24. Similar to the exponential behavior for the Rényi
resolvability problem, it is easy to see that if (R0, R1) is an
interior point of Rdet

1+s(QZ), then the Rényi divergence for the
wiretap channel with deterministic encoder also decays at least
exponetially fast.

The result of Theorem 5 for the binary wiretap channel
is illustrated in Fig. 5. From the figure (or the theorem),
we observe that for the problem with deterministic encoder,
the achievability of a rate pair (R0, R1) does not necessarily
imply the achievability of a rate pair (R′0, R

′
1) such that

R′0 ≤ R0, R
′
1 ≤ R1. This is because to meet the resolvability

constraint, a certain amount of local randomness (besides
the secret message M1) at the sender is needed; this local
randomness only comes from the non-secret message M0

(since the encoder is a deterministic function of M0,M1).
Therefore, a rate less than R0 may not satisfy the resolvability
constraint.

B. Main Result for Stochastic Encoders

If a stochastic encoder is allowed, we can add a virtual
memoryless channel PnX|W between the deterministic encoder
and the channel. Then we have the following achievability
result.
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Fig. 5. Illustration of the admissible region for case of using a deterministic
encoder and with Rényi parameter 1 + s = 2 in (75) for the binary wiretap
channel.

Proposition 2. For s ∈ [−1, 1] ∪ {∞}, we have

R1+s(QZ)

⊇
⋃
PXW :

PW∈P(PZ|W ,QZ)

{
(R0, R1) : R0 +R1 ≤ I (W ;Y ) ,

R0 ≥ R̃1+s

(
PW , PZ|W , QZ

) }
,

(77)

where R̃1+s

(
PW , PZ|W , QZ

)
is given by (76).

However, adding a memoryless channel is not optimal in
general. In the following theorem, we completely characterize
the admissible region, and show that adding a channel with
memory between the encoder and channel is optimal. The
proof of this theorem is given in Appendix I.

Theorem 6. For s ∈ [−1, 1] ∪ {∞}, we have

R1+s(QZ)

=
⋃
P̃XW :

P̃X∈P(PZ|X ,QZ)

{
(R0, R1) : R0 +R1 ≤ IP̃ (W ;Y )

R0 ≥ R̃′1+s

(
P̃W |X P̃X , PZ|X , QZ

) }

(78)

=
⋃
P̃XW :

P̃X∈P(PZ|X ,QZ)


(R0, R1) : R0 +R1 ≤ IP̃ (W ;Y )
R1 ≤ IP̃ (W ;Y )

−R̃′1+s

(
P̃W |X P̃X , PZ|X , QZ

)
 ,

(79)

where R̃′1+s

(
P̃W |X P̃X , PZ|X , QZ

)
is given by

R̃′1+s

(
P̃W |X P̃X , PZ|X , QZ

)

:=



max
P̃Z|WX

{
− 1+s

s D(P̃Z|WX‖PZ|X |P̃XW )

+D(P̃Z|W ‖QZ |P̃W )
}
, s ∈ (0, 1]

∪{∞}
IP̃ (W ;Z) , s ∈ (−1, 0]

0, s = −1

.

(80)

Here IP̃ (W ;Y ) in (78) and (79) and IP̃ (W ;Z) in (80)
are the mutual informations evaluated under the distribution
P̃WXPY Z|X . Furthermore, the ranges of W in (78) and (79)
may be assumed to satisfy |W| ≤ |X |+ 1.

Remark 25. It is easy to show that if R is an interior point
of R1+s(QZ), then the Rényi divergence for the wiretap
channel problem with stochastic encoder also decays at least
exponentially fast.
Remark 26. We can define the effective secrecy capacity with
the leakage measured by the Rényi divergence with parameter
1+s and with target output distribution QZ as C1+s (QZ) :=
max(R0,R1)∈R1+s(QZ)R1. The special case with s = 0 was
defined by Hou and Kramer [13], and they showed

C1 (QZ) = max
P̃XW :

P̃X∈P(PZ|X ,QZ)

{
IP̃ (W ;Y )− IP̃ (W ;Z)

}
.

(81)
For the general case s ∈ [−1, 1] ∪ {∞}, by Theorem 6, we
have

C1+s (QZ) =

max
P̃XW :

P̃X∈P(PZ|X ,QZ)

{
IP̃ (W ;Y )− R̃′1+s(P̃W |X P̃X , PZ|X , QZ)

}
,

(82)

which has a similar form as the conventional secrecy capacity
(with secrecy measured by the normalized mutual information
1
nI (M ;Zn) or unnormalized mutual information I (M ;Zn))
given in [3], [4], [30],

CMI = max
PWX

{I (W ;Y )− I (W ;Z)} . (83)

Note that CMI ≥ maxQZ C1+s(QZ) for s ∈ (0, 1] and CMI =
maxQZ C1+s(QZ) for s ∈ (−1, 0]. This is because our secrecy
measure is stronger than the conventional one. Furthermore,
when considering the simultaneous transmission of secret and
non-secret messages, the optimal rate region [43] [30, Cor. 2]6

is

RMI =
⋃

PU|WPW |XPX :

I(U ;Y )≤I(U ;Z)

{
(R0, R1) : R0 +R1 ≤ I (W ;Y ) ,
R1 ≤ I (W ;Y |U)− I (W ;Z|U)

}
,

(84)

which is different from the optimal region R1+s given by
us. Obviously

⋃
QZ
R1+s (QZ) ⊆ RMI. Xu and Chen [43]

6Note that here we refer to Corollary 2 of [30], in which the common
message rate is set to zero and the R1 and Re there respectively correspond
to the R0 +R1 and R1 of this paper. Although the setting in Corollary 2 of
[30] does not implicitly indicate the secret and non-secret parts, it is easy to
show that if divide the total rate into these two parts, the admissible region
does not change.
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and Csiszár and Körner [30, Cor. 2] derived the optimal
region RMI by using a two-layered code, but for our case,
a single-layered code is sufficient to achieve the optimality; a
similar conclusion for the s = 0 case can be drawn from the
results in [44]. This is because our secrecy measure requires
that M1 and Zn are approximately independent (similarly to
the conventional setting) but also requires the wiretapper’s
observation Zn to approximately follow a target memoryless
distribution QnZ (soft-covering the space according to the target
distribution). We provide an intuitive interpretation for why
a two-layered code is not necessary to achieve the optimal
region for our problem. For simplicity, we consider the case
with the Rényi parameter equal to 1; If we apply a two-
layered code to our setting then to guarantee the soft-covering
property (under the TV distance measure, which is weaker
than the Rényi divergence), the non-secret message for each
layer has to have rates that are appropriately lower bounded
as follows: R(1)

0 > I (U ;Z) , R
(1)
0 + R

(2)
0 > I (UW ;Z) for

some PUW |X and PX ∈ P
(
PZ|X , QZ

)
[45], where R

(1)
0

and R(2)
0 respectively denote the transmission rate of the non-

secret message for the first and second layer. On the other
hand, the total rate is still constrained by I (W ;Y ), i.e.,
R

(1)
0 +R

(2)
0 +R1 ≤ I (W ;Y ). Hence the achievable rate pair

(R
(1)
0 +R

(2)
0 , R1) is still in R1(PZ). Note that this is true even

for the TV distance. As a result, it must also be true for the
stronger distance measures such as relative entropy or Rényi
divergence.

Remark 27. Both the coding scheme in this paper and that in
[30, Cor. 2] require stochastic encoding to achieve the optimal
rate regions. The amount of randomness needed to realize the
stochastic encoding for the setting similar to that in [30, Cor. 2]
was studied in [42], and the case with only an asymptotically
vanishing rate of extra randomness available but with non-
uniform sources to be transmitted was studied in [28]. For our
setting, the admissible rate region for the case with no extra
randomness (i.e., the case with deterministic encoders) was
provided in Subsection III-A.

Remark 28. The semantic-security capacity CSS (with the
secrecy measure7 maxm1

D
(
PZn|M1=m1

‖QnZ
)
→ 0), studied

in [46], is proven to be equal to CMI. Obviously, this secrecy
measure is not weaker than the one considered in this paper
(when the Rényi divergence parameter is equal to 1). In fact,
by a simple expurgation argument, it is easy to show that
the secrecy measure of D

(
PZn|M1

‖QnZ |PM1

)
→ 0 implies

semantic secrecy (see for example [12, Appendix A] or [11,
footnote on p. 6825]. So these two measures are equivalent.
In [46] Goldfeld, Cuff, and Permuter focused only on the
secrecy capacity CSS, i.e., the maximum transmission rate of
the secret message without a constraint on non-secret message
required by the legitimate user. Here we consider a more
general scenario: the simultaneous transmission of the secret
and non-secret messages. By the above-mentioned expurgation
argument, we can obtain a complete characterization of the

7This measure comes from [46, Thm. 2], but is different from and
stronger than the original one maxPM∈P(M) I (M ;Zn), also considered
by Goldfeld, Cuff, and Permuter in [46]. However, both measures result in
the same secrecy capacity [46].

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

Rate R0

R
at

e 
R

1

Fig. 6. Illustration of the admissible region for case of using a stochastic
encoder and with Rényi parameter 1 + s = 2 in (78) or (79) for the binary
wiretap channel.

admissible region of (R0, R1) under the secrecy constraint
maxm1

D1+s

(
PZn|M1=m1

‖QZn
)
→ 0, s ∈ [−1, 1] ∪ {∞},

which turns out to be the same as R1+s(QZ).

The result of Theorem 6 for the binary wiretap channel Y =
X ⊕ V1, V1 ∼ Bern (0.1) and Z = X ⊕ V2, V2 ∼ Bern (0.3)
with target distribution QZ = Bern (0.5) and s = 1 is illus-
trated in Fig. 6. From the figure, we observe that different from
the deterministic encoder case, for this case the achievability
of a rate pair (R0, R1) indeed implies the achievability of a
rate pair (R′0, R

′
1) such that R′0 ≤ R0, R

′
1 ≤ R1.

IV. CONCLUSION AND FUTURE WORK

In this paper, we studied a generalized version of channel
resolvability problem, in which the (normalized or unnor-
malized) Rényi divergence is used to measure the level of
approximation. We also applied these results to the wiretap
channel.

Our results generalize or extend several classical and recent
results. Our resolvability results extend those by Han and
Verdú [2] and by Hayashi [3], [4] as we consider Rényi
divergences with orders in [0, 2] ∪ {∞}. Our results for the
wiretap channel generalize those by Hou and Kramer [13],
and extend those by Wyner [40] and Csiszár and Körner [30],
as we measure the effective secrecy (or the leakage) using
the Rényi divergence. As discussed in Remark 28, our result
on the wiretap channel is also related to the semantic-security
capacity studied by Golfeld, Cuff, and Permuter [46].

In the future, we plan to explore various closely related
problems to the one contained herein.

1) Rényi common information: Wyner [8] defined the com-
mon information between two sources is the minimum
rate of commonness needed to simulate these two source
in a distributed fashion. In his original work, the nor-
malized relative entropy was used to measure the level
of approximation. We can generalize his problem by
replacing the relative entropy with the Rényi divergence,
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and define the minimum rate for this case as Rényi com-
mon information. In fact, a complete characterization of
the Rényi common information for order ∈ [0, 1] and
bounds for order ∈ (1, 2]∪{∞} were provided by us in
[16], [20], [21]. Furthermore, the equivalence between
the Rényi common information with order ∞ and the
exact common information was given in [16].

2) Distributed channel synthesis under the Rényi diver-
gence: The coordination problem or distributed channel
synthesis problem was studied by Cuff, Permuter, and
Cover [9], [47]. In this problem, an observer (encoder)
of a source sequence describes the sequence to a distant
random number generator (decoder) that produces an-
other sequence. What is the minimum rate of description
needed to achieve a joint distribution that is statistically
indistinguishable, under the TV distance, from the dis-
tribution induced by a given channel? For this problem,
Cuff [9] provided a complete characterization of the
minimum rate. We can enhance the level of coordination
by replacing the TV distance measure with the Rényi
divergence. For this enhanced version of the problem,
we are interested in characterizing the corresponding
admissible rate region. A variant of the infinity-order
case was used to study exact channel synthesis by us in
[34].

APPENDIX A
PRELIMINARIES FOR THE PROOFS

Lemma 3. 1) Assume X is a finite set. Then for any
PX ∈ P (X ), one can find a sequence of types T (n)

X ∈
P(n) (X ) , n ∈ N such that

∣∣PX − T
(n)
X

∣∣ ≤ |X |
2n as

n→∞.
2) Assume X ,Y are finite sets. Then for any sequence

of types T
(n)
X ∈ P(n) (X ) , n ∈ N and any PY |X ∈

P (Y|X ), one can find a sequence of conditional types
V

(n)
Y |X ∈ P

(n)
(
Y|T (n)

X

)
, n ∈ N such that

∣∣T (n)
X PY |X −

T
(n)
X V

(n)
Y |X

∣∣ ≤ |X ||Y|2n as n→∞.

Statement 1) is exactly [48, Lem. 2.1.2]. The proof of
statement 2) follows similarly so its proof is omitted.

We also have the following property concerning the opti-
mization over the set of types and conditional types. To save
space, the proof is omitted.

Lemma 4. 1) Assume X is a finite set. Then for any con-
tinuous (under TV distance) function f : P (X ) → R,
we have8

lim
n→∞

min
PX∈P(n)(X )

f (PX) = min
PX∈P(X )

f (PX) . (85)

2) Assume X ,Y are finite sets. Then for any continuous
function f : P (X × Y)→ R and any sequence of types

8Since P (X ) and P(n) (X ) are compact (closed and bounded) and
f is continuous on P (X ), the infima of infPX∈P(X ) f (PX) and
infPX∈P(n)(X ) f (PX) are actually minima.

T
(n)
X ∈ P(n) (X ) , n ∈ N, we have

min
PY |X∈P(n)(Y|T (n)

X )

f
(
T

(n)
X PY |X

)
= min
PY |X∈P(Y|X )

f
(
T

(n)
X PY |X

)
+ o (1) . (86)

Remark 29. We have

lim
n→∞

min
PY |X∈P(n)(Y|T (n)

X )

f
(
T

(n)
X PY |X

)
= lim
n→∞

min
PY |X∈P(Y|X )

f
(
T

(n)
X PY |X

)
(87)

if either one of the limits above exists.

