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Abstract—The random variable simulation problem consists in
using a k-dimensional i.i.d. random vector Xk with distribution
P kX to simulate an n-dimensional i.i.d. random vector Y n

so that its distribution is approximately QnY . In contrast to
previous works, in this paper we consider the standard Rényi
divergence and two variants of all orders to measure the level of
approximation. These two variants are the max-Rényi divergence
Dmax
α (P,Q) and the sum-Rényi divergence D+

α (P,Q). When
α = ∞, these two measures are strong because for any ε ≥ 0,
Dmax
∞ (P,Q) ≤ ε or D+

∞(P,Q) ≤ ε implies e−ε ≤ P (x)
Q(x)

≤ eε for
all x. Under these Rényi divergence measures, we characterize
the asymptotics of normalized divergences as well as the Rényi
conversion rates. The latter is defined as the supremum of n

k
such

that the Rényi divergences vanish asymptotically. Our results
show that when the Rényi parameter is in the interval (0, 1), the
Rényi conversion rates equal the ratio of the Shannon entropies
H(PX )
H(QY )

, which is consistent with traditional results in which the
total variation measure was adopted. When the Rényi parameter
is in the interval (1,∞], the Rényi conversion rates are, in general,
smaller than H(PX )

H(QY )
. When specialized to the case in which

either PX or QY is uniform, the simulation problem reduces
to the source resolvability and intrinsic randomness problems.
The preceding results are used to characterize the asymptotics
of Rényi divergences and the Rényi conversion rates for these
two cases.

Index Terms—Distribution Approximation, Resolvability, In-
trinsic Randomness, Rényi Divergence, Rényi Entropy of Nega-
tive Orders

I. INTRODUCTION

How can we use a k-dimensional i.i.d. random vector
Xk with distribution P kX to simulate an n-dimensional i.i.d.
random vector Y n so that its distribution is approximately
QnY ? This is so-called random variable simulation problem
or distribution approximation problem [1]. In [1] and [2], the
total variation (TV) distance and the Bhattacharyya coefficient
(the Rényi divergence of order 1

2 ) were respectively used
to measure the level of approximation. In these works, the
asymptotic conversion rate was studied. This rate is defined as
the supremum of n

k such that the employed measure vanishes
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asymptotically as the dimensions n and k tend to infinity.
For both the TV distance and the Bhattacharyya coefficient,
the asymptotic (first-order) conversion rates are the same,
and both equal to the ratio of the Shannon entropies H(PX)

H(QY ) .
Furthermore, in [2], Kumagai and Hayashi also investigated
the asymptotic second order conversion rate. Note that by
Pinsker’s inequality [3], the Bhattacharyya coefficient (the
Rényi divergence of order 1

2 ) is stronger than the TV distance,
i.e., if the Bhattacharyya coefficient tends to 1 (or the Rényi
divergence of order 1

2 tends to 0), then the TV distance tends
to 0. In this paper, we strengthen the TV distance and the
Bhattacharyya coefficient by considering Rényi divergences
of orders in [0,∞].

As two important special cases of the distribution ap-
proximation problem, the source resolvability and intrinsic
randomness problems have been extensively studied in the
literature, e.g., [1], [4]–[9].

1) Resolvability: When PX is set to the Bernoulli distribution
Bern( 1

2 ), the distribution approximation problem reduces
to the source resolvability problem, i.e., determining how
much information is needed to simulate a random process
so that it approximates a target output distribution. If
the simulation is realized through a given channel, and
we require that the channel output approximates a target
output distribution, then we obtain the channel resolvability
problem. These resolvability problems were first studied
by Han and Verdú [4]. In [4], the total variation (TV)
distance and the normalized relative entropy (Kullback-
Leibler divergence) were used to measure the level of
approximation. The resolvability problems with the unnor-
malized relative entropy were studied by Hayashi [5], [6].
Recently, Liu, Cuff, and Verdú [7] and Yu and Tan [8]
extended the theory of resolvability by respectively using
the so-called Eγ metric with γ ≥ 1 and various Rényi
divergences of orders in [0, 2] ∪ {∞} to measure the level
of approximation. In this paper, we extend the results in
[8] to the Rényi divergences of orders in [0,∞].

2) Intrinsic randomness: When QY is set to the Bernoulli dis-
tribution Bern( 1

2 ), the distribution approximation problem
reduces to the intrinsic randomness, i.e., determining the
amount of randomness contained in a source [9]. Given an
arbitrary general source X = {Xn}∞n=1, we approximate,
by using X , a uniform random number with as large a rate
as possible. Vembu and Verdú [9] and Han [1] determined
the supremum of achievable uniform random number gen-
eration rates by invoking the information spectrum method.
In this paper, we extend the results in [9] to the family of
Rényi divergence measures.
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A. Main Contributions
Our main contributions are as follows:

1) For the distribution approximation problem, we use
the standard Rényi divergences Dα(PY n‖QnY ) and
Dα(QnY ‖PY n), as well as two variants, namely the max-
Rényi divergence Dmax

α (P,Q) and the sum-Rényi diver-
gence D+

α (P,Q), to measure the distance between the sim-
ulated and target output distributions. For these measures,
we consider all orders in α ∈ [0,∞]. We characterize the
asymptotics of these Rényi divergences, as well as the
Rényi conversion rates, which are defined as the supre-
mum of n

k to guarantee that the Rényi divergences vanish
asymptotically. Interestingly, when the Rényi parameter is
in the interval (0, 1] for the measure Dα(PY n‖QnY ) and in
(0, 1) for the measures Dα(QnY ‖PY n) and Dmax

α (PY n , Q
n
Y )

(or D+
α (PY n , Q

n
Y )), the Rényi conversion rates are simply

equal to the ratio of the Shannon entropies H(PX)
H(QY ) . This

is consistent with the existing results in [2] where the
Rényi parameter is 1

2 . In contrast if the Rényi parameter
is in (1,∞] for the measure Dα(PY n‖QnY ) and ∈ [1,∞]
for the measures Dα(QnY ‖PY n) and Dmax

α (PY n , Q
n
Y ) (or

D+
α (PY n , Q

n
Y )), the Rényi conversion rates are, in general,

larger than H(PX)
H(QY ) . It is worth noting that the obtained

expressions for the asymptotics of Rényi divergences and
the Rényi conversion rates involve Rényi entropies of all
real orders, even including negative orders. To the best
of our knowledge, this is the first time that an explicit
operational interpretation of the Rényi entropies of negative
orders is provided.

2) When specialized to the cases in which either PX or QY is
uniform, the preceding results are used to derive results for
the source resolvability and intrinsic randomness problems.
These results extend the existing results in [1], [4], [8], [9],
where the TV distance, the relative entropy, and the Rényi
divergences of orders in [0, 2] were used to measure the
level of approximation.

B. Paper Outline
The rest of this paper is organized as follows. In Subsec-

tions I-C and I-D, we introduce several Rényi information
quantities and use them to formulate the random variable
simulation problem. In Section II, we present our main results
on characterizing asymptotics of Rényi divergences and Rényi
conversion rates. As consequences, in Sections III and IV, we
apply our main results to the problems of Rényi source resolv-
ability and Rényi intrinsic randomness. Finally, we conclude
the paper in Section V. For seamless presentation of results,
the proofs of all theorems and the notations involved in these
proofs are deferred to the appendices.

C. Notations and Information Distance Measures
The set of probability measures on X is denoted

as P (X ), and the set of conditional probability mea-
sures on Y given a variable in X is denoted as
P (Y|X ) :=

{
PY |X : PY |X (·|x) ∈ P (Y) , x ∈ X

}
. For a

distribution PX ∈ P (X ), the support of PX is defined as
supp (PX) := {x ∈ X : PX(x) > 0}.

We use Txn (x) := 1
n

∑n
i=1 1 {xi = x} to denote the type

(empirical distribution) of a sequence xn, TX and VY |X to re-
spectively denote a type of sequences in Xn and a conditional
type of sequences in Yn (given a sequence xn ∈ Xn). For a
type TX , the type class (set of sequences having the same
type TX ) is denoted by TTX . For a conditional type VY |X and
a sequence xn, the V-shell of xn (the set of yn sequences
having the same conditional type VY |X given xn) is denoted
by TVY |X (xn). The set of types of sequences in Xn is denoted
as

P(n) (X ) := {Txn : xn ∈ Xn} . (1)

The set of conditional types of sequences in Yn given a
sequence in Xn with the type TX is denoted as

P(n) (Y|TX)

:= {VY |X ∈ P (Y|X ) : VY |X × TX ∈ P(n) (X × Y)}. (2)

For brevity, sometimes we use T (x, y) to denote the joint
distributions T (x)V (y|x) or T (y)V (x|y).

The ε-typical set of QX is denoted as

T nε (QX)

:= {xn ∈ Xn : |Txn (x)−QX (x)| ≤ εQX (x) ,∀x ∈ X} .
(3)

The conditionally ε-typical set of QXY is denoted as

T nε (QXY |xn) := {yn ∈ Xn : (xn, yn) ∈ T nε (QXY )} . (4)

For brevity, sometimes we write T nε (QX) and T nε (QXY |xn)
as T nε and T nε (xn) respectively.

For a distribution PX ∈ P(X ), the Rényi entropy of order1

α ∈ (−∞, 1) ∪ (1,+∞), is defined as

Hα(PX) :=
1

1− α
log

∑
x∈supp(PX)

PX(x)α, (5)

1In the literature, the Rényi entropy was defined usually only for orders
α ∈ [0,+∞] [10], except for a recent work [11], but here we define it
for orders α ∈ [−∞,+∞]. This is due to the fact that our results involve
Rényi entropies of all real orders, even including negative orders. Indeed,
in the axiomatic definitions of Rényi entropy and Rényi divergence, Rényi
restricted the parameter α ∈ (0, 1) ∪ (1,+∞) [10]. However, it is easy
to verify that in [10], the postulates 1, 2, 3, 4, and 5’ in the definition
of Rényi entropy with gα(x) = e(α−1)x and the postulates 6, 7, 8, 9,
and 10 in the definition of Rényi divergence with the same function gα(x)
are also satisfied when α ∈ (−∞, 0). It is worth noting that the Rényi
entropy for α ∈ (−∞, 0) is always non-negative, but the Rényi divergence
for α ∈ (−∞, 0) is always non-positive. The Rényi divergence of negative
orders was studied in [3]. Observe that Dα(P‖Q) = α

1−αD1−α(Q‖P )
holds for α ∈ [−∞, 0) ∪ (0, 1) ∪ (1,+∞]. Hence we only need to
consider the divergences Dα(P‖Q) and Dα(Q‖P ) with α ∈ [0,+∞],
since these divergences completely characterize the divergences Dα(P‖Q)
and Dα(Q‖P ) with α ∈ [−∞,+∞]. Furthermore, it is also worth noting
that the Rényi entropy is non-increasing and the Rényi divergence is non-
decreasing in α for α ∈ [−∞,∞] [3], [11].



3

and the Rényi entropy of order α = 1,−∞,+∞ is defined as
the limit by taking α→ 1,−∞,+∞, respectively. It is known
that

H−∞(PX) = − log inf
x∈supp(PX)

PX(x); (6)

H1(PX) = H(PX) (7)

:= −
∑

x∈supp(PX)

PX(x) logPX(x); (8)

H+∞(PX) = − log sup
x∈supp(PX)

PX(x). (9)

Hence the usual Shannon entropy H(PX) is a special (lim-
iting) case of the Rényi entropy. Some properties of Rényi
entropies of all real orders (including negative orders) can be
found in a recent work [11], e.g., Hα(PX) is monotonically
decreasing in α throughout the real line, and α−1

α Hα(PX) is
monotonically increasing in α on (0,+∞) and (−∞, 0).

For a distribution PX ∈ P(X ), the mode entropy2 is defined
as

Hu(PX) := −
∑

x∈supp(PX)

1

|supp (PX)|
logPX(x). (10)

The mode entropy is also known as the cross (Shannon)
entropy between Unif (supp (PX)) and PX . For a distribution
PX ∈ P(X ) and α ∈ [−∞,∞], the α-tilted distribution is
defined as

P
(α)
X (·) :=

PαX(·)∑
x′∈supp(PX) P

α
X(x′)

, (11)

and the α-tilted cross entropy is defined as

Hu
α(PX) := −

∑
x∈supp(PX)

P
(α)
X (x) logPX(x). (12)

Obviously, Hu
0 (PX) = Hu(PX), and Hu

α(PX) = Hα(PX)
for α ∈ {−∞, 1,∞}.

Fix distributions PX , QX ∈ P(X ). Then the Rényi diver-
gence of order (0, 1) ∪ (1,+∞) is defined as

Dα(PX‖QX) :=
1

α− 1
log

∑
x∈supp(PX)

PX(x)αQX(x)1−α,

(13)

and the Rényi divergence of order α = 0, 1,+∞ is defined as
the limit by taking α → 0, 1,+∞, respectively. It is known
that

D0(PX‖QX) = − log{QX(supp (PX))}; (14)
D1(PX‖QX) = D(PX‖QX) (15)

:=
∑

x∈supp(PX)

PX(x) log
PX(x)

QX(x)
; (16)

D∞(PX‖QX) = log sup
x∈supp(PX)

PX(x)

QX(x)
. (17)

2Here the concept of “mode entropy” is consistent with the concept of
“mode” in statistics. This is because, in statistics, the mode of a set of data
values is the value that appears most often. On the other hand, for a product
set supp (PX)n, the type class TTX with type TX ≈ Unif (supp (PX)) has
more elements than any other type class, and under the product distribution
PnX , the probability values of sequences in the type class TTX is e−nH

u(PX ).
Hence, under the product distribution PnX , the probability value e−nH

u(PX )

is the mode of the data values
(
PnX (xn) > 0 : xn ∈ Xn

)
.

Hence the usual relative entropy is a special case of the Rényi
divergence.

We define the max-Rényi divergence as

Dmax
α (P,Q) = max {Dα(P‖Q), Dα(Q‖P )} , (18)

and the sum-Rényi divergence as

D+
α (P,Q) = Dα(P‖Q) +Dα(Q‖P ). (19)

The sum-Rényi divergence reduces to Jeffrey’s divergence
D(P‖Q)+D(Q‖P ) [12] when the parameter α is set to 1. Ob-
serve that Dmax

α (P,Q) ≤ D+
α (P,Q) ≤ 2Dmax

α (P,Q). Hence
Dmax
α (P,Q) is “equivalent” to D+

α (P,Q) in the sense that
for any sequences of distribution pairs

{
(P (n), Q(n))

}∞
n=1

,
Dmax
α (P (n), Q(n)) → 0 if and only if D+

α (P (n), Q(n)) → 0.
Hence in this paper, we only consider the max-Rényi diver-
gence. For α =∞,

Dmax
∞ (P,Q) = sup

x∈X
| logP (x)− logQ(x)| (20)

= sup
A⊆X

|logP (A)− logQ(A)| . (21)

This expression is similar to the definition of TV distance,
hence we term Dmax

∞ as the logarithmic variation distance.3

Lemma 1. The following properties hold.
1) Dmax

∞ is a metric. Similarly, D+
∞ is also a metric.

2) Dmax
∞ (P,Q) ≤ ε⇐⇒ e−ε ≤ P (x)

Q(x) ≤ e
ε,∀x.

3) For any f , −D∞(Q‖P ) ≤ log EP f(X)
EQf(X) ≤ D∞(P‖Q),

hence Dmax
∞ (P,Q) ≤ ε =⇒ e−ε ≤ EP f(X)

EQf(X) ≤ e
ε.

4) Dmax
∞ (PXPY |X , QXPY |X) = Dmax

∞ (PX , QX).

The proof of this lemma is omitted.

D. Problem Formulation and Result Summary

We consider the distribution approximation problem, which
can be described as follows. We are given a target “output”
distribution QY that we would like to simulate. At the same
time, we are given a k-length sequence of a memoryless source
Xk ∼ P kX . We would like to design a function f : X k → Yn
such that the distance, according to some divergence measure,
of the simulated distribution PY n with Y n := f(Xk) and n
independent copies of the target distribution QnY is minimized.
Here we let n = dkRe, where R is a fixed positive number
known as the rate. We assume the alphabets X and Y are finite.
We also assume PX(x) > 0,∀x ∈ X and QY (y) > 0,∀y ∈ Y ,
i.e., X and Y are the supports of PX and QY , respectively.
There are now two fundamental questions associated to this
simulation task: (i) As k → ∞, what is the asymptotic
level of approximation as a function of (R,PX , QY )? (ii) As
k →∞, what is the maximum rate R such that the discrepancy
between the distribution PY n and QnY tends to zero? In
contrast to previous works on this problem [1], [2], here we
employ Rényi divergences Dα(PY n‖QnY ), Dα(QnY ‖PY n), and
Dmax
α (PY n , Q

n
Y ) of all orders α ∈ [0,∞] to measure the

discrepancy between PY n and QnY .
Furthermore, our results are summarized in Table I.

3In [13], Dmax
∞ (P,Q) ≤ ε is termed the (ε, 0)-closeness.
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TABLE I: Summary of results on asymptotics of Rényi divergences. Here a(t′) and b(t′) are defined in (28) and (29) respectively,
and c(α) :=

∣∣α−1
α

∣∣ for α 6= 0. For α ∈ [0, 1]∪ {∞}, Rényi conversion rates for unnormalized Rényi divergences are the same
to those for normalized Rényi divergences. Furthermore, for α ∈ (1,∞), an achievability result on the Rényi conversion rate
for unnormalized Rényi divergence Dα(PY n‖QnY ) is given in (35). All of our results summarized here are new, except that
the Rényi conversion rates for the unnormalized Rényi divergence Dα(PY n‖QnY ) with α ∈ (0, 1

2 ] are implied by Kumagai and
Hayashi [2] and Han [1].

Rényi Divergences Cases Asymptotics of Rényi Divergences

1
n
Dα(PY n‖QnY ) α ∈ [0,∞] supt∈[0,1)

{
tH 1

1−t
(QY )− t

R
H 1

1−c(α)t
(PX)

}
1
n
Dα(QnY ‖PY n )

α = 0 0

α ∈ (0, 1) 1
c(α)

maxt∈[0,1]

{
tH 1

1−t
(QY )− t

R
H 1

1+ t
c(α)

(PX)

}
α ∈ [1,∞]

R <
H0(PX )
H0(QY )

supt∈(0,∞)

{
tH 1

1+c(α)t
(QY )− t

R
H 1

1+t
(PX)

}
α ∈ [1,∞]

R >
H0(PX )
H0(QY )

∞

1
n
Dmax
α (PY n , Q

n
Y )

α = 0 supt∈[0,1)

{
tH 1

1−t
(QY )− t

R
H0(PX)

}
α ∈ (0, 1) supt∈[0,1) maxt′∈[0,1]

tb(t′)H 1
1−t

(QY )− tb(t′)
R

H 1

1+
b(t′)
a(t′) t

(PX)


α ∈ [1,∞]

R <
H0(PX )
H0(QY )

max

{
supt∈[0,1)∪( 1

c(α)
,∞)

{
tH 1

1−t
(QY )− t

R
H 1

1−c(α)t
(PX)

}
,

supt∈(0,∞)

{
tH 1

1+c(α)t
(QY )− t

R
H 1

1+t
(PX)

}}
α ∈ [1,∞]

R >
H0(PX )
H0(QY )

∞

Rényi Divergences Cases Rényi Conversion Rates

1
n
Dα(PY n‖QnY )

α = 0 H0(PX )
H(QY )

α ∈ (0, 1) H(PX )
H(QY )

α ∈ [1,∞] inft∈(0,1)

H 1
1−c(α)t

(PX )

H 1
1−t

(QY )

1
n
Dα(QnY ‖PY n )

α = 0 ∞
α ∈ (0, 1) H(PX )

H(QY )

α = 1 min
{
H(PX )
H(QY )

,
H0(PX )
H0(QY )

}
α ∈ (1,∞] inft∈(0,∞)

H 1
1+t

(PX )

H 1
1+c(α)t

(QY )

1
n
Dmax
α (PY n , Q

n
Y )

α = 0 H0(PX )
H(QY )

α ∈ (0, 1) H(PX )
H(QY )

α = 1 min
{
H(PX )
H(QY )

,
H0(PX )
H0(QY )

}
α ∈ (1,∞] min

{
inft∈[0,1)∪( 1

c(α)
,∞)

H 1
1−c(α)t

(PX )

H 1
1−t

(QY )
, inft∈(0,∞)

H 1
1+t

(PX )

H 1
1+c(α)t

(QY )

}

E. Mappings

The following two fundamental mappings, illustrated in
Fig. 1, will be used in our constructions of the functions
f : X k → Yn described in Subsection I-D.

