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Abstract

Leafless elementary trapping sets (LETSs) are known to be the problematic structures in the error

floor region of low-density parity-check (LDPC) codes over the additive white Gaussian (AWGN)

channel under iterative decoding algorithms. While problems involving the general category of trapping

sets, and the subcategory of elementary trapping sets (ETSs), have been shown to be NP-hard, similar

results for LETSs, which are a subset of ETSs are not available. In this paper, we prove that, for a

general LDPC code, finding a LETS of a given size a with minimum number of odd-degree check nodes

b is NP-hard to approximate within any approximation factor. We also prove that finding the minimum

size a of a LETS with a given b is NP-hard to approximate within any approximation factor. Similar

results are proved for elementary absorbing sets, a popular subcategory of LETSs.

Index Terms: Low-density parity-check (LDPC) codes, trapping sets (TS), elementary trapping sets

(ETS), leafless elementary trapping sets (LETS), absorbing sets (ABS), elementary absorbing sets

(EABS), computational complexity, NP-hardness.

I. INTRODUCTION

The error floor of low-density parity-check (LDPC) codes under iterative decoding algorithms

is attributed to certain combinatorial structures in the Tanner graph of the code, collectively

referred to as trapping sets. A trapping set is often classified by its size a and the number of

odd-degree (unsatisfied) check nodes b in its induced subgraph. In this case, the trapping set is

said to belong to the (a, b) class. The problematic trapping sets that cause the error floor depend

not only on the Tanner graph of the code, but also on the channel model, quantization scheme

and the decoding algorithm. For variable-regular LDPC codes (both random and structured) over

the additive white Gaussian noise (AWGN) channel, the culprits are known to be a subcategory
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of trapping sets, called leafless elementary trapping sets (LETSs) [1], [2]. Leafless ETSs are also

the majority of problematic structures in the error floor region of irregular LDPC codes over the

AWGN channel [3]. The term “elementary” indicates that all the check nodes in the induced

subgraph of the trapping set have degree one or two, and the term “leafless” means that each

variable node is connected to at least two satisfied check nodes, i.e., the normal graph [1] of

the trapping set contains no leaf.

Elementary TSs have been reported in numerous publications, including the pioneering work

of Richardson [4], to be the most harmful of TSs, based on simulations. Recently, also, theoretical

results were presented in [5] that demonstrated the smallest size a of non-elememtary (a, b) TSs

(NETSs) is generally larger than the smallest size of ETSs with the same b value. Considering

that for a given b, TSs with smaller size a are generally more harmful, the result of [5] provided

a theoretical justification for why ETSs are the most harmful among all TSs. More evidence that

ETSs are more harmful than NETSs was most recently provided in [6], where the authors

examined a large number of LDPC codes and demonstrated, using exhaustive search, that

dominant classes of trapping sets are those of ETSs. Moreover, it has been observed that for

many LDPC codes, the dominant ETSs in the error floor are those caused by a combination of

multiple cycles, where each variable node is part of at least one cycle, i.e., the dominant ETSs

are leafless, see, e.g., [7]–[9], and the references therein. This motivates our investigation into

the computational complexity of finding LETSs in this paper.

For a given LDPC code, the knowledge of TSs, in general, and that of LETSs, in particular,

is useful in estimating the error floor [10], [11], devising decoding algorithms [12], or designing

codes [13], [14] with low error floors. In any such application, one would need to find a

list of dominant TSs which are the main contributors to the error floor. While the topic of

relative harmfulness of different trapping sets with relation to the channel model, the decoding

algorithm, and the quantization is still not fully understood, it is generally accepted that TSs

with smaller values of a and b are more harmful. Counterexamples, however, exist where

trapping sets with larger a or b values are more harmful than those with smaller values for

these parameters [15]. There are also many examples where the relative harmfulness of trapping

sets in different classes can change depending on the decoding algorithm, the channel model

or the quantization scheme. It is thus of interest to devise algorithms that can find TSs in a

wide range of a and b values. Motivated by this, there has been a flurry of research activity

to characterize different categories of trapping sets and to devise fast search algorithms to
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find them [1], [2], [3], [6], [12], [9], [16], [17], [18]. In particular, recently, Hashemi and

