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Abstract. Exact lower and upper bounds on the best possible misclassifi-

cation probability for a finite number of classes are obtained in terms of the
total variation norms of the differences between the sub-distributions over the

classes. These bounds are compared with the exact bounds in terms of the

conditional entropy obtained by Feder and Merhav.
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1. Introduction, summary and discussion

Let X and Y be random variables (r.v.’s) defined on the same probability space
(Ω,F ,P), X with values in a set S (endowed with a sigma-algebra Σ) and Y with
values in the set [k] := {1, . . . , k}, where k is a natural number; to avoid trivialities,
assume k > 2.

The sets Ω and [k] may be regarded, respectively, as the population of objects of
interest and the set of all possible classification labels for those objects. For each
“object” ω ∈ Ω, the corresponding values X(ω) ∈ S and Y (ω) ∈ [k] of the r.v.’s
X and Y may be interpreted as the (correct) description of ω and the (correct)
classification label for ω, respectively.

Alternatively, Y (ω) may be interpreted as the signal entered at the input side of
a device – with its possibly corrupted, output version X(ω).

The problem is to find a good or, better, optimal way to reconstruct, for each ω ∈
Ω, the correct label (or input signal) Y (ω) based on the description (or, respectively,
the output signal) X(ω). To solve this problem, one uses a measurable function
f : S → [k], referred to as a classification rule or, briefly, a classifier, which assigns
a label (or an input signal) f(x) ∈ [k] to each possible description (or, respectively,
to each possible output signal) x ∈ S. Then

pf := P(f(X) 6= Y )

is the misclassification probability for the classifier f .
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For each y ∈ [k], let µy be the sub-probability measure on Σ defined by the
condition

(1) µy(B) := P(Y = y,X ∈ B)

for B ∈ Σ, so that

(2) µ := µ1 + · · ·+ µk

is the probability measure that is the distribution of X in S, and let

ρy :=
dµy
dµ

,

the density of µy with respect to µ.
The value y ∈ [k] may be considered a parameter, so that the problem may be

be viewed as one of Bayesian estimation (of a discrete parameter, with values in
the finite set [k]). If the r.v. X is discrete as well, then of course

ρy(x) = P(Y = y|X = x)

for each x ∈ S with P(X = x) 6= 0. So, for each such x, the function y 7→ ρy(x)
may be referred to as the probability mass function of the posterior distribution of
the parameter corresponding to the observation x.

The following proposition is, essentially, a well-known fact of Bayesian estima-
tion:

Proposition 1. For each x ∈ S, let f∗(x) := min argmaxy ρy(x), where
argmaxy ρy(x) := {y ∈ [k] : ρy(x) = maxz∈[k] ρz(x)}; thus, f∗(x) is the smallest
maximizer of ρy(x) in y ∈ [k]. Then the function f∗ is a classifier, and

p∗ := pf∗ = 1−
∫
S

k
max
y=1

ρy(x)µ(dx) 6 pf

for any classifier f , so that p∗ is the smallest possible misclassification probability.

The proofs of all statements that may need a proof are deferred to Section 2.
Let

(3) ∆ :=
∑

16y<z6k

‖µy − µz‖ =
∑

16y<z6k

|ρy − ρz|dµ,

where ‖ · ‖ is the total variation norm.
In the “population” model, the measure µy conveys two kinds of information:

(i) the relative size
‖µy‖
‖µ‖ = ‖µy‖ (of the set of all individual descriptions) of the yth

subpopulation (of the entire population Ω) consisting of the objects that carry the
label y and (ii) the (conditional) probability distribution

µy

‖µy‖ of the object descrip-

tions in this yth subpopulation, assuming the size ‖µy‖ of the yth subpopulation
is nonzero. Everywhere here, y and z are in the set [k]. Thus, ∆ is a summary
characteristic of the pairwise differences between the k subpopulations, which takes
into account both of the two just mentioned kinds of information.

In the input-output model, the ‖µy‖’s are interpreted as the prior probabilities
of the possible input signals y ∈ [k] – whereas, for each y ∈ [k], the (conditional)
probability distribution

µy

‖µy‖ is the distribution of the output signal corresponding

to the given input y. Thus, here ∆ is a summary characteristic of the pairwise
differences between the k sets of possible outputs corresponding to the k possible
inputs.
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Remark 2. By (3),

0 6 ∆ 6
∑

16y<z6k

(‖µy‖+ ‖µz‖) = (k − 1)

k∑
1

‖µy‖ = k − 1.

