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Abstract: Optimal rank-metric codes in Ferrers diagrams can be used to construct good
subspace codes. Such codes consist of matrices having zeros at certain fixed positions.
This paper generalizes the known constructions for Ferrers diagram rank-metric (FDRM)
codes. Via a criterion for linear maximum rank distance (MRD) codes, an explicit
construction for a class of systematic MRD codes is presented, which is used to produce
new optimal FDRM codes. By exploring subcodes of Gabidulin codes, if each of the
rightmost § — 1 columns in Ferrers diagram F has at least n — r dots, where r is taken
in a range, then the conditions that an FDRM code in F is optimal are established.
The known combining constructions for FDRM code are generalized by introducing the
concept of proper combinations of Ferrers diagrams.

Keywords: Ferrers diagram, rank-metric code, Gabidulin code, subspace code.

1 Introduction

Network coding, introduced in [2], refers to coding at the intermediate nodes when
information is multicasted in a network. Often information is modeled as vectors of
fixed length over a finite field Iy, called packets. To improve the performance of the
communication, intermediate nodes should forward random linear F,-combinations of
the packets they receive. Hence, the vector space spanned by the packets injected at the
source is globally preserved in the network when no error occurs.

This observation led Kotter and Kschischang [12] to model network codes as projec-
tive space Py (n), the set of all subspaces of Fy, or Grassmann space Gy(n, k), the set of all
subspaces of [y having dimension k. Subsets of P,(n) are called subspace codes or pro-
jective codes, while subsets of the Grassmann space are referred to as constant-dimension
codes or Grassmann codes. The subspace distance dg(U, V) = dimU-+dimV —2dim(UNV')
for all U,V € Py(n) is used as a distance measure for subspace codes. For more infor-
mation on constructions and bounds for subspace codes, the interested reader may refer
to [618, 10131719, 21,22].

Silva, Kschischang and Kotter [20] pointed out that lifted maximum rank distance
(MRD) codes can result in almost optimal constant dimension codes, which asymptoti-
cally attain the known upper bounds [8/12], and can be decoded efficiently in the context
of random linear network coding.

To obtain optimal constant dimension codes, Etzion and Silberstein [6] presented a
simple but effective construction, named the multilevel construction, which generalizes
the lifted MRD codes construction by introducing a new family of rank-metric codes,
namely, Ferrers diagram rank-metric codes. Furthermore, Etzion, Gorla, Ravagnani
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and Wachter-Zeh [5] systematically investigated Ferrers diagram rank-metric codes and
established four constructions to obtain optimal codes.

This paper continues the work in [5]. In Section 2, we give a brief introduction
of Ferrers diagram rank-metric codes, and review most of known constructions in the
literature.

Via a criterion for linear MRD codes presented in [23], we give an explicit construction
for a class of systematic MRD codes in Section 3.1, which can be used to produce optimal
Ferrers diagram rank-metric codes (see Construction [3.5]). In Section 3.2, we generalize
Construction 2 in [5] by exploring subcodes of Gabidulin codes. Construction 2 in [5]
requires that each of the rightmost § — 1 columns in Ferrers diagram F has at least n — 1
dots. We relax the condition 7 — 1 to n — r, where r is taken in a range (see Theorem
B13).

In Section 4, by introducing the concept of proper combinations of Ferrers diagrams,
we generalize Theorem 9 in [5]. Our constructions are essentially to combine small Ferrers
diagram rank-metric codes to a bigger one more flexibly (see Constructions 7], £.10l and

L13).

2 Preliminaries

Let ¢ be a prime power, F, be the finite field of order ¢, and Fy= be its extension field
of order ¢™. We use F;"*" to denote the set of all m x n matrices over Fy, and Fgm to
denote the set of all row vectors of length n over Fym. The rank of a matrix A € Fj**"
is denoted by rank(A). The rows and columns of an m x n matrix will be indexed by
0,1,...,m—1and0,1,...,n— 1, respectively. Let [n] denote {0,1,...,n—1} and (3, j)
denote the cell in the i-th row and the j-th column of an m x n matrix, where ¢ € [n]
and j € [m]. Write I as the s x s identity matrix.

2.1 Rank-metric codes

The set Fj"*" is an Fg-vector space. The rank distance on Fy**™ is defined by
dr(A,B) = rank(A — B) for A,B € F"*".

An [m x n, k, 6]; rank-metric code C is a k-dimensional [Fy-linear subspace of g™ with
minimum rank distance

0=, pmin ¢B{dR(A,B)}.

Clearly
0= i k(A)}.
A0 {rank(A)}

The Singleton-like upper bound for rank-metric codes implies that
k < max{m,n}(min{m,n} —J +1)

holds for any [m x n, k,d], code. When the equality holds, C is called a linear mazimum
rank distance code, denoted by an MRD[m x n,¢], code. Linear MRD codes exists for
all feasible parameters (cf. [49,15]).



2.2 Ferrers diagram rank-metric codes

Given positive integers m and n, an m x n Ferrers diagram F is an m x n array of dots
and empty cells such that all dots are shifted to the right of the diagram, the number of
dots in each row is less than or equal to the number of dots in the previous row, and the
first row has n dots and the rightmost column has m dots. The number of dots in F is
denoted by |F|.

Example 2.1

is a b x 4 Ferrers diagram and |F| = 14.

Sometimes it is convenient to state Ferrers diagrams by using the set-theoretical
language (cf. [3|[11]). Given positive integers m and n, an m x n Ferrers diagram F is a
subset of [m] x [n] satisfying that (1) if (i,j) € F and i > 1, then (i — 1,5) € F; (2) if
(i,j) € F and j <n — 2, then (i, + 1) € F. In the sequel, these two definitions will be
both used, depending on what is more convenient in the context.

Motivated by the multilevel construction from [6], some research work has been done
on constructing good or even optimal rank-metric codes in Ferrers diagrams [5[1T19,24].
For a given m x n Ferrers diagram F, an [F, k, 6|, Ferrers diagram rank-metric (FDRM)
code, briefly an [F,k,d], code, is an [m X n,k,d], rank-metric code in which for each
m X n matrix, all entries not in F are zero. If F is a full m x n diagram with mn dots,
then its corresponding FDRM code is just a classical rank-metric code.

Etzion and Silberstein [6] established a Singleton-like upper bound on FDRM codes.

Lemma 2.2 (Theorem 1 in [6]) Let 0 be a positive integer. Let F be a Ferrers diagram
and Cx be any [F, k, 0], code. Then k < min;c(s) v;, where v; is the number of dots in F
which are not contained in the first i rows and the rightmost § — 1 — i columns.

An FDRM code which attains the upper bound in Lemma is called optimal. An
MRD[m x n,d], code with m > n is an optimal [F,m(n —J + 1), ], code, where F is
a full m x n diagram. So far all known FDRM codes over [F, with the largest possible
dimension are optimal.

We remark that the upper bound still holds for FDRM codes defined on any field,
and especially, for algebraically closed fields the bound cannot be attained (see Theorem
13 and Proposition 17 in [II]). This paper focuses only on finite fields since they are
used for forming subspace codes.

For a Ferrers diagram F of size m xn, one can transpose it to obtain a Ferrers diagram
F! of size n x m. Thus if there exists an [F, k,d], code, then so does an [F', k, ], code.
Without loss of generality, we always assume that m > n.

We denote by v;, i € [n], the number of dots in the i-th column of F, and by p;,
i € [m], the number of dots in the i-th row of F.



2.3 Known constructions for FDRM codes

This section summarizes known main constructions for FDRM codes, which come from
[1L5,6L1TL25]. We shall use or generalize them later.

2.3.1 Exploration of subcodes of MRD codes

Etzion and Silberstein [6] introduced the concept of FDRM codes. They established the
existence of optimal [F,k,d], codes whenever F is an m X n (m > n) Ferrers diagram
and each of its rightmost § — 1 columns has at least m dots. The proof is based on the
use of g-cyclic MRD codes. A better result is provided in [5] with a simple proof by
means of shortening systematic MRD codes (see also Theorem 23 in [I1I] and Corollary
3.3 in [1]).

Theorem 2.3 (Theorem 3 in [5]) Assume F is an m x n Ferrers diagram and each
of the rightmost § — 1 columns of F has at least n dots. Then there exists an optimal
[F,k,0]q code for any prime power q, where k = ETL:‘05 i

2

As a straightforward corollary, Etzion and Silberstein pointed out the following fact.

Corollary 2.4 [0] Let § € {1,2}. There exists an optimal [F, k, 0], code for any Ferrers
n—a

diagram F and any prime power q, where k=" ;.

To relax the restriction on F in Theorem 2.3 the idea of exploring subcodes of MRD
codes was introduced to construct FDRM codes in [5], and developed in [11125] recently.

Theorem 2.5 (Theorem 8in [5]) Assume F is an mxn Ferrers diagram and m > n. Let
2 < <n-—1. If each of the rightmost d—1 columns in F has at least n—1 dots, then there
exists an [F, k, 6], code for any prime power q, where k = min{m —n+1,v} + Z?:_f Y-
When vy < m —n + 1, the resulting FDRM code is optimal.