Lemma 5. For any joint type TY VX|Y ∈ P(n) (X × Y) and
any distribution PXn ∈ P (Xn) (not restricted to be i.i.d.),
we have∑
yn∈TTY

PXn
(
TVX|Y (yn)

)
= enH(VY |X |TX)+nδnPXn(TTX ),

(88)
where TXVY |X = TY VX|Y .

The proof of Lemma 5 follows from a straightforward
application of the method of types [31] and so is omitted.

Lemma 6. [49, Problem 4.15(f)] Assume {ai} are non-
negative real numbers. Then for p ≥ 1, we have

∑
i

api ≤

(∑
i

ai

)p
, (89)

and for 0 < p ≤ 1, we have

∑
i

api ≥

(∑
i

ai

)p
. (90)

Note that (
∑
i a
p
i )

1/p is a norm for p ≥ 1, but not for
0 < p < 1.

APPENDIX B
PROOFS OF LEMMAS 1 AND 2

A. Direct Part for Case 1 + s with s ∈ [0, 1]

Observe that

esD1+s(PY C‖QY ×PC)

= EC
∑
y

P 1+s (y|C)Q−s (y) (91)

= EC
∑
y

∑
m

P (m)P (y|fC (m))

(
P (m)P (y|fC (m))

+
∑
m′ 6=m

P (m′)P (y|fC (m′))

)s
Q−s (y) . (92)

Then using Lemma 6, we get

esD1+s(PY C‖QY ×PC) ≤ L1 + L2, (93)
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where

L1 :=
∑
y

∑
m

P 1+s (m)EC
[
P 1+s (y|fC (m))

]
Q−s (y)

(94)

L2 := EC
∑
y

∑
m

P (m)P (y|fC (m))

×

 ∑
m′ 6=m

P (m′)P (y|fC (m′))

s

Q−s (y) . (95)

Furthermore, L1 and L2 can be respectively expressed and
upper bounded as follows.

L1 =
∑
y

∑
m

P 1+s (m)
∑
x

P (x)P 1+s (y|x)Q−s (y) (96)

= elog
∑
x,y P (x)P 1+s(y|x)Q−s(y)−sR, (97)

and

L2 =
∑
y

∑
m

P (m)EC [P (y|fC (m))]

× EC

 ∑
m′ 6=m

P (m′)P (y|fC (m′))

sQ−s (y)

(98)

≤
∑
y

∑
m

P (m)EC [P (y|fC (m))]

×

 ∑
m′ 6=m

P (m′)EC [P (y|fC (m′))]

s

Q−s (y)

(99)

=
∑
y

∑
m

P (m)
∑
x

P (x)P (y|x)

×

 ∑
m′ 6=m

P (m′)
∑
x

P (x)P (y|x)

s

Q−s (y)

(100)

≤
∑
y

P 1+s (y)Q−s (y) (101)

= esD1+s(PY ‖QY ). (102)

where (98) follows since fC (m) and fC (m′) are independent
for m 6= m′, and (99) follows since x 7→ xs is a concave
function.

Combining (92), (97) and (102) gives us

esD1+s(PY C‖QY ×PC)

≤ elog
∑
x,y P (x)P 1+s(y|x)Q−s(y)−sR + esD1+s(PY ‖QY ) (103)

≤ 2 max{elog
∑
x,y P (x)P 1+s(y|x)Q−s(y)−sR, esD1+s(PY ‖QY )}

(104)

= 2esΓ1+s(PY |X ,QY ,R). (105)

B. Direct Part for Case 1− s with s ∈ (0, 1)

For the random code given in Lemma 1, we have

e−sD1−s(PY C‖QY ×PC)

= EC
∑
y

P 1−s (y|C)Qs (y) (106)

= EC
∑
y

∑
m

P (m)P (y|fC (m))

×

(∑
m

P (m)P (y|fC (m))

)−s
Qs (y) (107)

= EC
∑
y

∑
m

P (m)P (y|fC (m))
(
P (m)P (y|fC (m))

+
∑
m′ 6=m

P (m′)P (y|fC (m′))
)−s

Qs (y) (108)

≥
∑
y

∑
m

P (m)EC
[
P (y|fC (m))

(
P (m)P (y|fC (m))

+
∑
m′ 6=m

P (m′)EC [P (y|fC (m′))]

)−s]
Qs (y) (109)

=
∑
y

∑
m

P (m)EC
[
P (y|fC (m))

(
P (m)P (y|fC (m))

+
∑
m′ 6=m

P (m′)
∑
x

P (x)P (y|x)

)−s]
Qs (y) (110)

≥
∑
y

∑
m

P (m)EC
[
P (y|fC (m))

(
P (m)P (y|fC (m))

+ P (y)

)−s]
Qs (y) (111)

≥
∑
y

∑
m

P (m)EC
[
P (y|fC (m))

× (2 max {P (m)P (y|fC (m)) , P (y)})−s
]
Qs (y)

(112)

= 2−s
∑
y

∑
m

P (m)EC

[
P (y|fC (m))

(
P (m)

−s

× P (y|fC (m))
−s

1 {P (m)P (y|fC (m)) ≥ P (y)}

+ P−s (y) 1 {P (m)P (y|fC (m)) < P (y)}
)]

Qs (y)

(113)

= 2−s
(∑

y

∑
m

EC
[
(P (m)P (y|fC (m)))

1−s

×Qs (y) 1 {P (m)P (y|fC (m)) ≥ P (y)}
]

+
∑
y

∑
m

P (m)EC
[
P (y|fC (m))P−s (y)

×Qs (y) 1 {P (m)P (y|fC (m)) < P (y)}
])

(114)

= 2−s
(∑
m,x,y

e−(1−s)RP (x)P 1−s (y|x)
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×Qs (y) 1

{
P (y|x)

P (y)
≥ eR

}
+
∑
m,x,y

P (m)P (x)P (y|x)P−s (y)

×Qs (y) 1

{
P (y)

P (y|x)
> e−R

})
(115)

= 2−s
(

esR
∑
x,y

P (x)P 1−s (y|x)Qs (y) 1

{
P (y|x)

P (y)
≥ eR

}
+
∑
x,y

P (x, y)P−s (y)Qs (y) 1

{
P (y)

P (y|x)
> e−R

})
,

(116)

where (109) follows from that x 7→ x−s is a convex function
and fC (m) and fC (m′) are independent for m 6= m′,
and (115) follows since by the construction of the code,
P (fC (m) = x) = PX(x).

C. Converse Part for Case 1 + s with s ∈ (0,∞]

Observe that

esD1+s(PY ‖QY )

=
∑
y

P 1+s (y)Q−s (y) (117)

=
∑
y

∑
m

P (m)P (y|f (m))

(
P (m)P (y|f (m))

+
∑
m′ 6=m

P (m′)P (y|f (m′))

)s
Q−s (y) (118)

≥
∑
y

∑
m

P (m)P (y|f (m)) (P (m)P (y|f (m)))
s
Q−s (y)

(119)

= e−sR
∑
y

∑
m

P (m)P 1+s (y|f (m))Q−s (y) (120)

= e−sR
∑
y,x,m

P (m)P 1+s (y|x)Q−s (y) 1 {f (m) = x}

(121)

= e−sR
∑
x,y

P (x)P 1+s (y|x)Q−s (y) (122)

= elog
∑
x,y P (x)P 1+s(y|x)Q−s(y)−sR, (123)

where P (x) :=
∑
m P (m) 1 {f (m) = x} and P (y) :=∑

x P (x)P (y|x) respectively denote the distributions of X
and Y induced by the mapping f .

On the other hand,

esD1+s(PY ‖QY )

=
∑
y

(∑
x

P (x)P (y|x)

)1+s

Q−s (y) . (124)

Putting (123) and (124) together yields the desired result.

D. Converse Part for Case 1− s with s ∈ [0, 1)

Observe that

e−sD1−s(PY ‖QY )

=
∑
y

P 1−s (y)Qs (y) (125)

=
∑
y

(∑
m

P (m)P (y|f (m))

)1−s

Qs (y) (126)

=
∑
y

(∑
m

P (m)P (y|f (m))

)1−s

Qs (y)

×
(

1
{
P (m)P (y|f (m)) ≥

∑
m′ 6=m

P (m′)P (y|f (m′))
}

+ 1
{
P (m)P (y|f (m)) <

∑
m′ 6=m

P (m′)P (y|f (m′))
})

(127)

≤
∑
y

∑
m

(P (m)P (y|f (m)))
1−s

Qs (y)

× 1

P (m)P (y|f (m)) ≥
∑
m′ 6=m

P (m′)P (y|f (m′))


+
∑
y

(∑
m

P (m)P (y|f (m))

)1−s

Qs (y)

× 1

P (m)P (y|f (m)) <
∑
m′ 6=m

P (m′)P (y|f (m′))


(128)

= esR
∑
y

∑
m

P (m)P 1−s (y|f (m))Qs (y)

× 1 {2P (m)P (y|f (m)) ≥ P (y)}

+
∑
y

(∑
m

P (m)P (y|f (m))

)1−s

Qs (y)

× 1 {2P (m)P (y|f (m)) < P (y)} (129)

= esR
∑
y

∑
m

P (m)P 1−s (y|f (m))Qs (y)

× 1

{
P (y|f (m))

P (y)
≥ eR

2

}
+
∑
y

∑
m

P (m)P (y|f (m))P (y)
−s
Qs (y)

× 1

{
P (y|f (m))

P (y)
<

eR

2

}
(130)

≤ esR
∑
x,y

P (x)P 1−s (y|x)Qs (y) 1

{
P (y|x)

P (y)
≥ eR

2

}
+
∑
x,y

P (x)P (y|x)P−s (y)Qs (y) 1

{
P (y|x)

P (y)
<

eR

2

}
,

(131)

where P (x) :=
∑
m P (m) 1 {f (m) = x} and P (y) :=∑

x P (x)P (y|x) respectively denote the distributions of X
and Y induced by the mapping f .
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APPENDIX C
PROOF OF PROPOSITION 1

For the n-letter version of the problem, Mn =
{1, . . . , enR}, and the channel PnY |X , used n times, can be
considered as a superletter channel. Hence the one-shot bounds
given in Lemmas 1 and 2 can be used to prove Proposition 1.

A. Direct Part for Case 1 + s with s ∈ [0, 1]

By Lemma 1, we have

1

n
D1+s(PY nCn‖QnY × PCn)

≤ 1

n
Γ1+s

(
PXn , PY n|Xn , Q

n
Y , nR

)
+

1

ns
log 2 (132)

= max
{ 1

n
D1+s (PXnY n‖PXn ×QnY )−R,

1

n
D1+s(PY n‖QnY )

}
+ o(1). (133)

Since PXn is arbitrary, we have

1

n
inf
fCn

D1+s(PY nCn‖QnY × PCn)

≤ inf
PXn

max
{ 1

n
D1+s (PXnY n‖PXn ×QnY )−R,

1

n
D1+s(PY n‖QnY )

}
+ o(1) (134)

= Γ
(n)
1+s

(
PY |X , QY , R

)
+ o(1). (135)

B. Converse Part for Case 1 + s with s ∈ (0,∞]

By Lemma 2, we have

1

n
D1+s(PY nCn‖QnY × PCn)

≥ 1

n
Γ1+s

(
PXn , PY n|Xn , Q

n
Y , nR

)
(136)

= max
{ 1

n
D1+s (PXnY n‖PXn ×QnY )−R,

1

n
D1+s(PY n‖QnY )

}
(137)

≥ inf
PXn

max
{ 1

n
D1+s (PXnY n‖PXn ×QnY )−R,

1

n
D1+s(PY n‖QnY )

}
(138)

= Γ
(n)
1+s

(
PY |X , QY , R

)
. (139)

C. Direct Part for Case 1− s with s ∈ (0, 1)

Choose PXn = PnX for some PX . By Lemma 1, we have

e−sD1−s(PY nCn‖Q
n
Y ×PCn )

≥2−s
[
ensR

∑
xn,yn

P (xn)P 1−s (yn|xn)Qs (yn)

× 1

{
P (yn|xn)

P (yn)
≥ enR

}
+
∑
xn,yn

P (xn)P (yn|xn)P−s (yn)Qs (yn)

× 1

{
P (yn|xn)

P (yn)
< enR

}]
(140)

=2−s
[
ensRΦn1

∑
xn,yn

P (xn)P 1−s (yn|xn)Qs (yn)

Φn1

× 1

{
P (yn|xn)

P (yn)
≥ enR

}
+ Φn2

∑
xn,yn

P (xn)P (yn|xn)P−s (yn)Qs (yn)

Φn2

× 1

{
P (yn|xn)

P (yn)
< enR

}]
, (141)

where

Φ1 :=

(∑
xn,yn

P (xn)P 1−s (yn|xn)Qs (yn)

)1/n

(142)

= e−sD1−s(PXY ‖PX×QY ), (143)

Φ2 :=

(∑
xn,yn

P (xn)P (yn|xn)P−s (yn)Qs (yn)

)1/n

(144)

= e−sD1−s(PY ‖QY ). (145)

According to large deviation theory [48] (Cramér’s theorem),
we have

lim
n→∞

− 1

n
log

∑
xn,yn

P (xn)P 1−s (yn|xn)Qs (yn)

Φn1

× 1

{
P (yn|xn)

P (yn)
≥ enR

}
= max

t≥0

(
− log

∑
x,y

P (x)P 1−s (y|x)Qs (y)

Φ1

(
P (y|x)

P (y) eR

)t)
(146)

= max
t≥0

(
tR− log

∑
x,y

P (x)P 1−(s−t) (y|x)P−t (y)Qs (y)

)
+ log Φ1, (147)
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and

lim
n→∞

− 1

n
log

∑
xn,yn

P (xn)P (yn|xn)P−s (yn)Qs (yn)

Φn2

× 1

{
P (yn|xn)

P (yn)
< enR

}
= max

t≥0

(
− log

∑
x,y

P (x, y)P−s (y)Qs (y)

Φ2

(
eRP (y)

P (y|x)

)t)
(148)

= max
t≥0

(
−tR− log

∑
x,y

P (x)P 1−t (y|x)P t−s (y)Qs (y)

)
+ log Φ2. (149)

Substituting these into (141), we have

e−sD1−s(PY nCn‖Q
n
Y ×PCn )

≥ 2−s{e−nmaxt≥0 τ(R,s,s−t)−nδn + e−nmaxt≥0 τ(R,s,t)−nδ′n},
(150)

where

τ (R, s, t)

:= −tR− log
∑
x,y

P (x)P 1−t (y|x)P−(s−t) (y)Qs (y) .

