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Matched Metrics to the Binary Asymmetric

Channels

Claudio M. Qureshi

Abstract

In this paper we establish some criteria to decide when a discrete memoryless channel admits

a metric in such a way that the maximum likelihood decoding coincides with the nearest neighbor

decoding. In particular we prove a conjecture presented by M. Firer and J. L. Walker establishing that

every binary asymmetric channel admits a matched metric.

Index Terms

Binary asymmetric channel, channel model, maximum likelihood decoding

I. INTRODUCTION

As it is well known, maximum likelihood decoding (MLD) over a symmetric channel coincides

with nearest neighbor decoding (NND) with respect to the Hamming metric. In this paper we

deal with the problem of matching a metric to a given channel regarding the decoding criteria

mentioned above. This problem was considered in 1967 by J. L. Massey [2] where a metric

matched to a discrete memoryless channel is defined as a metric for which the NND is a MLD.

Since then, this type of matching have been studied in some special cases. For instance, certain

channels matching to the Lee metric were obtained in [1]. The problem of matching a metric to

a channel was taken up by G. Séguin [3], where the main focus was on sequences of additive

metrics. In the referred paper it is used a stronger condition also assumed here: a metric matched

to a channel is one for which not only the NND is a MLD but also the MLD is a NND. The
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author obtains necessary and sufficient conditions for the existence of additive metrics matched

to a channel and raises the question of what happens if the restriction of additivity of the metric

is removed. There was no significant progress until the paper [4] by M. Firer and J. Walker,

where the authors proved, among other results, the existence of a metric (not necessarily additive)

matched to the Z-channels and to the n-fold binary asymmetric channel (BAC) for n = 2, 3, and

conjectured that this is also true for n > 3. Some recent progress in this direction was obtained in

[5] where it is presented an algorithm to decide if a channel is metrizable and in that case return

a metric matched to the channel, and in [6] where the author proved that the BAC channels are

metrizable in the weaker sense of J. L. Massey in [2].

The main results of this paper are Theorem 1, which establishes a necessary and sufficient

condition for metrizability of a channel in terms of graph theory, and Theorem 2 which establishes

that the BAC channels are metrizable. Other contributions are the association of channels with

graphs (which allows the use of techniques from graph theory to approach problems related to

channels) and the introduction of a new structure: the colored posets, which may also be useful

in other contexts. This work is organized as follows: In Section II we give a brief review of

definitions and concepts needed in the development of the paper. In Section III we associate a

graph with a channel and discuss some results of [4] and [6] in terms of this graph. In Section IV

we introduce the concept of colored poset which is used to describe an algorithm for constructing

a metric matched to a channel whenever it is metrizable. A necessary and sufficient criterion for

metrizability of a channel is also derived. In Section V this criterion is used to prove that the

BAC channels are metrizable. In Section VI we introduce the concept of order of metrizability

of a channel and settle some problems related to this.

II. PRELIMINARIES

We summarize here some concepts and results to be used in the following sections.

A discrete memoryless channel (simply referred as channel in this paper) W : X → X is

characterized by its transition matrix related to the input and output alphabet X = {x1, x2, . . . , xN }.
This matrix [W] ∈ MN×N (R) is given by [W]i j = PrW (xi |x j), the probability of receiving xi if x j

was sent. When the channel is understood, this conditional probability is denoted by Pr(xi |x j).
Matrices associated with channels are characterized by the property that every entry is non-

negative and the sum of the entries in each column is one.
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A channel W : X → X is metrizable (in the strong sense of [4] and [3]) if there is a metric

d : X × X → [0,∞) (i.e. d is a definite-positive symmetric function satisfying the triangle

inequality) such that every nearest neighbor decoder is a maximum likelihood decoder and vice

versa. This is also equivalent to each of the following statements:

i) For all x ∈ X and every code C ⊆ X we have

arg max
y∈C

Pr(x |y) = arg min
y∈C

d(x, y),

where both arg max and arg min are interpreted as returning lists of size at least 1.

ii) For all x, y, z ∈ X the following condition holds:

Pr(x |y) ≤ Pr(x |z) ⇔ d(x, y) ≥ d(x, z).

In this paper we only deal with reasonable channels (in the sense of [4]), that is, channels

W : X → X such that

Pr(x |x) > Pr(x |y), ∀x, y ∈ X with y , x, (1)

which is a necessary condition for a channel to be metrizable.

Let W : X → X be a channel, X(2) = {A ⊆ X : #A = 2} be the family of 2-subsets of X and

h : X(2) → [0,+∞) be a non-zero function. We say that h is coherent-with-W if

Pr(x |y) ≤ Pr(x |z) ⇔ h({x, y}) ≤ h({x, z}),

for all x, y, z ∈ X with x , y and x , z. If such a function exists, we can construct a metric

matched to the channel as follows.