Banihashemi [2] proposed a characterization of LETSs for variable-regular Tanner graphs based

on a hierarchy of graphical structures that starts from a simple cycle and expands recursively

to reach the targeted LETS. The characterization, referred to as dpl, is based on three simple

expansion techniques, dubbed dot (degree-one-tree), path, and lollipop, and has the property that

it generates a LETS at each and every step of the expansion process. Within this framework, the

authors of [2] proved the optimality of dpl search, in that, it can find LETSs within a certain range

of a ≤ amax and b ≤ bmax, exhaustively, by starting from simple cycles whose maximum length

is minimized, and by generating the minimum number of undesirable structures that are outside

the range of interest. The complexity of the dpl search of [2] depends highly on the multiplicity

of short simple cycles in the graph and the number of LETS structures in different classes within

the range of the search. It was shown in [19] that the multiplicities of simple cycles of different

fixed lengths in random bipartite graphs tend to independent Poisson random variables with

fixed expected values, as the size of the graph tends to infinity (for fixed degree distributions). It

was further shown in [20] that the average multiplicity of LETS structures within different (a, b)

classes, where a and b are fixed values, tends to zero or a non-zero constant asymptotically. With

regards to the overall complexity of the dpl search algorithm, it was proved in [3] that, assuming

fixed values of amax and bmax and a fixed maximum node degree and girth for the Tanner graph,

the worst-case complexity increases linearly with the code’s block length n. It was further shown

in [3] that the average complexity of the dpl search, excluding that of the search for the input

simple cycles, is constant in n. While these results verify the efficiency of the dpl search for

small (fixed) values of amax and bmax, they do not provide much insight into the computational

complexity of the algorithm as a function of these parameters. In addition, it is of interest to

know the inherent difficulty of finding LETSs regardless of the algorithm used. In particular,

we are interested in whether it is possible to find a polynomial time algorithm that can find

LETSs of LDPC codes. The main contribution of this paper is to provide a negative answer to

this question, in general. We recall that, for a given LDPC code, in applications involving error

floor, one would be interested in a list of TSs with most contributions to the error floor. Such

TSs are often those whose a and b values are relatively small, and as pointed out, e.g., in [15],

they may also include TSs whose parameters are proportional to the code’s block length. For

such cases, our results imply that, unless P = NP, there is no polynomial time algorithm that

can find all the LETSs of interest.
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McGregor and Milenkovic [21] studied the computational complexity of finding different

categories of trapping sets. In particular, they showed that for a given a, finding an (a, b) trapping

set with minimum b is an NP-hard problem. Also, given b, it was shown that finding an (a, b)

ETS with minimum a is NP-hard [21]. In fact, the results of [21] indicate that, for any constant

ǫ, there is no polynomial-time ǫ-approximation algorithm for any of the two problems, unless

RP = NP or P = NP, respectively. On the other hand, when a problem is NP-hard, the restricted

cases of that problem can be NP-hard or polynomial time solvable. We thus cannot judge the

computational complexity of finding LETSs based on that of finding ETSs. Moreover, to the

best of our knowledge, there is no result on the worst-case computational complexity of finding

LETSs. The fact that LETSs are the main problematic structures in the error floor region of

LDPC codes over the AWGN channel [2], [7]–[9], [22], however, makes such a problem worth

investigating.

In this paper, we study the computational complexity of finding LETSs in variable-regular

LDPC codes. In particular, we consider the following two problems: (i) for a given (dv, dc)-

regular Tanner graph G and an integer a, find an (a, b) LETS with minimum b in G, and (ii) for a

given b, find a LETS with minimum size a in G. We prove that both problems are NP-hard, even

to approximate within any approximation factor, no matter how fast the approximation factor

scales with the size of the problem. This implies that there is no polynomial-time algorithm to

even approximate the solution to any of these problems, unless P = NP.

