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Abstract

In this paper, we study data-dependent generalization error bounds exhibiting a mild depen-

dency on the number of classes, making them suitable for multi-class learning with a large number

of label classes. The bounds generally hold for empirical multi-class risk minimization algorithms

using an arbitrary norm as regularizer. Key to our analysis are new structural results for multi-

class Gaussian complexities and empirical `∞-norm covering numbers, which exploit the Lipschitz

continuity of the loss function with respect to the `2- and `∞-norm, respectively. We establish

data-dependent error bounds in terms of complexities of a linear function class defined on a finite

set induced by training examples, for which we show tight lower and upper bounds. We apply

the results to several prominent multi-class learning machines, exhibiting a tighter dependency on

the number of classes than the state of the art. For instance, for the multi-class SVM by Cram-

mer and Singer (2002), we obtain a data-dependent bound with a logarithmic dependency which

significantly improves the previous square-root dependency. Experimental results are reported to

verify the effectiveness of our theoretical findings.

Keywords: Multi-class classification, Generalization error bounds, Covering numbers, Rademacher

complexities, Gaussian complexities.

1 Introduction

Multi-class learning is a classical problem in machine learning [72]. The outputs here stem from a

finite set of categories (classes), and the aim is to classify each input into one of several possible target

classes [23, 32, 33]. Classical applications of multi-class classification include handwritten optical

character recognition, where the system learns to automatically interpret handwritten characters [37],

part-of-speech tagging, where each word in a text is annotated with part-of-speech tags [77], and image

categorization, where predefined categories are associated with digital images [11, 22], to name only a

few.

Providing a theoretical framework of multi-class learning algorithms is a fundamental task in statis-

tical learning theory [72]. Statistical learning theory aims to ensure formal guarantees safeguarding the

performance of learning algorithms, often in the form of generalization error bounds [56]. Such bounds
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may lead to improved understanding of commonly used empirical practices and spur the development

of novel learning algorithms (“Nothing is more practical than a good theory” [72]).

Classic generalization bounds for multi-class learning scale rather unfavorably (like quadratic, lin-

ear, or square root at best) in the number of classes [27, 39, 56]. This may be because the standard

theory has been constructed without the need of having a large number of label classes in mind as many

classic multi-class learning problems consist only of a small number of classes, indeed. For instance,

the historically first multi-class dataset—Iris—[24]—contains solely three classes, the MNIST dataset

[46] consists of 10 classes, and most of the datasets in the popular UCI corpus [3] contain up to several

dozen classes.

However, with the advent of the big data era, multi-class learning problems—such as text or image

classification [22, 60]—can involve tens or hundreds of thousands of classes. Recently, there is a subarea

of machine learning studying classification problems involving an extremely large number of classes

(such as the ones mentioned above) called eXtreme Classification (XC) [76]. Several algorithms have

recently been proposed to speed up the training or improve the prediction accuracy in classification

problems with many classes [1, 4, 5, 8–10, 35, 60, 61, 63, 74].

However, there is still a discrepancy between algorithms and theory in classification with many

classes, as standard statistical learning theory is void in the large number of classes scenario [75].

With the present paper we want to contribute toward a better theoretical understanding of multi-class

classification with many classes. This theoretical understanding can provide theoretical grounds to the

commonly used empirical practices in classification with many classes and lead to insights that may

be used to guide the design of new learning algorithms.

Note that the present paper focuses on multi-class learning. Recently, there has been a growing

interest in multi-label learning. The difference in the two scenarios is that each instance is associated

with exactly one label class (in the multi-class case) or multiple classes (in the multi-label case),

respectively. While the present analysis is tailored to the multi-class learning scenario, it may serve as

a starting point for subsequent analysis of the multi-label learning scenario.

1.1 Contributions in a Nutshell

We build the present journal article upon our previous conference paper published at NIPS 2015 [48],

where we propose a multi-class support vector machine (MC-SVM) using block `2,p-norm regulariza-

tion, for which we prove data-dependent generalization bounds based on Gaussian complexities (GCs).

While the previous analysis employed the margin-based loss, in the present article, we generalize

the GC-based data-dependent analysis to general loss functions that are Lipschitz continuous with

respect to (w.r.t.) a variant of the `2-norm . Furthermore, we develop a new approach to derive data-

dependent bounds based on empirical covering numbers (CNs) to capture the Lipschitz continuity of

loss functions w.r.t. the `∞-norm with a moderate Lipschitz constant, which is not studied in the

conference version of this article. For both two approaches, our data-dependent error bounds can be

stated in terms of complexities of a linear function class defined only on a finite set induced by training

examples, for which we give lower and upper bounds matching up to a constant factor in some cases.

We present examples to show that each of these two approaches has its advantages and may outperform

the other by inducing tighter error bounds for some specific MC-SVMs.

As applications of our theory, we show error bounds for several prominent multi-class learning

algorithms: multinomial logistic regression [12], top-k MC-SVM [43], `p-norm MC-SVMs [48], and

several classic MC-SVMs [17, 47, 78]. For all of these methods, we show error bounds with an improved

dependency on the number of classes over the state of the art. For instance, the best known bounds

for multinomial logistic regression and the MC-SVM by Crammer and Singer [17] scale square root in
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the number of classes. We improve this dependency to be logarithmic. This gives strong theoretical

grounds for using these methods in classification with many classes.

We develop a novel algorithm to train `p-norm MC-SVMs [48] and report experimental results to

verify our theoretical findings and their applicability to model selection.

2 Related Work and Contributions

In this section, we discuss related work and outline the main contributions of this paper.

2.1 Related Work

In this subsection, we recapitulate the state of the art in multi-class learning theory.

2.1.1 Related Work on Data-dependent Bounds

Existing error bounds for multi-class learning can be classified into two groups: data-dependent and

data-independent error bounds. Both types of bounds are often based on the assumption that the data

is realized from independent and identically distributed random variables. However, this assumption

can be relaxed to weakly dependent time series, for which Mohri and Rostamizadeh [55] and Steinwart

et al. [68] show data-dependent and -independent generalization bounds, respectively.

Data-dependent generalization error bounds refer to bounds that can be evaluated on training

samples and thus can capture properties of the distribution that has generated the data [56]. Often

these bounds built on the empirical Rademacher complexity (RC) [6, 38, 54], which can be used in

model selection and for the construction of new learning algorithms [14].

The investigation of data-dependent error bounds for multi-class learning is initiated, to our best

knowledge, by Koltchinskii and Panchenko [39], who give the following structural result on RCs: given

a set H = {h = (h1, . . . , hc)} of vector-valued functions and training examples x1, . . . ,xn, it holds

Eε sup
h∈H

n∑
i=1

εi max
{
h1(xi), . . . , hc(xi)

}
≤

c∑
j=1

Eε sup
h∈H

n∑
i=1

εihj(xi). (1)

Here, ε1, . . . , εn denote independent Rademacher variables (i.e., taking values +1 or −1, with equal

probability), and Eε denotes the conditional expectation operator removing the randomness coming

from the variables ε1, . . . , εn.

In much subsequent theoretical work on multi-class learning, the above result is used as a starting

point, by which the maximum operator involved in multi-class hypothesis classes (Eq. 1, left-hand

side) can be removed [17, 56]. Applying the result leads to a simple sum of c many RCs (Eq. (1),

right-hand side), each of which can be bounded using standard theory [6]. This way, Koltchinskii and

Panchenko [39], Cortes et al. [15], and Mohri et al. [56] derive multi-class generalization error bounds

that exhibit a quadratic dependency on the number of classes, which Kuznetsov et al. [41] improve to

a linear one.

However, the reduction (1) comes at the expense of at least a linear dependency on the number of

classes c, coming from the sum in Eq. (1) (right-hand side), which consists of c many terms. We show

in this paper that this linear dependency can oftentimes be suboptimal because (1) does not take into

account the coupling among the classes. To understand why, it is illustrative to consider the example

of MC-SVM by Crammer and Singer [17], which uses an `2-norm constraint∥∥(h1, . . . , hc
)∥∥

2
≤ Λ (2)
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Figure 1: Illustration why Eq. (1) is loose. Consider a 1-dimensional binary classification problem with

hypothesis class H consisting of functions mapping x ∈ R to max(h1(x), h2(x)), where hj(x) = wjx for

j = 1, 2. Assume the class is regularized through the constraint ‖(w1, w2)‖2 ≤ 1, so the left-hand side

of the inequality (1) involves a supremum over the `2-norm constraint ‖(w1, w2)‖2 ≤ 1. In contrast,

the right-hand side of (1) has individual suprema for w1 and w2 (no coupling anymore), resulting in a

supremum over the `∞-norm constraint ‖(w1, w2)‖∞ ≤ 1. Thus applying Eq. (1) enlarges the size of

constraint set by the area that is shaded in the figure, which grows as O(
√
c). In the present paper,

we show a proof technique to elevate this problem, thus resulting in an improved bound (tighter by a

factor of
√
c).

to couple the components h1, . . . , hc. The problem with Eq. (1) is that it decouples the compo-

nents, resulting in the constraint
∥∥(h1, . . . , hc

)∥∥
∞ ≤ Λ, which—as illustrated in Figure 1—is a poor

approximation of (2).

In our previous work [48], we give a structural result addressing this shortcoming and tightly

preserving the constraint defining the hypothesis class. Our result is based on the so-called GC [6], a

notion similar but yet different to the RC. The difference in the two notions is that RC and GC are

the supremum of a Rademacher and Gaussian process, respectively.

The core idea of our analysis is that we exploit a comparison inequality for the suprema of Gaussian

processes known as Slepian’s Lemma [65], by which we can remove, from the GC, the maximum

operator that occurs in the definition of the hypothesis class, thus preserving the above mentioned

coupling—we call the supremum of the resulting Gaussian process the multi-class Gaussian complexity.

Using our structural result, we obtain in [48] a data-dependent error bound for [17] that exhibits—

for the first time—a sublinear (square root) dependency on the number of classes. When using a block

`2,p-norm constraint (with p close to 1), rather than an `2-norm one, one can reduce this dependency

to be logarithmic, making the analysis appealing for classification with many classes.

We note that, addressing the same need, the following structural result [16, 51] appear since the

publication of our previous work [48]:

Eε sup
h∈H

n∑
i=1

εifi(h(xi)) ≤
√

2LEε sup
h∈H

n∑
i=1

c∑
j=1

εijhj(xi), (3)

where f1, . . . , fn are L-Lipschitz continuous w.r.t. the `2-norm.

For the MC-SVM by Crammer and Singer [17], the above result leads to the same favorable square

root dependency on the number of classes as our previous result in [48]. We note, however, that the

structural result (3) requires fi to be Lipschitz continuous w.r.t. the `2-norm, while some multi-class

loss functions [36, 43, 78] are Lipschitz continuous with a moderate Lipschitz constant, when choosing

a more appropriate norm. In these cases, the analysis given in the present paper improves not only

the classical results obtained through (1), but also the results obtained through (3).
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2.1.2 Related Work on Data-independent Bounds

Data-independent generalization bounds refer to classical theoretical bounds that hold for any sample,

with a certain probability over the draw of the samples [67, 72]. In their seminal contribution On

the Uniform Convergence of Relative Frequencies of Events to Their Probabilities, Vapnik and Cher-

vonenkis [73] show historically one of the first bounds of that type—introducing the notion of VC

dimension.

Several authors consider data-independent bounds for multi-class learning. By controlling entropy

numbers of linear operators with Maurey’s theorem, Guermeur [27] derives generalization error bounds

with a linear dependency on the number of classes. This is improved to square-root by Zhang [81]

using `∞-norm CNs without considering the correlation among class-wise components. Pan et al. [59]

consider a multi-class Parzen window classifier and derive an error bound with a quadratic dependency

on the number of classes. Several authors show data-independent generalization bounds based on

combinatorial dimensions, including the graph dimension, the Natarajan dimension dnat, and its scale-

sensitive analog dnat,γ for margin γ [18, 19, 28, 29, 57].

Guermeur [28, 29] shows a generalization bound decaying as O
(

log c
√

dnat,γ logn
n

)
. When using

an `∞-norm regularizer dnat,γ is bounded by O(c2γ−2), and the generalization bound reduces to

O
(
c log c
γ

√
logn
n

)
. The author does not give a bound for an `2-norm regularizer as this is more chal-

lenging to deal with, due to the above mentioned coupling of the hypothesis components.

Daniely et al. [19] give a bound decaying as O
(√dnat(H) log c

n

)
, which transfers to O

(√
dc log c
n

)
for

multi-class linear classifiers since the associated Natarajan dimension grows as O(dc) [18].

Guermeur [30] recently establish an `p-norm Sauer-Shelah lemma for large-margin multi-class clas-

sifiers, based on which error bounds with a square-root dependency on the number of classes are

derived. This setting comprises the MC-SVM by Crammer and Singer [17].

What is common in all of the above mentioned data-independent bounds is their super logarithmic

dependency (square root at best) on the number of classes. As notable exception, Kontorovich and

Weiss [40] show a bound exhibiting a logarithmic dependency on the number of classes. However,

their bound holds only for the specific nearest-neighbor-based algorithm that they propose, so their

analysis does not cover the commonly used multi-class learning machines mentioned in the introduction

(like multinomial logistic regression and classic MC-SVMs). Furthermore, their bound is of the order

min
{
O
(
γ−1

(
log c
n

) 1
1+D

)
, O
(
γ−

D
2

(
log c
n

) 1
2
)}

and thus has an exponential dependence on the doubling

dimension D of the metric space where the learning takes place. For instance, for linear learning

methods with input space dimension d, the doubling dimension D grows linearly in d, so the bound

in [40] grows exponentially in d. For kernel-based learning using an infinite doubling dimension (e.g.,

Gaussian kernels) the bound is void.

2.2 Contributions of this Paper

This paper aims to contribute a solid theoretical foundation for learning with many class labels by

presenting data-dependent generalization error bounds with relaxed dependencies on the number of

classes. We develop two approaches to establish data-dependent error bounds: one based on multi-

class GCs and one based on empirical `∞-norm CNs. We give specific examples to show that each of

these two approaches has its advantages and may yield error bounds tighter than the other. We also

develop novel algorithms to train `p-norm MC-SVMs [48] and report experimental results. Below we

summarize the main results of this paper.

5



2.2.1 Tighter Generalization Bounds by Gaussian Complexities

As an extension of our NIPS 2015 conference paper, our GC-based analysis depends on a novel struc-

tural result on GCs (Lemma 1 below) that is able to preserve the correlation among class-wise com-

ponents. Similar to Maurer [51] and Cortes et al. [16], our structural result applies to function classes

induced by operators satisfying a Lipschitz continuity. However, here we measure the Lipschitz con-

tinuity with respect to a specially crafted variant of the `2-norm involving a Lipschitz constant pair

(L1, L2) (cf. Definition 2 below), motivated by the observation that some multi-class loss functions

satisfy this Lipschitz continuity with a relatively small L1 in a dominant term and a relatively large

L2 in a non-dominant term. This allows us to improve the error bounds based on the structural result

(3) for MC-SVMs with a relatively large L2.

Based on this new structural result, we show an error bound for multi-class empirical risk mini-

mization algorithms using an arbitrary norm as regularizer. As instantiations of our general bound,

we compute specific bounds for `2,p-norm and Schatten p-norm regularizers. We apply this general

GC-based bound to some popular MC-SVMs [12, 17, 36, 47, 78].

Our GC-based analysis yields the first error bound for top-k MC-SVM [43] as a decreasing function

in k. When setting k proportional to c, the bound does not depend at all on the number of classes. In

contrast, error bounds based on the structural result (3) fail to shed insights on the influence of k on the

generalization performance because the involved Lipschitz constant is dominated by a constant. For

the MC-SVM by Weston and Watkins [78], our analysis yields a bound exhibiting a linear dependency

on the number of classes, while the dependency is O(c
3
2 ) for the error bound based on the structural

result (3). For the MC-SVM by Jenssen et al. [36], our analysis yields a bound with no dependencies on

c, while the error bound based on the structural result (3) enjoys a square root dependency. This shows

the effectiveness of our new structural result in capturing the Lipschitz continuity w.r.t. a variant of

the `2-norm.

2.2.2 Tighter Generalization Bounds by Covering Numbers

While the GC-based analysis uses the Lipschitz continuity measured by the `2-norm or a variant

thereof, some multi-class loss functions are Lipschitz continuous w.r.t. the `∞-norm with a moderate

Lipschitz constant. To apply the GC-based error bounds, we need to transform this `∞-norm Lipschitz

continuity to the `2-norm Lipschitz continuity, at the cost of a multiplicative factor of
√
c. Motivated

by this observation, we present another data-dependent analysis based on empirical `∞-norm CNs to

fully exploit the Lipschitz continuity measured by the `∞-norm. We show that this leads to bounds

that for some MC-SVMs exhibit a milder dependency on the number of classes.