Proposition 1. Let W : X → X be a channel and h : X(2) → [0,+∞) be a coherent-with-W

function with maximum value m = max{h(x) : x ∈ X(2)}. The function d : X × X → [0,+∞)
given by:

d(x, y) =


2m − h ({x, y}) if x , y,

0 if x = y,
(2)

is a metric matched to the channel W.

Proof. To prove that d is positive-definite, we note that d(x, y) = 2m − h({x, y}) ≥ m > 0. The

function d is clearly symmetric since {x, y} = {y, x}. To prove triangle inequality, we consider

x, y, z ∈ X pairwise distinct and note that d(x, y) + d(y, z) = 4m − h({x, y}) − h({y, z}) ≥ 2m ≥
2m− h({x, z}) = d(x, z). Therefore d is a metric. This metric matches to the channel W because
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it is reasonable and for x, y, z ∈ X pairwise distinct we have Pr(x |y) ≤ Pr(x |z) ⇔ h({x, y}) ≤
h({x, z}) ⇔ d(x, y) ≥ d(x, z), where the first equivalence is because h is coherent-with-W and

the second by the definition of d. �

The binary (1-fold) asymmetric channel with parameters (p, q) ∈ [0, 1]2 (denoted by BAC1(p, q))
is the channel with input and output alphabet Z2 = {0, 1} and conditional probabilities Pr1(1|0) =
p and Pr1(0|1) = q (and Pr1(0|0) = 1 − p and Pr1(1|1) = 1 − q). The n-fold binary asymmetric

channel BACn(p, q) is the channel with input and output alphabet X = Zn
2 and for x = (x1, . . . , xn)

and y = (y1, . . . , yn) in Zn
2 the conditional probabilities are given by

Pr(x |y) =
n∏

i=1
Pr1(xi |yi).

We remark that the channel BACn(p, q) verifies condition (1) if and only if p+q < 1 (therefore

only this case will be considered in this paper). Indeed, for n = 1 it is obvious and for n > 1

it is a direct consequence of Equation (4) in Section V. The metrizability of BACn(p, q) was

established in [4] for the case pq = 0 and n arbitrary (the n-fold Z-channel) and for p + q < 1

and n = 2, 3. The remaining case is when p + q < 1 and pq > 0. For this case, we prove that

the corresponding channels are metrizable in Theorem 2.

A partially ordered set (or poset) is a pair (P, ≤) where ≤ is a partial order relation (i.e. it

is reflexive, antisymmetric and transitive). The poset is denoted by P when the order relation

is understood. Each poset is associated with a Hasse diagram, which is a representation of the

poset in such a way that if x < y the element y is above x, and there is a segment connecting

these points whenever there is no z ∈ P with x < z < y. A directed graph (or digraph) G is

determined by a pair (V, E) where V is a set, called the vertex set, and E ⊆ V × V is the edge

set. When (v,w) ∈ E we say that the edge v → w belongs to G. A path in G of length r ≥ 0 is

a finite sequence of vertices c = (v0, . . . , vr) such that vi → vi+1 belongs to G for 0 ≤ i < r . If

c′ = (w0, . . . ,ws) is other path in G with w0 = vr , the path c∗c′ := (v0, . . . , vr = w0,w1, . . . ,ws) is

also in G and it is called the concatenation of c and c′. The reverse path of c is c = (vr, . . . , v0),
which is not necessarily a path in G. When r ≥ 1 and v0 = vr , the path c = (v0, . . . , vr) is called

a directed cycle. A digraph without directed cycles is called acyclic. From a directed acyclic

graph G = (V, E) we have a natural poset structure on V defining x ≤ y if there is a (directed)

path (of length r ≥ 0) from x to y. When we refer to the Hasse diagram of a directed acyclic

graph G we mean the Hasse diagram of their associated poset.

November 8, 2018 DRAFT



5

III. THE GRAPH G1 ASSOCIATED WITH A CHANNEL

We associate with each channel (given by its transition matrix) a graph which plays an

important role in the proof of the metrization of the BAC channel.

Definition 1. Let W : X → X be a channel. The digraph G1(W) has vertex set X(2), the family

of 2-subsets of X, and directed edges linking {i, j} to {i, k} when Pr(i | j) < Pr(i |k).

Example 1. Let W : X → X be a channel with X = {a, b, c, d} and transition matrix

[W] =

©­­­­­­­«

0.4 0.3 0.1 0.2

0.1 0.2 0.1 0.1

0.2 0.1 0.3 0.1

0.3 0.4 0.5 0.6

ª®®®®®®®¬
.

