
ar
X

iv
:1

81
1.

06
82

9v
1 

 [
m

at
h.

C
O

] 
 1

6 
N

ov
 2

01
8

MINIMAL LINEAR CODES IN ODD CHARACTERISTIC

DANIELE BARTOLI AND MATTEO BONINI

Abstract. In this paper we generalize constructions in two recent works of Ding, Heng, Zhou to any
field Fq, q odd, providing infinite families of minimal codes for which the Ashikhmin-Barg bound does
not hold.
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1. Introduction

Let C be a linear code. A codeword c ∈ C is said a minimal codeword if its support (i.e. the set of
non-zero coordinates) determines c up to a scalar factor. Equivalently, the support of c does not contain
the support of any other independent codeword.
Minimal codewords can be used [15, 16] in linear codes-based access structures in secret sharing

schemes (SSS), that is protocols which include a distribution algorithm and a reconstruction algorithm,
implemented by a dealer and some participants; see [3, 17]. The dealer splits a secret s into different
pieces (shares) and distributes them to participants P. Only authorized subsets of P (access structure
Γ) can be able to reconstruct the secret by using their respective shares. A set of participants A is
called a minimal authorized subsets if A ∈ Γ and no proper subset of A belongs to Γ. An SSS is called
perfect if only authorized sets of participants can recover the secret and ideal if the shares are of the
same size as that of the secret.
In his works Massey [15, 16] used linear codes for a perfect and ideal SSS. Also, he pointed out the

relationship between the access structure and the set of minimal codewords of the dual code of the
underlying code. In particular, the access structure of the secret-sharing scheme corresponding to an
[n, k]q-code C is specified by the support of minimal codewords in C⊥ having 1 as first component;
see [15, 16].
Given an arbitrary linear code C, it is a hard task to determine the set of its minimal codewords

even in the binary case. In fact, the knowledge of the minimal codewords is related with the complete
decoding problem, which is a NP-problem even if preprocessing is allowed [2, 8]; this means that to
obtain the access structures of the SSS based on general linear codes is also hard. In general this has
been done only for specific classes of linear codes and this led to the study of linear codes for which
every codeword is minimal; see for instance [5, 18].
Ashikhmin and Barg [1] gave a useful criterion for a linear code to be minimal.
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Theorem 1.1. A linear code C over Fq is minimal if

(1)
wmin

wmax

>
q − 1

q
,

where wmin and wmax denote the minimum and maximum nonzero Hamming weights in C.

On the one hand, families of minimal linear codes satisfying Condition (1) have been considered
in for instance [4, 9, 11, 19]. On the other hand, Condition (1) is not necessary for linear codes to be
minimal. In this direction, sporadic examples of minimal codes have been presented in [7], whereas in [6]
the first infinite family of minimal binary codes has been constructed by means of Boolean functions
arising from simplicial complexes. More recently, families of minimal binary and ternary codes have
been investigated in [10, 13].
In this paper we generalize the constructions in [10, 13] to any field Fq, q odd, providing infinite

families of minimal linear codes for which Condition (1) does not hold.

2. Minimal codes and Secret Sharing Schemes

Let C be an [n, k]q-code, that is a k-dimensional linear subspace of Fn
q . The support Supp(c) of a

codeword c = (c1, . . . , cn) ∈ C is the set {i ∈ [1, . . . , n] : ci 6= 0}. Clearly, the Hamming weight w(c)
equals |Supp(c)| for any codeword c ∈ C.

Definition 2.1. [15] A codeword c ∈ C is minimal if it only covers the codewords λc, with λ ∈ F
∗
q ,

that is
∀ c′ ∈ C =⇒ (Supp(c) ⊂ Supp(c′) =⇒ ∃λ ∈ Fq : c′ = λc) .

Definition 2.2. [12] The code C is minimal if every non-zero codeword c ∈ C is minimal.

