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Abstract. The estimation of a covariance matrix from an insufficient amount of data is one of the most common
problems in fields as diverse as multivariate statistics, wireless communications, signal processing, biology, learning

theory and finance. In a joint work of Marzetta, Tucci and Simon, a new approach to handle singular covariance

matrices was suggested. The main idea was to use dimensionality reduction in conjunction with an average
over the Stiefel manifold. In this paper we continue with this research and we consider some new approaches

to handle this problem. One of the methods is called the mean conjugate estimator under Ewens measure and
uses a randomization of the sample covariance matrix over all the permutation matrices with respect to the

Ewens measure. The techniques used to attack this problem are broad and run from random matrix theory to

combinatorics.

Index terms: sample covariance matrix, random matrices, Stiefel manifold, Haar measure, Ewens measure

1. Introduction

The estimation of a covariance matrix from an insufficient amount of data is one of the most common problems
in fields as diverse as multivariate statistics, wireless communications, signal processing, biology, learning theory
and finance. For instance, the covariation between asset returns plays a crucial role in modern finance. The
covariance matrix and its inverse are the key statistics in portfolio optimization and risk management. Many
recent financial innovations involve complex derivatives, like exotic options written on the minimum, maximum
or difference of two assets, or some structured financial products, such as CDOs. All of these innovations are
built upon, or in order to exploit, the correlation structure of two or more assets. In the field of wireless
communications, covariance estimates allows us to compute the direction of arrival (DOA), which is a critical
task in smart antenna systems since it enables accurate mobile location (see [30, 31]). Another application is in
the field of biology and involves the interactions between proteins or genes in an organism and the joint time
evolution of their interactions (see [27] for instance).

Typically the covariance matrix of a multivariate random variable is not known but has to be estimated from
the data. Estimation of covariance matrices then deals with the question of how to approximate the actual
covariance matrix on the basis of samples from the multivariate distribution. Simple cases, where the number
of observations is much greater than the number of variables, can be dealt with by using the sample covariance
matrix. In this case, the sample covariance matrix is an unbiased and efficient estimator of the true covariance
matrix. However, in many practical situations we would like to estimate the covariance matrix of a set of variables
from an insufficient amount of data. In this case the sample covariance matrix is singular (non–invertible) and
therefore a fundamentally bad estimate. More specifically, let X be a random vector X = (X1, . . . , Xm)T ∈ Cm×1

and assume for simplicity that X is centered. Then the true covariance matrix is given by

(1.1) Σ = E(XX∗) = (cov(Xi, Xj))1≤i,j≤m.

Consider n independent samples or realizations x1, . . . , xn ∈ Cm and form them×n data matrixM = (x1, . . . , xn).
Then the sample covariance matrix is an m×m non–negative definite matrix defined as

(1.2) K =
1

n
MM∗.

This paper was presented in part at the International Symposium on Information Theory, Boston, 2012.
Ke Wang is supported by by HKUST Initiation Grant IGN16SC05.

1

ar
X

iv
:1

11
1.

02
35

v3
  [

m
at

h.
PR

] 
 2

1 
D

ec
 2

01
8



2 GABRIEL H. TUCCI AND KE WANG

If n → +∞ and m is fixed, then the sample covariance matrix K converges (entrywise) to Σ almost surely.
Whereas, as we mentioned before, in many empirical problems, the number of measurements is less than the
dimension (n < m), and thus the sample covariance matrix is singular. Our objective in this paper is to recover
the true covariance matrix Σ from K under the condition n < m.

The conventional treatment of covariance singularity artificially converts the singular sample covariance matrix
into an invertible (positive definite) covariance by the simple expedient of adding a positive diagonal matrix, or
more generally, by taking a linear combination of the sample covariance and the identity matrix. This procedure
is variously called “diagonal loading” or “ridge regression” [24, 9]. This one is defined as αK+βIm where α and β
are called loading parameters. The resulting matrix is positive definite, invertible and preserves the eigenvectors
of the sample covariance. The eigenvalues of αK + βIm are a uniform rescaling and shift of the eigenvalues of
K. There are many methods in choosing the optimum loading parameters, see [17], [21] and [22]. On the other
hand, if the true covariance matrix is assumed to have some level of sparsity, several works have been established,
such as the banding and thresholding methods studied by Bickel and Levina [3, 4], Wu and Pourahmadi [35],
El Karoui [10] and Rothman et al. [25], to mention a few. In more recent works, Cai, Zhang and Zhou [7] and
Cai and Zhou [8] derive the optimal rate of convergence for estimating the true covariance matrix and its inverse
under operator norm, Frobenius norm and l1 norm, for a large range of sparse covariance matrices.

In Marzetta, Tucci and Simon’s paper [20] a new approach to handle singular covariance matrices was suggested.
They use the idea of random dimension reduction. Let p ≤ n be a parameter, to be estimated later, and consider
the set of all p×m one-sided unitary matrices

(1.3) Ωp,m = {Φ ∈ Cp×m : ΦΦ∗ = Ip}.
This set has a manifold structure and is called the Stiefel manifold. Note that ΦM , that is the multiplication of
the one-sided unitary matrix Φ with the data matrix M , results in a new data matrix with reduced dimension.
And

1

n
(ΦM)(ΦM)∗ = ΦKΦ∗(1.4)

can be viewed as a new sample covariance matrix of size p. Then Φ∗(ΦKΦ∗)Φ will project the data back to
n-dimensional space. In [20], they endow the Stiefel manifold with the Haar measure, that is, the uniform
distribution on the set Ωp,m. Further, they define the operators

covp(K) = E(Φ∗(ΦKΦ∗)Φ);

invcovp(K) = E(Φ∗(ΦKΦ∗)−1Φ),

where the expectation is taken with respect to the Haar measure. The operators covp(K) and invcovp(K) are
used to estimate the true covariance matrix Σ and its inverse Σ−1 respectively. It was found that

covp(K) =
p

(m2 − 1)m

(
(mp− 1)K + (m− p)Tr(K)Im

)
,

which is the same as diagonal loading. Moreover, they investigated the properties of invcovp(K). If K is
decomposed as K = UDU∗, with D = diag(d1, . . . , dn, 0, . . . , 0), then

invcovp(K) = U invcovp(D)U∗,

and

invcovp(D) = diag(λ1, . . . , λn, µ, . . . , µ).(1.5)

In other words, invcovp(K) preserves the eigenvectors of K, and transforms all the zero eigenvalues to a non–zero
constant value. They also provided formulas to compute the values of λi and µ, and studied their asymptotic
behavior using techniques from free probability.

The explicit formula of λi’s of invcovp(D) in (1.5) is derived in [20] as a partial derivative of a rather complicated
integral (see (11) and Theorem 1 in [20]). In this paper, we further investigate the properties of the invcovp(K) or
equivalently the invcovp(D) operators. These results are presented in Section 2. We first show that invcovp(D) has
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a surprisingly simple algebraic structure, i.e. it is a polynomial of the diagonal matrix D. We also provide formulas
to compute the coefficients of the polynomial and illustrate the computation through a small dimensional example
in Appendix A. The formulas involve complicated combinatorial subjects and thus make further investigation on
the performance, i.e. optimize the error functions with respect to the parameters, rather difficult.

Therefore, it is natural to look for alternative random operators that are easy to compute, analyze and implement.
It is known that a random unitary matrix with Haar measure behaves asymptotically like a random uniform
permutation matrix (see [33] and [34]). Our first attempt is to conjugate the sample covariance matrix K with
a permutation matrix Mσ. In [32], the mean conjugate K1 = E(MσKM

T
σ ) of a square matrix K averaging over

uniform permutation matrix Mσ is studied. It is found in [32] that K1 is always a scalar multiple of identity
matrix plus a rank-one matrix (see Remark 3.2), which is a well-conditioned matrix in most cases.

Now we investigate the mean conjugate of a matrix K under a generalized measure on the permutation group,
called the Ewens measure with parameter θ > 0 (see (3.1) below). We obtain a closed form expression for
the estimator Kθ = E(MσKM

T
σ ) in Theorem 3.1 using combinatorial techniques. We find that the averaging

operation on diagonal matrices is equivalent to the conventional diagonal loading (see Remark 3.3). For the
matrix K with certain structures, the averaging over all permutation matrices under Ewens measure by choosing
θ propositional to the dimension m, is asymptotically equivalent to linear shrinkage estimator proposed by Lenoit
and Wolf [18]. This result is proved in Section 5.1. We propose this new method to estimate the covariance
matrices and call it the mean conjugate estimator under Ewens measure.

In Section 4, we extend the ideas of constructing the covp(K) and invcovp(K) operators by replacing random
unitary matrices with random permutation matrices. We first extend the definition of permutation matrices to
get p×m unitary matrices Vσ and use the Ewens measure in Section 3. Then we define two new operators

Kθ,m,p := E
(
V Tσ (VσKV

T
σ )Vσ

)
K̃θ,m,p := E

(
V Tσ (VσKV

T
σ )+Vσ

)
to estimate Σ and Σ−1 respectively. Here A+ is the Moore-Penrose pseudo inverse of the A. If A is an m × n
complex or real matrix, then A+ is an n × m complex or real matrix that satisfies AA+ and A+A are both
Hermitian or symmetric, AA+A = A and A+AA+ = A. For any matrix A, the pseudo inverse A+ always exists.
We provide an explicit formula for Kθ,m,p and an inductive formula to compute K̃θ,m,p.

In Section 5, we first study the asymptotic behavior for certain matrices with the mean conjugate estimator
under Ewens measure. We conduct some simulation study focusing on the mean conjugate estimator under
Ewens measure. However, we do not include the simulations on the hybrid operators Kθ,m,p and K̃θ,m,p since
currently we do not have adequate understanding on them from explicit formulas obtained in Section 4.

Notation: Throughout this paper, 1S is the indicator function of a set S. We sometimes use [n] to present
the set {1, 2, . . . , n}, and Tr(A) is the trace of a matrix A. For an m × m matrix A, we use the (normalized)

Frobenius norm ‖A‖F = 1√
m

√
Tr(AA∗). We denote A+ the Moore-Penrose pseudo inverse of the matrix A. For

a vector v = (v1, . . . , vm), we use the Euclidean norm ‖v‖2 =
√∑m

i=1 |vi|2. We use v(k) to denote the kth entry
of v. We use e = (1, . . . , 1)T to represent the all-one vector and ei are the standard basis vectors. We use the
notation κ ` n to indicate that κ is an integer partition of the positive integer n.