(151)

That is,
1

n
D1−s(PY nCn‖QnY × PCn)

≤ 1

s
min

{
max
t≥0

τ (R, s, s− t) ,max
t≥0

τ (R, s, t)

}
+ δn + δ′n

(152)

=
1

s
min

{
max
t≤s

τ (R, s, t) ,max
t≥0

τ (R, s, t)

}
+ δn + δ′n,

(153)

where

τ (R, s, t)

:= −tR− log
∑
x,y

P (x)P 1−t (y|x)P−(s−t) (y)Qs (y) .

(154)

We claim that given R and s, τ (R, s, t) is concave in t; see
Lemma 7 below. This implies that

min

{
max
t≤s

τ (R, s, t) ,max
t≥0

τ (R, s, t)

}
= max
t∈[0,s]

τ (R, s, t) .

(155)
Hence we have

lim sup
n→∞

1

n
D1−s(PY nCn‖QnY × PCn) ≤ 1

s
max
t∈[0,s]

τ (R, s, t) .

(156)
Moreover, PX is arbitrary, hence

inf
PXn

1

n
D1−s(PY nCn‖QnY × PCn)

≤ 1

s
min
PX

max
t∈[0,s]

τ (R, s, t) + δn + δ′n (157)

= Γ
(1)
1−s

(
PY |X , QY , R

)
+ δn + δ′n. (158)

Note that Γ
(1)
1−s

(
PY |X , QY , R

)
is a single-letter version of

Γ
(n)
1−s

(
PY |X , QY , R

)
. To achieve the desired result, we set

PXmk = PmXk for some fixed k. Consider Xk as a super-letter,
then applying the derivations above, we have as m→∞,

inf
P
Xmk

1

mk
D1−s(PYmkCmk‖Q

mk
Y × PCmk)

≤ Γ
(k)
1−s

(
PY |X , QY , R

)
+ δmk + δ′mk, (159)

where δmk, δ′mk → 0 as m→∞ for fixed k. When n is not a
multiple of k, we consider Xk, Y k as super-letters, and then
apply the code to the first m :=

⌊
n
k

⌋
super-letters. Then we

have

inf
PXn

1

n
D1−s(PY nCn‖QnY × PCn)

≤ inf
P
Xmk

1

n
D1−s(PYmkCmk‖Q

mk
Y × PCmk)

+ inf
P
Xl

1

n
D1−s(PY lCl‖Q

l
Y × PCl) (160)

≤ inf
P
Xmk

1

mk
D1−s(PYmkCmk‖Q

mk
Y × PCmk)

+
1

m
inf
P
Xl

1

l
D1−s(PY lCl‖Q

l
Y × PCl), (161)

where l := n−mk < k. Observe that

inf
P
Xl

1

l
D1−s(PY lCl‖Q

l
Y × PCl)

≤ inf
P lX

1

l
D1−s(PY lCl‖Q

l
Y × PCl) (162)

= inf
PX

D1−s(PY C1‖QY × PC1), (163)

and the RHS of the inequality above is finite (as assumed in
Section I-C). Hence the LHS of the inequality above is also
finite. Hence for fixed k, we have

inf
PXn

1

n
D1−s(PY nCn‖QnY × PCn)

≤ inf
P
Xmk

1

mk
D1−s(PYmkCmk‖Q

mk
Y × PCmk) + δ′′m (164)

≤ Γ
(k)
1−s

(
PY |X , QY , R

)
+ δmk + δ′mk + δ′′m (165)

= Γ
(k)
1−s

(
PY |X , QY , R

)
+ o (1) , (166)

where o(1) is a term tending to zero as m → ∞ or n → ∞
since k is fixed. Since k is arbitrary, we obtain the desired
result.

Lemma 7. Given R and s, τ (R, s, t) is concave in t.

Proof: Define f(x, y) := P (x)P (y|x)P−s (y)Qs (y)

and g(x, y) := P (y)
P (y|x) . Then

− log
∑
x,y

P (x)P 1−t (y|x)P−(s−t) (y)Qs (y)

= − log
∑
x,y

f(x, y)gt(x, y). (167)
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Assume t = λt1 + (1− λ) t2 for λ ∈ [0, 1], then∑
x,y

f(x, y)gt(x, y)

=
∑
x,y

f(x, y)gλt1+(1−λ)t2(x, y) (168)

=
∑
x,y

(
f(x, y)gt1(x, y)

)λ (
f(x, y)gt2(x, y)

)1−λ
(169)

≤

(∑
x,y

f(x, y)gt1(x, y)

)λ(∑
x,y

f(x, y)gt2(x, y)

)1−λ

,

(170)

where (170) follows from Hölder’s inequality.
Hence

− log
∑
x,y

f(x, y)gt(x, y)

≥ −λ log
∑
x,y

f(x, y)gt1(x, y)

− (1− λ) log
∑
x,y

f(x, y)gt2(x, y). (171)

That is, τ (R, s, t) is concave in t.

D. Converse Part for Case 1− s with s ∈ [0, 1)

By Lemma 2, we have for some PXn ,

e−sD1−s(PY nCn‖Q
n
Y ×PCn )

≤ ensR
∑
xn,yn

P (xn)P 1−s (yn|xn)Qs (yn)

× 1

{
P (yn|xn)

P (yn)
≥ enR

2

}
+
∑
xn,yn

P (xn)P (yn|xn)P−s (yn)Qs (yn)

× 1

{
P (yn|xn)

P (yn)
<

enR

2

}
. (172)

Denote R′ := R − 1
n log 2. From Markov’s inequality, we

have

− 1

n
log

∑
xn,yn

P (xn)P 1−s (yn|xn)Qs (yn)

Φn1

× 1

{
P (yn|xn)

P (yn)
≥ enR

2

}
≥ max

t≥0

(
t

(
R− 1

n
log 2

)
− κ1

)
+ log Φ1 (173)

= max
t≥0

(tR′ − κ1) + log Φ1, (174)

and

− 1

n
log

∑
xn,yn

P (xn)P (yn|xn)P−s (yn)Qs (yn)

Φn2

× 1

{
P (yn|xn)

P (yn)
<

enR

2

}
≥ max

t≥0
(−tR′ − κ2) + log Φ2, (175)

where

Φ1 :=

(∑
xn,yn

P (xn)P 1−s (yn|xn)Qs (yn)

)1/n

, (176)

Φ2 :=

(∑
xn,yn

P (xn)P (yn|xn)P−s (yn)Qs (yn)

)1/n

,

(177)

and

κ1

:=
1

n
log

∑
xn,yn

P (xn)P 1−s (yn|xn)Qs (yn)

(
P (yn|xn)

P (yn)

)t
(178)

=
1

n
log

∑
xn,yn

P (xn)P 1−(s−t) (yn|xn)P−t (yn)Qs (yn) ,

(179)
κ2

:=
1

n
log

∑
xn,yn

P (xn, yn)P−s (yn)Qs (yn)

(
P (yn|xn)

P (yn)

)−t
(180)

=
1

n
log

∑
xn,yn

P (xn)P 1−t (yn|xn)P t−s (yn)Qs (yn) .

(181)

Substituting these into (172), we have

e−sD1−s(PY nCn‖Q
n
Y ×PCn )

≤ en(sR−maxt≥0(tR′−κ1)) + e−nmaxt≥0(−tR′−κ2) (182)

≤ 2 max{en(sR−maxt≥0(tR′−κ1)), e−nmaxt≥0(−tR′−κ2)}
(183)

= 2e−nsmin{ 1
s maxt≥0(tR′−κ1)−R, 1s maxt≥0(−tR′−κ2)}.

(184)

That is,

1

n
D1−s(PY nCn‖QnY × PCn)

≥ min
{1

s
max
t≥0

(tR′ − κ1)−R′ − 1

n
log 2,

1

s
max
t≥0

(−tR′ − κ2)
}
− δn (185)

≥ min
{1

s
max
t≥0

(tR′ − κ1)−R′ − 1

n
log 2,

1

s
max
t≥0

(−tR′ − κ2)− 1

n
log 2

}
− δn (186)

= min

{
1

s
max
t≥0

(tR′ − κ1)−R′, 1

s
max
t≥0

(−tR′ − κ2)

}
− δn − δ′n (187)

=
1

s
min

{
max
t≥0

τ (R′, s, s− t) ,max
t≥0

τ (R′, s, t)

}
− δn − δ′n

(188)

=
1

s
max
t∈[0,s]

τ (R′, s, t)− δn − δ′n (189)
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≥ 1

s
max
t∈[0,s]

τ (R, s, t)− δn − δ′n (190)

≥ 1

s
min
PX

max
t∈[0,s]

τ (R, s, t)− δn − δ′n (191)

= Γ
(n)
1−s

(
PY |X , QY , R

)
− δn − δ′n, (192)

where the function τ (R, s, t) is defined in (154), (189) fol-
lows from (155), and (190) follows since τ (R, s, t) is non-
increasing in R for t ≥ 0.

APPENDIX D
PROOF OF THEOREM 1

A. Upper Bound for Case 1 + s with s ∈ [0, 1]

To obtain the upper bound, we set

P (xn) =
1
{
xn ∈ TT̃X

}∣∣TT̃X ∣∣ (193)

and substitute it into the multiletter expression (32) in Propo-
sition 1, where T̃X is some type of n-length sequences. Define
g(x) :=

∑
y P

1+s(y|x)Q−s(y). Then we obtain

1

n
D1+s (PXnY n‖PXn ×QnY )

=
1

ns
log
∑
xn

P (xn)
∑
yn

P 1+s (yn|xn)Q−s (yn) (194)

=
1

ns
log
∑
xn

P (xn)

n∏
i=1

∑
yi

P 1+s (yi|xi)Q−s (yi) (195)

=
1

ns
log
∑
xn

P (xn)

n∏
i=1

g(xi) (196)

=
1

ns
log
∑
TX

PXn(TTX )en
∑
x∈X TX(x) log g(x) (197)

=
1

s

∑
x

T̃X(x) log g(x), (198)

where the last line follows from the definition of P (xn). Fur-
thermore, we also have9 (199)-(205), where (203) follows from
the fact that both the numbers of n-types and n-conditional
types are polynomial in n.

Since T̃X is arbitrary, from (198) and (205) we have

Γ
(n)
1+s

(
PY |X , QY , R

)
≤ min

T̃X

max

{
1

s

∑
x

T̃ (x) log(
∑
y

P 1+s (y|x)Q−s (y))−R,

max
ṼY |X

η1+s

(
PY |X , QY , T̃X , ṼY |X

)}
+ δn + δ′n.

(206)

Note that in (206) the minimization and maximization are
taken over the set of types, not the set of general probability

9As stated in the notation section (Section I-B), for brevity, sometimes we
use T (x, y) to denote the joint distributions T (x)V (y|x) or T (y)V (x|y).
Furthermore, for brevity, we use

∑
TY

to denote
∑
TY ∈P(n)(Y), and∑

VX|Y
to denote

∑
VX|Y ∈P(n)(X|TY ).

mass functions. To achieve the desired result, we continue
upper bounding (206) to obtain

Γ
(n)
1+s

(
PY |X , QY , R

)
≤ min

T̃X

max

{
1

s

∑
x

T̃ (x) log(
∑
y

P 1+s (y|x)Q−s (y))−R,

max
P̃Y |X∈P(Y|X )

η1+s

(
PY |X , QY , T̃X , P̃Y |X

)}
+ δn + δ′n,

(207)

since P(n)
(
Y|T̃X

)
⊆ P (Y|X ).

If the objective function of minimization is continuous, then
by Lemma 4 we have

Γ
(n)
1+s

(
PY |X , QY , R

)
≤ min
P̃X∈P(X )

max

{
1

s

∑
x

P̃ (x) log(
∑
y

P 1+s (y|x)Q−s (y))

−R, max
P̃Y |X∈P(Y|X )

η1+s

(
PY |X , QY , P̃X , P̃Y |X

)}
+ o (1) .

(208)

This completes the proof.
So the rest is to show the continuity of the objective

function. To prove this, we only need to show

max
P̃Y |X

η1+s

(
PY |X , QY , P̃X , P̃Y |X

)
(209)

is continuous in P̃X . Observe that P (Y|X ) is compact,
and η1+s

(
PY |X , QY , P̃X , P̃Y |X

)
is (jointly) continuous in

(P̃X , P̃Y |X). Hence by the following lemma, we have (209)
is continuous in P̃X .

Lemma 8 (Lemma 14 in [50]). Let X and Y be two metric
spaces and let K ⊂ X be a compact set. Let f : X×Y → R be
a (jointly) continuous real-valued function. Then the function
g : Y → R, defined as

g(y) := min
x∈K

f(x, y), ∀ y ∈ Y, (210)

is continuous on Y .

B. Lower Bound for Case 1 + s with s ∈ (0,∞]

Observe that (197) still holds. That is,

1

n
D1+s (PXnY n‖PXn ×QnY )

=
1

ns
log
∑
TX

PXn(TTX )en
∑
x∈X TX(x) log

∑
y P

1+s(y|x)Q−s(y).

(211)

On the other hand, we also have (216)-(220), where (216)
follows from (200), (217) follows from Lemma 6, (218)
follows since x 7→ x1+s is a convex function for s ≥ 0, and
(219) follows from Lemma 5.