Denoting by xy the set {x, y}, the vertex set of G1(W) is X(2) = {ab, ac, ad, bc, bd, cd}. To

determine the edges we have to compare the conditional probabilities in each row of [W]
(without taking into account the main diagonal). The first row gives us the following information:

Pr(a|c) < Pr(a|d) < Pr(a|b) so, we obtain the following edges: ac → ad, ac → ab and

ad → ab. Looking at the second row we have no inequalities among Pr(b|a),Pr(b|c) and

Pr(b|d) so, there are no new edges among the vertices ab, bc and bd. The third row gives

us the inequalities: Pr(c |b) < Pr(c |a) and Pr(c |d) < Pr(c |a) which generate the following

new edges bc → ac and cd → ac. Finally, from the fourth row we obtain the inequalities:

Pr(d |a) < Pr(d |b) < Pr(d |c) from which we have the new edges ad → bd, ad → cd and

bd → cd. Thus, the graph G1(W) has 8 edges and it is represented in Figure 1.

Fig. 1. The digraph G1(W) associated with the channel W of Example 1.
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A sufficient condition to guarantee the non-existence of a metric matched to a given channel

W is given in Proposition 5 of [4]. This condition states that if the channel W : X → X admits

a decision chain of length r ≥ 3 it is not metrizable. A decision chain of length r is a sequence

x0, x1, . . . , xr−1 ∈ X verifying Pr(xi |xi−1) < Pr(xi |xi+1) for i : 0 ≤ i < r , where the indices

are taken modulo r (we note that the definition given in [4] in terms of t-decision region is

equivalent to the one given here). Proposition 5 of the referred paper can be rewritten, in terms

of the graph G1(W), as follows.

Proposition 2. If a channel W is metrizable, then its associated graph G1(W) is acyclic.

The following example shows that the converse is false.

Example 2. Consider the channel W : X → X where X = {0, 1, 2} with transition matrix

[W] =
©­­­­«

1/2 1/4 1/4
15/36 25/36 5/9
1/12 1/18 7/36

ª®®®®¬
.

In this case the graph G1(W) has three vertices and only two edges: {0, 1} → {1, 2} and

{1, 2} → {0, 2} therefore it is acyclic. However a metric compatible with W should verify

d(0, 1) = d(0, 2) = d(2, 0) < d(2, 1) = d(1, 2) < d(1, 0) = d(0, 1) which is impossible, therefore W

is not metrizable.

Definition 2. Let W be a channel. The graph G1(W) is transitive if for every path (v0, v1 . . . , vr−1)
with #(v0 ∩ vr−1) = 1, the edge v0 → vr−1 belongs to G1(W).

It is easy to see that if G1(W) is transitive, then it is acyclic. The converse is false (the same

channel of Example 2 provides a counterexample). Proposition 2 can be strengthened as follows.

Proposition 3. If a channel W is metrizable, then its associated graph G1(W) is transitive.

This proposition has straightforward verification (it can also be obtained as a particular case of

Theorem 1 in Section V). Since every directed acyclic graph can be associated with a poset (in

the way mentioned at the end of Section II), we can associate a poset with a channel whenever

its associated graph is acyclic. The transitivity of the graph G1(W) means that if v < w and

v ∩ w , ∅, then v → w is and edge of G1(W).
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Let W : X → X be a channel. In terms of the conditional probabilities of W , the condition for

the graph G1(W) to be transitive can be written as follows: G1(W) is transitive if and only if every

sequence x0, x1, . . . , xr−1 ∈ X (r ≥ 3) satisfying xi , xi+1, x0 , xr−1 and Pr(xi |xi−1) < Pr(xi |xi+1)
for 0 ≤ i ≤ r − 2 (indices taken modulo r) also satisfies Pr(xr−1 |x0) < Pr(xr−1 |xr−2). This is

exactly the condition proposed in [6] to guarantee the existence of a metric d such that

arg max
y∈C

PrW (x |y) ⊇ arg min
y∈C

d(x, y), (3)

for all C ⊆ X and x ∈ X (interpreting both arg max and arg min as returning list of size at least

1). Using this condition the author also proves that the BAC channels admit a metric verifying

(3). The reciprocal of Proposition 3 is also false (in other words it is not possible to prove

equality in equation (3) under the hypothesis of transitivity).

Example 3. Let W : X → X be the channel with alphabet X = {0, 1, 2, 3} and matrix transition

[W] =

©­­­­­­­«

0.44 0.22 0.22 0.11

0.26 0.52 0.26 0.13

0.12 0.08 0.16 0.04

0.18 0.18 0.36 0.72

ª®®®®®®®¬
.

The graph G1(W) is transitive. This graph and its Hasse diagram is showed in Figure 2. Every

compatible metric should verify d(2, 1) > d(2, 0) = d(0, 2) = d(0, 1) = d(1, 0) = d(1, 2) = d(2, 1)
which is impossible, then W is not metrizable.

