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Abstract: Optimal rank-metric codes in Ferrers diagrams can be used to construct good
subspace codes. Such codes consist of matrices having zeros at certain fixed positions.
This paper generalizes the known constructions for Ferrers diagram rank-metric (FDRM)
codes. Via a criterion for linear maximum rank distance (MRD) codes, an explicit
construction for a class of systematic MRD codes is presented, which is used to produce
new optimal FDRM codes. By exploring subcodes of Gabidulin codes, if each of the
rightmost δ − 1 columns in Ferrers diagram F has at least n − r dots, where r is taken
in a range, then the conditions that an FDRM code in F is optimal are established.
The known combining constructions for FDRM code are generalized by introducing the
concept of proper combinations of Ferrers diagrams.
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1 Introduction

Network coding, introduced in [2], refers to coding at the intermediate nodes when
information is multicasted in a network. Often information is modeled as vectors of
fixed length over a finite field Fq, called packets. To improve the performance of the
communication, intermediate nodes should forward random linear Fq-combinations of
the packets they receive. Hence, the vector space spanned by the packets injected at the
source is globally preserved in the network when no error occurs.

This observation led Kötter and Kschischang [12] to model network codes as projec-
tive space Pq(n), the set of all subspaces of F

n
q , or Grassmann space Gq(n, k), the set of all

subspaces of Fn
q having dimension k. Subsets of Pq(n) are called subspace codes or pro-

jective codes, while subsets of the Grassmann space are referred to as constant-dimension

codes orGrassmann codes. The subspace distance dS(U, V ) = dimU+dimV−2dim(U∩V )
for all U, V ∈ Pq(n) is used as a distance measure for subspace codes. For more infor-
mation on constructions and bounds for subspace codes, the interested reader may refer
to [6–8,10,13,17–19,21,22].

Silva, Kschischang and Kötter [20] pointed out that lifted maximum rank distance
(MRD) codes can result in almost optimal constant dimension codes, which asymptoti-
cally attain the known upper bounds [8,12], and can be decoded efficiently in the context
of random linear network coding.

To obtain optimal constant dimension codes, Etzion and Silberstein [6] presented a
simple but effective construction, named the multilevel construction, which generalizes
the lifted MRD codes construction by introducing a new family of rank-metric codes,
namely, Ferrers diagram rank-metric codes. Furthermore, Etzion, Gorla, Ravagnani
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and Wachter-Zeh [5] systematically investigated Ferrers diagram rank-metric codes and
established four constructions to obtain optimal codes.

This paper continues the work in [5]. In Section 2, we give a brief introduction
of Ferrers diagram rank-metric codes, and review most of known constructions in the
literature.

Via a criterion for linear MRD codes presented in [23], we give an explicit construction
for a class of systematic MRD codes in Section 3.1, which can be used to produce optimal
Ferrers diagram rank-metric codes (see Construction 3.5). In Section 3.2, we generalize
Construction 2 in [5] by exploring subcodes of Gabidulin codes. Construction 2 in [5]
requires that each of the rightmost δ−1 columns in Ferrers diagram F has at least n−1
dots. We relax the condition n − 1 to n − r, where r is taken in a range (see Theorem
3.13).

In Section 4, by introducing the concept of proper combinations of Ferrers diagrams,
we generalize Theorem 9 in [5]. Our constructions are essentially to combine small Ferrers
diagram rank-metric codes to a bigger one more flexibly (see Constructions 4.7, 4.10 and
4.13).

2 Preliminaries

Let q be a prime power, Fq be the finite field of order q, and Fqm be its extension field
of order qm. We use F

m×n
q to denote the set of all m× n matrices over Fq, and F

n
qm to

denote the set of all row vectors of length n over Fqm . The rank of a matrix A ∈ F
m×n
q

is denoted by rank(A). The rows and columns of an m × n matrix will be indexed by
0, 1, . . . ,m− 1 and 0, 1, . . . , n− 1, respectively. Let [n] denote {0, 1, . . . , n− 1} and (i, j)
denote the cell in the i-th row and the j-th column of an m × n matrix, where i ∈ [n]
and j ∈ [m]. Write Is as the s× s identity matrix.

2.1 Rank-metric codes

The set Fm×n
q is an Fq-vector space. The rank distance on F

m×n
q is defined by

dR(A,B) = rank(A−B) for A,B ∈ F
m×n
q .

An [m× n, k, δ]q rank-metric code C is a k-dimensional Fq-linear subspace of Fm×n
q with

minimum rank distance

δ = min
A,B∈C,A6=B

{dR(A,B)}.

Clearly
δ = min

A∈C,A6=0
{rank(A)}.

The Singleton-like upper bound for rank-metric codes implies that

k ≤ max{m,n}(min{m,n} − δ + 1)

holds for any [m×n, k, δ]q code. When the equality holds, C is called a linear maximum

rank distance code, denoted by an MRD[m × n, δ]q code. Linear MRD codes exists for
all feasible parameters (cf. [4, 9, 15]).
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2.2 Ferrers diagram rank-metric codes

Given positive integers m and n, an m× n Ferrers diagram F is an m× n array of dots
and empty cells such that all dots are shifted to the right of the diagram, the number of
dots in each row is less than or equal to the number of dots in the previous row, and the
first row has n dots and the rightmost column has m dots. The number of dots in F is
denoted by |F|.

Example 2.1

F =

• • • •
• • • •

• • •
• •

•

is a 5× 4 Ferrers diagram and |F| = 14.

Sometimes it is convenient to state Ferrers diagrams by using the set-theoretical
language (cf. [3,11]). Given positive integers m and n, an m× n Ferrers diagram F is a
subset of [m] × [n] satisfying that (1) if (i, j) ∈ F and i ≥ 1, then (i − 1, j) ∈ F ; (2) if
(i, j) ∈ F and j ≤ n− 2, then (i, j + 1) ∈ F . In the sequel, these two definitions will be
both used, depending on what is more convenient in the context.

Motivated by the multilevel construction from [6], some research work has been done
on constructing good or even optimal rank-metric codes in Ferrers diagrams [5,11,19,24].
For a given m×n Ferrers diagram F , an [F , k, δ]q Ferrers diagram rank-metric (FDRM)
code, briefly an [F , k, δ]q code, is an [m × n, k, δ]q rank-metric code in which for each
m× n matrix, all entries not in F are zero. If F is a full m× n diagram with mn dots,
then its corresponding FDRM code is just a classical rank-metric code.

Etzion and Silberstein [6] established a Singleton-like upper bound on FDRM codes.

Lemma 2.2 (Theorem 1 in [6]) Let δ be a positive integer. Let F be a Ferrers diagram

and CF be any [F , k, δ]q code. Then k ≤ mini∈[δ] vi, where vi is the number of dots in F
which are not contained in the first i rows and the rightmost δ − 1− i columns.

An FDRM code which attains the upper bound in Lemma 2.2 is called optimal. An
MRD[m × n, δ]q code with m ≥ n is an optimal [F ,m(n − δ + 1), δ]q code, where F is
a full m × n diagram. So far all known FDRM codes over Fq with the largest possible
dimension are optimal.

We remark that the upper bound still holds for FDRM codes defined on any field,
and especially, for algebraically closed fields the bound cannot be attained (see Theorem
13 and Proposition 17 in [11]). This paper focuses only on finite fields since they are
used for forming subspace codes.

For a Ferrers diagram F of sizem×n, one can transpose it to obtain a Ferrers diagram
F t of size n×m. Thus if there exists an [F , k, δ]q code, then so does an [F t, k, δ]q code.
Without loss of generality, we always assume that m ≥ n.

We denote by γi, i ∈ [n], the number of dots in the i-th column of F , and by ρi,
i ∈ [m], the number of dots in the i-th row of F .
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2.3 Known constructions for FDRM codes

This section summarizes known main constructions for FDRM codes, which come from
[1,5, 6, 11,25]. We shall use or generalize them later.

2.3.1 Exploration of subcodes of MRD codes

Etzion and Silberstein [6] introduced the concept of FDRM codes. They established the
existence of optimal [F , k, δ]q codes whenever F is an m × n (m ≥ n) Ferrers diagram
and each of its rightmost δ − 1 columns has at least m dots. The proof is based on the
use of q-cyclic MRD codes. A better result is provided in [5] with a simple proof by
means of shortening systematic MRD codes (see also Theorem 23 in [11] and Corollary
3.3 in [1]).

Theorem 2.3 (Theorem 3 in [5]) Assume F is an m × n Ferrers diagram and each

of the rightmost δ − 1 columns of F has at least n dots. Then there exists an optimal

[F , k, δ]q code for any prime power q, where k =
∑n−δ

i=0 γi.

As a straightforward corollary, Etzion and Silberstein pointed out the following fact.

Corollary 2.4 [6] Let δ ∈ {1, 2}. There exists an optimal [F , k, δ]q code for any Ferrers

diagram F and any prime power q, where k =
∑n−δ

i=0 γi.

To relax the restriction on F in Theorem 2.3, the idea of exploring subcodes of MRD
codes was introduced to construct FDRM codes in [5], and developed in [1, 25] recently.

Theorem 2.5 (Theorem 8 in [5]) Assume F is an m×n Ferrers diagram and m ≥ n. Let
2 ≤ δ ≤ n−1. If each of the rightmost δ−1 columns in F has at least n−1 dots, then there

exists an [F , k, δ]q code for any prime power q, where k = min{m−n+1, γ0}+
∑n−δ

i=1 γi.
When γ0 ≤ m− n+ 1, the resulting FDRM code is optimal.

We shall generalize Theorem 2.5 to Theorem 3.13, where it is required that each
of the rightmost δ − 1 columns in F has at least n − r dots for any positive integer r
satisfying r + 1 ≤ δ ≤ n− r.

Theorem 2.6 (Theorem 3.6 in [1]) Assume F is an m×n Ferrers diagram and m ≥ n.
Let 2 ≤ δ ≤ n and l = n − δ + 1. Set ε =

∑n−1
t=l (m − γt), that is, ε is the number

of dots missing in the rightmost δ − 1 columns of F . If γs ≤ γl − ε(l − s) for every

s ∈ {0, 1, . . . , l − 1}, then there exists an optimal [F ,
∑l−1

i=0 γi, δ]q code.

Theorem 2.6 implies Theorem 2.3 when ε = 0. When ε 6= 0, the condition γs ≤
γl− ε(l− s) for s ∈ {0, 1, . . . , l−1} means that the numbers of dots in the first l columns
are restricted in an arithmetic progression with step size ε.

Theorem 2.7 (Theorem 3.6 in [25]) Let l be a positive integer. Let 1 = t0 < t1 < t2 <
· · · < tl be integers such that t1 | t2 | · · · | tl. Let n and δ be positive integers satisfying

tl−1 < n − 1 ≤ tl and n − t1 + 1 < δ ≤ n − 1. Let F be an m × n Ferrers diagram

satisfying

(1) γn−δ ≤ t1,

4



(2) γn−δ+1 ≥ t1,

(3) γti ≥ ti+1 for 1 ≤ i ≤ l − 1,

(4) γn−1 ≥ tl + γ0,

Then there exists an optimal [F ,
∑n−δ

i=0 γi, δ]q code for any prime power q.