Since
∑
TX

PXn(TTX ) = 1 and
∣∣P(n) (X )

∣∣ ≤ (n+ 1)
|X |,

by the pigeonhole principle, we have that there must exist at
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1
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∑
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 (200)

=
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∑
xn∈TVX|Y (yn)

1
{
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)1+s

e−ns
∑
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)
(201)

=
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enH(TY )
( ∑
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en(H(VX|Y |TY )−H(T̃X)+
∑
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)1+s

e−ns
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y T (y) logQ(y)

)
+ δn

(202)

= max
TY ,VX|Y :VX|Y ◦TY =T̃X

1

s

(
H (TY ) + (1 + s)

(
H
(
VX|Y |TY

)
−H

(
T̃X

)
+
∑
x,y

T (x, y) logP (y|x)
)

− s
∑
y

T (y) logQ (y)

)
+ δn + δ′n (203)

= max
TY ,VX|Y :VX|Y ◦TY =T̃X

1

s

(
(1 + s)

∑
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T (x, y) log
P (y|x)

T (y|x)
+ s

∑
y

T (y) log
T (y)

Q (y)

)
+ δn + δ′n (204)

= max
ṼY |X

−1

s

(
(1 + s)

∑
x,y

T̃ (x, y) log
Ṽ (y|x)

P (y|x)
− s

∑
y

T̃ (y) log
T̃ (y)

Q (y)

)
+ δn + δ′n, (205)

1

n
D1+s(PY n‖QnY )

=
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log
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P (xn) en
∑
x,y T (x,y) logP (y|x)

)1+s

e−ns
∑
x,y T (y) logQ(y)

 (216)

≥ 1

ns
log

∑
TY

∑
yn∈TTY

∑
VX|Y

P 1+s
Xn

(
TVX|Y (yn)

)
en(1+s)

∑
x,y T (x,y) logP (y|x)e−ns

∑
x,y T (y) logQ(y)

 (217)

≥ 1
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log

( ∑
TY ,VX|Y

|TTY |
( ∑
yn∈TTY

1

|TTY |
PXn

(
TVX|Y (yn)

))1+s

en(1+s)
∑
x,y T (x,y) logP (y|x)−ns

∑
x,y T (y) logQ(y)

)
(218)

=
1
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log

( ∑
TY ,VX|Y

|TTY |
(

1

|TTY |
enH(VY |X |TX)+nδnPXn(TTX )
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en(1+s)
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x,y T (x,y) logP (y|x)−ns
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x,y T (y) logQ(y)
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(219)

=
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P 1+s
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x,y T (x,y) logP (y|x)−ns

∑
x,y T (y) logQ(y)+nδn+nsδ′n

)
(220)

least one T̃X such that PXn(TT̃X ) ≥ (n+ 1)
−|X|. Therefore,

from (211) and (220), we have

1

n
D1+s (PXnY n‖PXn ×QnY )

≥ 1

ns
logPXn(TT̃X )en

∑
x T̃X(x) log

∑
y P

1+s(y|x)Q−s(y)

(221)

=
1

s

∑
x

T̃X (x) log

(∑
y

P 1+s (y|x)Q−s (y)

)
+ δ′′n,

(222)

and

1

n
D1+s(PY n‖QnY )
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≥ 1
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log
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× en(1+s)
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)
+

1
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δn + δ′n (223)

= max
ṼY |X

1

s

(
H
(
T̃Y

)
+ (1 + s) I
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T̃X , ṼY |X

)
+ (1 + s)
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)
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1 + s
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s
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T̃ (y) log
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Q (y)

)
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1
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δn + δ′n +

1 + s

s
δ′′n, (225)

where (224) follows from the fact that the number of n-
conditional types is polynomial in n. Therefore,

Γ
(n)
1+s

(
PY |X , QY , R

)
≥ min

T̃X

max

{
1

s

∑
x

T̃ (x) log(
∑
y

P 1+s (y|x)Q−s (y))−R,

max
ṼY |X

η1+s

(
PY |X , QY , T̃X , ṼY |X

)}
+ o (1) (226)

= min
P̃X

max

{
1

s

∑
x

P̃ (x) log(
∑
y

P 1+s (y|x)Q−s (y))−R,

max
P̃Y |X∈P(Y|X )

η1+s

(
PY |X , QY , P̃X , P̃Y |X

)}
+ o (1) ,

(227)

where (227) follows from Lemma 4.

C. Upper Bound for Case 1− s with s ∈ (0, 1)

Same as the 1 + s case, we set P (xn) as in (193) and
substitute it into the multiletter expression (35) in Proposition
1, where T̃X is some type of n-length sequences. Then we
obtain

− 1

ns
log

∑
xn,yn

P (xn)P 1−t (yn|xn)P t−s (yn)Qs (yn)

= − 1
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∑
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P (xn)P (yn|xn)
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Qs (yn)

(228)

= − 1
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∑
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= − 1
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(
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Observe that for any yn with type TY , we have

PXn
(
TVX|Y (yn)

)
= e−nI(VX|Y ,TY )+nδn1

{
VX|Y ◦ TY = T̃X

}
. (231)

Therefore, we have (232)-(235), where (203) follows from
the fact that the number of n-types TY VX|Y is polynomial
in n. Since T̃X is arbitrary, by Proposition 1 and (235), we
have (236)-(240), where (237) follows since for any function
f (x, y), maxx miny f (x, y) ≤ miny maxx f (x, y), and (239)
follows from P(n) (Y|X ) ⊆ P (Y|X ), Lemma 4, and the
continuity of the objective function of minP̃XY ∈P(X×Y) (the
continuity can be shown by Lemma 8).

D. Lower Bound for Case 1− s with s ∈ [0, 1)

Observe that (241)-(248) hold, where (241) follows from
(230), (243) follows from that x 7→ x1+t−s with 0 ≤ t ≤ s <
1 is a concave function, (244) follows from Lemma 5 and the
fact PXn(TTX ) ≤ 1, and (246) follows from the fact that the
number of n-types TY VX|Y is polynomial in n.

Therefore, from Proposition 1 we have
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min
TX ,VY |X

− t
s
R+

t

s
I
(
VY |X , TX

)
+

(
1

s
− 1

)∑
x,y

T (x, y) log
V (y|x)

P (y|x)

+
∑
y

T (y) log
T (y)

Q (y)
+ o (1) (249)

= max
t∈[0,s]

min
TX ,VY |X

− t
s
R+

t

s
I
(
VY |X , TX

)
+

(
1

s
− 1

)∑
x,y

T (x, y) log
V (y|x)

P (y|x)

+
∑
y

T (y) log
T (y)

Q (y)
+ o (1) (250)

≥ max
t∈[0,s]

min
P̃XY ∈P(X×Y)

− t
s
R+

t

s
I
(
P̃Y |X , P̃X

)
+

(
1

s
− 1

)∑
x,y

P̃ (x, y) log
P̃ (y|x)

P (y|x)

+
∑
y

P̃ (y) log
P̃ (y)

Q (y)
+ o (1) (251)

= min
P̃XY ∈P(X×Y)

max
t∈[0,s]

− t
s
R+

t

s
I
(
P̃Y |X , P̃X

)



22
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where the swapping of min and max in (252) follows from
the fact that the objective function, equal to
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is convex and concave in P̃XY and t respectively, P̃XY resides
in a compact, convex set (the probability simplex) and t resides
in a convex set [0, s] (Sion’s minimax theorem [51]).

APPENDIX E
PROOF OF THEOREM 2

Since the unnormalized Rényi resolvability is not smaller
than normalized one, we only need prove the converse part for
normalized case and the achievability part for unnormalized
case.

A. Converse for Normalized Case with 1 + s, s ∈ (0,∞]

We first consider the case s ∈ (0, 1]. By Theorem 1,
limn→∞

1
n inffCn D1+s(PY nCn‖QnY PCn) = 0 if and only if
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Ṽ (y|x)

P (y|x)
− t

s

∑
x,y

T̃ (x, y) log
T̃ (y)

P (y|x)
+
∑
y

T̃ (y) log
T̃ (y)

Q (y)

−
(

1− t

s

)
min

V̂ Y |X :V̂ Y |X◦T̃X=ṼY |X◦T̃X
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there exists a P̃X such that
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where follows from the log-sum inequality [52]. Therefore,
(256) is equivalent to (260).

Combining (262) and (260) we have
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∑
y T (y) logQ(y) (242)

≥ − 1

ns
log

∑
TY ,VX|Y

|TTY |

( ∑
yn∈TTY

1

|TTY |
PXn

(
TVX|Y (yn)

))1+t−s

en(1−s)
∑
x,y T (x,y) logP (y|x)+ns

∑
y T (y) logQ(y) (243)

≥ − 1

ns
log

∑
TY ,VX|Y

|TTY |

(
enH(VY |X |TX)+nδn

|TTY |

)1+t−s

en(1−s)
∑
x,y T (x,y) logP (y|x)+ns

∑
y T (y) logQ(y) (244)

≥ − 1

ns
log

∑
TY ,VX|Y

en(s−t)H(TY )en(1+t−s)H(VY |X |TX)+n(1−s)
∑
x,y T (x,y) logP (y|x)+ns

∑
y T (y) logQ(y)

− 1 + t− s
s

δn + δ′n (245)

= − 1

ns
log max

TY ,VX|Y
en(s−t)H(TY )+n(1+t−s)H(VY |X |TX)+n(1−s)

∑
x,y T (x,y) logP (y|x)+ns

∑
y T (y) logQ(y)

− 1 + t− s
s

δn + δ′n + δ′′n (246)

= min
TY ,VX|Y

−1

s

(
H (TY )− (1 + t− s) I

(
VY |X , TX

)
+ (1− s)

∑
x,y

T (x, y) logP (y|x) + s
∑
y

T (y) logQ (y)

)

− 1 + t− s
s

δn + δ′n + δ′′n (247)

= min
TX ,VY |X

t

s
I
(
VY |X , TX

)
+

(
1

s
− 1

)∑
x,y

T (x, y) log
V (y|x)

P (y|x)
+
∑
y

T (y) log
T (y)

Q (y)

− 1 + t− s
s

δn + δ′n + δ′′n, (248)

= inf
PX∈P(PY |X ,QY )

1

s

∑
x

P (x) log
∑
y

P 1+s (y|x)Q−s (y) .

(265)

Now we consider the case s ∈ (−1, 0]. That is, we need to
prove for s ∈ (0, 1],

inf

{
R :

1

n
inf
fCn

D1−s(PY nCn‖QnY PCn)→ 0

}
≥ min
PX∈P(PY |X ,QY )

I (X;Y ) . (266)

By Theorem 1, we have

inf
{
R : ΓLB

1−s
(
PY |X , QY , R

)
= 0
}

≤ inf

{
R :

1

n
inf
fCn

D1−s(PY nCn‖QY nPCn)→ 0

}
. (267)

Furthermore, ΓLB
1−s

(
PY |X , QY , R

)
= 0 is equivalent to that

there exist P̃X , P̃Y |X such that

(
1

s
− 1

)∑
x,y

P̃ (x, y) log
P̃ (y|x)

P (y|x)
+
∑
x,y

P̃ (y) log
P̃ (y)

Q (y)
≤ 0,

(268)(
1

s
− 1

)∑
x,y

P̃ (x, y) log
P̃ (y|x)

P (y|x)

+
∑
x,y

P̃ (x, y) log
P̃ (y|x)

Q (y)
−R ≤ 0.

(269)

Note that (268) is equivalent to

P̃ (y|x) = P (y|x) , and P̃ (y) = Q (y) . (270)



25

Hence (260) also holds. Combining (269) and (260) we have

inf
{
R : ΓLB

1−s
(
PY |X , QY , R

)
= 0
}

= inf
P̃X∈P(PY |X ,QY )

∑
x,y

P̃ (x)P (y|x) log
P (y|x)

Q (y)
(271)

= inf
PX∈P(PY |X ,QY )

I (X;Y ) . (272)

B. Achievability for Unnormalized Case with 1 + s, s ∈
(−1, 1] ∪ {∞}

Next we focus on the achievability part. Since the result for
s ∈ (−1, 0] can be obtained from existing works (see Remark
16), we only need to prove the case s ∈ (0, 1] ∪ {∞}.

1) Case s ∈ (0, 1]: We first consider the case s ∈ (0, 1].
For this case, by Lemmas 1 and 2, we deduce that

inf

{
R : inf

fCn
D1+s(PY nCn‖QnY PCn)→ 0

}
= inf
{PXn}:D1+s(PY n‖QnY )→0

lim sup
n→∞

1

n
D1+s (PXnY n‖PXnQnY ) .

(273)

Set PXn (xn) ∝ QnX (xn) 1 {xn ∈ T nε (QX)} for some QX ∈
P
(
PY |X , QY

)
. On one hand,

D1+s(PXn‖QnX)

=
1

s
log
∑
xn

(
QnX (xn) 1 {xn ∈ T nε }

QnX (T nε )

)1+s

(QnX (xn))
−s

(274)

=
1

s
log

∑
xn∈T nε

(
1

QnX (T nε )

)1+s

QnX (xn) (275)

= log
1

QnX (T nε )
(276)

→ 0, (277)

where (277) follows from the fact that QnX (T nε )→ 1. By the
data processing inequality [35], we have

D1+s(PY n‖QnY ) ≤ D1+s(PXn‖QnX). (278)

Hence D1+s(PY n‖QnY )→ 0 as well.
On the other hand,

1

n
D1+s (PXnY n‖PXnQnY )

=
1

ns
log
∑
xn

QnX (xn) 1 {xn ∈ T nε }
QnX (T nε )

× en
∑
x Txn (x) log

∑
y P

1+s(y|x)Q−s(y) (279)

≤ 1

ns
log
∑
xn

QnX (xn) 1 {xn ∈ T nε }
QnX (T nε )

max
TX :

∀x:|TX(x)−QX(x)|≤εQX(x)

en
∑
x TX(x) log

∑
y P

1+s(y|x)Q−s(y) (280)

= max
TX :

∀x:|TX(x)−QX(x)|≤εQX(x)

1

s

∑
x

TX (x)

× log
∑
y

P 1+s (y|x)Q−s (y) (281)

≤ (1 + ε)
1

s

∑
x

Q (x) log
∑
y

P 1+s (y|x)Q−s (y) . (282)

By letting n→∞ and ε→ 0, we have

lim sup
n→∞

1

n
D1+s (PXnY n‖PXnQnY )

≤ 1

s

∑
x

Q (x) log
∑
y

P 1+s (y|x)Q−s (y) . (283)

Furthermore, since QX ∈ P
(
PY |X , QY

)
is arbitrary,

lim sup
n→∞

1

n
D1+s (PXnY n‖PXnQnY )

≤ inf
QX∈P(PY |X ,QY )

1

s

∑
x

Q (x) log
∑
y

P 1+s (y|x)Q−s (y) .