Fig. 2. The transitive graph G1(W) of Example 3 (left) and its Hasse diagram (right).
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IV. COLORED POSETS AND A NECESSARY AND SUFFICIENT CONDITION FOR THE CHANNEL

TO BE METRIZABLE

Let P be a poset. A chain of length r ≥ 0 in P is a finite sequence (x0, . . . , xr) such that

xi < xi+1 for 0 ≤ i < r . The height function relates to each element of a poset P, the maximum

possible length of a chain ending in such element. In this paper we refer to this function as

the standard height of P and we call height function to any function h : P → N verifying

h(x) < h(y) whenever x < y. A subset X ⊆ P is called horizontal (with respect to h) when

the restriction of h to X is constant. We say that a height is complete when its image is of the

form [k] = {0, 1, . . . , k − 1} for some k ∈ Z+. To each height function h we can associate a

Hasse diagram such that y is above x if and only if h(y) > h(x). This association establishes

a bijection between complete heights and Hasse diagrams (in the sense that we can recover the

height from its Hasse diagram).

As remarked in the previous section, when the graph G1(W) associated with a channel

W : X → X is acyclic, we can associate with it a poset P = P(W) on the set X(2). The standard

height verifies h({x, y}) < h({x, z}) whenever Pr(x |y) < Pr(x |z) and from this, assuming the

channel is reasonable (i.e. it verifies (1)), we can construct a metric as in Proposition 1, verifying

d(x, y) > d(x, z) whenever Pr(x |y) < Pr(x |z). In particular this metric verifies (3) and will be

weakly metrizable in the sense of [6]. But this metric does not necessarily will match with the

channel, since the poset structure of W (when G1(W) is transitive) does not give information

about when two 2-subsets {x, y} and {x, z} verify Pr(x |y) = Pr(x |z) or not, except when they

are connected in G1(W). We need a more general structure to manage also with these cases.

Let P be a poset. A coloration for P is any function c : P → C (C is a finite set) verifying

that c(x) , c(y) if x < y. A subset X ⊆ P is monochromatic (with respect to c) if the restriction

of c to X is constant. In particular every monochromatic set is an antichain of P. A colored

cycle is a sequence (x0, x1, . . . , xr) in P verifying that x0 = xr and xi < xi+1 if c(xi) , c(xi+1)
for 0 ≤ i < r . Trivial examples of colored cycles are of the form (x0, x1, . . . , xr) with x0 = xr

and c(x0) = c(x1) = · · · = c(xr), we call these cycles monochromatic.

Definition 3. A colored poset is a pair (P, c) where P is a poset and c a coloration for P such

that every colored cycle in P is monochromatic.
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Example 4. Consider P = {2, 3, 6, 8, 12, 16} with the divisibility relation (i.e. x ≤ y if x divides

y). Let c1 and c2 be the colorations for P given by c1(2) = c1(3) = ’blue’, c1(8) = c1(6) =
’red’, c1(12) = c1(16) = ’black’ and c2(2) = c2(3) = ’blue’, c2(8) = c2(12) = ’red’, c2(6) =
c2(16) = ’black’. Then, (P, c1) is a colored poset but (P, c2) is not, because it contains the

non-monochromatic cycle (8, 16, 6, 12, 8) (see Figure 3).

Fig. 3. Two different colorations for the divisibility poset P = {2, 3, 6, 8, 12, 16}; the first corresponds to a colored poset (left)

and the second one does not (right).

Let P be a poset, c : P → C be a coloration for P and GP be the digraph associated with

P (i.e. its vertex set is P and x → y belongs to GP if x < y). We remark that a colored cycle

is not necessarily a cycle in GP, however colored cycles have a nice interpretation in term of

graphs. Namely, if GP(c) denotes the digraph obtained from GP adding the edges x → y with

c(x) = c(y), the colored cycles of P (with respect to c) correspond to cycles of GP(c).
A Hasse diagram for a colored poset (P, c) is a Hasse diagram for P with the additional

property that if two points have the same color they are in the same level (i.e. no one is above

or below the other). The next proposition guarantee the existence of a Hasse diagram for colored

posets.

Proposition 4. Let (P, c) be a colored poset. There exists a height function h for P such that

every monochromatic subset of P is horizontal with respect to h.