When l = 1, Theorem 2.7 together with Theorem 2.3 yields Theorem 2.5 (note that
to remove the condition γn−δ ≤ t1, Theorem 2.3 is needed).

2.3.2 Use of MDS codes

A construction for FDRM codes based on maximum distance separable (MDS) codes is
presented in [5]. It is known that an [n, n− d+1, d]q MDS code exists for any q ≥ n− 1
or d ∈ {1, 2, n} (see [14]).

A diagonal of a Ferrers diagram F is a consecutive sequence of entries, going upwards
diagonally from the rightmost column to either the leftmost column or the first row. Let
Di, i ∈ [m], denote the i-th diagonal in F , where i counts the diagonals from the top to
the bottom and let θi denote the number of dots on Di in F .

Example 2.8 For the Ferrers diagram in Example 2.1, its five diagonals are:

D0 = •, D1 =
•

•
, D2 =

•
•

•
, D3 =

•
•

•
•

, D4 =

•
•

•
•

.

Theorem 2.9 (Construction 1 in [5]) Let F be an m× n Ferrers diagram and δ be an

integer such that 0 < δ ≤ n. Let θmax = maxi∈[m] θi. Then there exists an [F , k, δ]q code

for any prime power q ≥ θmax − 1, where k =
∑m−1

i=0 max{0, θi − δ + 1}.

Applying Theorems 2.3 and 2.9, Etzion and Silberstein obtained the following result.

Corollary 2.10 (Theorem 11 in [5]) Let n ≥ 3. There exists an optimal [F , k, 3]q code

for any n× n Ferrers diagram F and any prime power q.

The disadvantage of Theorem 2.9 is the requirement of large q. For example when
F is an n× n Ferrers diagram with i+ 1 dots in its i-th column for i ∈ [n], by Theorem
2.9, there exists an optimal [F , 3, n − 1]q code for any prime power q ≥ n− 1. Recently
Antrobus and Gluesing-Luerssen showed that such optimal FDRM codes exist for any
prime power q via induction on n.

Theorem 2.11 (Theorem 5.2 in [1]) Let n ≥ 3. Assume F is an n×n Ferrers diagram

with i+ 1 dots in its i-th column for i ∈ [n]. Then there exists an optimal [F , 3, n − 1]q
code for any prime power q.

However, how to give other constructions for FDRM codes with the same parameters
as those obtained from Theorem 2.9, but for any prime power q, is still an open problem.
We shall exhibit three examples in Section 3 (Examples 3.6, 3.8, 3.9) to touch this
problem.
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2.3.3 Combination of FDRM codes

To obtain new FDRM codes based on known ones, [5] presented an excellent idea. We
shall extend this idea in Section 4.

Theorem 2.12 (Theorem 9 in [5]) Let Fi for i = 1, 2 be an mi × ni Ferrers diagram,

and Ci be an [Fi, k, δi]q code. Let D be an m3 × n3 full Ferrers diagram with m3n3 dots,

where m3 ≥ m1 and n3 ≥ n2. Let

F =

(
F1 D

F2

)

be an m× n Ferrers diagram, where m = m2 +m3 and n = n1 + n3. Then there exists

an [F , k, δ1 + δ2]q code.

The limitation of Theorem 2.12 can be shown in the following lemma.

Lemma 2.13 Let δ be a positive integer. Let F be an m×n Ferrers diagram satisfying

max
n−δ+1≤i≤n−1

(γi − γi−1) < v0 = min
i∈[δ]

vi,

where vi is the number of dots in F which are not contained in the first i rows and the

rightmost δ−1−i columns. Then one cannot apply Theorem 2.12 to construct an optimal

[F , v0, δ]q code.

Proof Assume that an optimal [F , v0, δ]q code can be constructed by Theorem 2.12,
where

F =

(
F1 D

F2

)

is an m×n Ferrers diagram, Fj is an mj ×nj Ferrers diagram, Cj is an [Fj , v0, δj ]q code

for j = 1, 2, and δ = δ1+δ2. Let v
(j)
0 be the number of dots in Fj which are not contained

in the rightmost δj − 1 columns.

Consider C1. By Lemma 2.2, v0 ≤ v
(1)
0 , i.e.,

∑n−δ
i=0 γi ≤

∑n1−δ1
i=0 γi, which yields

n− δ ≤ n1 − δ1. Thus n1 ≥ n− δ + δ1 and δ2 = δ − δ1 ≥ n− n1.
Consider C2. Since δ2 ≤ n2 ≤ n − n1, we have δ2 = n2 = n − n1. By Lemma 2.2,

the existence of an [F2, v0, n2]q code implies v0 is no more than the number of dots in
F2 which are not contained in the rightmost n2 − 1 columns. Hence, v0 ≤ γn1 − γn1−1,
which contradicts with the known condition maxn−δ+1≤i≤n−1(γi − γi−1) < v0. ✷

3 Constructions based on subcodes of MRD codes

Let β = (β0, β1, ..., βm−1) be an ordered basis of Fqm over Fq. There is a natural bijective
map Ψm from F

n
qm to F

m×n
q as follows:

Ψm : Fn
qm −→ F

m×n
q

a = (a0, a1, . . . , an−1) 7−→ A,
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where A = Ψm(a) ∈ F
m×n
q is defined such that

aj =
m−1∑

i=0

Ai,jβi

for any j ∈ [n]. For a ∈ Fqm, (a) is a 1×1 matrix and we simply write Ψm((a)) as Ψm(a).
It is readily checked that Ψm satisfies linearity, i.e., Ψm(xc1+yc2) = xΨm(c1)+yΨm(c2)
for any x, y ∈ Fq and c1, c2 ∈ F

n
qm . The map Ψm will be used to facilitate switching

between a vector in Fqm and its matrix representation over Fq. In the sequel, we use
both representations, depending on what is more convenient in the context and by slight
abuse of notation, rank(a) denotes rank(Ψm(a)).

The following lemma, implicitly shown in Section 5 in [5], is fundamental to construct
FDRM codes via subcodes of MRD codes. All theorems in Section 2.3.1 are based on
this lemma.

Lemma 3.1 [5] Assume that m ≥ n. Let G be a generator matrix of a system-

atic MRD[m × n, δ]q code, i.e., G is of the form (Ik|A), where k = n − δ + 1. Let

0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λk−1 ≤ m. Let U = {(u0, . . . , uk−1) ∈ F
k
qm : Ψm(ui) =

(ui,0, . . . , ui,λi−1, 0, . . . , 0)
T , ui,j ∈ Fq, i ∈ [k], j ∈ [λi]}. Then C = {Ψm(c) : c = uG,u ∈

U} is a linear FDRM code with dimension
∑k−1

i=0 λi and rank at least δ over Fq.

Proof One can easily verify the linearity and the dimension of the code. Since G is a
generator matrix of an MRD[m×n, δ]q code CM , C is a subcode of CM . So the minimum
rank distance of the code C is δ. ✷

Lemma 3.1 doesn’t show the Ferrers diagram used explicitly. However, if we could
know more about the initial MRD code, then it would be possible to give a complete
characterization of C.

Remark 3.2 Lemma 3.1 can only be used to construct optimal FDRM codes satisfying

v0 =
∑n−δ

i=0 γi = mini∈[δ] vi (cf. Lemma 2.2), where vi is the number of dots in F which

are not contained in the first i rows and the rightmost δ − 1− i columns.

3.1 Construction from a class of systematic MRD codes

To construct systematic MRD codes, we need the following theorem, which provides a
criterion for linear MRD codes.

Theorem 3.3 [23] Let m ≥ n. Let G ∈ F
k×n
qm be a generator matrix of a linear rank-

metric code C ⊆ F
n
qm. Then C is an MRD code if and only if for any B ∈ UT ∗

n(q)
every maximal minor of GB is nonzero, where UT ∗

n(q) denotes the set of all n×n upper

triangular matrices over Fq whose main diagonal elements are all 1.

Lemma 3.4 Let q be a prime power. Let m,n and δ be positive integers satisfying

m > n ≥ δ ≥ 2. Let k = n− δ + 1 and m ≥ kn − k2 + 2. Let (1, β, β2, . . . , βm−1) be an

ordered polynomial basis of Fqm over Fq. If there exists a k × n matrix

G=










1 a1,kβ
k a1,k+1β

k+1 · · · a1,n−2β
n−2 a1,n−1β

n

1 a2,kβ
k−1 a2,k+1β

k · · · a2,n−2β
n−3 a2,n−1β

n−2

. . .
...

...
. . .

...
...

1 ak−1,kβ
2 ak−1,k+1β

3 · · · ak−1,n−2β
n−k ak−1,n−1β

n−k+1

1 ak,kβ ak,k+1β
2 · · · ak,n−2β

n−k−1 ak,n−1β
n−k










,
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where ai,j ∈ F
∗
q, i ∈ {1, 2, . . . , k} and j ∈ {k, k + 1, . . . , n − 1}, such that every minor of

the matrices

A1 =






a1,k · · · a1,n−2
...

. . .
...

ak,k · · · ak,n−2




 and A2 =






a2,k · · · a2,n−1
...

. . .
...

ak,k · · · ak,n−1






is nonzero, then G is a generator matrix of a systematic MRD[m× n, δ]q code.

Proof Obviously, n − k ≥ 0. By Theorem 3.3, it suffices to prove that for any
B∈UT ∗

n(q), every k-minor of GB is nonzero. To ensure smooth reading of the paper, we
move the proof to Appendix A. ✷

For a vector (v1, v2, . . . , vn) of length n, if its rightmost nonzero component is vr for
some 1 ≤ r ≤ n, then r is said to be the valid length of this vector.

Construction 3.5 Let m,n and δ be positive integers satisfying m > n ≥ δ ≥ 2. Let

k = n−δ+1 and m ≥ kn−k2+2. If there exists a k×n matrix G satisfying the condition

in Lemma 3.4 such that G is a generator matrix of a systematic MRD[m × n, δ]q code,

then there exists an optimal [F ,
∑k−1

i=0 γi, δ]q code C for any m′ × n Ferrers diagram F
satisfying

(1) γi = min{max{γl + i− l : l ∈ [k]},m} for any k ≤ i ≤ n− 2,

(2) m′ = min{max{γ0 + n,max{γl + n− 1− l : 1 ≤ l ≤ k − 1}},m},

where γi, i ∈ [n], is the number of dots in the i-th column of F .