The core idea is to introduce a linear and scalar-valued function class induced by training examples

to extract all components of hypothesis functions on training examples, which allows us to relate the

empirical `∞-norm CNs of loss function classes to that of this linear function class. Our main result

is a data-dependent error bound for general MC-SVMs expressed in terms of the worst-case RC of a

linear function class, for which we establish lower and upper bounds matching up to a constant factor.

The analysis in this direction is unrelated to the conference version [48] and provides an alternative to

GC-based arguments.

As direct applications, we derive other data-dependent generalization error bounds scaling sublin-

early for `p-norm MC-SVMs and Schatten-p norm MC-SVMs, and logarithmically for top-k MC-SVM

[43], trace-norm regularized MC-SVM [2], multinomial logistic regression [12] and the MC-SVM by

Crammer and Singer [17]. Note that the previously best results for the MC-SVM in [17] and multino-

mial logistic regression scale only square root in the number of classes [81].
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2.2.3 Novel Algorithms with Empirical Verifications

We propose a novel algorithm to train `p-norm MC-SVMs [48] using the Frank-Wolfe algorithm [25],

for which we show that the involved linear optimization problem has a closed-form solution, making the

implementation of the Frank-Wolfe algorithm very simple and efficient. This avoids the introduction

of class weights used in our previous optimization algorithm [48], which moreover only applies to the

case 1 ≤ p ≤ 2. In empirical comparisons, we show on benchmark data that `p-norm MC-SVM

can outperform `2-norm MC-SVM. We also perform experiments to show that our error bounds well

capture the effect by the number of classes and the parameter p. Furthermore, our error bounds

suggest a structural risk able to guide the selection of model parameters.

3 Main Results

3.1 Problem Setting

In multi-class classification with c classes, we are given training examples S = {zi = (xi, yi)}ni=1 ⊂
Z := X × Y, where X ⊂ Rd is the input space and Y = {1, . . . , c} the output space. We assume that

z1, . . . , zn are independently drawn from a probability measure P defined on Z.

Our aim is to learn, from a hypothesis space H, a hypothesis h = (h1, . . . , hc) : X 7→ Rc used

for prediction via the rule x → arg maxy∈Y hy(x). We consider prediction functions of the form

hwj (x) = 〈wj , φ(x)〉, where φ is a feature map associated to a Mercer kernel K defined over X × X ,

wj belongs to the reproducing kernel Hilbert space HK induced from K with the inner product 〈·, ·〉
satisfying K(x, x̃) = 〈x, x̃〉.

We consider hypothesis spaces of the form

Hτ =
{
hw =

(
〈w1, φ(x)〉, . . . , 〈wc, φ(x)〉

)
: w = (w1, . . . ,wc) ∈ Hc

K , τ(w) ≤ Λ
}
, (4)

where τ is a functional defined on Hc
K := HK × · · · ×HK︸ ︷︷ ︸

c times

and Λ > 0. Here we omit the dependency

on Λ for brevity.

We consider a general problem setting with Ψy(h1(x), . . . , hc(x)) used to measure the prediction

quality of the model h at (x, y) [70, 81], where Ψy : Rc → R+ is a real-valued function taking a

c-component vector as its argument. This general loss function Ψy is widely used in many existing

MC-SVMs, including the models by Crammer and Singer [17], Weston and Watkins [78], Lee et al.

[47], Zhang [81], and Lapin et al. [43].

3.2 Notations

We collect some notations used throughout this paper (see also Table 1). We say that a function

f : Rc → R is L-Lipschitz continuous w.r.t. a norm ‖ · ‖ in Rc if

|f(t)− f(t′)| ≤ L‖(t1 − t′1, . . . , tc − t′c)‖, ∀t, t′ ∈ Rc.

The `p-norm of a vector t = (t1, . . . , tc) is defined as ‖t‖p =
[∑c

j=1 |tj |p
] 1
p . For any v = (v1, . . . ,vc) ∈

Hc
K and p ≥ 1, we define the structure norm ‖v‖2,p =

[∑c
j=1 ‖vj‖

p
2

] 1
p . Here, for brevity, we denote by

‖vj‖2 the norm of vj in HK . For any w = (w1, . . . ,wc),v = (v1, . . . ,vc) ∈ Hc
K , we denote 〈w,v〉 =∑c

j=1〈wj ,vj〉. For any n ∈ N, we introduce the notation Nn := {1, . . . , n}. For any p ≥ 1, we denote

by p∗ the dual exponent of p satisfying 1/p+1/p∗ = 1. For any norm ‖ ·‖ we use ‖ ·‖∗ to mean its dual

norm. Furthermore, we define BΨ = sup
(x,y)∈Z

sup
hw∈Hτ

Ψy(hw(x)), B̂Ψ = n−
1
2 sup
hw∈Hτ

∥∥(Ψyi(h
w(xi))

)n
i=1

∥∥
2
,
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Table 1: Notations used in this paper and page number where it first occurs.

notation meaning page

X ,Y the input space and output space, respectively 7

S the set of training examples {zi = (xi, yi)} ∈ X × Y 7

c number of classes 7

K Mercer kernel 7

φ feature map associated to a kernel K 7

HK reproducing kernel Hilbert space induced by a Mercer kernel K 7

Hc
K c-fold Cartesian product of the reproducing kernel Hilbert space HK 7

w (w1, . . . ,wc) ∈ Hc
K 7

hw prediction function (〈w1, φ(x)〉, . . . , 〈wc, φ(x)〉) 7

Hτ hypothesis space for MC-SVM constrained by a regularizer τ 7

Ψy multi-class loss function for class label y 7

‖ · ‖p `p-norm defined on Rc 7

‖ · ‖2,p `2,p norm defined on Hc
K 7

〈w,v〉 inner product on Hc
K as

∑c
j=1〈wj ,vj〉 7

‖ · ‖∗ dual norm of ‖ · ‖ 7

Nn the set {1, . . . , n} 7

p∗ dual exponent of p satisfying 1/p+ 1/p∗ = 1 7

Eu the expectation w.r.t. random u 9

BΨ the constant sup(x,y)∈Z,h∈Hτ Ψy(h(x)) 9

B̂Ψ the constant n−
1
2 suph∈Hτ

∥∥(Ψyi(h(xi))
)n
i=1

∥∥
2

9

B̂ the constant maxi∈Nn ‖φ(xi)‖2 supw:τ(w)≤Λ ‖w‖2,∞ 9

Aτ the term defined in (5) 9

Iy indices of examples with class label y 9

‖ · ‖Sp Schatten-p norm of a matrix 9

RS(H) empirical Rademacher complexity of H w.r.t. sample S 9

GS(H) empirical Gaussian complexity of H w.r.t. sample S 9

Rn(H) worst-case Rademacher complexity of H w.r.t. n examples 9

H̃τ class of scalar-valued linear functions defined on Hc
K 10

S̃ an enlarged set of cardinality nc defined in (9) 10

S̃′ a set of cardinality n defined in (11) 10

Fτ,Λ loss function class for MC-SVM 12

ρh(x, y) margin of h at (x, y) 13

N∞(ε, F, S) empirical covering number of F w.r.t. sample S 29

fatε(F ) fat-shattering dimension of F 29
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and B̂ = max
i∈Nn

‖φ(xi)‖2 sup
w:τ(w)≤Λ

‖w‖2,∞. For brevity, for any functional τ over Hc
K , we introduce the

following notation to write our bounds compactly

Aτ := sup
hw∈Hτ

[
Ex,yΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
− 3BΨ

[ log 2
δ

2n

] 1
2

, (5)

where we omit the dependency on n and loss function for brevity. Note that, for any random u, the

notation Eu denotes the expectation w.r.t. u. For any y ∈ Y, we use Iy = {i ∈ Nn : yi = y} to mean

the indices of examples with label y.

If φ is the identity map, then the hypothesis hw can be compactly represented by a matrix W =

(w1, . . . ,wc) ∈ Rd×c. For any p ≥ 1, the Schatten-p norm of a matrix W ∈ Rd×c is defined as the

`p-norm of the vector of singular values σ(W ) := (σ1(W ), . . . , σmin{c,d}(W ))> (singular values assumed

to be sorted in a non-increasing order), i.e., ‖W‖Sp := ‖σ(W )‖p.

3.3 Data-dependent Bounds by Gaussian Complexities

We first present data-dependent analysis based on the established methodology of RCs and GCs [6].

Definition 1 (Empirical Rademacher and Gaussian complexities). Let H be a class of real-valued

functions defined over a space Z̃ and S′ = {z̃i}ni=1 ∈ Z̃n. The empirical Rademacher and Gaussian

complexities of H with respect to S′ are respectively defined as

RS′(H) = Eε
[

sup
h∈H

1

n

n∑
i=1

εih(z̃i)
]
, GS′(H) = Eg

[
sup
h∈H

1

n

n∑
i=1

gih(z̃i)
]
,

where ε1, . . . , εn are independent Rademacher variables, and g1, . . . , gn are independent N(0, 1) random

variables. We define the worst-case Rademacher complexity as Rn(H) = supS′∈Z̃n RS′(H).

Existing data-dependent analyses build on either the structural result (1) or (3), which either

ignores the correlation among predictors associated to individual class labels or requires fi to be

Lipschitz continuous w.r.t. the `2-norm. Below we introduce a new structural complexity result based

on the following Lipschitz property w.r.t. a variant of the `2-norm. The motivation of this Lipschitz

continuity is that some multi-class loss functions satisfy (6) with a relatively small L1 and a relatively

large L2, the latter of which is not the influential one since it is involved in a single component.

Definition 2 (Lipschitz continuity w.r.t. a variant of the `2-norm). We say a function f : Rc → R is

Lipschitz continuous w.r.t. a variant of the `2-norm involving a Lipschitz constant pair (L1, L2) and

index r ∈ {1, . . . , c} if

|f(t)− f(t′)| ≤ L1‖(t1 − t′1, . . . , tc − t′c)‖2 + L2|tr − t′r|, ∀t, t′ ∈ Rc. (6)

We now present our first core result of this paper, the following structural lemma. Proofs of results

in this section are given in Section 6.1.

Lemma 1 (Structural Lemma). Let H be a class of functions mapping from X to Rc. Let L1, L2 ≥ 0

be two constants and r : N → Y. Let f1, . . . , fn be a sequence of functions from Rc to R. Suppose

that for any i ∈ Nn, fi is Lipschitz continuous w.r.t. a variant of the `2-norm involving a Lipschitz

constant pair (L1, L2) and index r(i). Let g1, . . . , gn, g11, . . . , gnc be a sequence of independent N(0, 1)

random variables. Then, for any sample {x̃i}ni=1 ∈ Xn we have

Eg sup
h∈H

n∑
i=1

gifi(h(x̃i)) ≤
√

2L1Eg sup
h∈H

n∑
i=1

c∑
j=1

gijhj(x̃i) +
√

2L2Eg sup
h∈H

n∑
i=1

gihr(i)(x̃i). (7)
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Lemma 1 controls the GC of the multi-class loss function class by that of the original hypothesis

class, thereby removing the dependency on the potentially cumbersome operator fi in the definition

of the loss function class (for instance for Crammer and Singer [17], fi would be the component-wise

maximum). The above lemma is based on a comparison result (Slepian’s lemma, Lemma 20 below)

among the suprema of Gaussian processes.

Equipped with Lemma 1, we are now able to present our main results based on GCs. Eq. (13) is

a data-dependent bound in terms of the GC of the following linear scalar-valued function class

H̃τ := {v→ 〈w,v〉 : w,v ∈ Hc
K , τ(w) ≤ Λ,v ∈ S̃}, (8)

where S̃ is defined as follows

S̃ :=
{
φ̃1(x1), φ̃2(x1), . . . , φ̃c(x1)︸ ︷︷ ︸

induced by x1

, φ̃1(x2), φ̃2(x2), . . . , φ̃c(x2)︸ ︷︷ ︸
induced by x2

, . . . , φ̃1(xn), . . . , φ̃c(xn)︸ ︷︷ ︸
induced by xn

}
(9)

and, for any x ∈ X , we use the notation

φ̃j(x) :=
(

0, . . . , 0︸ ︷︷ ︸
j−1

, φ(x), 0, . . . , 0︸ ︷︷ ︸
c−j

)
∈ Hc

K , j ∈ Nc. (10)

Note that H̃τ is a class of functions defined on a finite set S̃. We also introduce

S̃′ =
{
φ̃y1

(x1), φ̃y2
(x2), . . . , φ̃yn(xn)

}
. (11)

The terms S̃, S̃′ and φ̃j(x) are motivated by the following identity

〈w, φ̃k(x)〉 =
〈

(w1, . . . ,wc),
(

0, . . . , 0︸ ︷︷ ︸
k−1

, φ(x), 0, . . . , 0︸ ︷︷ ︸
c−k

)〉
= 〈wk, φ(x)〉, ∀k ∈ Nc. (12)

Hence, the right-hand side of (7) can be rewritten as Gaussian complexities of H̃τ when H = Hτ .

Theorem 2 (Data-dependent bounds for general regularizer and Lipschitz continuous loss w.r.t. Def.

2). Consider the hypothesis space Hτ in (4) with τ(w) = ‖w‖, where ‖ · ‖ is a norm defined on Hc
K .

Suppose there exist L1, L2 ∈ R+ such that Ψy is Lipschitz continuous w.r.t. a variant of the `2-norm

involving a Lipschitz constant pair (L1, L2) and index y for all y ∈ Y. Then, for any 0 < δ < 1, with

probability at least 1− δ, we have

Aτ ≤ 2
√
π
[
L1cGS̃(H̃τ ) + L2GS̃′(H̃τ )

]
(13)

and

Aτ ≤
2Λ
√
π

n

[
L1Eg

∥∥∥( n∑
i=1

gijφ(xi)
)c
j=1

∥∥∥
∗

+ L2Eg
∥∥(∑

i∈Ij

giφ(xi)
)c
j=1

∥∥
∗

]
, (14)

where g1, . . . , gn, g11, . . . , gnc are independent N(0, 1) random variables.

Remark 1 (Motivation of Lipschitz continuity w.r.t. Def. 2). The dominant term on the right-hand

side of (13) is L1cGS̃(H̃τ ) if L2 = O(
√
cL1). This explains the motivation in introducing the new

structural result (7) to exploit the Lipschitz continuity w.r.t. a variant of the `2-norm involving a large

L2. For comparison, if we apply the previous structural result (3) for loss functions satisfying (6), then

the associated `2-Lipschitz constant is L1 + L2, resulting in the following bound

Aτ ≤ 2
√
π(L1 + L2)cRS̃(H̃τ ),
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which is worse than (13) when L1 = O(L2) since the dominant term becomes L2cRS̃(H̃τ ). Many

popular loss functions satisfy (6) with L1 = O(L2) [36, 43, 78]. For example, the loss function used in

the top-k SVM [43] satisfies (6) with (L1, L2) = ( 1√
k
, 1), which, as we will show, allows us to derive

data-dependent bounds with no dependencies on the number of classes by setting k proportional to c.

In comparison, the (k−
1
2 +1)-Lipschitz continuity w.r.t. `2-norm does not capture the special structure

of the top-k loss function since k−
1
2 is dominated by the constant 1. As further examples, the loss

function in Weston and Watkins [78] satisfies (6) with (L1, L2) = (
√
c, c), while the loss function in

Jenssen et al. [36] satisfies (27) with (L1, L2) = (0, 1).

We now consider two applications of Theorem 2 by considering τ(w) = ‖w‖2,p defined on Hc
K [48]

and τ(W ) = ‖W‖Sp defined on Rd×c [2], respectively.

Corollary 3 (Data-dependent bound for `p-norm regularizer and Lipschitz continuous loss w.r.t. Def.