Moreover, the extreme values 0 and k − 1 of ∆ are attained, respectively, when
the measures µy are the same for all y ∈ [k] and when these measures are pairwise
mutually singular.

The main result of this paper provides the following upper and lower bounds on
the smallest possible misclassification probability p∗ in terms of ∆:

Theorem 3. One has

(4) L(∆) 6 p∗ 6 U(∆) 6 Usimpl(∆),

where

(5)

L(∆) := Lk(∆) := 1− 1 + ∆

k
,

U(∆) := Uk(∆) := 1− k + 1 + ∆− 2d∆e
(k − d∆e)(k + 1− d∆e)

,

Usimpl(∆) := Uk;simpl(∆) := 1− 1

k −∆
,

and d·e is the ceiling function, so that d∆e is the smallest integer that is no less
than ∆.

Theorem 3 is complemented by

Proposition 4. For each possible value of ∆ in the interval [0, k − 1], the lower
and upper bounds L(∆) and U(∆) on p∗ are exact: For each ∆ ∈ [0, k − 1], there
are r.v.’s X and Y as described in the beginning of this paper for which one has
the equality p∗ = L(∆); similarly, with U(∆) in place of L(∆). More specifically,
the first (respectively, second) inequality in (4) turns into the equality if and only
if there is a set S0 ∈ Σ such that µ(S0) = 0 and for each x ∈ S \ S0 the values
ρ1(x), . . . , ρk(x) constitute a permutation of numbers a1, . . . , ak as in (17) (respec-
tively, in (18)) with d = ∆. The simpler/simplified upper bound Usimpl(∆) is exact
only for the integral values of ∆.

Remark 5. In view of Remark 2, the functions L, U , and Usimpl, introduced in
Theorem 3, are well defined on the interval [0, k− 1]. Moreover, U(∆) is the linear
interpolation of Usimpl(∆) over the possible integral values 0, . . . , k − 1 of ∆. Thus,
each of the functions L, U , and Usimpl is concave and strictly decreasing (from 1− 1

k
to 0) on the interval [0; k − 1]; moreover, the function L is obviously affine. We
see that, the greater is the characteristic ∆ of the pairwise differences between the
k subpopulations, the smaller are the lower and upper bounds L(∆), U(∆), and
Usimpl(∆) on the misclassification probability p∗. Of course, this quite corresponds
to what should be expected of good bounds on p∗. It also follows that one always
has

(6) 0 6 p∗ 6 1− 1

k
,

and the extreme values 0 and 1 − 1
k of the misclassification probability p∗ are

attained when, respectively, ∆ = k − 1 and ∆ = 0. The bounds L, U , and Usimpl

are illustrated in Figure 1.
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Figure 1. Graphs of the bounds L (green), U (green), and Usimpl

(dark green) for k = 5.

Feder and Merhav [3] obtained the following exact upper and lower bounds of
the optimal misclassification probability in terms of the conditional entropy H:

LFM(H) 6 p∗ 6 UFM(H),

where

(7) H := H(Y |X) := −E
k∑
y=1

ρy(X) ln ρy(X) = −
∫
S

µ(dx)

k∑
y=1

ρy(x) ln ρy(x),

(8)
LFM(H) := Φ−1(H), Φ(p) := p ln(k−1)+h2(p), h2(p) := −p ln p−(1−p) ln(1−p)
for p ∈ (0, 1), h2(0) := 0, h2(1) := 0,

(9) UFM(H) :=
e(H)− 1

e(H)
+

1

e(H)(e(H) + 1)

H − ln e(H)

ln(1 + 1/e(H))
,

and

(10) e(H) := deHe − 1.