Proof Start from the generator matrix G of the given systematic MRD code. We can
apply Lemma 3.1 by setting λi = γi, i ∈ [k], to obtain an optimal FDRM code C in some
Ferrers diagram F with dimension

∑k−1
i=0 γi and rank at least δ. It suffices to analyze the

number of dots in each column of F .
By Lemma 3.1, for any c = (c0, c1, . . . , cn−1) ∈ C, we have c = uG for some u =

(u0, u1, . . . , uk−1).
When 0 ≤ i ≤ k − 1, ci = ui, and so Ψm(ci) = Ψm(ui) = (ui,0, . . . , ui,γi−1, 0, . . . , 0).

Thus, the i-th column of F has γi dots.
When k ≤ i ≤ n−2, ci =

∑k−1
l=0 ulal+1,iβ

i−l and so Ψm(ci) =
∑k−1

l=0 al+1,iΨm(ulβ
i−l).

For l ∈ [k], Ψm(ul) = (ul,0, ul,1, . . . , ul,γl−1, 0, . . . , 0)
T implies ul = ul,0 + ul,1β + · · · +

ul,γl−1β
γl−1. Note that βm+j can be written as a linear combination of 1, β, β2, · · · , βm−1

for any nonnegative integer j. It follows that for each l ∈ [k], as a vector of length m,
Ψm(ulβ

i−l) has a valid length of at most min{γl + i − l,m}. Thus Ψm(ci) has a valid
length of at most max{γl+ i− l : l ∈ [k]} if max{γl+ i− l : l ∈ [k]} ≤ m, or m otherwise,
which coincides with Condition (1).

When i = n − 1, cn−1 =
∑k−1

l=1 ulal+1,n−1β
n−1−l + u0a1,n−1β

n and so Ψm(cn−1) =
∑k−1

l=1 al+1,n−1Ψm(ulβ
n−1−l) + a1,n−1Ψm(u0β

n). As a vector of length m, Ψm(u0β
n) has

a valid length of at most min{γ0 + n,m}. For each 1 ≤ l ≤ k − 1, Ψm(ulβ
n−1−l)

has a valid length of at most min{γl + n − 1 − l,m}. Thus Ψm(ci) has a valid length
of at most max{γ0 + n, γ1 + n − 1 − 1, γ2 + n − 1 − 2, . . . , γk−1 + n − 1 − (k − 1)} if
max{γ0+n, γ1+n−1−1, γ2+n−1−2, . . . , γk−1+n−1− (k−1)} ≤ m, or m otherwise,
which coincides with Condition (2). ✷
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Example 3.6 Let q be a prime power. Let m ≥ 2n − 2 and 3 ≤ n ≤ q + 2. Let

(1, β, . . . , βm−1) be an ordered polynomial basis of Fqm over Fq. Construct a 2×n matrix

G =

(
1 β2 β3 β4 · · · β(n−2) βn

1 a1β a2β
2 a3β

3 · · · an−3β
(n−3) β(n−2)

)

,

where ai ∈ F
∗
q, 1 ≤ i ≤ n−3, and ai 6= aj for any i 6= j. By Lemma 3.4, G is a generator

matrix of a systematic MRD[m× n, n− 1]q code.

Let F be an m′×n Ferrers diagram satisfying γ0 ≤ m−n, γi = γ0+i for 1 ≤ i ≤ n−2
and γn−1 = m′ = γ0 + n. It is readily checked that F satisfies Conditions (1) and (2) in
Construction 3.5. Thus there exists an optimal [F , γ0 + γ1, n− 1]q code.

Remark 3.7 When q = n− 2, Example 3.6 cannot be obtained from Theorem 2.9 since

no [n, 2, n−1]n−2 MDS code exists, even though here Theorem 2.9 can deal with all cases

of prime power q ≥ n− 1. No known construction can be applied here to handle the case

of q = n− 2. It is readily checked that Theorems 2.3-2.6 are invalid. Consider Theorem

2.7 with l ≥ 2 (when l = 1, Theorem 2.7 degenerates into Theorem 2.3). Condition (1)
yields t1 ≥ γ1 = γ0+1. Condition (3) yields γt1 ≥ t2 ≥ 2t1 (note that t1 | t2 and t1 < t2).
Since γt1 = γ0 + t1, we have t1 ≤ γ0, a contradiction. Thus Theorem 2.7 is also invalid.

When γ0 > 1, Example 3.6 cannot be obtained from Theorem 2.11. By using Lemma

2.13 (note that maxn−δ+1≤i≤n−1(γi − γi−1) = 2 and v0 = γ0 + γ1 = 2γ0 + 1), we have

that Theorem 2.12 is invalid. Similar arguments hold for the following two examples.

Example 3.8 Let q = 5, n = 7 and m ≥ 14. Let (1, β, . . . , βm−1) be an ordered polyno-

mial basis of F5m over F5. Construct a 3× 7 matrix

G =





1 2β3 3β4 4β5 β7

1 β2 β3 β4 β5

1 β 2β2 4β3 3β4



.

By Lemma 3.4, G is a generator matrix of a systematic MRD[m× 7, 5]5 code.

Let F be an m′ × n Ferrers diagram satisfying γ0 ≤ m− 7, γi = γ0 + i for 1 ≤ i ≤ 5
and γ6 = m′ = γ0 + 7. It is readily checked that F satisfies Conditions (1) and (2) in

Construction 3.5. Thus there exists an optimal [F , γ0 + γ1 + γ2, 5]5 code.

Example 3.9 Let q = 7, n = 9 and m ≥ 20. Let (1, β, . . . , βm−1) be an ordered polyno-

mial basis of F7m over F7. Construct a 3× 9 matrix

G =





1 2β3 3β4 4β5 5β6 6β7 β9

1 β2 β3 β4 β5 β6 β7

1 β 6β2 3β3 5β4 2β5 4β6



 .

By Lemma 3.4, G is a generator matrix of a systematic MRD[m× 9, 7]7 code.

Let F be an m′ × n Ferrers diagram satisfying γ0 ≤ m− 9, γi = γ0 + i for 1 ≤ i ≤ 7
and γ8 = m′ = γ0 + 9. It is readily checked that F satisfies Conditions (1) and (2) in

Construction 3.5. Thus there exists an optimal [F , γ0 + γ1 + γ2, 7]7 code.

Remark 3.10 In Lemma 3.4, the top right entry of G uses the n-th power of β, which
deviates from the patter in the rest of G. If a1,n−1β

n−1 is taken as the top right entry in

G, then similar arguments to those in the proof of Lemma 3.4 show that G is a generator

matrix of a systematic MRD[m× n, δ]q code if every minor of the matrix
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






a1,k a1,k+1 · · · a1,n−2 a1,n−1

a2,k a2,k+1 · · · a2,n−2 a2,n−1
...

...
. . .

...
...

ak,k ak,k+1 · · · ak,n−2 ak,n−1








is nonzreo. However, so far we have not found any appropriate G such that new optimal

FDRM codes can be derived from it.

3.2 Construction based on subcodes of Gabidulin codes

For any positive integer i and any a ∈ Fqm , set a
[i] , aq

i
. In this section, we shall

generalize Construction 2 in [5] by exploring subcodes of Gabidulin codes.
Let m ≥ n and q be any prime power. A Gabidulin code G[m×n, δ]q is an MRD[m×

n, δ]q code whose generator matrix G in vector representation is

G =









g0 g1 · · · gn−1

g
[1]
0 g

[1]
1 · · · g

[1]
n−1

...
...

. . .
...

g
[n−δ]
0 g

[n−δ]
1 · · · g

[n−δ]
n−1









,

where g0, g1, . . . , gn−1 ∈ Fqm are linearly independent over Fq (see [9]).
The following lemma is a generalization of Lemma 5 in [5], which only deals with the

case of r = 1. We move its proof to Appendix B.

Lemma 3.11 Let η, r, d, κ and µ be positive integers such that κ = η − r− d+ 1, r < κ
and η ≤ µ+ r. Then there exists a matrix G ∈ F

κ×η
qµ of the following form



























1 α0,κ · · · α0,η−r−1 0 0 · · · 0
1 α1,κ · · · α1,η−r−1 α1,η−r 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 αr−1,κ · · · αr−1,η−r−1 αr−1,η−r αr−1,η−r+1 · · · 0
1 αr,κ · · · αr,η−r−1 αr,η−r αr,η−r+1 · · · αr,η−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 ακ−1,κ · · · ακ−1,η−r−1 ακ−1,η−r ακ−1,η−r+1 · · · ακ−1,η−1



























satisfying that for each 0 ≤ i ≤ r, the sub-matrix obtained by removing the first i rows,
the leftmost i columns and the rightmost r − i columns of G can produce an MRD[µ ×
(η − r), d+ i]q code.

Construction 3.12 Let δ, n and r be positive integers satisfying r+1 ≤ δ ≤ n− r. To
take a κ × η matrix G satisfying Lemma 3.11, assume that d = δ − r, κ = n − δ + 1,
η = n and µ = n− r. Let F be an m×n Ferrers diagram, each of whose rightmost δ− 1
columns has at least n− r dots. Let γi, i ∈ [n], is the number of dots in the i-th column

of F . For l ∈ [r], set sl = min{γl − 1, γn−r+l − n+ r −
∑l−1

j=0(sj + 1)− 1}. Let

U =
{

(u0, . . . , uκ−1) ∈ F
κ
qn−r : Ψn−r(ul) = (ul,0, . . . , ul,sl , 0, . . . , 0)

T for l ∈ [r],

Ψn−r(ul) = (ul,0, . . . , ul,γl−1, 0, . . . , 0)
T for r ≤ l ≤ κ− 1, all possible ui,j ∈ Fq

}
.

Let Ψn−r(ul) = (ul,0, . . . , ul,sl)
T for l ∈ [r]. If 0 ≤ s0 ≤ s1 ≤ · · · ≤ sr−1, then C =

10



















Ψn−r(c)

0 · · · 0 Ψn−r(u0) Ψn−r(u1) · · · Ψn−r(ur−1)

0 · · · 0 0 Ψn−r(u0)
. . . Ψn−r(ur−2)

...
...

...
...

. . .
...

0 · · · 0 0 0 · · · Ψn−r(u0)











∈ F
m×n
q : c = u ·G,u ∈ U







is an [F , k, δ]q code for any prime power q, where k =
∑r−1

i=0 si + r+
∑n−δ

i=r γi. Note that

m = n+
∑r−1

i=0 si.

Proof One can easily verify the linearity and the dimension of the code. It remains
to examine the minimum rank weight of any nonzero codeword C from C. Note that
δ ≤ n− r, so r ≤ n− δ < n− δ + 1 = κ.

Let C be formed by c = uG = (u0, u1, . . . , uκ−1)G. Let i∗ = min{i : i ∈ [κ], ui 6=
0, uj = 0 for any j < i}. Then c = (0, . . . , 0, ui∗ , . . . , uκ−1)G.