Acknowledgement: We would like to thank the anonymous referees for their careful reading and many insightful
suggestions.

2. Some Properties of the invcovp Estimator

We first collect some preliminaries about Schur polynomials that will be needed later in studying the properties
of the invcovp estimator.
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2.1. Preliminaries of Schur polynomials. A symmetric polynomial is a polynomial P (x1, x2, . . . , xn) in n
variables such that if any of the variables are interchanged one obtains the same polynomial. Formally, P is a
symmetric polynomial if for any permutation σ of the set {1, 2, . . . , n} one has that

P (xσ(1), xσ(2), . . . , xσ(n)) = P (x1, x2, . . . , xn).

Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one
variable and its coefficients, since the coefficients can be given by a symmetric polynomial expressions in the
roots. Symmetric polynomials also form an interesting structure by themselves. The resulting structures, and in
particular the ring of symmetric functions, are of great importance in combinatorics and in representation theory
(see for instance [13, 23, 19, 26] for more on details on this topic).

The Schur polynomials are certain symmetric polynomials in n variables. This class of polynomials is also very
important in representation theory since they are the characters of irreducible representations of the general
linear groups. The Schur polynomials are indexed by partitions. A partition of a positive integer n, also called
an integer partition, is a way of writing n as a sum of positive integers. Two partitions that differ only in the
order of their summands are considered to be the same partition. Therefore, κ = (κ1, . . . , κn) ` n is a partition
of a positive integer of n if

n∑
i=1

κi = n with κ1 ≥ κ2 ≥ . . . ≥ κn ≥ 0.

The κi’s are called the parts of κ. Notice that some of the κi could be zero. Sometimes, we use another equivalent
way to represent a partition. We write κ = (1r1 , 2r2 , . . . , nrn) ` n where ri is the number of i appearing as parts
in κ. Thus

∑n
i=1 i · ri = n. Integer partitions are usually represented by the so called Young’s diagrams (also

known as Ferrers’ diagrams). A Young diagram is a finite collection of boxes, or cells, arranged in left–justified
rows, with the row lengths weakly decreasing (each row has the same or shorter length than its predecessor).
Listing the number of boxes on each row gives a partition κ of a non-negative integer n, the total number of
boxes of the diagram. The Young diagram is said to be of shape κ, and it carries the same information as that
of partition. For instance, in Figure 1 we can see the Young diagram corresponding to the partition (5, 4, 1) of
the number 10. Given a partition κ of m. Assume m ≥ n. The Schur polynomial of shape κ in the variables

Figure 1. Young digram representation of the partition (5, 4, 1).

(d1, . . . , dn) is defined as

sκ(d1, . . . , dn) =
det(d

n+κj−j
i )ni,j=1

det(dn−ji )ni,j=1

.

Indeed the denominator det(dn−ji )ni,j=1 is the determinant of the Vandermonde matrix

∆(d1, . . . , dn) =


1 1 · · · 1
d1 d2 · · · dn
...

...
. . .

...
dn−1

1 dn−1
2 · · · dn−1

n

 .(2.1)
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The numerator det(d
n+κj−j
i )ni,j=1 is an alternating polynomial (in other words it changes sign under any trans-

position of the variables):

det(d
n+κj−j
i )ni,j=1 =

∑
σ∈Sn

ε(σ)dκ1

σ(1) · · · d
κn
σ(n),

where Sn is the permutation group of the set {1, 2, . . . , n} and ε(σ) is the sign of the permutation σ.

Thus sκ(d1, . . . , dn) is a symmetric function because the numerator and denominator are both alternating, and
is a polynomial since all alternating polynomials are divisible by the Vandermonde determinant (see [13, 19, 26]
for more details here). For instance, s(2,1,1)(x1, x2, x3) = x1 x2 x3 (x1 + x2 + x3) and

s(2,2,0)(x1, x2, x3) = x2
1 x

2
2 + x2

1 x
2
3 + x2

2 x
2
3 + x2

1 x2 x3 + x1 x
2
2 x3 + x1 x2 x

2
3.

Another related definition is the Hook length, hook(x), of a box x in Young diagram of shape κ. This is defined
as the number of boxes that are in the same row to the right of it plus those boxes in the same column below it,
plus one (for the box itself). For instance, in Figure 1, the hook length of the top-left corner box is 4 + 2 + 1 = 7.
The product of the hook’s length of a partition is the product of the hook lengths of all the boxes in the partition.

Next, we collect a few properties of Schur polynomials sκ(d1, . . . , dn) used in later proofs. For an n×n matrix A
with eigenvalues α1, . . . , αn, we use sκ(A) = sκ(α1, . . . , αn). Denote by (n−k, 1k) the partition (n−k, 1, 1, . . . , 1)
with k ones. One of the basic properties of Schur polynomials is that for any integer l ≥ 1,

Tr(Al) =

n−1∑
k=0

(−1)ks(n−l,1l)(A).(2.2)

Let Dn be a diagonal matrix of size n× n. Consider Ωp,n, the Stiefel manifold defined in (1.3), associated with
the Haar measure dφ. For any Φ ∈ Ωp,n, it is proved in [12, equation (18)] that∫

Ωp,n

sκ(ΦDnΦ∗) dφ =
sκ(Dn)sκ(In)

sκ(Ip)
.(2.3)

Schur polynomials have a close connection with the border strips of partitions. We follow the definitions in
Stanley’s book [28, Chapter 7.17]. A border strip is a set of boxes in the Young diagram that forms a contiguous
strip and has at most one box on each diagonal. The height of a border strip is one less than its number of rows.
Given a partition λ ` n and a decomposition ρ = (ρ1, . . . , ρl) of n. A border strip tableau χκ(ρ) of shape κ and
type ρ is obtained by replacing each box in the Young diagram of κ by one of the integers {1, 2, . . . , l} so that
the boxes replaced by i form a ρi border strip in the diagram which consists of all boxes replaced by {1, 2, . . . , i}.

By the celebrated Murnaghan–Nakayama rule (see Corollary 7.17.5 in [28]),

(2.4) s(n−j,1j)(D) =
∑

ρ=(1r1 ,2r2 ,...,nrn )`n

χ(n−j,1j)(ρ)

n∏
l=1

Tr(Dl)rl

lrlrl!
,

where χκ(ρ) =
∑
T (−1)ht(T ) sums over all border-strip tableaux of shape κ and type ρ. Here ht(T ) is the height

of a border-strip tableaux (see Section 7.17 in [28] for more details).

2.2. A new property of the invcovp estimator. Recall invcovp(K) = E(Φ∗(ΦKΦ∗)−1Φ). We first collect the
properties of the invcovp(K) estimator obtained in the previous work of Marzetta, Tucci and Simon [20, Section
IV and VI].

Proposition 2.2.1. For a positive semi-definite matrix K of size m, one can decompose K = UDU∗ where U
is unitary and D = diag(d1, . . . , dm).

(1) The eigenvectors of K are preserved under the invcovp operatoration. More precisely, invcovp(K) =
U invcovp(D)U∗ and invcovp(D) is diagonal.



6 GABRIEL H. TUCCI AND KE WANG

(2) The zero-eigenvalues of K are converted to equal positive values. If D = diag(Dn, 0m−n) where Dn =
(d1, . . . , dn) is of full rank, then invcovp(D) = diag(ΛL(Dn), µIm−n) where ΛL(Dn) = diag(λ1, . . . , λn).
Besides, for any 1 ≤ k ≤ n,

λk =
∂

∂dk

∫
Ωp,n

Tr(log(ΦDnΦ∗)) dφ and µ =
det(G)

det(∆(d1, . . . , dn))
.(2.5)

Here ∆(d1, . . . , dn) is the Vandermonde matrix in (2.1) and G is the matrix constructed by replacing the
pth row of ∆(d1, . . . , dn) by the row

(d
n−(p+1)
1 log(d1), · · · , dn−(p+1)

n log(dn)).

We prove a new property of the invcovp(K) estimator. We will show that invcovp(K) has a surprisingly simple
algebraic structure despite its rather complicated expression. Assume K = UDU∗ where U is unitary and
D = diag(d1, . . . , dm). By Proposition 2.2.1, it is enough to study the properties of invcovp(D).

Let A(D) be the algebra generated by the matrices D and the m×m identity matrix Im. By the Cayley–Hamilton
Theorem, it is clear that

(2.6) A(D) =
{
αm−1D

m−1 + αm−2D
m−2 + . . .+ α1D + α0Im : αi ∈ C

}
.

We define Dm as the set of all m×m diagonal matrices.

Lemma 2.3. Let D = diag(d1, . . . , dm) be an m×m diagonal matrix. If di 6= dj for i 6= j then A(D) = Dm. If
di = dj for some i 6= j then

A(D) = {diag(b1, . . . , bi, . . . , bi, . . . , bm) : bk ∈ C},

the set of all diagonal matrices where the ith and jth entries are equal.

Proof. First assume di 6= dj for all i 6= j. It is clear to see A(D) ⊂ Dm. On the other hand, for any B =
diag(b1, . . . , bm) ∈ Dm, we form a system of linear equations, b1

...
bm

 =

1 d1 d2
1 . . . dm−1

1
... . . .

...
1 dm d2

m . . . dm−1
m


 α0

...
αm−1

 := V

 α0

...
αm−1

 .

The matrix V is a Vandermonde matrix with det(V ) =
∏
i<j(di − dj). The matrix V is invertible by our

assumption. Thus we can find a vector (α0, . . . , αm−1) such that

B = α0Im + α1D + . . .+ αm−1D
m−1 ∈ A(D).

This completes the proof. To prove the second part we use essentially the same approach as before. �

Theorem 2.4. The matrix invcovp(D) belongs to the algebra A(D).