We shall generalize Theorem to Theorem [B.I3] where it is required that each
of the rightmost § — 1 columns in F has at least n — r dots for any positive integer r
satisfying r + 1 <d <n —r.

Theorem 2.6 (Theorem 3.6 in [I]) Assume F is an m x n Ferrers diagram and m > n.
Let2 < éd<nandl=n—-—06+1. Sete = ?:_ll(m — V), that is, € is the number
of dots missing in the rightmost § — 1 columns of F. If v5 < v —e(l — s) for every
s€{0,1,...,1 — 1}, then there exists an optimal [F, Eﬁ;é Vi, 0]q code.

Theorem implies Theorem 2.3] when ¢ = 0. When ¢ # 0, the condition v <
m—e(l—s) for s € {0,1,...,l—1} means that the numbers of dots in the first [ columns
are restricted in an arithmetic progression with step size ¢.

Theorem 2.7 (Theorem 3.6 in [25]) Let | be a positive integer. Let 1 =ty < t1 < ty <
-+ <t be integers such that ty | ta | --- | t;. Let n and & be positive integers satisfying
tiLi<n—1<ttandn—-t1+1<d<n-—1. Let F be an m x n Ferrers diagram
satisfying

(1) s < ti,



(2) Tn—6+1 > tl,
() v, > tiy1 for1 <i<Ii-—1,
(4) Tn—1 >t + Y0,

Then there exists an optimal [F, 2?2—05 Vi, 0]q code for any prime power q.

When [ = 1, Theorem 2.7] together with Theorem [2.3] yields Theorem (note that
to remove the condition 7,,_s < t1, Theorem 2.3 is needed).

2.3.2 Use of MDS codes

A construction for FDRM codes based on maximum distance separable (MDS) codes is
presented in [5]. It is known that an [n,n —d + 1,d], MDS code exists for any ¢ > n —1
ord e {1,2,n} (see [14]).

A diagonal of a Ferrers diagram F is a consecutive sequence of entries, going upwards
diagonally from the rightmost column to either the leftmost column or the first row. Let
D;, i € [m], denote the i-th diagonal in F, where ¢ counts the diagonals from the top to
the bottom and let #; denote the number of dots on D; in F.

Example 2.8 For the Ferrers diagram in Example 2.1, its five diagonals are:

Dy=e, Di= " ,Dy= e  D3= ° , Dy= °

Theorem 2.9 (Construction 1 in [5]) Let F be an m x n Ferrers diagram and 0 be an
integer such that 0 < § < n. Let 0o = max;cpy,) 0;. Then there exists an [F,k, 6], code

for any prime power q > 000 — 1, where k = zgi_ol max{0,0; —d + 1}.
Applying Theorems 2.3]and 2.9 Etzion and Silberstein obtained the following result.

Corollary 2.10 (Theorem 11 in [5]) Let n > 3. There exists an optimal [F,k,3], code
for any n x n Ferrers diagram F and any prime power q.

The disadvantage of Theorem is the requirement of large q. For example when
F is an n x n Ferrers diagram with i + 1 dots in its i-th column for i € [n], by Theorem
[2.9] there exists an optimal [F,3,n — 1], code for any prime power ¢ > n — 1. Recently
Antrobus and Gluesing-Luerssen showed that such optimal FDRM codes exist for any
prime power ¢ via induction on n.

Theorem 2.11 (Theorem 5.2 in [I]) Let n > 3. Assume F is an n x n Ferrers diagram
with i + 1 dots in its i-th column for i € [n]. Then there exists an optimal [F,3,n — 1],
code for any prime power q.

However, how to give other constructions for FDRM codes with the same parameters
as those obtained from Theorem [2.9] but for any prime power ¢, is still an open problem.
We shall exhibit three examples in Section 3 (Examples B.6] B8 B.9) to touch this
problem.



2.3.3 Combination of FDRM codes

To obtain new FDRM codes based on known ones, [5] presented an excellent idea. We
shall extend this idea in Section 4.

Theorem 2.12 (Theorem 9 in [3]) Let F; for i = 1,2 be an m; x n; Ferrers diagram,
and C; be an [F;, k, 8] code. Let D be an mz x n3 full Ferrers diagram with msns dots,

where mg > mq and ng > ng. Let
(A D
(" %)

be an m x n Ferrers diagram, where m = mo + m3 and n = n1 + n3. Then there exists
an [F,k, 81 + 02)4 code.

The limitation of Theorem .12] can be shown in the following lemma.
Lemma 2.13 Let § be a positive integer. Let F be an m X n Ferrers diagram satisfying

max i — Yi—1) < vg = minv;
n—5+1§ign—1(% Yi-1) icls]

where v; is the number of dots in F which are not contained in the first i rows and the
rightmost § —1—i columns. Then one cannot apply Theorem .12l to construct an optimal
[F,v0,6]q code.

Proof Assume that an optimal [F,vg, 6], code can be constructed by Theorem [2.12],

where
(A D
(" 7)

is an m x n Ferrers diagram, F; is an m; x n; Ferrers diagram, C; is an [F},vg, 0;]4 code
for j = 1,2, and § = 01 +0d9. Let v((f ) be the number of dots in Fj which are not contained
in the rightmost J; — 1 columns.

Consider C;. By Lemma 2.2 vy < vél), ie., 2?2—05 v <YMy % . which yields
n—0<n;—9. Thusny >n—-6+46 and g =6 — 61 > n — ny.

Consider Cy. Since dy < ng < n — nq, we have do = nys = n — ny. By Lemma 2.2]
the existence of an [F3, v, ng), code implies vy is no more than the number of dots in
F2 which are not contained in the rightmost ng — 1 columns. Hence, v9 < vn, — Yni—1,
which contradicts with the known condition max,_sii1<i<n—1(7 — Yi—1) < vo. O

3 Constructions based on subcodes of MRD codes

Let 8 = (Bo, b1, ..., Bm—1) be an ordered basis of Fgm over F,. There is a natural bijective
map ¥, from Fym to F**™ as follows:

\Ijm . Fgm — FZYLXTL

a=(ag,a1,...,an-1) —> A,



where A = W,,(a) € F;"*" is defined such that

m—1
aj =y Aijb;
=0

for any j € [n]. For a € Fym, (a) is a 1 x 1 matrix and we simply write ¥,,((a)) as ¥, (a).
It is readily checked that W, satisfies linearity, i.e., ¥, (zci +yca) = ¥, (c1) +y ¥, (c2)
for any z,y € F, and c¢1,c2 € Fym. The map ¥, will be used to facilitate switching
between a vector in F,m and its matrix representation over F,. In the sequel, we use
both representations, depending on what is more convenient in the context and by slight
abuse of notation, rank(a) denotes rank(¥,,(a)).

The following lemma, implicitly shown in Section 5 in [5], is fundamental to construct
FDRM codes via subcodes of MRD codes. All theorems in Section 2.3.1 are based on
this lemma.

Lemma 3.1 [5] Assume that m > n. Let G be a generator matrixz of a system-
atic MRD[m X n, 6|, code, i.e., G is of the form (I;|A), where k = n — 3§+ 1. Let
0 < )\0 < )\1 < ... < >\k—1 < m. Let U = {(’LL(],...,’LLk_l) S ]F];'m : \Ifm(ul) =
(Wi 0y -y Uip—1,0,...,0) T u;; € Fyyi € [k],5 € [M]}. Then C = {¥p(c) : ¢ = uG,ue
U} is a linear FDRM code with dimension Zf:_ol Ai and rank at least & over IFy.

Proof One can easily verify the linearity and the dimension of the code. Since G is a
generator matrix of an MRD[m x n, ], code Cyr, C is a subcode of Cps. So the minimum
rank distance of the code C is §. O

Lemma [B.1] doesn’t show the Ferrers diagram used explicitly. However, if we could
know more about the initial MRD code, then it would be possible to give a complete
characterization of C.

Remark 3.2 LemmaBI can only be used to construct optimal FDRM codes satisfying
vy = Z?:_OJ Vi = mine(s) v; (¢f. Lemma 22), where v; is the number of dots in F which
are not contained in the first i rows and the rightmost 6 — 1 — i columns.

3.1 Construction from a class of systematic MRD codes

To construct systematic MRD codes, we need the following theorem, which provides a
criterion for linear MRD codes.

Theorem 3.3 [23] Let m > n. Let G € F%" be a generator matriz of a linear rank-
metric code C C Fim. Then C is an MRD code if and only if for any B € UT;(q)
every mazximal minor of GB is nonzero, where UT)(q) denotes the set of all n x n upper
triangular matrices over Fq whose main diagonal elements are all 1.

Lemma 3.4 Let q be a prime power. Let m,n and § be positive integers satisfying
m>n>6>2 Letk=n—56+1andm>kn—k>+2. Let (1,5,5%,...,8™ ') be an
ordered polynomial basis of Fym over Fy. If there exists a k x n matrix

1 a1 kB85 a1 BT ag 0BT aip—18"
1 az kB agpBF o agn_oBnT3 agn—18""2
G= . : : KR : : )
1 ap—1k8% ap—1 k018> 0 @po10—2B8"F ag_q 1B
1 apiB ap 4182 o app—2B ! g 18"

7



where a;; € Fy, i€ {1,2,...,k} and j € {k,k +1,...,n — 1}, such that every minor of
the matrices

ary - Glp—2 ag 0 G2n-1
A = : : and Ay = :
e Okp—2 e+ Okp—1

is nonzero, then G is a generator matriz of a systematic MRD[m X n, ], code.