Note that Φ(p) strictly and continuously increases from 0 to ln k as p increases
from 0 to 1 − 1

k . Therefore and because all the values of the conditional entropy

H lie between 0 and ln k, the expression Φ−1(H) is well defined, and its values lie
between 0 and 1− 1

k – which is in accordance with (6).
Throughout this paper, we use only natural, base-e logarithms. In [3], the bounds

are stated in terms of binary, base-2 logarithms. To rewrite LFM(H) and UFM(H)
in terms of binary logarithms, replace all the instances of ln = loge in (7)–(9) by
log2 and, respectively, replace eH in (10) by 2H . An advantage of using natural
logarithms is that then the expressions for the corresponding derivatives, used in
our proofs, are a bit simpler; also, ln is a bit shorter in writing than log2 or even
log.

Note also that, in the notation in [3], the roles of X and Y are reversed: there,
X denotes the input and Y the output. Our notation in this paper is in accordance
with the standard convention in machine learning; cf. e.g. [5, 4].

Let us compare, in detail, our “∆-bounds” L(∆), U(∆), and Usimpl(∆) with the
“H-bounds” LFM(H) and UFM(H). We shall be making the comparisons only in
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the “pure” settings, when the set {ρ1(x), . . . , ρk(x)} is the same for all x ∈ S, that
is, when for each x ∈ S the k-tuple (ρ1(x), . . . , ρk(x)) is a permutation of one and
the same k-tuple (a1, . . . , ak) (of nonnegative real numbers a1, . . . , ak such that
a1 + · · · + ak = 1). A reason for doing so is that one may expect the comparisons
to be of greater contrast in the “pure” settings than in “mixed”, non-“pure” ones.
Thus, focusing on “pure” settings will likely allow us to see the differences between
the “∆-bounds” and the “H-bounds” more clearly, while taking less time and effort.

We shall see that, even though the “H-bounds” LFM(H) and UFM(H) and the
“∆-bounds” L(∆) and U(∆) are exact in terms of H and ∆, respectively, they have
rather different properties.

Remark 6. Typically, the lower H-bound LFM(H) on p∗ appears to be better (that
is, larger) than the lower ∆-bound L(∆), whereas the upper H-bound UFM(H) on
p∗ appears to be worse (that is, larger) than the upper ∆-bound U(∆) and even
its simplified but less accurate version Usimpl(∆).

However, in some rather exceptional cases these relations are reversed.
In particular, if the best possible misclassification probability p∗ is large enough,

then the lower ∆-bound L(∆) may be better than the lower H-bound LFM(H), for
each k > 3.

On the other hand, if k is large enough and p∗ is small enough, then the upper
∆-bound U(∆) may be worse than the upper H-bound UFM(H). However, I have
not been able to find cases with U(∆) (or even Usimpl(∆)) worse than UFM(H) when
there are at most k = 9 classes.

More specifically, we have the following propositions. (As usual, I{·} will denote
the indicator function.)

Proposition 7. Suppose that k > 3 and for each x ∈ S the vector (ρ1(x), . . . , ρk(x))
is a permutation of the vector (a1, . . . , ak), where

ai =
1

`
I{1 6 i 6 `}

for some natural ` > 2 in the set {k − 3, k − 2, k − 1} and for all i = 1, . . . , k; one
may also allow ` = k − 4 if k ∈ {6, 7, 8, 9}. Then L(∆) > LFM(H).

Proposition 8. Fix any ν ∈ (1,∞). Suppose that for each x ∈ S the vector
(ρ1(x), . . . , ρk(x)) is a permutation of the vector (a1, . . . , ak), where k > ν and

ai =
(

1− ν − 1

k

)
I{i = 1}+

ν − 1

k(k − 1)
I{2 6 i 6 k}

for all i = 1, . . . , k. Then U(∆) > UFM(H) for all large enough k (depending on
the value of ν).

Note that in Proposition 7 the best possible misclassification probability p∗ =
1− 1

` is large, especially when ` is large (and hence so is k). In contrast, in Propo-

sition 8 p∗ = ν−1
k is small for the large values of k, assumed in that proposition.

Either of these two kinds of situations, especially the second one, may be consid-
ered somewhat atypical: it usually should be difficult to make the misclassification
probability p∗ small when the number k of possible classes is large; on the other
hand, when k is not very large, one may hope that the best possible misclassification
probability is small enough.