Consider two (possibly unnormalized) nonnegative mea-
sures PX and QY . Sort the elements in X as x1, x2, ..., x|X |
such that PX(x1) ≥ PX(x2) ≥ ... ≥ PX(x|X |). Similarly,
sort the elements in Y as y1, y2, ..., y|Y| such that QY (y1) ≥
QY (y2) ≥ ... ≥ QY (y|Y|). Consider two mappings from X
to Y as follows:

• Mapping 1 (Inverse-Transform): If PX and/or QY
are unnormalized, then normalize them first. De-
fine GX(i) := PX (xl : l ≤ i) and G−1

X (θ) :=
max {i ∈ N : GX(i) ≤ θ}. Similarly, for QY , we de-

fine GY (j) := QY (yl : l ≤ j) and G−1
Y (θ) :=

min {j ∈ N : GY (j) ≥ θ}. Consider the following map-
ping. For each i ∈ [1 : |X |], xi is mapped to yj where
j = G−1

Y (GX(i)). The resulting distribution is denoted
as PY . This mapping is illustrated in Fig. 1a. For such a
mapping, the following properties hold:

1) If PX(xi) ≥ QY (yj) where i := G−1
X (GY (j)),

then |
{
i : G−1

Y (GX(i)) = j
}
| ≤ 1. Hence, PY (yj) ≤

PX(xi).
2) If PX(xi) < QY (yj) where i := G−1

X (GY (j)), then
|
{
i : G−1

Y (GX(i)) = j
}
| ≥ 1 and

max

{
1

2
QY (yj), QY (yj)− PX(xi)

}
≤ PY (yj) ≤ QY (yj) + PX(xi). (22)



5

• Mapping 2: Denote km,m ∈ [1 : L] with kL := |X | as
a sequence of integers such that for m ∈ [1 : L − 1],∑km−1
i=km−1+1 PX(xi) < QY (ym) ≤

∑km
i=km−1+1 PX(xi),

and
∑kL
i=kL−1+1 PX(xi) ≤ QY (yL) or∑kL−1

i=kL−1+1 PX(xi) < QY (yL) ≤
∑kL
i=kL−1+1 PX(xi).

Obviously L ≤ |Y|. For each m ∈ [1 : L], map
xkm−1+1, ..., xkm to ym. The resulting distribution is
denoted as PY . This mapping is illustrated in Fig. 1b.
For such a mapping, we have

QY (ym) ≤ PY (ym) < QY (ym) + PX(xkm) (23)

for m ∈ [1 : L− 1],

PY (ym) < QY (ym) + PX(xkm) (24)

for m = L, and PY (ym) = 0 for m > L.

II. RÉNYI DISTRIBUTION APPROXIMATION

A. Asymptotics of Rényi Divergences

We first characterize the asymptotics of Rényi diver-
gences Dα(PY n‖QnY ), Dα(QnY ‖PY n), and Dmax

α (PY n , Q
n
Y ),

as shown by the following theorems.

Theorem 1 (Asymptotics of 1
nDα(PY n‖QnY )). For any α ∈

[0,∞], we have

lim
n→∞

1

n
inf
f
Dα(PY n‖QnY )

= sup
t∈[0,1)

{
tH 1

1−t
(QY )− t

R
H 1

1−α−1
α

t

(PX)

}
. (25)

Theorem 2 (Asymptotics of 1
nDα(QnY ‖PY n)). For any α ∈

[0,∞], we have

lim
n→∞

1

n
inf
f
Dα(QnY ‖PY n)

=



∞, α ∈ [1,∞] and R > H0(PX)
H0(QY ) ;

supt∈(0,∞)

{
tH 1

1+α−1
α

t

(QY )− t
RH 1

1+t
(PX)

}
,

α ∈ [1,∞] and R < H0(PX)
H0(QY ) ;

α
1−α maxt∈[0,1]

{
tH 1

1−t
(QY )− t

RH 1
1+ α

1−α t
(PX)

}
,

α ∈ (0, 1);

0, α = 0.

(26)

Theorem 3 (Asymptotics of 1
nD

max
α (PY n , Q

n
Y )). For any α ∈

[0,∞], we have (27) (given on page 6),
where

a(t′) =

(
α

1− α
− 1

)
t′ + 1 (28)

b(t′) =

(
1− α

1− α

)
t′ +

α

1− α
. (29)

Remark 1. For α ∈ [1,∞] and R = H0(PX)
H0(QY ) , the asymptotic

behavior of 1
n inff Dα(QnY ‖PY n) and 1

n inff D
max
α (PY n , Q

n
Y )

depends on how fast n
k converges to R. In this paper,

we set n = dkRe, i.e., the fastest case. For this case,

1
n inff Dα(QnY ‖PY n) = 1

n inff D
max
α (PY n , Q

n
Y ) = ∞,

if kR /∈ N; and 1
n inff Dα(QnY ‖PY n) =

1
nDα({Qi}‖{Pi}) and 1

n inff D
max
α (PY n , Q

n
Y ) =

1
n max {Dα({Pi}‖{Qi}), Dα({Qi}‖{Pi})}, if kR ∈ N,
where {Pi} and {Qi} respectively denote the resulting
sequences after sorting the elements of P kX and QnY in
descending order.

The proofs of Theorems 1, 2, and 3 are provided in
Appendices B, C, and D, respectively. For the achievability
parts, we partition the sequences in X k and Yn into type
classes, and design codes on the level of type classes. More
specifically, for Theorem 1, we first design a function g :
P(k) (X ) → P(n) (Y) that maps k-types on X to n-types on
Y; and then a code f induced by g is obtained by mapping
the sequences in TTX to the sequences in Tg(TX) as uniformly
as possible for all TX ∈ P(k) (X ), i.e., f maps approximately
|TTX |/|Tg(TX )| sequences in TTX to each distinct sequence in
Tg(TX). Here the optimal selection of the function g depends
on s and requires careful analysis (the detail can be found in
the proof). The intuition of designing such a code is given in
the following. On one hand, observe that

1

n
D1+s(PY n‖QnY )

=
1

ns
log

{∑
TY

∑
yn∈TTY(∑

TX

∑
xk∈TTX

P kX(xk)1
{
yn = f(xk)

})1+s

QnY (yn)−s
}

(30)

=
1

ns
log

{
max
TX ,TY

∑
yn∈TTY( ∑

xk∈TTX

P kX(xk)1
{
yn = f(xk)

})1+s

QnY (yn)−s
}

+ o(1)

(31)

where (31) follows since the number of n-types (or k-types)
is only polynomial in n (or k). This means that for any
code f , the asymptotics of 1

nD1+s(PY n‖QnY ) induced by f
is only determined by restrictions of f on A (TX , TY ) :=
{xn ∈ TTX : f(xn) ∈ TTY } for different (TX , TY ). In other
words, the performance of a code f only depends on its
restrictions to those maps from A (TX , TY ) to TTY . On the
other hand, P kX(xk) and QnY (yn) are uniform on TTX and
TTY , respectively. Hence for different (TX , TY ), to make the
objective function of (31) as small as possible, we need to
map the sequences in A (TX , TY ) to the sequences in TTY as
uniformly as possible. Since

⋃
TY
A (TX , TY ) = TTX and the

number of types TY is polynomial in n, for each TX , there
is a dominant type TY = g(TX) such that redefining f to
satisfy {f(xn), xn ∈ TTX} ⊆ TTY with TY = g(TX) does
not affect the asymptotics of 1

nD1+s(PY n‖QnY ). Therefore,
we only need to consider the codes consisting of a function g
that maps k-types on X to n-types on Y , and mappings that
map sequences in TTX to sequences in Tg(TX) as uniformly
as possible.
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Fig. 1: Illustrations of Mappings 1 and 2.

lim
n→∞

1

n
inf
f
Dmax
α (PY n , Q

n
Y )

=



∞, α ∈ [1,∞] and R > H0(PX)
H0(QY )

max

{
supt∈[0,1)∪( α

α−1 ,∞)

{
tH 1

1−t
(QY )− t

RH 1

1−α−1
α

t

(PX)

}
,

supt∈(0,∞)

{
tH 1

1+α−1
α

t

(QY )− t
RH 1

1+t
(PX)

}}
, α ∈ (1,∞] and R < H0(PX)

H0(QY )

max

{
supt∈[0,1)

{
tH 1

1−t
(QY )− t

RH(PX)
}
,

supt∈(0,∞)

{
tH(QY )− t

RH 1
1+t

(PX)
}}

, α = 1 and R < H0(PX)
H0(QY )

supt∈[0,1) maxt′∈[0,1]

{
tb(t′)H 1

1−t
(QY )− tb(t′)

R H 1

1+
b(t′)
a(t′) t

(PX)

}
, α ∈ (0, 1)

supt∈[0,1)

{
tH 1

1−t
(QY )− t

RH0(PX)
}
, α = 0

(27)

The achievability proof for Theorem 2 follows similar ideas.
However, in contrast, to ensure that 1

n inff Dα(QnY ‖PY n)
is finite and also as small as possible, it is required that
supp (PY n) ⊇ supp (QnY ) and PY n(yn) should be as large as
possible for all yn. On the other hand, observe that

∣∣P(n) (Y)
∣∣

is polynomial in n. Hence for each TX , we should partition
TTX into

∣∣P(n) (Y)
∣∣ subsets with equal size, and for each

TY , map the sequences in each subset to the sequences
in the set TTY as uniformly as possible. Observe that for
each TY , there must exist a type TX such that H(TX) ≥
H(TY ) + o(1) (otherwise 1

n inff Dα(QnY ‖PY n) = ∞) and
moreover, similar to (31), the summation term is dominated
by some type TX such that H(TX) ≥ H(TY ) + o(1).
Hence without loss of any optimality, it suffices to consider
the following mapping. For each TX and δ > 0, partition

TTX into |{TY : H(TX) ≥ H(TY ) + δ}| subsets with approxi-
mately same size. For each TY such that H(TX) ≥ H(TY )+δ,
map the sequences in each subset to the sequences in the set
TTY as uniformly as possible.

The code used to prove the achievability part of Theorem
3 is a combination of the two codes above.

B. Rényi Conversion Rates

As shown in the theorems above, when the code rate
is large, the normalized Rényi divergences 1

nDα(PY n‖QnY ),
1
nDα(QnY ‖PY n), and 1

nD
max
α (PY n , Q

n
Y ) converge to a positive

number; however when the code rate is small enough, the
normalized Rényi divergences converge to zero. This threshold
rate, termed the Rényi conversion rate, is important, since
it represents the maximum possible rate under the condition
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that the distribution induced by the code approximates the
target distribution arbitrarily well as n→∞. We characterize
the Rényi conversion rates for normalized and unnormalized
Dα(PY n‖QnY ), Dα(QnY ‖PY n), and Dmax

α (PY n , Q
n
Y ) in the

following theorems.

Theorem 4 (Rényi Conversion Rate for Dα(PY n‖QnY )). For
any α ∈ [0,∞],

sup

{
R :

1

n
Dα(PY n‖QnY )→ 0

}

=


inft∈(0,1)

H 1

1−α−1
α

t

(PX)

H 1
1−t

(QY ) , α ∈ [1,∞]

H(PX)
H(QY ) , α ∈ (0, 1)
H0(PX)
H(QY ) , α = 0

. (32)

For α ∈ [0, 1] ∪ {∞}, we have

sup {R : Dα(PY n‖QnY )→ 0}

= sup

{
R :

1

n
Dα(PY n‖QnY )→ 0

}
. (33)

For α ∈ [1,∞], we have

sup

{
R :

1

n
Dα(PY n‖QnY )→ 0

}
≥ sup {R : Dα(PY n‖QnY )→ 0} (34)

≥ inf
t∈(0,1)

H α−1+t
α−1+t−(α−1)t

(PX)

H 1
1−t

(QY )
. (35)

Remark 2. The analogous result under the TV distance mea-
sure was first shown by Han [1]. Theorem 4 is an extension
of [1] to the Rényi divergence of all orders α ∈ [0,∞].
Besides, the first-order and second-order rates, as well as the
conversion rates of the quantum version, for the unnormalized
Rényi divergence Dα(PY n‖QnY ) with α = 1

2 were given by
Kumagai and Hayashi [2]; and the corresponding moderate
deviation of the quantum Rényi conversion rates with the same
order was studied by Chubb, Tomamichel, and Korzekwa1
[14]. The result for the unnormalized Rényi divergence with
α ∈ (0, 1

2 ) can be obtained by combining two observations: 1)
the achievability for D 1

2
(PY n‖QnY ) implies the achievability

for α ∈ (0, 1
2 ); 2) by Pinsker’s inequality for Rényi divergence

[3], the converse result for the TV distance measure [1]
implies the converse for α ∈ (0, 1

2 ). Our results for orders
α ∈ {0} ∪ ( 1

2 ,∞] are new.

Remark 3. Dα(PY |X=x‖PY |X=x′) ≤ ε for all neighboring
databases x, x′ is known as the ε-Rényi differential privacy
of order α [15], and the special case with α = ∞ is known
as the ε-differential privacy [16]. Here, X represents public
data and Y represents private data. In the theorem above, this
measure is applied to the random variable simulation problem,
and we provide a “necessary and sufficient condition” for
limn→∞

1
nDα ≤ ε for any ε > 0.

Theorem 5 (Rényi Conversion Rate for Dα(QnY ‖PY n)). For
any α ∈ [0,∞],

sup

{
R :

1

n
Dα(QnY ‖PY n)→ 0

}

=



inft∈(0,∞)

H 1
1+t

(PX)

H 1

1+α−1
α

t

(QY ) , α ∈ (1,∞]

min
{
H(PX)
H(QY ) ,

H0(PX)
H0(QY )

}
, α = 1

H(PX)
H(QY ) , α ∈ (0, 1)

∞, α = 0

. (36)

For α ∈ [0, 1] ∪ {∞}, we have

sup {R : Dα(QnY ‖PY n)→ 0}

= sup

{
R :

1

n
Dα(QnY ‖PY n)→ 0

}
. (37)

Remark 4. Our results for all orders α ∈ [0,∞] are new.

Theorem 6 (Rényi Conversion Rate for Dmax
α (PY n , Q

n
Y )). For

α ∈ [0,∞], we have

sup

{
R :

1

n
Dmax
α (PY n , Q

n
Y )→ 0

}

=



min

{
inft∈[0,1)∪( α

α−1 ,∞)

H 1

1−α−1
α

t

(PX)

H 1
1−t

(QY ) ,

inft∈(0,∞)

H 1
1+t

(PX)

H 1

1+α−1
α

t

(QY )

}
, α ∈ (1,∞]

min
{
H(PX)
H(QY ) ,

H0(PX)
H0(QY )

}
, α = 1

H(PX)
H(QY ) , α ∈ (0, 1)
H0(PX)
H(QY ) , α = 0

.

(38)

For α ∈ [0, 1] ∪ {∞}, we have

sup {R : Dmax
α (PY n , Q

n
Y )→ 0}

= sup

{
R :

1

n
Dmax
α (PY n , Q

n
Y )→ 0

}
. (39)

Remark 5. Note that for α ∈ (1,∞], (38) involves an infimum
taken over ( α

α−1 ,∞), and hence it is in general smaller than
the minimum of (32) and (36).

Remark 6. For α = ∞, the Rényi conversion rate in (38)
is minβ∈[−∞,∞]

Hβ(PX)
Hβ(QY ) . Consider R = 1. Then this the-

orem implies that PnX can approximate QnY in the sense
that 1

nD
max
∞ (PY n , Q

n
Y ) → 0 or Dmax

∞ (PY n , Q
n
Y ) → 0, if

Hβ(PX) > Hβ(QY ) for all β ∈ [−∞,∞], and only if
Hβ(PX) ≥ Hβ(QY ) for all β ∈ [−∞,∞]. This also implies
the statement 1) of [17, Proposition III.3], since if Hβ(PX) <
Hβ(QY ) for some β ∈ [−∞,∞], then approximate simulation
(under the measure Dmax

∞ ) is impossible, and hence exact
simulation is also impossible.

Remark 7. Note that Dmax
∞ is an extremely strong dis-

tance measure. Theorem 6 states that the Rényi conver-
sion rate (the maximum possible rate under the condition
Dmax
∞ (PY n , Q

n
Y ) → 0) is finite. That is to say, as the

dimension tends to infinity, it is always possible to achieve
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Dmax
∞ (PY n , Q

n
Y )→ 0, even though Dmax

∞ is extremely strong.
However, in our recent work [17, Proposition III.4], we
showed that for some special pairs of distributions, it is im-
possible to achieve PY n = QnY (or Dmax

∞ (PY n , Q
n
Y ) = 0) for

finite n, i.e, the exact simulation cannot be obtained for finite-
dimensional product of distributions. Hence there exists a big
“gap” between approximate simulation and exact simulation
(for fixed blocklength cases), even when the approximate
simulation is realized under the measure Dmax

∞ .

Remark 8. The condition Dmax
∞ (P,Q) ≤ ε is called

(ε, 0)-closeness, and was used to measure privacy in
[13]. In Theorem 6, we provide a “necessary and suf-
ficient condition” for limn→∞Dmax

∞ (PY n , Q
n
Y ) ≤ ε or

limn→∞
1
nD

max
∞ (PY n , Q

n
Y ) ≤ ε for any ε > 0. Dmax

∞ (P,Q)
is a very strong measure, hence it can be taken as a secrecy
measure for a secrecy system when secrecy stronger than
the usual notion of strong secrecy is required. Our result
can be applied to this case. Furthermore, Dmax

∞ (P,Q) is
also related to ε-information privacy, which is defined as
Dmax
∞ (PXY , PXPY ) ≤ ε where X and Y represent public

and private datum respectively [18].

The proofs of Theorems 4, 5, and 6 are provided in
Appendices E, F, and G, respectively. The Rényi conver-
sion rates for normalized Dα(PY n‖QnY ), Dα(QnY ‖PY n), and
Dmax
α (PY n , Q

n
Y ) respectively follow from Theorems 1, 2, and

3. Obviously, the unnormalized Rényi conversion rates are
lower bounded by the normalized ones. We believe such
lower bounds are tight. However, we do not know how to
construct an efficient coding scheme for the case α ∈ (1,∞).
Hence for the measure Dα(PY n‖QnY ), we consider a relatively
simple scheme — the inverse-transform scheme, which is
described in Subsection I-E and illustrated in Fig. 1a. Another
reason for using the inverse-transform scheme is that such a
scheme is optimal (which results in zero divergences) when
the source distribution PX is continuous [19, Proposition
1]. Hence we believe it should work also well for discrete
source distributions. The specific code used to prove the
achievability part for this case is illustrated in Fig. 6. For
δ > 0, define B1 :=

{
yn : QnY (yn) ≥ e−n(H(QY )+δ)

}
. To

ensure Dα(PY n‖QnY ) → 0, we only need to simulate a
truncated version Q̃Y n(yn) :=

QnY (yn)
QnY (B1)1 {yn ∈ B1} of QnY .

This is because, on one hand, for any function f : X k → B1

with output Y n = f(Xk),

Dα(PY n‖QnY )

=
1

α− 1
log

∑
yn∈A

PY n(yn)

(
PY n(yn)

Q̃Y n(yn)

Q̃Y n(yn)

QnY (yn)

)α−1

(40)

=
1

α− 1
log

∑
yn∈A

PY n(yn)

(
PY n(yn)

Q̃Y n(yn)

1

QnY (B1)

)α−1

(41)

= Dα(PY n‖Q̃Y n)− logQnY (B1), (42)

and on the other hand, observe that QnY (B1)→ 1 as n→∞.
That is to say, if a function f is a “good” simulator for
Q̃Y n in the sense that Dα(PY n‖Q̃Y n) → 0, then it must

be also “good” for QnY in the same sense. The reason why
we consider simulating Q̃Y n rather than simulating QnY di-
rectly, is that by doing this, the influence of the behavior of
{QnY (yn) : yn ∈ Yn\B1} on the value of Dα(PY n‖QnY ) is
removed, since for such a simulation, all sequences xn are
mapped to the sequences yn in B1. Hence in general, a code
f : X k → B1 induces a smaller Dα(PY n‖QnY ) than a code
f : X k → Yn. By using the inverse-transform scheme, we
derive an upper bound for α ∈ [1,∞], which is tight for α = 1
or ∞. This is because that to ensure Dα(PY n‖QnY ) → 0, it
is required that PY n (yn)

QnY (yn) ≤ 1 + o(1) for all yn ∈ Yn when

α =∞, and PY n (yn)
QnY (yn) = 1+o(1) for all yn in a high probability

set of QnY when α = 1.
Similar ideas also apply to the cases with measures

Dα(QnY ‖PY n) and Dmax
α (PY n , Q

n
Y ). However, for α =

1, differently from the case Dα(PY n‖QnY ), to ensure
Dα(QnY ‖PY n)→ 0 or Dmax

α (PY n , Q
n
Y )→ 0, it is required not

only that QnY (yn)
PY n (yn) = 1+o(1) for all yn in a high probability set

of QnY , but also that PY n(yn) > 0 for all yn ∈ Yn (otherwise,
Dα(QnY ‖PY n) = Dmax

α (PY n , Q
n
Y ) = ∞). Observe that there

exists a code such that PY n(yn) > 0 for all yn ∈ Yn if
and only if |X |k ≥ |Y|n, i.e., n

k ≤
H0(PX)
H0(QY ) . Hence the term

H0(PX)
H0(QY ) appears in (36) and (38) for α = 1.