(1) If i∗ < r, then let Ψ∗
n−r(uG) be an (n− r)× (n− r) matrix obtained by removing

the leftmost i∗ columns and the rightmost r− i∗ columns of Ψn−r(uG). By Lemma 3.11,
Ψ∗

n−r(uG) is a codeword of an MRD[µ×(n−r), δ−r+i∗]q code, whose generator matrix
can be obtained by removing the first i∗ rows, the leftmost i∗ columns and the rightmost
r − i∗ columns of G. Thus rank(Ψ∗

n−r(uG)) ≥ δ − r + i∗.
Furthermore, under the broken line of C, since Ψn−r(ui∗) with the length si∗ is a

nonzero vector, the rightmost r−i∗ columns contribute rank r−i∗. Therefore, rank(C) ≥
rank(Ψ∗

n−r(uG)) + r − i∗ ≥ δ − r + i∗ + r − i∗ = δ.
(2) If i∗ ≥ r, then let Ψ∗

n−r(uG) be an (n− r)× (n− r) matrix obtained by removing
the leftmost r columns of Ψn−r(uG). By Lemma 3.11, Ψ∗

n−r(uG) is a codeword of an
MRD[µ× (n−r), δ]q code, whose generator matrix can be obtained by removing the first
r rows and the leftmost r columns of G. Thus rank(C) ≥ δ. ✷

Theorem 3.13 Let δ, n and r be positive integers satisfying r + 1 ≤ δ ≤ n − r. Let F
be an m× n Ferrers diagram satisfying that

(1) γn−δ ≤ n− r,

(2) γn−δ+1 ≥ n− r,

(3) γn−r+l ≥ n− r +
∑l

j=0 γj for l ∈ [r].

Then there exists an optimal [F ,
∑n−δ

i=0 γi, δ]q code for any prime power q.

Proof Note that r + 1 ≤ δ yields n− δ ≤ n − r − 1. Consider a new Ferrers diagram
F ′ with γ′i for i ∈ [n] as the number of dots in its i-th column, satisfying

γ′i =







γi, if 0 ≤ i ≤ n− δ;

n− r, if n− δ + 1 ≤ i ≤ n− r − 1;

n− r +
i+r−n∑

j=0

γj , if n− r ≤ i ≤ n− 1.

Then F ′ is a sub-Ferrers diagram of F and γ′i ≤ n− r for 0 ≤ i ≤ n− r−1. According to

Lemma 2.2, it suffices to show that there exists an optimal [F ′,
∑n−δ

i=0 γ
′
i, δ]q code, which

implies the existence of an optimal [F ,
∑n−δ

i=0 γi, δ]q code.
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Clearly, each of the rightmost δ − 1 columns of F ′ has at least n − r dots. To
apply Construction 3.12, we need to count sl for l ∈ [r]. By Condition (3), s0 =
min{γ′0 − 1, γ′n−r − n + r − 1} = γ′0 − 1. It follows that by induction on l, l ∈ [r],

we have sl = min{γ′l − 1, γ′n−r+l − n + r −
∑l−1

j=0(sj + 1) − 1} = min{γ′l − 1, γ′n−r+l −

n + r −
∑l−1

j=0 γ
′
j − 1} = γ′l − 1. Thus 0 ≤ s0 ≤ s1 ≤ · · · ≤ sr−1, and Construction 3.12

provides an [F ′,
∑n−δ

i=0 γ
′
i, δ]q code, which is optimal by Lemma 2.2. ✷

We remark that as a corollary of Theorem 3.13 with r = 1, we can obtain Theorem
8 in [5].

Example 3.14 Let n ≥ 3 and

F =

• • • • · · · • • • •
• • • • · · · • • • •

• • · · · • • • •
• • · · · • • • •

. . .
...

...
...

...

• • • •
• • • •

• •
• •

•
•

be a (2n+2)×2n Ferrers diagram. Take δ = 4. Apply Theorem 3.13 with r = 2. One can

check that the rightmost 3 columns of F have at least 2n−2 dots, γ2n−2 = 2n = 2n−2+γ0
and γ2n−1 = 2n + 2 = 2n − 2 + γ0 + γ1. So F satisfies the conditions of Theorem 3.13,
and an optimal [F , 2(n − 1)2, 4]q code exists for any prime power q.

Remark 3.15 No known construction can be applied to obtain Example 3.14. It is

readily checked that Theorems 2.3-2.6 and 2.11 are invalid. Consider Theorem 2.7 with

l ≥ 2. Condition (1) yields t1 ≥ γ2n−4 = 2n − 2 and Condition (3) yields γt1 ≥ t2 ≥
2t1 ≥ 4n − 4. Due to γt1 ≤ 2n + 2, we have n ≤ 3. So Theorem 2.7 is invalid when

n > 3. Actually by more careful calculation, one can check that Theorem 2.7 is also

invalid for n = 3. We leave the details to the interested reader. Theorem 2.9 can provide

an [F , 2n2 − 4n, 4]q code for any prime power q ≥ 2n− 1, but it is not optimal. By using

Lemma 2.13 (note that maxn−δ+1≤i≤n−1(γi − γi−1) = 2 and v0 = 2(n− 1)2), one can see

that Theorem 2.12 is invalid.

4 New Ferrers diagram rank-metric codes from old

First we give a slight variation of Theorem 2.12. It is not complicated, but inspires us
to establish this section.

Theorem 4.1 Let Fi for i = 1, 2 be an mi×ni Ferrers diagram, and Ci be an [Fi, ki, δi]q
code. Let D be an m3 × n3 Ferrers diagram and C3 be a [D, k3, δ]q code, where m3 ≥ m1

and n3 ≥ n2. Let m = m2 +m3 and n = n1 + n3. Let

F =

(
F1 D̂

F2

)

12



be an m×n Ferrers diagram F , where D̂ is obtained by adding the fewest number of new

dots to the lower-left corner of D such that F is a Ferrers diagram. Then there exists

an [F ,min{k1, k2}+ k3,min{δ1 + δ2, δ}]q code C satisfying that for any codeword C ∈ C,
C|F1 = O if and only if C|F2 = O, where C|Fi

denotes the restriction of C in Fi for

i = 1, 2.

Proof Obviously, C3 is also a [D̂, k2, δ]q code, and the existence of [Fi, ki, δi]q code Ci for
i = 1, 2 implies the existence of [Fi,min{k1, k2}, δi]q code C′

i. Let ϕ be an isomorphism
ϕ : C′

1 −→ C′
2 (in the sense of linear spaces) and set

C =

{(
X D

0 ϕ(X)

)

: X ∈ C′
1,D ∈ C3

}

.

Clearly C is a linear code of dimension min{k1, k2} + k3. It suffices to examine the
minimum rank distance of C. Take any nonzero codeword C from C. Since X and ϕ(X)
are either both zero or both nonzero, we consider the following two cases:

• X 6= 0.

rank(C) = rank

(
X D

0 ϕ(X)

)

≥ rank(X) + rank(ϕ(X)) ≥ δ1 + δ2.

• X = 0.

rank(C) = rank(D) ≥ δ.

Therefore, C is an [F ,min{k1, k2}+ k3,min{δ1 + δ2, δ}]q code. ✷

4.1 Generalization of Theorem 4.1

To obtain optimal FDRM codes, in the process of using Theorem 4.1, it is often required
that C3 is an optimal [D, k2, δ]q code. If the optimality of C3 is unknown, then what
shall we do? A natural idea is to remove a sub-diagram from D to obtain a new Ferrers
diagram D′ such that the FDRM code in D′ is optimal, and then mix the removed sub-
diagram to F1 or F2. We shall illustrate the idea by using Example 4.5. Note that for
this example, one can check that any known constructions cannot attain the required
dimension.

First, we introduce a new concept. Let F1 be an m1 × n1 Ferrers diagram, F2 be an
m2 ×n2 Ferrers diagram and F be an m×n Ferrers diagram. Let φl for l ∈ {1, 2} be an
injection from Fl to F (in the sense of set-theoretical language). F is said to be a proper

combination of F1 and F2 on a pair of mappings φ1 and φ2, if

(1) φ1(F1) ∩ φ2(F2) = ∅;

(2) |F1|+ |F2| = |F|;

(3) for any l ∈ {1, 2} and any two different elements (il,1, jl,1), (il,2, jl,2) of Fl, set
φl(il,1, jl,1) = (i′l,1, j

′
l,1) and φl(il,2, jl,2) = (i′l,2, j

′
l,2); i

′
l,1 = i′l,2 or j′l,1 = j′l,2 whenever

il,1 = il,2 or jl,1 = jl,2.

Condition (3) means that if two dots in Fl for l ∈ {1, 2} are in the same row or same
column, then their corresponding two dots in F are also in the same row or same column.

Example 4.2 Let
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F1 =

• •
• •

•
•
•
•

and F2 =
• •

•
•

be two Ferrers diagrams. Then all of

D1 =

• • • •
• • •

• •
•
•
•

, D2 =

• • • • •
• • •

•
•
•
•

, D3 =

• • • • • •
• •

•
•
•
•

, D4 =

• •
• •
• •
• •
• •
• •

are proper combinations of F1 and F2. Note that F1 keeps its shape invariant in Dl for

any l ∈ {1, 2, 3, 4}; F2 keeps its shape invariant in D1 and D2 (the transpose of F2 is

allowed); F2 degenerates into a single row or column in D3 and D4.

Proposition 4.3 Let F be a proper combination of Ferrers diagrams F1 and F2. Then

for each l ∈ {1, 2}, either Fl keeps its shape invariant in F (the transpose of Fl is

allowed), or Fl degenerates into a single row or column in F .

Proof For l ∈ {1, 2}, if Fl only contains one row or one column, then the conclusion
follows immediately. Assume that R1 and R2 are two different rows of Fl, and R1

contains at least two dots. It is readily checked that these two rows either keep their
shape invariant in F (a transpose is allowed), or degenerate into a single row R or column
C in F . If it is the latter, then by considering the rightmost two dots of R1 and R2 in
Fl we have that the rightmost column in Fl must degenerate into the row R or column
C in F (we refer to it as Fact A), and for any dot P in any row (if this row exists) of Fl

other than R1 and R2, if P is not in the rightmost column, then there exists one dot P ′

in the rightmost column of Fl such that P and P ′ are in the same row, which yields that
P and P ′ must degenerate into the same row or column in F . Now it suffices to show
that the row must be R or the column must be C.

Since R1 contains at least two dots, there exists a dot P ′′ in Fl such that (i) P ′′ is
not in the rightmost column, (ii) P ′′ and P (P ′′ could be P ) are in the same row, and
(iii) there exists a dot P ′′′ in R1 such that P ′′ and P ′′′ are in the same column. Because
of Fact A, P ′ and P ′′′ degenerate into the row R or the column C in F . This forces P ,
P ′, P ′′ and P ′′′ to degenerate into the row R or column C. Therefore, all dots in Fl must
degenerate into the single row R or column C in F . ✷

Lemma 4.4 For l ∈ {1, 2}, let Fl be an ml ×nl Ferrers diagram and M l be an ml ×nl
matrix whose entries not in Fl are all zero. Let F be a proper combination of F1 and F2

on a pair of mappings φ1 and φ2 such that F is an m× n Ferrers diagram. Let M12 be

an m× n matrix satisfying

M12(i, j) =







M 1(i1, j1), if (i, j) = φ1(i1, j1) and (i1, j1) ∈ F1;

M 2(i2, j2), if (i, j) = φ2(i2, j2) and (i2, j2) ∈ F2;

0, otherwise.