2). Consider the hypothesis space Hp,Λ := Hτ,Λ in (4) with τ(w) = ‖w‖2,p, p ≥ 1. If there exist

L1, L2 ∈ R+ such that Ψy is Lipschitz continuous w.r.t. a variant of the `2-norm involving a Lipschitz

constant pair (L1, L2) and index y for all y ∈ Y, then for any 0 < δ < 1, the following inequality holds

with probability at least 1− δ (we use the abbreviation Ap = Aτ with τ(w) = ‖w‖2,p)

Ap ≤
2Λ
√
π

n

[ n∑
i=1

K(xi,xi)
] 1

2

inf
q≥p

[
L1(q∗)

1
2 c

1
q∗ + L2(q∗)

1
2 max(c

1
q∗−

1
2 , 1)

]
. (15)

Corollary 4 (Data-dependent bound for Schatten-p norm regularizer and Lipschitz continuous loss

w.r.t. Def. 2). Let φ be the identity map and represent w by a matrix W ∈ Rd×c. Consider the

hypothesis space HSp,Λ := Hτ,Λ in (4) with τ(W ) = ‖W‖Sp , p ≥ 1. If there exist L1, L2 ∈ R+ such that

Ψy is Lipschitz continuous w.r.t. a variant of the `2-norm involving a Lipschitz constant pair (L1, L2)

and index y for all y ∈ Y, then for any 0 < δ < 1 with probability at least 1− δ, we have (we use the

abbreviation ASp = Aτ with τ(W ) = ‖W‖Sp)

ASp ≤


2

3
4 πΛ
n
√
e

inf
p≤q≤2

(q∗)
1
2

{
(L1c

1
q∗ + L2)

[ n∑
i=1

‖xi‖22
] 1

2

+ L1c
1
2

∥∥∥ n∑
i=1

xix
>
i

∥∥∥ 1
2

S q∗
2

}
, if p ≤ 2,

2
5
4 πΛ
(
L1c

1
2 +L2

)
min{c,d}

1
2
− 1
p

n
√
e

[∑n
i=1 ‖xi‖22

] 1
2

, otherwise.

(16)

In comparison to Corollary 3, the error bound of Corollary 4 involves an additional term

O
(
c

1
2n−1

∥∥∑n
i=1 xix

>
i

∥∥ 1
2

S q∗
2

)
for the case p ≤ 2 due to the need of applying non-commutative Khintchine-

Kahane inequality (A.3) for Schatten norms. As we will show in Section 4, we can derive from Corol-

laries 3 and 4 error bounds with sublinear dependencies on the number of classes for `p-norm and

Schatten-p norm MC-SVMs. Furthermore, the dependency is logarithmic for `p-norm MC-SVM [48]

when p approaches 1.

3.4 Data-dependent Bounds by Covering Numbers

The data-dependent generalization bounds given in subsection 3.3 assume the loss function Ψy to be

Lipschitz continuous w.r.t. a variant of the `2-norm. However, some typical loss functions used in

the multi-class setting are Lipschitz continuous w.r.t. the much milder `∞-norm with a comparable

Lipschitz constant [81]. This mismatch between the norms w.r.t. which the Lipschitz continuity is

measured requires an additional step of controlling the `∞-norm of vector-valued predictors by the

`2-norm in the application of Theorem 2, at the cost of a possible multiplicative factor of
√
c. This

subsection aims to avoid this loss in the class-size dependency by presenting data-dependent analysis

based on empirical `∞-norm CNs to directly use the Lipschitz continuity measured by the `∞-norm.

11



The key step in this approach lies in estimating the empirical CNs of the loss function class

Fτ,Λ := {(x, y)→ Ψy(hw(x)) : hw ∈ Hτ}. (17)

A difficulty towards this purpose consists in the non-linearity of Fτ,Λ and the fact that hw ∈ Hτ

takes vector-valued outputs, while standard analyses are limited to scalar-valued and essentially linear

(kernel) function classes [80, 83, 84]. The way we bypass this obstacle is to consider a related linear

scalar-valued function class H̃τ defined in (8). A key motivation in introducing H̃τ is that the CNs of

Fτ,Λ w.r.t. x1, . . . ,xn (CNs are defined in subsection 6.2) can be related to that of the function class

{v→ 〈w,v〉 : τ(w) ≤ Λ}, w.r.t. the set S̃ defined in (9). The latter can be conveniently tackled since

it is a linear and scalar-valued function class, to which standard arguments apply. In more details, to

approximate the projection of Fτ,Λ onto the examples S with (ε, `∞)-covers (cf. Definition 3 below), the

`∞-Lipschitz continuity of the loss function requires us to approximate the set
{(
〈wj , φ(xi)〉i∈Nn,j∈Nc

)
:

τ(w) ≤ Λ
}

, which, according to (12), is exactly the projection of H̃τ onto S̃:
{(
〈w, φ̃j(xi)〉i∈Nn,j∈Nc

)
:

τ(w) ≤ Λ
}

. This motivates the definition of H̃τ in (8) and S̃ in (9).

Theorem 5 reduces the estimation of RS(Fτ,Λ) to bounding Rnc(H̃τ ), based on which the data-

dependent error bounds are given in Theorem 6. Note that Rnc(H̃τ ) is data-dependent since H̃τ is

a class of functions defined on a finite set induced by training examples. The proofs of complexity

bounds in Proposition 7 and Proposition 8 are given in subsection 6.3 and Appendix B, respectively.

The proofs of error bounds in this subsection are given in subsection 6.2.

Theorem 5 (Worst-case RC bound). Suppose that Ψy is L-Lipscthiz continuous w.r.t. the `∞-norm

for any y ∈ Y and assume that B̂Ψ ≤ 2eB̂ncL. Then the RC of Fτ,Λ can be bounded by

RS(Fτ,Λ) ≤ 16L
√
c log 2Rnc(H̃τ )

(
1 + log

3
2
2

B̂n
√
c

Rnc(H̃τ )

)
.

Theorem 6 (Data-dependent bounds for general regularizer and Lipschitz continuous loss function

w.r.t. ‖ · ‖∞). Under the condition of Theorem 5, for any 0 < δ < 1, with probability at least 1− δ, we

have

Aτ ≤ 27L
√
cRnc(H̃τ )

(
1 + log

3
2
2

B̂n
√
c

Rnc(H̃τ )

)
.

The application of Theorem 6 requires to control the worst-case RC of the linear function class H̃τ

from both below and above, to which the following two propositions give respective tight estimates for

τ(w) = ‖w‖2,p defined on Hc
K [48] and τ(W ) = ‖W‖Sp defined on Rd×c [2].

Proposition 7 (Lower and upper bound on worst-case RC for `p-norm regularizer). For τ(w) =

‖w‖2,p, p ≥ 1 in (8), the function class H̃τ becomes

H̃p :=
{
v→ 〈w,v〉 : w,v ∈ Hc

K , ‖w‖2,p ≤ Λ,v ∈ S̃
}
.

The RC of H̃p can be upper and lower bounded by

Λ max
i∈Nn

‖φ(xi)‖2(2n)−
1
2 c−

1
max(2,p) ≤ Rnc(H̃p) ≤ Λ max

i∈Nn
‖φ(xi)‖2n−

1
2 c−

1
max(2,p) . (18)

Remark 2 (Phase Transition for p-norm regularized space). We see an interesting phase transition at

p = 2. The worst-case RC of H̃p decays as O((nc)−
1
2 ) for the case p ≤ 2, and decays as O(n−

1
2 c−

1
p )

for the case p > 2. Indeed, the definition of S̃ by (9) implies ‖v‖2,∞ = ‖v‖2,p for all v ∈ S̃ and p ≥ 1

(sparsity of elements in S̃), from which we derive the following identity

max
vi∈S̃:i∈Nnc

c∑
j=1

nc∑
i=1

‖vij‖22 = max
vi∈S̃:i∈Nnc

nc∑
i=1

‖vi‖22,∞ = ncmax
i∈Nn

‖φ(xi)‖22, (19)
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where vij is the j-th component of vi ∈ S̃. That is, we have an automatic constraint on
∥∥(∑nc

i=1 ‖vij‖22
)c
j=1

∥∥
1

for all vi ∈ S̃, i ∈ Nnc. Furthermore, according to (64), we know ncRnc(H̃p) can be controlled in terms

of maxvi∈S̃:i∈Nn

∥∥(∑nc
i=1 ‖vij‖22

)c
j=1

∥∥
p∗
2

, for which an appropriate p to fully use the identity (19) is

p = 2. This explains the phase transition phenomenon.

Proposition 8 (Lower and upper bound on worst-case RC for Schatten-p norm regularizer). Let φ

be the identity map and represent w by a matrix W ∈ Rd×c. For τ(W ) = ‖W‖Sp , p ≥ 1 in (8), the

function class H̃τ becomes

H̃Sp :=
{
V → 〈W,V 〉 : W ∈ Rd×c, ‖W‖Sp ≤ Λ, V ∈ S̃ ⊂ Rd×c

}
. (20)

The RC of H̃Sp can be upper and lower bounded by
Λ max
i∈Nn

‖xi‖2(2nc)−
1
2 ≤ Rnc(H̃Sp) ≤ Λ max

i∈Nn
‖xi‖2(nc)−

1
2 , if p ≤ 2,

Λ max
i∈Nn

‖xi‖2(2nc)−
1
2 ≤ Rnc(H̃Sp) ≤ Λ maxi∈Nn ‖xi‖2 min{c,d}

1
2
− 1
p

√
nc

, otherwise.
(21)

The associated data-dependent error bounds, given in Corollary 9 and Corollary 10, are then

immediate.

Corollary 9 (Data-dependent bound for `p-norm regularizer and Lipschitz continuous loss w.r.t.

‖ · ‖∞). Consider the hypothesis space Hp,Λ := Hτ,Λ in (4) with τ(w) = ‖w‖2,p, p ≥ 1. Assume

that Ψy is L-Lipschitz continuous w.r.t. `∞-norm for any y ∈ Y and B̂Ψ ≤ 2eB̂ncL. Then, for any

0 < δ < 1 with probability 1− δ, we have

Ap ≤
27LΛ maxi∈Nn ‖φ(xi)‖2c

1
2−

1
max(2,p)

√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))
.

Corollary 10 (Data-dependent bound for Schatten-p norm regularizer and Lipschitz continuous loss

w.r.t. `∞-norm). Let φ be the identity map and represent w by a matrix W ∈ Rd×c. Consider the

hypothesis space HSp,Λ := Hτ,Λ in (4) with τ(W ) = ‖W‖Sp , p ≥ 1. Assume that Ψy is L-Lipschitz

continuous w.r.t. `∞-norm for any y ∈ Y and B̂Ψ ≤ 2eB̂ncL. Then, for any 0 < δ < 1 with probability

1− δ, we have

ASp ≤


27LΛ maxi∈Nn ‖xi‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
, if p ≤ 2,

27LΛ maxi∈Nn ‖xi‖2 min{c,d}
1
2
− 1
p

√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))
, otherwise.

4 Applications

In this section, we apply the general results in subsections 3.3 and 3.4 to study data-dependent error

bounds for some prominent multi-class learning methods. We also compare our data-dependent bounds

with the state of the art for different MC-SVMs. In subsection 4.5, we make an in-depth discussion to

compare error bounds based on GCs with those based on CNs.

4.1 Classic MC-SVMs

We first apply the results from the previous section to several classic MC-SVMs. For this purpose, we

need to show that the associated loss functions satisfy Lipschitz conditions.

To this end, for any h : X → Rc, we denote by

ρh(x, y) := hy(x)− max
y′:y′ 6=y

hy′(x) (22)

13



the margin of the model h at (x, y). It is clear that the prediction rule h makes an error at (x, y)

if ρh(x, y) < 0. In Examples 1, 3, and 4 below, we assume that ` : R → R+ is a decreasing and

L`-Lipschitz function.

Example 1 (Multi-class margin-based loss [17]). The loss function defined as

Ψ`
y(t) := max

y′:y′ 6=y
`(ty − ty′), ∀t ∈ Rc (23)

is (2L`)-Lipschitz continuous w.r.t. `∞-norm and `2-norm. Furthermore, we have `(ρh(x, y)) =

Ψ`
y(h(x)).

The loss function Ψ`
y defined above in Eq. (23) is a margin-based loss function widely used in

multi-class classification [17] and structured prediction [56].

Next, we study the multinomial logistic loss Ψm
y defined below, which is used in multinomial logistic

regression [12, Chapter 4.3.4].

Example 2 (Multinomial logistic loss). The multinomial logistic loss Ψm
y (t) defined as

Ψm
y (t) := log

( c∑
j=1

exp(tj − ty)
)
, ∀t ∈ Rc (24)

is 2-Lipschitz continuous w.r.t. the `∞-norm and the `2-norm.

The loss Ψ̃`
y defined in Eq. (25) below is used in [78] to make pairwise comparisons among compo-

nents of the predictor.

Example 3 (Loss function used in [78]). The loss function defined as

Ψ̃`
y(t) =

c∑
j=1

`(ty − tj), ∀t ∈ Rc (25)

is Lipschitz continuous w.r.t. a variant of the `2-norm involving the Lipschitz constant pair (L`
√
c, L`c)

and index y. Furthermore, it is also (2L`c)-Lipschitz continuous w.r.t. the `∞-norm.

Finally, the loss Ψ̄`
y defined in Eq. (26) and the loss Ψ̂`

y defined in Eq. (27) are used separately in

[47] based on constrained comparisons.

Example 4 (Loss function used in [47]). The loss function defined as

Ψ̄`
y(t) =

c∑
j=1,j 6=y

`(−tj), ∀t ∈ Ω = {t̃ ∈ Rc :

c∑
j=1

t̃j = 0} (26)

is (L`
√
c)-Lipschitz continuous w.r.t. the `2-norm and (L`c)-Lipschitz continuous w.r.t. the `∞-norm.

Example 5 (Loss function used in [36]). The loss function defined as

Ψ̂`
y(t) = `(ty), ∀t ∈ Ω = {t̃ ∈ Rc :

c∑
j=1

t̃j = 0} (27)

is Lipschitz continuous w.r.t. a variant of the `2-norm involving the Lipschitz constant pair (0, L`) and

index y, and L`-Lipschitz continuous w.r.t. the `∞-norm.

The following data-dependent error bounds are immediate by plugging the Lipschitz conditions

established in Examples 1, 2, 3, 4 and 5 into Corollaries 3, 4, 9 and 10, separately. In the following, we

always assume that the condition B̂Ψ ≤ 2eB̂ncL holds, where L is the Lipschitz constant in Theorem

5.
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Corollary 11 (Generalization bounds for Crammer and Singer MC-SVM). Consider the MC-SVM in

[17] with the loss function Ψ`
y (23) and the hypothesis space Hτ with τ(w) = ‖w‖2,2. Let 0 < δ < 1.

Then,

(a) with probability at least 1− δ, we have A2 ≤ 4L`Λ
√

2πc
n

[∑n
i=1K(xi,xi)

] 1
2 (by GCs);

(b) with probability at least 1− δ, we have A2 ≤ 54L`Λ maxi∈Nn ‖φ(xi)‖2√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))

(by CNs).

Analogous to Corollary 11, we have the following corollary on error bounds for the multinomial

logistic regression in [12].

Corollary 12 (Generalization bounds for multinomial logistic regression). Consider the multinomial

logistic regression with the loss function Ψ`
y (24) and the hypothesis space Hτ with τ(w) = ‖w‖2,2. Let

0 < δ < 1. Then,

(a) with probability at least 1− δ, we have A2 ≤ 4Λ
√

2πc
n

[∑n
i=1K(xi,xi)

] 1
2 (by GCs);

(b) with probability at least 1− δ, we have A2 ≤ 54Λ maxi∈Nn ‖φ(xi)‖2√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))

(by CNs).

The following three corollaries give error bounds for MC-SVMs in [36, 47, 78]. The MC-SVM in

Corollary 15 is a minor variant of that in [36] with a fixed functional margin.

Corollary 13 (Generalization bounds for Weston and Watkins MC-SVM). Consider the MC-SVM

in Weston and Watkins [78] with the loss function Ψ̃`
y (25) and the hypothesis space Hτ with τ(w) =

‖w‖2,2. Let 0 < δ < 1. Then,

(a) with probability at least 1− δ, we have A2 ≤ 4L`Λc
√

2π
n

[∑n
i=1K(xi,xi)

] 1
2 (by GCs);

(b) with probability at least 1− δ, we have A2 ≤ 54L`Λcmaxi∈Nn ‖φ(xi)‖2√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))

(by CNs).

Corollary 14 (Generalization bounds for Lee et al. MC-SVM). Consider the MC-SVM in Lee et al.

[47] with the loss function Ψ̄`
y (26) and the hypothesis space Hτ with τ(w) = ‖w‖2,2. Let 0 < δ < 1.

Then,

(a) with probability at least 1− δ, we have A2 ≤ 2L`Λc
√

2π
n

[∑n
i=1K(xi,xi)

] 1
2 (by GCs);

(b) with probability at least 1− δ, we have A2 ≤ 27L`Λcmaxi∈Nn ‖φ(xi)‖2√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))

(by CNs).