For α = ∞ and for the measure Dα(QnY ‖PY n), the code
used to prove the achievability part is illustrated in Fig. 7.
In contrast to the case Dα(PY n‖QnY ), here the sequences
in B2 :=

{
yn : e−nH

u(QY ) ≤ QnY (yn) ≤ e−n(H(QY )−δ)}, in-
stead of those in B1, are dominant. That is to say, the
influence of {QnY (yn) : yn ∈ Yn\B2} on the value of
Dα(QnY ‖PY n) can be removed. However, for the measure
Dmax
α (PY n , Q

n
Y ), the influence of QnY (yn), yn ∈ Yn cannot

be removed anymore. That is, all the sequences in Yn are
dominant. See the code illustrated in Fig. 8, which is used to
prove the achievability part for this case.

In summary, for α =∞, the conversion rates are determined
by the (part of or all of) information spectrum exponents
of P kX and QnY , and on the other hand, the information
spectrum exponents are determined by the Rényi entropies
(see Lemmas 9 and 11; more specifically, the infinity order
cases in Theorems 4, 5, and 6 respectively correspond to (101),
(103), as well as, (101) and (102)). Hence the conversion
rates are determined by Rényi entropies. This is the reason
why the conversion rates are expressed as functions of Rényi
entropies. However, for α = 1, the conversion rates are related
to the limits of information spectrums of P kX and QnY , and do
not depend on how fast the information spectrums converge.
Hence they are only functions of Rényi entropies with orders
1 and 0.

Theorems 4, 5, and 6 are illustrated in Fig. 2.

III. SPECIAL CASE 1: RÉNYI SOURCE RESOLVABILITY

If we set PX to the Bernoulli distribution Bern( 1
2 ), then

the distribution approximation problem reduces to the source
resolvability problem, i.e., simulating a memoryless source
whose distribution is approximately subject to a target dis-
tribution QY , using a uniform random variable Mn that is
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Fig. 2: Illustration of the Rényi conversion rates under normal-
ized divergences in Theorems 4, 5, and 6 for PX = Bern (0.3)
and QY = Bern (0.1) (top) and for PX = Bern (0.1) and
QY = Bern (0.3) (bottom).

uniformly distributed over Mn := [1 : M] with M := benR̃c.
The rate R̃ here is different from the R defined in Section
II, and indeed it is approximately equal to the ratio of log 2
and the R in Section II with PX set to Bern( 1

2 ). Given
the target distribution QY , we wish to minimize the rate R̃
such that the distribution of Y n := f(Mn) forms a good
approximation to the product distribution QnY . In contrast to
previous works on the resolvability problem [4], [8], here we
employ the Rényi divergences Dα(PY n‖QnY ), Dα(QnY ‖PY n),
and Dmax

α (PY n , Q
n
Y ) of all orders α ∈ [0,∞] to measure the

discrepancy between PY n and QnY .

A. Asymptotics of Rényi Divergences

We consider the Rényi divergences
Dα(PY n‖QnY ), Dα(QnY ‖PY n), and Dmax

α (PY n , Q
n
Y ). The

asymptotic behaviors of these measures are respectively
characterized in the following corollaries. These results
follow from Theorems 1, 2, and 3 by setting PX = Bern( 1

2 ).

Corollary 1 (Asymptotics of 1
nDα(PY n‖QnY )). For any α ∈

[0,∞], we have

lim
n→∞

1

n
inf
f
Dα(PY n‖QnY )

= sup
t∈[0,1)

{
tH 1

1−t
(QY )− tR̃

}
. (43)

Remark 9. This result for α ∈ [0, 2] was shown by our
previous work [8]. Hence our results here for α ∈ (2,∞]
are new.

Remark 10. This result for α = 0 is related to the error
exponent of lossless source coding. Define

P
(
R̃
)

:= sup
A⊆Y:|A|≤enR̃

QnY (A) . (44)

Then according to (14), for α = 0, the asymptotics of the
normalized Rényi divergence

lim
n→∞

1

n
inf
f
D0(PY n‖QnY )

= lim
n→∞

− 1

n
logP

(
R̃
)

(45)

= min
P̃Y :H(P̃Y )≤R̃

D(P̃Y ‖QY ) (46)

= sup
t∈[0,1)

{
tH 1

1−t
(QY )− tR̃

}
. (47)

On the other hand, the error exponent of lossless source coding
with code rate R̃ for memoryless source QnY is

lim
n→∞

− 1

n
log
(

1− P
(
R̃
))

= min
P̃Y :H(P̃Y )≥R̃

D(P̃Y ‖QY ) (48)

= sup
t∈[0,∞)

{
−tH 1

1+t
(QY ) + tR̃

}
. (49)

Hence the asymptotics of the normalized Rényi divergence
D0(PY n‖QnY ) and the error exponent of lossless source coding
are respectively the exponents of P

(
R̃
)

for different regimes

(R̃ ≤ H(QY ) and R̃ ≥ H(QY )). Furthermore, by large devi-
ation theory [27], (44)-(49) hold not only for finite alphabets,
but also for countably infinite or continuous alphabets (with
the counting measure replaced by the Lebesgue measure, the
probability mass function QY replaced by the corresponding
probability density function or the Radon-Nikodym derivative,
and the summation replaced by the corresponding integration).

Corollary 2 (Asymptotics of 1
nDα(QnY ‖PY n)). For any α ∈

[0,∞], we have

lim
n→∞

1

n
inf
f
Dα(QnY ‖PY n)

=


∞, α ∈ [1,∞] and R̃ < H0(QY );

0, α ∈ [1,∞] and R̃ > H0(QY );
α

1−α supt∈[0,1)

{
tH 1

1−t
(QY )− tR̃

}
, α ∈ (0, 1);

0, α = 0.

(50)
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Corollary 3 (Asymptotics of 1
nD

max
α (PY n , Q

n
Y )). For any α ∈

[0,∞], we have

lim
n→∞

1

n
inf
f
Dmax
α (PY n , Q

n
Y )

=



∞, α ∈ [1,∞] and R̃ < H0(QY );

supt∈( α
α−1 ,∞)

{
tH 1

1−t
(QY )− tR̃

}
,

α ∈ (1,∞] and R̃ > H0(QY );

0, α = 1 and R̃ > H0(QY );

max
{

α
1−α , 1

}
supt∈[0,1)

{
tH 1

1−t
(QY )− tR̃

}
,

α ∈ (0, 1);

supt∈[0,1)

{
tH 1

1−t
(QY )− tR̃

}
, α = 0.

(51)

B. Rényi Source Resolvability

As shown in the theorems above, when the code rate is
small, the normalized Rényi divergences 1

nDα(PY n‖QnY ),
1
nDα(QnY ‖PY n), and 1

nD
max
α (PY n , Q

n
Y ) converge to a positive

number; however when the code rate is large enough, the
normalized Rényi divergences converge to zero. The thresh-
old rate, named Rényi resolvability, represents the minimum
rate needed to ensure the distribution induced by the code
well approximates the target distribution. We characterize the
Rényi resolvabilities in the following theorems. The Rényi
resolvabilities for normalized divergences of all orders and the
Rényi resolvabilities for unnormalized divergences of orders
in [0, 1]∪{∞} are direct consequences of Theorems 4, 5, and
6. Hence we only need focus on the cases for unnormalized
divergences of orders in (1,∞). Furthermore, the converse
parts for these cases follow from the fact the unnormalized
divergences are stronger than the normalized versions. Hence
we only prove the achievability parts for unnormalized di-
vergences of orders in (1,∞). These proofs are provided in
Appendices H, I, and J, respectively.

Theorem 7 (Rényi Resolvability). For any α ∈ [0,∞], we
have

inf

{
R̃ :

1

n
Dα(PY n‖QnY )→ 0

}
= inf

{
R̃ : Dα(PY n‖QnY )→ 0

}
= H(QY ). (52)

Remark 11. The case α = 1 and the normalized divergence
(i.e., the normalized relative entropy case) was first shown by
Han and Verdú [4]. The case α = 1 and the unnormalized
divergence (i.e., the unnormalized relative entropy case) has
been shown in other works, such as those by Hayashi [5], [6]
and Han, Endo, and Sasaki [20]. In fact, Theorem 7 is implied
by our previous work on Rényi channel resolvability [8] by
setting the channel to be the identity channel.
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Fig. 3: Illustration of the Rényi resolvabilities in Theorems 7,
8, and 9 for QY = Bern (0.1).

Theorem 8 (Rényi Resolvability). For any α ∈ [0,∞], we
have

inf

{
R̃ :

1

n
Dα(QnY ‖PY n)→ 0

}
= inf

{
R̃ : Dα(QnY ‖PY n)→ 0

}
=


H0(QY ), α ∈ [1,∞]

H(QY ), α ∈ (0, 1)

0, α = 0

(53)

Remark 12. The results in Theorem 8 for all orders α ∈ [0,∞]
are new.

Theorem 9 (Rényi Resolvability). For any α ∈ [0,∞], we
have

inf

{
R̃ :

1

n
Dmax
α (PY n , Q

n
Y )→ 0

}
= inf

{
R̃ : Dmax

α (PY n , Q
n
Y )→ 0

}
=

{
H1−α(QY ), α ∈ [1,∞]

H(QY ), α ∈ [0, 1)
(54)

Remark 13. For special cases α = 1,∞, the Rényi resolvabili-
ties are respectively equal to H−∞(QY ) = − log miny QY (y)
and H0(QY ) = log |supp(QY )|.
Remark 14. To the best of our knowledge, we are the first to
give an explicit operational interpretation of Rényi entropies of
negative orders as Rényi resolvabilities. In [11], [21], Rényi
entropies of negative orders were used to lower bound the
probability of error for hypothesis testing.

Theorems 7, 8, and 9 are illustrated in Fig. 3.

IV. SPECIAL CASE 2: RÉNYI INTRINSIC RANDOMNESS

If we set QY to the Bernoulli distribution Bern( 1
2 ), then

the distribution approximation problem reduces to the intrinsic
randomness problem, which can be seen as a “dual” problem
of the source resolvability problem. Consider simulating a
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uniform random variable Mn that is uniformly distributed over
Mn := [1 : M] with M := denR̂e using a memoryless source
Xn ∼ PnX . The rate R̂ here is approximately equal to log 2
times the rate R in Section II with QY set to Bern( 1

2 ). Given
the distribution PX , we wish to maximize the rate R̂ such that
the distribution of Mn := f(Xn) forms a good approximation
to the target distribution QMn

:= Unif[1 : M].

A. Asymptotics of Rényi Divergences

We consider the Rényi divergences
Dα(PMn

‖QMn
), Dα(QMn

‖PMn
), and Dmax

α (PMn
, QMn

).
The asymptotics of these measures are respectively
characterized in the following corollaries. These results
respectively follow from Theorems 1, 2, and 3 by setting
QY = Bern( 1

2 ).

Corollary 4 (Asymptotics of 1
nDα(PMn‖QMn)). For any α ∈

[0,∞], we have

lim
n→∞

1

n
inf
f
Dα(PMn‖QMn)

=


[
R̂−Hα(PX)

]+
α ∈ {0} ∪ [1,∞]

maxt∈[0,1]

{
tR̂− tH 1

1−α−1
α

t

(PX)

}
α ∈ (0, 1)

.

(55)

Remark 15. The case α ∈ [0, 2] was shown by Hayashi and
Tan [22]. Hence our results for α ∈ (2,∞] are new.

Corollary 5 (Asymptotics of 1
nDα(QMn‖PMn)). For any α ∈

[0,∞], we have

lim
n→∞

1

n
inf
f
Dα(QMn‖PMn)

=


supt∈[0,∞)

{
tR̂− tH 1

1+t
(PX)

}
, α ∈ [1,∞]

α
1−α maxt∈[0,1]

{
tR̂− tH 1

1+ α
1−α t

(PX)

}
, α ∈ (0, 1)

0, α = 0

(56)

Remark 16. If R̂ > H0(PX), then
limn→∞

1
n inff Dα(QMn‖PMn) =∞, α ∈ [1,∞].

Corollary 6 (Asymptotics of 1
nD

max
α (PY n , Q

n
Y )). For any α ∈

[0,∞], we have

lim
n→∞

1

n
inf
f
Dmax
α (PY n , Q

n
Y )

=



max

{[
R̂−Hα(PX)

]+
,

supt∈[0,∞)

{
tR̂− tH 1

1+t
(PX)

}}
, α ∈ [1,∞]

maxt∈[0,1] maxt′∈[0,1]{
tb(t′)R̂− tb(t′)H a(t′)

a(t′)+tb(t′)
(PX)

}
, α ∈ (0, 1)[

R̂−H0(PX)
]+

, α = 0

(57)

where a(t′) and b(t′) are defined in (28) and (29).

B. Rényi Intrinsic Randomness

As shown in the theorems above, when
the rate is large, the normalized Rényi diver-
gences 1

nDα(PMn‖QMn), 1
nDα(QMn‖PMn), and

1
nD

max
α (PMn

, QMn
) converge to a positive number; however

when the rate is small enough, the normalized Rényi
divergences converge to zero. The threshold rate, named
Rényi intrinsic randomness, represents the maximum possible
rate to satisfy that the distribution induced by a code well
approximates the target uniform distribution. We characterize
the Rényi intrinsic randomness in the following theorems. The
Rényi intrinsic randomness for normalized divergences of all
orders and the Rényi intrinsic randomness for unnormalized
divergences of orders in [0, 1]∪ {∞} are direct consequences
of Theorems 4, 5, and 6. Hence we only need focus on
the cases for unnormalized divergences of orders in (1,∞).
Furthermore, the converse parts for these cases follow from
the fact the unnormalized divergences are stronger than the
normalized versions. Hence we only prove the achievability
parts. The proofs are provided in Appendices K, L, and M,
respectively.

Theorem 10 (Rényi Intrinsic Randomness). For any α ∈
[0,∞], we have

sup

{
R̂ :

1

n
Dα(PMn

‖QMn
)→ 0

}
= sup

{
R̂ : Dα(PMn‖QMn)→ 0

}
=

{
Hα(PX) α ∈ {0} ∪ [1,∞]

H(PX) α ∈ (0, 1)
. (58)

Remark 17. The case α = 1 and the normalized divergence
(i.e., the normalized relative entropy case) was shown in [1].
The case α = 1 and the unnormalized divergence (i.e., the
unnormalized relative entropy case) was shown by Hayashi
[23]. The result for the unnormalized Rényi divergence with
α ∈ (0, 1) can be obtained by combining two observations: 1)
the achievability for D(PY n‖QnY ) implies the achievability for
this case; 2) by Pinsker’s inequality [3], the result under the
TV distance measure [1] implies the converse for α ∈ (0, 1).
The case α ∈ [0, 2] was shown by Hayashi and Tan [22].
Hence our results for α ∈ (2,∞] are new.

Theorem 11 (Rényi Intrinsic Randomness). For any α ∈
[0,∞], we have

sup

{
R̂ :

1

n
Dα(QMn‖PMn)→ 0

}
= sup

{
R̂ : Dα(QMn

‖PMn
)→ 0

}
=

{
H(PX), α ∈ (0,∞]

∞, α = 0
(59)

Remark 18. The case α = 1 was shown by Hayashi [23]. Our
results for all orders α ∈ [0, 1) ∪ (1,∞] are new.
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Fig. 4: Illustration of the Rényi intrinsic randomness in The-
orems 10, 11, and 12 for PX = Bern (0.1).

Theorem 12 (Rényi Intrinsic Randomness). For any α ∈
[0,∞], we have

sup

{
R̂ :

1

n
Dmax
α (PMn

, QMn
)→ 0

}
= sup

{
R̂ : Dmax

α (PMn , QMn)→ 0
}

=

{
Hα(PX), α ∈ {0} ∪ [1,∞]

H(PX), α ∈ (0, 1)
(60)

Theorems 10, 11, and 12 are illustrated in Fig. 4.

V. CONCLUDING REMARKS

In this paper, we studied generalized versions of random
variable simulation problem or distribution approximation
problem, in which the (normalized or unnormalized) standard
Rényi divergence and max- or sum-Rényi divergence of orders
in [0,∞] are used to measure the level of approximation. As
special cases, the source resolvability problem and the intrinsic
randomness problem were studied as well.

Our results on the distribution approximation problem ex-
tend those by Han [1] and by Kumagai and Hayashi [2], as we
consider Rényi divergences with all orders in [0,∞] instead
of the TV distance or the special case with order 1

2 . Similarly,
our source resolvability results extend those by Han and Verdú
[4], by Hayashi [5], [6], and by Yu and Tan [8] for the source
resolvability case, and our intrinsic randomness results extend
those by Vembu and Verdú [9], by Han [1], and by Hayashi
and Tan [22].

A. Open Problem

In Theorems 4, 5, and 6, we completely characterized the
Rényi conversion rates only for α ∈ [0, 1] ∪ {∞}. But the
cases for α ∈ (1,∞) are still open. We believe that analogous
to the case α ∈ [0, 1] ∪ {∞}, the unnormalized version of
Rényi conversion rate for α ∈ (1,∞) is also equal to the
corresponding normalized version with the same α.

B. Applications

Similar to other results concerning simulation of random
variables, our results can be applied to the analysis of Monte
Carlo methods, randomized algorithms (or random coding),
and cryptography. In the following we apply our results to
information-theoretic security. To illustrate this point, we con-
sider the Shannon cipher system with a guessing wiretapper
that was studied in [24]. In the Shannon cipher system,
the sender and the legitimate receiver share a secret key
Kn ∼ Unif

[
1 : enR

]
, and they want to communicate a source

Xn ∼ PnX with zero-error (using a variable-length code
Mn = f(Xn,Kn) and Xn = f−1(Mn,Kn)) from the sender
to the legitimate receiver through a public noiseless channel
with sufficiently large capacity. However, the cryptogram Mn

is overheard by a wiretapper, who has a test mechanism by
which s/he can identify whether any given candidate message
X̂n is the true message. Upon the code f used by the sender
and legitimate receiver and the received cryptogram Mn, the
wiretapper conducts an optimal sequential guessing strategy,
i.e., an ordered list of guesses L (m) := {x̂n1 (m) , x̂n2 (m) , ..}
with x̂ni (m) corresponding to the i-th largest probability value
of PXn|Mn

(·|m) for any given Mn = m. It is obvious that
such a guessing scheme based on maximizing the posterior
probability minimizes the expectation or positive-order mo-
ments of the number of guesses. Let the random variable
G(Xn|Mn) denote the number of guesses of the wiretapper
until identification of the true message. Then for ρ > 0, the
ρ-th moment of G(Xn|Mn) can be also expressed as

E [G(Xn|Mn)ρ] = inf
{L(m)}

[ ∞∑
i=1

iρ · P {L(Mn)|i = Xn}

]
,

(61)
where L(Mn)|i denotes the i-th element of L(Mn). For ρ > 0,
the guessing exponents are defined as

E+(R, ρ) := lim sup
n→∞

sup
f

1

n
logE [G(Xn|Mn)ρ] (62)

E−(R, ρ) := lim inf
n→∞

sup
f

1

n
logE [G(Xn|Mn)ρ] . (63)

Merhav and Arikan [24] showed that

E+(R, ρ) = E−(R, ρ) = E(R, ρ) (64)
:= max

QX
{ρmin {H(QX), R} −D(QX‖PX)} . (65)

Now we consider a variant of this problem. Suppose the
secret key Kn is replaced by a memoryless source Y n ∼ PnY .
Correspondingly, denote the guessing exponents for this case
as Ẽ+(PY , ρ) and Ẽ−(PY , ρ). Next, we apply our results to
this new problem.

For the achievability part, we use Y n to simulate a key
Kn ∼ QKn := Unif

[
1 : enR

]
by our simulation code

Kn = g(Y n). Assume PKn is the key distribution induced
by a generator Kn = g(Y n). Then Corollary 4 implies that
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infg
1
nD∞(QKn‖PKn) ≤ supt∈[0,∞)

{
tR− tH 1

1+t
(PY )

}
.

Furthermore, for any f and any {L(m)},

1

n
log

EPKnPnX [
∑∞
i=1 i

ρ · 1 {L(f(Xn,Kn))|i = Xn}]
EQKnPnX [

∑∞
i=1 i

ρ · 1 {L(f(Xn,Kn))|i = Xn}]

≥ − 1

n
D∞(QKn‖PKn). (66)

On the other hand, (64) implies

lim
n→∞

sup
f

1

n
log inf
{L(m)}

EQKnPnX[ ∞∑
i=1

iρ · 1 {L(f(Xn,Kn))|i = Xn}

]
= E(R, ρ). (67)

Hence the guessing exponent functions are bounded as fol-
lows.

sup
R≥0

{
E(R, ρ)− sup

t∈[0,∞)

{
tR− tH 1

1+t
(PY )

}}
≤ Ẽ−(PY , ρ) ≤ Ẽ+(PY , ρ). (68)

For the converse part, we use a key Kn ∼ QKn :=
Unif

[
1 : enR

]
to simulate a memoryless source Y n ∼ PnY by

our simulation code Y n = g(Kn). Similarly, by our Corollary
1, we obtain the following converse result.