Proof  Obviously, n — k > 0. By Theorem B3] it suffices to prove that for any
BeUT}(q), every k-minor of GB is nonzero. To ensure smooth reading of the paper, we
move the proof to Appendix [Al O

For a vector (v1,vs,...,v,) of length n, if its rightmost nonzero component is v, for
some 1 < r < n, then r is said to be the wvalid length of this vector.

Construction 3.5 Let m,n and § be positive integers satisfying m > mn > & > 2. Let
k=n—04+1 and m > kn—k>+2. If there exists a k xn matriz G satisfying the condition
in Lemma [3.4] such that G is a generator matriz of a systematic MRD[m x n,d], code,
then there exists an optimal |F, Efz_ol Yi,0)q code C for any m' x n Ferrers diagram F

satisfying

(1) v = min{max{y, +i—1:1 € [k]},m} for any k <i<n—2,

(2) m’ = min{max{y +n,max{y, +n—-1-1:1<1<k—1}},m},
where v;, i € [n], is the number of dots in the i-th column of F.

Proof Start from the generator matrix G of the given systematic MRD code. We can
apply Lemma 3.1l by setting \; = ;, i € [k], to obtain an optimal FDRM code C in some
Ferrers diagram F with dimension Zf:_ol ~; and rank at least §. It suffices to analyze the
number of dots in each column of F.

By Lemma [B1] for any ¢ = (cg,c¢1,...,¢4—1) € C, we have ¢ = uG for some u =
(uo, ULy ,uk_l).

When 0 <i <k —1, ¢; = 4, and so ¥y, (¢;) = Vi (ui) = (wip, ..., Uiy;—1,0,...,0).
Thus, the i-th column of F has ~; dots.

When k <i<n—2,¢ = Zf:_ol ulaHlﬂﬂi_l and so U,,(¢;) = Zf:_ol al+17i\1fm(ulﬁi_l).
For | € [k], Up(w) = (ul,o,um,...,ulm_l,O,...,O)T implies w; = w0 + waf +--- +
ulm_lﬁ“”_l. Note that 8717 can be written as a linear combination of 1, 3, 5%, --- , 3™ ~!
for any nonnegative integer j. It follows that for each I € [k], as a vector of length m,
U, (u67") has a valid length of at most min{v; +i — I,m}. Thus ¥,,(¢;) has a valid
length of at most max{y;+i—1:1 € [k]} if max{y;+i—1:1 € [k]} < m, or m otherwise,
which coincides with Condition (1).

When i =n—1, ¢c,oq1 = 25:11 ulal+17n_16"_1_l + upay p—18" and so Uy, (cp_1) =
Z;:ll a1+ 101V (W B 1) + a1, n—1Wm (uo ™). As a vector of length m, W, (up8") has
a valid length of at most min{yy + n,m}. For each 1 < I < k — 1, U, (43" 17
has a valid length of at most min{y; + n — 1 —I,m}. Thus ¥,,(¢;) has a valid length
of at most max{y +n,11+n—-1—-1,v24+n—-1—-2...;9%1+n—1—(k—1)}if
max{y+n,1+n—1—1,y94+n—-1-2... . y%_1+n—1—(k—1)} < m, or m otherwise,
which coincides with Condition (2). O



Example 3.6 Let g be a prime power. Let m > 2n — 2 and 3 < n < g+ 2. Let

(1,8,...,8™ ) be an ordered polynomial basis of Fym over F,. Construct a 2 x n matriz
G 1 gz B3 gt B(n=2) gn
= < 1 alﬁ a252 agﬁg . an_gﬁ("_g) 5("_2) > s

where a; € Fy, 1 <i <n—3, and a; # a; for anyi # j. By LemmaB3.4, G is a generator
matriz of a systematic MRD[m X n,n — 1], code.

Let F be an m’ xn Ferrers diagram satisfying vo < m—n, v, = yo+1 for1 <i <n-—2
and vp—1 =m' =9+ n. It is readily checked that F satisfies Conditions (1) and (2) in
Construction B0 Thus there exists an optimal [F,~o + v1,n — 1], code.

Remark 3.7 When g =n — 2, Example cannot be obtained from Theorem since
no [n,2,n—1],—2 MDS code exists, even though here Theorem 2.9] can deal with all cases
of prime power ¢ > n—1. No known construction can be applied here to handle the case
of g =mn — 2. It is readily checked that Theorems are invalid. Consider Theorem
270 with 1 > 2 (when | = 1, Theorem 27| degenerates into Theorem [2Z3)). Condition (1)
yields t1 > v1 = o+ 1. Condition (3) yields vy, > to > 2t1 (note that ty | to and t; < t2).
Since vy, = Yo + t1, we have t; < v, a contradiction. Thus Theorem 27 is also invalid.
When o > 1, Example cannot be obtained from Theorem 211l By using Lemma
213l (note that max,_si1<i<n—1(% — Yi—1) = 2 and vo = Y + 71 = 270 + 1), we have
that Theorem 1s invalid. Similar arguments hold for the following two examples.

Example 3.8 Let =5, n =7 and m > 14. Let (1,5,...,5™ 1) be an ordered polyno-
mial basis of Fsm over F5. Construct a 3 X 7 matrix

1 263 364 4ﬁ5 67
G = 1 52 63 54 55
1 B 2B% 4p3 354

By Lemma B4, G is a generator matriz of a systematic MRD[m x 7,5]5 code.

Let F be an m’ x n Ferrers diagram satisfying o <m — 7, v =70 +1 for 1 <i <5
and v = m' = v9 + 7. It is readily checked that F satisfies Conditions (1) and (2) in
Construction BE. Thus there exists an optimal [F,~o + 71 + 7Y2,5]5 code.

Example 3.9 Let q=7,n=9 and m > 20. Let (1,5,...,5™ 1) be an ordered polyno-
mial basis of Frm over F7. Construct a 3 X 9 matriz

1 253 354 455 556 657 59
G = 1 62 63 64 65 66 67
1 B 6p% 383 5% 2B° 486

By Lemma B4, G is a generator matriz of a systematic MRD[m x 9,7]7 code.

Let F be an m’ x n Ferrers diagram satisfying o <m —9, v, =0 +1 for 1 <i <7
and 3 = m' = v+ 9. It is readily checked that F satisfies Conditions (1) and (2) in
Construction BH. Thus there exists an optimal [F,~o + 71 + Y2, 77 code.

Remark 3.10 In Lemma B3], the top right entry of G uses the n-th power of B, which
deviates from the patter in the rest of G. If ay n—18""" is taken as the top right entry in
G, then similar arguments to those in the proof of Lemma 3.4l show that G is a generator
matric of a systematic MRD[m X n, |, code if every minor of the matriz



arr Al1k+1 - Alnpn—2 Glp-—1
a2k A2k+1 *°° A2p—2 G2 np—1

Ok Okk+1 - Okn—2 Qkp—1

18 nonzreo. However, so far we have not found any appropriate G such that new optimal
FDRM codes can be derived from it.

3.2 Construction based on subcodes of Gabidulin codes

For any positive integer ¢ and any a € Fym, set all £ ¢ In this section, we shall
generalize Construction 2 in [5] by exploring subcodes of Gabidulin codes.

Let m > n and ¢ be any prime power. A Gabidulin code G[m X n, ], is an MRD[m x
n, 6|, code whose generator matrix G in vector representation is

90 g1 0 9n-1
g[ll g&l] . g[l} )
a=| T
> > . >
a " g
where go, g1,...,9n—1 € Fgm are linearly independent over F, (see [9]).

The following lemma is a generalization of Lemma 5 in [5], which only deals with the
case of r = 1. We move its proof to Appendix Bl

Lemma 3.11 Let n,r,d, k and i be positive integers such that k =n—r—d+1,r <k
and n < p+ 1. Then there exists a matriz G € F=X" of the following form

qt
1 @,k ces o, n—r—1 0 0 0
1 a1,k ce Q1 n—r—1 a1 n—r 0 0
1 Ar—1,k " Ar—1,m—r—1 OQr—1n—r OCr—1n—r+1 " 0
1 Ar,k ce Qp pn—r—1 Qp n—r Qpr n—r+4+1 ce Qpr n—1
1 Ar—1,k ce Qp—1,n—r—1 QArx—1n—r OArx—1n—r+1 Qr—1,m—1

satisfying that for each 0 < i < r, the sub-matriz obtained by removing the first i rows,
the leftmost i columns and the rightmost r — i columns of G can produce an MRD[u X
(n—r),d+1i], code.