In addition, we study the computational complexity of finding elementary absorbing sets

(EABS), a subcategory of LETSs. Absorbing sets are the fixed points of bit-flipping decoding

algorithms [23], [24], and are also shown to be relevant in the context of quantized decoders

over the AWGN channel [24]. Among absorbing sets, the elementary ones are known to be the

most problematic. We note that EABSs and LETSs are identical sets for variable-regular LDPC

codes with dv = 3. For other values of dv, EABSs are a subset of LETSs. For EABSs, we prove

that both Problems (i) and (ii) are still NP-hard, even to approximate within any approximation

factor.

The organization of the rest of the paper is as follows: In Section II, we present some

preliminaries including some definitions and notations. This is followed in Sections III and

IV by our results on the worst-case computational complexity of finding LETSs and EABSs,

respectively. The paper is concluded with some remarks in Section V.
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II. PRELIMINARIES

We say that a graph G is simple if it has no loop or parallel edges. Throughout this paper,

all graphs are simple. For a graph G, we denote the node set and the edge set of G by V (G)

and E(G), or by V and E (if there is no ambiguity about the graph), respectively. The number

of edges connected to a node v is called the degree of v, and is denoted by d(v). Also, the

maximum degree and the minimum degree of a graph G, denoted by ∆(G) and δ(G), respectively,

are defined to be the maximum and the minimum degree of its nodes, respectively. A node v

is called leaf if d(v) = 1. A leafless graph is a graph G with δ(G) ≥ 2. In this work, we

consider graphs to be connected (note that disconnected graphs can be considered as the union

of connected ones).

A graph G = (V,E) is called bipartite if the node set V can be partitioned into two disjoint

subsets U and W , i.e., V = U ∪W and U ∩W = ∅, such that every edge in E connects a node

from U to a node from W . Such a bipartite graph is denoted by G = (U ∪W,E).

Each m× n parity check matrix H of a linear block code of block length n, in general, and

an LDPC code, in particular, can be represented by a bipartite (Tanner) graph G = (U ∪W,E),

where U = {u1, u2, . . . , un} is the set of variable nodes and W = {w1, w2, . . . , wm} is the set

of check nodes. A Tanner graph is called variable-regular with variable degree dv if the degree

of every variable node is dv. Also, a (dv, dc)-regular Tanner graph is a variable-regular Tanner

graph in which the degree of every check node is dc. For an LDPC code (Tanner graph), if H

is full-rank, the rate is given by R = 1 − d̄v/d̄c, where d̄v and d̄c are the average variable and

check degrees, respectively. In this work, we consider LDPC codes (Tanner graphs) in which

d̄v is constant with respect to n. This implies that, given R, in the asymptotic regime where

n → ∞, the density of H and that of the Tanner graph tends to zero. This is consistent with

the term “low-density” in “low-density parity-check.”

Let G = (U ∪W,E) be a bipartite graph. For a set S, where S ⊆ U , the set N(S), where

N(S) ⊆ W , denotes the set of neighbors of S in G. Also, the induced subgraph G(S) of S

in G, is defined as the graph with the set of nodes S ∪ N(S) and the set of edges {uiwj :

uiwj ∈ E, ui ∈ S, wj ∈ N(S)}. In the graph G(S), the set of check nodes with odd and even

degrees are denoted by No(S) and Ne(S), respectively. Also, the terms unsatisfied check nodes

and satisfied check nodes are used to refer to the check nodes in No(S) and Ne(S), respectively.

For a given Tanner graph G = (U ∪W,E), a set S ⊂ U is called an (a, b) trapping set (TS)
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if |S| = a and |No(S)| = b. An elementary trapping set (ETS) is a trapping set for which each

check node in G(S) has degree either one or two. For a given set S, S ⊂ U , we say that S is a

leafless ETS (LETS) if S is an ETS and if the graph which is obtained from G(S) by removing

all the check nodes of degree one and their incident edges is leafless. An absorbing set (ABS)

S is a TS for which all the variable nodes in S are connected to more nodes in Ne(S) than in

No(S). Also, an elementary absorbing set (EABS) S is an ABS for which all the check nodes

in G(S) have degree either one or two.