Then rank(M 12) ≤ rank(M 1)+ rank(M 2).
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Proof For l ∈ {1, 2}, denote by M12|Fl
the restriction of M 12 in Fl, i.e., M12|Fl

is an
m× n matrix satisfying

M12|Fl
(i, j) =

{

M12(i, j), if (i, j) ∈ φl(Fl);

0, otherwise.

Then using the basic fact that rank(A+B) ≤ rank(A)+ rank(B), we have rank(M12) ≤
rank(M12|F1)+ rank(M12|F2). By Proposition 4.3, rank(M12|Fl

) ≤ rank(M l) for l ∈
{1, 2}. The conclusion is then straightforward. ✷

Example 4.5 We here construct an optimal [F , 10, 4]q code C for any prime power q,
where

F =

• • • • • • • •
• • • • • • • •

• • • • • • •
• • • • •

•
•
•
•
•
•

.

First take the following four Ferrers sub-diagrams of F :

F4 =

• • • • •
• • • • •
• • • • •

• • • •
•
•
•

, F2 = •, F1 =
• • •
• • •

• •
, F3 =

•
•
•
.

Then take a proper combination F12 of F1 and F2 on mappings φ1 and φ2 as follows

• • •
• • •
• • •

, F12,

where φ1 : F1 −→ F12 satisfies φ1(i, j) = (i, j) for any (i, j) ∈ ([3] × [3]) \ {(2, 0)}, and
φ2 : F2 −→ F12 satisfies φ2(0, 0) = (2, 0). Now construct a new Ferrers diagram

F∗ =

(
F12 F4

F3

)

.

For any prime power q, by Theorem 4.1, we have an [F∗, 10, 4]q code C∗ satisfying that

for any D ∈ C∗, D|F12 = O if and only if D|F3 = O, where an optimal [F12, 3, 3]q code

C12 exists by Theorem 2.3, an optimal [F4, 7, 4]q code C4 exists by Theorem 2.5, and an

optimal [F3, 3, 1]q code C3 is trivial.
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The above procedure from F to F∗ yields a natural bijection ψ from F to F∗ (note
that ψ(3, 3) = (2, 0)). For each D ∈ C∗, construct a 10× 8 matrix CD such that

CD(i, j) =

{

D(ψ(i, j)), if (i, j) ∈ F ;

0, otherwise.

Let C = {CD : D ∈ C∗}. Then C is an optimal [F , 10, 4]q code. Clearly C and C∗ have the

same linearity and dimension. The optimality is guaranteed by Lemma 2.2. It suffices

to prove that for each nonzero CD ∈ C, rank(CD) ≥ 4.
Clearly, rank(CD) ≥ rank(CD |F1)+rank(CD |F2)+rank(CD|F3). By Lemma 4.4,

rank(CD |F1)+ rank(CD |F2) ≥ rank(D|F12). Since rank(CD|F3) = rank(D|F3), we have

that rank(CD) ≥ rank(D|F12)+ rank(D|F3). Note that D|F12 = O if and only if

D|F3 = O. If D|F12 6= O, then since C12 is an [F12, 3, 3]q code, rank(D|F12) ≥ 3, and
since C3 is an [F3, 3, 1]q code, rank(D|F3) ≥ 1. So rank(CD) ≥ 4. If D|F12 = O, then

rank(CD) = rank(CD |F4) = rank(D|F4). Since C4 is an [F4, 7, 4]q code, rank(D|F4) ≥ 4.
Therefore, rank(CD) ≥ 4.

Remark 4.6 No known construction can be applied to obtain Example 4.5. By Remark

3.2, all theorems in Section 2.3.1 are invalid. Theorem 2.9 can provide an [F , 9, 4]q code

for any prime power q ≥ 4, but it is not optimal. Theorem 2.12 is also invalid. Otherwise,

to get the required dimension 10, F2 must contain the 7× 5 Ferrers diagram in the lower

right corner of F as its sub-Ferrers diagram. But then one cannot find F1 with at least

10 dots.

Let us now generalize Example 4.5.

Construction 4.7 Let

F =

n1
︷ ︸︸ ︷

n4
︷ ︸︸ ︷

m1







• . . . • • . . . • • . . . •
... F1

...
... F4

...

◦ . . . • • . . . • • •
◦ . . . ◦ • •
... F2

...
...

...

◦ . . . ◦ • . . . •
◦ . . . •
... F3

...

◦ . . . •







m4






m3

be an m × n Ferrers diagram, where Fi is an mi × ni Ferrers sub-diagram, 1 ≤ i ≤ 4,
satisfying that m = m3 +m4, n = n1 + n4, m4 ≥ m1 +m2 and n4 ≥ n2 + n3. Suppose

that F12 is a proper combination of F1 and F2, and C12 is an [F12, k1, δ1]q code. If there

exist an [F3, k3, δ3]q code C3 and an [F4, k4, δ4]q code C4, then there exists an [F , k, δ]q
code C, where k = min{k1, k3} + k4, δ = min{δ1 + δ3, δ4}. Note that the dots “ • ” in F
have to exist, whereas the dots “ ◦ ” can exist or not.

Proof Construct a new Ferrers diagram
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F∗ =

(
F12 F̂4

F3

)

,

where F̂4 is obtained by adding the fewest number of new dots to the lower-left corner
of F4 such that F∗ is a Ferrers diagram. Obviously, an [F̂4, k4, δ4]q code can be obtained
by adding all-zero rows to matrices in C4. It follows that by Theorem 4.1, an [F∗, k, δ]q
code C∗ exists, where k = min{k1, k3}+ k4, δ = min{δ1 + δ3, δ4}.

The above procedure from F to F∗ yields a natural injection ψ from F to F∗. Now,
for each D ∈ C∗, construct an m× n matrix CD such that

CD(i, j) =

{

D(ψ(i, j)), if (i, j) ∈ F ;

0, otherwise.

Let C = {CD : D ∈ C∗}. It is readily checked that C is an [F , k, δ]q code. ✷

When F2 is empty, Construction 4.7 yields Theorem 4.1.

4.2 Relaxation of dimensions

Construction 4.7 produces an [F ,min{k1, k3} + k4, δ]q code from an [F12, k1, δ1]q code
C12, an [F3, k3, δ3]q code C3 and an [F4, k4, δ4]q code C4. This procedure doesn’t make full
use of dimensions of C12 and C3. We hope to find a proper combination F∗∗ of F12 and
F3 such that there exists an [F∗∗, k′, δ′]q code, where k′ > min{k1, k3}. The following
construction provides a possible way to realize our idea. We start from an example.

Example 4.8 We here construct an optimal [F , 13, 4]q code C for any prime power q,
where

F =

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • •
•
•
•
•
•
•
•
•

.

First take the following four Ferrers sub-diagrams of F :

F4 =

• • • • •
• • • • •
• • • • •

• • • •
•
•
•

, F2 = •, F1 =
• • • • •
• • • • •
• • • • •

, F3 =

•
•
•
•
•

.
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Then take a proper combination F123 of F1, F2 and F3 on mappings φ1, φ2 and φ3 as

follows

• • • • •
• • • • •
• • • • •
• • • • •

•

, F123,

where φ1 : F1 −→ F123 satisfies φ1(i, j) = (i, j) for any (i, j) ∈ [3]× [5], φ2 : F2 −→ F123

satisfies φ2(0, 0) = (4, 4), and φ3 : F3 −→ F123 satisfies φ3(j, 0) = (3, j) for any j ∈ [5].
By Theorem 2.3, there exists an optimal [F t

123, 6, 4]q code, which implies an optimal

[F123, 6, 4]q code C123. By Theorem 2.5, there exists an optimal [F4, 7, 4]q code C4.
The above procedure yields two natural bijection ψ1 : F|F1,F2,F3 −→ F123 and ψ2 :

F|F4 −→ F4. For each B ∈ C123 and D ∈ C4, construct a 12 × 10 matrix CB,D such

that

CB,D(i, j) =







B(ψ1(i, j)), if (i, j) ∈ F|F1,F2,F3 ;

D(ψ2(i, j)), if (i, j) ∈ F|F4 ;

0, if (i, j) /∈ F .

Let C = {CB,D : B ∈ C123,D ∈ C4}. Then C is an optimal [F , 13, 4]q code. Clearly C is

a code in F of dimension 13. The optimality is guaranteed by Lemma 2.2. It suffices to

prove that for each nonzero CB,D ∈ C, rank(CB,D) ≥ 4.
Clearly, rank(CB,D) ≥ rank(CB,D|F1)+ rank(CB,D|F2)+ rank(CB,D|F3) ≥ rank(B),

where the second inequality comes from Lemma 4.4. If B 6= O, then since C123 is

an [F123, 6, 4]q code, rank(B) ≥ 4. If B = O, then rank(CB,D) = rank(CB,D |F4) =
rank(D). Since C4 is an [F4, 7, 4]q code and D 6= 0, we have rank(D) ≥ 4. Therefore,

rank(CB,D) ≥ 4.

Remark 4.9 No known construction can be applied to obtain Example 4.8. By Remark

3.2, all theorems in Section 2.3.1 are invalid. Theorem 2.9 can provide an [F , 11, 4]q
code for any prime power q ≥ 4, but it is not optimal. Theorem 2.12 is also invalid.

Otherwise, to get the required dimension 13, F2 must be the 9× 5 Ferrers diagram in the

lower right corner of F , and F1 must be the 3× 5 Ferrers diagram in the top left corner

of F . Then δ1 = δ2 = 1 because of the dimension 13, which contradicts with δ = 4.

Let us now generalize Example 4.8.

Construction 4.10 Let

F =

n1
︷ ︸︸ ︷

n4
︷ ︸︸ ︷

m1







• . . . • • . . . • • . . . •
... F1

...
... F4

...

◦ . . . • • . . . • • •
◦ . . . ◦ • •
... F2

...
...

...

◦ . . . ◦ • . . . •
◦ . . . •
... F3

...

◦ . . . •







m4






m3
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be an m × n Ferrers diagram, where Fi is an mi × ni Ferrers sub-diagram, 1 ≤ i ≤ 4,
satisfying that m = m3 +m4, n = n1 + n4, m4 ≥ m1 +m2 and n4 ≥ n2 + n3. Suppose

that F123 is a proper combination of F1, F2 and F3, and C123 is an [F123, k1, δ1]q code.

If there exists an [F4, k4, δ4]q code C4, then there exists an [F , k1 + k4, δ]q code C, where
δ = min{δ1, δ4}.