Proof. Let c : P → {c1, . . . , ck} be the coloration, Ai = c−1(ci) for 1 ≤ i ≤ k and P/c :=

{A1, . . . , Ak}. We note that P/c is a partition of P into monochromatic set, with c(Ai) , c(A j) if

i , j and every monochromatic subset of P is contained in some Ai. Thus, it suffices to construct

a height function h for P such that every Ai is horizontal. For X,Y ⊆ P we write X < Y if there
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exist x ∈ X and y ∈ Y such that x < y. We claim that it is possible to order the indices of the

elements of P/c in such a way that if Ai < A j then i < j. Indeed, consider the digraph G whose

vertex set is P/c and edges of the form Ai → A j with Ai < A j . This digraph is acyclic, because

if there is a cycle c = (Ai0, . . . , Aik ) in G with k ≥ 1, then for each j = 1, . . . , k − 1 there are

xij ∈ A j and yij+1 ∈ A j+1 with xij < yij+1 . Thus, the colored cycle (x0, y1, x1, y2, . . . , xk−1, yk, x0)
is non-monochromatic (because x0 < y1 implies c(x0) , c(y1)) which is a contradiction since

(P, c) is a colored poset. If (P/c, 4) is the poset induced by the acyclic digraph G (i.e. Ai 4 A j

if there is a path from Ai to A j in G), clearly Ai < A j implies Ai 4 A j . By extending this poset

to a total order we have Ai1 4 Ai2 4 · · · 4 Aik where i1, i2, . . . , ik is a permutation of 1, 2, . . . , k.

Thus we can assume that if Ai < A j then i < j (ordering indices if necessary).

Next we define inductively an increasing sequence h1, h2, . . . , hκ of heights for P such that

A j is horizontal with respect to hi if j ≤ i. We write x ≥ A for x ∈ P and A ∈ P/c when x ≥ a

for some a ∈ A (otherwise we write x � A). We start considering the standard height h0 and

t1 = max{h0(x) : x ∈ A1}. We define h1 as follows.

h1(x) =


max{h0(x) + t1 − h0(a) : a ∈ A1, a ≤ x}, if x ≥ A1,

h0(x), otherwise.

We claim that this function is a height function for P and h1(A1) = {t1} (in particular A1 is

horizontal with respect to h1). Indeed, let x, y ∈ P with x > y. We consider three cases: (i)

x > y ≥ A1, (ii) x ≥ A1 and y � A1 and (iii) x, y � A1. In the first case, since for every a ∈ A1

with a ≤ y we have a ≤ x and h0(y)+ t0 − h0(a) < h0(x)+ t0 − h0(a) ≤ h1(x) for all a ∈ A1 with

a ≤ y, then h1(y) < h1(x). In the second and third cases we have h1(x) ≥ h0(x) > h0(y) = h1(y).
In all the cases we conclude that h1(x) > h1(y), thus h1 is a height for P. Moreover, if a ∈ A1

then a ≥ A1, and since A1 is an antichain we have h1(a) = h0(x) + t1 − h0(a) = t1.

Now we assume that there exists a height function hm for which A1, . . . , Am are horizontal

(1 ≤ m < κ) and let tm+1 = max{hm(x) : x ∈ Am+1}. We define:

hm+1(x) = max{hm(x) + tm+1 − hm(a) : a ∈ Am , a ≤ x}

if x ≥ Am and hm+1(x) = hm(x) otherwise. Using a similar argument to the case m = 1

(considering three cases) we can prove that hm+1 is a height function (i.e hm+1(x) > hm+1(y)
whenever x > y). Since Am+1 is an antichain, then hm+1(a) = tm+1 for all a ∈ Am+1. Let x ∈ Ai

for some i, 1 ≤ i ≤ m. We have x � Am+1 because otherwise we would have Ai ≥ Am+1 with

i < m + 1 which is a contradiction. Therefore hm+1(a) = hm(a) which, by inductive hypothesis,
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does not depend on a ∈ Ai. In the last step (when m = k) we obtain a height function hk for

which all the elements of P/c are horizontal. In particular, since every monochromatic subset is

contained in some Ai, every monochromatic subset is horizontal with respect to hk . �

Remark 1. Since the proof of Proposition 4 is constructive, it brings us an algorithm to construct

a Hasse diagram for a colored poset (P, c). We start constructing the standard height function

for P (first step) and after at most k steps we obtain a height function which induces a Hasse

diagram for (P, c), where k is the number of colors. We say ’at most k steps’ instead of k steps

because when Ai+1 is horizontal with respect to hi we have hi+1 = hi (this happens for example

when Ai+1 has a unique element) and we can omit this step.

Example 5. Consider the colored poset (P, c) where P = Z2 × Z3 with the order induced by

00 < 01 < 02, 10 < 11 < 12 and 10 < 01; and the coloration c : P → {R, B,G,D} given by

R̃ = {00, 11}, B̃ = {02, 12}, G̃ = {01} and D̃ = {10}, where X̃ := c−1(X). The relation considered

at the beginning of the proof of Proposition 4 restricted to P/c is: R̃ < G̃, R̃ < B̃, G̃ < B̃

and D̃ < R̃, which can be extended to the total order D̃ 4 R̃ 4 G̃ 4 B̃. Therefore defining

A1 = D̃, A2 = R̃, A3 = G̃ and A4 = B̃, we have that if Ai < A j then i < j. Figure 4 shows the

different steps for the construction of a Hasse diagram for this colored poset. In the final stage

we obtain the height function h4 : P → N given by h4(10) = 0, h4(00) = h4(11) = 1, h4(01) = 2

and h4(02) = h4(12) = 3.