Let G ∈ F
k×n
q be the generator matrix of C with columns G1, . . . , Gn and suppose that no Gi is

the 0-vector. The code C can be used to construct secret sharing schemes in the following way. The
secret is an element of Fq and the set of participants P = {P2, . . . , Pn}. The dealer chooses randomly
u = (u1, . . . , uk) ∈ F

k
q such that s = u ·G1 and computes the corresponding codeword v = (v1, . . . , vn) =

uG. Each participant Pi, i ≥ 2, receives the share vi. A set of participants {Pi1, . . . , Piℓ} determines
the secret if and only if G1 is a linear combination of Gi1, . . . , Giℓ ; see [15]. There is a one-to-one
correspondence between minimal authorized subsets and the set of minimal codewords of the dual code
C⊥.

3. A family of minimal codes violating the Ashikhmin-Barg bound

3.1. Notations and definition of the code Cf . Let q = ph, p odd prime, h ≥ 1, and consider the
Galois field Fq. Fix an integer m > 3 and consider k ∈ [2, . . . , m − 2]. Choose αi, i = 1, . . . , k, to be
(not necessarily distinct) elements of F∗

q. Let us denote (0, . . . , 0) ∈ F
m
q by 0.

The weight w(x) of a vector x = (x1, . . . , xm) ∈ F
m
q is defined as |{i ∈ [1, . . . , m] : xi 6= 0}|.

Consider the function f : F
m
q \ {0} → Fq defined by

(2) f(x) =

{

αi, w(x) = i,
0, w(x) > k,
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for any x ∈ Fqm ≃ F
m
q , x 6= 0.

We define the code Cf as

(3) Cf = {(uf(x) + v · x)x∈Fm
q \{0} : u ∈ Fq, v ∈ F

m
q },

where v · x denotes the usual inner product in F
m
q between v = (v1, . . . , vm) and x = (x1, . . . , xm).

As a notation, for any pair (u, v) ∈ Fq×F
m
q let c(u, v) = (uf(x)+v·x)x∈Fm

q \{0} denote the corresponding

codeword of Cf . Choose any ordering in F
m
q \ {0}. For an x ∈ F

m
q \ {0}, we denote by c(u, v)x the entry

in c(u, v) corresponding to x. The support Supp(c(u, v)) of a codeword c(u, v) is defined as the set of
{x ∈ F

m
q \ {0} : c(u, v)x 6= 0}.

Finally, let AG(m, q) be the affine space of dimension m over the field Fq. A hyperplane in AG(m, q)
is an affine subspace of dimension m− 1. For a more detailed introduction on affine spaces over finite
fields we refer the reader to [14].

3.2. The minimality of the code Cf . Observe that, for any fixed pair (u, v) ∈ Fq ×F
m
q , the elements

x ∈ F
m
q \ {0} for which the codeword c(u, v)x = 0 are contained in the union of k+1 hyperplanes H(v)

and Li(u, v), i = 1, . . . , k, defined by
(4)

H(v) =
{

(y1, . . . , ym) ∈ F
m
q :

m
∑

j=1

vjyj = 0
}

, Li(u, v) =
{

(y1, . . . , ym) ∈ F
m
q :

m
∑

j=1

vjyj = −αiu
}

.

More precisely,

Supp(c(u, v)) = F
m
q \

(

Supp(c(u, v)) ∪ {0}
)

=
{

x ∈ F
m
q \ {0} : c(u, v)x = 0

}

equals H(v) ∪
⋃k

i=1Li(u, v), where

H(v) = {(y1, . . . , ym) ∈ H(v) : w(y1, . . . , ym) > k} ,

Li(u, v) = {(y1, . . . , ym) ∈ Li(u, v) : w(y1, . . . , ym) = i} .

Proposition 3.1. Let H(v) and H(v′), v, v′ 6= 0, be two distinct hyperplanes defined as in (4). Then

there exist A,B ∈ F
m
q with w(A), w(B) > k such that A ∈ H(v) \H(v′) and B ∈ H(v′) \H(v).

Proof. It is enough to prove that, for any two distinct hyperplanes of type H(z) and H(z′),

| {(y1, . . . , ym) ∈ H(z) : w(y1, . . . , ym) > k} | > qm−2 = |H(z) ∩H(z′)|.