Concerning the case of two classes, we have
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Proposition 9. Suppose that k = 2. Then U(∆) = L(∆) = LFM(H) = p∗ for all
pairs of r.v.’s (X,Y ). So, one can say that the bounds U(∆), L(∆), and LFM(H)
always perfectly estimate the best possible misclassification probability p∗ – if k = 2.

On the other hand, here UFM(H) > Usimpl(∆) > p∗ unless there is a set S0 ∈ Σ
such that µ(S0) = 0 and for each x ∈ S \ S0 either ρ1(x) = ρ2(x) = 1/2 or
{ρ1(x), ρ2(x)} = {0, 1} – that is, the values ρ1(x) and ρ2(x) constitute a permuta-
tion of the numbers 0 and 1. Thus, in the case k = 2, with the mentioned trivial
exceptions, even the simplified upper ∆-bound Usimpl(∆) on p∗ is strictly better than
the upper H-bound UFM(H), but still Usimpl(∆) is not a perfect estimate of p∗.

An important case is that of three classes, so that k = 3. Here, in the “pure”
setting, for each x ∈ S the triple (ρ1(x), ρ2(x), ρ2(x)) is a permutation of the
triple (1 − p, p − ε, ε), where p := p∗ ∈ [0, 1 − 1/3] and 1 − p > p − ε > ε > 0
or, equivalently, p ∈ [0, 2/3] and (2p − 1)+ 6 ε 6 p/2, where u+ := max(0, u).
Each of the 6 pictures in Figure 2 presents the graphs of the decimal logarithms
of the bounds L(∆), U(∆), Usimpl(∆), LFM(H), and UFM(H) as functions of ε ∈
[(2p − 1)+, p/2] with the misclassification probability p = p∗ taking a fixed value
in the set {0.01, 0.1, 0.3, 0.5, 0.6, 0.64}. We see that in all these cases the upper ∆-
bound U(∆) and even its simplified (but worse) version Usimpl(∆) are better than
the upper H-bound UFM(H), over the entire range of values of ε. For small values
of the best possible misclassification probability p∗, the lower H-bound LFM(H)
is significantly better than L(∆) over all values of ε; however, this comparison is
reversed if p∗ is large enough but ε is small enough (especially in the case p∗ = 0.5).

An interesting series of cases is given by what may be called the binomial model
(with a parameter q ∈ (0, 1)), in which k = 2m for a natural m, and for each x ∈ S
the vector (ρ1(x), . . . , ρk(x)) is a permutation of a vector (a1, . . . , ak), where each
ai is of the form (1− q)jqm−j for some j ∈ {0, . . . ,m}, and the multiplicity of the
form (1 − q)jqm−j among the ai’s is

(
m
j

)
for each j ∈ {0, . . . ,m}. Clearly then,

all the ai’s are nonnegative, and a1 + · · · + ak =
∑m
j=0

(
m
j

)
(1 − q)jqm−j = 1. In

particular, for m = 1 we have k = 2, and then we may take (a1, a2) = (1 − q, q).
For m = 2 we have k = 4, and then we may take

(a1, a2, a3, a4) =
(
(1− q)2, (1− q)q, (1− q)q, q2

)
.

Choosing, in the latter case, S = {1, 2, 3, 4} and q = Q(
√

2Eb/N0), where Q(x) :=∫∞
x

1√
2π
e−u

2/2du is the tail probability for the standard normal distribution, Eb is

the energy per bit, and N0/2 is the noise power spectral density (PSD), we see that
the resulting particular case of the binomial model covers the so-called quadrature
phase-shift keying (QPSK) digital communication scheme over an additive white
Gaussian noise (AWGN) channel (cf. e.g. [2, page 313]), which in fact provided the
motivation for the general binomial model.

Another interesting series of cases is given by what may be called the ex-
ponential model (with a parameter q ∈ (0, 1)), in which for each x ∈ S the
vector (ρ1(x), . . . , ρk(x)) is a permutation of a vector (a1, . . . , ak), where ai :=

(1−q)i−1qk−i/cq and cq := ck,q :=
∑k
i=1(1−q)i−1qk−i, so that all the ai’s are non-

negative and a1 + · · ·+ ak = 1. Informally, the exponential model can be obtained
from the binomial one by removing the multiplicities.