(284)

Combining this with (273) we have the achievability part for
the case of s ∈ (0, 1].

2) Case s =∞: Let ε > 0 be such that

R > (1 + ε)
∑
x

QX(x)D∞
(
PY |X (·|x) ‖QY

)
+ ε. (285)

Here

QX := arg min
PX∈P(PY |X ,QY )

∑
x

PX (x)D∞
(
PY |X (·|x) ‖QY

)
.

(286)
We set the random code to be Cn = {Xn (m)}m∈Mn

with
Xn (m) ,m ∈Mn drawn independently for different m’s and
according to the same distribution PXn such that PXn (xn) ∝
QnX (xn) 1 {xn ∈ T nε (QX)}. Next we prove that such a se-
quence of random codes satisfies ECn

[
D∞(PY n|Cn‖QnY )

]
→

0 as n→∞.
For brevity, in the following we denote M = enR. Accord-

ing to the definition of the Rényi divergence, we first have

eECn [D∞(PY n|Cn‖Q
n
Y )]

≤ ECn
[
eD∞(PY n|Cn‖Q

n
Y )
]

(287)

= ECn
[
max
yn

PY n|Cn (yn|Cn)

QnY (yn)

]
(288)

= ECn
[
max
yn

g̃(Cn, yn)

]
, (289)

where g̃(Cn, yn) :=
∑
m∈Mn

g(Xn(m), yn)/M with
g(xn, yn) := PnY |X (yn|xn)/QnY (yn). Obviously,
for any xn ∈ T nε (QX), its type Txn satisfies that
|Txn (x)−QX (x)| ≤ εQX (x) ,∀x. Therefore, for any
xn ∈ T nε (QX) and any yn ∈ Yn, we have

g(xn, yn)

= e
n
∑
x,y Txnyn (x,y) log

PY |X (y|x)
QY (y) (290)

≤ max
TXY :∀x:|TX(x)−QX(x)|≤εQX(x)

e
n
∑
x,y TXY (x,y) log

PY |X (y|x)
QY (y)

(291)

≤ e
nmaxTX :∀x:|TX (x)−QX (x)|≤εQX (x)

∑
x TX(x) maxy log

PY |X (y|x)
QY (y)

(292)

≤ en(1+ε)
∑
xQX(x)D∞(PY |X(·|x)‖QY ) (293)

=: An. (294)
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Continuing (289), we get for any ε′ > 0,

eECn [D∞(PY n|Cn‖Q
n
Y )]

= ECn
[
max
yn

g̃(Cn, yn)1

{
max
yn

g̃(Cn, yn) ≥ 1 + ε′
}]

+ ECn
[
max
yn

g̃(Cn, yn)1

{
max
yn

g̃(Cn, yn) < 1 + ε′
}]
(295)

≤ ECn
[
An · 1

{
max
yn

g̃(Cn, yn) ≥ 1 + ε′
}]

+ 1 + ε′ (296)

= AnPCn
(

max
yn

g̃(Cn, yn) ≥ 1 + ε′
)

+ 1 + ε′ (297)

≤ An |Y|n max
yn

PCn (g̃(Cn, yn) ≥ 1 + ε′) + 1 + ε′, (298)

where (298) follows from the union bound. Obviously, both
An and |Y|n are only exponentially growing. Therefore, if
the probability PCn (g̃(Cn, yn) ≥ 1 + ε′) vanishes doubly ex-
ponentially fast, then ECn

[
D∞(PY n|Cn‖QnY )

]
→ log (1 + ε′)

as n → ∞. To this end, we use Bernstein’s inequality [53]
to bound the probability uniformly over all yn. Observe that
g(Xn(m), yn),m ∈Mn are i.i.d. random variables with mean

µε,n := EXn [g(Xn, yn)] (299)

=
∑
xn

QnX (xn) 1 {xn ∈ T nε (QX)}
QnX (T nε (QX))

PnY |X (yn|xn)

QnY (yn)

(300)

≤ 1

QnX (T nε (QX))
(301)

→ 1, as n→∞, (302)

and variance

VarXn [g(Xn, yn)] ≤ EXn
[
g(Xn, yn)2

]
(303)

≤ Anµε,n. (304)

Then we get

PCn (g̃(Cn, yn) ≥ 1 + ε′)

= PCn
( ∑
m∈Mn

g(Xn(m), yn)− µε,nM

≥ (1 + ε′ − µε,n)M

)
(305)

≤ exp

(
−

1
2 (1 + ε′ − µε,n)

2
M2

MAnµε,n + 1
3 (1 + ε′ − µε,n)MAn

)
(306)

≤ exp

(
− 3 (1 + ε′ − µε,n)

2
M

2 (1 + ε′ + 2µε,n)An

)
. (307)

Since µε,n → 1 as n → ∞, we have that for any ε′ > 0,
there exists a sufficiently large n0 such that µε,n ≤ 1 + ε′

2 for
n ≥ n0. Hence for n ≥ n0, (307) is further upper bounded
by exp

(
− 3ε′2

8(3+2ε′)enε
)

, which converges to zero doubly
exponentially fast. Therefore, ECn

[
D∞(PY n|Cn‖QnY )

]
→

log (1 + ε′) as n → ∞. Since ε′ > 0 is arbitrary,
ECn

[
D∞(PY n|Cn‖QnY )

]
→ 0 as n→∞.

Note that here we have proven that if the code rate

R > min
PX∈P(PY |X ,QY )

∑
x

PX (x)D∞
(
PY |X (·|x) ‖QY

)
,

(308)

then

ECn
[
D∞(PY n|Cn‖Q

n
Y )
]
→ 0. (309)

The convergence in (309) implies that there exists a se-
quence of deterministic codebooks {cn} with rate R such that
D∞(PY n|Cn=cn‖QnY )→ 0. If we set the random mapping C′n
to be the deterministic codebook/mapping cn, i.e., C′n = cn,
then D∞(PY nC′n‖Q

n
Y PC′n) = D∞(PY n|Cn=cn‖QnY ). There-

fore, we have D∞(PY nC′n‖Q
n
Y PC′n)→ 0 as desired.

APPENDIX F
PROOF OF THEOREM 3

Achievability: We first consider s ∈ (0, 1] case. Since PX ∈
P
(
PY |X , QY

)
, D1+s(PY ‖QY ) = 0. By Lemma 1, we obtain

esD1+s(PY nCn‖Q
n
Y ×PCn )

≤ en log
∑
x,y P (x)P 1+s(y|x)Q−s(y)−nsR + ensD1+s(PY ‖QY )

(310)

= en log
∑
x,y P (x)P 1+s(y|x)Q−s(y)−nsR + 1. (311)

Take log’s,

sD1+s(PY nCn‖QnY × PCn)

≤ log
(

en log
∑
x,y P (x)P 1+s(y|x)Q−s(y)−nsR + 1

)
(312)

≤ e−ns(R−
1
s log

∑
x,y P (x)P 1+s(y|x)Q−s(y)) (313)

= e−ns(R−D1+s(PXY ‖PX×QY )). (314)

Hence

− 1

n
logD1+s(PY nCn‖QnY × PCn)

≥ s (R−D1+s (PXY ‖PX ×QY )) + δn. (315)

This implies D1+s(PY nCn‖QnY × PCn) vanishes at least ex-
ponentially fast for s ∈ (0, 1]. Now we refine the exponen-
tial rate of decay. Denote t∗1 ∈ [s, 1] as the maximizer of
maxt∈[s,1] t (R−D1+t(PXY ‖PX ×QY )). Since (315) holds
for any s ∈ (0, 1], we have for s ∈ (0, 1],

lim inf
n→∞

− 1

n
logD1+s(PY nCn‖QnY × PCn)

≥ lim inf
n→∞

− 1

n
logD1+t∗1

(PY nCn‖QnY × PCn) (316)

≥ t∗1
(
R−D1+t∗1

(PXY ‖PX ×QY )
)

(317)

= max
t∈[s,1]

t (R−D1+t(PXY ‖PX ×QY )) . (318)

As for s ∈ (−1, 0] case, denote t∗2 ∈ [0, 1] as the maximizer
of maxt∈[0,1] t (R−D1+t(PXY ‖PX ×QY )). Then similarly
we can have

lim inf
n→∞

− 1

n
logD1+s(PY nCn‖QnY × PCn)

≥ lim inf
n→∞

− 1

n
logD1+t∗2

(PY nCn‖QnY × PCn) (319)

≥ t∗2
(
R−D1+t∗2

(PXY ‖PX ×QY )
)

(320)

= max
t∈[0,1]

t (R−D1+t(PXY ‖PX ×QY )) . (321)
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Converse for s ∈ (0, 1] case: For the converse part, we
follow steps similar to the proof in [12]. Let

L (yn) :=

{
PY n (yn)
QnY (yn) if QnY (yn) > 0,

1 otherwise,
(322)

denote the (random) likelihood ratio of each sequence yn ∈
Yn. Note that P (yn) is a random probability distribution,
since the codebook is random. Since PX ∈ P

(
PY |X , QY

)
,

by the construction of the codebook, we have

ECn [L (yn)] = 1, ∀yn ∈ Yn. (323)

Denote

`(T ) :=
PnY |X(ỹn|x̃n)

QnY (ỹn)
for some (x̃n, ỹn) ∈ TT . (324)

Denote

NT (yn) :=
∣∣{xn ∈ Cn : (xn, yn) ∈ TT

}∣∣ (325)

as the number of codewords in Cn that have the joint type T
with yn. Then {NT (yn) : T ∈ P(n)(X × Y)} is a collection
of M random variables with multinomial distributions and
success probabilities

pT (yn) = ECn
[
NT (yn)

M

]
. (326)

For brevity, here and in the following we denote M = enR.
Partition P(n)(X × Y) = P1 ∪ P2 and split L(yn) =

L1(yn) + L2(yn), where

P1 := {T ∈ P(n)(X × Y) : `(T ) ≤ e2M}, (327)

P2 := {T ∈ P(n)(X × Y) : `(T ) > e2M}, (328)

and

L1(yn) :=
1

M

∑
T∈P1

NT (yn)`(T ), (329)

L2(yn) :=
1

M

∑
T∈P2

NT (yn)`(T ). (330)

Hence

EL1(yn) + EL2(yn) = 1, ∀yn ∈ Yn. (331)

Also define

ν(yn) := Var
(
L1(yn)

)
+

1

M
E2[L1(yn)], and (332)

µ(yn) := E[L2(yn)]. (333)

As in [12], by elementary properties of multinomial distribu-
tion one can show that

ν(yn) =
1

M

∑
T∈P1

`(T )2pT (yn), (334)

µ(yn) =
∑
T∈P2

`(T )pT (yn). (335)

Based on the above considerations, we have

D1+s(PY nCn‖QnY × PCn)

=
1

s
log

(
ECn

∑
yn

Q (yn)L1+s (yn)

)
(336)

≥ 1

s
log

(
ECn

∑
yn

Q (yn)
(
L1+s

1 (yn) + L1+s
2 (yn)

))
(337)

=
1

s
log

(
1 + ECn

∑
yn

Q (yn)
(
L1+s

1 (yn)− L1 (yn)

+ L1+s
2 (yn)− L2 (yn)

))
(338)

.
=

1

s
ECn

∑
yn

Q (yn)
(
L1+s

1 (yn)− L1 (yn)

+ L1+s
2 (yn)− L2 (yn)

)
(339)

≥ ECn
∑
yn

Q (yn)L1 (yn) logL1 (yn)

+
1

s
ECn

∑
yn

Q (yn)
(
L1+s

2 (yn)− L2 (yn)
)

(340)

=
∑
yn

Q (yn)
(
ECnL1 (yn) logL1 (yn)

+ ECn
1

s

(
L1+s

2 (yn)− L2 (yn)
))

(341)

≥
∑
yn

Q (yn)
( 1

M

∑
T∈P1

`2 (T ) pT (yn)− ECnL2 (yn)− 1

M

+ ECn
1

s

(
L1+s

2 (yn)− L2 (yn)
))
, (342)

where (337) follows from Lemma 6, (339) follows from
limx→0

log(1+x)
x = 1 and

ECn
∑
yn

Q (yn)
(
L1+s

1 (yn)− L1 (yn)

+ L1+s
2 (yn)− L2 (yn)

)
→ 0 (343)

(this is obtained from the achievability part, where we
have D1+s(PY nCn‖QnY × PCn) → 0), (340) follows from
1
s

(
x1+s − x

)
≥ x log x (i.e., 1

s (xs − 1) ≥ log x) for
s > 0 and x ≥ 0 (0 log 0 := 0), and (342) follows
from ECnL1 (yn) logL1 (yn) ≥ 1

M

∑
T∈P1

`2 (T ) pT (yn) −
ECnL2 (yn)− 1

M (which was proven in [12, Section V-C]).
Considering the last term in the bracket of (342), we have

1

s

(
L1+s

2 (yn)− L2 (yn)
)

=
α+ 1− α

s

(
L1+s

2 (yn)− L2 (yn)
)

(344)

≥ αL2 (yn) logL2 (yn) +
1− α
s

(
L1+s

2 (yn)− L2 (yn)
)

(345)

≥ 2αL2 (yn) +
1− α
s

(
L1+s

2 (yn)− L2 (yn)
)

(346)

=

(
2α− 1− 1− α

s

)
L2 (yn) +

1− α
s

L1+s
2 (yn) , (347)
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where α ∈ [0, 1] is an arbitrary number, (345) follows from
1
s

(
x1+s − x

)
≥ x log x, and (346) follows from L2 (yn) ≥ e2.