Construction 3.12 Let §, n and r be positive integers satisfyingr+1 <6 <n—r. To
take a k X n matriz G satisfying Lemma BI1, assume that d =6 —r, k =n — 3§ + 1,
n=mnand u=n—r. Let F be an m X n Ferrers diagram, each of whose rightmost § — 1
columns has at least n —r dots. Let ~y;, i € [n], is the number of dots in the i-th column

of F. Forle|r], set sy =min{y, — 1, vp—ppy —n+7 — Zé;%(sj +1)—1}. Let

U= {(uo, s Up1) € Frnor 0 Wiy (w) = (ugp, .- s, 0, L0 for 1 € [r],

U, (u) = (ur,0,- -5 Upy—1,0,... L0 for r <1< k—1, all possible uij € Fq} )

Let U,y (w)) = (ug0,- - urs)? forler]. If0<sg< sy <---<s_q, then C =
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0 0 \Ijn—r(UO) \I]n—r(ul) @n—r(ur—l)
0 0 0 T, (uo) T (ur_s) Frxn . c=qy- Goue U
0 --- 0 0 0 c W (ug)

is an [F,k (5]q code for any prime power q, where k = ZZ 0Si+r+ ZZ .~ Vi- Note that
=n+ 30, si.

Proof One can easily verify the linearity and the dimension of the code. It remains
to examine the minimum rank weight of any nonzero codeword C from C. Note that
d<n—-r,sor<n—-0<n-—-0+1=sk.

Let C be formed by ¢ = uG = (ug, u1,...,ux—1)G. Let i* = min{i : i € [k],u; #
0,u; =0 for any j < i}. Then ¢ = (0,...,0,u*,...,us—1)G.

(1) If i* < r, then let ¥} _ (uG) be an (n—7) X (n —r) matrix obtained by removing
the leftmost i* columns and the rightmost r —i* columns of ¥,,_,(uG). By Lemma B.1T],

Ur . (uG) is a codeword of an MRD[u x (n—r),d —r+1i*], code, whose generator matrix
can be obtained by removing the first ¢* rows, the leftmost i* columns and the rightmost
r —¢* columns of G. Thus rank(¥_ (uG)) > § — r 4 i*.

Furthermore, under the broken line of C, since @n_r(ui*) with the length s;« is a
nonzero vector, the rightmost r—4* columns contribute rank r—i*. Therefore, rank(C) >
rank(¥)_ (uG))+r—i*>0—r+i*+r—i"=0.

(2) If i* > r, then let ¥} _ (uG) be an (n—r) x (n —r) matrix obtained by removing
the leftmost r columns of ¥,,_,(uG). By Lemma B.II] ¥} _ (uG) is a codeword of an
MRD[u x (n—r),0]4 code, whose generator matrix can be obtained by removing the first
r rows and the leftmost 7 columns of G. Thus rank(C) > . O

Theorem 3.13 Let 6, n and r be positive integers satisfying r +1 < 9§ <n —r. Let F
be an m x n Ferrers diagram satisfying that

(1) s <n—r,
(2) Yn-st12>2n—r,
(3) Yn—r4r=m—1+ Zé’:o v; forl e [r].
Then there exists an optimal [F,> ;" 0 Vi, 0]q code for any prime power q.

Proof Note that r4+1 < ¢ yieldsn — 4§ <n —r — 1. Consider a new Ferrers diagram
F' with ~/ for i € [n] as the number of dots in its ¢-th column, satisfying

v, if0<i<n—4;
n—r, ifn—-90+1<i<n—r—1;
/
Yi = +r—m
n—r+ Z v, fn—r<i<n-—1
j=0

Then F' is a sub-Ferrers diagram of F and 724 <n-—rfor0<i<n-—r—1. According to
Lemma [2.2] it suffices to show that there exists an optimal [F’, Y """ 05 7., 6]4 code, which
implies the existence of an optimal [F, Z?:_()é i, 0]q code.

11



Clearly, each of the rightmost 6 — 1 columns of F' has at least n — r dots. To
apply Construction BI2] we need to count s; for [ € [r]. By Condition (3), so =
min{y, — 1,7/,_, —n+r —1} = 4 — 1. It follows that by induction on I, I € [r],
we have s; = min{~y, — 1,7;_r+l —n+r— Ez_:lo(sj +1) — 1} = min{y, - 177;_,«“ -
n+r— Zz‘_:lo 7;' —1}=~/—1. Thus 0 < 59 < 51 < --- < 5,1, and Construction B.12I
provides an [F’, 2?2_05 7., 0]4 code, which is optimal by Lemma O

We remark that as a corollary of Theorem B.13] with » = 1, we can obtain Theorem
8 in [5].

Example 3.14 Let n > 3 and

o o e o o o

o o e o o o

o o e o o o

o o e o o o

F = e o o o
o o

o o

o o

°

°

be a (2n+2) x2n Ferrers diagram. Take 6 = 4. Apply Theorem B3 with r = 2. One can
check that the rightmost 3 columns of F have at least 2n—2 dots, yop—2 = 2n = 2n—2+q
and Vo1 =2n+2 =2n— 24y + y1. So F satisfies the conditions of Theorem B3],
and an optimal [F,2(n — 1)2,4], code ezists for any prime power q.

Remark 3.15 No known construction can be applied to obtain Example B.14l It is
readily checked that Theorems and 2TT] are invalid. Consider Theorem 2.7] with
[ > 2. Condition (1) yields t1 > vyapn—a = 2n — 2 and Condition (3) yields vy, > ta >
2ty > 4n — 4. Due to vy, < 2n + 2, we have n < 3. So Theorem 2.7 is invalid when
n > 3. Actually by more careful calculation, one can check that Theorem 2.7 is also
invalid for n = 3. We leave the details to the interested reader. Theorem [2.9] can provide
an [F,2n? — 4n, 4], code for any prime power ¢ > 2n — 1, but it is not optimal. By using
LemmaR.I3] (note that max,_s41<i<n—1(vi —vi—1) = 2 and vo = 2(n —1)?), one can see
that Theorem 1s tnvalid.

4 New Ferrers diagram rank-metric codes from old

First we give a slight variation of Theorem [2.12] It is not complicated, but inspires us
to establish this section.

Theorem 4.1 Let F; fori = 1,2 be an m; xn; Ferrers diagram, and C; be an [F;, ki, diq
code. Let D be an mg x ng Ferrers diagram and C3 be a [D, ks, 0], code, where mg > my
and ng > ny. Let m = mgy + m3 and n =n1 + n3. Let

(A D
f_< fz)
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be an m x n Ferrers diagram F, where D is obtained by adding the fewest number of new
dots to the lower-left corner of D such that F is a Ferrers diagram. Then there exists
an [F,min{ky, k2 } + k3, min{d; + d2,}], code C satisfying that for any codeword C € C,
Clr, = O if and only if C|r, = O, where C|r, denotes the restriction of C in F; for
1=1,2.

Proof Obviously, Cs is also a [75, ks, 6], code, and the existence of [F;, k;, 6;]4 code C; for
i = 1,2 implies the existence of [F;, min{ky, k2}, d;]; code C. Let ¢ be an isomorphism
¢ : C} — C4 (in the sense of linear spaces) and set

C:{<)O( 908()>:X6C1,D€C3}.

Clearly C is a linear code of dimension min{ky,ko} + k3. It suffices to examine the
minimum rank distance of C. Take any nonzero codeword C from C. Since X and ¢(X)
are either both zero or both nonzero, we consider the following two cases:

e X #0.

rank(C) = rank < }0( (’D(I;() > > rank(X) + rank(p(X)) > §1 + 9.
e X =0.
rank(C) = rank(D) > 4.
Therefore, C is an [F, min{ki, ka} + k3, min{d; + d2,9}], code. O

4.1 Generalization of Theorem [4.7]

To obtain optimal FDRM codes, in the process of using Theorem H.1] it is often required
that C3 is an optimal [D, ka,0], code. If the optimality of Cs is unknown, then what
shall we do? A natural idea is to remove a sub-diagram from D to obtain a new Ferrers
diagram D’ such that the FDRM code in D’ is optimal, and then mix the removed sub-
diagram to J7 or F». We shall illustrate the idea by using Example Note that for
this example, one can check that any known constructions cannot attain the required
dimension.

First, we introduce a new concept. Let F; be an mi x nq Ferrers diagram, F» be an
mg X ng Ferrers diagram and F be an m x n Ferrers diagram. Let ¢; for [ € {1,2} be an
injection from F; to F (in the sense of set-theoretical language). F is said to be a proper
combination of F; and F> on a pair of mappings ¢1 and ¢o, if

(1) ¢1(F1) N @2(F2) = 5
(2) |A]+ [F| = |F;

(3) for any I € {1,2} and any two different elements (i;1,Ji1), (i12,/12) of Fi, set
G, Ji1) = (i;717jl/,1) and ¢ (ir,2, Ji,2) = (i§727j{72); i;,l = ii,z or jl/,l = jl/,2 whenever
1,1 = 17,2 OT Ji.1 = Ji,2-

Condition (3) means that if two dots in F; for [ € {1,2} are in the same row or same
column, then their corresponding two dots in F are also in the same row or same column.