Proof Take two natural bijections ψ1 : F|F1,F2,F3 −→ F123 and ψ2 : F|F4 −→ F4. For
each B ∈ C123 and D ∈ C4, construct an m× n matrix CB,D such that

CB,D(i, j) =







B(ψ1(i, j)), if (i, j) ∈ F|F1,F2,F3 ;

D(ψ2(i, j)), if (i, j) ∈ F|F4 ;

0, if (i, j) /∈ F .

Let C = {CB,D : B ∈ C123,D ∈ C4}. It is readily checked that C is an [F , k1 + k4, δ]q
code C, where δ = min{δ1, δ4}. ✷

Remark 4.11 Compared with Construction 4.7, Construction 4.10 starts from a proper

combination F123 of F1, F2 and F3, which must be a Ferrers diagram according to the

definition of proper combinations. This requirement sometimes restricts the value of rank

of the resulting code C. For example, in Example 4.5, the proper combination of F12 and

F3 will provide codes with rank at most 3, while the required code has rank 4.

Theorem 4.12 Let δ ≤ y ≤ min{m− δ + 2, n − δ − 1}. Let

F =

n−y
︷ ︸︸ ︷

y−δ+1
︷ ︸︸ ︷

δ−1
︷ ︸︸ ︷

• · · · • • · · · • • · · · •
...

. . .
...

...
...

...
...

. . .
...

• · · · • • · · · • • · · · •
◦ · · · ◦ • . . . •
... P

...
...

. . .
...

◦ · · · ◦ • · · · •
•
...

•
•
...

•






δ − 1






y − δ






δ − 1






m− y − δ + 2

be an m × n Ferrers diagram F . Let zi be the number of dots in the i-th column of P,

i ∈ [y − δ+1]. If z0 ≤ n− y, then Construction 4.10 provides an optimal [F , k, δ]q code,

where

k =

{

m− y + 1 + (y − δ)(δ − 1) + |P|, if m− n ≤ δ − 2;

n− 1 + (y − δ)(δ − 2) + |P|, otherwise.

Proof Let P1 denote the Ferrers diagram obtained by removing the first column of P.
Consider the following four Ferrers sub-diagrams of F :
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F1 =

n−y
︷ ︸︸ ︷

• · · · •
...

. . .
...

• · · · •






δ − 1

, F2 =

◦
...
◦






z0 , F3 =

•
...
•






m− y − δ + 2 ,

F4 =

y−δ+1
︷ ︸︸ ︷

δ−1
︷ ︸︸ ︷

• • · · · • • · · · •
...

...
. . .

...
...

. . .
...

• • · · · • • · · · •
◦ · · · ◦ • · · · •
... P1

...
...

. . .
...

◦ · · · ◦ • · · · •
•
...
•







δ − 1







y − δ







δ − 1

.

By Theorem 2.5, there exists an [F4, (y − δ + 1)(δ − 1)− z0 + |P|, δ]q code.
If n ≥ m− δ+2, then n− y ≥ m− δ+2− y. When m− y− δ+2 ≥ z0, take a proper

combination F123 of F1, F2 and F3 as follows (note that z0 ≤ n− y by assumption)

F123 =





F1

F t
3

F t
2



.

When m− y − δ + 2 < z0, take

F123 =





F1

F t
2

F t
3



.

F123 is an (δ+1)×(n−y) Ferrers diagram. By assumption, n−y ≥ δ+1, so by Theorem
2.3, there exists an [F123,m− y − δ + 2 + z0, δ]q code. Then apply Construction 4.10 to
obtain an [F ,m− y + 1 + (y − δ)(δ − 1) + |P|, δ]q code, which is optimal by Lemma 2.2
(one can check it by counting the number of dots in F which are not contained in the
first δ − 1 rows).

If n < m− δ+2, then n− y < m− δ+2− y. Take a proper combination F123 of F1,
F2 and F3 as follows

F123 =





F t
3

F1

F t
2



.

F123 is an (δ + 1)× (m− y − δ + 2) Ferrers diagram. By assumption, n− y ≥ δ + 1, so
m− y − δ + 2 > δ + 1. Thus by Theorem 2.3, there exists an [F123, n− y + z0, δ]q code.
Then apply Construction 4.10 to obtain an [F , n−1+(y−δ)(δ−2)+ |P|, δ]q code, which
is optimal by Lemma 2.2 (one can check it by counting the number of dots in F which
are not contained in the first δ − 2 rows and the rightmost column). ✷

We remark that Theorem 4.12 with n = 10, y = 5, m = 12, δ = 4, k = 13 and
P = • • yields Example 4.8.
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4.3 A special case: F2 having only one dot

Constructions 4.7 and 4.10 require that F2 doesn’t contain any dots of F in the first n1
columns and the last m3 rows. However, when F2 contains only one dot, this restriction
can be relaxed.

Construction 4.13 Let m = m1 +m3 and n = n1 + n3. Let

F =

n1
︷ ︸︸ ︷

n3
︷ ︸︸ ︷

• · · · • • · · · •
... F1

...
... F4

...

◦ · · · • • · · · •
• • · · · •

... F3
...

◦ · · · •






m1






m3

be an m× n Ferrers diagram, where F1 is an m1 × n1 Ferrers diagram, F2 = • , F3 is

an m3 × n3 Ferrers diagram, and F4 is an m1 × n3 full Ferrers diagram. Sort the list

{1} ∪ {ρi(F1) : i ∈ [m1]} ∪ {γj(F3) : j ∈ [n3]} from small to large, where ρi(F1) denotes
the number of dots in the i-th row of F1 and γj(F3) denotes the number of dots in the j-th
column of F3. The elements in the sorted list are rewritten as α0 ≤ α1 ≤ . . . ≤ αm1+n3.

Suppose that F123 is a proper combination of F1, F2 and F3 satisfying γl(F123) = αl for

l ∈ [m1 + n3 + 1], where γl(F123) denotes the number of dots in the l-th column of F123,

and C123 is an [F123, k1, δ1]q code. If there exists an [F4, k4, δ4]q code C4, then there exists

an [F , k1 + k4, δ]q code C, where δ = min{δ1, δ4}.

Proof Take a natural bijection ψ1 : F|F1,F2,F3 −→ F123 such that ψ1(m1, n1 − 1) =
(0, 0), ψ1(i, n1 − 1) = (0, ∗) for each i ∈ [m1], and ψ1(m1, j) = (0, ∗) for each n1 ≤ j ≤
n1 + n3 − 1. Take a natural bijection ψ2 : F|F4 −→ F4. For each B ∈ C123 and D ∈ C4,
construct an m× n matrix CB,D such that

CB,D(i, j) =







B(ψ1(i, j)), if (i, j) ∈ F|F1,F2,F3 ;

D(ψ2(i, j)), if (i, j) ∈ F|F4 ;

0, if (i, j) /∈ F .

Let C = {CB,D : B ∈ C123,D ∈ C4}. Then C is an [F , k1 + k4, δ]q code C, where
δ = min{δ1, δ4}.

One can easily verify the linearity and the dimension of the code. It suffices to
examine the minimum rank weight of any nonzero codewords CB,D from C. We give a
sketch of the counting for ranks below. The technique is similar to that in Example 4.8.

Let

CB,D =















∗

A1

... A4

∗

0 · · · 0 a ∗ · · · ∗

0
... A3

0















,
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where a corresponds to the dot in F2. If A4 6= O, then since C4 is an [F4, k4, δ4]q code,
rank(CB,D) ≥ rank(A4) = rank(D) ≥ δ4. If A4 = O and a = 0, then since C123 is an
[F123, k1, δ1]q code, rank(CB,D) = rank(CB,D|F1) + rank(CB,D|F3) ≥ rank(B) ≥ δ1. If
A4 = O and a 6= 0, then rank(CB,D) ≥ rank(A1) + 1 + rank(A3). According to ψ1, B
is of the form (a permutation of columns are allowed)

(
a ∗ · · · ∗ ∗ · · · ∗

AT
1 A3

)

.

Since rank(A1) + 1 + rank(A3) ≥ rank(B), we have rank(CB,D) ≥ δ1. ✷

Theorem 4.14 Take δ1 = δ4 = δ in Construction 4.13 such that δ ≤ m1 + 1. Suppose

that F in Construction 4.13 satisfies:

(1) if δ < m1 + 1, then n3 ≥ m1;

(2) 1 +m1 + n3 ≤ max{n1,m3};

(3) αm1+n3−δ+2 ≥ m1 + n3;

(4) ρδ−2 − n3 ≥ m3,

where ρi denotes the number of dots in the i-th row of F , i ∈ [m1 + m3]. Then there

exists an optimal [F ,
∑m1+m3−1

i=δ−1 ρi, δ]q code C for any prime power q.

Proof By Theorem 2.3, due to Condition (1), there is an optimal [F4, n3(m1−δ+1), δ]q
code C4 for any prime power q. Note that when δ = m1 + 1, it consists of only a zero
codeword.

Note that F123 has m1 + n3 + 1 columns. By Theorem 2.5, due to Conditions (2)
and (3), there is an [F123,

∑m1+n3−δ+1
i=0 αi, δ]q code C123 for any prime power q, where

αi denotes the number of dots in the i-th column of F123. It is optimal by Lemma 2.2.
Condition (4) ensures all dots in F3 contribute dimensions for C123, so

∑m1+n3−δ+1
i=0 αi =

∑m1−1
i=δ−1(ρi − n3) +

∑m1+m3−1
i=m1

ρi.
Therefore, we can apply Construction 4.13 to obtain an optimal [F , k, δ]q code, where

k = n3(m1 − δ + 1) +
∑m1−1

i=δ−1(ρi − n3) +
∑m1+m3−1

i=m1
ρi =

∑m1+m3−1
i=δ−1 ρi. ✷

Example 4.15 Consider the following Ferrers diagram:

F =

• • • • •
• • • • •

• •
•
•
•

.

Let δ = 3 and

F1 =
• • • •
• • • •

, F2 = • , F3 =

•
•
•
•

, F4 =
•
•
.
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Then m1 = 2, n1 = 4, m3 = 4, n3 = 1, α0 = 1 and αi = 4 for i ∈ {1, 2, 3}. So the

conditions in Theorem 4.14 are satisfied, and we can construct an optimal [F , 5, 3] code.

Remark 4.16 No known construction can be applied to obtain Example 4.15. By Re-

mark 3.2, all theorems in Section 2.3.1 are invalid. Theorem 2.9 provides an [F , 4, 3]q
code for any prime power q ≥ 3, but it is not optimal. Theorem 2.12 is also invalid.

Otherwise, to get the required dimension 4, F2 must be the 4× 2 Ferrers diagram in the

lower right corner of F , and F1 must be the 2× 3 Ferrers diagram in the top left corner

of F . Then δ1 = 2 and δ2 = 1 because of the dimension 4, which contradicts with δ = 4.