In fact, for a given v = (v1, . . . , vm), we can suppose that vm = 1 and therefore H(v) = {(y1, . . . , ym) ∈
F
m
q : ym = −

∑m−1
j=1 vjyj}. So,

∣

∣

∣

{

(y1, . . . , ym) ∈ H(v) : w(y1, . . . , ym) > k
}
∣

∣

∣

≥
∣

∣

∣

{

(y1, . . . , ym) ∈ H(v) : w(y1, . . . , ym−1) > k, ym = −

m−1
∑

j=1

vjyj

}
∣

∣

∣
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≥
m−1
∑

j=k+1

(

m− 1

j

)

(q − 1)j ≥ (q − 1)m−1 > qm−2.

�

Theorem 3.2. The code Cf is minimal.

Proof. Let c(u, v) and c(u′, v′) be two codewords, with c(u, v) 6= λc(u′, v′) for any λ ∈ F
∗
q, and both

c(u, v), c(u′, v′) different from the 0-codeword.
Suppose that Supp(c(u′, v′)) ⊂ Supp(c(u, v)), that is Supp(c(u, v)) ⊂ Supp(c(u′, v′)).

• Suppose v = 0. Then u 6= 0 and Supp(c(u, v)) consists of all x ∈ F
m
q with w(x) > k. Since

Supp(c(u, v)) ⊂ Supp(c(u′, v′)), v′ = 0. It is easily seen that c(u, 0) = λc(u′, 0) for some λ ∈ Fq,
a contradiction.

• Suppose v′ = 0. Then u′ 6= 0 and Supp(c(u′, v′)) consists of all x ∈ F
m
q with w(x) > k. If

v 6= 0 then Supp(c(u, v)) would also contain some x ∈ F
m
q with 0 < w(x) ≤ k, a contradiction

to Supp(c(u, v)) ⊂ Supp(c(u′, v′)). So v = 0 and therefore c(u, 0) = λc(u′, 0) for some λ ∈ Fq, a
contradiction.

• Suppose v, v′ 6= 0. By Proposition 3.1, H(v) = H(v′), that is v = λv′ for some λ ∈ F
∗
q. Also,

Li(u, v) ⊂ Li(u
′, v′) = Li(u

′, λv), for any i = 1, . . . , k. Since Li(u, v) and Li(u
′, λv) can be either

disjoint or coincident, u′ = λu and therefore c(u′, v′) = λc(u, v), a contradiction.

Then Supp(c(u′, v′)) 6⊂ Supp(c(u, v)) and Cf is minimal. �

3.3. The parameters of Cf .

Proposition 3.3. The code Cf has length qm − 1 and dimension m+ 1 over Fq. If

(5) qm − 1−
m−1
∑

i=1

(

m− 1

i

)

(q − 1)i −
k

∑

i=1

(

m− 1

i

)

(q − 1)i ≥
k

∑

i=1

(

m

i

)

(q − 1)i

then minimum and maximum weights in Cf satisfy

wmin =

k
∑

i=1

(

m

i

)

(q − 1)i, wmax ≥ qm − qm−1.

Also, if

(6)
k

∑

i=1

(

m

i

)

(q − 1)i−1 ≤ qm−1 − qm−2

then wmin/wmax ≤ (q − 1)/q.

Proof. Clearly, the length of Cf is |Fm
q \ {0}| = qm − 1.

Each codeword in Cf can be written as linear combination of c(1, 0), c(0, e1), . . . , c(0, em), where
e1, . . . , em is the standard basis of Fm

q over Fq.
On the other hand, suppose that c(u, v) is the zero codeword.
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• If u = 0, then for elements yi = ei ∈ F
m
q , i = 1, . . . , m, we have c(u, v)yi = vi = 0, and then

v = 0.
• If u 6= 0, then we can consider yi = ei, i = 1, . . . , m and y = 2ei and then c(u, v)yi = uα1+vi = 0,
c(u, v)2yi = uα1 + 2vi = 0. Since α1 6= 0 (see (2)), the above conditions yield v1 = · · · = vm =
u = 0.

This proves that c(1, 0), c(0, e1), . . . , c(0, em) is a basis of C of size m+ 1.
We now determine the minimum weight of the code. Recall that for a codeword c(u, v) its weight is

w(c(u, v)) =
∣

∣Supp((c(u, v))
∣

∣ = qm − 1−
∣

∣Supp((c(u, v))
∣

∣.

• The codeword c(0, 0) is the 0-codeword.