Ẽ−(PY , ρ) ≤ Ẽ+(PY , ρ) ≤ E(H0(PY ), ρ). (69)

When PX is uniform, the bounds in (68) and (69) coincide,
and they reduce to the result in (64). However, in general,
the bounds in (68) and (69) do not coincide. Furthermore, it
is worth noting that the analysis here also applies to variants
of any information-theoretic security problem in which a key
(uniform random variable) is replaced with a memoryless
source, as long as the objective of the problem is to minimize
or maximize the some expectation.

The results derived in this paper can be also applied to the
information-theoretic security problems with the information
leakage measured by Rényi divergences. Recently, in [25],
Theorem 7 has been used to establish the equivalence between
the exact and ∞-Rényi common informations by the present
authors. Here the ∞-Rényi common information is defined
in a distributed source simulation problem with the approx-
imation between the generated distribution and the target
distribution measured by the Rényi divergence of order ∞. In
[25], Rényi divergences were used to build a bridge between
Wyner’s common information and the exact common informa-
tion. Therefore, in consideration of the importance of Rényi
divergences in connecting different simulation problems, it
is significant to consider Rényi divergences as performance
indicators for simulation problems, and also for information-
theoretic security problems.

APPENDIX A
PRELIMINARIES FOR THE PROOFS

For a function f : X → Y , and any subsets A ⊆
X and B ⊆ Y , define f (A) := {f(x) : x ∈ A}, and
f−1(B) := {x ∈ X : f(x) ∈ B}. We write f(n) ≤̇ g(n) if
lim supn→∞

1
n log f(n)

g(n) ≤ 0. In addition, f(n)
.
= g(n) means

f(n) ≤̇ g(n) and g(n) ≤̇ f(n). We use o(1) to denote
generic sequences tending to zero as n → ∞. For a ∈ R,
[a]+ := max{a, 0} denotes positive clipping. For simplicity,
in the proof part, we denote s = α− 1.

A. Lemmas

The following fundamental lemmas will be used in our
proofs.

Lemma 2. [8]

1) Assume X is a finite set. Then for any PX ∈ P (X ), one
can find a sequence of types P (n)

X ∈ P(n) (X ) , n ∈ N
such that

∣∣PX − P (n)
X

∣∣ ≤ |X |2n as n→∞.
2) Assume X ,Y are finite sets. Then for any sequence

of types P
(n)
X ∈ P(n) (X ) , n ∈ N and any PY |X ∈

P (Y|X ), one can find a sequence of conditional types
V

(n)
Y |X ∈ P

(n)
(
Y|P (n)

X

)
, n ∈ N such that

∣∣P (n)
X PY |X −

P
(n)
X V

(n)
Y |X

∣∣ ≤ |X ||Y|2n as n→∞.

We also need the following property concerning the opti-
mization over the set of types and conditional types.

Lemma 3. [8]

1) Assume X is a finite set. Then for any continuous (under
TV distance) function f : P (X )→ R, we have

lim
n→∞

min
PX∈P(n)(X )

f (PX) = min
PX∈P(X )

f (PX) . (70)

2) Assume X ,Y are finite sets. Then for any continuous
function f : P (X × Y)→ R and any sequence of types
P

(n)
X ∈ P(n) (X ) , n ∈ N, we have

min
PY |X∈P(n)(Y|P (n)

X )

f
(
P

(n)
X PY |X

)
= min
PY |X∈P(Y|X )

f
(
P

(n)
X PY |X

)
+ o (1) . (71)

Remark 19. We have

lim
n→∞

min
PY |X∈P(n)(Y|P (n)

X )

f
(
P

(n)
X PY |X

)
= lim
n→∞

min
PY |X∈P(Y|X )

f
(
P

(n)
X PY |X

)
(72)

if either one of the limits above exists.

We also need the following lemmas. Lemmas 4, 6, 7, and 8
follow from basic inequalities and basic properties (continuity,
monotonicity, and convexity) of functions. To save space, the
proofs are omitted.

Lemma 4. Assume f(z) and g(z) are continuous functions
defined on a compact set Z ⊆ Rn for some positive integer
n. Define h(t) := minz∈Z:g(z)≤t f(z). Then h(t) is a also
continuous function.

Lemma 5. [26, Problem 4.15(f)] Assume {ai} are non-
negative real numbers. Then for p ≥ 1, we have

∑
i

api ≤

(∑
i

ai

)p
, (73)
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and for 0 < p ≤ 1, we have∑
i

api ≥

(∑
i

ai

)p
. (74)

Lemma 6.

(1 + x)
s ≤ 1 + xs, x ≥ 0, 0 ≤ s ≤ 1,

(75)
(1 + x)

s ≤ 1 + sx+ xs, x ≥ 0, 1 ≤ s ≤ 2,
(76)

(1 + x)
s ≤ 1 + s

(
2s−1 − 1

)
x+ xs, 0 ≤ x ≤ 1, s ≥ 2.

(77)

Lemma 7. Assume
∑n
i=1 bi = m. Then we have that for

β ≤ 0 or β ≥ 1, 1
n

∑n
i=1 b

β
i ≥

(
m
n

)β
; for 0 < β < 1,

1
n

∑n
i=1 b

β
i ≤

(
m
n

)β
. Moreover, if m < n and bi ∈ {0} ∪ N,

we have that for β ≤ 0 or β ≥ 1, 1
n

∑n
i=1 b

β
i ≥ m

n ; for
0 < β < 1, 1

n

∑n
i=1 b

β
i ≤ m

n .

Lemma 8. For any a ≥ 0 and any b,

sup
P̃X∈P(X )

{
aH(P̃X) + b

∑
x

P̃X(x) logPX(x)

}
= (a− b)H b

a
(PX). (78)

For any a ≤ 0 and any b,

inf
P̃X∈P(X )

{
aH(P̃X) + b

∑
x

P̃X(x) logPX(x)

}
= (a− b)H b

a
(PX). (79)

B. Information Spectrum Exponents

Since information spectrum exponents are important in our
proofs of the results in this paper, they will be introduced in the
following. Furthermore, as fundamental information-theoretic
quantities, investigating information spectrum exponents are
of independent interest.

For a general distribution PXn , define FPXn () :=
PXn

(
xn : − 1

n logPXn(xn) < 
)

and F−1
PXn

(θ) :=
sup { : FPXn () ≤ θ}. Now consider a product distribution
PnX with PX defined on a finite set X . Define the information
spectrum exponents (or entropy spectrum exponents) for
distribution PX as

EPX () := lim
n→∞

− 1

n
logFPnX () (80)

ÊPX () := lim
n→∞

− 1

n
log
(
1− FPnX ()

)
. (81)

Or simply, define the information spectrum exponent for
distribution PX as

ẼPX () := max
{
EPX (), ÊPX ()

}
. (82)

Since for each  ≥ 0, either EPX () or ÊPX () can be positive
(the other one must be zero), the exponent ẼPX () contains all
the information about the exponent pair

(
EPX (), ÊPX ()

)
.

Moreover, the inverse functions of EPX () and ÊPX () are
denoted as E−1

PX
(ω) and Ê−1

PX
(ω). Then we have the following

lemmas. Observe that if PX is uniform, then ẼPX () = +∞
for all . Hence, in the following, we exclude this trivial case.

Lemma 9 (Information Spectrum Exponents). Assume PX is
not uniform. For  > H∞(PX),

EPX () = min
P̃X :−

∑
x P̃X(x) logPX(x)≤

D(P̃X‖PX) (83)

= max
t∈[0,∞]

{tH1+t(PX)− t} , (84)

and for 0 ≤  ≤ H−∞(PX),

ÊPX () = min
P̃X :−

∑
x P̃X(x) logPX(x)≥

D(P̃X‖PX) (85)

= max
t∈[0,∞]

{−tH1−t(PX) + t} . (86)

For 0 ≤ ω < H∞(PX),

E−1
PX

(ω) = min
P̃X :D(P̃X‖PX)≤ω

−
∑
x

P̃X(x) logPX(x) (87)

= max
t∈[0,∞]

{
H1+t(PX)− ω

t

}
, (88)

and for 0 ≤ ω ≤ H−∞(PX),

Ê−1
PX

(ω) = max
P̃X :D(P̃X‖PX)≤ω

−
∑
x

P̃X(x) logPX(x) (89)

= min
t∈[0,∞]

{
H1−t(PX) +

ω

t

}
. (90)

Moreover, EPX (), ÊPX (), E−1
PX

(ω), and Ê−1
PX

(ω) are con-
tinuous on the intervals mentioned above.

Remark 20. We can use EPX (), ÊPX (), E−1
PX

(ω), and
Ê−1
PX

(ω) to rewrite FPXn (), 1 − FPXn (), F−1
PnX

(θ), and
F−1
PnX

(1− θ) as follows:

FPXn () = e−n(EPX ()+o(1)) (91)

1− FPXn () = e−n(ÊPX ()+o(1)) (92)

F−1
PnX

(θ) = E−1
PX

(− 1

n
log θ − o(1)) (93)

F−1
PnX

(1− θ) = Ê−1
PX

(− 1

n
log θ − o(1)), (94)

where the first two equalities follow from the definitions of
EPX () and ÊPX (), and the last two follow since

F−1
PnX

(θ) = sup
{
 : FPnX () ≤ θ

}
(95)

= sup
{
 : e−n(EPX ()+o(1)) ≤ θ

}
(96)

= sup

{
 : EPX () ≥ − 1

n
log θ − o(1)

}
(97)

= E−1
PX

(− 1

n
log θ − o(1)) (98)

and similarly for F−1
PnX

(1− θ).

Lemma 9 follows by large deviation theory [27], and
it holds not only for finite alphabets, but also for count-
ably infinite or continuous alphabets (with the probability
mass function PX replaced by the corresponding probability
density function or the Radon-Nikodym derivative and the
summation replaced by the corresponding integration). Note
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that tH1−t(PX) = logE
[
e−t logPX(x)

]
is the logarithmic

moment generating function respect to the self-information
(or self-entropy) − logPX(x), and (84) and (86) are the
Fenchel–Legendre transform of tH1−t(PX). Furthermore, by
[27, Lemma 2.2.31], tH1−t(PX) is convex in t ∈ R.

Note that in (83) and (85), the minima are attained by the α-
tilted distributions P (α)

X (·) =
PαX(·)∑
x′ P

α
X(x′) with α satisfying  =

Hu
α(PX). Hence P (α)

X can be seen as a dominant “asymptotic
type”. We have the following lemma.

Lemma 10. ẼPX () can be expressed as the following para-
metric representation with α ∈ [−∞,∞].{

 = Hu
α(PX),

ẼPX = D
(
P

(α)
X ‖PX

)
.

Specialized to the case α = 0, it reduces to that

ẼPX (Hu(PX)) = ÊPX (Hu(PX)) = D(Unif (X ) ‖PX).
(99)

The information spectrum limit

lim
n→∞

FPnX () =


0  < H(PX)
1
2  = H(PX)

1  > H(PX)

(100)

and the information spectrum exponent ẼPX () are illustrated
in Fig. 5.

Lemma 11 (Comparison of Exponents). Assume both PX and
QY are not uniform. Then we have

1

R
EPX (R) > EQY (), ∀ ∈ 1

R
[H∞(PX), H(PX)]

⇐⇒ R < min
t∈[1,∞]

Ht(PX)

Ht(QY )
; (101)

1

R
ÊPX (R) < ÊQY (), ∀ ∈ 1

R
[H(PX), H−∞(PX)]

⇐⇒ R < min
t∈[−∞,1]

Ht(PX)

Ht(QY )
. (102)

Furthermore, the equivalence in (102) can be divided into the
following two parts:{

1
R ÊPX (R) < ÊQY (), ∀ ∈ 1

R [H(PX), Hu(PX)]

R < H0(PX)
H0(QY )

⇐⇒ R < min
t∈[0,1]

Ht(PX)

Ht(QY )
; (103){

1
R ÊPX (R) < ÊQY (), ∀ ∈ 1

R [Hu(PX), H−∞(PX)]

R < H0(PX)
H0(QY )

⇐⇒ R < min
t∈[−∞,0]

Ht(PX)

Ht(QY )
. (104)

In addition, the equivalences in (101)-(104) also hold if all
the “<” are replaced with “≤”.

Proof: Here we only provide a proof for the equivalence
in (103). Other equivalences can be proven similarly.

Proof of “⇐=”: Observe that the RHS of (103) implies

Ht(QY ) <
1

R
Ht(PX),∀t ∈ [0, 1]. (105)

Hence we have

max
t∈[0,1]

{
− t

R
H1−t(PX) + t

}
< max
t∈[0,1]

{−tH1−t(QY ) + t} ,∀. (106)

Observe that − t
RH1−t(PX) + t is concave in t (which

can be shown by a similar proof to that of [8, Lemma
7], or directly by [27, Lemma 2.2.31] since tH1−t(PX) =
logE

[
e−t logPX(x)

]
is the logarithmic moment generat-

ing function respect to the self-information − logPX(x)),
and for  ∈ 1

R [H(PX), Hu(PX)], the extreme point of
t 7→ − t

RH1−t(PX) + t is in [0, 1]. We have for  ∈
1
R [H(PX), Hu(PX)],

max
t∈[0,1]

{
− t

R
H1−t(PX) + t

}
= max
t∈[0,∞]

{
− t

R
H1−t(PX) + t

}
. (107)

Hence for  ∈ 1
R [H(PX), Hu(PX)],

max
t∈[0,∞]

{
− t

R
H1−t(PX) + t

}
< max
t∈[0,1]

{−tH1−t(QY ) + t} (108)

≤ max
t∈[0,∞]

{−tH1−t(QY ) + t} , (109)

which, by Lemma 9, implies the LHS of (103).
Proof of “=⇒”: The LHS of (103) implies for  ∈

1
R [H(PX), Hu(PX)],

max
t∈[0,∞]

{
− t

R
H1−t(PX) + t

}
< max
t∈[0,∞]

{−tH1−t(QY ) + t} , (110)

By setting  = 1
RH(PX), we have 1

RH(PX) > H(QY ).
On the other hand, given  ∈ [H(QY ), H−∞(QY )], the

maximum in the RHS of (110) is attained at g−1() which
is a value t satisfying  = g(t) := ∂

∂t (tH1−t(QY )) =
− 1∑

y∈Y Q
1−t
Y (y)

∑
y∈Y Q

1−t
Y (y) logQY (y) = Hu

1−t(QY ).

Here g(t) is a increasing function since tH1−t(QY ) is convex.
Hence for  running from H(QY ) to 1

RH
u(PX), g−1() runs

from 0 to t0, where t0 is the solution to 1
RH

u(PX) = g(t0).
Observe g−1() is continuous. Hence for each t′ ∈ [0, t0], we
can find a ′ ∈ [H(QY ), 1

RH
u(PX)] such that g−1(′) = t′.

For such (′, t′), we have

− t′H1−t′(QY ) + t′′

= max
t∈[0,∞]

{−tH1−t(QY ) + t′} (111)

> max
t∈[0,∞]

{
− t

R
H1−t(PX) + t′

}
(112)

≥ − t
′

R
H1−t′(PX) + t′′. (113)

That is, for t′ ∈ [0, t0],

RH1−t′(QY ) < H1−t′(PX). (114)
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Fig. 5: Illustrations of the information spectrum limit and exponent. Note that in the bottom subfigure, the left (resp. right)
endpoint of the information spectrum exponent ẼPX () should be strictly lower than the line Ẽ =  if there are multiple
maximum (resp. minimum) probability values in PX .

If t0 < 1, then 1
RH

u(PX) < Hu(QY ). The derivative
of ÊQY () is g−1() at , where g(t) is defined above. For
 ∈ [ 1

RH
u(PX), Hu(QY )], g−1() ∈ [t0, 1]. Observe that

ÊQY () and 1
R ÊPX (R) are convex, and −H0(QY ) +  and

− 1
RH0(PX) +  are respectively the tangent lines of ÊQY ()

at 0 = Hu(QY ) and 1
R ÊPX (R) at 0 = 1

RH
u(PX).

Hence combining with the assumption R < H0(PX)
H0(QY ) , we have

ÊQY () ≥ −H0(QY ) +  > − 1
RH0(PX) + . Moreover, we

also have that tangent lines of 1
R ÊPX (R) at 0 < 1

RH
u(PX)

(with slope t′ < 1) are below the line − 1
RH0(PX) +  for

 > 1
RH

u(PX).
For t′ ∈ [t0, 1], denote ′ = g(t′). Then by the analysis

above, for such (′, t′), we have

−t′H1−t′(QY ) + t′′ = ÊQY (′) (115)

> − 1

R
H0(PX) + ′ (116)

≥ − t
′

R
H1−t′(PX) + t′′. (117)

Hence for t′ ∈ [t0, 1], (114) also holds.

For a distribution PX , define the information spectrum
exponent for an interval [1, 2) as

EPX (1, 2) := lim
n→∞

− 1

n
logFPnX (1, 2), (118)

where FPnX (1, 2) := PnX
(
xn : − 1

n logPnX(xn) ∈ [1, 2)
)
.

Lemma 12 (Information Spectrum Exponent for an Interval).
Assume PX is not uniform. Then for 1 < 2, we have

EPX (1, 2) =


EPX (2), H∞(PX) ≤ 1 < 2 ≤ H(PX)

ÊPX (1), H(PX) ≤ 1 < 2 ≤ H−∞(PX)

0, H∞(PX) ≤ 1 ≤ H(PX)

≤ 2 ≤ H−∞(PX)

.

(119)

Lemma 12 follows directly from Lemma 9, and hence the
proof is omitted.

APPENDIX B
PROOF OF THEOREM 1

In the following, we only consider the case of R = 1. For
the general case, we can obtain the result by setting QY to
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the product distribution QRY , if R is an integer; otherwise, set
PX to P k0X and QY to Qn0

Y , where k0 and n0 are co-prime
and R = n0

k0
.

Achievability: Assume g : P(n) (X ) → P(n) (Y) is a
function that maps n-types on X to n-types on Y . A code
f induced by g is obtained by mapping the sequences in
TTX to the sequences in Tg(TX) as uniformly as possible
for all TX ∈ P(n) (X ). That is, f maps

⌊|TTX |/|Tg(TX )|
⌋

or⌈|TTX |/|Tg(TX )|
⌉

sequences in TTX to each sequence in Tg(TX).
For this code f , and for α = 1 + s > 1, we have

1

n
D1+s(PY n‖QnY )

=
1

ns
log
∑
yn

PY n(yn)1+sQnY (yn)−s (120)

=
1

ns
log
∑
TY

∑
yn∈TTY

( ∑
TX∈g−1({TY })

∑
xn∈TTX

PnX(xn)

× 1 {yn = f(xn)}
)1+s

QnY (yn)−s (121)

≤ 1

ns
log
∑
TY

∑
yn∈TTY

( ∑
TX∈g−1({TY })

ϕ1 (TX , TY )

+ ϕ2 (yn, TX , TY )
)1+s

e−ns
∑
y TY (y) logQY (y), (122)

where

ϕ1 (TX , TY ) := en
∑
y TX(x) logPX(x)

(
|TTX |
|TTY |

+ 1

)
× 1 {|TTX | ≥ |TTY |} (123)

ϕ2 (yn, TX , TY ) := en
∑
x TX(x) logPX(x)1 {yn ∈ f (TTX )}

× 1 {|TTX | < |TTY |} , (124)

and (122) follows from the construction of the code f .
Observe that

ϕ1 (TX , TY )

≤ 2ϕ̃1 (TX , TY ) (125)

:= 2en
∑
y TX(x) logPX(x) |TTX |

|TTY |
1 {|TTX | ≥ |TTY |} . (126)

Hence we have (127)-(133) (given on page 18),
where in (128), the sum operation

∑
TX∈g−1({TY }) is taken

outside the (·)1+s since by the fact that the number of n-types
TX is polynomial in n, we have( ∑

TX∈g−1({TY })

ϕ̃1 (TX , TY ) + ϕ2 (yn, TX , TY )
)1+s

× e−ns
∑
y TY (y) logQY (y)

= max
TX∈g−1({TY })

(
ϕ̃1 (TX , TY ) + ϕ2 (yn, TX , TY )

)1+s

× e−ns
∑
y TY (y) logQY (y) + o(1) (134)

=
∑

TX∈g−1({TY })

(
ϕ̃1 (TX , TY ) + ϕ2 (yn, TX , TY )

)1+s

× e−ns
∑
y TY (y) logQY (y) + o(1); (135)

and (130) also follows from the fact that the number of n-types
TX (or TY ) is polynomial in n.