Example 4.2 Let

13



F1 = and Fo =
be two Ferrers diagrams. Then all of
[ ] [ ] [ ] [ ]
[ ] [ [ ] [
Dl = * ’ D2 = * ’ D3 — * ’ D4 = °
[ ] [ [ ] [
[ ] [ [ ] [
[ ] [ ] [ ] [ ]

are proper combinations of F1 and Fo. Note that Fi keeps its shape invariant in Dy for
any | € {1,2,3,4}; Fo keeps its shape invariant in Dy and Do (the transpose of Fo is
allowed); Fy degenerates into a single row or column in D3 and Djy.

Proposition 4.3 Let F be a proper combination of Ferrers diagrams F1 and Fo. Then
for each 1 € {1,2}, either F; keeps its shape invariant in F (the transpose of Fi is
allowed), or F; degenerates into a single row or column in F.

Proof For | € {1,2}, if F; only contains one row or one column, then the conclusion
follows immediately. Assume that R; and Ry are two different rows of F;, and R;
contains at least two dots. It is readily checked that these two rows either keep their
shape invariant in F (a transpose is allowed), or degenerate into a single row R or column
C in F. If it is the latter, then by considering the rightmost two dots of Ry and Rs in
JF; we have that the rightmost column in J; must degenerate into the row R or column
C in F (we refer to it as Fact A), and for any dot P in any row (if this row exists) of F;
other than R; and Rs, if P is not in the rightmost column, then there exists one dot P’
in the rightmost column of F; such that P and P’ are in the same row, which yields that
P and P’ must degenerate into the same row or column in F. Now it suffices to show
that the row must be R or the column must be C.

Since R; contains at least two dots, there exists a dot P” in F; such that (i) P” is
not in the rightmost column, (ii) P” and P (P” could be P) are in the same row, and
(ili) there exists a dot P” in Ry such that P” and P" are in the same column. Because
of Fact A, P’ and P" degenerate into the row R or the column C in F. This forces P,
P’, P” and P" to degenerate into the row R or column C. Therefore, all dots in F; must
degenerate into the single row R or column C' in F. O

Lemma 4.4 Forl € {1,2}, let F; be an my x n; Ferrers diagram and M| be an m; X ny
matriz whose entries not in Fy are all zero. Let F be a proper combination of F1 and Fo
on a pair of mappings ¢1 and ¢ such that F is an m X n Ferrers diagram. Let Mo be
an m X n matrix satisfying

M (i1, j1), if (4,5) = ¢1(i1,51) and (i1,71) € Fu;
M3(i,5) = § My(ia, j2), if (4,7) = ¢2(iz, j2) and (iz, j2) € Fo;
0, otherwise.

Then rank(M 12) < rank(M )+ rank(Ms).
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Proof For ! € {1,2}, denote by M 3|z, the restriction of M5 in Fy, i.e., M12|F, is an
m X n matrix satisfying

MlQ(Zaj)7 if (17]) € (bl(ﬂ)a
0, otherwise.

M12|fz(i7j) = {

Then using the basic fact that rank(A+ B) < rank(A)+ rank(B), we have rank(M13) <

rank(M 2| r, )+ rank(M2|7,). By Proposition 4.3 rank(M2|7,) < rank(M);) for [ €
{1,2}. The conclusion is then straightforward. O

Example 4.5 We here construct an optimal [F,10,4], code C for any prime power g,
where

[ ] [ ] [ ] [ ]
[ ] [ [ [
[ ] [ ] [ ] [ ]
[ ] [ [ [
f _ [ ]
[
[ ]
First take the following four Ferrers sub-diagrams of F:
[ ] [ ] [ ] [ ]
[ ] [ ] [ [
[ ] [ ] [ ] [ ] [} o
Fi= e o o o, Fo=, Fi= e o ,  JF3=
[ ] o
[
[ ]

Then take a proper combination Fio of F1 and Fo on mappings ¢1 and ¢o as follows

e o o
e o o 2 f12,
e o

where ¢1 : F1 — Fio satisfies ¢1(i,7) = (4,7) for any (i,7) € ([3] x [3]) \ {(2,0)}, and
¢o + Fo — Fig satisfies ¢2(0,0) = (2,0). Now construct a new Ferrers diagram

« [ Fi2 Fa
Fr= ( h )
For any prime power q, by Theorem [&.1], we have an [F*,10,4], code C* satisfying that
for any D € C*, D|r,, = O if and only if D|r, = O, where an optimal [Fi2,3,3],; code

Ci2 exists by Theorem 2.3, an optimal [Fy,7,4], code Cy exists by Theorem 2.5, and an
optimal [F3,3,1], code Cs is trivial.
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The above procedure from F to F* yields a natural bijection ¢ from F to F* (note
that ¥(3,3) = (2,0)). For each D € C*, construct a 10 x 8 matriz Cp such that

Cp(i,j) = {D(«ﬁ(i,j)), if (i,5) € F;

0, otherwise.

LetC ={Cp : D € C*}. Then C is an optimal [F,10,4], code. Clearly C and C* have the
same linearity and dimension. The optimality is guaranteed by Lemma 22 It suffices
to prove that for each nonzero Cp € C, rank(Cp) > 4.

Clearly, rank(Cp) > rank(Cp|r )+rank(Cp|r,)+rank(Cplr,). By Lemma 4],
rank(Cp|r, )+ rank(Cp|r,) > rank(D|r,,). Since rank(Cp|r,) = rank(D|x,), we have
that rank(Cp) > rank(D|r,,)+ rank(D|r,). Note that D|r, = O if and only if
D|g, = O. If D|f,, # O, then since Cy2 is an [Fi2,3,3|, code, rank(D|r,,) > 3, and
since Cs is an [F3,3,1]4 code, rank(D|z,) > 1. So rank(Cp) > 4. If D|f, = O, then
rank(Cp) = rank(Cp|r,) = rank(D|g,). Since Cy is an [Fy,7,4], code, rank(D|r,) > 4.
Therefore, rank(Cp) > 4.

Remark 4.6 No known construction can be applied to obtain Example 5l By Remark
B2l all theorems in Section 2.3.1 are invalid. Theorem 2.9] can provide an [F,9,4], code
for any prime power q > 4, but it is not optimal. Theorem2.12lis also invalid. Otherwise,
to get the required dimension 10, Fo must contain the 7 x 5 Ferrers diagram in the lower
right corner of F as its sub-Ferrers diagram. But then one cannot find F1 with at least
10 dots.

Let us now generalize Example

Construction 4.7 Let

ni N4
——
[ [ ] [ ] o o o
mi F1 Fy
o [ ] my
F=
Fa
o ... o o’

[ ]
]:3 ms

o ... e

be an m x n Ferrers diagram, where F; is an m; X n; Ferrers sub-diagram, 1 <1 < 4,
satisfying that m = mg + myg, n = n1 + N4, Mg > M1 + Mo and ng > ngy + ng. Suppose
that Fia is a proper combination of Fi and Fa, and Ci is an [Fiz, k1,01]q code. If there
exist an [F3, ks, 03]y code C3 and an [Fy, ky,04]q code Cy, then there exists an [F,k, ],
code C, where k = min{ky, ks} + k4,0 = min{d; + d3,94}. Note that the dots “e” in F

43 9

have to exist, whereas the dots “o” can exist or not.

Proof Construct a new Ferrers diagram
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x Fiz Fau
= ( T3 >’

where F; is obtained by adding the fewest number of new dots to the lower-left corner
of F4 such that F* is a Ferrers diagram. Obviously, an []:'4, k4, 64]4 code can be obtained
by adding all-zero rows to matrices in C4. It follows that by Theorem E.1], an [F*, k, d],
code C* exists, where k = min{ky, k3} + k4,0 = min{d; + 03, d4}.

The above procedure from F to F* yields a natural injection ¥ from F to F*. Now,
for each D € C*, construct an m x n matrix Cp such that

. D(y(i,5)), if (i,7) € F;
CD(Z7J) = .
0, otherwise.
Let C ={Cp : D € C*}. It is readily checked that C is an [F,k,d], code. O
When F; is empty, Construction [4.7] yields Theorem 4.1l

4.2 Relaxation of dimensions

Construction 7] produces an [F, min{k;, k3} + k4,d]; code from an [Fiz, k1, 61], code
Ci2, an [F3, k3, d3]4 code C3 and an [Fy, k4, 04]4 code C4. This procedure doesn’t make full
use of dimensions of C12 and C3. We hope to find a proper combination F** of Fq9 and
F3 such that there exists an [F**, k', '], code, where k' > min{k;, k3}. The following
construction provides a possible way to realize our idea. We start from an example.

Example 4.8 We here construct an optimal [F,13,4], code C for any prime power g,
where

[ ] [ [ [ [

[ ] [ [ [ [

[} [} o [} [} [ ] [ ] [ ] [ ]

[ [ [ [

[ ]

F= °.
[ ]
First take the following four Ferrers sub-diagrams of F:
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ [ [} o
Fi= e o o o, Fo=, Fi= , JFz=

[ ]
[ ]
[ ]
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Then take a proper combination Fis3 of F1, Fo and F3 on mappings ¢1, ¢o and ¢3 as
follows

A
= Fi123,

where ¢1 : F1 — Fras satisfies ¢1(3,5) = (4,5) for any (i,7) € [3] X [5], 2 : Fo — Fio3
satisfies ¢2(0,0) = (4,4), and ¢3 : F3 —> Fia3 satisfies ¢3(j,0) = (3,7) for any j € [5].
By Theorem 23], there exists an optimal [f'f23,6,4]q code, which implies an optimal
[Fi23,6,4]; code Cia3. By Theorem [2.5], there exists an optimal [Fy,7,4], code Cy.