In computational complexity theory, the class P problems are those that can be solved in

polynomial time. On the other hand, the class NP (non-deterministic polynomial-time) problems

contains all decision problems for which the instances where the answer is “yes” have proofs

that are verifiable by deterministic computations that can be performed in polynomial time.

More formally, NP is the set of decision problems solvable in polynomial time by a theoretical

non-deterministic Turing machine. A problem P is NP-hard when every problem L in class NP

can be reduced in polynomial time to P , i.e., assuming a solution for P takes one unit time,

we can use P’s solution to solve L in polynomial time. The complexity class P is contained

in NP, but NP contains many more problems. The hardest problems in NP, whose solutions are

sufficient to deal with any other NP problem in polynomial time, are called NP-complete. The

most important open question in complexity theory is whether P = NP. It is widely believed that

the answer is negative. Polynomial-time reductions are frequently used in complexity theory to

prove NP-completeness, i.e., if Problem P can be reduced to Problem P ′ in polynomial time,

then P is no more difficult than P ′, because whenever an efficient algorithm exists for P ′, one

exists for P as well. Thus, if P is NP-complete, so is P ′.

Although many optimization problems cannot be solved in polynomial time unless P = NP, in

many of these problems the optimal solution can be efficiently approximated to a certain degree.

In this context, approximation algorithms are polynomial time algorithms that find approximate

solutions to NP-hard problems with provable guarantees on the distance of the returned solution

to the optimal one. In majority of the cases, the guarantee of such algorithms is a multiplicative

one expressed as an approximation ratio or approximation factor, i.e., the optimal solution is

guaranteed to be within a multiplicative factor of the returned solution. Some optimization

problems, however, are NP-hard even to approximate to within a given approximation factor.

In this work, we show that all the problems of interest in this work belong to this category of

problems.
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To prove the NP-hardness of the problems related to finding LETSs and EABSs, we use

some existing results in Boolean logic on the NP-completeness of satisfiability problems. In the

following, we first present some definitions and notations in Boolean logic. This is followed by

the description of the Boolean satisfiability problems of interest.

Consider a formula Φ = (X,C) in Boolean logic, where the two sets X = {x1, . . . , xn} and

C = {c1, . . . , cm} are the sets of variables and clauses of Φ, respectively. Each variable can take

one of the two truth values “True (1 or T )” or “False (0 or F ).” A truth assignment ℓ(x), x ∈ X ,

for Φ = (X,C) is an assignment of truth values to all the variables in X , with corresponding

assignment of a truth value to Φ. We use the notation ℓ̄ for a truth assignment whose truth values

ℓ̄(x) are T or F if and only if the corresponding truth values ℓ(x) of ℓ are F or T , respectively.

We say that a formula Φ is in conjunctive normal form (CNF) if it is a conjunction of clauses,

where a clause is a disjunction of literals. A literal is either a variable x or the negation ¬x of a

variable x. For example, (x∨¬y∨z)∧ (x∨y ∨z)∧ (x∨¬y ∨¬z) is a CNF formula with the set

of variables {x, y, z} and the set of clauses {(x∨¬y∨z), (x∨y∨z), (x∨¬y∨¬z)}. Throughout

this paper, all the formulas are assumed to be in conjunctive normal form. In the following,

we sometimes represent a CNF formula by the collection of its clauses. With a slight abuse of

notation, and to simplify the equations, we would also refer to a CNF formula Φ = (X,C) to

mean the set of its clauses C.

For a given formula Φ, we say that Φ has a γ–IN–β truth assignment if each clause in Φ has

exactly β literals and there is a truth assignment for Φ such that each clause has exactly γ true

literals. For instance, for the formula (x∨y∨ z)∧ (¬x∨¬y ∨ z)∧ (¬x∨y ∨¬z), the assignment

ℓ : ℓ(x) = T, ℓ(y) = ℓ(z) = F , is a 1–IN–3 truth assignment. A γ–IN–β SAT problem is the

problem of determining whether there exists a γ–IN–β truth assignment for a given formula Φ

(where in Φ every clause contains β literals). We say that a formula is monotone if there is no

negation in the formula.