Substitute (347) into (342), then we get

D1+s(PY nCn‖QnY × PCn)

≥
∑
yn

Q (yn)

(
1

M

∑
T∈P1

`2 (T ) pT (yn)

+

(
2α− 1− 1− α

s

)
ECnL2 (yn)

+ ECn
1− α
s

L1+s
2 (yn)− 1

M

)
. (348)

Choose α = 1+s
1+2s , then the second term above vanishes.

Hence we have

D1+s(PY nCn‖QnY × PCn) +
1

M

=
∑
yn

Q (yn)

(
1

M

∑
T∈P1

`2 (T ) pT (yn)

+ ECn
1− α
s

L1+s
2 (yn)

)
(349)

.
=
∑
yn

Q (yn)

(
1

M

∑
T∈P1

`2 (T ) pT (yn)

+ ECnL
1+s
2 (yn)

)
(350)

≥
∑
yn

Q (yn)

(
1

M

∑
T∈P1

`2 (T ) pT (yn)

+ ECn
∑
T∈P2

(
` (T )

M

)1+s

NT (yn)

)
(351)

=
∑
yn

Q (yn)

(
1

M

∑
T∈P1

`2 (T ) pT (yn)

+
∑
T∈P2

(
` (T )

M

)s
` (T ) pT (yn)

)
(352)

≥
∑
yn

Q (yn)

( ∑
T∈P(n)(X×Y)

` (T ) pT (yn)

×min

{
` (T )

M
,

(
` (T )

M

)s})
. (353)

where (351) follows from that

L1+s
2 (yn) =

(∑
T∈P2

` (T )NT (yn)

M

)1+s

(354)

=
∑
T∈P2

` (T )NT (yn)

M

( ∑
T ′∈P2

` (T ′)NT ′ (y
n)

M

)s
(355)

≥
∑
T∈P2

(
` (T )NT (yn)

M

)1+s

(356)

≥
∑
T∈P2

(
` (T )

M

)1+s

NT (yn) . (357)

Following steps similar to (111)-(121) of [12], we can get

D1+s(PY nCn‖QnY × PCn)

≥̇
∑

T∈P(n)(X×Y)

e−nD(T‖TX×PY |X)PXn (TTX )

×min

{
` (T )

M
,

(
` (T )

M

)s}
. (358)

Note that (358) holds for all random codes such that

E[P (yn)] = Q (yn) , ∀yn ∈ Yn. (359)

Moreover, for the ensemble of i.i.d. random codes, we have

PXn (TTX )
.
= e−nD(TX‖PX), (360)

and

min

{
` (T )

M
,

(
` (T )

M

)s}
.
= e−nmax{R−f(T‖PXY ),s(R−f(T‖PXY ))}, (361)

where

f(P‖P ′) :=
∑

(x,y)∈X×Y

P (x, y) log
P ′(x, y)

P ′X(y)P ′Y (y)
, (362)

for any two distributions P, P ′ ∈ P(X × Y). Therefore,

D1+s(PY nCn‖QnY × PCn)

≥̇ exp
{
−nmin

T

{
D
(
T‖TX × PY |X

)
+D (TX‖PX)

+ max {R− f (T‖PXY ) , s (R− f (T‖PXY ))}
}}

(363)

= e−nminT {D(T‖PXY )+max{R−f(T‖PXY ),s(R−f(T‖PXY ))}}.
(364)

Furthermore, we can get

min
T∈P(n)(X×Y)

{
D (T‖PXY )

+ max {R− f (T‖PXY ) , s (R− f (T‖PXY ))}
}

= min
P̃∈P(X×Y)

{
D
(
P̃‖PXY

)
+ max{R− f(P̃‖PXY ), s(R− f(P̃‖PXY ))}

}
+ δn

(365)
= max
t∈[s,1]

t (R−D1+t (QXY ‖QXQY )) + δn, (366)

where (365) follows from Lemma 4, and (366) is obtained by
following steps similar to the proof in Appendix B-D of [12].
Hence we have for i.i.d. codes,

lim sup
n→∞

− 1

n
logD1+s(PY nCn‖QnY PCn)

≤ max
t∈[s,1]

t (R−D1+t (QXY ‖QXQY )) . (367)

Converse for s ∈ (−1, 0] case: For this case, we need to
prove for s ∈ [0, 1),

lim sup
n→∞

− 1

n
logD1−s(PY nCn‖QnY × PCn)

≤ max
t∈[0,1]

t (R−D1+t (QXY ‖QX ×QY )) . (368)
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We also follow steps similar to the proof in [12], and still use
the notations (322)–(335), but we need to instead choose

P1 := {T ∈ P(n)(X × Y) : `(T ) ≤ βM}, (369)

P2 := {T ∈ P(n)(X × Y) : `(T ) > βM}, (370)

for some β > 0. Then we have

D1−s(PY nCn‖QnY × PCn)

≥̇ −1

s
ECn

∑
yn

Q (yn)
(
L1−s

1 (yn)− L1 (yn)

+ L1−s
2 (yn)− L2 (yn)

)
(371)

≥
∑
yn

Q (yn)

(
−ECn

(
L1−s

1 (yn)− L1 (yn)

s

)
− 1

s
ECn

(
β−sL2 (yn)− L2 (yn)

))
(372)

=
∑
yn

Q (yn)

(
ECn

L1 − L1−s
1

s
+

1− β−s

s
ECnL2

)
. (373)

where (371) is obtained by following steps similar to (336)-
(339), and (372) follows from L2 (yn) ≥ β.

To continue the proof, we need the following lemma. The
proof is similar as that of [12, Lemma 7], and hence omitted
here.

Lemma 9. Let U be an arbitrary non-negative random
variable with E[U ] = 1. Then, for any θ > 0,

c(θ)
[
Var(U)− τθ(U)

]
≤ E

[
U − U1−s

s

]
≤ Var(U) (374)

where

τθ(U) := θ2P{U > (θ + 1)}+ 2

∫ +∞

θ

vP{U > v + 1}dv,

(375)

and

c(θ) :=
1

θ2

(
θ + 1− (θ + 1)

1−s

s
− θ

)
. (376)

Using this lemma, we have for all θ > 0,

E
[
L1 − L1−s

1

s

]
= E

[
L1 − E [L1]

s
L1−s

1 + E [L1]
s
L1−s

1 − L1−s
1

s

]
(377)

= E [L1]E
[

1

s

(
L1

EL1
−
(
L1

EL1

)1−s
)]

+
(E [L1]

s − 1)E
[
L1−s

1

]
s

(378)

≥ E [L1] c(θ)
[
Var(U1)− τθ(U1)

]
− E[L2], (379)

where U1 := L1

EL1
and (379) follows from the lemma above

and the following inequalities.

(E [L1]
s − 1)E

[
L1−s

1

]
s

≥ (E [L1]
s − 1)E [L1]

1−s

s
(380)

=

(
E [L1]− E [L1]

1−s
)

s
(381)

≥ E [L1]− 1 (382)
= −E[L2],

where (380) follows from the fact that x 7→ x1−s is a
concave function, and EL1 ≤ 1, and (382) follows since
1
s

(
x− x1−s) ≥ x− 1 for s ∈ [0, 1) and x ∈ [0, 1].

Using (373) and (379) we obtain that ∀θ > 0:

D1−s(PY nCn‖QnY × PCn)

≥ E [L1] c(θ)
[
Var(U1)− τθ(U1)

]
+

1− β−s − s
s

E[L2].

(383)

Furthermore, choose β >
(

1
1−s

)s
, then 1−β−s−s

s > 0. Hence

D1−s(PY nCn‖QnY × PCn)

≥̇ E [L1] c(θ)
[
Var(U1)− τθ(U1)

]
+ E[L2]. (384)

Then we can get

D1−s(PY nCn‖QnY × PCn) +
1

M
≥̇ ν + µ (385)

.
= e
−n min

T∈P(n)(X×Y)
(D(T‖TXPY |X)+D(TX‖PX)+[R−f(T‖PXY )]+)

(386)

= e
−n min

T∈P(n)(X×Y)
(D(T‖PXY )+[R−f(T‖PXY )]+)

(387)

.
= e
−n min

P̃∈P(X×Y)

(
D(P̃‖PXY )+[R−f(P̃‖PXY )]

+
)

(388)

= e
−n max

t∈[0,1]
t(R−D1+t(QXY ‖QX×QY ))

, (389)

where (385) is obtained by following steps similar to (101)-
(125) of [12], f (·) is defined in (362), (386) follows from
[12, Eqns. (122)–(125)], (388) follows from Lemma 4 (or [12,
Appendix B-A]), and (389) follows from [12, Appendix B-D].

Since the exponent of 1
M is R, which is larger than the

exponent in (389), the exponent in (389) is the dominant
exponent. Hence (389) implies the converse part.

APPENDIX G
PROOF OF THEOREM 4

The achievability of Eiid

(
PX , PY |X , QY

)
has been proven

in Theorem 3, hence we only need to prove the achievability
of Ets

(
PX , PY |X , QY

)
.

For the case of s ∈ (−1, 0], the exponent
supε∈(0,1] min

{
ε2Pmin

3 , θ (0, ε, PX)
}

is obtained from
the exponent for s ∈ (0, 1] by letting s → 0. Hence we
only need to focus on the case s ∈ (0, 1]. We use the
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random code given in the proof of Theorem 2. For this
code, PXn (xn) ∝ QnX (xn) 1 {xn ∈ T nε (QX)} for some
QX ∈ P

(
PY |X , QY

)
.

By Lemma 1, we obtain

esD1+s(PY nCn‖Q
n
Y ×PCn )

≤ esD1+s(PXnY n‖PXnQnY )−nsR + esD1+s(PY n‖QnY ) (390)

= esD1+s(PY n‖QnY )

×
(

esD1+s(PXnY n‖PXnQnY )−nsR−sD1+s(PY n‖QnY ) + 1
)
.

(391)

Take log’s,

D1+s(PY nCn‖QnY × PCn)

= D1+s(PY n‖QnY )

+
1

s
log
(

esD1+s(PXnY n‖PXnQnY )−nsR−sD1+s(PY n‖QnY ) + 1
)

(392)
≤ D1+s(PY n‖QnY )

+
1

s
esD1+s(PXnY n‖PXnQnY )−nsR−sD1+s(PY n‖QnY ). (393)

On the other hand,

D1+s(PY n‖QnY ) ≤ D1+s(PXn‖QnX) (394)

= log
1

QnX (T nε )
(395)

≤ 1

QnX (T nε )
− 1 (396)

.
= QnX ((T nε )c) , (397)

where (T nε )c := Xn\T nε , and (395) follows from (274)-(276).
Now we bound QnX ((T nε )c) using the Chernoff bound [54] as

QnX ((T nε )c) ≤ 2 |X | e−
ε2nQmin

3 , (398)

where Qmin := minxQX (x) . Substituting (398) into (397),
we obtain

D1+s(PY n‖QnY ) ≤̇ 2 |X | e−
ε2nQmin

3 . (399)

By (399) we can bound the exponent of the second term of
(393) as

sR− 1

n
sD1+s(PXnY n‖PXnQnY ) +

1

n
sD1+s(PY n‖QnY )

= sR+ δn −
1

n
log

∑
xn∈T nε

P (xn)

× en
∑
x∈X Txn (x) log

∑
y P

1+s(y|x)Q−s(y) (400)

= sR+ δn −
1

n
log

∑
TX :∀x:|TX(x)−Q(x)|≤εQ(x)

PXn(TTX )

× en
∑
x∈X TX(x) log

∑
y P

1+s(y|x)Q−s(y) (401)

≥ sR+ δn − max
TX :∀x:|TX(x)−Q(x)|≤εQ(x)

∑
x

TX (x)

× log
∑
y

P 1+s (y|x)Q−s (y) (402)

≥ sR+ δn − (1 + ε)
∑
x

Q (x) log
∑
y

P 1+s (y|x)Q−s (y) ,

(403)

where δn is a term vanishing as n → ∞, and (402) follows
since

∑
TX :∀x:|TX(x)−Q(x)|≤εQ(x) PXn(TTX ) ≤ 1 and for any

TX such that for all x, |TX (x)−Q (x)| ≤ εQ (x), it holds
that

∑
x∈X

TX (x) log

(∑
y

P 1+s (y|x)Q−s (y)

)
≤ max
TX :∀x:|TX(x)−Q(x)|≤εQ(x)

∑
x∈X

TX (x)

× log
∑
y

P 1+s (y|x)Q−s (y) . (404)

Substituting (399) and (403) into (393), we have

lim inf
n→∞

− 1

n
logD1+s(PY nCn‖QnY × PCn)

≥ min
{ε2Qmin

3
,

sR− (1 + ε)
∑
x

Q (x) log
∑
y

P 1+s (y|x)Q−s (y)
}
.

(405)

Note that the second term of minimization is not θ (s, ε, PX).
To obtain the desired result, by using the fact that the Rényi
divergence is non-decreasing in its parameter, we get

lim inf
n→∞

− 1

n
logD1+s(PY nCn‖QnY × PCn)

≥ sup
t∈[s,1]

lim inf
n→∞

− 1

n
logD1+t(PY nCn‖QnY × PCn) (406)

≥ sup
t∈[s,1]

min
{ε2Qmin

3
,

tR− (1 + ε)
∑
x

Q (x) log
∑
y

P 1+t (y|x)Q−t (y)
}

(407)

= min

{
ε2Qmin

3
, θ (s, ε, PX)

}
. (408)

Since ε ∈ (0, 1] is arbitrary, we can optimize (408) over all
possible ε. This concludes the proof.

APPENDIX H
PROOF OF THEOREM 5

Achievability: We use random coding to prove the achiev-
ability part. Generate Cn = {Xn (m0,m1)}(m0,m1)∈M0×M1

with Xn (m0,m1) ∼ PXn and set the encoder
as fCn (m0,m1) = Xn (m0,m1). This constitutes
our random code. Moreover, we set PXn (xn) ∝
PnX (xn) 1 {xn ∈ T nε (PX)} for some PX ∈ P

(
PZ|X , QZ

)
.