For each TX , choose g(TX) as the TY that minimizes the
expression in (133). Then we obtain

lim sup
n→∞

1

n
D1+s(PY n‖QnY )

≤ lim sup
n→∞

max
TX

min
TY

{
−1 + s

s
D(TX‖PX)

+D(TY ‖QY ) + [H(TY )−H(TX)]
+
}

(136)

= max
P̃X∈P(X )

min
P̃Y ∈P(Y)

{
−1 + s

s
D(P̃X‖PX)

+D(P̃Y ‖QY ) +
[
H(P̃Y )−H(P̃X)

]+}
(137)

= max
P̃X∈P(X )

min
P̃Y ∈P(Y)

max
t∈[0,1]

{
−1 + s

s
D(P̃X‖PX)

+D(P̃Y ‖QY ) + t
(
H(P̃Y )−H(P̃X)

)}
(138)

= max
P̃X∈P(X )

max
t∈[0,1]

min
P̃Y ∈P(Y)

{
−1 + s

s
D(P̃X‖PX)

+D(P̃Y ‖QY ) + t
(
H(P̃Y )−H(P̃X)

)}
(139)

= max
P̃X∈P(X )

max
t∈[0,1]

{
tH 1

1−t
(QY )

− 1 + s

s
D(P̃X‖PX)− tH(P̃X)

}
(140)

= max
t∈[0,1]

{
tH 1

1−t
(QY )− tH 1+s

1+s−st
(PX)

}
, (141)

where (137) follows from Lemma 3, the swapping of min and
max in (139) follows from the fact that the objective function
is convex and concave in P̃Y and t respectively, P̃Y resides in
a compact, convex set (the probability simplex) and t resides
in a convex set [0, 1] (Sion’s minimax theorem [28]); and (140)
and (141) follow from Lemma 8.

For α = 1 + s ∈ (0, 1), similar to (133), we can show that

lim sup
n→∞

1

n
D1+s(PY n ||QnY )

≤ 1

s
max
TX

{
− (1 + s)D(TX‖PX) + sD(TY ‖QY )

+s [H(TY )−H(TX)]
+
}∣∣∣
TY =g(TX)

. (142)

For each TX , choose g(TX) as the TY that maximizes the
expression in (142). Then similarly we obtain that

lim sup
n→∞

1

n
D1+s(PY n ||QnY )

≤ lim sup
n→∞

1

s
max
TX

max
TY

{
− (1 + s)D(TX‖PX)

+ sD(TY ‖QY ) + s [H(TY )−H(TX)]
+
}

(143)

= min
P̃X∈P(X )

min
P̃Y ∈P(Y)

{
−1 + s

s
D(P̃X‖PX)

+D(P̃Y ‖QY ) +
[
H(P̃Y )−H(P̃X)

]+}
(144)

= min
P̃X∈P(X )

min
P̃Y ∈P(Y)

max
t∈[0,1]

{
−1 + s

s
D(P̃X‖PX)

+D(P̃Y ‖QY ) + t
(
H(P̃Y )−H(P̃X)

)}
(145)
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1

n
D1+s(PY n‖QnY )

≤ 1

ns
log
∑
TY

∑
yn∈TTY

( ∑
TX∈g−1({TY })

ϕ̃1 (TX , TY ) + ϕ2 (yn, TX , TY )
)1+s

e−ns
∑
y TY (y) logQY (y) +

1

ns
log 21+s (127)

=
1

ns
log
∑
TY

∑
yn∈TTY

∑
TX∈g−1({TY })

(
ϕ̃1 (TX , TY ) + ϕ2 (yn, TX , TY )

)1+s

e−ns
∑
y TY (y) logQY (y) + o(1) (128)

=
1

ns
log
∑
TY

∑
TX∈g−1({TY })

(
en(1+s)

∑
y TX(x) logPX(x) |TTX |

1+s

|TTY |
s 1 {|TTX | ≥ |TTY |}

+ en(1+s)
∑
x TX(x) logPX(x) |TTX | 1 {|TTX | < |TTY |}

)
e−ns

∑
y TY (y) logQY (y) + o(1) (129)

=
1

ns
log max

TY
max

TX∈g−1({TY })

(
e−n(1+s)D(TX‖PX)−nsH(TY )1 {|TTX | ≥ |TTY |}

+ en(1+s)
∑
x TX(x) logPX(x)+nH(TX)1 {|TTX | < |TTY |}

)
e−ns

∑
y TY (y) logQY (y) + o(1) (130)

=
1

s
max
TY

max
TX∈g−1({TY })

{− (1 + s)D(TX‖PX) + sD(TY ‖QY ) + s (H(TY )−H(TX)) 1 {|TTX | < |TTY |}}+ o(1) (131)

=
1

s
max
TY

max
TX∈g−1({TY })

{
− (1 + s)D(TX‖PX) + sD(TY ‖QY ) + s [H(TY )−H(TX)]

+
}

+ o(1) (132)

=
1

s
max
TX

{
− (1 + s)D(TX‖PX) + sD(TY ‖QY ) + s [H(TY )−H(TX)]

+
}∣∣∣
TY =g(TX)

+ o(1) (133)

= max
t∈[0,1]

min
P̃X∈P(X )

min
P̃Y ∈P(Y)

{
−1 + s

s
D(P̃X‖PX)

+D(P̃Y ‖QY ) + t
(
H(P̃Y )−H(P̃X)

)}
(146)

= max
t∈[0,1]

{
tH 1

1−t
(QY )− tH 1+s

1+s−st
(PX)

}
, (147)

where (144) follows from Lemma 3 (Note that here s < 0).
Converse: Consider an optimal function f : X k →
Yn attaining the minimum of 1

nD1+s(PY n‖QnY ). Since∣∣P(n) (Y)
∣∣ ≤ (n+ 1)

|Y|, by the pigeonhole principle, we have
that for every TX , there exists a type TY = g(TX) such that
at least 1

(n+1)|Y|
|TTX | sequences in TTX are mapped through

f to the sequences in TTY . Hence for such TY = g(TX), we
have

∑
yn∈TTY

∣∣f−1({yn}) ∩ TTX
∣∣ =

∣∣f−1(TTY ) ∩ TTX
∣∣ ≥

1
(n+1)|Y|

|TTX |.
For s > 0, we have (148)-(152) (given on page 19).
By Lemma 7,

∑
yn∈TTY

∣∣f−1({yn}) ∩ TTX
∣∣1+s

≥ |TTY |

(
1

(n+1)|Y|
|TTX |

|TTY |

)1+s

1 {|TTX | ≥ |TTY |}

+ |TTX | 1 {|TTX | < |TTY |} (153)
.
= e(1+s)nH(TX)−snH(TY )1 {|TTX | ≥ |TTY |}

+ enH(TX)1 {|TTX | < |TTY |} (154)

Therefore, we have (155)-(158) (given on the page 19),
where (158) follows from the derivations in (137)-(141).

For s < 0, following derivations similar to (148)-(156), we
have

1

n
D1+s(PY n‖QnY )

≥ 1

s
max
TX

{
− (1 + s)D(TX‖PX) + sD(TY ‖QY )

+s [H(TY )−H(TX)]
+
}∣∣∣
TY =g(TX)

+ o(1) (159)

≥ min
TX

min
TY

{
−1 + s

s
D(TX‖PX) +D(TY ‖QY )

+ [H(TY )−H(TX)]
+
}

+ o(1) (160)

= max
t∈[0,1]

{
tH 1

1−t
(QY )− tH 1+s

1+s−st
(PX)

}
+ o(1), (161)

where (161) follows from the derivations in (143)-(147).

APPENDIX C
PROOF OF THEOREM 2

Similar to the proof in Appendix B, we only prove the case
of R = 1.

Achievability: By the equality Dα(Q‖P ) =
α

1−αD1−α(P‖Q) for α ∈ (0, 1), the case α ∈ (0, 1)
has been proven in Theorem 1, so here we only need to
consider the case α > 1.

We consider the following mapping. For each TX , par-
tition TTX into aTX = |{TY : H(TX) ≥ H(TY ) + δ}| sub-

sets with size
⌊
|TTX |
aTX

⌋
or
⌈
|TTX |
aTX

⌉
. For each TY such that

H(TX) ≥ H(TY ) + δ, map the sequences in each subset to
the sequences in the set TTY as uniformly as possible, such

that
⌊⌊
|TTX |
aTX

⌋
/|TTY |

⌋
or
⌈⌊
|TTX |
aTX

⌋
/|TTY |

⌉
(for subsets with
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1

n
D1+s(PY n‖QnY )

=
1

ns
log
∑
TY

∑
yn∈TTY

∑
TX

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

1+s

QnY (yn)−s (148)

≥ 1

ns
log
∑
TY

∑
yn∈TTY

max
TX

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

1+s

QnY (yn)−s (149)

≥ 1

ns
log max

TX

∑
TY

∑
yn∈TTY

 ∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

1+s

QnY (yn)−s (150)

≥ 1

ns
log max

TX


∑

yn∈TTY

 ∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

1+s

QnY (yn)−s


∣∣∣∣∣∣∣
TY =g(TX)

(151)

=
1

ns
log max

TX

en(1+s)
∑
x TX(x) logPX(x)−ns

∑
y TY (y) logQY (y)

∑
yn∈TTY

∣∣f−1({yn}) ∩ TTX
∣∣1+s


∣∣∣∣∣∣
TY =g(TX)

(152)

1

n
D1+s(PY n‖QnY )

≥ 1

ns
log max

TX

{
en(1+s)

∑
x TX(x) logPX(x)−ns

∑
y TY (y) logQY (y)

×
(
e(1+s)nH(TX)−snH(TY )1 {|TTX | ≥ |TTY |}+ enH(TX)1 {|TTX | < |TTY |}

)}∣∣∣∣
TY =g(TX)

+ o(1) (155)

=
1

s
max
TX

{
− (1 + s)D(TX‖PX) + sD(TY ‖QY ) + s [H(TY )−H(TX)]

+
}∣∣∣
TY =g(TX)

+ o(1) (156)

≥ max
TX

min
TY

{
−1 + s

s
D(TX‖PX) +D(TY ‖QY ) + [H(TY )−H(TX)]

+

}
+ o(1) (157)

= max
t∈[0,1]

{
tH 1

1−t
(QY )− tH 1+s

1+s−st
(PX)

}
+ o(1), (158)

size
⌊
|TTX |
aTX

⌋
) or

⌊⌈
|TTX |
aTX

⌉
/|TTY |

⌋
or
⌈⌈
|TTX |
aTX

⌉
/|TTY |

⌉
(for

subsets with size
⌈
|TTX |
aTX

⌉
) sequences in TTX are mapped to

each sequence in TTY . If there is no such TY , then map the
sequences in TTX into any sequences in Yn.

For this code and for s > 0, we have (162)-(170) (given on
page 20),

where (168) follows from the fact that the number of n-
types TX is polynomial in n. Therefore,

lim sup
n→∞

1

n
D1+s(Q

n
Y ‖PY n)

≤ max
P̃Y ∈P(Y)

min
P̃X∈P(X ):H(P̃X)≥H(P̃Y )+δ{

D(P̃X‖PX)− 1 + s

s
D(P̃Y ‖QY )

}
. (171)

Since δ > 0 is arbitrary,

lim sup
n→∞

inf
f

1

n
D1+s(Q

n
Y ‖PY n)

≤ max
P̃Y ∈P(Y)

min
P̃X∈P(X ):H(P̃X)≥H(P̃Y )

D(P̃X‖PX)

− 1 + s

s
D(P̃Y ‖QY ) (172)

= max
P̃Y ∈P(Y)

max
t∈[0,∞]

min
P̃X∈P(X )

D(P̃X‖PX)

− 1 + s

s
D(P̃Y ‖QY ) + t

(
H(P̃Y )−H(P̃X)

)
(173)

= max
P̃Y ∈P(Y)

max
t∈[0,∞]

−1 + s

s
D(P̃Y ‖QY )

+ tH(P̃Y )− tH 1
1+t

(PX) (174)

= max
t∈[0,∞]

max
P̃Y ∈P(Y)

−1 + s

s
D(P̃Y ‖QY )

+ tH(P̃Y )− tH 1
1+t

(PX) (175)

= max
t∈[0,∞]

tH 1+s
st+1+s

(QY )− tH 1
1+t

(PX). (176)

Converse: For s > 0, we have (177)-(180) (given on page
20).
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1

n
D1+s(Q

n
Y ‖PY n)

=
1

ns
log
∑
yn

QnY (yn)1+sPY n(yn)−s (162)

=
1

ns
log
∑
TY

∑
yn∈TTY

∑
TX

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

−sQnY (yn)1+s (163)

≤ 1

ns
log
∑
TY

∑
yn∈TTY

 ∑
TX :H(TX)≥H(TY )+δ

en
∑
x TX(x) logPX(x)


(
|TTX |
aTX

− 1

)
|TTY |

− 1



−s

QnY (yn)1+s (164)

≤ 1

ns
log
∑
TY

∑
yn∈TTY

 ∑
TX :H(TX)≥H(TY )+δ

en
∑
x TX(x) logPX(x)

(
en(H(TX)−H(TY )+o(1)) − 2

)−s e(1+s)n
∑
y TY (y) logQY (y)

(165)

≤ 1

ns
log
∑
TY

∑
yn∈TTY

 ∑
TX :H(TX)≥H(TY )+δ

e−nD(TX‖PX)−nH(TY )+no(1)
(

1− 2e−n(δ+o(1))
)−s e(1+s)n

∑
y TY (y) logQY (y)

(166)

=
1

ns
log
∑
TY

∑
yn∈TTY

 ∑
TX :H(TX)≥H(TY )+δ

e−nD(TX‖PX)−nH(TY )

−s e(1+s)n
∑
y TY (y) logQY (y) + o(1) (167)

≤ 1

ns
log max

TY
min

TX :H(TX)≥H(TY )+δ
esnD(TX‖PX)+(1+s)nH(TY )e(1+s)n

∑
y TY (y) logQY (y) + o(1) (168)

= max
TY

min
TX :H(TX)≥H(TY )+δ

{
D(TX‖PX)− 1 + s

s
D(TY ‖QY )

}
+ o(1) (169)

= max
P̃Y ∈P(Y)

min
P̃X∈P(X ):H(P̃X)≥H(P̃Y )+δ

{
D(P̃X‖PX)− 1 + s

s
D(P̃Y ‖QY )

}
+ o(1), (170)

1

n
D1+s(Q

n
Y ‖PY n)

=
1

ns
log
∑
yn

QnY (yn)1+sPY n(yn)−s (177)

=
1

ns
log
∑
TY

∑
yn∈TTY

∑
TX

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

−s e(1+s)n
∑
y TY (y) logQY (y) (178)

≥ 1

ns
log
∑
TY

∑
yn∈TTY \

⋃
TX :H(TX )<H(TY )−δ f(TTX )

∑
TX

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

−s

× e(1+s)n
∑
y TY (y) logQY (y) (179)

=
1

ns
log
∑
TY

∑
yn∈TTY \

⋃
TX :H(TX )<H(TY )−δ f(TTX )

 ∑
TX :H(TX)≥H(TY )−δ

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

−s

× e(1+s)n
∑
y TY (y) logQY (y) (180)
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Observe that

A :=
∑

yn∈TTY \
⋃
TX :H(TX )<H(TY )−δ f(TTX )

∑
TX :H(TX)≥H(TY )−δ∑

xn∈TTX

PnX(xn)1 {yn = f(xn)} (181)

≤
∑
yn

∑
TX :H(TX)≥H(TY )−δ

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

(182)

=
∑

TX :H(TX)≥H(TY )−δ

∑
xn∈TTX

PnX(xn) (183)

.
=

∑
TX :H(TX)≥H(TY )−δ

e−nD(TX‖PX) (184)

and

N :=

∣∣∣∣∣∣TTY \
⋃

TX :H(TX)<H(TY )−δ

f (TTX )

∣∣∣∣∣∣ (185)

≥ enH(TY ) −
∑

TX :H(TX)<H(TY )−δ

enH(TX) (186)

.
= enH(TY ) − max

TX :H(TX)<H(TY )−δ
enH(TX) (187)

.
= enH(TY ) − en(H(TY )−δ) (188)
.
= enH(TY ). (189)

Hence by Lemma 7 with the identifications
β = −s, m = A, n = N , and bi =∑
TX :H(TX)≥H(TY )−δ

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)},
we have (190)-(195) (given on page 22).

Since δ > 0 is arbitrary, letting δ → 0 we have

lim inf
n→∞

inf
f

1

n
D1+s(Q

n
Y ‖PY n)

≥ max
P̃Y ∈P(Y)

min
P̃X∈P(X ):H(P̃X)≥H(P̃Y ){

D(P̃X‖PX)− 1 + s

s
D(P̃Y ‖QY )

}
(196)

= max
t∈[0,∞]

tH 1+s
st+1+s

(QY )− tH 1
1+t

(PX), (197)

where (197) follows from the derivation (172)-(176).

APPENDIX D
PROOF OF THEOREM 3

In the following, we only prove the case of R = 1. In
addition, we only prove the case α = 1 + s > 1. Other cases
can be proven by similar proof techniques.

Achievability: Given two type-to-type functions g1 :
P(n) (X ) → P(n) (Y) , g2 : P(n) (Y) → P(n) (X ), we
consider a mapping g that maps a set {TX} of n-types on
X to the set g1({TX}) ∪ g−1

2 ({TX}) of n-types on Y , i.e.,
g ({TX}) = g1({TX}) ∪ g−1

2 ({TX}). We design g2 such that
it satisfies H(g2(TY )) ≥ H(TY ) + δ, ∀TY .

For each TX , denote aTX = |g({TX})|. Partition TTX
into aTX subsets with size

⌊
|TTX |
aTX

⌋
or
⌈
|TTX |
aTX

⌉
, and for

each TY ∈ g({TX}), map the sequences in each subset

to the sequences in the set TTY as uniformly as possible:⌊⌊
|TTX |
aTX

⌋
/|TTY |

⌋
or
⌈⌊
|TTX |
aTX

⌋
/|TTY |

⌉
(for subsets with size⌊

|TTX |
aTX

⌋
) or

⌊⌈
|TTX |
aTX

⌉
/|TTY |

⌋
or
⌈⌈
|TTX |
aTX

⌉
/|TTY |

⌉
(for subsets

with size
⌈
|TTX |
aTX

⌉
) sequences in TTX are mapped to each

sequence in TTY .
For this code, and for α = 1 + s > 1, analogous to (132),

we can prove that

1

n
D1+s(PY n‖QnY )

≤ max
TY

max
TX∈g−1({TY })

{
−1 + s

s
D(TX‖PX) +D(TY ‖QY )

+ (H(TY )−H(TX)) 1 {H(TX) < H(TY )}
}

+ o(1)

(198)

= max
TY

max

{
max

TX∈g−1
1 ({TY })

{
−1 + s

s
D(TX‖PX)

+D(TY ‖QY ) + (H(TY )−H(TX)) 1 {H(TX) < H(TY )}
}
,

− 1 + s

s
D(g2(TY )‖PX) +D(TY ‖QY )

}
+ o(1) (199)

and analogous to (169), we can prove that

1

n
D1+s(Q

n
Y ‖PY n)

≤ max
TY

min
TX∈g−1({TY }):H(TX)≥H(TY )+δ{
D(TX‖PX)− 1 + s

s
D(TY ‖QY )

}
+ o(1) (200)

≤ max
TY

D(g2(TY )‖PX)− 1 + s

s
D(TY ‖QY ) + o(1). (201)

Therefore,

1

n
Dmax
α (PY n , Q

n
Y ) ≤ max {(199), (201)} . (202)

Choose the function g1(TX) as the function g(TX) given in
Appendix B. Then as shown in Appendix B, we have

max
TY

max
TX∈g−1

1 (TY )
−1 + s

s
D(TX‖PX) +D(TY ‖QY )

+ (H(TY )−H(TX)) 1 {H(TX) < H(TY )}

≤ max
t∈[0,1]

{
tH 1

1−t
(QY )− tH 1+s

1+s−st
(PX)

}
+ o(1). (203)

For each TY , choose g2(TY ) as a TX that satisfies H(TX) ≥
H(TY ) + δ and at the same time minimizes

max

{
−1 + s

s
D(TX‖PX) +D(TY ‖QY ),

D(TX‖PX)− 1 + s

s
D(TY ‖QY )

}
. (204)

Substituting g1(TX) and g2(TY ) into (202), we obtain (205)-
(206) (given on page 22).
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1

n
D1+s(Q

n
Y ‖PY n)

≥ 1

ns
log
∑
TY

N

(
A

N

)−s
e(1+s)n

∑
y TY (y) logQY (y) (190)

≥ 1

ns
log
∑
TY

enH(TY )

 ∑
TX :H(TX)≥H(TY )−δ

e−nD(TX‖PX)−nH(TY )

−s e(1+s)n
∑
y TY (y) logQY (y) + o(1) (191)

=
1

ns
log
∑
TY

enH(TY )

(
max

TX :H(TX)≥H(TY )−δ
e−nD(TX‖PX)−nH(TY )

)−s
e(1+s)n

∑
y TY (y) logQY (y) + o(1) (192)

=
1

ns
log max

TY
min

TX :H(TX)≥H(TY )−δ
esnD(TX‖PX)+(1+s)nH(TY )e(1+s)n

∑
y TY (y) logQY (y) + o(1) (193)

= max
TY

min
TX :H(TX)≥H(TY )−δ

{
D(TX‖PX)− 1 + s

s
D(TY ‖QY )

}
+ o(1) (194)

= max
P̃Y ∈P(Y)

min
P̃X∈P(X ):H(P̃X)≥H(P̃Y )−δ

{
D(P̃X‖PX)− 1 + s

s
D(P̃Y ‖QY )

}
+ o(1) (195)

1

n
Dmax
α (PY n , Q

n
Y )

≤ max

{
max
t∈[0,1]

{
tH 1

1−t
(QY )− tH 1+s

1+s−st
(PX)

}
+ o(1),

max
TY

min
TX :H(TX)≥H(TY )+δ

max

{
−1 + s

s
D(TX‖PX) +D(TY ‖QY ), D(TX‖PX)− 1 + s

s
D(TY ‖QY )

}}
(205)

= max

{
max
t∈[0,1]

{
tH 1

1−t
(QY )− tH 1+s

1+s−st
(PX)

}
+ o(1),

max
P̃Y ∈P(Y)

min
P̃X∈P(X ):H(P̃X)≥H(P̃Y )+δ

max

{
−1 + s

s
D(P̃X‖PX) +D(P̃Y ‖QY ), D(P̃X‖PX)− 1 + s

s
D(P̃Y ‖QY )

}}
+ o(1)

(206)

Define

Γ
(
PX , P̃Y

)
:= min

P̃X∈P(X ):

H(P̃X)≥H(P̃Y )

D(P̃X‖PX) (207)

= max
t∈[0,∞]

t
(
H(P̃Y )−H 1

1+t
(PX)

)
(208)

Γ̂
(
PX , P̃Y

)
:= max

P̃X∈P(X ):

H(P̃X)≥H(P̃Y )

D(P̃X‖PX) (209)

= − min
P̃X∈P(X ):

H(P̃X)≥H(P̃Y )

∑
x

P̃X(x) logPX(x)

−H(P̃Y ) (210)

= min
t∈[0,∞]

(1 + t)
(
H−1

t
(PX)−H(P̃Y )

)
,

(211)

where (210) and (211) follow since, on one hand,
Γ̂
(
PX , P̃Y

)
≤ (210) = (211) due to the constraint

H(P̃X) ≥ H(P̃Y ); and on the other hand, by setting

P̃X = P
−1
t

X (·)/
∑
x P
−1
t

X (x) with t ∈ [0,∞] satisfying H(P̃X) =

H(P̃Y ), we have Γ̂
(
PX , P̃Y

)
≥ (211).