Graphical comparisons of the “∆-bounds” with the “H-bounds” (as functions of
the parameter q) for the cases k = 2, 4, 8 of the binomial and exponential models
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are presented in Figure 3. Note here that, by symmetry, it is enough to consider
q ∈ (0, 1/2]. Obviously, for k = 2 the binomial and exponential models are the
same, and in this case they are the same as the essentially unique general “pure”
model for k = 2, fully considered in Proposition 9. Accordingly, the pictures in
the first row in Figure 3 are identical to each other, and the graphs of the bounds
U(∆), L(∆), and LFM(H) are the same as that of p∗. The cases k = 4, 8 in Figure 3
illustrate the first sentence in Remark 6. It appears that the comparisons in the
exponential model are somewhat more favorable to the ∆-bounds than they are in
the binomial model.
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Figure 2. Graphs of log10 L(∆) (green), log10 U(∆) (green),
log10 Usimpl(∆) (dark green), log10 LFM(H) (blue), log10 UFM(H)
(blue), and log10 p∗ (dashed) for k = 3 and p∗ ∈ {0.01, 0.1, 0.3,
0.5, 0.6, 0.64}.
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Figure 3. Graphs of log10 L(∆) (green), log10 U(∆) (green),
log10 Usimpl(∆) (dark green), log10 LFM(H) (blue), log10 UFM(H)
(blue), and log10 p∗ (dashed) for k = 2, 4, 8. Left column: Binomial
model. Right column: Exponential model.

Upper and lower bounds on the best possible misclassification probability in
terms of Renyi’s conditional entropy were announced in [1], where the input and
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output r.v.’s were denoted by M and W , respectively, and both M and W were
assumed to take values in the same set {1, . . . , k}. Renyi’s conditional entropy used
in [1] was defined by the formula

(11) Hβ(W |M) :=

k∑
m=1

P(M = m)Hβ(W |m),

where

(12) Hβ(W |m) :=
1

1− β
log

k∑
w=1

P(W = w|M = m)β , log := log2,

and β ∈ (0, 1) ∪ (1,∞), so that Shannon’s conditional entropy

(13) H1(W |M) := H(W |M) = −
k∑

m=1

P(W = w) logP(W = w|M = m)

may be viewed as a limit case of Renyi’s: Hβ(W |M) → H(W |M) as β → 1.
Note that Hβ(W |M) is the conditional entropy of the output W given the input
M . Thus, for some reason, the standard roles of the input and output r.v.’s were
reversed in [1]; cf. e.g. the conditional entropy of the input given the output used
in [3, formula (3)].

The mentioned upper and lower bounds announced in [1] were given by inequal-
ities of the form

(14)
Hα(W |M)−HS(e)

N1
6 P (e) 6

Hβ(W |M)−HS(e)

N2
,

where β < 1 6 α, N1, N2 are some positive expressions,

HS(e) := −P (e) logP (e)− (1− P (e)) log(1− P (e)),

and P (e) is the “the classification error probability”, which doers not seem to be
explicitly defined in [1]. A proof of these bounds was offered later in [2, Appendix],
from which it appears (see [2, formula (A.1)]) that P (e) is understood as P(W 6=
M). However, the proof in [2] of the upper bound on P (e) in (14) appears to be
mistaken, and the upper bound itself may be negative and thus false in general.

Indeed, the second inequality in (14) appears to be obtained in [2] by multiplying
the expressions in [2, formula (A.7)] by p(mk), then summing in k (in the notations
there), and finally using the inequality

∑
k p(mk)HS(e|mk)[= HS(e|M)] > HS(e).

However, in general the reverse inequality is true: HS(e|M) 6 HS(e); cf. even the
derivation of (A.6) from (A.5) in [2]. Also, the proof in [2] does not use the condition
that P (e) is the smallest possible classification error probability, and without such
a condition no reasonable upper bound on P (e) is possible.

More importantly, as mentioned above, the upper bound on P (e) in (14) is false
in general. For a very simple counterexample, suppose that k = 2, P(W = 1,M =
1) = P(W = 1,M = 2) = 1/2, and P(W = 2,M = 1) = P(W = 2,M = 2) = 0.
Then P (e) = 1/2, Hβ(W |M) = 0 for all β, and HS(e) = 1, so that the presumed
upper bound on P (e) in (14) is negative and thus false.