Corollary 15 (Generalization bounds for Jenssen et al. MC-SVM). Consider the MC-SVM in Jenssen

et al. [36] with the loss function Ψ̂`
y (26) and the hypothesis space Hτ with τ(w) = ‖w‖2,2. Let

0 < δ < 1. Then,

(a) with probability at least 1− δ, we have A2 ≤ 2L`Λ
√

2π
n

[∑n
i=1K(xi,xi)

] 1
2 (by GCs);

(b) with probability at least 1− δ, we have A2 ≤ 27L`Λ maxi∈Nn ‖φ(xi)‖2√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))

(by CNs).

Remark 3 (Comparison with the state of the art). It is interesting to compare the above error

bounds with the best known results in the literature. To start with, the data-dependent error bound

of Corollary 11 (a) exhibits a square-root dependency on the number of classes, matching the state of

the art from the conference version of this paper [48], which is significantly improved to a logarithmic

dependency in Corollary 11 (b).

The error bound in Corollary 13 (a) for the MC-SVM by Weston and Watkins [78] scales linearly in

c. On the other hand, according to Example 3, it is evident that Ψ̃`
y is (c+

√
c)L`-Lipschitz continuous

w.r.t. the `2-norm, for any y ∈ Y. Therefore, one can apply the structural result (3) from [16, 51]
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to derive the bound O(c
3
2n−1[

∑n
i=1K(xi,xi)]

1
2 ). Furthermore, according to Example 5, Ψ̂`

y is L`-

Lipschitz continuity w.r.t. ‖ · ‖2. Hence, one can apply the structural result (3) to derive the bound

O(c
1
2n−1[

∑n
i=1K(xi,xi)]

1
2 ), which is worse than the error bound O(n−1[

∑n
i=1K(xi,xi)]

1
2 ) based on

Lemma 1 and stated in Corollary 15 (a), which has no dependency on the number of classes. This

justifies the effectiveness of our new structural result (Lemma 1) in capturing the Lipschitz continuity

of loss functions w.r.t. a variant of the `2-norm to allow for a relatively large L2, which is precisely

the case for some popular MC-SVMs [36, 43, 78].

Note that for the MC-SVMs by Jenssen et al. [36], Lee et al. [47], Weston and Watkins [78], the GC-

based error bounds are tighter than the corresponding error bounds based on CNs, up to logarithmic

factors.

4.2 Top-k MC-SVM

Motivated by the ambiguity in class labels caused by the rapid increase in number of classes in modern

computer vision benchmarks, Lapin et al. [43, 44] introduce the top-k MC-SVM by using the top-

k hinge loss to allow k predictions for each object x. For any t ∈ Rc, let the bracket [·] denote a

permutation such that [j] is the index of the j-th largest score, i.e., t[1] ≥ t[2] ≥ · · · ≥ t[c].

Example 6 (Top-k hinge loss [43]). The top-k hinge loss defined by

Ψk
y(t) = max

{
0,

1

k

k∑
j=1

(1y 6=1 + t1 − ty, . . . , 1y 6=c + tc − ty)[j]

}
, ∀t ∈ Rc (28)

is Lipschitz continuous w.r.t. a variant of the `2-norm involving a Lipschitz constant pair
(

1√
k
, 1
)

and

index y. Furthermore, it is also 2-Lipschitz continuous w.r.t. `∞-norm.

With the Lipschitz conditions established in Example 6, we are now able to give generalization

error bounds for the top-k MC-SVM [43].

Corollary 16 (Generalization bounds for top-k MC-SVM). Consider the top-k MC-SVM with the

loss functions (28) and the hypothesis space Hτ with τ(w) = ‖w‖2,2. Let 0 < δ < 1. Then,

(a) with probability at least 1− δ, we have A2 ≤ 2Λ
√

2π
n (c

1
2 k−

1
2 + 1)[

∑n
i=1K(xi,xi)]

1
2 (by GCs);

(b) with probability at least 1− δ, we have A2 ≤ 54Λ maxi∈Nn ‖φ(xi)‖2√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))

(by CNs).

Remark 4 (Comparison with the state of the art). An appealing property of Corollary 16 (a) is the

involvement of the factor k−
1
2 . Note that we even can get error bounds with no dependencies on c if

we choose k > C̃c for a universal constant C̃.

Comparing our result to the state of the art, it follows again from Example 6 that Ψk
y is (1 + k−

1
2 )-

Lipschitz continuous w.r.t. the `2-norm for all y ∈ Y. Using the structural result (3) [16, 48, 51], one can

derive an error bound decaying as O
(
n−1c

1
2

[∑n
i=1K(xi,xi)

] 1
2
)
, which is suboptimal to Corollary 16

(a) since it does not shed insights on how the parameter k would affect the generalization performance.

Furthermore, the error bound in Corollary 16 (b) enjoys a logarithmic dependency on the number of

classes.

4.3 `p-norm MC-SVMs

In our previous work [48], we introduce the `p-norm MC-SVMs as an extension of the Crammer

& Singer MC-SVM by replacing the associated `2-norm regularizer with a general block `2,p-norm

regularizer [48]. We establish data-dependent error bounds in [48], showing a logarithmic dependency
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on the number of classes as p decreases to 1. The present analysis yields the following bounds, which

also hold for the MC-SVM with the multinomial logistic loss and the block `2,p-norm regularizer.

Corollary 17 (Generalization bounds for `p-norm MC-SVMs). Consider the `p-norm MC-SVM with

loss function (23) and the hypothesis space Hτ with τ(w) = ‖w‖2,p, p ≥ 1. Let 0 < δ < 1. Then,

(a) with probability at least 1− δ, we have:

Ap ≤
4L`Λ

√
π

n

[ n∑
i=1

K(xi,xi)
] 1

2 inf
q≥p

[(q∗)
1
2 c

1
q∗ ] (by GCs);

(b) with probability at least 1− δ, we have:

Ap ≤
54L`Λ maxi∈Nn ‖φ(xi)‖2c

1
2−

1
max(2,p)

√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))

(by CNs).

Remark 5 (Comparison with the state of the art). Corollary 17 (a) is an extension of error bounds in

the conference version [48] from 1 ≤ p ≤ 2 to the case p ≥ 1. We can see how p affects the generalization

performance of `p-norm MC-SVMs. The function f : R+ → R+ defined by f(t) = t
1
2 c

1
t is monotonically

decreasing on the interval (0, 2 log c) and increasing on the interval (2 log c,∞). Therefore, the data-

dependent error bounds in Corollary 17 (a) transfer to

Ap ≤

4ΛL`
√
πp∗n−1c1−

1
p
[∑n

i=1K(xi,xi)
] 1

2 , if p > 2 log c
2 log c−1 ,

4ΛL`(2πe log c)
1
2n−1

[∑n
i=1K(xi,xi)

] 1
2 , otherwise.

That is, the dependency on the number of classes would be polynomial with exponent 1/p∗ if p >
2 log c

2 log c−1 and logarithmic otherwise. On the other hand, the error bounds in Corollary 17 (b) sig-

nificantly improve those in Corollary 17 (a). Indeed, the error bounds in Corollary 17 (b) enjoy a

logarithmic dependency on the number of classes if p ≤ 2 and a polynomial dependency with exponent
1
2 −

1
p otherwise (up to logarithmic factors). This phase transition phenomenon at p = 2 is explained

in Remark 2. It is also clear that error bounds based on CNs outperform those based on GCs by a

factor of
√
c for p ≥ 2 (up to logarithmic factors), which, as we will explain in subsection 4.5, is due

to the use of the Lipschitz continuity measured by a norm suitable to the loss function.

4.4 Schatten-p Norm MC-SVMs

Amit et al. [2] propose to use trace-norm regularization in multi-class classification to uncover shared

structures always existing in the learning regime with many classes. Here we consider error bounds

for the more general Schatten-p norm MC-SVMs.

Corollary 18 (Generalization bounds for Schatten-p norm MC-SVMs). Let φ be the identity map and

represent w by a matrix W ∈ Rd×c. Consider Schatten-p norm MC-SVMs with loss functions (23)

and the hypothesis space Hτ with τ(W ) = ‖W‖Sp , p ≥ 1. Let 0 < δ < 1. Then,

(a) with probability at least 1− δ, we have:

ASp ≤


2

7
4 πΛL`
n
√
e

inf
p≤q≤2

(q∗)
1
2

[
c

1
q∗
[∑n

i=1 ‖xi‖22
] 1

2 + c
1
2 ‖
∑n
i=1 xix

>
i ‖

1
2

S q∗
2

]
, if p ≤ 2,

2
9
4 πΛL`c

1
2 min{c,d}

1
2
− 1
p

n
√
e

[∑n
i=1 ‖xi‖22

] 1
2 , otherwise.

(b) with probability at least 1− δ, we have:

ASp ≤


54L`Λ maxi∈Nn ‖xi‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
, if p ≤ 2

54L`Λ maxi∈Nn ‖xi‖2 min{c,d}
1
2
− 1
p

√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))
, otherwise.
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Remark 6 (Analysis of Schatten-p norm MC-SVMs). Analogous to Remark 5, error bounds of Corol-

lary 18 (a) transfer to
O
(
n−1(p∗)

1
2

(
c

1
p∗
[∑n

i=1 ‖xi‖22
] 1

2 + c
1
2 ‖
∑n
i=1 xix

>
i ‖

1
2

S p∗
2

))
, if 2 ≤ p∗ ≤ 2 log c,

O
(
n−1
√

log c
([∑n

i=1 ‖xi‖22
] 1

2 + c
1
2 ‖
∑n
i=1 xix

>
i ‖

1
2

Slog c

))
, if 2 < 2 log c < p∗,

O
(
n−1c1−

1
p
[∑n

i=1 ‖xi‖22
] 1

2
)
, if p > 2.

As a comparison, error bounds in Corollary 18 (b) would decay as O(n−
1
2 log

3
2 (n

3
2 c)) if p ≤ 2 and

O
(
n−

1
2 c

1
2−

1
p log

3
2 (n

3
2 c)
)

otherwise, which significantly outperform those in Corollary 18 (a).

Table 2: Comparison of Data-dependent Generalization Error Bounds Derived in This Taper. We

use the notation B1 =
(

1
n

∑n
i=1K(xi,xi)

) 1
2 and B∞ = maxi∈Nn ‖φ(xi)‖2. The best bound for each

MC-SVM is followed by a bullet.

MC-SVM by structural result (3) by GCs by CNs

Crammer & Singer O
(
B1n

− 1
2 c

1
2

)
O
(
B1n

− 1
2 c

1
2

)
O
(
B∞n

− 1
2 log

3
2 (nc)

)
•

Multinomial Logistic O
(
B1n

− 1
2 c

1
2

)
O
(
B1n

− 1
2 c

1
2

)
O
(
B∞n

− 1
2 log

3
2 (nc)

)
•

Weston and Watkins O
(
B1n

− 1
2 c

3
2

)
O
(
B1n

− 1
2 c
)
• O

(
B∞n

− 1
2 c log

3
2 (nc)

)
Lee et al. O

(
B1n

− 1
2 c
)
• O

(
B1n

− 1
2 c
)
• O

(
B∞n

− 1
2 c log

3
2 (nc)

)
Jenssen et al. O

(
B1n

− 1
2 c

1
2

)
O
(
B1n

− 1
2

)
• O

(
B∞n

− 1
2 log

3
2 (nc)

)
top-k O

(
B1n

− 1
2 c

1
2

)
O
(
B1n

− 1
2 (ck−1)

1
2

)
O
(
B∞n

− 1
2 log

3
2 (nc)

)
•

`p-norm p ∈ (1,∞) O
(
B1n

− 1
2 c1−

1
p
)

O
(
B1n

− 1
2 c1−

1
p
)

O
(
B∞n

− 1
2 c

1
2−

1
max(2,p) log

3
2 (nc)

)
•

Schatten-p p ∈ [1, 2) O
(
B1n

− 1
2 c

1
2

)
O
(
B1n

− 1
2 c

1
2

)
O
(
B∞n

− 1
2 log

3
2 (nc)

)
•

Schatten-p p ∈ [2,∞) O
(
B1n

− 1
2 c1−

1
p
)

O
(
B1n

− 1
2 c1−

1
p
)

O
(
B∞n

− 1
2 c

1
2−

1
p log

3
2 (nc)

)
•

4.5 Comparison of the GC with the CN Approach

In this paper, we develop two methods to derive data-dependent error bounds applicable to learning

with many classes. We summarize these two types of error bounds for some specific MC-SVMs in

the third and fourth column of Table 2, from which it is clear that each approach may yield better

bounds for some MC-SVMs than the other. For example, for the Crammer & Singer MC-SVM, the

GC-based error bound enjoys a square-root dependency on the number of classes, while the CN-based

bound enjoys a logarithmic dependency. CN-based error bounds also enjoy significant advantages for

`p-norm MC-SVMs and Schatten-p norm MC-SVMs. On the other hand, GC-based analyses also enjoy

some advantages. Firstly, for the MC-SVMs in Lee et al. [47], Weston and Watkins [78], the GC-based

error bounds decay as O(n−
1
2 c), while the CN-based bounds decay as O(n−

1
2 c log

3
2 (nc)). Secondly, the

GC-based error bounds involve a summation of K(xi,xi) over training examples, while the CN-based

error bounds involve a maximum of ‖φ(xi)‖i over training examples. In this sense, GC-based error

bounds capture better the properties of the distribution from which the training examples are drawn.

Observing the mismatch between these two types of generalization error bounds, it is interesting

to perform an in-depth discussion to explain this phenomenon. Our GC-based bounds are based on

a structural result (Lemma 1) of empirical GCs to exploit the Lipschitz continuity of loss functions

w.r.t. a variant of the `2-norm, while our CN-based analysis is based on a structural result of empirical

`∞-norm CNs to directly use the Lipschitz continuity of loss functions w.r.t. the `∞-norm. Which
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approach is better depends on the Lipschitz continuity of the associated loss functions. Specifically,

if Ψy is Lipschitz continuous w.r.t. a variant of the `2-norm involving the Lipschitz constant pair

(L1, L2), and L-Lipschitz continuous w.r.t. the `∞-norm, then one can show the following inequality

with probability at least 1− δ for δ ∈ (0, 1) (Theorem 2 and Theorem 6, respectively)

Aτ ≤


2
√
π
[
L1cGS̃(H̃τ ) + L2GS̃′(H̃τ )

]
, (by GCs), (29a)

27L
√
cRnc(H̃τ )

(
1 + log

3
2
2

B̂n
√
c

Rnc(H̃τ )

)
, (by CNs). (29b)

It is reasonable to assume that GS̃(H̃τ ) and Rnc(H̃τ ) decay at a same order. For example, if

τ(w) = ‖w‖2,p, p ≥ 2, then one can show (the first inequality follows from (38), (39) and (40), and the

second inequality follows from Proposition 7)

GS̃(H̃τ ) = O
(
n−1c−

1
p
( n∑
i=1

K(xi,xi)
) 1

2

)
and Rnc(H̃τ ) = O

(
n−

1
2 c−

1
p max
i∈Nn

‖φ(xi)‖2
)
.

We further assume the dominant term in (29a) is L1cGS̃(H̃τ ) to see clearly the relative behavior of

these two types of error bounds. If L1 and L are of the same order, as exemplified by Example 1 and

Example 2, then the error bounds based on CNs outperform those based on GCs by a factor of
√
c

(up to logarithmic factors). If L1 = O(c−
1
2L), as exemplified by Example 3, Example 4 and Example

5, then the error bounds based on GCs outperform those based on CNs by a factor of log
3
2 (nc).

The underlying reason is that the Lipschitz continuity w.r.t. ‖ · ‖2 is a weaker assumption than that

w.r.t. ‖ · ‖∞ in the magnitude of Lipschitz constants. Indeed, if Ψy is L1-Lipschitz continuous w.r.t.

‖ · ‖2, then one may expect that Ψy is (L1
√
c)-Lipschitz continuous w.r.t. ‖ · ‖∞ due to the inequality

‖t‖2 ≤
√
c‖t‖∞ for any t ∈ Rc. This explains why (29b) outperforms (29a) by a factor of

√
c if

we ignore the Lipschitz constants. To summarize, if L1 = O(c−
1
2L), then (29a) outperforms (29b).

Otherwise, (29b) would be better. Therefore, one should choose an appropriate approach according to

the associated loss function to exploit the inherent Lipschitz continuity.

We also include the error bounds based on the structural result (3) in the second column to

demonstrate the advantages of the structural result based on our variant of the `2-norm over (3).