Since δ > 0 is arbitrary and all the functions in (206) are
continuous, we have (212)-(217) (given on page 23).

Converse: By the converse part of Theorem 1, we have

lim inf
n→∞

1

n
Dmax
α (PY n , Q

n
Y )

≥ max
t∈[0,1]

{
tH 1

1−t
(QY )− tH 1+s

1+s−st
(PX)

}
(218)

Next we prove

lim inf
n→∞

1

n
Dmax
α (PY n , Q

n
Y )

≥ max

{
max

t∈[ α
α−1 ,∞]

{
tH 1

1−t
(QY )− tH 1

1−α−1
α

t

(PX)

}
,

max
t∈[0,∞]

{
tRH 1

1+α−1
α

t

(QY )− tH 1
1+t

(PX)

}}
. (219)

For s > 0, we have (220)-(223) (given on page 23).
Same as (184) and (189), we have

N :=

∣∣∣∣∣∣TTY \
⋃

TX :H(TX)<H(TY )−δ

f (TTX )

∣∣∣∣∣∣ (224)

≥̇ enH(TY ), (225)
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lim sup
n→∞

1

n
Dmax
α (PY n , Q

n
Y )

≤ max

{
max
t∈[0,1]

t
(
H 1

1−t
(QY )−H 1+s

1+s−st
(PX)

)
,

max
P̃Y ∈P(Y)

min
P̃X∈P(X ):H(P̃X)≥H(P̃Y )

max

{
−1 + s

s
D(P̃X‖PX) +D(P̃Y ‖QY ), D(P̃X‖PX)− 1 + s

s
D(P̃Y ‖QY )

}}
(212)

= max

{
max
t∈[0,1]

t
(
H 1

1−t
(QY )−H 1+s

1+s−st
(PX)

)
,

max
P̃Y ∈P(Y)

min
r:Γ(PX ,P̃Y )≤r≤Γ̂(PX ,P̃Y )

max

{
D(P̃Y ‖QY )− 1 + s

s
r, r − 1 + s

s
D(P̃Y ‖QY )

}}
(213)

= max

{
max
t∈[0,1]

t
(
H 1

1−t
(QY )−H 1+s

1+s−st
(PX)

)
,

max
P̃Y ∈P(Y)

{
max

{
−1

s
D(P̃Y ‖QY ), D(P̃Y ‖QY )− 1 + s

s
Γ̂
(
PX , P̃Y

)
, Γ
(
PX , P̃Y

)
− 1 + s

s
D(P̃Y ‖QY )

}}
(214)

= max

{
max
t∈[0,1]

t
(
H 1

1−t
(QY )−H 1+s

1+s−st
(PX)

)
,

max

{
0, max

t∈[0,∞]

1 + s

s
(1 + t)

(
H 1

1− 1+s
s

(1+t)

(QY )−H−1
t

(PX)

)
, max
t∈[0,∞]

t
(
H 1+s

1+s+st
(QY )−H 1

1+t
(PX)

)}}
(215)

= max

{
max

t∈[0,1]∪[ 1+ss ,∞]
t
(
H 1

1−t
(QY )−H 1+s

1+s−st
(PX)

)
, max
t∈[0,∞]

t
(
H 1+s

1+s+st
(QY )−H 1

1+t
(PX)

)}
(216)

= max

{
max

t∈[0,1]∪[ α
α−1 ,∞]

t

(
H 1

1−t
(QY )−H 1

1−α−1
α

t

(PX)

)
, max
t∈[0,∞]

t

(
H 1

1+α−1
α

t

(QY )− tH 1
1+t

(PX)

)}
(217)

1

n
D1+s(Q

n
Y ‖PY n)

=
1

ns
log
∑
yn

QnY (yn)1+sPY n(yn)−s (220)

=
1

ns
log
∑
TY

∑
yn∈TTY

∑
TX

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

−s e(1+s)n
∑
y TY (y) logQY (y) (221)

≥ 1

ns
log
∑
TY

∑
yn∈TTY \

⋃
TX :H(TX )<H(TY )−δ f(TTX )

∑
TX

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

−s e(1+s)n
∑
y TY (y) logQY (y) (222)

=
1

ns
log
∑
TY

∑
yn∈TTY \

⋃
TX :H(TX )<H(TY )−δ f(TTX )

 ∑
TX :H(TX)≥H(TY )−δ

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

−s

e(1+s)n
∑
y TY (y) logQY (y) (223)
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and

A :=
∑

yn∈TTY \
⋃
TX :H(TX )<H(TY )−δ f(TTX )

∑
TX :H(TX)≥H(TY )−δ∑

xn∈TTX

PnX(xn)1 {yn = f(xn)} (226)

≤̇ max
TX :H(TX)≥H(TY )−δ

e−nD(TX‖PX). (227)

Furthermore, A can be lower bounded as follows.

A ≥ N min
TX :H(TX)≥H(TY )−δ

en
∑
x TX(x) logPX(x) (228)

.
= enH(TY ) min

TX :H(TX)≥H(TY )−δ
en
∑
x TX(x) logPX(x).

(229)

Define r := − 1
n logA. Then

min
TX :H(TX)≥H(TY )−δ

D(TX‖PX)

≤ r (230)

≤ −H(TY )− min
TX :H(TX)≥H(TY )−δ

∑
x

TX(x) logPX(x).

(231)

Hence by Lemma 7, we have

1

n
D1+s(Q

n
Y ‖PY n)

≥ 1

ns
log
∑
TY

N

(
A

N

)−s
e(1+s)n

∑
y TY (y) logQY (y) (232)

=
1

ns
log
∑
TY

e(1+s)nH(TY )A−se(1+s)n
∑
y TY (y) logQY (y)

+ o(1) (233)

=
1

ns
log
∑
TY

A−se−n(1+s)D(TY ‖QY ) + o(1) (234)

= max
TY

{
r − 1 + s

s
D(TY ‖QY )

}
+ o(1). (235)

On the other hand,

1

n
D1+s(PY n‖QnY )

=
1

ns
log
∑
TY

∑
yn∈TTY

QnY (yn)−s

×

∑
TX

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

1+s

(236)

≥ 1

ns
log
∑
TY

∑
yn∈TTY \

⋃
TX :H(TX )<H(TY )−δ f(TTX )

QnY (yn)−s

×

∑
TX

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}

1+s

(237)

=
1

ns
log
∑
TY

∑
yn∈TTY \

⋃
TX :H(TX )<H(TY )−δ f(TTX )

QnY (yn)−s

×

 ∑
TX :

H(TX)≥H(TY )−δ

∑
xn∈TTX

PnX(xn)1 {yn = f(xn)}


1+s

(238)

≥ 1

ns
log
∑
TY

N

(
A

N

)1+s

QnY (yn)−s (239)

=
1

ns
log
∑
TY

e−snH(TY )A1+se−sn
∑
y TY (y) logQY (y) + o(1)

(240)

=
1

ns
log
∑
TY

A1+sensD(TY ‖QY ) + o(1) (241)

= max
TY

{
D(TY ‖QY )− 1 + s

s
r

}
+ o(1). (242)

Define

Γ
(n)
δ (PX , TY ) := min

TX∈P(n)(X ):
H(TX)≥H(TY )−δ

D(TX‖PX) (243)

Γ̂
(n)
δ (PX , TY ) := − min

TX∈P(n)(X ):
H(TX)≥H(TY )−δ

∑
x

TX(x) logPX(x)

−H(TY ) (244)

Combining (235) and (242), we have
1

n
Dmax
α (PY n , Q

n
Y )

≥ max
TY

{
max

{
D(TY ‖QY )− 1 + s

s
r,

r − 1 + s

s
D(TY ‖QY )

}}
+ o(1) (245)

≥ max
TY

{
min

r:Γ
(n)
δ (PX ,TY )≤r≤Γ̂

(n)
δ (PX ,TY )

max
{
D(TY ‖QY )

− 1 + s

s
r, r − 1 + s

s
D(TY ‖QY )

}}
+ o(1). (246)

Since δ > 0 is arbitrary and all the functions involved in
(246) are continuous, letting n → ∞ and δ → 0, we
have (247)-(250) (given on page 25), where Γ

(
PX , P̃Y

)
and

Γ̂
(
PX , P̃Y

)
are respectively defined in (207) and (209) (recall

the equation (210)).

APPENDIX E
PROOF OF THEOREM 4

The equality in (32) follows from Theorem 1. For (33), the
case α = 0 can be proven easily. The converse parts for the
cases α ∈ (0, 1] ∪ {∞} follow from (32). The achievability
parts for α ∈ {1,∞} follow from (35). The achievability parts
for α ∈ (0, 1) are implied by the achievability part for α =
1, since the conversion rates for these cases are all equal to
H(PX)
H(QY ) . Hence here we only need to prove (35).

Define A :=
{
yn : QnY (yn) ≥ e−n(H(QY )+δ)

}
for δ > 0.

Define Q̃Y n(yn) :=
QnY (yn)
QnY (A) 1 {yn ∈ A}. Use Mapping 1 given

in Appendix I-E to map the sequences in X k to the sequences
in A, where the distributions PX and QY are respectively
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lim inf
n→∞

1

n
Dmax
α (PY n , Q

n
Y )

≥ max
P̃Y ∈P(Y)

{
min

r:Γ(PX ,P̃Y )≤r≤Γ̂(PX ,P̃Y )
max

{
D(P̃Y ‖QY )− 1 + s

s
r, r − 1 + s

s
D(P̃Y ‖QY )

}}
(247)

= max
P̃Y ∈P(Y)

{
max

{
−1

s
D(P̃Y ‖QY ), D(P̃Y ‖QY )− 1 + s

s
Γ̂
(
PX , P̃Y

)
, Γ
(
PX , P̃Y

)
− 1 + s

s
D(P̃Y ‖QY )

}}
(248)

= max

0, max
t∈[0,∞]

1 + s

s
(1 + t)

(
H 1

1− 1+s
s

(1+t)

(QY )−H−1
t

(PX)

)
, max
t∈[0,∞]

t

H 1+s
s

1+s
s

+t

(QY )−H 1
1+t

(PX)

 (249)

= max

{
max

t∈[ 1+ss ,∞]
t

(
H 1

1−t
(QY )−H 1

1− s
1+s

t
(PX)

)
, max
t∈[0,∞]

t

(
H 1

1+ s
1+s

t
(QY )−H 1

1+t
(PX)

)}
(250)
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Fig. 6: Illustration of the code used to prove the achievability
for α ∈ [1,∞] in Theorem 4 by using information spectrum
exponents.

replaced by P kX and Q̃Y n . That is, for each i ∈ [1 : |X |k],
xki is mapped to ynj where j = G−1

Y n(GXk(i)). This code is
illustrated in Fig. 6. Hence the following properties hold:

1) If P kX(xki ) ≥ Q̃Y n(ynj ) where i := G−1
Xk

(GY n(j)),
then |

{
i : G−1

Y n(GXk(i)) = j
}
| ≤ 1. Hence PY n(ynj ) ≤

P kX(xki ).
2) If P kX(xki ) < Q̃Y n(ynj ) where i := G−1

Xk
(GY n(j)), then

|
{
i : G−1

Y n(GXk(i)) = j
}
| ≥ 1 and

1

2
Q̃Y n(ynj ) ≤ PY n(ynj ) ≤ Q̃Y n(ynj ) + P kX(xki ). (251)

3) PY n(yn) = 0 for yn /∈ A.

For brevity, we denote i (yn) := G−1
Xk

(GY n(j)) where j is the
index of yn, and denote j

(
xk
)

:= G−1
Y n(GXk(i)) where i is

the index of xk.
For this code, and for 0 ≤ s ≤ 1, we have (252)-(258)

(given on page 26),
where (255) follows from Lemma 6. To show

D1+s(PY n ||QnY ) → 0, we only need to show both terms in
(258) converge to zero. Obviously, the first term converges to
zero since QnY (A) → 1. Next we focus on the second term.
We have (259)-(263) (given on page 26),

where Bj denotes the set of xn that are mapped to ynj ,
(261) follows since P kX(xki(yn)) ≤ P

k
X(xk) for all xn that are

mapped to yn, and (262) follows since∑
xk∈Bj

P kX(xk)∑
xk∈Bj P

k
X(xk)

Q̃Y n(ynj )

(
P kX(xk)

Q̃Y n(ynj )

)s

=
∑
xk∈Bj

P kX(xk)

PY n(ynj )
Q̃Y n(ynj )

(
P kX(xk)

Q̃Y n(ynj )

)s
(264)

≤
∑
xk∈Bj

P kX(xk)
1
2 Q̃Y n(ynj )

Q̃Y n(ynj )

(
P kX(xk)

Q̃Y n(ynj )

)s
(265)

= 2
∑
xk∈Bj

P kX(xk)

(
P kX(xk)

Q̃Y n(ynj )

)s
. (266)

Next we prove
∑
xk P

k
X(xk)

(
PkX(xk)

Q̃Y n (yn
j(xk)

)

)s
→ 0.

Based on the notations defined in Appendix A-B, and using
Lemma 9, we have

QnY

(
ynj(xk)

)
= QnY

(
yn
G−1
Y n(GXk (i))

)
(267)

≥ F−1
QnY

(
FPkX

(
−1

k
logP kX(xk)

))
(268)

= exp

{
−nE−1

QY

(
− 1

n
log
{
e−k(EPX (− 1

k logPkX(xk))+o(1))
}

+ o(1)
)}

(269)

= exp

{
−nE−1

QY

(
k

n

(
EPX (−1

k
logP kX(xk))

)
+ o(1)

)}
(270)

= exp

{
−n max

t∈[0,∞]

{
H1+t(QY )− 1

t

×
(
k

n
max

t′∈[0,∞]

{
t′H1+t′(PX) +

t′

k
logP kX(xk)

}
+ o(1)

)}}
(271)

where i (in (267)) denotes the index of xn in the sequence
xn1 , x

n
2 , ..., x

n
|X |n .
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D1+s(PY n ||QnY ) =
1

s
log
∑
yn

PY n(yn)1+sQnY (yn)−s (252)

≤ 1

s
log
∑
yn

PY n(yn)

[
P kX(xki(yn))1{P

k
X(xki(yn)) ≥ Q̃Y n(yn)}

+
(
Q̃Y n(yn) + P kX(xki(yn))

)
1{P kX(xki(yn)) < Q̃Y n(yn)}

]s
QnY (yn)−s (253)

=
1

s
log
∑
yn

PY n(yn)

[(
P kX(xki(yn))

QY n(yn)

)s
1{P kX(xki(yn)) ≥ Q̃Y n(yn)}

+

(
Q̃Y n(yn)

QY n(yn)

)s(
1 +

P kX(xki(yn))

Q̃Y n(yn)

)s
1{P kX(xki(yn)) < Q̃Y n(yn)}

]
(254)

≤ 1

s
log
∑
yn

PY n(yn)

[(
P kX(xki(yn))

QY n(yn)

)s
1{P kX(xki(yn)) ≥ Q̃Y n(yn)}

+

(
Q̃Y n(yn)

QY n(yn)

)s(
1 +

(
P kX(xki(yn))

Q̃Y n(yn)

)s)
1{P kX(xki(yn)) < Q̃Y n(yn)}

]
(255)

=
1

s
logQnY (A)−s

∑
yn

PY n(yn)

((
P kX(xki(yn))

Q̃Y n(yn)

)s
+ 1{P kX(xki(yn)) < Q̃Y n(yn)}

)
(256)

≤ 1

s
logQnY (A)−s

∑
yn

PY n(yn)

((
P kX(xki(yn))

Q̃Y n(yn)

)s
+ 1

)
(257)

≤ − logQnY (A) +
1

s
QnY (A)−s

∑
yn

PY n(yn)

(
P kX(xki(yn))

Q̃Y n(yn)

)s
(258)

∑
yn

PY n(yn)

(
P kX(xki(yn))

Q̃Y n(yn)

)s

≤
∑
yn

(
PY n(yn)1{P kX(xki(yn)) ≥ Q̃Y n(yn)}+

(
Q̃Y n(yn) + P kX(xki(yn))

)
1{P kX(xki(yn)) < Q̃Y n(yn)}

)(P kX(xki(yn))

Q̃Y n(yn)

)s
(259)

≤
∑
yn

(
PY n(yn)1{P kX(xki(yn)) ≥ Q̃Y n(yn)}+ 2Q̃Y n(yn)1{P kX(xki(yn)) < Q̃Y n(yn)}

)(P kX(xki(yn))

Q̃Y n(yn)

)s
(260)

≤
∑
xk

P kX(xk)

(
P kX(xk)

Q̃Y n(yn
j(xk)

)

)s
1{P kX(xk) ≥ Q̃Y n(ynj(xk))}+ 2

|A|∑
j=1

∑
xk∈Bj

P kX(xk)∑
xn∈Bj P

k
X(xk)

Q̃Y n(ynj )

(
P kX(xk)

Q̃Y n(ynj )

)s
× 1{P kX(xk) < Q̃Y n(ynj )} (261)

≤
∑
xk

P kX(xk)

(
P kX(xk)

Q̃Y n(yn
j(xk)

)

)s
1{P kX(xk) ≥ Q̃Y n(ynj(xk))}+ 4

∑
xk

P kX(xk)

(
P kX(xk)

Q̃Y n(yn
j(xk)

)

)s
1{P kX(xk) < Q̃Y n(ynj )}

(262)

≤ 4
∑
xk

P kX(xk)

(
P kX(xk)

Q̃Y n(yn
j(xk)

)

)s
(263)
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Therefore, we have (272)-(280) (given on page 28),
where (275) follows from Lemma 9, and (279) follows by

choosing t′ = s
1+st .

Therefore, if

R < min
t′′∈[0,1]

H t′′+s
t′′+s−st′′

(PX)

H 1
1−t′′

(QY )
(281)

then

lim sup
n→∞

1

n
log
∑
xk

P kX(xk)

(
P kX(xk)

QnY (yn
j(xk)

)

)s
< 0. (282)

Hence
∑
xk P

k
X(xk)

(
PkX(xk)

QnY (yn
j(xk)

)

)s
→ 0. This completes the

proof for 0 ≤ s ≤ 1. For other s, it can be proven similarly
(by other inequalities in Lemma 6).