Fig. 4. The construction of a Hasse diagram for a colored poset.

Our next goal is to associate with each channel W (under certain conditions) a colored poset

and to construct a metric from a height function for its Hasse diagram. We start by introducing

the graphs G(W) and G0(W) associated with the channel W .
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Definition 4. Let W : X → X be a channel and X(2) be the family of 2-subsets of X. The

digraph G(W) has vertex set X(2) and directed edges linking {x, y} to {x, z} if y , z and

Pr(x |y) ≤ Pr(x |z). The graph G0(W) is a non-directed graph whose vertex set is X(2) and two

vertices {x, y} and {x, z} are connected by an edge in G0(W) if y , z and Pr(x |y) = Pr(x |z).

The graph G0(W) can be identified with the subgraph of G(W) whose vertex set is X(2) and

edges ν → ω and ω→ ν for each edge {ν, ω} in G0(W). By construction the graphs G0(W) and

G1(W) have no common edges. We use this identification in this paper.

Definition 5. A digraph G is cycle-reverter if for each cycle c = (v0, v1, . . . , vr−1, v0) in G, then

the reverse cycle c = (v0, vr−1, . . . , v1, v0) is also in G

We remark that if G(W) is cycle-reverter then the graph G1(W) is transitive (the converse is

false) and, in particular, acyclic.

Lemma 1. Let W : X → X be a channel such that its associated graph G(W) is cycle-reverter

and let A = {A1, . . . , Ak} be the set of connected components of G0(W). Consider for P := X(2)

the poset structure induced by the graph G1(W) and the function c : P→ A given by c(v) = A

if v ∈ A. Then (P, c) is a colored poset.

Proof. First we prove that c is a coloration for P. Let v,w ∈ P such that v < w, then there

exists a path p1 = (v0 = v, v1, . . . , vr = w) (with r ≥ 1) in G1(W). In particular v = {x, y} and

v1 = {x, z} with Pr(x |y) < Pr(x |z). We suppose, to the contrary, that c(v) = c(w). Since v and

w belong to the same connected component in G0(W) there is a path p2 from w to v in G0(W).
Since G(W) is cycle-reverter, the reverse of the cycle p1 ∗ p2 is also in G(W). In particular

the arrow v1 → v is in G(W) and then Pr(x |z) ≥ Pr(y |z), which is a contradiction. Now we

prove that (P, c) is a colored poset. Consider a colored cycle C = (v0, v1, . . . , vr) with v0 = vr . If

vi < vi+1 there is a path from vi to vi+1 in G1(W) and if c(vi) = c(vi+1) there is a path from vi

to vi+1 in G0(W). In both cases there is a path pi from vi to vi+1 in G(W) for 0 ≤ i < r . Since

the graph G(W) is cycle-reverter the reverse of the cycle p1 ∗ p2 ∗ . . . ∗ pr−1 is a cycle in G(W).
Therefore none of the paths pi can be in G1(W) and we conclude that all the vertices vi belong

to the same connected component in G0(W), then C is monochromatic. �

The next theorem establishes a necessary and sufficient condition for the existence of a metric

matched to a given channel.
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Theorem 1. Let W : X → X be a channel. The graph G(W) is cycle-reverter if and only if the

channel W is metrizable.

Proof. First we suppose the existence of a metric d : X × X → [0,+∞) matched to W and

consider a cycle c = (v0, v1, . . . , vr = v0) in G(W). Every vertex is of the form vi = {xi, yi} with

xi, yi ∈ X and #(vi ∩ vi+1) = 1 for 0 ≤ i < r (indices taken modulo r). Since d matches with W ,

from the cycle c, we obtain the following chain of inequalities:

d(x0, y0) ≤ d(x1, y1) ≤ · · · ≤ d(xr−1, yr−1) ≤ d(x0, y0).

Therefore every inequality is actually an equality and the reverse cycle c is also in G(W).
This proves that the graph G(W) is cycle-reverter whenever W is metrizable. Conversely, if

G(W) is cycle-reverter then by Lemma 1 we can define in P = X(2) a colored poset structure

where the order is induced by the graph G1(W) and the connected components of G0(W) are

monochromatic. By Proposition 4 we can construct a height function h for P such that every

connected component of G0(W) is horizontal. In particular Pr(x |y) < Pr(x |z) if and only if

h({x, y}) < h({x, z}). Hence, the function (x, y) 7→ h({x, y}) is coherent-with-W , then W is

metrizable (a metric can be constructed as in Equation (2)). �

Remark 2. When G(W) is cycle-reverter we have the following algorithm to obtain a metric d

matching to the channel W : X → X.