• The q − 1 codewords c(u, 0), u 6= 0, have weight exactly
∑k

i=1

(

m

i

)

(q − 1)i. In fact, c(u, 0)x =
αw(x)u is non-zero if and only if w(x) ∈ [1, . . . , k].

• The qm − 1 codewords c(0, v), v 6= 0, have weight exactly qm − qm−1, since each x ∈ F
m
q \ {0}

satisfying v · x = 0 belongs to Supp(c(0, v)).
• For a codeword c(u, v), with u 6= 0 and v 6= 0,

Supp(c(u, v)) = H(v) ∪
k
⋃

i=1

Li(u, v);

see Proposition 4. Without loss of generality we can suppose that vm = 1. We have that

m−1
∑

i=k+1

(

m− 1

i

)

(q − 1)i =

∣

∣

∣

∣

∣

{

(x1, . . . , xm) : xm = −
m−1
∑

j=1

vjxj , w(x1, . . . , xm−1) ≥ k + 1

}
∣

∣

∣

∣

∣

≤

∣

∣H(v)
∣

∣ ≤

∣

∣

∣

∣

∣

{

(x1, . . . , xm) : xm = −
m−1
∑

j=1

vjxj , w(x1, . . . , xm−1) ≥ k

}
∣

∣

∣

∣

∣

=

m−1
∑

i=k

(

m− 1

i

)

(q − 1)i.

Analogously,

0 ≤
∣

∣Li(u, v)
∣

∣ ≤

∣

∣

∣

∣

∣

{

(x1, . . . , xm) : xm = −f(x)u −
m−1
∑

j=1

vjxj , w(x1, . . . , xm−1) ∈ [i− 1, i]

}
∣

∣

∣

∣

∣

=

≤

(

m− 1

i− 1

)

(q − 1)i−1 +

(

m− 1

i

)

(q − 1)i.
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Thus,

m−1
∑

i=k+1

(

m− 1

i

)

(q − 1)i ≤
∣

∣Supp(c(u, v))
∣

∣ ≤
m−1
∑

i=1

(

m− 1

i

)

(q − 1)i +
k

∑

i=1

(

m− 1

i

)

(q − 1)i

and

qm − 1−
m−1
∑

i=1

(

m− 1

i

)

(q − 1)i −
k

∑

i=1

(

m− 1

i

)

(q − 1)i ≤

w(c(u, v)) ≤ qm − 1−
m−1
∑

i=k+1

(

m− 1

i

)

(q − 1)i.

By (5), the minimum weight is

wmin =
k

∑

i=1

(

m

i

)

(q − 1)i,

whereas

wmax ≥ qm − qm−1.

Finally, if (6) holds,

wmin

wmax

=

∑k

i=1

(

m

i

)

(q − 1)i

qm − qm−1
≤

q − 1

q
.

�

Remark 3.4. Note that if (5) does not hold, then wmin ≤
∑k

i=1

(

m

i

)

(q− 1)i. Arguing as in Proposition

3.3, Condition (6) yields wmin/wmax ≤ (q − 1)/q.

Corollary 3.5. If q ≥ 5, 2 < m ≤ q − 1, and k ≤ (m− 1)/2 then Conditions (5) and (6) hold.

Proof. First of all observe that

m−1
∑

i=1

(

m− 1

i

)

(q − 1)i = qm−1 − 1,

α
∑

i=0

(

m

i

)

(q − 1)i ≤
α
∑

i=0

miqi ≤ 2q2α,

α
∑

i=0

(

m

i

)

(q − 1)i−1 ≤

α
∑

i=0

miqi−1 ≤ 2q2α−1.
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Therefore we have that

qm − 1−

m−1
∑

i=1

(

m− 1

i

)

(q − 1)i −

k
∑

i=1

(

m− 1

i

)

(q − 1)i −

k
∑

i=1

(

m

i

)

(q − 1)i ≥

qm − 1− qm−1 + 1− 2q2k − 2q2k ≥

qm − 5qm−1 ≥ 0,

and Condition (5) holds.
Also,

k
∑

i=1

(

m

i

)

(q − 1)i−1 ≤

k
∑

i=1

mi(q − 1)i−1 ≤

k
∑

i=1

q2i−1 ≤ 2q2k−1 ≤ 2qm−2 ≤ qm−1 − qm−2,

and Condition (6) is satisfied.
�

4. Acknowledgments

The research of D. Bartoli was supported by Ministry for Education, University and Research of Italy
(MIUR) (Project “Geometrie di Galois e strutture di incidenza”) and by the Italian National Group
for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).
The research of M. Bonini was supported by the Italian National Group for Algebraic and Geometric

Structures and their Applications (GNSAGA - INdAM).