The above procedure yields two natural bijection Yn : F|r, 5,5, — Fizz and o :
Flr, — Fa. For each B € Ci23 and D € Cy, construct a 12 x 10 matrizc Cg,p such

that . . . . .
B(¢1(Z,]))’ if (Z,j) € ]:|}'1,}—2,}—3;
Cg,p(i,j) = § D(2(i,4)), if (4,5) € Flr;
0, if (i,j) ¢ F.

Let C ={Cp,p : B € Ci23,D € C4}. Then C is an optimal [F,13,4], code. Clearly C is
a code in F of dimension 13. The optimality is guaranteed by Lemma 2.2l It suffices to
prove that for each nonzero Cg,p € C, rank(Cg,p) > 4.

Clearly, rank(CB,p) > rank(CB,p |7, )+ rank(CB,p|7, )+ rank(Cp,p|r,) > rank(B),
where the second inequality comes from Lemma B4 If B # O, then since Cia3 is
an [Fio3,6,4], code, rank(B) > 4. If B = O, then rank(Cp,p) = rank(CB,p|r,) =
rank(D). Since Cq is an [Fu,7,4]4 code and D # 0, we have rank(D) > 4. Therefore,
rank(Cp,p) > 4.

Remark 4.9 No known construction can be applied to obtain Exampled.8. By Remark
B2l all theorems in Section 2.3.1 are invalid. Theorem 29 can provide an [F,11,4],
code for any prime power q > 4, but it is not optimal. Theorem s also invalid.
Otherwise, to get the required dimension 13, Fo must be the 9 x 5 Ferrers diagram in the
lower right corner of F, and F1 must be the 3 x 5 Ferrers diagram in the top left corner
of F. Then §1 = 63 = 1 because of the dimension 13, which contradicts with § = 4.

Let us now generalize Example E.8|

Construction 4.10 Let

ni n4

— ~
[ ] [ ] [ ] [ ] [ ] [ ]
m g 7
o ° ma
F =
Fa
o ... O
F3 m3
o ... e
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be an m x n Ferrers diagram, where F; is an m; X n; Ferrers sub-diagram, 1 < 1 < 4,
satisfying that m = mg 4+ my, n = ny + ng, mg > M1 + mo and ny > ny + ng. Suppose
that Fia3 is a proper combination of Fi, Fao and F3, and Ci3 is an [Fias, k1,01]q code.
If there exists an [Fu, ka,04]q code Cy, then there exists an [F, ki + ka,0]q code C, where
6= min{51, 54}

Proof Take two natural bijections ¢ : F|r, 7, 7 — Fi2s and ¢y : F|g, — Fu. For
each B € Ci23 and D € Cy4, construct an m x n matrix Cp,p such that

B(y1(i,7)), if (i,7) € Flr 7,75
CB,D(Zvj) = D(¢2(Zaj))7 if (Zaj) € f‘]‘-zu
0, if (Z,j) §é F.

Let C = {Cg,p : B € Ci23,D € C4}. It is readily checked that C is an [F, k; + ka4, ],
code C, where 6 = min{dy,d4}. O

Remark 4.11 Compared with Construction @1, Construction 10 starts from a proper
combination Fia3 of F1, Fo and F3, which must be a Ferrers diagram according to the
definition of proper combinations. This requirement sometimes restricts the value of rank
of the resulting code C. For example, in ExampleldD), the proper combination of Fio and
F3 will provide codes with rank at most 3, while the required code has rank 4.

Theorem 4.12 Let 6 <y < min{m — 5 +2,n— 9§ — 1}. Let

n—y y—0+1 6—1

— S —
° e o .- @ @ --- @

: Do 0—1
[ ] [ ] “e [
[ ]

P Do }y5
F= o o e - @
°

; }51
°
°

m-—y—0+2

°

be an m x n Ferrers diagram F. Let z; be the number of dots in the i-th column of P,
ie€ly—0+1]. If 2o < n—y, then Construction @10 provides an optimal [F,k, 6|, code,
where
. m—-—y+1+@wy—080)0@—-1)+|P|, f m—n<d—2;
S| n—14+@w—-06)(0—-2)+|P|, otherwise.

Proof Let P; denote the Ferrers diagram obtained by removing the first column of P.
Consider the following four Ferrers sub-diagrams of F:
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e e~ o °
=" ; Fa= 1 20, Fa= 1 om-y—0+2,
Dot p0—1
o [ J
® - )
y—o+1 6—1
e o e o [ ]
: 0—1
[ ] [ ]
Fi= *
P1 y—20
O .- o e °
[ ]
0—1

By Theorem [2.5] there exists an [Fy, (y — 6+ 1)(d — 1) — 29 + | P, 6], code.
Ifn>m—6+2,thenn—y>m—-9+2—y. When m—y—0+42 > zg, take a proper
combination Fio3 of Fi, Fo and Fj3 as follows (note that zyp < n — y by assumption)

F1
Fioz = | Fi
T3
When m —y — d + 2 < z, take
F1
Fios = | Fi
F5

Fiog is an (04 1) x (n—y) Ferrers diagram. By assumption, n —y > d+ 1, so by Theorem
23] there exists an [Fia3,m —y — d + 2 + 29, 8], code. Then apply Construction EI0 to
obtain an [F,m —y+ 1+ (y —9)(0 — 1) +|P|,d], code, which is optimal by Lemma 2.2]
(one can check it by counting the number of dots in F which are not contained in the
first 6 — 1 rows).

Ifn<m-—90+42 thenn—y <m—0+2—y. Take a proper combination Fjao3 of Fi,
Fo and F3 as follows

T3
Fiz = | F1
Ty

Fiog isan (0 + 1) x (m —y — § + 2) Ferrers diagram. By assumption, n —y > ¢ + 1, so
m—y—06+2> 3§+ 1. Thus by Theorem 23] there exists an [Fia3,n — y + 20, ] code.
Then apply Construction d.J0to obtain an [F,n—1+(y—§)(d —2)+|P], §], code, which
is optimal by Lemma (one can check it by counting the number of dots in F which
are not contained in the first 6 — 2 rows and the rightmost column). O

We remark that Theorem withn =10, y =5, m = 12, § = 4, k = 13 and
P = e o yields Example .8
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4.3 A special case: F; having only one dot

Constructions [£.7] and [0 require that F5 doesn’t contain any dots of F in the first nq
columns and the last ms rows. However, when F5 contains only one dot, this restriction
can be relaxed.

Construction 4.13 Let m = mq + m3 and n =n1 + n3. Let

—N— —N—
[ [ ] [ ] [

A my
]: = O .- ) e )
[ ]

F3 m3
O .- )

be an m x n Ferrers diagram, where F1 is an mq X nq Ferrers diagram, Fo = , F3 is

an m3z X ng Ferrers diagram, and Fy is an my X ng full Ferrers diagram. Sort the list
{1} U{pi(F1) i€ [ma]} U{v;(F3) : j € [na]} from small to large, where p;(Fi) denotes
the number of dots in the i-th row of F1 and ~y;(F3) denotes the number of dots in the j-th
column of F3. The elements in the sorted list are rewritten as ap < o1 < ... < Qpyygng-
Suppose that Fia3 is a proper combination of F1, Fo and F3 satisfying v;(Fia3) = oy for
[ € [m1 + ng + 1], where v (Fio3) denotes the number of dots in the I-th column of Fios,
and Cia3 is an [Fig3, k1, 01]q code. If there exists an [Fy, ka, 044 code Ca, then there exists
an [F, ki + kq,0]q code C, where 6 = min{dy,d4}.

Proof Take a natural bijection ¢ : F|r, 5, 7 — Fi23 such that ¢1(mq,n; — 1) =
(0,0), ¥1(i,n1 — 1) = (0,*) for each i € [mq], and 11(mq,j) = (0,%) for each n; < j <
ny + n3 — 1. Take a natural bijection v : F|r, — Fy. For each B € Cy23 and D € Cy,
construct an m x n matrix Cg,p such that

B(¢1(Z,]))’ if (Z,]) € ]:|]-'1,}'27]:3;
Cg,p(i,j) = { D(¥2(i,5)), if (i,7) € Flr;
0, if (Z,j) §é F.