1) Consider the colored poset in P = X(2) whose partial order is induced by G1(W) and the

coloring is given by the connected components of G0(W).
2) Construct a height function h for P as in the proof of Proposition 4 (see also Remark 1)

for which every monochromatic set is horizontal.

3) Let m be the maximum value of h. By Proposition 1, a metric matched to W is given by

d(x, y) =


2m − h ({x, y}) if x , y

0 if x = y

Example 6. Let X = {0, 1, 2, 3} and W : X → X be the channel with transition matrix:

[W] =

©­­­­­­­«

4/9 0 0 2/9
0 2/9 1/9 1/9

2/9 4/9 8/9 0

1/3 1/3 0 2/3

ª®®®®®®®¬
.
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We consider for X(2) the order induced by G1(W) and the coloration c as in Lemma 1 (i.e. each

color correspond to a connected component of G0(W)). Figure 5 shows the graph G(W) where the

edges corresponding to the subgraphs G1(W) and G0(W) are colored black and red respectively.

Colored cycles correspond to cycles in G(W). Note that a cycle and its reverse are in G(W) if and

only if it is a cycle in G0(W). Since there are no cycles in G(W) containing black edges, the graph

G(W) is cycle-reverter. Thus, by Lemma 1, (X(2), c) is a colored poset. We can apply the steps

given in the proof of Proposition 4 to obtain a Hasse diagram for this colored poset. This process

is illustrated in Figure 5, after three steps we obtain the height function h3 : X(2) → N given

by h3 ({2, 3}) = 0, h3 ({0, 1}) = h3 ({0, 2}) = 1 and h3 ({1, 3}) = h3 ({0, 3}) = h3 ({1, 2}) = 3. A

metric matched to W is given by d(x, y) = 6 − h3({x, y}) when x , y and 0 otherwise.

Fig. 5. The graph G(W) for the channel of Example 6 and the steps to obtain a metric matched to this channel.

V. THE BAC CHANNEL IS METRIZABLE

We consider the n-fold BAC channel BACn(p, q) with parameters p, q ∈ [0, 1] and p + q < 1.

The case pq = 0 corresponds to the Z-channels which we know they are metrizable (Theorem 6

of [4]), then we can assume pq > 0. Each entry of its transition matrix Mn(p, q) is of the form

Pr(x |y) = pa(1 − p)bqc(1 − q)d
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with a + b+ c + d = n and a + d = w(x) (the Hamming weight of x ∈ Zn
2). If we consider other

word y′ ∈ Zn
2 with Pr(x |y′) = pa′(1 − p)b′qc′(1 − q)d ′, since a + d = a′ + d′ and b + c = b′ + c′,

taking the quotient we have:

Pr(x |y)
Pr(x |y′) =

(
1 − p

q

)b−b′

·
(
1 − q

p

)d−d ′

. (4)

This identity will be useful in our proof of metrizability of the BAC channel.

Lemma 2. Let W : X → X be a channel. The graph G(W) is cycle-reverter if and only if

every sequence x0, x1, . . . , xr−1 ∈ X (r ≥ 3) satisfying xi , xi+1 and Pr(xi |xi−1) ≤ Pr(xi |xi+1)
for i : 0 ≤ i < r also satisfy Pr(xi |xi−1) = Pr(xi |xi+1) for i : 0 ≤ i < r (where the indices are

considered modulo r).

Proof. We suppose that G(W) is cycle-reverter and consider a sequence x0, x1, . . . , xr−1 ∈ X
satisfying xi , xi+1 and Pr(xi |xi−1) ≤ Pr(xi |xi+1) for i : 0 ≤ i < r . Then we have a cycle

c = (v0, . . . , vr−1, vr = v0) in G(W) given by vi = {xi, xi+1} for 0 ≤ i < r . Since this graph is

cycle-reverter its reverse cycle c is also a cycle in G(W) which implies Pr(xi |xi−1) = Pr(xi |xi+1) for

i : 0 ≤ i < r . Now we suppose that the graph G(W) is not cycle-reverter. In this case we can find

a sequence x0, x1, . . . , xr−1 ∈ X satisfying xi , xi+1 and Pr(xi |xi−1) ≤ Pr(xi |xi+1) for i : 0 ≤ i < r

where at least one inequality is strict. Indeed, consider a cycle c = (v0, v1, . . . , vr = v0) in G(W)
of minimal length r ≥ 1 whose reverse cycle c is not in this graph. Since c = c for cycles

of length r ≤ 2, we have r ≥ 3. We remark that the fact that its reverse cycle c is not in