5 Concluding remarks

Main contributions of this paper lie in the following two aspects. One is to generalize
Construction 2 in [5] by exploring subcodes of Gabidulin codes. Construction 2 in [5]
requires that each of the rightmost δ−1 columns in Ferrers diagram F has at least n−1
dots. We relax the condition n−1 to n−r (see Theorem 3.13). The other is to generalize
Theorem 9 in [5] by introducing the concept of proper combinations of Ferrers diagrams
(see Constructions 4.7, 4.10 and 4.13). This is the first time constructions for FDRM
codes with large size based on small ones are investigated systematically since they are
introduced in [5].

Recently, a new family of MRD codes is presented in [16]. A natural question is how
to use it to construct new optimal FDRM codes.

Another question is whether it is possible in some circumstances to require that
F1 and F2 in Construction 4.7 or F1, F2 and F3 in Construction 4.10 are not Ferrers
diagrams.

A Appendix

Proof of Lemma 3.4 Let

B =








1 u0,1 · · · u0,n−1

1 · · · u1,n−1

. . .
...
1







.

Then

GB =













1 u0,1 . . . u0,k−1 u0,k + a1,kβ
k · · · u0,n−1 +

∑n−2
i=k

ui,n−1a1,iβ
i + a1,n−1β

n

1 . . . u1,k−1 u1,k + a2,kβ
k−1 . . . u1,n−1 +

∑n−2
i=k

ui,n−1a2,iβ
i−1 + a2,n−1β

n−2

. . .
...

...
. . .

...

1 uk−1,k + ak,kβ · · · uk−1,n−1 +
∑n−2

i=k
ui,n−1ak,iβ

i−k+1 + ak,n−1β
n−k













.

Let Dk be any k × k submatrix of GB. Then det(Dk) is a polynomial on β.
Case 1. Dk doesn’t contain the last column of GB. If we could prove that the degree

of det(Dk) is less than m, and the leading coefficient of det(Dk) is a minor of A1, then
since every minor of A1 is nonzero, we would have det(Dk) 6= 0.

Subcase 1.1. Dk doesn’t contain any of the first k columns of GB. Take
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M1 =








a1,i1β
i1 a1,i2β

i2 · · · a1,ikβ
ik

a2,i1β
i1−1 a1,i2β

i2−1 · · · a2,ikβ
ik−1

...
...

. . .
...

ak,i1β
i1−k+1 ak,i2β

i2−k+1 · · · ak,ikβ
ik−k+1







,

where {i1, i2, . . . , ik} ⊆ {k, k+1, . . . , n−2}, such that the degree of det(M1) is the same
as that of det(Dk), and their leading coefficients are the same. Then

det(M1) = det








a1,i1β
k−1 a1,i2β

k−1 · · · a1,ikβ
k−1

a2,i1β
k−2 a2,i2β

k−2 · · · a2,ikβ
k−2

...
...

. . .
...

ak,i1 ak,i2 · · · ak,ik








· (βi1−k+1βi2−k+1 · · ·βik−k+1) =

det








a1,i1 a1,i2 · · · a1,ik
a2,i1 a2,i2 · · · a2,ik
...

...
. . .

...
ak,i1 ak,i2 · · · ak,ik








· (βk−1βk−2 · · ·β) · (βi1−k+1βi2−k+1 · · ·βik−k+1),

whose degree is k(k − 1)/2 +
∑k

j=1(ij − k + 1) ≤ kn− k2 − k < m. Since every k-minor
of A1 is nonzero, the leading coefficient of det(M1) is nonzero. So det(Dk) 6= 0.

Subcase 1.2. Dk contains h columns coming from the first k columns of GB for
some 1 ≤ h ≤ k. Write these h columns as the j1-th, j2-th, . . ., jh-th columns. Let Uk×h

be the submatrix formed by the first h columns of Dk. Take

M2 =








a1,ih+1
βih+1 a1,ih+2

βih+2 · · · a1,ikβ
ik

Uk×h a2,ih+1
βih+1−1 a2,ih+2

βih+2−1 · · · a2,ikβ
ik−1

...
...

. . .
...

ak,ih+1
βih+1−k+1 ak,ih+2

βih+2−k+1 · · · ak,ikβ
ik−k+1







,

where {ih+1, ih+2, . . . , ik} ⊆ {k, k+1, . . . , n− 2}, such that the degree of det(M2) is the
same as that of det(Dk), and their leading coefficients are the same. Then

det(M2) = det

















a1,ih+1
βk−1 a1,ih+2

βk−1
· · · a1,ik

βk−1

Uk×h a2,ih+1
βk−2 a2,ih+2

βk−2
· · · a2,ik

βk−2

.

.

.

.

.

.
.
.
.

.

.

.
ak,ih+1

ak,ih+2
· · · ak,ik

















· (β
ih+1−k+1

β
ih+2−k+1

· · ·βik−k+1).

Clearly, compared with the degree of det(M1), the degree of det(M2) is less than m. Let
L be a (k − h) × (k − h) matrix obtained by removing the j1-th, j2-th, . . ., jh-th rows
from the following matrix






a1,ih+1
· · · a1,ik

...
. . .

...
ak,ih+1

· · · ak,ik




.

It is readily checked that the leading coefficient of det(M2) is det(L) or − det(L) (this fact
comes from two observations: (1) via elementary row-addition operations on det(M2),
the Uk×h part in M2, which is an upper triangular matrix, can be transformed to a
matrix with at most one 1 in each row; (2) β has higher degrees in upper rows of M2).
Since L is a minor of A1, det(L) 6= 0. So det(Dk) 6= 0.

Case 2. Dk contains the last column of GB. The arguments are similar to those in
Case 1.

Subcase 2.1. Dk doesn’t contain any of the first k columns of GB. Take
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M3 =








a1,i1β
i1 a1,i2β

i2 · · · a1,ik−1
βik−1 a1,n−1β

n

a2,i1β
i1−1 a1,i2β

i2−1 · · · a2,ik−1
βik−1−1 a2,n−1β

n−2

...
...

. . .
...

...
ak,i1β

i1−k+1 ak,i2β
i2−k+1 · · · ak,ik−1

βik−1−k+1 ak,n−1β
n−k







,

where {i1, i2, . . . , ik−1} ⊆ {k, k + 1, . . . , n − 2}, such that the degree of det(M3) is the
same as that of det(Dk), and their leading coefficients are the same. Then

det(M3) = det













a1,i1β
k−1 a1,i2β

k−1 · · · a1,ik−1
βk−1 a1,n−1β

k

a2,i1β
k−2 a2,i2β

k−2 · · · a2,ik−1
βk−2 a2,n−1β

k−2

..

.
..
.

. . .
..
.

..

.
ak,i1 ak,i2 · · · ak,ik−1

ak,n−1













· (βi1−k+1 · · · βik−1−k+1βn−k)

= det













a1,i1 a1,i2 · · · a1,ik−1
a1,n−1β

a2,i1 a2,i2 · · · a2,ik−1
a2,n−1

..

.
..
.

. . .
..
.

ak,i1 ak,i2 · · · ak,ik−1
ak,n−1













· (βk−1βk−2 · · · β) · (βi1−k+1 · · ·βik−1−k+1βn−k),

whose degree is 1 + k(k − 1)/2 +
∑k−1

j=1(ij − k + 1) + n − k ≤ kn − k2 + 1 < m. Since
a1,n−1 ∈ F

∗
q and every (k− 1)-minor of A1 is nonzero, the leading coefficient of det(M3)

is nonzero. So det(Dk) 6= 0.
Subcase 2.2. Dk contains h columns coming from the first k columns of GB for

some 1 ≤ h ≤ k. Write these h columns as the j1-th, j2-th, . . ., jh-th columns. Let Uk×h

be the submatrix formed by the first h column of Dk. Take

M4 =








a1,ih+1
βih+1 · · · a1,ik−1

βik−1 a1,n−1β
n

Uk×h a2,ih+1
βih+1−1 · · · a2,ik−1

βik−1−1 a2,n−1β
n−2

...
. . .

...
ak,ih+1

βih+1−k+1 · · · ak,ik−1
βik−1−k+1 ak,n−1β

n−k







,

where {ih+1, ih+2, . . . , ik−1} ⊆ {k, k + 1, . . . , n − 2}, such that the degree of det(M4) is
the same as that of det(Dk), and their leading coefficients are the same. Then

det(M4) = det













a1,ih+1
βk−1 · · · a1,ik−1

βk−1 a1,n−1β
k

Uk×h a2,ih+1
βk−2 · · · a2,ik−1

βk−2 a2,n−1β
k−2

..

.
. . .

..

.
..
.

ak,ih+1
· · · ak,ik−1

ak,n−1













· (βih+1−k+1 · · · βik−1−k+1βn−k),

Clearly, compared with the degree of det(M3), the degree of det(M4) is less than m.
Subcase 2.2.1. Dk contains the first column of GB. W.l.o.g., assume that the j1-th

column of GB is just its first column. Let L be a (k − h)× (k − h) matrix obtained by
removing the j1-th, j2-th, . . ., jh-th rows from the following matrix






a1,ih+1
· · · a1,ik−1

a1,n−1
...

. . .
...

...
ak,ih+1

· · · ak,ik−1
ak,n−1




.

It is readily checked that the leading coefficient of det(M4) is det(L) or − det(L). Since
L is a minor of A2, det(L) 6= 0. So det(Dk) 6= 0.

Subcase 2.2.2. Dk does not contain the first column of GB. Let L be a (k − h −
1) × (k − h − 1) matrix obtained by removing the first, the j1-th, j2-th, . . ., jh-th rows
from the following matrix
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




a1,ih+1
· · · a1,ik−1

a1,n−1
...

. . .
...

...
ak,ih+1

· · · ak,ik−1
ak,n−1




.

It is readily checked that the leading coefficient of det(M4) is a1,n−1 ·det(L) or −a1,n−1 ·
det(L). Note that a1,n−1 ∈ F

∗
q. Since L is a minor of A2, det(L) 6= 0. So det(Dk) 6= 0.

✷

B Appendix

Proof of Lemma 3.11 To construct the required matrix G, we first take a G[µ× (η−
r), d]q code in vector representation over Fqµ :

G0 =









1 g0,1 · · · g0,η−r−1

1 g
[1]
0,1 · · · g

[1]
0,η−r−1

...
...

. . .
...