Let C = {CB,p : B € Ci23,D € Cs4}. Then C is an [F,k; + k4,0]; code C, where
6= min{51, 54}

One can easily verify the linearity and the dimension of the code. It suffices to
examine the minimum rank weight of any nonzero codewords Cpg p from C. We give a
sketch of the counting for ranks below. The technique is similar to that in Example [£.8]

Let

S
A LD Ay
Dl
Cpp=|0 - Oraix --- x|,
0
: As
10

21



where a corresponds to the dot in Fp. If A4 # O, then since Cy is an [Fy, k4, d4]4 code,
rank(Cp,p) > rank(A4) = rank(D) > 64. If A4 = O and a = 0, then since Cjp3 is an
[]:123, k1, 51]q code, rank(CB,D) = rank(CB,D|f1) + rank(CB,D|]:3) > rank(B) > 01, If
A4 =0 and a # 0, then rank(Cpg,p) > rank(Aq) + 1 + rank(As). According to ¢;, B
is of the form (a permutation of columns are allowed)

AT L A )

Since rank(Aj) + 1 + rank(Ag) > rank(B), we have rank(Cpg,p) > 01. O

Theorem 4.14 Take 61 = 04 = 6§ in Construction E13] such that 6§ < mq + 1. Suppose
that F in Construction 13 satisfies:

1) if 6 <mq+ 1, then ng > my;

1+ my + ng < max{ny, ms};

(
2
(3

)
)
) Qmytnz—6+2 = M1+ ng;
(4) ps—2 —n3 > ms,

where p; denotes the number of dots in the i-th row of F, i € [my + mg|. Then there
exists an optimal [F, Z?llétT3_1 pi,0)q code C for any prime power q.

Proof By Theorem[2.3] due to Condition (1), there is an optimal [Fy, ng(m;—0+1),d],
code C4 for any prime power ¢. Note that when 6 = my + 1, it consists of only a zero
codeword.

Note that Fie3 has m; + ng + 1 columns. By Theorem 2.5 due to Conditions (2)
and (3), there is an [.7:123,2?;10+”3_5+1 a;,0]q code Ci23 for any prime power ¢, where
«; denotes the number of dots in the i-th column of Fjs3. It is optimal by Lemma P
Condition (4) ensures all dots in F3 contribute dimensions for Cjo3, so Zm1+"3 s+1 o =

m15 11 (pz n3) + Ezﬂlntfn?, 1
Therefore, we can apply Constructionmto obtain an optimal [F, k, §], code, where

k=mna(mi =6+ 1)+ 7057 (o — na) + 7™ pi = T i O

Example 4.15 Consider the following Ferrers diagram:

Let 6 = 3 and
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Then my =2, n =4, m3 =4, n3 =1, a9 =1 and o; = 4 for i € {1,2,3}. So the
conditions in Theorem 14l are satisfied, and we can construct an optimal [F,5,3] code.

Remark 4.16 No known construction can be applied to obtain Ezample [AI5. By Re-
mark B.2], all theorems in Section 2.3.1 are invalid. Theorem 2.9 provides an [F,4,3],
code for any prime power q > 3, but it is not optimal. Theorem s also invalid.
Otherwise, to get the required dimension 4, Fo must be the 4 x 2 Ferrers diagram in the
lower right corner of F, and F1 must be the 2 x 3 Ferrers diagram in the top left corner
of F. Then §1 = 2 and 63 = 1 because of the dimension 4, which contradicts with 6 = 4.

5 Concluding remarks

Main contributions of this paper lie in the following two aspects. One is to generalize
Construction 2 in [5] by exploring subcodes of Gabidulin codes. Construction 2 in [5]
requires that each of the rightmost § — 1 columns in Ferrers diagram F has at least n — 1
dots. We relax the condition n—1 to n—r (see Theorem B.I3]). The other is to generalize
Theorem 9 in [5] by introducing the concept of proper combinations of Ferrers diagrams
(see Constructions [£7, .10 and EI3]). This is the first time constructions for FDRM
codes with large size based on small ones are investigated systematically since they are
introduced in [5].

Recently, a new family of MRD codes is presented in [16]. A natural question is how
to use it to construct new optimal FDRM codes.

Another question is whether it is possible in some circumstances to require that
F1 and Fy in Construction .7 or F;, F» and F3 in Construction I0] are not Ferrers
diagrams.

A Appendix

Proof of Lemma [3.4] Let

1wy -+ wop—1
B 1 e U
1
Then
1 w1 ... ugk—1 ug,k + a1, 8% U0n—1+ 2 i g Uin—101,iB" + a1,n—18"
1 e UL k-1 Uk tazEBFTl L U1+ Dy Uin—102,i3 " + ag 18772
GB = .
: : . » : N )
1 Up—1k + ap kB Uk—1n—1 + Do Uin—1ak: 8 F T +ag o BPTF

Let Dy, be any k x k submatrix of GB. Then det(Dy) is a polynomial on .

Case 1. D doesn’t contain the last column of GB. If we could prove that the degree
of det(Dy) is less than m, and the leading coefficient of det(Dy) is a minor of Ay, then
since every minor of A; is nonzero, we would have det(Dy) # 0.

Subcase 1.1. Dy doesn’t contain any of the first £ columns of GB. Take
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al,ilﬁil al,ig ﬁiZ e alyik ﬁzk
M agiy B ari,B271 o agy BT
1= . . . . )
ag i BT qp g, BRTRRL gy BITREL

where {i1,49,...,it} C{k,k+1,...,n—2}, such that the degree of det(M;) is the same
as that of det(Dy), and their leading coefficients are the same. Then

a1y BN a1, B e ag, BT
deb(ML) = det a2.,i1.ﬂk72 a27i2'ﬂk’2 : az,iklﬁkiz (Bl gk gin—ktly =
Ak, Ak,io te Ak iy,
Q14;, Qli, 0 Al
det [ AT T (grorgima gy (gokr gk gk,
ak',il ak'.,ig T ak',z'k

whose degree is k(k —1)/2 + Z§:1(ij —k+1) < kn—k?—k < m. Since every k-minor
of A is nonzero, the leading coefficient of det(M;) is nonzero. So det(Dy) # 0.

Subcase 1.2. D contains h columns coming from the first k columns of GB for
some 1 < h < k. Write these h columns as the ji-th, jo-th, ..., j5-th columns. Let Ugyp
be the submatrix formed by the first h columns of Dj. Take

E alvih+1 51h+1 X al,ih+2 @th X . ai, ﬁlk X
M Ukxn @ @z, B4+ agi, o B2 e ag, BT
2 = ; . . . ;
! ins1—k+1 inso—k+1 i —k+1
! ak,ihﬂﬁlhﬂ * ak,ihwﬁlhw o ak,ikﬁzk *

where {ip11,0p49,... ik} € {k,k+1,...,n— 2}, such that the degree of det(Ms) is the
same as that of det(Dyg), and their leading coefficients are the same. Then

! al,ih+1ﬁk71 al,ih+25:7; al,ikﬁi7;
Ukxh 1 @2,i BT az; BE az i, BT
siht1 Vihgo Vg A S v
det(Mz) = det ' (Bt TRl ginpo—kAL L gip =kt
| : : .
.
Phyip g Ak,ip 4o s Ak iy

Clearly, compared with the degree of det(IM;), the degree of det(Ms) is less than m. Let
L be a (k — h) x (k — h) matrix obtained by removing the ji-th, jo-th, ..., j,-th rows
from the following matrix

alvih+1 T alvzk

akvih+1 e akvlk

It is readily checked that the leading coefficient of det(M3) is det(L) or — det(L) (this fact
comes from two observations: (1) via elementary row-addition operations on det(My),
the Uiy part in Ms, which is an upper triangular matrix, can be transformed to a
matrix with at most one 1 in each row; (2) 8 has higher degrees in upper rows of Ms).
Since L is a minor of A, det(L) # 0. So det(Dy) # 0.

Case 2. Dy contains the last column of GB. The arguments are similar to those in
Case 1.

Subcase 2.1. Dy doesn’t contain any of the first £ columns of GB. Take
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aii, " a1, 3% e a i, Bt a1 p—15"

agi, 3071 ar,B271 o agy,  BETE ag T2
M; = ) ) ) )

)

ap i BT qp g, BRTRRL gy BeihEL gy BnR

where {i1,79,...,ik—1} C {k,k+1,...,n — 2}, such that the degree of det(Ms3) is the
same as that of det(Dy), and their leading coefficients are the same. Then

a1, B a8t o ar, AR ai,n—18*
a2, B2 a2:;,B52% o ag,, BFT2 agn—1B82 ) )
det(M3) = det ) . (611—k+1 . .sz,lkaranfk)
Ak, iq Ak, io Ak if Afn—1
a1, Qli, 0 Gl  G1n—18
a2,  G24y Q24 4,  G2np-1 ) _
= det . _ ) ) .(Bk—lﬁkfzn.ﬁ).(611—k+1,..Blk,l—kJranfk)’
Qi1 Ok io Ak ig 4 A n—1

whose degree is 1 + k(k —1)/2 + Zf;ll(z] —k+1)+n—k <kn—£k?>+1 < m. Since
ain-1 € Fy and every (k — 1)-minor of A; is nonzero, the leading coefficient of det(IMs3)
is nonzero. So det(Dy) # 0.