Proof. By Proposition 2.2.1, if the matrix D is equal to D = diag(Dn, 0m−n) where Dn = (d1, . . . , dn) is of full
rank, then invcovp(D) = diag(ΛL(Dn), µIm−n) where ΛL(Dn) = diag(λ1, . . . , λn). And

λk =
∂F (d1, . . . , dn)

∂dk
,

where we define F (d1, . . . , dn) :=
∫

Ωp,n
Tr(log(ΦDnΦ∗))dφ for brevity. Recall Φ ∈ Ωp,n defined in (1.3). By (2.2)

and (2.3), for any integer l ≥ 1∫
Ωp,n

Tr
(
(ΦDnΦ∗)

)l
dφ =

p−1∑
k=0

(−1)kc
(n,p)
k s(l−k,1k)(Dn),
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where s(l−k,1k)(Dn) are the Schur polynomials and c
(n,p)
k are explicit constants (see (78) in [20]). From Lemma

2.3, it is enough to show that if di = dj for some i 6= j, then λi = λj . By linearity and continuity, F (d1, . . . , dn)
is symmetric. Hence assuming di = dj , ∂F/∂di = ∂F/∂dj , which implies λi = λj . This completes the proof. �

2.5. Formulas for computing E(Φ∗(ΦDnΦ∗)lΦ). In order to obtain the explicit formulas of covp and invcovp
in [20], it involves computing E(Φ∗f(ΦDnΦ∗)Φ) for a differentiable function f(x) (see parts A and B in section
VI in [20]) and a diagonal matrix Dn = diag(d1, . . . , dn) with all di’s positive. For instance, [20, Lemma 1] asserts
that if f is differentiable on the interval [min{di},max{di}], then

∂

∂dk

∫
Ωp,n

Tr(f(ΦDnΦ∗)) dφ =
(∫

Ωp,n

Φ∗f ′(ΦDnΦ∗)Φ dφ
)
kk

= E
(
Φ∗f ′(ΦDnΦ∗)Φ

)
kk
.

Note the eigenvalue λk of invcovp(D) given in (2.5) is the left hand side of above identity with f(x) = log x. To
further understand the invcovp operator, it is helpful to have the explicit formula for the eigenvalues λk’s. By
continuity and linearity, it is enough to provide formulas for computing E(Φ∗(ΦDnΦ∗)lΦ). In this subsection, we
derive such formulas.

First, we observe that E(Φ∗(ΦDnΦ∗)lΦ) is still a diagonal matrix. The idea of proof is exactly the same as the
proof of Proposition 2.2.1. We recall a fact that a matrix A is diagonal if and only if Ω∗AΩ = A for any diagonal
unitary matrix Ω. Note that

Ω∗E(Φ∗(ΦDnΦ∗)lΦ)Ω = E
(

(ΦΩ)∗
(
ΦΩ(Ω∗DnΩ)(ΦΩ)∗

)l
ΦΩ
)

= E(Φ∗(ΦDnΦ∗)lΦ),

where we use that ΦΩ has the same distribution as Ω, and Ω∗DnΩ = Dn.

To compute the diagonal entries of E(Φ∗(ΦDnΦ∗)lΦ), using Lemma 1 in [20], we have(
E(Φ∗(ΦDnΦ∗)lΦ)

)
ii

=
(∫

Ωp,n

Φ∗(ΦDnΦ∗)lΦ dφ
)
ii

=
∂

∂di

∫
Ωp,n

1

l + 1
Tr(ΦDnΦ∗)l+1 dφ.(2.7)

Denote N = l + 1 for convenience. By (2.2) and (2.3), we see that∫
Ωp,n

Tr
(
(ΦDnΦ∗)N

)
dφ =

p−1∑
j=0

(−1)j
s(N−j,1j)(Ip)

s(N−j,1j)(In)
s(N−j,1j)(Dn)

=

p−1∑
j=0

(−1)j
(N + p− (j + 1))!(n− (j + 1))!

(N + n− (j + 1))!(p− (j + 1))!
s(N−j,1j)(Dn).(2.8)

Using the formula (2.4), one has

∂s(N−j,1j)(Dn)

∂di
=

N∑
k=1

dk−1
i

( ∑
ρ=(1r1 ,2r2 ,...,NrN )`N

χ(N−j,1j)(ρ)
rkTr(Dk)rk−1

krk−1rk!

∏
l 6=k

Tr(Dl)rl

lrlrl!

)

:=

N∑
k=1

dk−1
i · c̃k−1 =

N−1∑
k=0

c̃kd
k
i .

(2.9)

Therefore, combining (2.7) and (2.8), we obtain

(
E(Φ(Φ∗DΦ)lΦ∗)

)
ii

=
1

l + 1

p−1∑
j=0

(−1)j
(l + 1 + p− (j + 1))!(n− (j + 1))!

(l + 1 + n(j + 1))!(p− (j + 1))!

∂s(N−j,1j)(Dn)

∂di

=

l∑
k=0

( c̃k
l + 1

p−1∑
j=0

(−1)j
(l + p− j)!(n− j − 1))!

(l + n− j)!(p− j − 1)!

)
dki :=

l∑
k=0

akd
k
i .



8 GABRIEL H. TUCCI AND KE WANG

The coefficients ak depend only on Dn, p and l. Thus we are able to show E(Φ∗(ΦDnΦ∗)lΦ) is a polynomial in
Dn of degree l,

E
(
Φ∗(ΦDnΦ∗)lΦ

)
=

l∑
k=0

akD
k
n

where the coefficients are

ak =
1

l + 1

( p−1∑
j=0

(−1)j
(l + p− j)!(n− j − 1))!

(l + n− j)!(p− j − 1)!

)
·
( ∑
ρ=(1r1 ,...,(l+1)rl+1 )`l+1

χ(l+1−j,1j)(ρ)
rk+1Tr(Dk+1)rk+1−1

(k + 1)
rk+1−1

rk+1!

∏
l 6=k+1

Tr(Dl)rl

lrlrl!

)
.

In the Appendix A, we provide a small dimensional example to show how to apply the derived formula for
computation.

3. The mean conjugate estimator under Ewens measure

Let Sm be the set of permutations of the set [m] := {1, 2, . . . ,m}. For each permutation σ ∈ Sm, by cycle
decomposition, σ can be viewed as the disjoint union of cycles of varying lengths. The Ewens measure is a
probability measure on the set of permutations that depends on a parameter θ > 0. In this measure, each
permutation has a weight proportional to its total number of cycles. More specifically, for each permutation σ in
Sm its probability is equal to

pθ,m(σ) =
θ#cycl(σ)

θ(θ + 1) . . . (θ +m− 1)
,(3.1)

where θ > 0 and #cycl(σ) is the number of cycles in σ. The case θ = 1 corresponds to the uniform measure. This
measure has recently appeared in mathematical physics models (see e.g. [2] and [11]) and one has only recently
started to gain insight into the cycle structures of such random permutations.

Let σ be a permutation in Sm, the corresponding permutation matrix Mσ is the m × m matrix defined as
Mσ(i, j) = 1σ(i)(j). If we denote ei to be a 1×m vector such that the i–th entry is equal to 1 and all the others
entries are 0, then

Mσ =

 eσ(1)

...
eσ(m)

 ,

which is, of course, a unitary matrix. Given the sample covariance matrix K we define the new estimator for Σ
as

(3.2) Kθ := E(MσKM
∗
σ),

where the expectation is taken with respect to the Ewens measure of parameter θ.

Theorem 3.1. Let K = (aij) be an m×m matrix in Cm×m. Then Kθ = E(MσKM
∗
σ) is an m×m matrix such

that the diagonal terms satisfy

(3.3) (Kθ)ii =
θ − 1

θ +m− 1
aii +

1

θ +m− 1
Tr(K),
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and the non–diagonal terms (i 6= j) satisfy

(Kθ)ij =
1

(θ +m− 2)(θ +m− 1)

(
θ2aij + (θ − 1)aji + θ

∑
k 6=i,j

(aik + akj) +
∑

l 6=i,k 6=j
k 6=l

alk

)
=

1

(θ +m− 2)(θ +m− 1)

(
(θ2 − 1)aij + (θ − 1)aji + (θ − 1)

∑
k 6=i,j

(aik + akj) +
∑
l 6=k

alk

)
.

(3.4)

Remark 3.2. If θ = 1, then

K1 = α
eeT

m
+ β(Im −

eeT

m
) where α =

eTKe

m
=

∑
i,j aij

m
, β =

Tr(K)− α
m− 1

(3.5)

and e = (1, 1, . . . , 1)T . This result already been shown in Prop. 2.2 of [32].

Remark 3.3. If K = D = diag(d1, . . . , dm), then

Kθ =
θ − 1

θ +m− 1
D +

Tr(D)

θ +m− 1
Im,

which corresponds to the diagonal loading.

Proof. First,

MσKM
∗ =

 eσ(1)

...
eσ(m)

K
(
e∗σ(1) · · · e∗σ(m)

)
=
( m∑
l=1

m∑
k=1

akleσ(i)(k)eσ(j)(l)
)

= (aσ(i)σ(j))1≤i,j≤m.

For diagonal terms, recall the probability measure pθ,m in (3.1),

(Kθ)ii =
(
E(MσKM

∗
σ)
)
ii

=
∑
σ∈Sm

pθ,m(σ)aσ(i)σ(i) = aii
∑
σ∈Sm
σ(i)=i

pθ,m(σ) +
∑
l 6=i

all
∑
σ∈Sm
σ(i)=l

pθ,m(σ)

= aii
θ

θ +m− 1

∑
σ̃∈Sm−1

pθ,m−1(σ̃) +
∑
l 6=i

all
θ +m− 1

∑
σ̂(l)

pθ,m−1(σ̂(l))

=
θ

θ +m− 1
aii +

1

θ +m− 1

∑
l 6=i

all =
θ − 1

θ +m− 1
aii +

1

θ +m− 1
Tr(K).

Now we compute the off–diagonal terms (Kθ)ij (i 6= j). For σ ∈ Sm, if σ(i) = i and σ(j) = j then σ = (i)(j)σ1

with σ1 ∈ Sm−2, #cycl(σ) = #cycl(σ1) + 2 and

pθ,m(σ) =
θ2

(θ +m− 2)(θ +m− 1)
pθ,m−2(σ1).