Another two pairs of upper and lower bounds were announced in [1], in terms of
the joint Renyi’s joint entropyHβ(W,M) of (W,M) and Renyi’s mutual information
Iβ(W,M) between W and M , rather than Renyi’s conditional entropy, with no
apparent proofs for these additional bounds. However, the same simple example
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given above will quite similarly show that these additional upper bounds are false
in general, too.

As stated in the abstract in [2], the mentioned bounds in [1] on P (e) “were
practically incomputable”, because P (e) itself appears in those bounds. Therefore,
an effort was made in [2] to modify the bounds in [1] – by making the upper bounds
greater and the lower bounds smaller – to make them computable. However, in view
of what has been said, the modified upper bounds in [2] remain without a valid
proof. As for the modified lower bounds, it is stated in [2, page 313] that, in the
examples considered there, “the modified lower bounds are not depicted because
they turn out to be negative”.

For all these reasons, we shall not attempt to compare our bounds with ones in
[1, 2].

2. Proofs

Proof of Proposition 1. Clearly, f∗ is a map from S to [k]. Also, f∗ is measurable,

since f−1∗ ({y}) = By \
⋃y−1
z=1 Bz ∈ Σ for each y ∈ [k], where By :=

⋂k
z=1By,z and

By,z := {x ∈ S : ρy(x) > ρz(x)} ∈ Σ. Thus, f∗ is a classifier. Moreover, for any
classifier f ,

1− pf = P(f(X) = Y ) =

k∑
y=1

P(Y = y, f(X) = y)

=

k∑
y=1

∫
S

I{f(x) = y}µy(dx)

=

k∑
y=1

∫
S

I{f(x) = y} ρy(x)µ(dx)

=

∫
S

k∑
y=1

I{f(x) = y} ρy(x)µ(dx)

6
∫
S

k
max
y=1

ρy(x)µ(dx) = 1− pf∗ .

This completes the proof of Proposition 1. �

In view of Proposition 1 and (3), Theorem 3 and Proposition 4 follow immediately
by the lemma below, with ρi(x) in place of ai.

Lemma 10. Suppose that

(15) a1, . . . , ak are nonnegative real numbers such that

k∑
1

ai = 1.

Then

(16) L(δ) 6 1− k
max

1
ai 6 U(δ) 6 Usimpl(δ),

where

δ :=
∑

16i<j6k

|ai − aj |

and the functions L, U , and Usimpl are defined as in Theorem 3.
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Under the stated conditions on the ai’s, one always has 0 6 δ 6 k − 1; cf.
Remark 2.

The bounds L(δ) and U(δ) on 1− k
max

1
ai are exact for each possible value of δ:

(i) For each d ∈ [0, k − 1], if

(17) a1 =
1 + d

k
and a2 = · · · = ak =

1

k
− d

k(k − 1)
,

then condition (15) holds, δ = d,
[ k
max

1
ai = a1,

]
and the first inequality in (16)

turns into the equality. If the ai’s satisfy condition (15) but do not constitute
a permutation of the ai’s as in (17) with d = δ, then the first inequality in
(16) is strict.

(ii) For each d ∈ [0, k − 1], if

(18) ai = (1− U(d)) I{i 6 k − dde}+
dde − d

k + 1− dde
I{i = k + 1− dde}

for all i ∈ [k], then condition (15) holds, δ = d,
[ k
max

1
ai = a1,

]
and the second

inequality in (16) turns into the equality. If the ai’s satisfy condition (15) but
do not constitute a permutation of the ai’s as in (18) with d = δ, then the
second inequality in (16) is strict.

Proof. It is quite easy to see that Usimpl(d) is concave in d ∈ [0, k−1]. Moreover, as
noted in Remark 5, U(d) is the linear interpolation of Usimpl(d) over d = 0, . . . , k−1.
Thus, we have the last inequality in (16).

It remains to establish the lower bound L(δ) and upper bound U(δ) on 1− k
max

1

and to show that these bounds are attained, with δ = d, if and only if the ai’s are
as in (17) and (18), respectively.