The following problems are of interest in proving our results:

1) Monotone 1–IN–3 SAT: Given a monotone formula Φ = (X,C) such that every clause in

C contains three variables, is there a 1–IN–3 truth assignment for Φ?

2) Cubic Monotone 1-IN-3 SAT: Given a monotone formula Φ = (X,C) such that every

clause in C contains three variables and every variable appears in exactly three clauses, is

there a 1–IN–3 truth assignment for Φ?

3) Monotone 2–IN–β SAT: Given a monotone formula Υ = (X,C) such that every clause in
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C contains β variables, is there a 2–IN–β truth assignment for Υ?

4) Cubic Monotone 2-IN-β SAT: Given a monotone formula Ψ = (X,C) such that every

clause in C contains β variables and every variable appears in exactly three clauses, is

there a 2–IN–β truth assignment for Ψ?

5) α–Monotone 2–IN–β SAT: Given a monotone formula φ = (X,C) such that every clause

in C contains β variables and every variable appears in exactly α clauses, is there a 2–IN–β

truth assignment for φ?

Problems 1 and 2 above are shown in [25] and [26], respectively, to be NP-complete. As an

intermediate result to prove the NP-hardness of the problems under consideration, we start from

Problem 1 and demonstrate in three steps, through polynomial-time reductions, that Problems

3–5 are all NP-complete as well.

The problems of direct interest in this work are the followings:

• Min-b-LETS: Given an (α, β)-regular Tanner graph G and a positive integer a, find the

minimum non-negative integer b such that there is an (a, b) LETS in G.

• Min-a-LETS: Given a Tanner graph G and a non-negative integer b, find the minimum

positive integer a such that there is an (a, b) LETS in G.

• Min-b-EABS: Given a (α, β)-regular Tanner graph G and a positive integer a, find the

minimum non-negative integer b such that there is an (a, b) EABS in G.

• Min-a-EABS: Given a Tanner graph G and a non-negative integer b, find the minimum

positive integer a such that there is an (a, b) EABS in G.

In the rest of the paper, we prove that all the above problems are NP-hard to approximate

within any approximation factor, i.e., there is no polynomial-time algorithm to approximate the

solution to any of these problems, unless P = NP.

III. COMPUTATIONAL COMPLEXITY OF FINDING LETSS

Theorem 1. For any integers α and β satisfying 3 ≤ α ≤ β, Min-b-LETS is NP-hard to

approximate within any approximation factor.

Proof. To prove the result, we reduce Monotone 1–IN–3 SAT to a decision problem corresponding

to Min-b-LETS in four steps.

Step 1. (Reduction of Monotone 1–IN–3 SAT to Monotone 2–IN–β SAT) Let Φ be an instance

of Monotone 1–IN–3 SAT. In this step, we convert the formula Φ into a monotone formula Υ
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such that in Υ every clause contains β variables, and there is a truth assignment for variables in

Φ such that each clause in Φ has exactly one true literal if and only if there is a truth assignment

for variables in Υ such that each clause in Υ has exactly two true literals.

We consider three cases: (1)β = 3, (2)β = 4, and (3)β ≥ 5.

Case 1 (β = 3): Assume that ℓ is a 1–IN–3 truth assignment for Φ. It is easy to see that ℓ̄ is

a 2–IN–3 truth assignment for Φ. Hence, Φ has a 1–IN–3 truth assignment if and only if it has

a 2–IN–3 truth assignment. We thus choose Υ = Φ.

Case 2 (β = 4): Consider the formula Φ = (X,C) and let x′ be a new variable such that

x′ /∈ X . Replace each clause c in the formula Φ with c ∨ x′, and call the resultant formula

Υ = (X ∪x′, C ′). If Φ has a 1–IN–3 truth assignment ℓ, then we select a truth assignment ℓ′ for

Υ by defining ℓ′(x) = ℓ(x), ∀x ∈ X , and ℓ′(x′) = T . It is now easy to see that ℓ′ is a 2–IN–β

truth assignment for Υ. On the other hand, assume that ℓ′ is a 2–IN–β truth assignment for Υ.