At the legitimate user side, the standard joint-typicality
decoder is adopted.
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For this random code, by the standard proof [55, Section
3.1.2]10, it is easy to verify that

P
(

(M0,M1) 6= (M̂0, M̂1)
)

= ECn
[
P
(

(M0,M1) 6= (M̂0, M̂1)|Cn
)]

(409)

→ 0 (410)

if R0 + R1 ≤ I (X;Y ). Therefore, the error constraint is
satisfied.

By the codebook generation procedure, Cn is inde-
pendent of M1, and the subcodebooks Cn (m1) :=
{Xn (m0,m1)}m0∈M0

for different m1 have the same dis-
tribution (which implies PCn(m1)(cn) = PCn(M1)(cn) for any
m1). Hence Cn (M1) is independent of M1.11 Furthermore,
from our result for the channel resolvability problem (The-
orem 2), given M1 = m1 and PX ∈ P

(
PZ|X , QZ

)
, for

s ∈ [−1, 1], the random code constructed above satisfies

D1+s(PZnCn(m1)|M1=m1
‖QnZ × PCn(m1))→ 0 (411)

if R0 > R̃1+s

(
PX , PZ|X , QZ

)
. Therefore,

esD1+s(PZnM1Cn‖Q
n
Z×PM1Cn )

= EM1Cn

[
esD1+s(PZn|M1Cn‖Q

n
Z)
]

(412)

= EM1,Cn(M1)

[
esD1+s(PZn|M1,Cn(M1)‖QnZ)

]
(413)

= EM1

[
esD1+s(PZnCn(M1)|M1

‖QnZ×PCn(M1))
]

(414)

→ 1, (415)

where (413) follows since Cn → (M1, Cn (M1))→ Zn forms
a Markov chain (this results from the encoding process—the
transmitted codeword is chosen from Cn (M1)), and (414)
follows since M1 and Cn (M1) are independent. On the other
hand,

esD1+s(PZn,M1,Cn‖Q
n
Z×PM1,Cn )

= ECn
[
esD1+s(PZnM1

‖QnZ×PM1
)
]
. (416)

Hence
ECn

[
esD1+s(PZnM1

‖QnZ×PM1
)
]
→ 1. (417)

Applying the selection lemma [56, Lem. 2.2] to (410) and
(417) we deduce that there exists one sequence of realizations
{cn}n such that given Cn = cn,

lim
n→∞

P
(

(M0,M1) 6= (M̂0, M̂1)
)

= 0, (418)

and
lim
n→∞

D1+s(PM1Zn‖PM1
QnZ) = 0. (419)

Hence fCn=cn is the desired encoder. The proof of the achiev-
ability part for s ∈ [−1, 1] is complete. For s = ∞, the
achievability part can be proven similarly.

10Although here PXn is not an i.i.d. distribution, it satisfies PXn (xn) =
e−n(H(PX )+δn). Hence the joint typicality lemma [55] still holds, which
further guarantees that the standard proof for channel coding works for our
case.

11Indeed, we have PM1,Cn(M1)(m1, cn) =
PM1

(m1)PCn(m1)|M1
(cn|m1) = PM1

(m1)PCn(m1)(cn) =
PM1

(m1)PCn(M1)(cn).

Converse: By the data processing inequality [35], we have

R0 +R1 ≤
1

n
I (Xn;Y n) (420)

≤ I (XJ ;YJ) , (421)

where J ∼ Unif [1 : n] denotes a time index variable, inde-
pendent of Xn, Y n. It is easy to verify that the distribution of
(XJ , YJ) induced by an n-length code satisfies

P
(n)
XJYJ

(x, y) = EXnY n [TXnY n (x, y)] (422)

= EXn [TXn (x)]P (y|x) . (423)

Now, Pinsker’s inequality for Rényi parameter 1 + s ∈
(0, 1] [35] implies that,

|P −Q| ≤
√

2

1 + s
D1+s (P‖Q), (424)

and for Rényi parameter 1 + s ∈ (1,∞], we also have

|P −Q| ≤
√

2D (P‖Q) ≤
√

2D1+s (P‖Q). (425)

Applying (424) and (425) to PM1Zn and PM1Q
n
Z , we obtain

|PM1Zn − PM1
QnZ | → 0 and hence |PZn −QnZ | → 0 (by

the data processing inequality of TV distance |PX −QX | ≤
|PXY −QXY |), regardless of 1 + s ∈ (0, 1] or (1, 2].

Observe that |TZn −QZ | is a function of Zn and upper-
bounded by 1, and EQnZ |TZn −QZ | → 0 as n → ∞. Hence
by the property

sup
f :X→[0,1]

∣∣EP f(X)− EQf(X)
∣∣ = |P −Q| , (426)

we have

lim
n→∞

EPZn |TZn −QZ | = lim
n→∞

EQnZ |TZn −QZ | = 0,

(427)
which further implies

lim
n→∞

|EPZn [TZn ]−QZ | = 0, (428)

i.e.,

lim
n→∞

∣∣∣P (n)
ZJ
−QZ

∣∣∣ = 0, (429)

or equivalently

lim
n→∞

∣∣∣P (n)
XJ
◦ PZ|X −QZ

∣∣∣ = 0. (430)

Since P(X ) is compact, there must exist some increasing
sequence {nk}∞k=1 such that P (nk)

XJ
converges to some distri-

bution P̃X . From (430), P̃X ∈ P
(
PZ|X , QZ

)
holds.

We first consider the case of s ∈ (0,∞]. By the one-shot
bound in Lemma 2,

lim
n→∞

D1+s(PM1Zn‖PM1
QnZ) = 0 (431)

implies

R0 ≥ lim sup
n→∞

1

n
D1+s (PXnZn‖PXn ×QnZ) . (432)
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On the other hand,
1

n
D1+s (PXnZn‖PXn ×QnZ)

=
1

ns
log
∑
TX

PXn (TTX ) en
∑
x∈X TX(x) log

∑
z P

1+s(z|x)Q−s(z)

(433)

≥ 1

s

∑
TX

PXn (TTX )
∑
x∈X

TX (x) log
∑
z

P 1+s (z|x)Q−s (z)

(434)

=
1

s

∑
x∈X

EXn [TXn (x)] log
∑
z

P 1+s (z|x)Q−s (z) (435)

=
1

s

∑
x∈X

P
(n)
XJ

(x) log
∑
z

P 1+s (z|x)Q−s (z) . (436)

Hence

R0 ≥ lim sup
n→∞

1

s

∑
x∈X

P
(n)
XJ

(x) log
∑
z

P 1+s (z|x)Q−s (z) .

(437)
Consider the blocklengths {nk}∞k=1. Since P (nk)

XJ
converges

to P̃X , (421) and (437) respectively imply

R0 +R1 ≤ IP̃ (X;Y ) , (438)

and

R0 ≥
1

s

∑
x∈X

P̃X (x) log
∑
z

P 1+s (z|x)Q−s (z) . (439)

Therefore, P̃X is the desired distribution PX in (75). The proof
for s ∈ (0,∞] case is complete.

Next we consider the case of s ∈ (−1, 0]. This case can be
proved by following steps similar to the proof of the traditional
channel resolvability problem (or distributed channel synthesis
problem) [9]. Observe

R0 ≥
1

n
I (M0;Zn|M1) (440)

=
1

n
I (Xn;Zn|M1) (441)

=
1

n
I (Xn;Zn)− 1

n
I (M1;Zn) (442)

=
1

n
I (Xn;Zn)− δn (443)

=
1

n
H (Zn)− 1

n
H (Zn|Xn)− δn (444)

= HQ (Z)−H (ZJ |XJ)− δn + δ′n, (445)

where (443) and (445) follow from the
facts|PM1Zn − PM1

QnZ | → 0 and |PZn −QnZ | → 0,
respectively.

Furthermore, since there exist some sequence {nk}∞k=1 such
that P (nk)

XJ
converges to some distribution P̃X such that P̃X ∈

P
(
PZ|X , QZ

)
, we have

R0 ≥ HQ (Z)−H (ZJ |XJ) (446)
= IP̃ (X;Z) . (447)

On the other hand,

R0 +R1 ≤ IP̃ (X;Y ) . (448)

Combining (447) and (448) gives the desired result.

APPENDIX I
PROOF OF THEOREM 6

We first prove (78).
Achievability: We only consider the case s ∈ (0, 1]. The

achievability result for s ∈ (−1, 0] can be obtained from the
result for the case s ∈ (0, 1] by letting s ↓ 0.

We use a similar random code as the one given in Lemma
1. That is, we set Cn = {Wn (m)}m∈M with Wn (m) ∼
PWn ,m ∈ M, and set the encoder as fCn (m) = Wn (m).
We insert a random mapping (virtual channel) between the
encoder fCn (m) and the channel, which is denoted as
PXn|Wn . For this cascaded code, we set the distributions
PWn (wn) ∝ P̃nW (wn) 1 {wn ∈ T nε′ } and PXn|Wn (xn|wn) ∝
P̃nX|W (xn|wn) 1 {(wn, xn) ∈ T nε } for some P̃WX such that
P̃X ∈ P

(
PZ|X , QZ

)
, where ε′ < ε, and T nε′ , T nε , and T nε (wn)

respectively denote the typical set respect to P̃W , as well as
the jointly typical set and conditional typical set respect to
P̃WX .

Then by the method of types, we obtain (449)-
(455), where [(VX|WZ ◦ VZ|W )TW ](x,w) :=∑
z VX|WZ(x|w, z)VZ|W (z|x)TW (w), (452) follows

since, by the law of large numbers, P̃nW (T nε′ ) → 1 and
P̃nX|W (T nε (wn) |wn)→ 1 uniformly for all wn ∈ T nε′

(
P̃W

)
(this can be shown by following steps similar to the proof of
conditional typicality lemma in [55], and hence the proof is
omitted here), (453) follows from the fact that the number
of n-types TY VX|Y is polynomial in n, and in (455) the
arguments of maximization are replaced by TWX , VZ|WX

(this is feasible since both (TW , VZ|W , VX|WZ) in (454)
and (TWX , VZ|WX) in (455) run through all the types of
sequences in Xn × Yn ×Zn).

Observe that in (455) TWX is restricted to being close to
P̃WX but there is no restriction on VZ|WX . Actually Lemma
4 implies that as n→∞ and ε, ε′ → 0, (455) asymptotically
equals

max
P̃Z|WX

{
−1 + s

s

∑
w,x,z

P̃ (w, x, z) log
P̃ (z|w, x)

P (z|x)

+
∑
w,z

P̃ (w, z) log
P̃ (z|w)

Q (z)

}
, (456)

in the sense that the difference between (455) and (456)
vanishes as n → ∞. That is, we can replace the (con-
ditional) types with their corresponding (conditional) dis-
tributions. Hence 1

nD1+s (PWnZn‖PWn ×QnZ) → (456)
as n → ∞. Comparing (456) to the definition of
R̃′1+s

(
P̃W |X P̃X , PZ|X , QZ

)
in (80), we can find that they

are equal for the case of s ∈ (0, 1]. Hence

lim
n→∞

1

n
D1+s (PWnZn‖PWn ×QnZ)

= R̃′1+s

(
P̃W |X P̃X , PZ|X , QZ

)
. (457)
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1

n
D1+s (PWnZn‖PWn ×QnZ)

=
1

ns
log

∑
wn,zn

P (wn)P 1+s (zn|wn)Q−s (zn) (449)

=
1

ns
log

∑
wn,zn

P (wn)
(∑
xn

P (xn|wn)P (zn|xn)
)1+s

Q−s (zn) (450)

=
1

ns
log
∑
TW

∑
wn∈TTW

∑
VZ|W

∑
zn∈TVZ|W (wn)

P̃ (wn) 1 {wn ∈ T nε′ }
P̃nW (T nε′ )

×
( ∑
VX|WZ

∑
xn∈TVX|WZ

(wn,zn)

P̃ (xn|wn) 1 {(wn, xn) ∈ T nε }
P̃nX|W (T nε (wn) |wn)

en
∑
x,z T (x,z) logP (z|x)

)1+s

e−ns
∑
z T (z) logQ(z) (451)

= δn +
1

ns
log
∑
TW

∑
wn∈TTW

∑
VZ|W

∑
zn∈TVZ|W (wn)

P̃ (wn) 1 {wn ∈ T nε′ }

×
( ∑
VX|WZ

∑
xn∈TVX|WZ

(wn,zn)

P̃ (xn|wn) 1 {(wn, xn) ∈ T nε } en
∑
x,z T (x,z) logP (z|x)

)1+s

e−ns
∑
z T (z) logQ(z) (452)

≤ δn + δ′n +
1

ns
log max

TW :|TW−P̃W |≤ε′
max
VZ|W

∑
wn∈TTW

∑
zn∈TVZ|W (wn)

P̃ (wn)

×
(

max
VX|WZ :

|(VX|WZ◦VZ|W )TW−P̃WX |≤ε

∑
xn∈TVX|WZ

(wn,zn)

P̃ (xn|wn) en
∑
x,z T (x,z) logP (z|x)

)1+s

e−ns
∑
z T (z) logQ(z) (453)

= max
TW ,VZ|W ,VX|WZ :|TW−P̃W |≤ε′,
|(VX|WZ◦VZ|W )TW−P̃WX |≤ε

1

s

(
H(VZ|W × TW ) +

∑
w

T (w) log P̃ (w)
)

+
1 + s

s

(
H
(
VX|WZ |TWVZ|W

)
+
∑
w,x

T (w, x) log P̃ (x|w) +
∑
x,z

T (x, z) logP (z|x)

)
−
∑
z

T (z) logQ (z) + δn + δ′n + δ′′n (454)

= max
TWX ,VZ|WX :|TW−P̃W |≤ε′,

|TWX−P̃WX |≤ε

{
1 + s

s

∑
w,x,z

T (w, x, z) log
P̃ (w, x)P (z|x)

T (w, x, z)
+
∑
w,z

T (w, z) log
T (w, z)

P̃ (w)Q (z)

}

+ δn + δ′n + δ′′n, (455)

Furthermore, observe

PXn (xn)

=
∑
wn

P̃ (wn) 1 {wn ∈ T nε′ }
P̃nW (T nε′ )

P̃ (xn|wn) 1 {(wn, xn) ∈ T nε }
P̃nX|W (T nε (wn) |wn)

(458)

≤
∑
wn

P̃ (wn) 1 {wn ∈ T nε′ } P̃ (xn|wn) 1 {(wn, xn) ∈ T nε }
1− δn

(459)

≤ P̃ (xn) 1 {xn ∈ T nε }
1− δn

, (460)

where (459) follows since as n→∞, P̃nW (T nε′ ) converges to
1 and P̃nX|W (T nε (wn) |wn) uniformly converges to 1 for all

wn ∈ T nε′ . Therefore,

D1+s(PXn‖P̃Xn)

≤ 1

s
log
∑
xn

(
P̃ (xn) 1 {xn ∈ T nε }

1− δn

)1+s

P̃−s (xn) (461)

=
1

s
log

P̃nX (T nε )

(1− δn)
1+s (462)

→ 0, (463)

where (463) follows since P̃nX (T nε ) converges to 1 as n→∞.
Since PZn and QnZ are respectively the distributions of the
channel output induced by the input PXn and P̃nX , by the data
processing inequality [35], we have

D1+s(PZn‖QnZ) ≤ D1+s(PXn‖P̃nX). (464)

Hence D1+s(PZn‖QnZ)→ 0 as well.
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Finally, by Lemma 1, we obtain

esD1+s(PM1Z
n‖PM1

QnZ)

≤ esD1+s(PWnZn‖PWnQnZ)−nsR0 + esD1+s(PZn‖QnZ) (465)
→ 1, (466)

where (466) holds for s ∈ (0, 1] if

R0 > R̃′1+s

(
P̃W |X P̃X , PZ|X , QZ

)
(467)

by (456) with a small enough ε > 0. Hence the secrecy
constraint is satisfied.