If σ(i) = j and σ(j) = i we erase i and j from σ to obtain σ2 ∈ Sm−2, and

pθ,m(σ) =
θ

(θ +m− 2)(θ +m− 1)
pθ,m−2(σ2).

If σ(i) = i and σ(j) = k 6= i, j then σ = (i)σ̂ with σ̂ ∈ Sm−1 and #cycl(σ) = #cycl(σ̂) + 1. Furthermore, we can
erase j from σ̂ to get a new permutation σ3(k) ∈ Sm−2 such that #cycl(σ3(k)) = #cycl(σ̂) and finally

pθ,m(σ) =
θ

(θ +m− 2)(θ +m− 1)
pθ,m−2(σ3(k)).

Notice that
∑
σ3(k) pθ,m−2(σ3(k)) = 1.
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If σ(i) = l 6= i, j and σ(j) = j then as above we can have σ4(l) ∈ Sm−2 such that

pθ,m(σ) =
θ

(θ +m− 2)(θ +m− 1)
pθ,m−2(σ4(l))

and again
∑
σ4(l) pθ,m−2(σ4(l)) = 1.

If σ(i) = l 6= i and σ(j) = k 6= j (k 6= l) we exclude the case that σ(i) = j, σ(j) = i and we erase i and j from σ
to obtain σ5(l, k) ∈ Sm−2. Thus

pθ,m(σ) =
1

(θ +m− 2)(θ +m− 1)
pθ,m−2(σ5(l, k))

and
∑
σ5(l,k) pθ,m−2(σ5(l, k)) = 1.

Therefore, for i 6= j

(Kθ)ij =
∑
σ∈Sm

pσ,m(σ)aσ(i)σ(j)

= aij
θ2

(θ +m− 2)(θ +m− 1)

∑
σ1∈Sm−2

pθ,m−2(σ1)

+ aji
θ

(θ +m− 2)(θ +m− 1)

∑
σ2∈Sm−2

pθ,m−2(σ2)

+
∑
k 6=i,j

aik
θ

(θ +m− 2)(θ +m− 1)

∑
σ3(k)∈Sm−2

pθ,m−2(σ3(k))

+
∑
l 6=i,j

alj
θ

(θ +m− 2)(θ +m− 1)

∑
σ4(l)∈Sm−2

pθ,m−2(σ4(l))

+
∑

k 6=i,j and l 6=i,j
k 6=l

∑
σ5(k,l)∈Sm−2

alk
1

(θ +m− 2)(θ +m− 1)
pθ,m−2(σ5(k, l))

=
1

(θ +m− 2)(θ +m− 1)

(
θ2aij + (θ − 1)aji + θ

∑
k 6=i,j

(aik + akj) +
∑

k 6=i,j and l 6=i,j
k 6=l

alk

)
.

�

4. Hybrid Method

In this section, we combine the ideas of the first two methods to create a third hybrid method. First, we extend
the definition of a permutation. For an integer p ≤ m, let

Sp,m :=
{
σ : σ an injection from {1, 2, . . . , p} to {1, 2, . . .m}

}
.

The size of the set Sp,m is m!
(m−p)! and it is clear that Sm,m is the set of all permutations on [m]. For σ ∈ Sp,m,

the associated p×m matrix takes the form

Vσ :=


eσ(1)

eσ(2)

...
eσ(p)

 ,
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where eσ(i) = (e1
σ(i), e

2
σ(i), . . . , e

m
σ(i)) is a 1×m row vector with the σ(i)–th entry 1 and all others 0. Notice

(4.1) VσV
T
σ = Ip,

and

(4.2) Pσ := V T
σ Vσ = diag(bσ1 , . . . , b

σ
m),

where

bσi =

p∑
l=1

(eσ(l)(i))
2 =

{
1 if i ∈ {σ(1), . . . , σ(p)},
0 otherwise.

Next, we use the Ewens measure on the permutation sets to define a probability on the set Sp,m. For each
σ ∈ Sp,m, consider the set

Ωσ :=
{
σ̃ ∈ Sm : σ̃{1,...,p} = σ

}
.

In other words, Ωσ is the set of all permutations in Sm whose restriction to the set {1, 2, . . . , p} is equal to σ.
Recall that pθ,m is the Ewens measure on Sm with parameter θ. Define the probability measure on Sp,m for
σ ∈ Sp,m as

(4.3) µθ,m,p(σ) := pθ,m(Ωσ) =
∑
σ̃∈Ωσ

pθ,m(σ̃).

Now we are ready to introduce two new operators

(4.4) Kθ,m,p := E
(
V Tσ (VσKV

T
σ )Vσ

)
(4.5) K̃θ,m,p := E

(
V Tσ (VσKV

T
σ )+Vσ

)
,

where (VσKV
T
σ )+ is the Moore–Penrose pseudo inverse of the matrix VσKV

T
σ . Recall the Moore–Penrose pseudo

inverse of a square matrix A is a matrix A+ of the same size and satisfies AA+ and A+A are both Hermitian,
AA+A = A and A+AA+ = A. We use Kθ,m,p as an estimate for Σ and K̃θ,m,p for Σ−1. Now we show a few
results on these new estimators.

Theorem 4.1. Let K = (aij) be an m×m complex matrix. Then Kθ,m,p as in (4.4) is an m×m matrix such
that the diagonal entries are equal to

(Kθ,m,p)ii =


θ+p−1
θ+m−1aii, if 1 ≤ i ≤ p,

p
θ+m−1aii, if p+ 1 ≤ i ≤ m,

and the non–diagonal entries, assuming i < j (if j < i then exchange i and j in the following expression) are
equal to

(Kθ,m,p)ij =



(θ+p−1)(θ+p−2)
(θ+m−1)(θ+m−2)aij , if 1 ≤ i < j ≤ p,

(p−1)(θ+p−1)
(θ+m−1)(θ+m−2)aij , if 1 ≤ i ≤ p < j ≤ m,

p(p−1)
(θ+m−1)(θ+m−2)aij , if p < i < j ≤ m.

Remark 4.2. In the special case that K = diag(d1, . . . , dm) is a diagonal matrix , then

Kθ,m,p =
p

θ +m− 1
K +

θ − 1

θ +m− 1
diag(d1, . . . , dp, 0, . . . , 0).

For instance, if p = 1 and m = 3 then

Kθ,3,1 =
1

θ + 2
diag(θa11, a22, a33).
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Remark 4.3. In the general case with p = 2 and m = 3 then

Kθ,3,2 =
1

θ + 2

(θ + 1)a11 θa12 a13

θa21 (θ + 1)a22 a23

a31 a32 2a33

 .

Proof. Recall from Equation (4.2) that

Pσ = V T
σ Vσ = diag(bσ1 , . . . , b

σ
m),

thus V Tσ (VσKV
T
σ )Vσ = (bσi b

σ
j aij)1≤i,j≤m, where

bσi =

p∑
l=1

(eσ(l)(i))
2 =

{
1 if i ∈ {σ(1), . . . , σ(p)},
0 otherwise.

For the diagonal entries, if 1 ≤ i ≤ p,

(Kθ,m,p)ii =
∑

σ∈Sm,p

µθ,m,p(σ)(bσi )2aii = aii

p∑
l=1

∑
σ∈Sm,p,σ(l)=i

µθ,m,p(σ)

= aii

( ∑
σ∈Sm,p,σ(i)=i

µθ,m,p +
∑
l 6=i

∑
σ∈Sm,p,σ(l)=i

µθ,m,p

)
= aii

( θ

θ +m− 1

∑
σ′∈Sm−1,p−1

µθ,m−1,p−1 +
p− 1

θ +m− 1

∑
σ′∈Sm−1,p−1

µθ,m−1,p−1

)
=

θ + p− 1

θ +m− 1
aii.

If p+ 1 ≤ i ≤ m,

(Kθ,m,p)ii =
∑

σ∈Sm,p

µθ,m,p(σ)(bσi )2aii = aii

p∑
l=1

∑
σ∈Sm,p,σ(l)=i

µθ,m,p(σ)

= aii

( p

θ +m− 1

∑
σ′∈Sm−1,p−1

µθ,m−1,p−1

)
=

p

θ +m− 1
aii.

For non-diagonal entries, if 1 ≤ i < j ≤ p, which turns out to be the most complicated case, bσi b
σ
j aij is non zero

if i, j ∈ {σ(1), . . . , σ(p)}. Thus

(Kθ,m,p)ij = aij
∑

s,t∈[p],s 6=t

∑
σ∈Sm,p,

σ(s)=i,σ(t)=j

µθ,m,p(σ).

We divide the previous sum into five parts:

(1) If σ(i) = i and σ(j) = j we “erase” i and j from the sets [p] and [m] to get a new injection σ1 from
[p]\{i, j} to [m]\{i, j} with #cycl(σ) = #cycl(σ1) + 2;

(2) If σ(s) = i for some s ∈ [p]\{i, j} and σ(j) = j we “erase” j from the sets [p] and [m] and consider
s and i as one number s̃. Then we get a new injection σ2 : [p] ∪ s̃\{i, j, s} → [m] ∪ s̃\{i, j, s} with
#cycl(σ) = #cycl(σ2) + 1;

(3) If σ(t) = j for some t ∈ [p]\{i, j} and σ(i) = i then, similarly to case (2), by exchanging the roles of i
and j we can get a new injection σ3 with #cycl(σ) = #cycl(σ3) + 1;
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(4) If σ(s) = i and σ(t) = j with s 6= t for some s ∈ [p]\{i} and t ∈ [p]\{j} then we consider s and i as a new
number s̃ and t and j as a new number t̃ to get a new injection σ4 : [p]∪s̃, t̃\{i, j, s, t} → [m]∪s̃, t̃\{i, j, s, t}
with #cycl(σ) = #cycl(σ4);

(5) If σ(i) = j and σ(j) = i we “erase” i and j to get a new injection σ5 : [p]\{i, j} → [m]\{i, j} with
#cycl(σ) = #cycl(σ5) + 1.