If ℓ′(x′) = T , then ℓ′ is also a 1–IN–3 truth assignment for Φ. Otherwise, if ℓ′(x′) = F , then ℓ′

is a 2–IN–3 truth assignment for Φ. In this case, ℓ̄′ will be a 1–IN–3 truth assignment for Φ.

Case 3 (β ≥ 5): Consider the collection of following β − 1 clauses and call them S:

(x1 ∨ x2 ∨ . . . ∨ xβ−1 ∨ y1),

(x1 ∨ x2 ∨ . . . ∨ xβ−1 ∨ y2),
...

(x1 ∨ x2 ∨ . . . ∨ xβ−1 ∨ yβ−2),

(y1 ∨ y2 ∨ . . . ∨ yβ−2 ∨ x1 ∨ x2).

Assume that ℓ is an arbitrary 2–IN–β truth assignment for S, and let i and j be two arbitrary

integers such that 1 ≤ i < j ≤ β−2. If we have ℓ(yi) 6= ℓ(yj), then, based on Assignment ℓ, it is

impossible that both clauses (x1∨x2∨ . . .∨xβ−1∨yi) and (x1∨x2∨ . . .∨xβ−1∨yj) have exactly

two true literals. Thus, we must have ℓ(y1) = ℓ(y2) = · · · = ℓ(yβ−2). Since, based on Assignment

ℓ, there must be exactly two true literals in the clause (y1 ∨ y2 ∨ . . .∨ yβ−2 ∨ x1 ∨ x2), and since

β − 2 ≥ 3, we conclude ℓ(y1) = ℓ(y2) = · · · = ℓ(yβ−2) = F , and thus ℓ(x1) = ℓ(x2) = T .

Consequently, ℓ(x3) = ℓ(x4) = · · · = ℓ(xβ−1) = F .

For each i, 1 ≤ i ≤ β − 3, consider the collection of following clauses and call them Si:

(xi
1 ∨ xi

2 ∨ . . . ∨ xi
β−1 ∨ yi1),

(xi
1 ∨ xi

2 ∨ . . . ∨ xi
β−1 ∨ yi2),

...

(xi
1 ∨ xi

2 ∨ . . . ∨ xi
β−1 ∨ yiβ−2),
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(yi1 ∨ yi2 ∨ . . . ∨ yiβ−2 ∨ xi
1 ∨ xi

2).

Now, consider the collection of clauses H = C∪{∪β−3
i=1 Si}, where C is the set of clauses in Φ. In

H, replace each clause c ∈ C (which has 3 variables) with the clause c∨x1
3∨x2

3∨ . . .∨xβ−3
3 . Call

the resultant formula Υ. In Υ, each clause has exactly β variables. For each i, 1 ≤ i ≤ β− 3, if

ℓ is a 2–IN–β truth assignment for Si, then ℓ(xi
3) = F . Thus, the formula Φ has a 2–IN–3 truth

assignment if and only if Υ has a 2–IN–β truth assignment. On the other hand, the formula Φ

has a 2–IN–3 truth assignment if and only if it has a 1–IN–3 truth assignment. This completes

the proof for this case.

Step 2. (Reduction of Monotone 2–IN–β SAT to Cubic Monotone 2–IN–β SAT) In this step,

we convert Υ to a monotone formula Ψ such that in Ψ every clause contains β variables, every

variable appears in exactly 3 clauses, and there is a truth assignment for Υ such that each clause

in Υ has exactly two true literals if and only if there is a truth assignment for Ψ such that each

clause in Ψ has exactly two true literals.
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Fig. 1. Graph Ft,k,j representing Formula Ωt,k,j .