References

[1] A. Ashikhmin, A. Barg. Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5) (1998) 2010–2017.
[2] E.R Berlekamp, R.J. McEliece, H.C.A. van Tilborg. On the Inherent Intractability of Certain Coding Problems. In:

IEEE Trans. Inform. Theory, IT-24, no. 3, (1978), 384-386.
[3] G.R. Blakley. Safeguarding cryptographic keys. In: Proceedings of AFIPS National Computer Conference. New York,

USA, AFIPS Press 48(1979) 313–317.
[4] C. Carlet, C. Ding, J. Yuan. Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE

Trans. Inf. Theory 51(6) (2005) 2089–2102.
[5] H. Chabanne, G. Cohen, A. Patey. Towards Secure Two-Party Computation from the Wire-Tap Channel. In: Infor-

mation Security and Cryptology – ICISC 2013, pp. 34–46. Springer, Heidelberg, 2014.
[6] S. Chang, J. Y. Hyun. Linear codes from simplicial complexes. Des. Codes Cryptogr. DOI:

https://link.springer.com/article/10.1007/s10623-017-0442-5 (2017).
[7] G.D. Cohen, S. Mesnager, A. Patey. On minimal and quasi-minimal linear codes. In: M. Stam (Ed.), IMACC 2013,

LNCS vol. 8308, pp. 85–98, Springer, Heidelberg, 2013.
[8] J. Bruck, M. Naor. The Hardness of Decoding Linear Codes with Preprocessing. In: IEEE Trans. Inform. Theory

36(2) (1990).
[9] C. Ding. Linear codes from some 2-designs. IEEE Trans. Inf. Theory 60(6) (2015) 3265–3275.
[10] C. Ding, Z. Heng, Z. Zhou. Minimal binary linear codes. IEEE Trans. Inf. Theory, DOI:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8325311&tag=1.
[11] C. Ding, N. Li, C. Li, Z. Zhou. Three-weight cyclic codes and their weight distributions. Discrete Mathematics 39

(2016) 415–427.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8325311&tag=1


MINIMAL LINEAR CODES IN ODD CHARACTERISTIC 8

[12] C. Ding, J. Yuan. Covering and secret sharing with linear codes. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V.
(eds.) DMTCS 2003. LNCS, vol. 2731, pp. 11–25. Springer, Heidelberg (2003).

[13] Z. Heng, C. Ding, X. Zhou. Minimal Linear Codes over Finite Fields. https://arxiv.org/pdf/1803.09988.pdf.
[14] J.W.P. Hirschfeld. Projective geometries over finite fields, second edition. Oxford Univ. Press, Oxford, (1998).
[15] J.L. Massey. Minimal codewords and secret sharing. In: Proc. 6th Joint Swedish-Russian Int. Workshop on Info.

Theory, pp. 276–279 (1993)
[16] J.L. Massey. Some applications of coding theory in cryptography. In: Farrell, P.G. (ed.) Codes and Cyphers: Cryp-

tography and Coding IV, pp. 33?47. Formara Ltd. (1995)
[17] A. Shamir. How to share a secret. Communications of the ACM 24 (1979) 612–613.
[18] Y. Song, Z. Li. Secret sharing with a class of minimal linear codes. https://arxiv.org/abs/1202.4058 (2012)
[19] J. Yuan, C. Ding. Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1) (2006)

206–212.

Department of Mathematics and Informatics, University of Perugia, Perugia, Italy

E-mail address : daniele.bartoli@unipg.it

Department of Mathematics, University of Trento, Trento, Italy

E-mail address : matteo.bonini@unitn.it


	1. Introduction
	2. Minimal codes and Secret Sharing Schemes
	3. A family of minimal codes violating the Ashikhmin-Barg bound
	3.1. Notations and definition of the code Lg
	3.2. The minimality of the code Lg
	3.3. The parameters of Lg

	4. Acknowledgments
	References