(Kθ,m,p)ij = aij
θ2

(θ +m− 1)(θ +m− 2)

∑
σ1∈Sm−2,p−2

µθ,m−2,p−2(σ1)

+
aijθ(p− 2)

(θ +m− 1)(θ +m− 2)

∑
σ2∈Sm−2,p−2

µθ,m−2,p−2(σ2)

+
aijθ(p− 2)

(θ +m− 1)(θ +m− 2)

∑
σ3∈Sm−2,p−2

µθ,m−2,p−2(σ3)

+ aij
(p− 2)2 + (p− 2)

(θ +m− 1)(θ +m− 2)

∑
σ4∈Sm−2,p−2

µθ,m−2,p−2(σ4)

+
aijθ

(θ +m− 1)(θ +m− 2)

∑
σ5∈Sm−2,p−2

µθ,m−2,p−2(σ5)

=
(θ + p− 1)(θ + p− 2)

(θ +m− 1)(θ +m− 2)
aij .

For 1 ≤ i ≤ p < j ≤ m we only need consider two cases: s = i and s 6= i,

(Kθ,m,p)ij = aij
θ(p− 1)

(θ +m− 1)(θ +m− 2)

∑
σ1∈Sm−2,p−2

µθ,m−2,p−2(σ1)

+ aij
(p− 1)2

(θ +m− 1)(θ +m− 2)

∑
σ2∈Sm−2,p−2

µθ,m−2,p−2(σ2)

= aij
(p− 1)(p+ θ − 1)

(θ +m− 1)(θ +m− 2)
.

For p < i < j ≤ m,

(Kθ,m,p)ij = aij
p(p− 1)

(θ +m− 1)(θ +m− 2)
.

�

Now we consider the estimate K̃θ,m,p as in Equation (4.5). First we analyze the case when K is diagonal.

Theorem 4.4. Let D = Dm = diag(d1, . . . , dn, 0, . . . , 0), then for p ≤ n,

K̃θ,m,p = E
(
V Tσ (VσDV

T
σ )+Vσ

)
=

θ + p− 1

θ +m− 1
D+ − θ − 1

θ +m− 1
diag(d−1

1 , . . . , d−1
p , 0, . . . , 0),

where D+ = diag(d−1
1 , . . . , d−1

n , 0, . . . , 0) by definition.

Proof. First we notice that Wσ := VσDV
T
σ = (

∑n
i=1 dleσ(i)(l)eσ(j)(l))1≤i,j≤p is a diagonal matrix. For 1 ≤ i ≤ p,

(Wσ)ii =

n∑
l=1

dl(eσ(i)(l))
2 =

{
dσ(i) if σ(i) ∈ [n],
0 otherwise.

Thus
Wσ = diag(dσ(1)1σ(1)∈[n], . . . , dσ(p)1σ(p)∈[n])
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and

W+
σ = diag

(
(dσ(1)1σ(1)∈[n])

+, . . . , (dσ(p)1σ(p)∈[n])
+
)
.

Next V Tσ W
+Vσ =

∑p
l=1(dσ(l)1σ(l)∈[n])

+ is still a diagonal matrix where for 1 ≤ i ≤ m

(V Tσ W
+Vσ)ii =

{
(dσ(l)1σ(l)∈[n])

+ if i ∈ {σ(1), . . . , σ(p)},
0 otherwise.

Therefore K̃θ,m,p is also diagonal and

(K̃θ,m,p)ii =

p∑
l=1

∑
σ∈Sm,p,
σ(l)=i

µθ,m,p(σ)(di1i∈[n])
+.

For 1 ≤ i ≤ n,

(K̃θ,m,p)ii = d−1
i

∑
σ∈Sm,p,
σ(l)=i

µθ,m,p(σ) =


d−1
i

p
θ+m−1 , if 1 ≤ i ≤ p,

d−1
i

θ+p−1
θ+m−1 , if p+ 1 ≤ i ≤ n.

For n+ 1 ≤ i ≤ m, (K̃θ,m,p)ii = 0. �

Obtaining a close form expression for Equation (4.5) in the general case seems to be much more challenging.
However, we are able to obtain an inductive formula with the help of a result of Kurmayya and Sivakumar’s
result [16].

Theorem 4.5 (Theorem 3.2, [16]). Let M = [A a] ∈ Rm×n be a block matrix, with A ∈ Cm×(n−1) and a ∈ Cm
being written as a column vector. Let B = M∗M and s = ‖a‖2 − a∗AA+a. Then if s 6= 0

B+ =

(
(AA∗)+ + s−1(A+a)(A+a)∗ −s−1(A+a)

−s−1(A+a)∗ s−1

)
,

and if s = 0 ,

B+ =

(
(AA∗)+ + ‖b‖2(A+a)(A+a)∗ − (A+a)(A+b)∗ − (A+b)(A+a)∗ −‖b‖2A+a+A+b

−‖b‖2(A+a)∗ + (A+b)∗ ‖b‖2
)
,

where

b = (A∗)+(I +A+a(A+a)∗)−1A+a.

For a non–negative definite matrix K, one can decompose

K = UDU∗ =


u1

u2

...
um



d1

d1

. . .

dm

(u∗1 u∗2 . . . u∗m
)
,

where U is a unitary matrix. Then

Wσ = VσKV
T
σ =


uσ(1)

uσ(2)

...
uσ(p)



d1

d1

. . .

dm

(u∗σ(1) u∗σ(2) . . . u∗σ(p)

)

=


ũσ(1)

ũσ(2)

...
ũσ(p)

(ũ∗σ(1) ũ∗σ(2) . . . ũ∗σ(p)

)
:= M∗M,
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where
ũi = (

√
d1u

i
i, . . . ,

√
dmu

m
i ).

Let M = [M1 a] with M1 =
(
ũ∗σ(1) ũ∗σ(2) . . . ũ∗σ(p−1)

)
and a = ũ∗σ(p). Let s = ‖a‖2 − a∗M1M

+
1 a and

b = (M∗1 )+(I +M+
1 a(M+

1 a)∗)−1M+
1 a. By Theorem 4.5,

(M∗M)+ =

(
(M1M

∗
1 )+ 0

0 0

)
+ Eσ

where the matrix Eσ =

(4.6)



(
s−1(M+

1 a)(M+
1 a)∗ −s−1(M+

1 a)
−s−1(M+

1 a)∗ s−1

)
if s 6= 0,

(
‖b‖2(M+

1 a)(M+
1 a)∗ − (M+

1 a)(M+
1 b)
∗ − (M+

1 b)(M
+
1 a)∗ −‖b‖2M+

1 a+M+
1 b

−‖b‖2(A+a)∗ + (A+b)∗ ‖b‖2
)

if s = 0.

Therefore,

(4.7) K̃θ,m,p = E(V Tσ

(
(M1M

∗
1 )+ 0

0 0

)
Vσ) + E(V Tσ EσVσ) = K̃θ,m,p−1 + E(V Tσ EσVσ).

5. Performance and Simulations

In this section, we study the performance of our estimators and we compare them with other traditional methods.
We focus on two types of true covariance matrix Σ of size m ×m. In the first example, Σ = Aα is an m ×m
Toeplitz covariance matrix with entries Σij = α|i−j|. Here 0 < α < 1. Note that det(Aα) = (1 − α2)m−1 and
thus Aα is positive semi-definite if and only if |α| ≤ 1. We call Aα the power Toeplitz matrix. We observe that
Aα is sparse in the sense that its entries decay in an exponential rate as they move away from the diagonal. In
our experiment, we take α = 0.5.

In the other example, we take Σ = BH to be the long-range dependence matrix of the form

Σij =
1

2
[(|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H)]

with H ∈ [0.5, 1]. This kind of covariance matrix presents a process exhibiting long-range dependence, for
example, the increment process of fractional Brownian motion (see [3] for instance). Contrary to the power
Toepltiz matrix Aα, the off-diagonal entries of BH (even far away from the diagonal) show long-range dependence
and have non-negligible effort to the whole matrix. We choose H = 0.9 in the simulation.

5.1. Asymptotic behavior of the mean conjugate estimator under Ewens measure. In this subsection,
we study the asymptotic behavior for some covariance matrices using the mean conjugate estimator under Ewens
measure. For an m × m symmetric matrix K, denote the eigenvalues λ1(K) ≤ . . . ≤ λm(K). The simplest
statistic of the eigenvalues is the empirical spectral measure

µKm =
1

m

m∑
j=1

δλj(K).

That is, for any set E ⊂ R, µm(E) counts the proportion of eigenvalues of K that lie in E.

We show that if the diagonal entries of K are all equal to 1 and the off-diagonal entries are not too big, then by
choosing θ proportional to the dimension in the Ewens measure, Kθ = E(MσKM

∗
σ) is asymptotically equivalent

to a convex combination of K and the identity matrix I.

For two positive functions f(n), g(n), denote f(n) = o(g(n)) if f(n)/g(n)→ 0 as n→∞ and f(n) = O(g(n)) if
f(n) ≤ Cg(n) for some C > 0 for n sufficiently large.
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Theorem 5.2. For an m×m symmetric matrix K = (aij), assume aii = 1 for all 1 ≤ i ≤ m,∑
i 6=j

a2
ij = O(m), |

∑
l 6=k

alk| = o(m3/2) and
∑
i6=j

[ ∑
k 6=i,j

(aik + akj)
]2

= o(m3).(5.1)

Then for the mean conjugate estimator Kθ as in (3.2) with θ = βm, we have

lim
m→∞

µKθm = lim
m→∞

µ
β2

(β+1)2
K+(1− β2

(β+1)2
)Im

m .

Proof. By Lemma 2.3 in [1] the Levy metric of the empirical distributions of two m×m Hermitian matrix A,B
satisfies

L(µAm, µ
B
m) ≤

( 1

m
Tr(A−B)(A−B)∗

)1/3

.

It is known (see Theorem 6, Section 4.3, [14]) that the distribution functions µm converges weakly to µ if and
only if the Levy metric L(µm, µ)→ 0. Let

E = Kθ −
(
Im +

β2

(β + 1)2
(K − Im)

)
.

Thus it is enough to check that 1
mTr(EET ) = 1

m

∑
i,j E

2
ij → 0 as m→∞.

Note that aii = 1 and θ = βm. Applying Theorem 3.1, we obtain Eii = 0 and for i 6= j,

Eij = (Kθ)ij −
β2

(β + 1)2
aij

=
[ β2m2 − βm− 2

(βm+m− 2)(βm+m− 1)
− β2

(β + 1)2

]
aij +

βm− 1

(βm+m− 2)(βm+m− 1)

∑
k 6=i,j

(aik + akj)

+
1

(βm+m− 2)(βm+m− 1)

∑
l 6=k

alk.