By symmetry, without loss of generality (w.l.o.g.) a1 > · · · > ak. Then, letting
hi := ai − ai+1 for i ∈ [k] (with ak+1 := 0), we have

h1 > 0, . . . , hk > 0,

k
max

1
ai = a1 =

k∑
1

hi,

δ =
∑

16i<j6k

(ai − aj) =
∑

16i<j6k

j−1∑
q=i

hq =

k−1∑
q=1

hq
∑

16i6q

∑
q+16j6k

1

=

k−1∑
q=1

hq q(k − q) =

k∑
i=1

i(k − i)hi,

1 =

k∑
1

aj =

k∑
j=1

k∑
i=j

hi =

k∑
i=1

ihi.

Take now indeed any d ∈ [0, k − 1]. Introducing

pi := ihi
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for i ∈ [k], we further restate the conditions on the ai’s (with δ equal the prescribed
value d ∈ [0, k − 1], as desired):

(19) p1 > 0, . . . , pk > 0,

k∑
i=1

pi = 1,

(20)

k∑
i=1

(k − i)pi = d or, equivalently,

k∑
i=1

ipi = k − d,

and

k
max

1
ai = a1 =

k∑
1

g(i)pi,

where g(i) := 1
i ; here and in the rest of the proof of Lemma 10, i is an arbitrary

number in the set [k].
Introduce also

gU (i) := g(k −m− 1) + [g(k −m)− g(k −m− 1)][i− (k −m− 1)]

and

pUi := (d−m) I{i = k −m− 1}+ (m+ 1− d) I{i = k −m} ,
where

m := dde − 1;

here and in the rest of the proof of Lemma 10, i is an arbitrary number in the set
[k]. One may note at this point that m ∈ {0, . . . , k − 2}. Note that the function
g is strictly convex on the set [k], the function gU is affine, gU = g on the set
{k − m − 1, k − m}, and hence g > gU on [k] \ {k − m − 1, k − m}. Moreover,
conditions (19) and (20) hold with pUi in place of pi. So,

(21)

k∑
1

g(i)pi >
k∑
1

gU (i)pi = gU
( k∑

1

ipi

)
= gU (k − d) = gU

( k∑
1

ipUi

)
=

k∑
1

gU (i)pUi =

k∑
1

g(i)pUi ;

the inequality here holds because g > gU ; the first and fourth equalities follow
because the function gU is affine; the second and third equalities hold because
of the condition (20) for the pi’s and pUi ’s; and the last equality follows because
gU (i) = g(i) for i in the set {k −m − 1, k −m}, whereas pUi = 0 for i not in this

set. We conclude that, under conditions (19) and (20),
k

max
1
ai is minimized – or,

equivalently, 1 − k
max

1
ai is maximized – if and only if pi = pUi for all i; that is, if

and only if hi = pUi /i or all i; that is, if and only if the ai’s – related to the pi’s by

the formula ai =
∑k
j=i

1
i pi – are as in (18). This concludes the proof of the part

of Lemma 10 concerning the upper bound U(·).
The proof of the part of Lemma 10 concerning the lower bound L(·) is similar

and even easier. Here let

gL(i) := g(1) + [g(k)− g(1)]
i− 1

k − 1
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and

pLi :=
d

k − 1
I{i = 1}+

(
1− d

k − 1

)
I{i = k} .

Recall that the function g is strictly convex on the set [k]. Note that the function
gL is affine, gL = g on the set {1, k}, and gL > g on the set [k] \ {1, k}, so that
g 6 gL on [k]. Moreover, conditions (19) and (20) hold with pLi in place of pi. So,

k∑
1

g(i)pi 6
k∑
1

gL(i)pi = gL
( k∑

1

ipi

)
= gL(k − d) = gL

( k∑
1

ipLi

)
=

k∑
1

gL(i)pLi =

k∑
1

g(i)pLi ;

cf. (21). So, under conditions (19) and (20),
k

max
1
ai is maximized – or, equivalently,

1 − k
max

1
ai is minimized – if and only if pi = pLi for all i; that is, if and only if

hi = pLi /i or all i; that is, if and only if the ai’s are as in (17). This concludes
the proof of the part of Lemma 10 concerning the upper bound L(·) and hence the
entire proof of the lemma. �

Proof of Proposition 7. We have to show that, under the conditions of this proposi-
tion, L(∆) > LFM(H). Recalling (8) and the fact that the function Φ is increasing,
we can rewrite inequality L(∆) > LFM(H) as Φ(L(∆)) > H. In view of (7), (3),
and (5), H = ln `, ∆ = k − `, and L(∆) = `−1

k . So, inequality Φ(L(∆)) > H can
be in turn rewritten as

(22) d(`) := dk(`) := Φ
(`− 1

k

)
− ln `

(?)
> 0

for k and ` as in the conditions in Proposition 7. For k ∈ {6, 7, 8, 9} and ` = k− 4,
as well as for k ∈ {3, 4, 5} and ` > 2 in the set {k − 3, k − 2, k − 1}, inequality
(22) can be verified by direct calculations. So, without loss of generality k > 6 and
` ∈ [k − 3, k), where we may allow ` to take non-integral values as well. Note that

d′′(`)(`− 1)`2(k + 1− `) = −1 + 2`− 2`2 + (`− 1)k

6 −1 + 2`− 2`2 + (`− 1)(`+ 3) = −(`− 2)2 < 0

for ` > 2. Hence, d(`) is strictly concave in ` > 2 such that ` ∈ [k − 3, k]. Also,
d(k) = 0. So, to complete the proof of Proposition 7, it suffices to show that

(23) d̃(k) := k dk(k − 3)
[

= (k − 4) ln k(k−1)
k−4 + 4 ln k

4 − k ln(k − 3)
] (?)
> 0

for k > 6. We find that

d̃′′(k) = − 36

(k − 4)(k − 3)2(k − 1)2k
< 0

for k > 6, and so, d̃(k) is strictly concave in k > 6. Moreover, d̃(6) = 0.446 · · · > 0

and d̃(k)→ 6−8 ln 2 = 0.454 · · · > 0 as k →∞. Thus, inequality (23) indeed holds
for k > 6, and the proof of Proposition 7 is now complete. �

Proof of Proposition 8. Under the conditions of this proposition,

H = −
(

1− ν − 1

k

)
ln
(

1− ν − 1

k

)
− ν − 1

k
ln

ν − 1

k(k − 1)
→ 0
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and hence, by (9) and (10), UFM(H)→ 0 as k →∞.
On the other hand, here ∆ = k − ν. Therefore and because U(∆) is decreasing

in ∆,

U(∆) > U(d∆e) = Usimpl(d∆e) = 1− 1

k − d∆e
= 1− 1

bνc
,

which latter is a positive constant with respect to k and hence does not go to 0 as
k →∞. Thus, the conclusion of Proposition 8 follows. �

Proof of Proposition 9. Here w.l.o.g. {ρ1(x), ρ2(x)} = {1 − p, p} for each x ∈ S,
where p := p∗ ∈ [0, 1/2]. Then the equalities U(∆) = L(∆) = LFM(H) = p∗ follow
immediately from the definitions.

It remains to show that UFM(H) > Usimpl(∆) > p for p ∈ (0, 1/2). The second

inequality here is obvious, since in this case Usimpl(∆) = 2p
1+2p . To verify that

UFM(H) > Usimpl(∆) for p ∈ (0, 1/2), consider d(p) := UFM(H) − Usimpl(∆) =

− 1
2 (1− p) log2(1− p)− 1

2 p log2 p−
2p

1+2p . It is easy to see that

d′′(p)(1− p)p(1 + 2p)3 ln 4 = −1 + p(16 ln 2− 6)− p2(12 + 16 ln 2)− 8p3 < 0

for p ∈ (0, 1/2), so that d is strictly concave on (0, 1/2). Also, d(0+) = d(1/2) = 0.
So, d > 0 on (0, 1/2), which completes the proof of Proposition 9. �

In conclusion, let us mention a sample of other related results found in the
literature. In [6], for k = 2, sharp lower bounds on the misclassification probabilities
for three particular classifiers in terms of characteristics generalizing the Kullback–
Leibler divergence and the Hellinger distance we obtained. Lower and upper bounds
on the misclassification probability based on Renyi’s information were given in [2].
Upper and lower bounds on the risk of an empirical risk minimizer for k = 2 were
obtained in [5] and [4], respectively.
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