Subcase 2.2. D contains h columns coming from the first k columns of GB for
some 1 < h < k. Write these h columns as the ji-th, jo-th, ..., j5-th columns. Let Ugxp

be the submatrix formed by the first A column of Dj. Take

LA, B! e ai g, B ai pn—18"
| ini1—1 ih1—1 —2
M Ukxn | a2, 004 s agg, BT agn-18"
4 = | . . )
! i1 —k+1 i1 —k+1 —k
! ak,ihﬂﬁZhH AR kg, B * an—18"

where {ipy1,9p42,...,ik—1} C {k,k+1,...,n — 2}, such that the degree of det(My) is
the same as that of det(Dy), and their leading coefficients are the same. Then

a8 ati, Bt arn-1B”
Ukxn i a2,y 1,8 2 ag,, B2 agn-_1B8F2 ) ) .
det(My) = det ! (B TR gl —RE L gn—ky
.
! :
b Gk e Ok ig 4 Ak n—1

Clearly, compared with the degree of det(Mg3), the degree of det(IMy) is less than m.
Subcase 2.2.1. Dy contains the first column of GB. W.l.o.g., assume that the j;-th
column of GB is just its first column. Let L be a (k — h) x (k — h) matrix obtained by

removing the ji-th, jo-th, ..., jp-th rows from the following matrix
alvih+1 e alvikfl alvn_l
akvih+1 e akvikfl akvn_l

It is readily checked that the leading coefficient of det(IMy) is det(L) or — det(L). Since
L is a minor of Ay, det(L) # 0. So det(Dy) # 0.

Subcase 2.2.2. Dy does not contain the first column of GB. Let L be a (k — h —
1) x (k — h — 1) matrix obtained by removing the first, the ji-th, jo-th, ..., jp-th rows
from the following matrix
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B Appendix

A1,ip 41

Ak ,ip 1

It is readily checked that the leading coefficient of det(My) is a1 ,,—1 - det(L) or —aq p—1 -
det(L). Note that aj,—1 € Fy. Since L is a minor of Ay, det(L) # 0. So det(Dy) # 0.

Al,ig_q

Ak ij_q

a1n—1

Ak.n—1

Proof of Lemma [3.17] To construct the required matrix G, we first take a G[u x (n—
r),d]q code in vector representation over Fgu:

where 1, go 1,

Go

1 goa
1

1 g([),}l
1

1 9([)’?1 !

90,n—r—1
(1]
gO,n—T’—l

[r—1]
0o,n—r—1

-5 90y—r—1 € Fgu are linearly independent over F,,.

We shall extend G by adding 7 columns to obtain G. We need r steps. For 0 < i <
r—1,in Step i, let w; =n—r+i—2and G; =

0 0

o 0

I

[ .
L. :

) 0

ro 0

. HHH

I 1

' 1 95

,

P :

I

I [k—i—1]

' 195 it

be a k X (w; + 2) matrix, where 1, g; j41, ..

0 g,k
0 a1,k

[k—i-1]

[k—i—1]
ik—1 i

1,k

ag,n—r—1
alp—r—1

[k—i—1]
im—r—1

oo

AL,n—r

QXj—2m—r Xi—2n—r41

Qi—1,m—r Qi—1m—rtl
9in—r i,n—r+1
(1] 1
im—r im—r41
[k—i—1] [k—i—1]
in—r in—r41

0 0
0 0
0 0
Ai—1w; L o
i,w; Giw; +1
g’ i
i,wg iw;+1
lk—i—1]  [r—i—1]
1wy i,w;+1

> Jiwi+1 € Fgu are linearly independent over

F,, and the sub-matrix of G; obtained by removing its first ¢ rows and the leftmost 4
columns produces a Gl x (n —1),d + 1], code. When i =0, G; is just Gy we defined in
the above paragraph. Now, we show that how to obtain G;;; from G; for 0 <i <r—1.

Let ;41,8425 - - -

H; 1=
0
0
L
' 0
B
!
' [1]
: 0 9ii+1
b fk—iet
b0 gy

1: 1 tii+a
' 1
0
0
0
0
0
Giyit1
Giyit+1

s tik—1 € Fgu such that

tik—1
1
0
0
0
0
0
(1] )
Jiw—1 — Gi,n—1
[k—i—1]
Jik—1 — 9ik—1

S
—_

femict] |
9in—r—1 — 9in—r—1



alp—r 0 0 0
Qi—2,n—r Q-2 n—rt1 0 0
________ N o e S - = 00 S
QG n—r Qj n—r+1 Qg w,; Qw41
n (1] o . n _ [1] _ g
9in—r — 9imn—r 9in—r+1 — Jim—r+1 9iw; — Giw; Jiw;+1 — Ji,wi+1
[k—i—1] ) [k—i—1] ) [k—i—1] ) [k—i—1] )
Gim—r —YGim—r  Gin—ry1 ~ Gim—r+l T Gi, “Yiwi Yiw;+1 — Jiwitl

Notice that t;;41,...,t; x,—1 influence only the first row under the broken line of Hj ;
and the requirements on this row constitute a linear system of equations with k — 1 — 4
equations and x — 1 — ¢ unknowns. Therefore, the desired ¢; ;41,...,%; x—1 always exist
(this is from the observation of the generator matrix of the Gabidulin code defined by

L, Giit1y - Gig—1)-

Let
R N
1
-1 1
H; = ! H;
; -1 1
0 -0 a0k OOg_re1 0 0 ) 0
| 0 0 a1k Q1 n—r—1 Q1 n—r 0 0 0
L1 E : . . . .
. 0 0 QAj—2 0 Qi_2n—r—1 Q-2 n—9p G_2n—ril - 0 0
, 0 0 Qi—1,k "0 Qi—lp—r—1 Qi—1p—r Qi—lp—rtl **° i1, 0
= 0 0 Qi i Qim—r—1  Ohgm—r  OQim—rgl 00 Odw;  Qdwidl |0
: fi[,i]+1 f’i[,l]ifl fz[:]i fi[ﬂrrq fi[,vrr fi[ﬂrrﬂ fi[,wi fi[,7i+1
A 1 1 1 1 1 1 1
| fi,i+1 fi,nﬂ fi,n fi,nfrfl fi,nfr fi,n77‘+1 fi,wi fi,wrrl
Dolemie2]  emie2] aleeie2]  lk—im2] o lk—ie2]  els—i-2] o kmie2] ele—ie2]
:fi,i+1 fi,mfl fi,ﬁ fi,nfr-fl fi,nf'r fi,nfr-Jrl fi,wi fi,wiJrl
1 . . .
where f; ; = gZ[J] —gij fori+1 < j <w; +1. For any full-rank matrix T; € Fgux’i, the

generator matrix T;G; defines the same code as G;, so H; 2 defines the same code as G;.

We can assert that f;;11, fii+2,. -, fiw+1 € Fgu are linearly independent over F,.
Since 1, giit1,-- -5 Giw;+1 € Fgu are linearly independent over Fy, we construct a G[u x
(wi — i+ 2),w; — i+ 1], code generated by

L Giiv1r - Giwi+l
1 . g
gz,z—l—l gz,wi—l—l
Since (0, fiit1,-- -, fiw+1) is a codeword of the G{u x (w; — i+ 2),w; — i+ 1], code, then
rank(fiit1, .. fiw41) = wi—i+1. S0, fiit1, fiit2,---, fiw+1 are linearly independent
over Fg.
Additionally, since p > 7 —r = w; — i+ 2, there exists an element f; ., 12 € Fgu which
is [F,-linearly independent of f;i1,..., fiw,+1. Hence, the k x (w; + 3) matrix

L0 1)x1
b fiwir2
LN

H, 5= Hi72 . fi[,u])¢+2

[k—i—2]
! fi,wi+2
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defines with its right bottom (k—i—1) X (w; —+2) submatrix a G[p X (w; —i+2), d+i+1],
code.
Now we set

:
,
B
Cr
Vit )
' -
Git1 = | Jiit1 Higs
|
I
|
I
! —[r—i—2]
I fi,iJrl
0 0 0 ag . Qo p—r—1 0 0 0 0
10 0 0 a1k ayp—r—1 ayp_r 0 0 0
: .
,
: : : : : : . : :
| 0 0 Qi1 0 Xl p—r—1 %—1m—r OG—1 n—rtl " 0 0
Y D S iy oDl Smoroi Samor  Smordl L Shesga o0 0
- Lgiprite 0 Gidl,k—1 Gitie 0 Gitln—r—1 Fitlp—r YGitlng—r+l " Gitlw;py Jitlw g+l
1 g oo gt oo gl (1] gl Rt (1]
: i+1,i4+2 Jit1,k—1 i+lk i+1,m—r—1 Yit1,n—r Jifin—r+1 Jit1,wi41 Jitl,w;p1+1
! .
y glr—is2] [k—i—2] [k—i—2] [k—i—2] [k—i—2] [k—i—2] [k—i—2] [k—i—2]
941,42 T it e—1 Jitie 0 9it1m—r—1 Jitlm—r Jitlm—r4+1 7 ittwiy Jitlwspq 41

where w;11 = w; + 1 and gi11; = fij z,_z}irl for j € {i +2,...,wi+1 + 1}. Notice that
L, git1,i42, - - - » Git1,wiq+1 are linearly independent over [, and the right bottom (k—i—
1) X (wi+1 — i+ 1) submatrix of G;41 can produce the same G x (w; —i+2),d+i+ 1],
code as the one produced by H; 3.

(k—r)X(k—T)
q:uf

_ Ir><r
(" a)e

is our required matrix. O

Finally, we can choose an invertible matrix T € F such that
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