Therefore, using the basic inequality (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, we have

1

m
Tr(EET ) =

1

m

∑
i 6=j

E2
ij

≤ 3

m

[
β2m2 − βm− 2

(βm+m− 2)(βm+m− 1)
− β2

(β + 1)2

]2∑
i 6=j

a2
ij +

3

m

β2m2

(βm+m− 2)4

∑
i 6=j

[ ∑
k 6=i,j

(aik + akj)
]2

+
3

m

m2

(βm+m− 2)4

(∑
l 6=k

alk
)2

= o
(∑

i 6=j a
2
ij

m

)
+O

( 1

m3

∑
i 6=j

[ ∑
k 6=i,j

(aik + akj)
]2)

+O
( 1

m3

(∑
l 6=k

alk
)2)

= o(1)

by the assumption. This completes the proof. �

Remark 5.3. Theorem 5.2 asserts if K possesses some level of sparsity in terms of (5.1), then asymptotically
Kθ behaves like a linear convex combination of Im and the sample covariance matrix K. We only show the
convergence of the overall behavior of the eigenvalues. Indeed, if we impose stronger conditions on the entries of
K, i.e. ∑

i 6=j

a2
ij = O(1), |

∑
l 6=k

alk| = o(m1/2) and
∑
i6=j

[ ∑
k 6=i,j

(aik + akj)
]2

= o(m2),
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then the matrix E in the proof of Theorem 5.2 satisfies ‖E‖F = o(1). By Weyl’s inequality, one gets the individual

eigenvalue of Kθ is close to that of β2

(β+1)2K + (1 − β2

(β+1)2 )Im. Similarly, by imposing extra conditions on the

eigenvalues of K, one can obtain results on the perturbation of eigenvectors using the classical Davis-Kahan
theorem (see for instance [29, Section V]). However, we found these imposed conditions are rather restrictive. It

is an intriguing question to investigate the optimal conditions to guarantee the closeness of Kθ and β2

(β+1)2K +

(1− β2

(β+1)2 )Im.

Remark 5.4. In [18], Ledoit and Wolf introduce the linear shrinkage estimator or the LW estimator

KLW = ρ1Im + ρ2K

to estimate the true covariance matrix Σ. They provide the optimal parameter ρ∗1 and ρ∗2 to minimize the error
E‖KLW − Σ‖F in the space of {ρ1Im + ρ2K : ρ1, ρ1 non-random}. The values of ρ∗1 and ρ∗2 actually depend on
the true covariance matrix Σ. Specially, if Σii = 1 for all i, then ρ∗1 + ρ∗2 = 1 and KLW is the linear convex
combination of Im and K. They suggest consistent estimators ρ̂1 and ρ̂2 (see Section 3.2 in [18]) without prior
knowledge of Σ. We will use the LW estimator KLW with parameters ρ̂1 and ρ̂2 for performance comparison.

Remark 5.5. For the power Toeplitz matrix Aα = (α|i−j|)1≤i,j≤m. Assume 0 < α < 1, it is easy to verify
that Aα satisfies (5.1) and thus the conclusion of Theorem 5.2 holds for Aα. Next let K = (aij)1≤i,j≤m be
the sample covariance matrix generated using Gaussian random variables. If the off-diagonal entries are not
prominent (with high probability) in the sense of (5.1), then the effect of the Ewens estimator with parameter

θ = βm is asymptotically the same as the linear shrinkage estimator. Set β = 5 and denote ρ = β2

(β+1)2 . In Figure

2, we plot the difference

‖Kθ −
(
ρIm + (1− ρ)K

)
‖NF

for m = 40, 80, 120, 160, 200 and n = m/2, averaged over 50 repetitions. The blue line corresponds to the power
Toeplitz matrix and the red dashed line is for the long-range dependence matrix. If the true covariance matrix Σ
is the power Toeplitz matrix, then the difference between Kθ and ρIm+(1−ρ)K under the normalized Frobenius
norm is getting smaller as m,n getting larger. However, if Σ is the long-range dependence matrix, the difference
between the Ewens estimator and the linear shrinkage estimator is getting bigger with the matrix size. This
suggests the Ewens estimator has rather different behavior from the linear shrinkage estimator for the long-range
dependence matrix.

5.6. Simulation study: finite sample. In this subsection, we present some simulations to test the performance
of our estimators. Let the random vector X = (X1, . . . , Xm)T have multivariate normal distribution N(0,Σ).
Now we have n measurements (x1, . . . , xn) where xi’s are independent copies of X. Let M = (x1, . . . , xn) and
form the sample covariance matrix K = MMT /n. Assume n < m, we want to recover Σ to the best of our
knowledge.

For brevity, we call the mean conjugate estimator under Ewens measure the Ewens estimator, and the linear
shrinkage estimator by Ledoit and Wolf [18] (see Remark 5.4 above) the LW estimator. We will compare the
performance of the estimators KLW , invcovp(K) and Kθ = E(MσKM

∗
σ) as well as the sample covariance matrix

K itself. We will consider the error function

‖K − Σ‖NF =
( 1

m

m∑
i,j=1

(Kij − Σij)
2
)1/2

in terms of the normalized Frobenius norm for an estimator K of Σ for performance comparison.

Choosing the parameter θ for Ewens estimator. We first suggest how to choose the parameter θ for the
Ewens estimator Kθ. Given the sample covariance matrix K, the explicit formula of Kθ is provided in Theorem
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Figure 2. Difference between the Ewens and linear shrinkage estimators for Σ = Aα (the blue
diamonds) and Σ = BH (the red triangles).
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3.1. We compute the formula of E‖Kθ − Σ‖2NF in (B.7) in Appendix B, which is denoted by GΣ(θ) for brevity.
Note that GΣ(θ) in (B.7) is a rational function of the form

GΣ(θ) =
a4θ

4 + a3θ
3 + a2θ

2 + a1θ + a0

(θ +m− 1)2(θ +m− 2)2
,

where the coefficients ai’s depend on m,n and the matrix Σ. An intuitive way to choose θ is to set

θ0 = argminθ>0GΣ(θ),

which is the best choice under the expected quadratic normalized Frobenius loss function. We call this θ0 the
oracle parameter. If one has access to Σ (or a few quantities of Σ appearing in the formula (B.7)), then θ0 is
obtained by minimizing a rational function given m and n, and we simply take θ = θ0 in the Ewens estimator.
However, in application, it is rare that any information of Σ is known beforehand and only the sample covariance
matrix K is available. To choose θ, we suggest the following method.

Since the coefficients ai’s in GΣ(θ) depend smoothly on m,n and the matrix Σ, a small perturbation of ai’s only
leads to a small perturbation of the minimum value of GΣ(θ). Given the sample covariance matrix K, we replace
Σ in the expression of GΣ(θ) with K and choose the parameter

θ̂ = argminθ>0GK(θ).(5.2)

We estimate the true covariance matrix Σ using the Ewens estimator Kθ̂.

In Figure 3, we plot the graphs of
√
GΣ(θ) as a function of θ > 0 for given pairs of m,n, for the power Toeplitz

matrix and long-range dependence matrix respectively. In all plots, we can see that
√
GΣ(θ) achieves the unique

minimum at an oracle value θ0 > 0.

In Table 1 and Table 2, we numerically compute the oracle parameter θ0 and its corresponding loss value

(E‖Kθ0 − Σ‖2NF )1/2 =
√
GΣ(θ0). We also find the estimated θ̂ and its loss value ‖Kθ̂ − Σ‖NF , as well as

the loss value ‖K −Σ‖NF of using the sample covariance matrix K directly. These three quantities are averaged

over 50 repetitions. In both tables, we note that both θ0 and θ̂ increase with the matrix size m and decrease

with the ratio n/m. However, our suggested θ̂ is quite far from the oracle θ0. This happens possibly because
the coefficients ai’s are perturbed by a large value when we replace Σ with K. It is not clear to us yet how to
select a better parameter θ. Comparing Table 1 with Table 2, we see that for the long-range dependence matrix,
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Figure 3. Plots of
√
GΣ(θ) for Σ = Aα and Σ = BH .

0 50 100 150 200 250 300
0.7

0.75

0.8

0.85

0.9

0.95

1
Power Toeplitz matrix A  ( =0.5)

m=80, n=40
m=120, n=60

0 50 100 150 200 250 300
1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3
Long-range dependence matrix B H (H=0.9)

m=80, n=40
m=120, n=60

‖Kθ̂ − Σ‖NF differs very little from
√
GΣ(θ0), even though θ̂ is not a good approximation of θ0. In all cases,

directly using the sample covariance matrix K provides the worst performance.

Table 1. Power toepltiz matrix Σ = Aα (α = 0.5): oracle and estimated θ and their corre-
sponding loss values and loss of the sample covariance matrix.

n = m/2 θ0

√
GΣ(θ0) θ̂ ‖Kθ̂ − Σ‖NF ‖K − Σ‖NF

m = 40, n = 20 27.47 0.7145 106.01 0.8929 1.4344
m = 80, n = 40 67.11 0.7109 226.27 0.8908 1.4296
m = 120, n = 60 106.99 0.7097 350.02 0.8857 1.4240
m = 160, n = 80 146.93 0.7091 472.59 0.8836 1.4206

n = m/4 θ0

√
GΣ(θ0) θ̂ ‖Kθ̂ − Σ‖NF ‖K − Σ‖NF

m = 40, n = 10 12.36 0.7661 88.95 1.1517 2.0448
m = 80, n = 20 36.52 0.7602 199.56 1.1473 2.0235
m = 120, n = 30 60.78 0.7586 308.10 1.1409 2.0081
m = 160, n = 40 85.06 0.7579 418.75 1.1416 2.0098

Performance comparision. We compare the performance of the Ewens estimator, LW estimator, the Invcovp
estimator and the sample covariance matrix, for both models: power Toeplitz matrix Aα (α = 0.5) and long-range
dependence matrix BH (H = 0.8).