G(W) is equivalent to the existence of some arrow in c which is also an arrow in G1(W). The

vertices in c are pairwise disjoint since otherwise we could take a sub-cycle of c containing

some arrow of G1(W) contradicting the minimality of r . If for some i : 0 ≤ i < r we have that

vi ∩ vi+1 ∩ vi+2 = {x}, then there exists y, z, t pairwise distinct such that vi = {x, y}, vi+1 = {x, z}
and vi+2 = {x, t}. Thus Pr(x |y) ≤ Pr(x |z) ≤ Pr(x |t) and the arrow vi → vi+2 is also in G(W). If

some of the arrows vi → vi+1 or vi+1 → vi+2 is in G1(W) then vi → vi+2 is also in G1(W), so

we could substituting these two arrows for the last obtaining a new cycle, whose reverse is not

in G(W) and length r − 1 which contradict the minimality of r . Therefore vi ∩ vi+1∩ vi+2 = ∅ for

all i : 0 ≤ i < r and there exists a sequence x0, x1, . . . , xr−1 ∈ X such that vi = {xi, xi+1}. This

sequence satisfies Pr(xi |xi−1) ≤ Pr(xi |xi+1) for i : 0 ≤ i < r with at least one strict inequality

(the corresponding to the edge in G1(W)). �
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Theorem 2. Let n ≥ 2 and (p, q) ∈ (0, 1]2 with p+ q < 1. Then, the channel W = BACn(p, q) is

metrizable.

Proof. By Theorem 1, it is enough to prove that its associated graph G(W) is cycle-reverter.

We assume, to the contrary, that this graph is not cycle-reverter and by Lemma 2 there exists a

sequence x0, x1, . . . , xr−1 ∈ X such that xi , xi+1 and

Pr(xi |xi−1) ≤ Pr(xi |xi+1), ∀i : 0 ≤ i < r, (5)

where the indices are taken modulo r and where at least one of these inequality is strict. We

write these conditional probability as Pr(xi |xi−1) = pai (1 − p)biqci (1 − q)di for i : 0 ≤ i < r .

Therefore Pr(xi−1 |xi) = pci (1 − p)biqai (1 − q)di for i : 0 ≤ i < r and applying Equation 4 we

obtain
Pr(xi |xi+1)
Pr(xi |xi−1)

=
pci+1(1 − p)bi+1qai+1(1 − q)di+1

pai (1 − p)biqci (1 − q)di

=

(
1 − p

q

)bi+1−bi (1 − q
p

)di+1−di
, (6)

for 0 ≤ i < r . Multiplying these r inequalities we have
r−1∏
i=0

Pr(xi |xi+1)
Pr(xi |xi−1)

=

r−1∏
i=0

(
1 − p

q

)bi+1−bi (1 − q
p

)di+1−di

=

(
1 − p

q

)Σr−1
i=0 (bi+1−bi) (1 − q

p

)Σr−1
i=0 (di+1−di)

= 1

because br = b0, dr = d0 and Σr−1
i=0 (bi+1 − bi) = Σr−1

i=0 (di+1 − di) = 0. But by (5) this product is

greater than 1 (since at least one inequality is strict) which is a contradiction. Therefore W is

metrizable. �

VI. CONCLUDING REMARKS AND FURTHER PROBLEMS

In this work we approach the problem of metrization for the n-fold BAC channels in the

sense of the definition used in [3] and [4]. An existence proof and an algorithm to construct a

metric matching to the BAC channels are provided. An interesting problem is to describe the set

D1(n, p, q) of metrics matching to the channel BACn(p, q). This set is non-empty by Theorem

2 and closed under linear combinations with positive real coefficients, so we could look for a

minimal generator for this set. Describing this set allows to choose good metrics according to a

given criterion. One possible criterion could be to select the metric according to how easy is to
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compute it. Other possible criterion could be to select the metric according to how good it fits

the channel in the sense of the next definition.

Definition 6. Let W : X → X be a channel and d be a metric compatible to W. The metric d is

matched to the channel W with order n if dm is a metric matched to Wm for all m : 1 ≤ m ≤ n,

where dm : Xm → Xm is given by

dm(x, y) =
m∑

k=1
d(xi, yi) and PrWm(x |y) =

m∏
k=1

PrW (xi |yi).

If d is matched to W with order n for all n ≥ 1, we say that the metric d matches completely

to W.

We also define the order of metrizability of W as the maximum n (possibly infinite) for which

there exists a metric matched to W with order n. It would be interesting to determine the order

of metrizability for the BAC channels or at least to determine which of these channels admit a

matched metric with order n ≥ 2. In [3] it was approached the problem of determining when a

channel W : X → X is completely metrizable for alphabets of lengths #X = 2, 3 and was proved

that the channel BAC1(p, q) has a matched metric with order ∞ if and only if p = q (symmetric

channel). In this case the Hamming metric matches completely to the channel.
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