APPENDIX F
PROOF OF THEOREM 5

The equality in (36) follows from Theorem 2. For (37), the
case α = 0 can be proven easily. The cases α ∈ (0, 1]∪ {∞}
follow by showing the achievability parts for α = 1 and α =
∞. Next we prove these.

Here we assume that both PX and QY are not uniform. The
cases that PX is uniform or QY is uniform will be proven in
Theorems 8 and 11, respectively.

Achievability part for α = 1: Define

A :=
{
xk : e−k(H(PX)+δ) ≤ P kX(xk) ≤ e−k(H(PX)−δ)

}
(283)

B :=
{
yn : e−n(H(QY )+δ) ≤ QnY (yn) ≤ e−n(H(QY )−δ)

}
.

(284)

Here δ > 0 is a number such that H(PX) + δ < H0(PX) and
1
R (H(PX)− δ) > H(QY ) + δ. We consider the following
mapping.

1) Map the sequences in Ac to the sequences in Bc such
that for each yn ∈ Bc, there exists at least one xn ∈ Ac
mapped to it. This is feasible since

lim inf
n→∞

1

n
log |Ac|

= lim inf
n→∞

1

n
log
(
|X |k − |A|

)
(285)

≥ lim inf
n→∞

1

n
log
(
ekH0(PX) − ek(H(PX)+δ)

)
(286)

=
H0(PX)

R
(287)

> H0(QY ) (288)

≥ lim sup
n→∞

1

n
log |Bc| , (289)

i.e., |Ac| > |Bc| for sufficiently large n.
2) Use Mapping 1 given in Appendix I-E to map the

sequences in A to the sequences in B, where the
distributions PX and QY are respectively replaced

by
PkX(xk)1{xk∈A}

PkX(A)
and QnY (yn)1{yn∈B}

QnY (B) . Observe that
1
R (H(PX)− δ) > H(QY ) + δ implies that PkX(xk)

PkX(A)
≤

QnY (yn)
QnY (B) for xk ∈ A, yn ∈ B and sufficiently large n.

Hence by the property of Mapping 1, for m ∈ [1 : |B|],
PkX(A)QnY (ynm)

QnY (B) −P kX(xkkm) ≤ PY n(ynm) ≤ PkX(A)QnY (ynm)
QnY (B) +

P kX(xkkm). By the asymptotic equipartition property [29],
we know that this step can be roughly considered as
mapping a uniform distribution (with a larger alphabet)
to another one (with a smaller alphabet).

For this code, and for sufficiently large n, we have

D(QnY ‖PY n)

=
∑
yn∈B

QnY (yn) log
QnY (yn)

PY n(yn)
+
∑
yn∈Bc

QnY (yn) log
QnY (yn)

PY n(yn)

(290)

≤
∑

m∈[1:|B|]

QnY (ynm) log
QnY (ynm)

PkX(A)QnY (ynm)

QnY (B) − P kX(xkkm)

+
∑
yn∈Bc

QnY (yn) log
(maxy QY (y))

n

(minx PX(x))
k

(291)

= −
∑

m∈[1:|B|]

QnY (ynm) log

(
P kX(A)

QnY (B)
−
P kX(xkkm)

QnY (ynm)

)

+ nQnY (Bc) log
maxy QY (y)

(minx PX(x))
1
R

(292)

≤ −QnY (B) log

(
P kX(A)

QnY (B)
− max
m∈[1:|B|]

P kX(xkkm)

QnY (ynm)

)

+ nQnY (Bc) log
maxy QY (y)

(minx PX(x))
1
R

(293)

≤ −QnY (B) log

(
P kX(A)

QnY (B)
− e−n( 1

R (H(PX)−δ)−(H(QY )+δ))
)

+ nQnY (Bc) log
maxy QY (y)

(minx PX(x))
1
R

(294)

→ 0 (295)

where (295) follows from 1
R (H(PX)− δ) > H(QY ) + δ and

the fact PnX(Ac), QnY (Bc) → 0 exponentially fast, as shown
in the following inequalities.

QnY (Bc) =
∑
yn∈Bc

QnY (yn) (296)

= QnY

{
yn : − 1

n
logQnY (yn) < H(QY ) + δ

}
+QnY

{
yn : − 1

n
logQnY (yn) > H(QY )− δ

}
(297)

.
= e−nEQY (H(QY )−δ) + e−nÊQY (H(QY )+δ)

.
= e−nE , (298)

where

E := min
{
EQY (H(QY )− δ), ÊQY (H(QY ) + δ)

}
> 0.

(299)
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lim sup
n→∞

1

n
log
∑
xk

P kX(xk)

(
P kX(xk)

QnY (ynj(xn))

)s
≤ lim sup

n→∞

1

n
log
∑
TX

∑
xn∈TTX

e
snmaxt∈[0,∞]

{
H1+t(QY )− 1

t

(
k
n maxt′∈[0,∞]

{
t′H1+t′ (PX)+ t′

k logPkX(xk)
}

+o(1)
)}

× e(1+s)k
∑
x TX(x) logPX(x) (272)

= lim sup
n→∞

max
TX

k

n

(
H(TX) + (1 + s)

∑
x

TX(x) logPX(x)

)

+ s max
t∈[0,∞]

{
H1+ 1

t
(QY )− t

(
k

n
max

t′∈[0,∞]

{
t′H1+t′(PX) + t′

∑
x

TX(x) logPX(x)

}
+ o(1)

)}
(273)

= lim sup
n→∞

max
P̃X∈P(X )

k

n

(
H(P̃X) + (1 + s)

∑
x

P̃X(x) logPX(x)

)

+ s max
t∈[0,∞]

{
H1+ 1

t
(QY )− t

(
k

n
max

t′∈[0,∞]

{
t′H1+t′(PX) + t′

∑
x

P̃X(x) logPX(x)

}
+ o(1)

)}
(274)

= max
P̃X∈P(X )

1

R

(
H(P̃X) + (1 + s)

∑
x

P̃X(x) logPX(x)

)

+ s max
t∈[0,∞]

{
H1+ 1

t
(QY )− t

R
max

t′∈[0,∞]

{
t′H1+t′(PX) + t′

∑
x

P̃X(x) logPX(x)

}}
(275)

≤ max
t∈[0,∞]

min
t′∈[0,∞]

max
P̃X∈P(X )

1

R

(
H(P̃X) + (1 + s)

∑
x

P̃X(x) logPX(x)

)
(276)

+ s

{
H1+ 1

t
(QY )− t

R

{
t′H1+t′(PX) + t′

∑
x

P̃X(x) logPX(x)

}}
(277)

= max
t∈[0,∞]

min
t′∈[0,∞]

− s
R
H1+s−stt′(PX) + sH1+ 1

t
(QY )− stt′

R
(H1+t′(PX)−H1+s−stt′(PX)) (278)

≤ max
t∈[0,∞]

− s
R
H1+ s

1+st
(PX) + sH1+ 1

t
(QY ) (279)

= max
t′′∈[0,1]

{
sH 1

1−t′′
(QY )− s

R
H t′′+s

t′′+s−st′′
(PX)

}
(280)

Achievability part for α =∞: Partition X k into four parts:

A1 :=
{
xk : P kX(xk) > e−k(H(PX)−δ)

}
, (300)

A2 :=
{
xk : e−k(Hu(PX)−δ) < P kX(xk) ≤ e−k(H(PX)−δ)

}
,

(301)

A3 :=
{
xk : e−kH

u(PX) ≤ P kX(xk) ≤ e−k(Hu(PX)−δ)
}
,

(302)

A4 :=
{
xk : P kX(xk) < e−kH

u(PX)
}
. (303)

Define E∗ := Ê−1
QY

(
1
R

(
ÊPX (Hu(PX))

))
. Partition Yn into

two parts:

B1 :=
{
yn : QnY (yn) ≥ e−nE

∗
}

(304)

B2 :=
{
yn : QnY (yn) < e−nE

∗
}
. (305)

Consider the following code. This code is illustrated in Fig. 7.
1) Map the sequences in A1 ∪ A4 to those in Yn in any

way.

2) Use Mapping 1 given in Appendix I-E to map the
sequences in A2 to the sequences in B1.

3) Use Mapping 2 given in Appendix I-E to map the
sequences in A3 to the sequences in B2.

Assume

R < min
t∈[0,∞]

H 1
1+t

(PX)

H 1
1+t

(QY )
. (306)

By Lemma 11, we have
1

R
ÊPX (R) < ÊQY (), ∀ ∈ 1

R
[H(PX), Hu(PX)] (307)

R <
H0(PX)

H0(QY )
. (308)

We first prove log maxyn∈B1

QnY (yn)
PY n (yn) → 0. Observe that

P kX(A2), QnY (B1) → 1 as n → ∞. Define P̃Xk
(
xk
)

:=
PkX(xk)1{xk∈A2}

PkX(A2)
and Q̃Y n (yn) :=

QnY (yn)1{yn∈B1}
QnY (B1) . To

prove log maxj∈B1

QnY (ynj )

PY n (ynj ) → 0, we only need to prove



29



Exponent

 
YQ

E

 1


XP
E R

R


Fig. 7: Illustration of the code used to prove the achievability
for α = ∞ in Theorem 5 by using information spectrum
exponents.

log maxyn∈B1

QnY (yn)
PY n (yn) → 0, where P̃Y n(yn) := PY n (yn)

PkX(A2)
.

Define J1 := 1
R [H(PX) − δ,H(PX)) and J2 :=

1
R [H(PX), Hu(PX)− δ). Then for  ∈ J2, we have that

lim
k→∞

−1

k
log
(

1− FP̃
Xk

()
)

= lim
k→∞

−1

k
log P̃Xk

(
xk : −1

k
log P̃Xk(xk) ≥ 

)
(309)

= lim
k→∞

−1

k
log

P kX

(
xk ∈ A2 : − 1

k log
PkX(xk)

PkX(A2)
≥ 
)

P kX(A2)
(310)

= lim
k→∞

−1

k
logP kX

(
xk ∈ A2 : −1

k
logP kX(xk) ≥ + o(1)

)
(311)

= ÊPX (), (312)

where (312) follows from Lemma 12. Similarly, for  ∈
[H∞(QY ), E∗),

lim
n→∞

− 1

n
log
(

1− FQ̃Y n ()
)

= ÊQY (), (313)

Observe that by Lemma 9, ÊQY () is continuous. Hence
(307) implies that there exists some ε > 0 such that for any
 ∈ J2,

1

R
ÊPX (R) ≤ ÊQY (− ε)− ε. (314)

i.e.,

lim sup
n→∞

1

n
log sup

∈J2

1− FQ̃Y n (− ε)
1− FP̃

Xk
(R)

≤ −ε. (315)

or equivalently,

lim inf
n→∞

inf
θ∈FP̃

Xk
(RJ2)

{
1

R
F−1

P̃
Xk

(θ)− F−1

Q̃Y n
(1− (1− θ)e−nε)

}
≥ ε. (316)

Since F−1

Q̃Y n
(θ) is nonincreasing in θ, (316) implies

lim inf
n→∞

inf
θ∈FP̃

Xk
(RJ2)

{
1

R
F−1

P̃
Xk

(θ)− F−1

Q̃Y n
(θ)

}
≥ ε. (317)

On the other hand, by choosing δ > 0 small enough, we
have H(QY ) < 1

R (H(PX) − δ). This implies that for some
ε > 0,

lim inf
n→∞

inf
θ∈FP̃

Xk
(RJ1)

{
1

R
F−1

P̃
Xk

(θ)− F−1

Q̃Y n
(θ)

}
≥ ε. (318)

Combining (317) and (318) gives us that for some ε > 0,

lim inf
n→∞

inf
θ∈FP̃

Xk
(R(J1∪J2))

{
1

R
F−1

P̃
Xk

(θ)− F−1

Q̃Y n
(θ)

}
≥ ε.

(319)

Observe that F−1

P̃
Xk

(θ) is finite, hence (317) also holds
if R is replaced with n

k . Furthermore, similarly in Subsec-
tion I-E, we sort the elements in A2 as xk1 , x

k
2 , ..., x

k
|A2|

such that P̃Xk(xk1) ≥ P̃Xk(xk2) ≥ ... ≥ P̃Xk(xk|A2|).
Define G̃Xk(i) := P̃Xk

(
xkl : l ≤ i

)
and G̃−1

Xk
(θ) :=

max
{
i ∈ N : G̃Xk(i) ≤ θ

}
. Similarly, for Q̃Y n , we de-

fine G̃Y n(j) := Q̃Y n (ynl : l ≤ j) and G̃−1
Y n(θ) :=

min
{
j ∈ N : G̃Y n(j) ≥ θ

}
. Hence the mapping used here

is j = G̃−1
Y n(G̃Xk(i)). For each i ∈ [1 : |A2|], G̃Xk(i) ∈

FP̃
Xk

(J ). Hence we have

lim inf
n→∞

min
i∈[1:|A2|]

1

n
log

Q̃Y n(ynj )

P̃Xk(xki )

= lim inf
n→∞

min
i∈[1:|A2|]

{
k

n
F−1

P̃
Xk

(G̃Xk(i))− F−1

Q̃Y n
(G̃Xk(i))

}
(320)

≥ lim inf
n→∞

inf
θ∈FP̃

Xk
(R(J1∪J2))

{
k

n
F−1

P̃
Xk

(θ)− F−1

Q̃Y n
(θ)

}
(321)

≥ ε, (322)

where j = G̃−1
Y n(G̃Xk(i)). Hence

Q̃Y n (ynj )

P̃
Xk

(xki )
→ 0 for any i ∈

[1 : |A2|]. Therefore, we have

log max
j∈[1:|B1|]

Q̃Y n(ynj )

P̃Y n(ynj )

≤ log max
j∈[1:|B1|]

Q̃Y n(ynj )

Q̃Y n(ynj )−maxi:G̃−1
Y n

(G̃
Xk

(i))=j P̃Xk(xki )

(323)
→ 0. (324)

Hence log maxyn∈B1

QnY (yn)
PY n (yn) → 0.

We next prove log maxyn∈B2

QnY (yn)
PY n (yn) ≤ 0. Observe that

lim
n→∞

− 1

n
logQnY (B2) =

1

R

(
ÊPX (Hu(PX))

)
(325)

=
1

R
D(Unif (X ) ‖PX), (326)
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lim
n→∞

− 1

n
log (|Y|np0)

=
1

R
Hu(PX)−H0(QY ) (327)

=
1

R
H0(PX) +

1

R
D(Unif (X ) ‖PX)−H0(QY ) (328)

>
1

R
D(Unif (X ) ‖PX), (329)

and

lim
n→∞

1

n
logP kX(A3) =

1

R

(
ÊPX (Hu(PX)− δ)

)
(330)

<
1

R
D(Unif (X ) ‖PX). (331)

Hence for sufficiently large n, it holds that

QnY (B2) + |Y|np0 ≤ P kX(A3), (332)

which implies that by Mapping 2, QnY (yn) ≤ PY n(yn) for
yn ∈ B2. That is, log maxyn∈B2

QnY (yn)
PY n (yn) ≤ 0.

APPENDIX G
PROOF OF THEOREM 6

By the equality Dα(Q‖P ) = α
1−αD1−α(P‖Q) for α ∈

(0, 1), the case α ∈ (0, 1) has been proven in Theorem 4.
Furthermore, it is easy to verify that the mapping used to prove
for case α = 0 in Theorem 4 also satisfies D0(QnY ‖PY n)→ 0.
So this proves the case α = 0. The case α = 1 can be proven
by a proof similar to that in Appendix F. In the following, we
consider the case α =∞.

We first prove the following bounds for the normalized
and unnormalized Rényi conversion rates for general sim-
ulation problem (the seed and target distributions are not
limited to product distributions). For general distributions
PXn and QY n , we use PXn to approximate QY n . Define
FP

Xk
() := PXk

(
xk : − 1

k logPXk(xk) < 
)

and F−1
P
Xk

(θ) :=

sup
{
 : FP

Xk
() ≤ θ

}
. For QY n , we define FQY n and F−1

QY n

similarly. Then we have the following bounds.

Lemma 13.

sup

{
R : sup

ε>0
lim sup
n→∞

1

n
log sup

≥0

FP
Xk

(nk (− ε))
FQY n ()

≤ 0,

sup
ε>0

lim sup
n→∞

1

n
log sup

≥0

1− FQY n ()

1− FP
Xk

(nk (− ε))
≤ 0

}
≥ sup

{
R :

1

n
Dmax
∞ (PY n , QY n)→ 0

}
(333)

≥ sup {R : Dmax
∞ (PY n , QY n)→ 0} (334)

≥ sup

{
R : lim inf

n→∞
inf

θ∈[0,1)

{
k

n
F−1
P
Xk

(θ)− F−1
QY n

(θ)

}
> 0

}
.

(335)

Remark 21. The upper bound can be rewritten as

sup

{
R :

inf
ε>0

lim inf
n→∞

inf
θ∈[0,e−nε)

{
k

n
F−1
P
Xk

(θenε)− F−1
QY n

(θ)

}
≥ 0,

inf
ε>0

lim inf
n→∞

inf
θ∈[0,1)

{
k

n
F−1
P
Xk

(1− (1− θ) e−nε)− F−1
QY n

(θ)

}
≥ 0

}
, (336)

and the lower bound can be further lower bounded by

sup

{
R : inf

ε>0
lim sup
n→∞

sup
≥0

{
FP

Xk
(
n

k
(+ ε))− FQY n ()

}
< 0

}
. (337)

Similar expressions for bounds on the conversion rate under
the TV distance measure can be found in [30].

Remark 22. By similar proofs, one can show a better upper
bound and a better lower bound for the unnormalized Rényi
conversion rate.

sup

{
R : sup

ε>0
lim sup
n→∞

sup
≥0

{
FP

Xk
(
n

k
(− ε))− FQY n ()

}
≤ 0

}
≥ sup {R : Dmax

∞ (PY n , Q
n
Y )→ 0} (338)

≥ sup

{
R : lim inf

n→∞
inf

θ∈[0,1)

{
kF−1

P
Xk

(θ)− nF−1
QY n

(θ)
}

=∞
}
.

(339)

Proof: Achievability (Lower Bound): If
lim infn→∞ infθ∈[0,1)

{
k
nF
−1
P
Xk

(θ)− F−1
QY n

(θ)
}

> 0, then
there exists a sufficiently small ε > 0 and a sufficiently large K
such that knF

−1
P
Xk

(θ)−F−1
QY n

(θ) > 0 for any θ ∈ [0, 1) and for
any k ≥ K. Assume xk1 , x

k
2 , ..., x

k
|X |k is a sequence such that

PXk(xk1) ≥ PXk(xk2) ≥ ... ≥ PXk(xk|X |k). Define GXk(i) =

PXk
(
xkl : l ≤ i

)
and G−1

Xk
(θ) := max {i ∈ N : FXk(i) ≤ θ}.

Similarly, for QY n , we define GY n(j) := QY n (yl : l ≤ j)
and G−1

Y n := min {j ∈ N : GY (j) ≥ θ}. Use Mapping 1 given
in Appendix I-E to map the sequences in X k to the sequences
in Yn, where the distributions PX and QY are respectively
replaced by PXk and QY n . That is, for each i ∈ [1 : |X |k],
xki is mapped to ynj where j = G−1

Y n(GXk(i)). This code is
illustrated in Fig. 8.