For the Invcovp estimator, we approximate the true covariance matrix Σ by (p/m)invcovp(K)−1 and consider
the loss function

‖(p/m)invcovp(K)−1 − Σ‖NF .
Due to the complicated expression of the Invcovp operator, it is hard to suggest how to turn the parameter p. In
Figure 4, we plot the graphs of ‖(p/m)invcovp(K)−1 − Σ‖NF for all values of 5 ≤ p ≤ n for given pairs of m,n.
For the power Toeplitz matrix, the optimum values of p are approximately p = 8 for m = 40, n = 20, p = 13 for
m = 80, n = 40, p = 18 for m = 120, n = 60 and p = 26 for m = 160, n = 80. For the long-range dependence
matrix, the optimum values of p happen at its largest possible value n. We take these optimum values p in later
comparison. Although it does not seem a fair game for other estimators, we will see that the Invcovp estimator
is never the best estimator, even with the optimum parameter p.
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Table 2. Long-range dependence matrix Σ = BH (H = 0.9): oracle and estimated θ and their
corresponding loss values and loss of the sample covariance matrix.

n = m/2 θ0

√
GΣ(θ0) θ̂ ‖Kθ̂ − Σ‖NF ‖K − Σ‖NF

m = 40, n = 20 4.30 1.1263 73.83 1.1696 1.6254
m = 80, n = 40 45.30 1.1503 195.66 1.1829 1.5107
m = 120, n = 60 124.86 1.1776 325.09 1.1814 1.5194
m = 160, n = 80 228.00 1.1978 512.75 1.2074 1.4825

n = m/4 θ0

√
GΣ(θ0) θ̂ ‖Kθ̂ − Σ‖NF ‖K − Σ‖NF

m = 40, n = 10 1.88 1.4787 80.60 1.5858 2.1031
m = 80, n = 20 5.51 1.4322 152.59 1.5186 2.1461
m = 120, n = 30 23.49 1.4504 261.23 1.5407 2.0868
m = 160, n = 40 69.52 1.4782 367.96 1.5396 2.0972

Figure 4. Plots of ‖(p/m)invcovp(K)−1 − Σ‖NF for Σ = Aα and Σ = BH .

5 20 35 50 65 80
Parameter p

0.7

0.8

0.9

1

1.1

1.2

1.3
Invcovp estimator for A  with p  [5,n]

m=40, n=20, optimum p=8
m=80, n=40, optimum p=13
m=120, n=60, optimum p=18
m=160, n=80, optimum p=26

5 20 35 50 65 80
Parameter p

1.5

2

2.5

3

3.5

4

4.5

5
Invcovp estimator for BHwith p  [5,n]

m=40, n= 20
m=80, n=40
m=120, n=60
m=160, n=80

In Figure 5, we compare the performance of the estimators. We plot the loss function values

‖Estimator− Σ‖NF

for m = 40, 80, 120, 160 and n = m/2, averaged over 50 repetitions, for Σ the power Toeplitz matrix and the
long-range dependence matrix.

For the power Toeplitz matrix (left figure in Figure 5), we observe that the LW estimator (yellow line) has
the best performance and for the oracle θ0 (red dashed line), the Ewens estimator has almost the identical
performance. This is in accordance with Theorem 5.2 (see also Remark 5.5), that is, the Ewens estimator is
asymptotically equivalent to the linear shrinkage estimator ρIm+(1−ρ)K. In our finite sample study, we further
observe that the Ewens estimator with oracle θ0 performs roughly the same as the linear shrinkage estimator

with the best ρ which is provided in the LW estimator. However, our suggested parameter θ̂ does not seem a

good approximation. The invcovp (purple line) with optimum p outperforms the Ewens estimator with θ̂, but
is not comparable with the LW estimator. Directly using the sample covariance matrix K (green dotted line)
provides the worst approximation. Nevertheless, when Σ is the power Toeplitz matrix and possesses some level
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Figure 5. Compare different estimators for Σ = Aα and Σ = BH .
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of sparsity, the LW estimator is the best choice. By providing a better parameter θ̂, the Ewens estimator might
be comparable with the LW estimator.

For the long-range dependence matrix (right figure in Figure 5), we see that the Ewens estimator (for both oracle

θ0 and estimated θ̂) outperforms the other estimators. Actually, the Ewens estimator Kθ̂ performs almost as good
as the oracle Kθ0 . The LW estimator is only slightly better than using the sample covariance matrix directly.
The invcovp estimator (even with optimum p) always gives the largest errors and is not a good estimator for the
long-range dependence matrix.

5.7. Comments. The simulations suggest that for the true covariance matrix with power decay Toeplitz struc-
ture, the Ewens estimator with the oracle parameter is asymptotically as good as the LW estimator. At present,
we do not have a satisfying algorithm for choosing the parameter θ very close to the oracle value. For the current

suggested parameter θ̂, the LW estimator outperforms the Ewens estimator. However, for the true covariance
matrix that has long-range dependence structure, the Ewens estimator always performs better than all other es-

timators considered. Even our suggested parameter θ̂ is not an accurate approximation to the oracle parameter,
it has little influence on the performance. Provided a more accurate algorithm for choosing the parameter θ,
the Ewens estimator seems a better choice than the LW estimator since it is less sensitive to the sparsity of the
true covariance matrix. There are still many questions to be answered: How does the operator Kθ change the
eigenvalues and eigenvectors of the original matrix K? Is there a better way to select the parameter for the Ewens
estimator, using the samples? Is it possible to analyze the performance of the Ewens estimator under other loss
functions? A more comprehensive understanding on the Ewens estimator Kθ will shed lights on analyzing the
performance of the hybrid operators Kθ,m,p and K̃θ,m,p defined in Section 4. We did not include simulations on
the performance of these hybrid operators in this paper. However, it is an intriguing future research question to
explore how the parameters p and θ affect the estimations.

Appendix A. Small dimensional examples for computing E(Φ∗(ΦDnΦ∗)lΦ)

In this appendix, we provide small dimensional examples for computing E(Φ∗(ΦDnΦ∗)lΦ) using formulas derived
in Section 2.5.
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Let λj = (N − j, 1j) be the partition of N with j ones. This one has a hook shape with N − j blocks in the row
and j + 1 blocks in the column.

For l = 1, it was shown in [20] that

E(Φ∗(ΦDnΦ∗)lΦ) =
p(np− 1)

n(n2 − 1)
Dn +

p(n− p)
n(n2 − 1)

Tr(Dn)In.

For l = 2 and ρ = (1, 1, 1), (1, 2), (3) ` 3, we list all border–strip tableaux of shape λj and type ρ in the following
table.

ρ = (1, 1, 1) ρ = (1, 2) ρ = (3)

λ0 = (3) 1 2 3 1 2 2 1 1 1

λ1 = (2, 1)

1 2

3 &

1 3

2 Does not exist

1 1

1

λ2 = (1, 1, 1)

1

2

3

1

2

2

1

1

1

Thus,

χλj (ρ) ρ = (1, 1, 1) ρ = (1, 2) ρ = (3)
λ0 = (3) 1 1 1
λ1 = (2, 1) 2 0 -1
λ2 = (1, 1, 1) 1 -1 1

sλ0
(D) =

Tr(D)3

3!
+

Tr(D)Tr(D2)

2
+

Tr(D3)

3
,

∂sλ0

∂di
= d2

i + Tr(D)di +
Tr(D)2 + Tr(D2)

2

sλ1(D) = 2
Tr(D)3

3!
− Tr(D3)

3
,

∂sλ1

∂di
= −d2

i + Tr(D)2

sλ2(D) =
Tr(D)3

3!
− Tr(D)Tr(D2)

2
+

Tr(D3)

3
,

∂sλ2

∂di
= d2

i − Tr(D)di +
Tr(D)2 − Tr(D2)

2
.

Furthermore,

(
E(Φ∗(ΦDΦ∗)2Φ)

)
ii

=
1

3

2∑
j=0

(−1)j
(2 + p− j)!(n− j − 1)!

(2 + n− j)!(p− j − 1)!

∂sλj (D)

∂di

= (c0 + c1 + c2)d2
i + (c0 − c2)Tr(D)di + c0

Tr(D)2 + Tr(D2)

2
− c1

+ c2
Tr(D)2 − Tr(D2)

2
,

where

c0 =
1

3

(2 + p)!(n− 1)!

(2 + n)!(p− 1)!
, c1 =

1

3

(1 + p)!(n− 2)!

(1 + n)!(p− 2)!
, c2 =

1

3

p!(n− 3)!

n!(p− 3)!
.
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Finally,

E
(

Φ∗(ΦDΦ∗)2Φ
)

= (c0 + c1 + c2)D2 + (c0 − c2)Tr(D)D

+
(
c0

Tr(D)2 + Tr(D2)

2
− c1Tr(D)2 + c2

Tr(D)2 − Tr(D2)

2

)
In.

Appendix B. Computing E‖Kθ − Σ‖2NF

In this section, we compute the explicit formula for E‖Kθ − Σ‖2NF = 1
mE‖Kθ − Σ‖2F and express the formula in

terms of Σ. We assume the m-dimensional random vector X has the normal distribution N(0,Σ). Let x1, . . . , xn
be n independent copies of X. Recall M = (x1, . . . , xn) and K = MMT /n = (aij). Then

E‖Kθ − Σ‖2F =

m∑
i=1

E(Kθ − Σ)2
ii +

∑
i6=j

E(Kθ − Σ)2
ij .

By Theorem 3.1, we first have

(Kθ − Σ)2
ii =

( θ − 1

θ +m− 1
aii +

1

θ +m− 1
TrK − Σii

)2

=
(θ − 1)2

(θ +m− 1)2
a2
ii +

1

(θ +m− 1)2
(TrK)2 + Σ2

ii +
2(θ − 1)

(θ +m− 1)2
aiiTrK

− 2(θ − 1)

θ +m− 1
aiiΣii −

2

θ +m− 1
ΣiiTrK.

Note that Σii = Eaii and ETrK =
∑m
i=1 Σii. Thus

m∑
i=1

E(Kθ − Σ)2
ii =

(θ − 1)2

(θ +m− 1)2

( m∑
i=1

Ea2
ii

)
+

mE(TrK)2

(θ +m− 1)2
+

m∑
i=1

Σ2
ii +

2(θ − 1)

(θ +m− 1)2
E(TrK)2

− 2(θ − 1)

θ +m− 1

m∑
i=1

Σ2
ii −

2

θ +m− 1
(ETrK)2.