Moreover, using standard joint typicality decoding, we have
that error constraint

P
(

(M0,M1) 6= (M̂0, M̂1)
)
→ 0 (468)

is satisfied as well if R0 +R1 ≤ IP̃ (W ;Y ). The proof of the
achievability part for s ∈ [−1, 1] is complete. For s =∞, the
achievability part can be proven by similar steps to those in
Appendix 5.

Converse: Set W = (M0,M1). By the data processing
inequality,

R0 +R1 ≤
1

n
I (W ;Y n) ≤ I (W ;YJ) , (469)

where J ∼ Unif [1 : n] denotes a time index variable, inde-
pendent of (W,Y n). It is easy to verify that

PWXJYJ (w, x, y)

= PW (w)
1

n

n∑
j=1

P {(Xj , Yj) = (x, y) |W = w} (470)

= PW (w)EXnY n|W=w[TXnY n (x, y)], (471)

and

PWXJYJ (w, x, y)

= PWXJ (w, x)P (y|x) (472)
= PW (w)EXn|W=w [TXn (x)]P (y|x) , (473)

where (473) is obtained similarly to (470)–(471).
We first consider the case s ∈ (0,∞]. Observe M1 is

independent of M0. Hence if we consider M1 as C and M0 as
M , then the wiretap channel problem turns into the channel
resolvability problem. By Lemma 2, we obtain

D1+s(PM1Zn‖PM1Q
n
Z)

≥ max
{
D1+s (PM0M1Zn‖PM0M1

×QnZ)− nR0,

D1+s(PZn‖QnZ)
}

(474)

= max
{
D1+s (PWZn‖PW ×QnZ)− nR0,

D1+s(PZn‖QnZ)
}
. (475)

Define P̃Z|WX as the maximizing distribution of

max
P̃Z|WX∈P(Z|W×X )

{
−1 + s

s

∑
w,x,z

P (w)PXJ |W (x|w)

× P̃ (z|w, x) log
P̃ (z|w, x)

P (z|x)

+
∑
w,x,z

P (w)PXJ |W (x|w) P̃ (z|w, x)

× log

∑
x PXJ |W (x|w) P̃ (z|w, x)

Q (z)

}
, (476)

where PWXJZJ is the distribution of W,XJ , ZJ induced by
the code. Note that P̃Z|WX is determined by the code, the
channel PZ|X , and the target distribution QZ .

From Lemma 3 we know that for any w ∈ W and any TX ∈
P(n) (X ), we can find a conditional type V (w)

Z|X ∈ P
(n) (X|TX)

such that∣∣∣TX P̃Z|XW (·|·, w)− TXV (w)
Z|X

∣∣∣ ≤ |X | |Z|
2n

= O

(
1

n

)
.

(477)
Consider the first term of the maximization in (475), then

we obtain (478)-(490), where (480) follows from Lemma 6,
(481) and (485) follow since x 7→ x1+s is a convex function
for s ≥ 0, (482) follows from Lemma 5, in (483) V (w)

Z|X :W →
P(n) (Z|TX) is the conditional type above satisfying (477),12

(484) follows from (477) and [57, Lem. 8], (486) follows
since the number of types in P(n) (X ) is polynomial in n,
(487) follows since x 7→ log x is a concave function, (488)
follows since PXn|W (TTX |w) =

∑
xn∈TTX

PXn|W (xn|w)

and TTX ⊆ Xn runs through all the sequences in Xn, (489)
follows since x 7→ x log x is a convex function, and (490)
follows since EXn|W=w [TXn (x)] = PXJ |W (x|w); see (473).

By the choice of P̃Z|WX , from (490) we have

lim
n→∞

1

n
D1+s (PWZn‖PW ×QnZ) ≥ (476). (491)

Furthermore, it is easy to verify

lim
n→∞

∣∣∣P (n)
XJ
◦ PZ|X −QZ

∣∣∣ = 0, (492)

since D1+s(PZn‖QZn)→ 0 (see (475)).
Since P (X ) is compact, for each w, there must exist

some sequence of increasing integers {nk}∞k=1 such that
P

(nk)
XJ |W=w converges to some distribution P̃X|W=w. By (492),

EW [P̃X|W (·|W )] ∈ P
(
PZ|X , QZ

)
holds. Moreover, (469)

and (491) respectively imply

R0 +R1 ≤ IP̃ (W ;Y ) , (493)

and

R0 ≥ max
P̃Z|WX

{
−1 + s

s

∑
w,x,z

P̃ (w, x, z) log
P̃ (z|w, x)

P (z|x)

+
∑
w,z

P̃ (w, z) log
P̃ (z|w)

Q (z)

}
. (494)

12Note that the choice of V (w)
Z|X and not necessarily an optimal one for the

lower bound (483), since the optima should be independent of w. However,
it is, in fact, optimal for the final lower bound (489).
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1

n
D1+s (PWZn‖PW ×QnZ)

=
1

ns
log

∑
w∈W

∑
TZ

∑
zn∈TTZ

P (w) e−ns
∑
z T (z) logQ(z)

∑
VX|Z

∑
xn∈TVX|Z (zn)

P (xn|w) en
∑
x,z T (x,z) logP (z|x)


1+s

(478)

=
1

ns
log

∑
w∈W

∑
TZ

∑
zn∈TTZ

P (w) e−ns
∑
z T (z) logQ(z)

∑
VX|Z

PXn|W
(
TVX|Z (zn) |w

)
en
∑
x,z T (x,z) logP (z|x)

1+s

(479)

≥ 1

ns
log

∑
w∈W

∑
TZ

∑
zn∈TTZ

P (w)
∑
VX|Z

P 1+s
Xn|W

(
TVX|Z (zn) |w

)
en(1+s)

∑
x,z T (x,z) logP (z|x)−ns

∑
z T (z) logQ(z) (480)

≥ 1

ns
log

∑
w,TZ ,VX|Z

|TTZ |P (w)

 ∑
zn∈TTZ

1

|TTZ |
PXn|W

(
TVX|Z (zn) |w

)1+s

en(1+s)
∑
x,z T (x,z) logP (z|x)−ns

∑
z T (z) logQ(z)

(481)

= δn +
1

ns
log

∑
w,TZ ,VX|Z

P (w)P 1+s
Xn|W (TTX |w) e−nsH(TZ)+n(1+s)H(VZ|X |TX)en(1+s)

∑
x,z T (x,z) logP (z|x)−ns

∑
z T (z) logQ(z)

(482)

≥ δn +
1

ns
log

∑
w,TX

P (w)P 1+s
Xn|W (TTX |w) e

−nsH
(
V

(w)

Z|X◦TX
)

+n(1+s)
(
H
(
V

(w)

Z|X |TX
)

+
∑
x,z T (x)V

(w)

Z|X(z|x) logP (z|x)
)

× e
−ns

∑
z

[
V

(w)

Z|X◦TX
]
(z) logQ(z) (483)

= δn +
1

ns
log

∑
w,TX

P (w)P 1+s
Xn|W (TTX |w) e−nsH(P̃Z|WX◦TX)+n(1+s)(H(P̃Z|WX |TX)+

∑
x,z T (x)P̃Z|WX(z|x) logP (z|x))

× e−ns
∑
z[P̃Z|WX◦TX ](z) logQ(z)+n·δ′n (484)

≥ δn + δ′n +
1

ns
log |P(n) (X ) |

(∑
w,TX

1∣∣P(n) (X )
∣∣P (w)PXn|W (TTX |w)

× e−n
∑
x,z T (x)P̃ (z|w,x) log

P̃ (z|w,x)
P (z|x) + ns

1+s

∑
x,z T (x)P̃ (z|w,x) log

∑
x T (x)P̃ (z|w,x)

Q(z)

)1+s

(485)

≥ δn + δ′n + δ′′n +
1 + s

ns
log

∑
w,TX

P (w)PXn|W (TTX |w)

× e−n
∑
x,z T (x)P̃ (z|w,x) log

P̃ (z|w,x)
P (z|x) + ns

1+s

∑
x,z T (x)P̃ (z|w,x) log

∑
x T (x)P̃ (z|w,x)

Q(z) (486)

≥ δn + δ′n + δ′′n +
∑
w,TX

P (w)PXn|W (TTX |w)

(
−1 + s

s

∑
x,z

TX (x) P̃ (z|w, x) log
P̃ (z|w, x)

P (z|x)

+
∑
x,z

TX (x) P̃ (z|w, x) log

∑
x TX (x) P̃ (z|w, x)

Q (z)

)
(487)

= δn + δ′n + δ′′n +
∑
w∈W

P (w)
(
−1 + s

s

∑
x,z

EXn|W=w [TXn (x)] P̃ (z|w, x) log
P̃ (z|w, x)

P (z|x)

+
∑
x,z

EXn|W=w

[
TXn (x) P̃ (z|w, x) log

∑
x TXn (x) P̃ (z|w, x)

Q (z)

])
(488)

≥ δn + δ′n + δ′′n +
∑
w∈W

P (w)
(
−1 + s

s

∑
x,z

EXn|W=w [TXn (x)] P̃ (z|w, x) log
P̃ (z|w, x)

P (z|x)

+
∑
x,z

EXn|W=w [TXn (x)] P̃ (z|w, x) log

∑
x EXn|W=w [TXn (x)] P̃ (z|w, x)

Q (z)

)
(489)
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= δn + δ′n + δ′′n +
∑
w∈W

P (w)
(
−1 + s

s

∑
x,z

PXJ |W (x|w) P̃ (z|w, x) log
P̃ (z|w, x)

P (z|x)

+
∑
x,z

PXJ |W (x|w) P̃ (z|w, x) log

∑
x PXJ |W (x|w) P̃ (z|w, x)

Q (z)

)
. (490)

Observe that the RHS of (494) is just
R̃′1+s

(
P̃W |X P̃X , PZ|X , QZ

)
with s ∈ (0,∞]. Hence

R0 ≥ R̃′1+s

(
P̃W |X P̃X , PZ|X , QZ

)
.

Therefore, PW P̃X|W is the desired distribution P̃WX in
(78). The proof for the case s ∈ (0,∞] is complete.

Next we consider the case s ∈ (−1, 0]. This case can be
proved by following steps similar to the proof of traditional
channel resolvability problem [2] or the distributed channel
synthesis problem [9]. Observe

R0 ≥
1

n
I (M0;Zn|M1) (495)

=
1

n
I (M0M1;Zn|M1) (496)

=
1

n
I (M0M1;Zn)− 1

n
I (M1;Zn) (497)

=
1

n
H (Zn)− 1

n
H (Zn|M0M1)− δn (498)

= HQ (Z)−H (ZJ |W )− δn + δ′n, (499)

where (498) and (499) follow from the facts
|PM1Zn − PM1Q

n
Z | → 0 and |PZn −QnZ | → 0 respectively.

Furthermore, for each w, there exists some increasing se-
quence of integers {nk}∞k=1 such that P (nk)

XJ |W=w converges to
some distribution P̃X|W=w that satisfies EW [P̃X|W (·|W )] ∈
P
(
PZ|X , QZ

)
. Hence letting n = nk and k → ∞ in (499),

we get

R0 ≥ HP̃ (Z)−HP̃ (ZJ |W ) = IP̃ (W ;Z) . (500)

On the other hand,

R0 +R1 ≤ IP̃ (W ;Y ) . (501)

Combining (500) and (501) gives the converse part. Therefore,
the proof of (78) is complete.

Next we prove (79). By adding an artificial non-secret
message M ′0 (with rate R′0) in the achievability scheme above,
we have the following achievable region.

⋃
P̃WX :

P̃X∈P(PZ|X ,QZ)


(R0, R1) : R′0 ≥ 0,
R′0 +R0 +R1 ≤ IP̃ (W ;Y ) ,
R′0 +R0 ≥
R̃′1+s(P̃W |X P̃X , PZ|X , QZ)

 .

(502)
Using Fourier–Motzkin Elimination (see [55, Appendix D]),
we can show that the regions in (502) and (79) are the same.
Hence (79) ⊆ R1+s(QZ). On the other hand, comparing the
RHSes of (78) and (79) yields that the RHS of (78) ⊆ (79). In
addition, R1+s(QZ) = the RHS of (78). Hence R1+s(QZ) ⊆
(79). Therefore, R1+s(QZ) = (79).

Lastly, by standard cardinality bounding techniques [55,
Appendix C], the alphabet size of W can be limited to
|W| ≤ |X |+ 1.
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