1 g
[κ−1]
0,1 · · · g

[κ−1]
0,η−r−1









,

where 1, g0,1, . . . , g0,η−r−1 ∈ Fqµ are linearly independent over Fq.
We shall extend G0 by adding r columns to obtain G. We need r steps. For 0 ≤ i ≤

r − 1, in Step i, let ωi = η − r + i− 2 and Gi =










































0 0 · · · 0 α0,κ · · · α0,η−r−1 0 0 · · · 0 0
0 0 · · · 0 α1,κ · · · α1,η−r−1 α1,η−r 0 · · · 0 0

Ii

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · 0 αi−2,κ · · · αi−2,η−r−1 αi−2,η−r αi−2,η−r+1 · · · 0 0
0 0 · · · 0 αi−1,κ · · · αi−1,η−r−1 αi−1,η−r αi−1,η−r+1 · · · αi−1,ωi

0

1 gi,i+1 · · · gi,κ−1 gi,κ · · · gi,η−r−1 gi,η−r gi,η−r+1 · · · gi,ωi
gi,ωi+1

1 g
[1]
i,i+1 · · · g

[1]
i,κ−1 g

[1]
i,κ

· · · g
[1]
i,η−r−1 g

[1]
i,η−r

g
[1]
i,η−r+1 · · · g

[1]
i,ωi

g
[1]
i,ωi+1

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

1 g
[κ−i−1]
i,i+1 · · · g

[κ−i−1]
i,κ−1 g

[κ−i−1]
i,κ

· · · g
[κ−i−1]
i,η−r−1 g

[κ−i−1]
i,η−r

g
[κ−i−1]
i,η−r+1 · · · g

[κ−i−1]
i,ωi

g
[κ−i−1]
i,ωi+1











































be a κ× (ωi + 2) matrix, where 1, gi,i+1, . . . , gi,ωi+1 ∈ Fqµ are linearly independent over
Fq, and the sub-matrix of Gi obtained by removing its first i rows and the leftmost i
columns produces a G[µ× (η − r), d+ i]q code. When i = 0, Gi is just G0 we defined in
the above paragraph. Now, we show that how to obtain Gi+1 from Gi for 0 ≤ i ≤ r− 1.

Let ti,i+1, ti,i+2, . . . , ti,κ−1 ∈ Fqµ such that

Hi,1=



















Ii
1 ti,i+1 · · · ti,κ−1

1

. . .

1





































Ii
1
−1 1
.
..

. . .

−1 1



















Gi

=





































0 0 · · · 0 α0,κ · · · α0,η−r−1

0 0 · · · 0 α1,κ · · · α1,η−r−1

Ii

...
...

. . .
...

...
. . .

...
0 0 · · · 0 αi−2,κ · · · αi−2,η−r−1

0 0 · · · 0 αi−1,κ · · · αi−1,η−r−1

1 0 · · · 0 αi,κ · · · αi,η−r−1

0 g
[1]
i,i+1 − gi,i+1 · · · g

[1]
i,κ−1 − gi,κ−1 g

[1]
i,κ − gi,κ · · · g

[1]
i,η−r−1 − gi,η−r−1

.

..
.
..

. . .
.
..

.

..
. . .

.

..

0 g
[κ−i−1]
i,i+1 − gi,i+1 · · · g

[κ−i−1]
i,κ−1 − gi,κ−1 g

[κ−i−1]
i,κ − gi,κ · · · g

[κ−i−1]
i,η−r−1 − gi,η−r−1
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0 0 · · · 0 0
α1,η−r 0 · · · 0 0

..

.
..
.

. . .
..
.

..

.
αi−2,η−r αi−2,η−r+1 · · · 0 0
αi−1,η−r αi−1,η−r+1 · · · αi−1,ωi

0
αi,η−r αi,η−r+1 · · · αi,ωi

αi,ωi+1

g
[1]
i,η−r − gi,η−r g

[1]
i,η−r+1 − gi,η−r+1 · · · g

[1]
i,ωi

− gi,ωi
g
[1]
i,ωi+1 − gi,ωi+1

...
...

. . .
...

...

g
[κ−i−1]
i,η−r − gi,η−r g

[κ−i−1]
i,η−r+1 − gi,η−r+1 · · · g

[κ−i−1]
i,ωi

− gi,ωi
g
[κ−i−1]
i,ωi+1 − gi,ωi+1





































.

Notice that ti,i+1, . . . , ti,κ−1 influence only the first row under the broken line of Hi,1

and the requirements on this row constitute a linear system of equations with κ− 1− i
equations and κ − 1 − i unknowns. Therefore, the desired ti,i+1, . . . , ti,κ−1 always exist
(this is from the observation of the generator matrix of the Gabidulin code defined by
1, gi,i+1, . . . , gi,κ−1).

Let

Hi,2=















Ii+1

1
−1 1

. . .
. . .

−1 1















Hi,1

=









































0 · · · 0 α0,κ · · · α0,η−r−1 0 0 · · · 0 0
0 · · · 0 α1,κ · · · α1,η−r−1 α1,η−r 0 · · · 0 0

Ii+1

...
. . .

...
...

. . .
...

...
...

. . .
...

...
0 · · · 0 αi−2,κ · · · αi−2,η−r−1 αi−2,η−r αi−2,η−r+1 · · · 0 0
0 · · · 0 αi−1,κ · · · αi−1,η−r−1 αi−1,η−r αi−1,η−r+1 · · · αi−1,ωi

0
0 · · · 0 αi,κ · · · αi,η−r−1 αi,η−r αi,η−r+1 · · · αi,ωi

αi,ωi+1

fi,i+1 · · · fi,κ−1 fi,κ · · · fi,η−r−1 fi,η−r fi,η−r+1 · · · fi,ωi
fi,ωi+1

f
[1]
i,i+1 · · · f

[1]
i,κ−1 f

[1]
i,κ · · · f

[1]
i,η−r−1 f

[1]
i,η−r f

[1]
i,η−r+1 · · · f

[1]
i,ωi

f
[1]
i,ωi+1

..

.
. . .

..

.
..
.

. . .
..
.

..

.
..
.

. . .
..
.

..

.

f
[κ−i−2]
i,i+1 · · · f

[κ−i−2]
i,κ−1 f

[κ−i−2]
i,κ · · · f

[κ−i−2]
i,η−r−1 f

[κ−i−2]
i,η−r f

[κ−i−2]
i,η−r+1 · · · f

[κ−i−2]
i,ωi

f
[κ−i−2]
i,ωi+1









































,

where fi,j = g
[1]
i,j − gi,j for i + 1 ≤ j ≤ ωi + 1. For any full-rank matrix Ti ∈ F

κ×κ
qµ , the

generator matrix TiGi defines the same code as Gi, so Hi,2 defines the same code as Gi.
We can assert that fi,i+1, fi,i+2, . . . , fi,ωi+1 ∈ Fqµ are linearly independent over Fq.

Since 1, gi,i+1, . . . , gi,ωi+1 ∈ Fqµ are linearly independent over Fq, we construct a G[µ ×
(ωi − i+ 2), ωi − i+ 1]q code generated by

(

1 gi,i+1 · · · gi,ωi+1

1 g
[1]
i,i+1 · · · g

[1]
i,ωi+1

)

.

Since (0, fi,i+1, . . . , fi,ωi+1) is a codeword of the G[µ× (ωi− i+2), ωi − i+1]q code, then
rank(fi,i+1, . . . , fi,ωi+1) = ωi− i+1. So, fi,i+1, fi,i+2, . . . , fi,ωi+1 are linearly independent
over Fq.

Additionally, since µ ≥ η− r = ωi− i+2, there exists an element fi,ωi+2 ∈ Fqµ which
is Fq-linearly independent of fi,i+1, . . . , fi,ωi+1. Hence, the κ× (ωi + 3) matrix

Hi,3 =











0(i+1)×1

fi,ωi+2

Hi,2 f
[1]
i,ωi+2
...

f
[κ−i−2]
i,ωi+2










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defines with its right bottom (κ−i−1)×(ωi−i+2) submatrix a G[µ×(ωi−i+2), d+i+1]q
code.

Now we set

Gi+1 =























Ii+1

f−1
i,i+1

f
−[1]
i,i+1

. . .

f
−[κ−i−2]
i,i+1























Hi,3

=













































0 0 · · · 0 α0,κ · · · α0,η−r−1 0 0 · · · 0 0
0 0 · · · 0 α1,κ · · · α1,η−r−1 α1,η−r 0 · · · 0 0

Ii+1

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · 0 αi−1,κ · · · αi−1,η−r−1 αi−1,η−r αi−1,η−r+1 · · · 0 0
0 0 · · · 0 αi,κ · · · αi,η−r−1 αi,η−r αi,η−r+1 · · · αi,ωi+1

0

1 gi+1,i+2 · · · gi+1,κ−1 gi+1κ · · · gi+1,η−r−1 gi+1,η−r gi+1,η−r+1 · · · gi+1,ωi+1
gi+1,ωi+1+1

1 g
[1]
i+1,i+2 · · · g

[1]
i+1,κ−1 g

[1]
i+1κ · · · g

[1]
i+1,η−r−1 g

[1]
i+1,η−r

g
[1]
i+1,η−r+1 · · · g

[1]
i+1,ωi+1

g
[1]
i+1,ωi+1+1

.

.

.

.

.

.
. .
.

.

.

.

.

.

.
. .
.

.

.

.

.

.

.

.

.

.
. .
.

.

.

.

.

.

.

1 g
[κ−i−2]
i+1,i+2 · · · g

[κ−i−2]
i+1,κ−1 g

[κ−i−2]
i+1κ · · · g

[κ−i−2]
i+1,η−r−1 g

[κ−i−2]
i+1,η−r

g
[κ−i−2]
i+1,η−r+1 · · · g

[κ−i−2]
i+1,ωi+1

g
[κ−i−2]
i+1,ωi+1+1













































,

where ωi+1 = ωi + 1 and gi+1,j = fi,jf
−1
i,i+1 for j ∈ {i + 2, . . . , ωi+1 + 1}. Notice that

1, gi+1,i+2, . . . , gi+1,ωi+1+1 are linearly independent over Fq, and the right bottom (κ− i−
1)× (ωi+1− i+1) submatrix of Gi+1 can produce the same G[µ× (ωi− i+2), d+ i+1]q
code as the one produced by Hi,3.

Finally, we can choose an invertible matrix T ∈ F
(κ−r)×(κ−r)
qµ such that

G =

(
Ir×r

T

)

·Gr

is our required matrix. ✷

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions
that helped improve the equality of the paper.

References

[1] J. Antrobus and H. Gluesing-Luerssen, Maximal Ferrers diagram codes: constructions
and genericity considerations, arXiv:1804.00624v1.

[2] R. Ahlswede, N. Cai, S.-Y.R. Li, and R.W. Yeung, Network information flow, IEEE
Trans. Inf. Theory, 46 (2000), 1204–1216.

[3] E. Ballico, Linear subspaces of matrices associated to a Ferrers diagram and with a
prescribed lower bound for their rank, Linear Algebra and its Appl., 483 (2015), 30–39.

[4] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J.
Combin. Theory A, 25 (1978), 226–241.

[5] T. Etzion, E. Gorla, A. Ravagnani and A. Wachter-Zeh, Optimal Ferrers diagram
rank-metric codes, IEEE Trans. Inf. Theory, 62 (2016), 1616–1630.

28

http://arxiv.org/abs/1804.00624


[6] T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-
metric codes and Ferrers diagrams, IEEE Trans. Inf. Theory, 55 (2009), 2909–2919.

[7] T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE
Trans. Inf. Theory, 59 (2013), 1004–1017.

[8] T. Etzion and A. Vardy, Error-correcting codes in projective spaces, IEEE Trans.

Inf. Theory, 57 (2011), 1165–1173.
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