5 Experiments

In this section, we report some experimental results to show the effectiveness of our theory. We choose

the multinomial logistic loss Ψy(t) = Ψm
y (t) defined in Example 2 and the hypothesis space Hτ with

τ(w) = ‖w‖2,p, p ≥ 1 and φ(x) = x. In subsection 5.1, we aim to show that our error bounds capture

well the effects of the parameter p and the number of classes on the generalization performance. In

subsection, 5.2, we aim to show that our error analysis is able to imply a structural risk working well

in the model selection. We use several benchmark datasets in our experiments: the MNIST collected

by [45], the NEWS20 collected by [42], the LETTER collected by [33], the RCV1 collected by [49],

the SECTOR collected by [52] and the ALOI collected by [26]. For ALOI, we include the first 67%

instances in each class in the training dataset and use the remaining instances as the test dataset.

Table 3 gives some information of these datasets. All these datasets can be downloaded from the

LIBSVM website [13].

5.1 Behavior of empirical Rademacher complexity

Our generalization analysis depends crucially on estimating the empirical RC RS(Fτ,Λ), which, as

shown in the proof of Corollary 17 (b), is bounded by O(Λn−
1
2 c

1
2−

1
max(2,p) max

i∈Nn
‖xi‖2). Our purpose
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Table 3: Description of datasets used in the experiments.

Dataset c n # Test Examples d

MNIST 10 60, 000 10, 000 778

NEWS20 20 15, 935 3, 993 62, 060

LETTER 26 10, 500 5, 000 16

RCV1 53 15, 564 518, 571 47, 236

SECTOR 105 6, 412 3, 207 55, 197

ALOI 1, 000 72, 000 36, 000 128

here is to investigate whether it really captures the behavior of RS(Fτ,Λ) in practice.

Let ε = {εi}i∈Nn be independent Rademacher variables and define

R̃S(ε, Fτ,Λ) :=
1

n
sup

w∈Rd×c:‖w‖2,p≤Λ

n∑
i=1

εiΨ
m
yi

(
〈w1,xi〉, . . . , 〈wc,xi〉

)
. (30)

It can be checked that R̃S(ε, Fτ,Λ) (as a function of ε) satisfies the increment condition (35) in

McDiarmid’s inequality below and concentrates sharply around its expectation RS(Fτ,Λ). We ap-

proximate RS(Fτ,Λ) by an Approximation of Empirical Rademacher Complexity (AERC) defined by

AERC(Fτ,Λ) := 1
20

∑20
t=1 R̃S(ε(t), Fτ,Λ), where ε(t) = {ε(t)i }i∈Nn , t = 1, . . . , 20, are independent se-

quences of independent Rademacher random variables. We consider two approaches to identify the

effect of p and c on the generalization performance, respectively.

Algorithm 1: Frank-Wolfe Algorithm

1 Let k = 0 and w(0) = 0 ∈ Rd×c

2 while Optimality conditions are not satisfied do

3 Compute w̃ = arg minw:‖w‖2,p≤Λ

〈
w,∇f(w(k))〉

4 Calculate the direction v = w̃ −w(k) and step size γ ∈ [0, 1]

5 Update w(k+1) = w(k) + γv

6 Set k = k + 1

7 end

The calculation of AERC involves the constrained non-convex optimization problem (30), which

we solve by the classic Frank-Wolfe algorithm [25, 34]. We describe the Frank-Wolfe algorithm to solve

minw∈4p f(w) for a general function f defined on the feasible set 4p = {w ∈ Rd×c : ‖w‖2,p ≤ Λ} with

p ≥ 1 and Λ > 0 in Algorithm 1. This is a projection-free method but involves a constrained linear

optimization problem at each iteration, which, as shown in the following proposition, has a closed-form

solution. In line 4 of Algorithm 1, we use a backtracking line search to search the step size γ satisfying

the Armijo condition (e.g., page 33 in [58]). Proposition 19 can be proved by checking ‖w∗‖2,p ≤ 1

and 〈w∗,v〉 = −‖v‖2,p∗ , and is deferred to Appendix C.

Proposition 19. Let v = (v1, . . . ,vc) ∈ Rd×c have nonzero column vectors and p ≥ 1. Then the

optimization problem

arg min
w∈Rd×c

〈w,v〉 s.t. ‖w‖2,p ≤ 1 (31)
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has a closed-form solution w∗ = (w∗1, . . . ,w
∗
c ) as follows

w∗j =


−vj̄‖vj̄‖−1

2 , if p = 1 and j = j̄,

0, if p = 1 and j 6= j̄,

−
(∑c

j̃=1 ‖vj̃‖
p∗

2

)− 1
p ‖vj‖p

∗−2
2 vj , if 1 < p <∞,

−‖vj‖−1
2 vj , if p =∞,

(32)

where j̄ is the smallest index satisfying ‖vj̄‖2 = maxj̃∈Nc ‖vj̃‖2 and p∗ = p/(p− 1).

In our first approach, we fix the dataset S, the parameter Λ = 100 and vary the parameter p over

the set {1.33, 1.67, 2, 2.33, 2.67, 3, 4, 5, 8, 10, 25, 50}. We plot the AERAs as a function of p for RCV1,

SECTOR and ALOI in Figure 2 (a), (b) and (c), respectively. We also include a plot of the function

fτ̄ (p) = τ̄ c
1
2−

1
max(2,p) in each panel of Figure 2, where the corresponding parameter τ̄ is computed

by fitting the AERAs with linear models {p → fτ (p) : τ ∈ R+}. According to Figure 2, it is clear

that AERAs and fτ̄ match very well, implying that Corollary 17 (b) captures well the effect of the

parameter p on the error bounds.
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(c) ALOI.

Figure 2: AERAs as a function of p. We vary p over {1.33, 1.67, 2, 2.33, 2.67, 3, 4, 5, 8, 10, 25, 50} and

calculate the AERA for each p. The panels (a), (b) and (c) show the results for RCV1, SECTOR and

ALOI, respectively. We also include a plot of fτ̄ (p) in this figure, where τ̄ is calculated by applying

the least squares method to fit these AERAs with fτ (p).

In our second approach, we fix the input training data {xi}ni=1, the parameter p and Λ = 100,

and vary the number of classes c̃ over the set {10, 20, 30, 50, 75, 100, 150, 200, 250, 375, 500}. For each

considered c̃, we create a data set S(c̃) = {(xi, y(c̃)
i )}ni=1 with y

(c̃)
i = yi mod c + 1. We perform

experiments on the ALOI. We plot the AERAs as a function of c̃ in Figure 3 for p = 2, 4,∞, respectively.

In each of these panels, we include a plot of the function f̃τ̄ (c̃) = τ̄ c̃
1
2−

1
max(2,p) , where the corresponding

parameter τ̄ is computed by fitting the AERAs with linear models {c̃ → f̃τ (c̃) : τ ∈ R+}. We see

from Figure 3 (b), 3 (c) that AERAs and f̃τ̄ match well, implying that Corollary 17 captures well the

effect of the number of classes on the error bounds. For the specific case p = 2, Figure 3 (a) shows

that AERAs fluctuate within the small region (0.785, 0.83), justifying the class-size independency of

AERAs in this case.

5.2 Behavior of `p-norm MC-SVMs and model selection

Motivated by our GC-based bound given in Corollary 17 (a), we propose an `p-norm MC-SVM in [48]

for p ∈ (1, 2]. We solve the involved optimization problem by introducing class weights and alternating
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Figure 3: AERAs as a function of the number of classes. Based on the ALOI, we construct datasets

with varying number of classes c̃, for each of which we compute the associated AERA. The panels (a),

(b) and (c) correspond to p = 2, p = 4 and p =∞, respectively. We also include a plot of f̃τ̄ (p) in this

figure, where τ̄ is calculated by applying the least squares method to fit these AERAs with f̃τ (p).

the update w.r.t. class weights and the update w.r.t. the model w. In this paper, we propose to solve

this optimization problem by the Frank-Wolfe algorithm (Algorithm 1), which avoids the introduction

of additional class weights and extends the algorithm in [48] to the case p ≥ 2. The closed-form solution

established in Proposition 19 makes the implementation of this algorithm very simple and efficient.

We traverse p over the set {1.33, 1.67, 2, 2.5, 3, 4, 8,∞} and Λ over the set {100.5, 10, 101.5, . . . , 103.5}.
For each pair (p,Λ), we compute the following wp,Λ by Algorithm 1

wp,Λ := arg min
w∈Rd×c:‖w‖2,p≤Λ

1

n

n∑
i=1

Ψm
yi

(
〈w1,xi〉, . . . , 〈wc,xi〉

)
and compute the accuracy (the percent of instances being labeled correctly) on the test examples.

We now describe how to apply our error bounds in identifying an appropriate model from the

candidate models constructed above. Since wp,Λ ∈ Hp̃,‖wp,Λ‖2,p̃ for any p̃ ≥ 1, one can derive from

Proposition 17 the following inequality with probability 1−δ (here we omit the randomness of ‖wp,Λ‖2,p̃
for brevity)

Ex,yΨy(hwp,Λ(x))− 3BΨ

[ log 4
δ

2n

] 1
2 ≤ 1

n

n∑
i=1

Ψyi(h
wp,Λ(xi))+

54‖wp,Λ‖2,p̃ max
i∈Nn

‖xi‖2c
1
2−

1
max(2,p̃)

(
1 + log

3
2
2

(√
2n

3
2 c
))

√
n

.

According to the inequality ‖w‖2,2 ≤ ‖w‖2,p̃c
1
2−

1
p̃ for any p̃ ≥ 2, the term ‖w‖2,p̃c

1
2−

1
max(2,p̃) attains

its minimum at p̃ = 2. Hence, we construct the following structural risk (ignoring logarithmic factors

here)

Errstr,λ(w) :=
1

n

n∑
i=1

Ψyi(h
w(xi)) +

λ‖w‖2,2 maxi∈Nn ‖xi‖2√
n

(33)

and use it to select a model with the minimal structural risk among all candidates wp,Λ. We use

λ = 0.5 in this paper.

In Table 4, we report the best accuracy achieved by `2-norm MC-SVM over all considered Λ

(the column termed p = 2), the best accuracy achieved by `p-norm MC-SVMs over all considered p

and Λ (the column termed Oracle), and the accuracy for the model with the minimal structural risk

22



(the column termed model selection). The parameter p for both the model with the best accuracy

(Oracle) and the model selected by model selection are also indicated. For comparison, we also include

in the column “Weston & Watkins” the best accuracy achieved by the MC-SVM in Corollary 13

with `(t) = log(1 + exp(−t)). Experimental results show that the structural risk (33) works well in

guiding the selection of a model with comparable prediction accuracy to the best candidate model.

Furthermore, `p-norm MC-SVMs can significantly outperform the specific `2-norm MC-SVM on some

datasets. For example, the `∞-norm MC-SVM attains 3.5% accuracy gain over the `2-norm MC-SVM

on ALOI.

Although Corollary 17 (b) on estimation error bounds suggests that one should use p ≤ 2 when

training `p-norm MC-SVMs, Table 4 shows that `p-norm MC-SVMs achieve the best accuracy at

different p for different problems. The underlying reason is that the approximation power of Hp

increases with p due to the relationship Hp ⊂ Hp̃ if p ≤ p̃. A good model should balance the

approximation and estimation errors by choosing p suitable to the associated problem.

Although the error bounds for models in Corollaries 11-15 may enjoy different dependencies on the

number of classes, this not necessarily implies that a model would outperform the other in terms of

prediction accuracies for all problems. The underlying reason is that these error bounds are stated

for different loss functions and are therefore not comparable. Let us consider the multinomial logistic

regression in Corollary 12 and the Weston & Watkins MC-SVM in Corollary 13 for example. Although

the dependencies on the number of classes greatly differ in Corollary 12 (b) (logarithmic) and Corollary

13 (a) (linear), the column “p = 2” and the column “Weston & Watkins” in Table 4 show that their

difference in the prediction accuracy is not that large.

Table 4: Performance of `p-norm MC-SVMs on several benchmark datasets. We train `p-norm MC-

SVMs by traversing p over {1.33, 1.67, 2, 2.5, 3, 4, 8,∞} and Λ over {100.5, 10, . . . , 103.5} to get candidate

models. The column p = 2 shows the accuracy achieved by the `2-norm MC-SVM. The column “Oracle”

corresponds to the model with the best accuracy over all candidate models, where we also indicate the

associated p and accuracy. The column “Model Selection” corresponds to the model with the smallest

structural risk over all candidate models, where we also indicate the associated p and accuracy. For

comparison, we also include in the column “Weston & Watkins” the best accuracy achieved by the

MC-SVM in Corollary 13 with `(t) = log(1 + exp(−t)), where we traverse Λ over {100.5, 10, . . . , 103.5}.

Dataset p = 2
Oracle Model Selection

Weston & Watkins
p Accuracy p Accuracy

MNIST 91.05 2.5 91.44 ∞ 91.40 91.00

NEWS20 84.07 4 84.45 4 84.27 84.10

LETTER 72.22 ∞ 74.36 8 74.04 69.28

RCV1 88.67 1.67 88.74 3 88.08 88.67

SECTOR 93.08 3 93.26 3 92.14 92.83

ALOI 84.12 ∞ 87.70 4 87.18 78.56

6 Proofs

In this section, we present the proofs of the results presented in the previous sections.
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6.1 Proof of Bounds by Gaussian Complexities

In this subsection, we present the proofs for data-dependent bounds in subsection 3.3. The proof of

Lemma 1 requires to use a comparison result (Lemma 20) on Gaussian processes attributed to Slepian

[65], while the proof of Theorem 2 is based on a concentration inequality in [53].

Lemma 20. Let {Xθ : θ ∈ Θ} and {Yθ : θ ∈ Θ} be two mean-zero separable Gaussian processes

indexed by the same set Θ and suppose that

E[(Xθ − Xθ̄)
2] ≤ E[(Yθ −Yθ̄)

2], ∀θ, θ̄ ∈ Θ. (34)

Then E[supθ∈Θ Xθ] ≤ E[supθ∈Θ Yθ].

Lemma 21 (McDiarmid inequality [53]). Let Z1, . . . , Zn be independent random variables taking values

in a set Z, and assume that f : Zn → R satisfies

sup
z1,...,zn,z̄i∈Z

|f(z1, · · · , zn)− f(z1, · · · , zi−1, z̄i, zi+1, · · · , zn)| ≤ ci (35)

for 1 ≤ i ≤ n. Then, for any 0 < δ < 1, with probability at least 1− δ, we have

f(Z1, . . . , Zn) ≤ Ef(Z1, . . . , Zn) +

√∑n
i=1 c

2
i log(1/δ)

2
.

Proof of Lemma 1. Define two mean-zero separable Gaussian processes indexed by the finite dimen-

sional Euclidean space {(h(x1), . . . , h(xn)) : h ∈ H}

Xh :=

n∑
i=1

gifi(h(xi)), Yh :=
√

2L1

n∑
i=1

c∑
j=1

gijhj(xi) +
√

2L2

n∑
i=1

gihr(i)(xi).

For any h, h′ ∈ H, the independence among gi, gij and Eg2
i = 1,Eg2

ij = 1,∀i ∈ Nn, j ∈ Nc imply that

E[(Xh − Xh′)
2] = E

[( n∑
i=1

gi
(
fi(h(xi))− fi(h′(xi))

))2]
=

n∑
i=1

[
fi(h(xi))− fi(h′(xi))

]2
≤

n∑
i=1

[
L1

[ c∑
j=1

|hj(xi)− h′j(xi)|2
] 1

2 + L2|hr(i)(xi)− h′r(i)(xi)|
]2

≤ 2L2
1

n∑
i=1

c∑
j=1

|hj(xi)− h′j(xi)|2 + 2L2
2

n∑
i=1

|hr(i)(xi)− h′r(i)(xi)|
2

= E[(Yh −Yh′)
2],

where we have used the Lipschitz continuity of fi w.r.t. a variant of the `2-norm in the first inequality,

and the elementary inequality (a+ b)2 ≤ 2(a2 + b2) in the second inequality. Therefore, the condition

(34) holds and Lemma 20 can be applied here to give

Eg sup
h∈H

n∑
i=1

gifi(h(xi)) ≤ Eg sup
h∈H

[√
2L1

n∑
i=1

c∑
j=1

gijhj(xi) +
√

2L2

n∑
i=1

gihr(i)(xi)
]

≤
√

2L1Eg sup
h∈H

n∑
i=1

c∑
j=1

gijhj(xi) +
√

2L2Eg sup
h∈H

n∑
i=1

gihr(i)(xi).

The proof of Lemma 1 is complete.
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Proof of Theorem 2. It can be checked that f(z1, . . . , zn) = suphw∈Hτ

[
EzΨy(hw(x))− 1

n

∑n
i=1 Ψyi(h

w(xi))
]

satisfies the increment condition (35) with ci = BΨ/n. An application of McDiarmid’s inequality

(Lemma 21) then shows the following inequality with probability 1− δ/2

sup
hw∈Hτ

[
EzΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
≤

Ez sup
hw∈Hτ

[
EzΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
+BΨ

√
log 2

δ

2n
.