Plugging in

E(TrK)2 =

m∑
i=1

Ea2
ii +

∑
i6=j

Eaiiajj ,

we get

m∑
i=1

E(Kθ − Σ)2
ii =

θ2 +m− 1

(θ +m− 1)2

( m∑
i=1

Ea2
ii

)
− θ −m− 1

θ +m− 1

m∑
i=1

Σ2
ii +

2θ +m− 2

(θ +m− 1)2

∑
i 6=j

Eaiiajj

− 2

θ +m− 1

( m∑
i=1

Σii
)2
.

For brevity, denote β = (θ +m− 1)(θ +m− 2). Next, by the formula obtained in Theorem 3.1, we get for i 6= j

(Kθ − Σ)2
ij =

1

β2

(
(θ2 − 1)aij + (θ − 1)aji + (θ − 1)

∑
k 6=i,j

(aik + akj) +
∑
l 6=k

alk − βΣij
)2

=
1

β2

(
θ(θ − 1)aij + (θ − 1)

∑
k 6=i

aik + (θ − 1)
∑
k 6=j

ajk +
∑
l 6=k

alk − βΣij
)2
.
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Expanding the square above and taking the expectation over the sum of all i 6= j, one obtains∑
i 6=j

E(Kθ − Σ)2
ij =

1

β2

[
θ2(θ − 1)2

∑
i 6=j

Ea2
ij + 2(θ − 1)2

∑
i 6=j

E(
∑
k 6=i

aik)2 +m(m− 1)E(
∑
i 6=j

aij)
2 + β2

∑
i 6=j

Σ2
ij

+ 4θ(θ − 1)2
∑
i 6=j

∑
k 6=i

Eaijaik + 2θ(θ − 1)E(
∑
i 6=j

aij)
2 − 2βθ(θ − 1)

∑
i 6=j

Σ2
ij

+ 2(θ − 1)2
∑
i6=j

E(
∑
k 6=i

aik)(
∑
k 6=j

ajk) + 4(θ − 1)E
(∑
i 6=j

∑
k 6=i

aik
)
(
∑
l 6=k

alk)

− 4β(θ − 1)
∑
i 6=j

∑
k 6=i

ΣijΣik − 2β(
∑
l 6=k

Σlk)2
]
.

We observe in the above summation that∑
i 6=j

E(
∑
k 6=i

aik)2 = (m− 1)

m∑
i=1

E(
∑
k 6=i

aik)2,

∑
i 6=j

∑
k 6=i

Eaijaik =

m∑
i=1

E(
∑
k 6=i

aik)2,

∑
i6=j

E(
∑
k 6=i

aik)(
∑
k 6=j

ajk) = E(
∑
l 6=k

alk)2 −
m∑
i=1

E(
∑
k 6=i

aik)2

and

E
(∑
i6=j

∑
k 6=i

aik
)
(
∑
l 6=k

alk) = (m− 1)E
( m∑
i=1

∑
k 6=i

aik
)
(
∑
l 6=k

alk) = (m− 1)E(
∑
l 6=k

alk)2.

Thus, after simplification, we get∑
i 6=j

E(Kθ − Σ)2
ij =

1

β2

[
θ2(θ − 1)2(

∑
i 6=j

Ea2
ij) + 2(θ − 1)2(2θ +m− 2)

m∑
i=1

E(
∑
j 6=i

aij)
2

+
[
m(m− 1) + 2(θ − 1)(2θ + 2m− 3)

]
E(
∑
i 6=j

aij)
2 − 4β(θ − 1)

m∑
i=1

(
∑
i6=j

Σij)
2

− 2β(
∑
i 6=j

Σij)
2 +

(
β2 − 2βθ(θ − 1)

)∑
i 6=j

Σ2
ij

]
.

Finally, we get the explicit formula

E‖Kθ − Σ‖2F =
θ2 +m− 1

(θ +m− 1)2

( m∑
i=1

Ea2
ii

)
− θ −m− 1

θ +m− 1

m∑
i=1

Σ2
ii +

2θ +m− 2

(θ +m− 1)2

∑
i 6=j

Eaiiajj −
2

θ +m− 1

( m∑
i=1

Σii
)2

+
θ2(θ − 1)2

(θ +m− 1)2(θ +m− 2)2
(
∑
i 6=j

Ea2
ij) +

2(θ − 1)2(2θ +m− 2)

(θ +m− 1)2(θ +m− 2)2

m∑
i=1

E(
∑
j 6=i

aij)
2

+
2(θ − 1)(2θ + 2m− 3) +m(m− 1)

(θ +m− 1)2(θ +m− 2)2
E(
∑
i 6=j

aij)
2 − 4(θ − 1)

(θ +m− 1)(θ +m− 2)

m∑
i=1

(
∑
j 6=i

Σij)
2

− 2

(θ +m− 1)(θ +m− 2)
(
∑
i6=j

Σij)
2 +

[
1− 2θ(θ − 1)

(θ +m− 1)(θ +m− 2)

]
(
∑
i 6=j

Σ2
ij).(B.1)
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Since we assume X = (X1, . . . , Xm)T ∼ N(0,Σ), we can further express (B.1) in terms of the entries of Σ. We
use xis to denote the ith entry of the vector xs. Note that aij = 1

n

∑n
s=1 x

i
sx
j
s by our definition of K. Besides,

EK = Σ. We also use the following facts about multivariate normal distribution:

E(Xi)2 = Σii, E(Xi)4 = 3Σ2
ii, EXiXj = Σij

and

EXiXk1XjXk2 = Σik1Σjk2 + ΣijΣk1k2 + Σik2Σjk1 for arbitrary 1 ≤ i, j, k1, k2 ≤ m.

It is elementary to verify the following calculation.

m∑
i=1

Ea2
ii =

1

n2

m∑
i=1

[
E

n∑
s=1

(xis)
4 +

∑
s6=t

E(xis)
2E(xit)

2
]

=
1

n2

m∑
i=1

[
3nΣ2

ii + n(n− 1)Σ2
ii

]
=
n+ 2

n

m∑
i=1

Σ2
ii(B.2)

and

∑
i6=j

Eaiiajj =
1

n2

∑
i 6=j

n∑
s,t=1

E(xis)
2(xjt )

2 =
1

n2

∑
i 6=j

[
nE(Xi)2(Xj)2 + n(n− 1)ΣiiΣjj

]
=
∑
i 6=j

ΣiiΣjj +
2

n

∑
i 6=j

Σ2
ij(B.3)

and ∑
i 6=j

Ea2
ij =

1

n2

∑
i 6=j

[
nE(Xi)2(Xj)2 + n(n− 1)(EXiXj)2

]
=

1

n

∑
i 6=j

ΣiiΣjj +
n+ 1

n

∑
i6=j

Σ2
ij .(B.4)

Similarly, we also obtain

m∑
i=1

E(
∑
j 6=i

aij)
2 =

1

n2

m∑
i=1

∑
j1,j2 6=i

(nΣiiΣj1j2 + 2nΣij1Σij2 + n(n− 1)Σij1Σij2)

=
1

n

m∑
i=1

∑
j1,j2 6=i

ΣiiΣj1j2 +
n+ 1

n

m∑
i=1

(
∑
j 6=i

Σij)
2(B.5)

and

E(
∑
i6=j

aij)
2 =

1

n2

∑
i1 6=j1,i2 6=j2

(nΣi1j1Σi2j2 + nΣi1i2Σj1j2 + nΣi1j2Σi2j1 + n(n− 1)Σi1j1Σi2j2)

= (
∑
i 6=j

Σij)
2 +

2

n

∑
i1 6=j1,i2 6=j2

Σi1i2Σj1j2 .(B.6)

Also note that ∑
i 6=j

ΣiiΣjj = (

m∑
i=1

Σii)
2 −

m∑
i=1

Σ2
ii.
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Thus we obtain the following formula of E‖Kθ −Σ‖2NF by plugging (B.2)-(B.6) to (B.1) and dividing m on both
sides:

1

m
E‖Kθ − Σ‖2F =

[ (n+ 2)(θ2 +m− 1)

n(θ +m− 1)2
− θ −m− 1

θ +m− 1
− 2θ +m− 2

(θ +m− 1)2
− θ2(θ − 1)2

n(θ +m− 1)2(θ +m− 2)2

] 1

m

m∑
i=1

Σ2
ii

+
[ (2θ +m− 2)

(θ +m− 1)2
+

θ2(θ − 1)2

n(θ +m− 1)2(θ +m− 2)2
− 2

θ +m− 1

] 1

m
(

m∑
i=1

Σii)
2

+
[2(2θ +m− 2)

n(θ +m− 1)2
+

(n+ 1)θ2(θ − 1)2

n(θ +m− 1)2(θ +m− 2)2
+ 1− 2θ(θ − 1)

(θ +m− 1)(θ +m− 2)

] 1

m

∑
i 6=j

Σ2
ij

+
[2(n+ 1)(θ − 1)2(2θ +m− 2)

n(θ +m− 1)2(θ +m− 2)2
− 4(θ − 1)

(θ +m− 1)(θ +m− 2)

] 1

m

m∑
i=1

(
∑
j 6=i

Σij)
2

+
[2(θ − 1)(2θ + 2m− 3) +m(m− 1)

(θ +m− 1)2(θ +m− 2)2
− 2

(θ +m− 1)(θ +m− 2)

] 1

m
(
∑
i 6=j

Σij)
2

+
2(θ − 1)2(2θ +m− 2)

n(θ +m− 1)2(θ +m− 2)2

( 1

m

m∑
i=1

∑
j1,j2 6=i

ΣiiΣj1j2
)

+
2(θ − 1)(2θ + 2m− 3) +m(m− 1)

n(θ +m− 1)2(θ +m− 2)2

2

m

∑
i1 6=j1,i2 6=j2

Σi1i2Σj1j2 .(B.7)
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[5] A. Böttcher and S. M. Grudsky. Spectral properties of banded Toeplitz matrices. Society for Industrial and Applied Mathematics,

2005.
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