Hence for each j ∈ [1 : |Y|n],

QY n(ynj )− PXk(xki ) ≤ PY n(ynj ) ≤ QY n(ynj ) + PXk(xki ).
(340)

where i = G−1
Xn(GY k(j)). By the assumption, we have

1
n log

P
Xk

(xki )

QY n (ynj ) = F−1
QY n

(GXk(i)) − k
nF
−1
P
Xk

(GXk(i)) < 0 for
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Fig. 8: Illustration of the code used to prove the achievability
for α =∞ in Theorem 6 (or Lemma 13) by using information
spectrum exponents.

i = G−1
Xn(GY k(j)). Hence P

Xk
(xki )

QY n (ynj ) → 0. Therefore, we have

D∞(PY n‖QY n) = log max
j

PY n(ynj )

QY n(ynj )
(341)

≤ log max
j

QY n(ynj ) + PXk(xki )

QY n(ynj )
(342)

→ 0, (343)

and

D∞(QY n‖PY n) = log max
j

QY n(ynj )

PY n(ynj )
(344)

≤ log max
j

QY n(ynj )

QY n(ynj )− PXk(xki )
(345)

→ 0. (346)

Converse (Upper Bound): By Lemma 1,
1
nD∞(PY n‖QY n) ≤ ε implies

1

n
log sup

≥0

PY n
(
yn : − 1

n logQY n(yn) < 
)

FQY n ()

≤ 1

n
log sup

yn

PY n(yn)

QY n(yn)
≤ ε. (347)

Therefore,

PY n

(
yn : − 1

n
logQY n(yn) < 

)
≥ PY n

(
yn : − 1

n
logPY n(yn) < − ε

)
(348)

= FPY n (− ε). (349)

Observe that Y n is a function of Xn. By [30, Lemma 3.5]
we have

FP
Xk

(
n

k
(− ε)) ≤ FPY n (− ε). (350)

Therefore, combining this with (347) gives

lim sup
n→∞

1

n
log sup

≥0

FP
Xk

(nk (− ε))
FQY n ()

≤ ε. (351)

On the other hand, (347) also implies

PY n

(
yn : − 1

n
logQY n(yn) ≥ 

)
≤ PY n

(
yn : − 1

n
logPY n(yn) ≥ − ε

)
(352)

= 1− FPY n (− ε), (353)

and 1
nD∞(QY n‖PY n) ≤ ε implies

1

n
log sup

≥0

1− FQY n ()

PY n
(
yn : − 1

n logQY n(yn) ≥ 
)

≤ 1

n
log sup

yn

QY n(yn)

PY n(yn)
≤ ε. (354)

Combining (353) and (354) gives

lim sup
k→∞

1

n
log sup

≥0

1− FQY n ()

1− FP
Xk

(nk (− ε))
≤ ε. (355)

Since ε > 0 can be arbitrarily small,

sup
ε>0

lim sup
k→∞

1

n
log sup

≥0

FP
Xk

(nk (− ε))
FQY n ()

− ε ≤ 0, (356)

sup
ε>0

lim sup
k→∞

1

n
log sup

≥0

1− FQY n ()

1− FP
Xk

(nk (− ε))
− ε ≤ 0. (357)

These two inequalities are equivalent to

sup
ε>0

lim sup
k→∞

1

n
log sup

≥0

FP
Xk

(nk (− ε))
FQY n ()

≤ 0, (358)

sup
ε>0

lim sup
k→∞

1

n
log sup

≥0

1− FQY n ()

1− FP
Xk

(nk (− ε))
≤ 0. (359)

Now we turn back to proving Theorem 6. We first focus on
the converse part. Consider product distributions P kX and QnY .

Then supε>0 lim supn→∞
1
n log sup≥0

F
Pk
X

(nk (−ε))

FQn
Y

() ≤ 0 and

supε>0 lim supn→∞
1
n log sup≥0

1−FQn
Y

()

1−F
Pk
X

(nk (−ε)) ≤ 0 respec-

tively imply

1

R
EPX (R) ≥ EQY (), ∀ ∈ 1

R
[H∞(PX), H(PX)] (360)

1

R
ÊPX (R) ≤ ÊQY (), ∀ ∈ 1

R
[H(PX), H−∞(PX)].

(361)

By Lemma 11, R ≤ minβ∈[−∞,∞]
Hβ(PX)
Hβ(QY ) .

Now we prove the achievability part (lower bound). Assume
R < minβ∈[−∞,∞]

Hβ(PX)
Hβ(QY ) . Then by Lemma 11,

1

R
EPX (R) > EQY (), ∀ ∈ 1

R
[H∞(PX), H(PX)] (362)

1

R
ÊPX (R) < ÊQY (), ∀ ∈ 1

R
[H(PX), H−∞(PX)].

(363)



32

Since EQY () and ÊQY () are continuous, there exists a value
ε > 0 such that
1

R
EPX (R) > EQY (− ε)− ε, ∀ ∈ 1

R
[H∞(PX), H(PX)]

(364)
1

R
ÊPX (R) < ÊQY (− ε)− ε, ∀ ∈ 1

R
[H(PX), H−∞(PX)].

(365)

That is,

lim sup
n→∞

1

n
log sup

≥0

FPkX (R)

FQnY (− ε)
≤ −ε, (366)

lim sup
n→∞

1

n
log sup

≥0

1− FQnY (− ε)
1− FPkX (R)

≤ −ε, (367)

which in turn respectively imply

lim inf
n→∞

inf
θ∈[0,1)

{
1

R
F−1
PkX

(θe−nε)− F−1
QnY

(θ)

}
≥ ε,

(368)

lim inf
n→∞

inf
θ∈[0,1)

{
1

R
F−1
PkX

(1− (1− θ)enε)− F−1
QnY

(θ)

}
≥ ε.

(369)

Since F−1
PkX

(θ) is nondecreasing in θ, we have both (368) and
(369) imply

lim inf
k→∞

inf
θ∈[0,1)

{
1

R
F−1
PkX

(θ)− F−1
QnY

(θ)

}
≥ ε. (370)

Therefore, (370) always holds. Observe that F−1
PkX

(θ) ∈
[H∞(PX), H−∞(PX)] is bounded for any θ ∈ [0, 1), hence
(370) also holds if R is replaced with n

k . Combining this with
Lemma 13 completes the proof for the lower bound.

APPENDIX H
PROOF OF THEOREM 7

Define A :=
{
yn : QnY (yn) ≥ e−n(H(QY )+δ)

}
for δ > 0.

Define PY n(yn) := 1
M

⌈
QnY (yn)
1
MQ

n
Y (A)

⌉
or 1

M

⌊
QnY (yn)
1
MQ

n
Y (A)

⌋
for yn ∈

A; 0 otherwise. Obviously, PY n is an M-type distribution.
Note that this mapping corresponds to Mapping 1 given in
Appendix I-E. For this mapping, we have

D∞(PY n‖QnY )

= log max
yn

PY n(yn)

QnY (yn)
(371)

≤ log max
yn∈A

1
M

⌈
QnY (yn)
1
MQ

n
Y (A)

⌉
QnY (yn)

(372)

≤ log max
yn∈A

1
M

(
QnY (yn)
1
MQ

n
Y (A)

+ 1
)

QnY (yn)
(373)

≤ log

(
1

QnY (A)
+

1

M
max
yn∈A

1

QnY (yn)

)
(374)

≤ log

(
1

QnY (A)
+ en(H(QY )+δ−R̃)

)
. (375)

By the fact that QnY (A) → 1 at least exponentially fast as
n→∞, we have that for R̃ > H(QY )+δ, D∞(PY n‖QnY )→

0 at least exponentially fast as n → ∞. Since δ > 0 is
arbitrary, we have for R̃ > H(QY ), D∞(PY n‖QnY ) → 0
at least exponentially fast as n→∞.

APPENDIX I
PROOF OF THEOREM 8

Define A :=
{
yn : QnY (yn) ≥ e−n(H(QY )+δ)

}
. Set

PY n(yn) := 1
M

⌈
QnY (yn)

1
M

⌉
for yn /∈ A (this mapping corre-

sponds to Mapping 2 given in Appendix I-E); PY n(yn) :=
1
M

⌈
pQnY (yn)
1
MQ

n
Y (A)

⌉
or 1

M

⌊
pQnY (yn)
1
MQ

n
Y (A)

⌋
for yn ∈ A, where p = 1 −∑

yn /∈A
1
M

⌈
QnY (yn)

1
M

⌉
≥ QnY (A) − |supp(QY )|n

M (this mapping
corresponds to Mapping 1 given in Appendix I-E). Obviously,
PY n is an M-type distribution. For this mapping, we have

D∞(QnY ‖PY n)

= log max
yn

QnY (yn)

PY n(yn)
(376)

≤ log max
yn∈A

QnY (yn)

1
M

⌊
pQnY (yn)
1
MQ

n
Y (A)

⌋ (377)

≤ log max
yn∈A

QnY (yn)
pQnY (yn)

QnY (A) −
1
M

(378)

≤ − log

(
QnY (A)− |supp(QY )|n

M

QnY (A)
− max
yn∈A

1

MQnY (yn)

)
(379)

= − log

(
1− |supp(QY )|n

MQnY (A)
− en(H(QY )+δ−R̃)

)
. (380)

By the fact that QnY (A) → 1 at least exponentially fast as
n→∞, we have that for R̃ > max {H0(QY ), H(QY ) + δ},
D∞(QnY ‖PY n) → 0 at least exponentially fast as n → ∞.
Since δ > 0 is arbitrary, we have for R̃ > H0(QY ),
D∞(QnY ‖PY n)→ 0 at least exponentially fast as n→∞.
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Define A :=
{
yn : QnY (yn) ≥ e−n(R̃−δ)

}
. Use the same

mapping as the one in Appendix I. That is, set PY n(yn) :=
1
M

⌈
QnY (yn)

1
M

⌉
for yn /∈ A; PY n(yn) := 1

M

⌈
pQnY (yn)
1
MQ

n
Y (A)

⌉
or

1
M

⌊
pQnY (yn)
1
MQ

n
Y (A)

⌋
for yn ∈ A. Here p := 1−

∑
yn /∈A

1
M

⌈
QnY (yn)

1
M

⌉
.

Hence QnY (A)− |supp(QY )|n
M ≤ p ≤ QnY (A). For α = 1 + s ∈

(1,∞),

D1+s(PY n‖QnY )

=
1

s
log
∑
yn

PY n(yn)1+sQnY (yn)−s (381)

≤ 1

s
log

{∑
yn∈A

PY n(yn)

 1
M

⌈
pQnY (yn)
1
MQ

n
Y (A)

⌉
QnY (yn)

s

+
∑
yn /∈A

 1
M

⌈
QnY (yn)

1
M

⌉
QnY (yn)

1+s}
(382)



33

≤ 1

s
log

{
PY n(A)

(
1 + max

yn∈A

1

QnY (yn)M

)s
+

∑
yn:QnY (yn)≤e−n(R̃−δ)

(
QnY (yn) +

1

M

)1+s

QnY (yn)−s

}
(383)

≤ 1

s
log

{
PY n(A)

(
1 + e−nδ

)s
+

∑
yn:QnY (yn)≤e−n(R−δ)

(
2e−n(R̃−δ)

)1+s

QnY (yn)−s

}
(384)

≤ 1

s
log

{(
1 + e−nδ

)s
+ 21+se−n(1+s)(R̃−δ)

∑
yn

QnY (yn)−s
}

(385)

=
1

s
log

{(
1 + e−nδ

)s
+ 21+se−n(1+s)(R̃−δ)+n(1+s)H−s(QY )

}
. (386)

Hence if
R̃− δ > H−s(QY ) (387)

then (386) converges to zero.
On the other hand,

D1+s(Q
n
Y ‖PY n)

=
1

s
log
∑
yn

QnY (yn)1+sPY n(yn)−s (388)

≤ 1

s
log

{∑
yn∈A

(
1

M

⌊
pQnY (yn)
1
MQ

n
Y (A)

⌋)−s
QnY (yn)1+s

+QnY (Ac)
}

(389)

≤ 1

s
log

{∑
yn∈A

(
pQnY (yn)

QnY (A)
− 1

M

)−s
QnY (yn)1+s

+QnY (Ac)
}

(390)

=
1

s
log

{∑
yn∈A

QnY (yn)

(
p

QnY (A)
− 1

MQnY (yn)

)−s
+QnY (Ac)

}
(391)

≤ 1

s
log

{
QnY (A)

(
QnY (A)− |supp(QY )|n

M

QnY (A)
− 1

Me−n(R̃−δ)

)−s
+QnY (Ac)

}
(392)

→ 0, (393)

where the last line follows since QnY (Ac)→ 0 as n→∞.
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Sort the sequences in |X |n as xn1 , x
n
2 , ..., x

n
|X |n such that

PnX(xn1 ) ≥ PnX(xn2 ) ≥ ... ≥ PnX(xn|X |n). Use Mapping 2 given
in Appendix I-E to map the sequences in Xn to the numbers
in M, where the distributions PX and QY are respectively
replaced by PnX and QMn

. That is, denote km,m ∈ [1 : L]
with kL := |X |n as a sequence of integers such that for m ∈
[1 : L−1],

∑km−1
i=km−1+1 P

n
X(xni ) < 1

M ≤
∑km
i=km−1+1 P

n
X(xni ),

and
∑kL
i=kL−1+1 P

n
X(xni ) ≤ 1

M or
∑kL−1
i=kL−1+1 P

n
X(xni ) < 1

M ≤∑kL
i=kL−1+1 P

n
X(xni ). Map xnkm−1+1, ..., x

n
km

to m ∈ [1 : L].
Define TX,m as the type of xnkm . Then for s > 0, we have

D1+s(PMn‖QMn)

=
1

s
log
∑
m

PMn
(m)1+s(

1

M
)−s (394)

≤ 1

s
log

( L∑
m=1

MsPnX(xnkm)1+s1

{
PnX(xnkm) ≥ 1

M

}

+

L∑
m=1

PMn(m)
(
1 + MPnX(xnkm)

)s
1

{
PnX(xnkm) <

1

M

})
,

(395)

where (395) follows since PMn
(m) = PnX(xnkm) if

PnX(xnkm) ≥ 1
M , and PMn

(m) ≤ 1
M +PnX(xnkm) if PnX(xnkm) <

1
M .

By Lemma 6, we have (396)-(403) (given on page 34) for
0 ≤ s ≤ 1.

Similarly, for 1 ≤ s ≤ 2,

D1+s(PMn‖QMn)

≤ 1

s
log
{

1 + 2ens(R̂−H1+s(PX)+o(1))

+ 2sens(R̂−H2(PX)+o(1))
}

(404)

and for s ≥ 2,

D1+s(PMn
‖QMn

)

≤ 1

s
log
{

1 + 2ens(R̂−H1+s(PX)+o(1))

+ 2s
(
2s−1 − 1

)
ens(R̂−H2(PX)+o(1))

}
. (405)

Therefore, no matter for 0 ≤ s ≤ 1, 1 ≤ s ≤ 2, or s ≥ 2,
D1+s(PMn

‖QMn
)→ 0 if R̂ < H1+s(PX).
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We consider the following mapping4. Sort the sequences
in |X |n as xn1 , x

n
2 , ..., x

n
|X |n such that PnX(xn1 ) ≥ PnX(xn2 ) ≥

... ≥ PnX(xn|X |n). Assume δ > 0 is a number such that R̂ +

δ < H(PX). Define A :=
{
xn : PnX(xn) ≥ e−nδ

M

}
. Denote

km,m ∈ [1 : M] as a sequence of integers such that for m ∈
[1 : L],

∑km−1
i=km−1+1 P

n
X(xni ) < 1

M ≤
∑km
i=km−1+1 P

n
X(xni ),

where L is the maximum integer such that PnX(xnkL) ≥ e−nδ

M ;

4Although there may exist simpler mappings than the one considered here,
the mapping here will be reused in Appendix M.
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D1+s(PMn‖QMn) ≤ 1

s
log

( L∑
m=1

MsPnX(xnkm)1+s1

{
PnX(xnkm) ≥ 1

M

}

+

L∑
m=1

PMn
(m)

(
1 +

(
MPnX(xnkm)

)s)
1

{
PnX(xnkm) <

1

M

})
(396)

≤ 1

s
log

(
1 +

L∑
m=1

Msen(1+s)
∑
x TX,m(x) logPX(x)1

{
en
∑
x TX,m(x) logPX(x) ≥ 1

M

}

+

L∑
m=1

2

M

(
Men

∑
x TX,m(x) logPX(x)

)s
1

{
en
∑
x TX,m(x) logPX(x) <

1

M

})
(397)

≤ 1

s
log

(
1 +

∑
TX

|TTX |Msen(1+s)
∑
x TX(x) logPX(x)1

{
en
∑
x TX(x) logPX(x) ≥ 1

M

}
+
∑
TX

PnX(TTX )
1
M

2

M

(
Men

∑
x TX(x) logPX(x)

)s
1

{
en
∑
x TX(x) logPX(x) <

1

M

})
(398)

≤ 1

s
log

(
1 +

∑
TX

enH(TX)+no(1)Msen(1+s)
∑
x TX(x) logPX(x)1

{
en
∑
x TX(x) logPX(x) ≥ 1

M

}

+
∑
TX

e−nD(TX‖PX)+no(1)

1
M

2

M

(
Men

∑
x TX(x) logPX(x)

)s
1

{
en
∑
x TX(x) logPX(x) <

1

M

})
(399)

≤ 1

s
log

(
1 + 2

∑
TX

enH(TX)+n(1+s)
∑
x TX(x) logPX(x)+no(1)Ms

)
(400)

≤ 1

s
log

(
1 + 2 max

TX

(
ensR̂+nH(TX)+n(1+s)

∑
x TX(x) logPX(x)+no(1)

))
(401)

=
1

s
log

(
1 + 2 max

P̃X∈P(X )

(
ensR̂+nH(P̃X)+n(1+s)

∑
x P̃X(x) logPX(x)+no(1)

))
(402)

=
1

s
log
(

1 + 2ens(R̂−H1+s(PX)+o(1))
)

(403)

and for m ∈ [L + 1 : M],
∑km
i=km−1+1 P

n
X(xni ) ≤ p0

M0
<∑km+1

i=km−1+1 P
n
X(xni ). Here

p0 := 1−
kL∑
i=1

PnX(xni ) ≥ PnX(Ac) ≥ PnX(T nε )→ 1 (406)

for some ε > 0 such that R̂+ δ < (1− ε)H(PX), and

M0 := M− L ≥ M−
∑kL
i=1 P

n
X(xni )

1
M

= Mp0. (407)

Obviously,
∑kM
i=1 P

n
X(xni ) ≤ 1, hence kM ≤ |X |n. We

consider the following mapping.
Step 1: For each m ∈ [1 : M], map xnkm−1+1, ..., x

n
km

to m.
Step 2: Map xnkM+1, ..., x

n
|X |n to m ∈ [L + 1 : M]

such that the resulting PMn
(m),m ∈ [L + 1 : M] satisfy∑km

i=km−1+1 P
n
X(xni ) ≤ PMn

(m) ≤
∑km+1
i=km−1+1 P

n
X(xni ).

Note that this mapping for m ∈ [1 : L] corresponds to
Mapping 2 given in Appendix I-E, and for m ∈ [L + 1 : M]
corresponds to Mapping 1 given in Appendix I-E. Hence for

m ∈ [1 : L], 1
M ≤ PMn(m) < 1

M + PnX(xnkm), and for m ∈
[L+ 1 : M], p0

M0
− PnX(xnkm) ≤ PMn(m) ≤ p0

M0
+ PnX(xnkm).

D∞(QMn
‖PMn

)

= log max
m

1
M

PMn
(m)

(408)

≤ log max
m∈[L+1:M]

1
M

1
M0
p0 − PnX(xnkm+1)

(409)

= − log

(
M

M0
p0 − max

m∈[L+1:M]
MPnX(xnkm+1)

)
(410)

≤ − log

(
M

M0
p0 − e−nδ

)
(411)

≤ − log
(
p0 − e−nδ

)
(412)

→ 0. (413)

By the fact that PnX(T nε ) → 1 at least exponentially
fast as n → ∞, we have that for R̂ + δ < H(PX),
D∞(QMn

‖PMn
) → 0 at least exponentially fast as n → ∞.

Since δ > 0 is arbitrary, we have for R̂ < H(PX),
D∞(QMn‖PMn)→ 0 at least exponentially fast as n→∞.

APPENDIX M
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Consider the mapping given in Appendix L.
For α ∈ [1,∞), we have

D1+s(PMn
‖QMn

)

=
1

s
log
∑
m

PMn(m)1+s(
1

M
)−s (414)

≤ 1

s
log

{∑
m

MsPnX(xnkm)1+s1

{
PnX(xnkm) ≥ 1

M

}
+
∑
m

PMn(m)
(
1 + MPnX(xnkm)

)s
× 1

{
e−nδ

M
≤ PnX(xnkm) <

1

M

}
+
∑
m

PMn
(m)

(
M

M0
p0 + MPnX(xnkm)

)s
× 1

{
PnX(xnkm) <

e−nδ

M

}}
(415)

≤ 1

s
log

{∑
m

MsPnX(xnkm)1+s1

{
PnX(xnkm) ≥ 1

M

}

+
∑
m

PMn(m)
(
1 + MPnX(xnkm)

)s
1

{
PnX(xnkm) <

1

M

}}
,

(416)

where (415) follows since PMn
(m) = PnX(xnkm) if

PnX(xnkm) ≥ 1
M ; PMn

(m) ≤ 1
M + PnX(xnkm) if e−nδ

M ≤
PnX(xnkm) < 1

M ; and PMn(m) ≤ p0
M0

+ PnX(xnkm) if
PnX(xnkm) < e−nδ

M , and (416) follows from (407).
Then following steps similar to (396)-(405), we have

Dα(PMn
‖QMn

)→ 0 if R̂ < H1+s(PX).
On the other hand,

D∞(QMn‖PMn)

= log max
m

1
M

PMn
(m)

(417)

≤ log max
m∈[L+1:M]

1
M

1
M0
p0 − PnX(xnkm)

(418)

= − log

(
M

M0
p0 − max

m∈[L+1:M]
MPnX(xnkm)

)
(419)

= − log

(
M

M0
p0 − e−nδ

)
(420)

→ 0. (421)

This implies Dα(QMn
‖PMn

)→ 0.
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