It follows from the standard symmetrization technique (see, e.g., proof of Theorem 3.1 in [56]) that

Ez sup
hw∈Hτ

[
Ex,yΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
≤ 2EzEε sup

hw∈Hτ

[ 1

n

n∑
i=1

εiΨyi(h
w(xi))

]
.

It can also be checked that the function f(z1, . . . , zn) = Eε suphw∈Hτ
[

1
n

∑n
i=1 εiΨyi(h

w(xi))
]

satisfies

the increment condition (35) with ci = BΨ/n. Another application of McDiarmid’s inequality shows

the inequality EzRS(Fτ,Λ) ≤ RS(Fτ,Λ) +BΨ

√
log 2

δ

2n with probability 1− δ/2, which together with the

above two inequalities then imply the following inequality with probability at least 1− δ

sup
hw∈Hτ

[
EzΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
≤ 2RS(Fτ,Λ) + 3BΨ

√
log 2

δ

2n
. (36)

Furthermore, according to the following relationship between Gaussian and Rademacher processes for

any function class H̃ [6] (|S| is the cardinality of S)

RS(H̃) ≤
√
π

2
GS(H̃) ≤ 3

√
π log |S|

2
RS(H̃),

we derive

RS

({
Ψy(hw(x)) :hw ∈ Hτ

})
≤
√
π

2
GS
({

Ψy(hw(x)) : hw ∈ Hτ

})
=

√
π

2

1

n
Eg sup

hw∈Hτ

n∑
i=1

giΨyi(h
w(xi))

≤ L1
√
π

n
Eg sup

hw∈Hτ

n∑
i=1

c∑
j=1

gijh
w
j (xi) +

L2
√
π

n
Eg sup

hw∈Hτ

n∑
i=1

gih
w
yi(xi),

where the last step follows from Lemma 1 with fi = Ψyi and r(i) = yi,∀i ∈ Nn. Plugging the above

RC bound into (36) gives the following inequality with probability at least 1− δ

Aτ ≤
2L1
√
π

n
Eg sup

hw∈Hτ

n∑
i=1

c∑
j=1

gij〈wj , φ(xi)〉+
2L2
√
π

n
Eg sup

hw∈Hτ

n∑
i=1

gi〈wyi , φ(xi)〉. (37)

It remains to estimate the two terms on the right-hand side of (37). By (12), the definition of H̃τ , S̃

and S̃′, we know

Eg sup
hw∈Hτ

n∑
i=1

c∑
j=1

gij〈wj , φ(xi)〉 = Eg sup
w:τ(w)≤Λ

n∑
i=1

c∑
j=1

gij〈w, φ̃j(xi)〉 = ncGS̃(H̃τ ) (38)

and

Eg sup
hw∈Hτ

n∑
i=1

gi〈wyi , φ(xi)〉 = Eg sup
w:τ(w)≤Λ

n∑
i=1

gi〈w, φ̃yi(xi)〉 = nGS̃′(H̃τ ).
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Plugging the above two identities back into (37) gives (13).

We now show (14). According to the definition of dual norm, we derive

Eg sup
hw∈Hτ

n∑
i=1

c∑
j=1

gij〈wj , φ(xi)〉 = Eg sup
hw∈Hτ

c∑
j=1

〈
wj ,

n∑
i=1

gijφ(xi)
〉

= Eg sup
hw∈Hτ

〈w,
( n∑
i=1

gijφ(xi)
)c
j=1
〉

≤ Eg sup
hw∈Hτ

‖w‖
∥∥( n∑

i=1

gijφ(xi)
)c
j=1

∥∥
∗ = ΛEg

∥∥∥( n∑
i=1

gijφ(xi)
)c
j=1

∥∥∥
∗
.

(39)

Analogously, we also have

Eg sup
hw∈Hτ

n∑
i=1

gi〈wyi , φ(xi)〉 = Eg sup
hw∈Hτ

c∑
j=1

〈wj ,
∑
i∈Ij

giφ(xi)〉

= Eg sup
hw∈Hτ

〈w,
(∑
i∈Ij

giφ(xi)
)c
j=1
〉 ≤ ΛEg

∥∥(∑
i∈Ij

giφ(xi)
)c
j=1

∥∥
∗.

Plugging the above two inequalities back into (37) gives (14).

Proof of Corollary 3. Let q ≥ p be any real number. It follows from Jensen’s inequality and Khintchine-

Kahane inequality (A.1) that

Eg
∥∥∥( n∑

i=1

gijφ(xi)
)c
j=1

∥∥∥
2,q∗

= Eg
[ c∑
j=1

∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥q∗

2

] 1
q∗ ≤

[ c∑
j=1

Eg
∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥q∗

2

] 1
q∗

≤
[ c∑
j=1

[
q∗

n∑
i=1

‖φ(xi)‖22
] q∗

2
] 1
q∗

= c
1
q∗
[
q∗

n∑
i=1

K(xi,xi)
] 1

2

. (40)

Applying again Jensen’s inequality and Khintchine-Kahane inequality (A.1), we get

Eg
∥∥∥(∑

i∈Ij

giφ(xi)
)c
j=1

∥∥∥
2,q∗
≤
[
Eg

c∑
j=1

∥∥∥∑
i∈Ij

giφ(xi)
∥∥∥q∗

2

] 1
q∗ ≤

√
q∗
[ c∑
j=1

[∑
i∈Ij

‖φ(xi)‖22
] q∗

2
] 1
q∗
. (41)

We now control the last term in the above inequality by distinguishing whether q ≥ 2 or not. If q ≤ 2,

we have 2−1q∗ ≥ 1 and it follows from the elementary inequality as + bs ≤ (a + b)s,∀a, b ≥ 0, s ≥ 1

that
c∑
j=1

[∑
i∈Ij

K(xi,xi)
] q∗

2 ≤
[ c∑
j=1

∑
i∈Ij

K(xi,xi)
] q∗

2

=
[ n∑
i=1

K(xi,xi)
] q∗

2

. (42)

Otherwise we have 2−1q∗ ≤ 1 and Jensen’s inequality implies

c∑
j=1

[∑
i∈Ij

K(xi,xi)
] q∗

2 ≤ c
[ c∑
j=1

1

c

∑
i∈Ij

K(xi,xi)
] q∗

2

= c1−
q∗
2

[ n∑
i=1

K(xi,xi)
] q∗

2

. (43)

Combining (41), (42) and (43) together implies

Eg
∥∥∥(∑

i∈Ij

giφ(xi)
)c
j=1

∥∥∥
2,q∗
≤ max(c

1
q∗−

1
2 , 1)

[
q∗

n∑
i=1

K(xi,xi)
] 1

2

. (44)

According to the monotonicity of ‖ · ‖2,p w.r.t. p, we have Hp,Λ ⊂ Hq,Λ if p ≤ q. Plugging the

complexity bound established in Eqs. (40), (44) into the generalization bound given in Theorem 2, we

get the following inequality with probability at least 1− δ

Aτ ≤
2Λ
√
π

n

[
L1c

1
q∗
[
q∗

n∑
i=1

K(xi,xi)
] 1

2

+ L2 max(c
1
q∗−

1
2 , 1)

[
q∗

n∑
i=1

K(xi,xi)
] 1

2

]
, ∀q ≥ p.

The proof is complete.
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Remark 7 (Tightness of the Rademacher Complexity Bound). Eq. (40) gives an upper bound on

Eg
∥∥∥(∑n

i=1 gijφ(xi)
)c
j=1

∥∥∥
2,q∗

. We now show that this bound is tight up to a constant factor. Indeed,

according to the elementary inequality for a1, . . . , ac ≥ 0(
a1 + · · ·+ ac

) 1
q∗ ≥ c

1
q∗−1(a 1

q∗

1 + · · ·+ a
1
q∗
c

)
,

we derive ∥∥∥( n∑
i=1

gijφ(xi)
)c
j=1

∥∥∥
2,q∗

=
[ c∑
j=1

∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥q∗

2

] 1
q∗ ≥ c

1
q∗−1

c∑
j=1

∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥

2
.

Taking expectations on both sides, we get that

Eg
∥∥∥( n∑

i=1

gijφ(xi)
)c
j=1

∥∥∥
2,q∗
≥ c

1
q∗−1

c∑
j=1

Eg
∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥

2
≥ 2−

1
2 c

1
q∗
[ n∑
i=1

K(xi,xi)
] 1

2

,

where the second inequality is due to (A.2). The above lower bound coincides with the upper

bound (40) up to a constant factor. Specifically, the above upper and lower bounds show that

Eg
∥∥∥(∑n

i=1 gijφ(xi)
)c
j=1

∥∥∥
2,q∗

enjoys exactly a square-root dependency on the number of classes if

q = 2.

Proof of Corollary 4. We first consider the case 1 ≤ p ≤ 2. Let q ∈ R satisfy p ≤ q ≤ 2. Denote

X̃j
i = (0, . . . , 0,xi, 0, . . . , 0) with the j-th column being xi. Then, we have( n∑

i=1

gijxi
)c
j=1

=

n∑
i=1

c∑
j=1

gijX̃
j
i and

(∑
i∈I1

gixi, . . . ,
∑
i∈Ic

gixi
)

=

c∑
j=1

∑
i∈Ij

giX̃
j
i . (45)

Since q∗ ≥ 2, we can apply Jensen’s inequality and Khintchine-Kahane inequality (A.3) to derive

(recall σr(X) denotes the r-th singular value of X)

Eg
∥∥ n∑
i=1

c∑
j=1

gijX̃
j
i

∥∥
Sq∗
≤
[
Eg

min{c,d}∑
r=1

σq
∗

r

( n∑
i=1

c∑
j=1

gijX̃
j
i

)] 1
q∗

≤ 2−
1
4

√
πq∗

e
max

{∥∥∥[ n∑
i=1

c∑
j=1

(X̃j
i )>X̃j

i

] 1
2
∥∥∥
Sq∗

,
∥∥∥[ n∑

i=1

c∑
j=1

X̃j
i (X̃j

i )>
] 1

2
∥∥∥
Sq∗

}
. (46)

For any u = (u1, . . . , uc) ∈ Rc, we denote by diag(u) the diagonal matrix in Rc×c with the j-th diagonal

element being uj . The following identities can be directly checked

n∑
i=1

c∑
j=1

(X̃j
i )>(X̃j

i ) =

n∑
i=1

c∑
j=1

‖xi‖22diag(ej) =

n∑
i=1

‖xi‖22Ic×c,

n∑
i=1

c∑
j=1

(X̃j
i )(X̃j

i )> =

n∑
i=1

c∑
j=1

xix
>
i = c

n∑
i=1

xix
>
i ,

where (e1, . . . , ec) forms the identity matrix Ic×c ∈ Rc×c Therefore,∥∥∥[ n∑
i=1

c∑
j=1

(X̃j
i )>(X̃j

i )
] 1

2
∥∥∥
Sq∗

=
∥∥∥( n∑

i=1

‖xi‖22
) 1

2

Ic×c

∥∥∥
Sq∗

= c
1
q∗
[ n∑
i=1

‖xi‖22
] 1

2

, (47)

and ∥∥∥[ n∑
i=1

c∑
j=1

(X̃j
i )(X̃j

i )>
] 1

2
∥∥∥
Sq∗

=
√
c
∥∥∥( n∑

i=1

xix
>
i

) 1
2
∥∥∥
Sq∗

=
√
c
[min{c,d}∑

r=1

σq
∗

r

(( n∑
i=1

xix
>
i

) 1
2

)] 1
q∗

=
√
c
[min{c,d}∑

r=1

σ
q∗
2
r

( n∑
i=1

xix
>
i

)] 1
q∗

=
[
c
∥∥ n∑
i=1

xix
>
i

∥∥
S q∗

2

] 1
2

. (48)
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Plugging (47) and (48) into (46) gives

Eg
∥∥∥ n∑
i=1

c∑
j=1

gijX̃
j
i

∥∥∥
Sq∗
≤ 2−

1
4

√
πq∗

e
max

{
c

1
q∗
[ n∑
i=1

‖xi‖22
] 1

2

, c
1
2

∥∥∥ n∑
i=1

xix
>
i

∥∥∥ 1
2

S q∗
2

}
. (49)

Applying again Jensen’s inequality and Khintchine-Kahane inequality (A.3) gives

Eg
∥∥ c∑
j=1

∑
i∈Ij

giX̃
j
i

∥∥
Sq∗
≤
[
Eg

min{c,d}∑
r=1

σq
∗

r

( c∑
j=1

∑
i∈Ij

giX̃
j
i

)] 1
q∗

≤ 2−
1
4

√
πq∗

e
max

{∥∥∥[ c∑
j=1

∑
i∈Ij

(X̃j
i )>X̃j

i

] 1
2
∥∥∥
Sq∗

,
∥∥∥[ c∑

j=1

∑
i∈Ij

X̃j
i (X̃j

i )>
] 1

2
∥∥∥
Sq∗

}
. (50)

It can be directly checked that

c∑
j=1

∑
i∈Ij

(X̃j
i )>(X̃j

i ) =

c∑
j=1

∑
i∈Ij

‖xi‖22diag(ej) = diag
(∑
i∈I1

‖xi‖22, . . . ,
∑
i∈Ic

‖xi‖22
)
,

c∑
j=1

∑
i∈Ij

(X̃j
i )(X̃j

i )> =

c∑
j=1

∑
i∈Ij

xix
>
i =

n∑
i=1

xix
>
i ,

from which and q∗ ≥ 2 we derive∥∥∥[ c∑
j=1

∑
i∈Ij

(X̃j
i )>X̃j

i

] 1
2
∥∥∥
Sq∗

=
[ c∑
j=1

(∑
i∈Ij

‖xi‖22
) q∗

2
] 1
q∗ ≤

[ c∑
j=1

∑
i∈Ij

‖xi‖22
] 1

2

=
[ n∑
i=1

‖xi‖22
] 1

2

,

∥∥∥[ c∑
j=1

∑
i∈Ij

X̃j
i (X̃j

i )>
] 1

2
∥∥∥
Sq∗

=
∥∥∥[ n∑

i=1

xix
>
i

] 1
2
∥∥∥
Sq∗
≤
∥∥∥[ n∑

i=1

xix
>
i

] 1
2
∥∥∥
S2

=
[ n∑
i=1

‖xi‖22
] 1

2

,

where we have used deduction similar to (48) in the last identity. Plugging the above two inequalities

back into (50) implies

Eg
∥∥ c∑
j=1

∑
i∈Ij

giX̃
j
i

∥∥
Sq∗
≤ 2−

1
4

√
πq∗

e

[ n∑
i=1

‖xi‖22
] 1

2

. (51)

Plugging (49) and (51) into Theorem 2 and noting that HSp ⊂ HSq we get the following inequality

with probability at least 1− δ

ASp ≤
2

3
4πΛ

n
√
e

inf
p≤q≤2

(q∗)
1
2

{
L1 max

{
c

1
q∗
[ n∑
i=1

‖xi‖22
] 1

2

, c
1
2

∥∥∥ n∑
i=1

xix
>
i

∥∥∥ 1
2

S q∗
2

}
+ L2

[ n∑
i=1

‖xi‖22
] 1

2

}
. (52)

This finishes the proof for the case p ≤ 2.

We now consider the case p > 2. For any W with ‖W‖Sp ≤ Λ, we have ‖W‖S2
≤ min{c, d}

1
2−

1
pΛ.

The stated bound (16) for the case p > 2 then follows by recalling the established generalization bound

(52) for p = 2.

6.2 Proof of Bounds by Covering Numbers

We use the tool of empirical `∞-norm CNs to prove data-dependent bounds given in subsection 3.4. The

key observation to proceed with the proof is that the empirical `∞-norm CNs of Fτ,Λ w.r.t. the training

examples can be controlled by that of H̃τ w.r.t. an enlarged data set of cardinality nc, due to the

Lipschitz continuity of loss functions w.r.t. the `∞-norm [71, 81]. The remaining problem is to estimate

the empirical CNs of H̃τ , which, by the universal relationship between fat-shattering dimension and

CNs (Part (a) of Lemma 22), can be further transferred to the estimation of fat-shattering dimension.

Finally, the problem of estimating fat-shattering dimension reduces to the estimation of worst case RC

(Part (b) of Lemma 22). We summarize this deduction process in the proof of Theorem 23.
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Definition 3 (Covering number). Let F be a class of real-valued functions defined over a space Z̃
and S′ := {z̃1, . . . , z̃n} ∈ Z̃n of cardinality n. For any ε > 0, the empirical `∞-norm CN N∞(ε, F, S′)

w.r.t. S′ is defined as the minimal number m of a collection of vectors v1, . . . ,vm ∈ Rn such that (vji
is the i-th component of the vector vj)

sup
f∈F

min
j=1,...,m

max
i=1,...,n

|f(z̃i)− vji | ≤ ε.

In this case, we call {v1, . . . ,vm} an (ε, `∞)-cover of F w.r.t. S′.

Definition 4 (Fat-Shattering Dimension). Let F be a class of real-valued functions defined over a

space Z̃. We define the fat-shattering dimension fatε(F ) at scale ε > 0 as the largest D ∈ N such that

there exist D points z̃1, . . . , z̃D ∈ Z̃ and witnesses s1, . . . , sD ∈ R satisfying: for any δ1, . . . , δD ∈ {±1}
there exists f ∈ F with

δi(f(z̃i)− si) ≥ ε/2, ∀i = 1, . . . , D.

Lemma 22 ([62, 66]). Let F be a class of real-valued functions defined over a space Z̃ and S′ :=

{z̃1, . . . , z̃n} ∈ Z̃n of cardinality n.

(a) If functions in F take values in [−B,B], then for any ε > 0 with fatε(F ) < n we have

logN∞(ε, F, S′) ≤ fatε(F ) log
2eBn

ε
.

(b) For any ε > 2Rn(F ), we have fatε(F ) < 16n
ε2 R2

n(F ).

(c) For any monotone sequence (εk)∞k=0 decreasing to 0 such that ε0 ≥
√
n−1 supf∈F

∑n
i=1 f

2(z̃i), the

following inequality holds for every non-negative integer N :

RS′(F ) ≤ 2

N∑
k=1

(
εk + εk−1)

√
logN∞(εk, F, S′)

n
+ εN . (53)

Theorem 23 (Covering number bounds). Assume that, for any y ∈ Y, the function Ψy is L-

Lipschitz continuous w.r.t. the `∞-norm. Then, for any ε > 4LRnc(H̃τ ), the CN of Fτ,Λ w.r.t.

S = {(x1, y1), . . . , (xn, yn)} can be bounded by

logN∞(ε, Fτ,Λ, S) ≤ 16ncL2R2
nc(H̃τ )

ε2
log

2eB̂ncL

ε
.

Proof. We proceed with the proof in three steps. Note that H̃τ is a class of functions defined on a

finite set S̃ =
{
φ̃j(xi) : i ∈ Nn, j ∈ Nc

}
.

Step 1. We first estimate the CN of H̃τ w.r.t. S̃. For any ε > 4Rnc(H̃τ ), Part (b) of Lemma 22

implies that

fatε(H̃τ ) <
16nc

ε2
R2
nc(H̃τ ) ≤ nc. (54)

According to (12) and the definition of B̂, we derive the following inequality for any w with τ(w) ≤ Λ

and i ∈ Nn, j ∈ Nc

|〈w, φ̃j(xi)〉| = |〈wj , φ(xi)〉| ≤ ‖wj‖2‖φ(xi)‖2 ≤ sup
w:τ(w)≤Λ

‖w‖2,∞‖φ(xi)‖2 ≤ B̂.

Then, the conditions of Part (a) in Lemma 22 are satisfied with F = H̃τ , B = B̂ and S′ = S̃, and we

can apply it to control the CNs for any ε > 4Rnc(H̃τ ) (note fatε(H̃τ ) < nc in (54))

logN∞(ε, H̃τ , S̃) ≤ fatε(H̃τ ) log
2eB̂nc

ε
≤ 16ncR2

nc(H̃τ )

ε2
log

2eB̂nc

ε
, (55)
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where the second inequality is due to (54).

Step 2. We now relate the empirical `∞-norm CNs of H̃τ w.r.t. S̃ to that of Fτ,Λ w.r.t. S. Let{
rj =

(
rj1,1, r

j
1,2, . . . , r

j
1,c, . . . , r

j
n,1, r

j
n,2, . . . , r

j
n,c

)
: j = 1, . . . , N

}
⊂ Rnc (56)

be an (ε, `∞)-cover of{(
〈w, φ̃1(x1)〉, . . . , 〈w, φ̃c(x1)〉︸ ︷︷ ︸

related to x1

, 〈w, φ̃1(x2)〉, . . . , 〈w, φ̃c(x2)〉︸ ︷︷ ︸
related to x2

, . . .

〈w, φ̃1(xn)〉, . . . , 〈w, φ̃c(xn)〉︸ ︷︷ ︸
related to xn

)
: τ(w) ≤ Λ

}
⊂ Rnc

with N not larger than the right-hand side of (55). Define rji =
(
rji,1, . . . , r

j
i,c

)
for all i ∈ Nn, j ∈ NN .

Now, we show that {(
Ψy1

(rj1),Ψy2
(rj2) . . . ,Ψyn(rjn)

)
: j = 1, . . . , N

}
⊂ Rn (57)

would be an (Lε, `∞)-cover of the set (note hw(x) =
(
〈w1, φ(x)〉, . . . , 〈wc, φ(x)〉

)
){(

Ψy1
(hw(x1)), . . . ,Ψyn(hw(xn))

)
: τ(w) ≤ Λ

}
⊂ Rn.

Indeed, for any w ∈ Hc
K with τ(w) ≤ Λ, the construction of the cover in Eq. (56) guarantees the

existence of j(w) ∈ {1, . . . , N} such that

max
1≤i≤n

max
1≤k≤c

∣∣rj(w)

i,k − 〈w, φ̃k(xi)〉
∣∣ ≤ ε. (58)

Then, the Lipschitz continuity of Ψy w.r.t. the `∞-norm implies that

max
1≤i≤n

|Ψyi(r
j(w)

i )−Ψyi(h
w(xi))| ≤ L max

1≤i≤n
‖rj(w)

i − hw(xi)‖∞

= L max
1≤i≤n

max
1≤k≤c

∣∣rj(w)

i,k − 〈wk, φ(xi)〉
∣∣

= L max
1≤i≤n

max
1≤k≤c

∣∣rj(w)

i,k − 〈w, φ̃k(xi)〉
∣∣

≤ Lε,

where we have used (12) in the third step and (58) in the last step. That is, the set defined in (57) is

also an (Lε, `∞)-cover of Fτ,Λ w.r.t. S = {(x1, y1), . . . , (xn, yn)}. Therefore,

logN∞(ε, Fτ,Λ, S) ≤ logN∞(ε/L, H̃τ , S̃), ∀ε > 0. (59)

Step 3. The stated result follows directly if we plug the complexity bound of H̃τ established in

(55) into (59).

We can now apply the entropy integral (53) to control RS(Fτ,Λ) in terms of Rnc(H̃τ ). We denote

by dae the least integer not smaller than a ∈ R.

Proof of Theorem 5. Let N =

⌈
log2

n−
1
2 suph∈Hτ

∥∥(Ψyi (h(xi))
)n
i=1

∥∥
2

16L
√
c log 2Rnc(H̃τ )

⌉
, εN = 16L

√
c log 2Rnc(H̃τ ) and

εk = 2N−kεN , k = 0, . . . , N − 1. It is clear that ε0 ≥ n−
1
2 suph∈Hτ

∥∥(Ψyi(h(xi))
)n
i=1

∥∥
2
≥ ε0/2 and

εN ≥ 4LRnc(H̃τ ). Plugging the CN bounds established in Theorem 23 into the entropy integral (53),

we derive the following inequality

RS(Fτ,Λ) ≤ 8L
√
cRnc(H̃τ )

N∑
k=1

εk + εk−1

εk

√
log

2eB̂ncL

εk
+ εN . (60)

30



We know

N∑
k=1

√
log

2eB̂ncL

εk
=

N∑
k=1

√
k log 2 + log(2eB̂ncLε−1

0 ) ≤
√

log 2

∫ N+1

1

√
x+ log2(2eB̂ncLε−1

0 )dx

=
2
√

log 2

3

∫ N+1

1

d
(
x+ log2(2eB̂ncLε−1

0 )
) 3

2 ≤ 2
√

log 2

3
log

3
2
2 (4eB̂ncLε−1

N ),

where the last inequality follows from

4eB̂ncL ≥ 2n−
1
2 sup
h∈Hτ

∥∥(Ψyi(h(xi))
)n
i=1

∥∥
2
≥ ε0.

Plugging the above inequality back into (60) gives

RS(Fτ,Λ) ≤ 16L
√
c log 2Rnc(H̃τ ) log

3
2
2

(
4eB̂ncLε−1

N

)
+ εN

= 16L
√
c log 2Rnc(H̃τ )

(
1 + log

3
2
2

√
ceB̂n

4
√

log 2Rnc(H̃τ )

)
.

The proof is complete by noting e ≤ 4
√

log 2.

The proof of Theorem 6 is now immediate.

Proof of Theorem 6. The proof is complete if we plug the RC bounds established in Theorem 5 back

into (36) and noting 32
√

log 2 ≤ 27.

Proof of Corollary 9. Plugging the complexity bounds of H̃p given in (18) into Theorem 6 gives the

following inequality with probability at least 1− δ

Ap ≤
27
√
cLΛ maxi∈Nn ‖φ(xi)‖2

n
1
2 c

1
max(2,p)

(
1 + log

3
2
2

√
2B̂n

3
2 c

1
2 + 1

max(2,p)

Λ maxi∈Nn ‖φ(xi)‖2

)
≤ 27LΛ maxi∈Nn ‖φ(xi)‖2c

1
2−

1
max(2,p)

√
n

(
1 + log

3
2
2 (
√

2n
3
2 c)
)
,

where we have used the following inequality in the last step

B̂ = max
i∈Nn

‖φ(xi)‖2 sup
w:‖w‖2,p≤Λ

‖w‖2,∞ ≤ Λ max
i∈Nn

‖φ(xi)‖2.

The proof of Corollary 9 is complete.

Proof of Corollary 10. Consider any W = (w1, . . . ,wc) ∈ Rd×c. If 1 < p ≤ 2, then

‖W‖Sp ≥ ‖W‖S2
= ‖W‖2,2 ≥ ‖W‖2,∞.

Otherwise, according to the following inequality for any semi-definite positive matrix A = (ajj̃)
c
j,j̃=1

(e.g., (1.67) in [69])

‖A‖Sp̃ ≥
[ c∑
j=1

|ajj |p̃
] 1
p̃ , ∀p̃ ≥ 1,

we derive

‖W‖Sp = ‖(W>W )
1
2 ‖Sp =

∥∥∥[(w>j wj̃

)c
j,j̃=1

] 1
2
∥∥∥
Sp

=
∥∥∥(w>j wj̃

)c
j,j̃=1

∥∥∥ 1
2

S p
2

≥
[ c∑
j=1

(w>j wj)
p
2

] 1
p ≥ max

j=1,...,c
‖wj‖2 = ‖W‖2,∞.
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Thereby, for the specific choice τ(W ) = ‖W‖Sp , p ≥ 1, we have

B̂ = max
i∈Nn

‖xi‖2 sup
W :‖W‖Sp≤Λ

‖W‖2,∞ ≤ Λ max
i∈Nn

‖xi‖2. (61)

We now consider two cases. If 1 < p ≤ 2, plugging the RC bounds of H̃Sp given in (21) into

Theorem 6 gives the following inequality with probability at least 1− δ

ASp ≤
27LΛ maxi∈Nn ‖xi‖2√

n

(
1 + log

3
2
2

√
2B̂n

3
2 c

Λ maxi∈Nn ‖x‖i

)
≤ 27LΛ maxi∈Nn ‖xi‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
,

where the last step follows from (61). If p > 2, analyzing analogously yields the following inequality

with probability at least 1− δ

ASp ≤
27LΛ maxi∈Nn ‖xi‖2 min{c, d}

1
2−

1
p

√
n

(
1 + log

3
2
2 (
√

2n
3
2 c)
)
.

The stated error bounds follow by combining the above two cases together.

6.3 Proofs on worst-case Rademacher Complexities

Proof of Proposition 7. We proceed with the proof by distinguishing two cases according to the value

of p.

We first consider the case 1 ≤ p ≤ 2, for which the RC can be lower bounded by

Rnc(H̃p) = max
vi∈S̃:i∈Nnc

1

nc
Eε sup
‖w‖2,p≤Λ

nc∑
i=1

εi〈w,vi〉

= max
vi∈S̃:i∈Nnc

1

nc
Eε sup
‖w‖2,p≤Λ

〈w,
nc∑
i=1

εiv
i〉

= max
vi∈S̃:i∈Nnc

Λ

nc
Eε
∥∥ nc∑
i=1

εiv
i
∥∥

2,p∗
(62)

≥ max
v1∈S̃

Λ

nc
Eε
∣∣ nc∑
i=1

εi
∣∣‖v1‖2,p∗ ,

where the equality (62) follows from the definition of dual norm and the inequality follows by taking

v1 = · · · = vnc. Applying the Khitchine-Kahane inequality (A.2) and using the definition of S̃ in (9),

we then derive (‖v‖2,p = ‖v‖2,∞ for v ∈ S̃)

Rnc(H̃p) ≥
Λ√
2nc

max
v1∈S̃

‖v1‖2,p∗ =
Λ maxi∈Nn ‖φ(xi)‖2√

2nc
.

Furthermore, according to the subset relationship H̃p ⊂ H̃2, 1 ≤ p ≤ 2 due to the monotonicity of

‖ · ‖2,p, the term Rnc(H̃p) can also be upper bounded by (vij denotes the j-th component of vi)

Rnc(H̃p) ≤ Rnc(H̃2) = max
vi∈S̃:i∈Nnc

Λ

nc
Eε
∥∥ nc∑
i=1

εiv
i
∥∥

2,2

≤ max
vi∈S̃:i∈Nnc

Λ

nc

√√√√ c∑
j=1

Eε‖
nc∑
i=1

εivij‖22 = max
vi∈S̃:i∈Nnc

Λ

nc

√√√√ c∑
j=1

nc∑
i=1

‖vij‖22

= max
vi∈S̃:i∈Nnc

Λ

nc

√√√√ nc∑
i=1

‖vi‖22,∞ =
Λ maxi∈Nn ‖φ(xi)‖2√

nc
,
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where the first identity is due to (62), the second inequality is due to Jensen’s inequality and the last

second identity is due to
∑c
j=1 ‖vj‖22 = ‖v‖22,∞ for all v ∈ S̃.

We now turn to the case p > 2. In this case, we have

Rnc(H̃p) = max
vi∈S̃:i∈Nnc

1

nc
Eε sup
‖w‖2,p≤Λ

nc∑
i=1

εi

c∑
j=1

〈wj ,v
i
j〉

≥ max
vi∈S̃:i∈Nnc

1

nc
Eε sup
‖wj‖p2≤

Λp

c :j∈Nc

nc∑
i=1

εi

c∑
j=1

〈wj ,v
i
j〉

= max
vi∈S̃:i∈Nnc

1

nc

c∑
j=1

Eε sup
‖wj‖p2≤

Λp

c

nc∑
i=1

εi〈wj ,v
i
j〉

= max
vi∈S̃:i∈Nnc

1

nc

c∑
j=1

Eε sup
‖wj‖p2≤

Λp

c

〈wj ,

nc∑
i=1

εiv
i
j〉,

where we can exchange the summation over j with the supremum in the second identity since the

constraint ‖wj‖p2 ≤ Λp

c , j ∈ Nc are decoupled. According to the definition of dual norm and the

Khitchine-Kahane inequality (A.2), Rnc(H̃p) can be further controlled by

Rnc(H̃p) ≥ max
vi∈S̃:i∈Nnc

1

nc

c∑
j=1

Λ

c
1
p

Eε‖
nc∑
i=1

εiv
i
j‖2

≥ max
vi∈S̃:i∈Nnc

1

nc

c∑
j=1

Λ
√

2c
1
p

[ nc∑
i=1

‖vij‖22
] 1

2 . (63)

We can find v̄1, . . . , v̄nc ∈ S̃ such that for each j ∈ Nc, there are exactly n v̄k with ‖v̄kj ‖2 =

maxi∈Nn ‖φ(xi)‖2. Then,
∑nc
i=1 ‖v̄ij‖22 = nmaxi∈Nn ‖φ(xi)‖22,∀j ∈ Nc, which, coupled with (63), im-

plies that

Rnc(H̃p) ≥
1

nc

c∑
j=1

Λ
√

2c
1
p

[
nmax
i∈Nn

‖φ(xi)‖22
] 1

2 ≥ Λ max
i∈Nn

‖φ(xi)‖2(2n)−
1
2 c−

1
p .

On the other hand, according to (62) and Jensen’s inequality, we derive

ncRnc(H̃p)

Λ
= max

vi∈S̃:i∈Nnc
Eε
∥∥ nc∑
i=1

εiv
i
∥∥

2,p∗
≤ max

vi∈S̃:i∈Nnc

[
Eε

c∑
j=1

‖
nc∑
i=1

εiv
i
j‖
p∗

2

] 1
p∗
.

By the Khitchine-Kahane inequality (A.1) with p∗ ≤ 2 and the following elementary inequality∑c
j=1 |tj |p̃ ≤ c1−p̃

(∑c
j=1 |tj |

)p̃
,∀0 < p̃ ≤ 1, we get

ncRnc(H̃p)

Λ
≤ max

vi∈S̃:i∈Nnc

[ c∑
j=1

( nc∑
i=1

‖vij‖22
) p∗

2

] 1
p∗

(64)

≤ max
vi∈S̃:i∈Nnc

[
c1−

p∗
2

( c∑
j=1

nc∑
i=1

‖vij‖22
) p∗

2
] 1
p∗

≤
√
ncc

1
p∗−

1
2 max
i∈Nn

‖φ(xi)‖2 =
√
nc1−

1
p max
i∈Nn

‖φ(xi)‖2,

where we have used the inequality
∑c
j=1 ‖vj‖22 ≤ maxi∈Nn ‖φ(xi)‖22 for all v ∈ S̃ in the last inequality.

The above upper and lower bounds in the two cases can be written compactly as (18). The proof

is complete.
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6.4 Proofs on Applications

Proof of Example 1. According to the monotonicity of `, there holds

`(ρh(x, y)) = `
(

min
y′:y′ 6=y

(hy(x)− hy′(x))
)

= max
y′:y′ 6=y

`(hy(x)− hy′(x)) = Ψ`
y(h(x)).

It remains to show the Lipschitz continuity of Ψ`
y. Indeed, for any t, t′ ∈ Rc, we have

|Ψ`
y(t)−Ψ`

y(t′)| =
∣∣ max
y′:y′ 6=y

`(ty − ty′)− max
y′:y′ 6=y

`(t′y − t′y′)
∣∣

≤ max
y′:y′ 6=y

∣∣`(ty − ty′)− `(t′y − t′y′)∣∣
≤ max
y′:y′ 6=y

L`|(ty − ty′)− (t′y − t′y′)|

≤ 2L` max
y′∈Y

|ty′ − t′y′ |

≤ 2L`‖t− t′‖2,

where in the first inequality we have used the elementary inequality

|max{a1, . . . , ac} −max{b1, . . . , bc}| ≤ max{|a1 − b1|, . . . , |ac − bc|}, ∀a, b ∈ Rc (65)

and the second inequality is due to the Lipschitz continuity of `.

Proof of Example 2. Define the function fm : Rc → R by fm(t) = log
(∑c

j=1 exp(tj)
)
. For any t ∈ Rc,

the partial gradient of fm with respect to tk is

∂fm(t)

∂tk
=

exp(tk)∑c
j=1 exp(tj)

, ∀k = 1, . . . , c,

from which we derive that ‖∇fm(t)‖1 = 1,∀t ∈ Rc. Here ∇ denotes the gradient operator. For any

t, t′ ∈ Rc, according to the mean-value theorem we know the existence of α ∈ [0, 1] such that

|fm(t)− fm(t′)| =
∣∣〈∇fm(αt + (1− α)t′), t− t′

〉∣∣
≤ ‖∇fm(αt + (1− α)t′)‖1‖t− t′‖∞ = ‖t− t′‖∞.

It then follows that

|Ψm
y (t)−Ψm

y (t′)| = |fm
(
(tj − ty)cj=1

)
− fm

(
(t′j − t′y)cj=1

)
|

≤
∥∥(tj − ty)cj=1 − (t′j − t′y)cj=1

∥∥
∞

≤ 2‖t− t′‖∞.

That is, Ψm
y is 2-Lipschitz continuous w.r.t. the `∞-norm.

Proof of Example 3. For any t, t′ ∈ Rc, we have

|Ψ̃`
y(t)− Ψ̃y(t′)| =

∣∣ c∑
j=1

`(ty − tj)−
c∑
j=1

`(t′y − t′j)
∣∣ ≤ c∑

j=1

∣∣`(ty − tj)− `(t′y − t′j)∣∣
≤ L`c|ty − t′y|+ L`

c∑
j=1

|tj − t′j | ≤ L`c|ty − t′y|+ L`
√
c‖t− t′‖2.

The Lipschitz continuity of Ψ̃`
y(t) w.r.t. `∞-norm is also clear.

34



Proof of Example 4. For any t, t′ ∈ Ω, we have

|Ψ̄`
y(t)− Ψ̄`

y(t′)| =
∣∣∣ c∑
j=1,j 6=y

[
`(−tj)− `(−t′j)

]∣∣∣ ≤ L` c∑
j=1,j 6=y

|tj − t′j |

≤ L`
√
c‖t− t′‖2 ≤ L`c‖t− t′‖∞.

This establishes the Lipschitz continuity of Ψ̄`
y.

Proof of Example 5. For any t, t′ ∈ Ω, we have∣∣Ψ̂`
y(t)− Ψ̂`

y(t′)
∣∣ = |`(ty)− `(t′y)| ≤ L`|ty − t′y| ≤ L`‖t− t′‖∞.

This establishes the Lipschitz continuity of Ψ̂`
y.

Proof of Example 6. It is clear that

k∑
j=1

t[j] = max
1≤i1<i2<···<ik≤c

[ti1 + · · ·+ tik ], ∀t ∈ Rc. (66)

For any t, t′ ∈ Rc, we have

|Ψk
y(t)−Ψk

y(t′)|

≤ 1

k

∣∣∣ k∑
j=1

(1y 6=1+t1−ty, . . . , 1y 6=c+tc−ty)[j]−
k∑
j=1

(1y 6=1+t′1−t′y, . . . , 1y 6=c+t′c−t′y)[j]

∣∣∣
=

1

k

∣∣∣ max
1≤i1<i2<···<ik≤c

k∑
r=1

(1y 6=ir + tir − ty)− max
1≤i1<i2<···<ik≤c

k∑
r=1

(1y 6=ir + t′ir − t
′
y)
∣∣∣

≤ 1

k
max

1≤i1<i2<···<ik≤c

∣∣∣ k∑
r=1

(1y 6=ir + tir − ty)−
k∑
r=1

(1y 6=ir + t′ir − t
′
y)
∣∣∣

≤ 1

k
max

1≤i1<i2<···<ik≤c

∣∣ k∑
r=1

(tir − t′ir )
∣∣+ |ty − t′y|

≤ 1√
k

max
1≤i1<i2<···<ik≤c

[ k∑
r=1

(tir − t′ir )
2
] 1

2 + |ty − t′y| (67)

≤ 1√
k

[ c∑
j=1

(tj − t′j)2
] 1

2 + |ty − t′y|,

where the first and the second inequality are due to (65) and the first identity is due to (66). This

establishes the Lipschitz continuity w.r.t. a variant of the `2-norm. The 2-Lipschitz continuity of Ψk
y

w.r.t. `∞-norm is clear from (67). The proof is complete.

7 Conclusion

Motivated by the ever-growing number of label classes occurring in classification problems, we develop

two approaches to derive data-dependent error bounds that scale favorably in the number of labels.

The two approaches are based on Gaussian and Rademacher complexities, respectively, of a related

linear function class defined over a finite set induced from the training examples, for which we establish

tight upper and lower bounds matching within a constant factor. Due to the ability to preserve the

correlation among class-wise components, both of these data-dependent bounds admit an improved

dependency on the number of classes over the state of the art.
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Our first approach is based on a novel structural result on Gaussian complexities of function classes

composed by Lipschitz operators measured by a variant of the `2-norm. We show the advantage of our

structural result over the previous one (3) in [16, 48, 51] by capturing better the Lipschitz property of

loss functions and yielding tighter bounds, which is the case for some popular MC-SVMs [36, 43, 78].

Our second approach is based on a novel structural result controlling the worst-case Rademacher

complexity of the loss function class by `∞-norm covering numbers of an associated linear function

class. Our approach addresses the fact that several loss functions are Lipschitz continuous w.r.t. the

`∞ norm with a moderate Lipschitz constant [81]. This allows us to obtain error bounds exhibiting a

logarithmic dependency on the number of classes for the MC-SVM by Crammer and Singer [17] and

multinomial logistic regression, significantly improving the existing square-root dependency [48, 81].

We show that each of these two approaches has its own advantages and can outperform the other

for some applications depending on the Lipschitz continuity of the associated loss function. We report

experimental results to show that our theoretical bounds really capturing well the factors influencing

models’ generalization performance, and can imply a structural risk working well in model selection.

Furthermore, we propose an efficient algorithm to train `p-norm MC-SVMs based on the Frank-Wolfe

algorithm.

We sketch here some possible directions for future study. First, research in classification with

many classes increasingly focuses on multi-label classification with each output yi taking values in

{0, 1}c [10, 35, 79]. It would be interesting to transfer the results obtained in the present analysis

to the multi-label case. To this aim, it is helpful to check the Lipschitz continuity of loss functions

in multi-label learning, which, as in the present work, are typically of the form Ψy(h(x)) [21, 79],

(e.g., Hamming loss, subset zero-one loss, and ranking loss [21]). Secondly, we study examples with

the functional τ depending on the components of w in the RKHS. It would be interesting to consider

examples with τ defined in other forms, such as those in [31, 64]. Thirdly, our error bounds are derived

for convex surrogates of the 0-1 loss. It would be interesting to relate these error bounds to excess

generalization errors measured by the 0-1 loss [7, 70, 81, 82].
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A Khintchine-Kahane Inequality

The following Khintchine-Kahane inequality [20, 50] provides a powerful tool to control the p-th norm

of the summation of Rademacher (Gaussian) series.

Lemma A.1. (a) Let v1, . . . ,vn ∈ H, where H is a Hilbert space with ‖ · ‖ being the associated norm.
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Let ε1, . . . , εn be a sequence of independent Rademacher variables. Then, for any p ≥ 1 there holds

min(
√
p− 1, 1)

[ n∑
i=1

‖vi‖2
] 1

2 ≤
[
Eε‖

n∑
i=1

εivi‖p
] 1
p ≤ max(

√
p− 1, 1)

[ n∑
i=1

‖vi‖2
] 1

2 , (A.1)

Eε‖
n∑
i=1

εivi‖ ≥ 2−
1
2

[ n∑
i=1

‖vi‖2
] 1

2 . (A.2)

The above inequalities also hold when the Rademacher variables are replaced by N(0, 1) random

variables.

(b) Let X1, . . . , Xn be a set of matrices of the same dimension and let g1, . . . , gn be a sequence of

independent N(0, 1) random variables. For all q ≥ 2,(
Eg
∥∥ n∑
i=1

giXi

∥∥q
Sq

) 1
q ≤ 2−

1
4

√
qπ

e
max

{∥∥( n∑
i=1

X>i Xi

) 1
2
∥∥
Sq
,
∥∥( n∑

i=1

XiX
>
i

) 1
2
∥∥
Sq

}
. (A.3)

Proof. For Part (b), the original Khintchine-Kahane inequality for matrices is stated for Rademacher

random variables, i.e, the Gaussian variables gi are replaced by Rademacher variables εi. We now

show that it also holds for Gaussian variables. Let ψ
(k)
i = 1√

k

∑k
j=1 εik+j with εik+j being a sequence

of independent Rademacher variables, then we have

(
Eε‖

n∑
i=1

ψ
(k)
i Xi‖qSq

) 1
q =

(
Eε‖

n∑
i=1

k∑
j=1

εik+j
1√
k
Xi‖qSq

) 1
q

≤
√

qπ

2
1
2 e

max
{∥∥( n∑

i=1

k∑
j=1

1

k
X>i Xi

) 1
2
∥∥
Sq
,
∥∥( n∑

i=1

k∑
j=1

1

k
XiX

>
i

) 1
2
∥∥
Sq

}
≤
√

qπ

2
1
2 e

max
{∥∥( n∑

i=1

X>i Xi

) 1
2
∥∥
Sq
,
∥∥( n∑

i=1

XiX
>
i

) 1
2
∥∥
Sq

}
,

where the first inequality is due to the Khintchine-Kahane inequality for matrices involving Rademacher

random variables [50]. The proof is complete if we take k to ∞ and use central limit theorem.

B Proof of Proposition 8

We present the proof of Proposition 8 in the appendix due to its similarity to the proof of Proposition

7.

We first consider the case 1 ≤ p ≤ 2. Since the dual norm of ‖ · ‖Sp is ‖ · ‖Sp∗ , we have the following

lower bound on RC in this case

Rnc(H̃Sp) = max
V i∈S̃:i∈Nnc

1

nc
Eε sup
‖W‖Sp≤Λ

nc∑
i=1

εi〈W,V i〉

= max
V i∈S̃:i∈Nnc

1

nc
Eε sup
‖W‖Sp≤Λ

〈W,
nc∑
i=1

εiV
i〉

= max
V i∈S̃:i∈Nnc

Λ

nc
Eε
∥∥ nc∑
i=1

εiV
i
∥∥
Sp∗

. (B.1)

Taking V 1 = · · · = V nc and applying the Khitchine-Kahane inequality (A.2) further imply

Rnc(H̃Sp) ≥ max
V 1∈S̃

Λ

nc
Eε
∣∣ nc∑
i=1

εi
∣∣‖V 1‖Sp∗ ≥

Λ√
2nc

max
V 1∈S̃

‖V 1‖Sp∗ =
Λ maxi∈Nn ‖xi‖2√

2nc
,
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where the last identity follows from the following identity for any V ∈ S̃

‖V ‖Sp∗ = ‖V ‖S2
= ‖V ‖2,2 = ‖V ‖2,∞. (B.2)

We now turn to the upper bound. It follows from the relationship H̃Sp ⊂ H̃S2 ,∀1 ≤ p ≤ 2 and

(B.1) that (tr(A) denotes the trace of A)

Rnc(H̃Sp) ≤ Rnc(H̃S2) = max
V i∈S̃:i∈Nnc

Λ

nc
Eε
∥∥ nc∑
i=1

εiV
i
∥∥
S2

= max
V i∈S̃:i∈Nnc

Λ

nc
Eε

√√√√tr
( nc∑
i,̃i=1

εiεĩV
i(V ĩ)>

)

≤ max
V i∈S̃:i∈Nnc

Λ

nc

√√√√ nc∑
i=1

tr(V i(V i)>)

= max
V i∈S̃:i∈Nnc

Λ

nc

√√√√ nc∑
i=1

‖V i‖22,∞ ≤
Λ maxi∈Nn ‖xi‖2√

nc
, (B.3)

where the second identity follows from the identity between Frobenius norm and ‖ · ‖S2 , the second

inequality follows from the Jensen’s inequality and the last identity is due to (B.2).

We now consider the case p > 2. According to the relationship H̃S2 ⊆ H̃Sp for all p > 2 and the

discussion for the case p = 2, we know

Rnc(H̃Sp) ≥ Rnc(H̃S2) ≥ Λ maxi∈Nn ‖xi‖2√
2nc

.

Furthermore, for any W with ‖W‖Sp ≤ Λ we have ‖W‖S2 ≤ min{c, d}
1
2−

1
pΛ, which, combined with

(B.3), implies that

Rnc(H̃Sp) ≤ max
V i∈S̃:i∈Nnc

1

nc
Eε sup

‖W‖S2
≤Λ min{c,d}

1
2
− 1
p

nc∑
i=1

εi〈W,V i〉 ≤
Λ maxi∈Nn ‖xi‖2 min{c, d}

1
2−

1
p

√
nc

.

The proof is complete.

C Proof of Proposition 19

It suffices to check ‖w∗‖2,p ≤ 1 and 〈w∗,v〉 = −‖v‖2,p∗ . We consider three cases.

If p = 1, it is clear that ‖w∗‖2,1 ≤ 1 and 〈w∗,v〉 = −‖v‖2,∞.

If p =∞, it is clear that ‖w∗‖2,∞ ≤ 1 and 〈w∗,v〉 = −
∑c
j=1 ‖vj‖2 = −‖v‖2,1.

If 1 < p <∞, it is clear that

‖w∗‖2,p =
( c∑
j̃=1

‖vj̃‖
(p∗−1)p
2

) 1
p /
( c∑
j̃=1

‖vj̃‖
p∗

2

) 1
p = 1

and

〈w∗,v〉 = −
( c∑
j̃=1

‖vj̃‖
p∗

2

)− 1
p

c∑
j̃=1

‖vj̃‖
p∗

2 = −‖v‖2,p∗ .

The proof is complete.
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