First, consider the graph Ft,k,j shown in Figure 1. This graph represents a formula in the

following way: Every circle is a variable, every square is a clause and a clause c contains a

variable v if and only if they are connected through an edge in the graph. Call the formula that

is represented by Ft,k,j , Ωt,k,j . In Ωt,k,j , every variable occurs at most three times, each clause

contains exactly k ≥ 3 variables and there is no negation. Parameter j is an index that all the



11

variables in Ωt,k,j have as superscript. The graph Ft,k,j contains 3t black variable nodes, each of

degree two.

It is easy to see that there are some 2–IN–k truth assignments for Ωt,k,j . For instance, one

can assign T to black and grey variable nodes and F to white ones. Another example is to

assign F to black variable nodes, T to grey and one of the white variable nodes in each group

of k − 2 white nodes, and F to the rest of white nodes. In the following, we prove that in any

2-IN-k truth assignment for Ωt,k,j , the values of all black variable nodes must be equal, i.e.,

either they are all assigned “T ,” or they are all equal to “F ” (Fact 1). In Ft,k,j , consider the

three black nodes zj1, zj2 and zjt+1. Clause c1 contains zj1, Clause c2 contains zj2 and Clause c3

contains zjt+1. Also, there are k − 1 variables, which we call them vj1, v
j
2, . . . , v

j
k−1, such that

c1 = (zj1 ∨ vj1 ∨ . . .∨ vjk−1), c2 = (zj2 ∨ vj1 ∨ . . .∨ vjk−1) and c3 = (zjt+1 ∨ vj1 ∨ . . .∨ vjk−1). Assume

that ℓ is a 2–IN–k truth assignment for Ωt,k,j . Then, we must have ℓ(zj1) = ℓ(zj2) = ℓ(zjt+1).

Otherwise, it is impossible to have exactly two true literals in all three clauses c1, c2 and c3.

Using a similar argument, one can see that in any 2-IN-k truth assignment, the values of all the

black variable nodes must be equal

Now, consider the formula Υ′ = (X,C ′), which has the same set of variables as Υ = (X,C),

but each clause in C is copied nine times to form C ′. Each variable xj in Υ′, therefore, appears

in 3h(xj) clauses, where h(xj) ≥ 3. Now, for each variable xj in Υ′ = (X,C ′), consider

a copy of the formula Ωh(xj),β,j . In this formula (corresponding to the graph Fh(xj),β,j), let

{zj1, z
j
2, . . . , z

j

3h(xj)
} be the set of black variable nodes. Replace each appearance of xj in Υ′

with one of the variables zj1, z
j
2, . . . , z

j

3h(xj)
, and call the resultant formula Υ′′. Now, consider the

set of clauses {
⋃

xj∈X
Ωh(xj),β,j ∪ Υ′′}, and call it Ψ. In Ψ, every clause contains β variables

and every variable appears in exactly three clauses. By Fact 1, it is straightforward to verify that

Formula Ψ has a 2–IN–β truth assignment if and only if Υ has a 2–IN–β truth assignment.

Step 3. (Reduction of Cubic Monotone 2–IN–β SAT to α–Monotone 2–IN–β SAT) In this

step, we convert Ψ to a monotone formula φ such that in φ every clause contains β variables,

every variable appears in α clauses, and Ψ has a 2–IN–β truth assignment if and only if φ has

a 2–IN–β truth assignment. The proof for α = 3 is trivial. In the following, we thus consider

α > 3.

For each variable x in Ψ = (X,C) and each i, 1 ≤ i ≤ α, consider the following clauses and

call them Di,x:

(xi ∨ y11,x ∨ y12,x . . . ∨ y1β−1,x),
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(xi ∨ y21,x ∨ y22,x . . . ∨ y2β−1,x),
...

(xi ∨ yα−3
1,x ∨ yα−3

2,x . . . ∨ yα−3
β−1,x).

Let T =
⋃

i,xDi,x. If Ψ has γ variables, then T has α(α − 3)γ clauses. Also, note that for

each x ∈ X and each 1 ≤ i ≤ α, the variable xi appears α− 3 times in T .

For each variable x ∈ X , the set T contains the following clauses:

(x1 ∨ y11,x ∨ y12,x . . . ∨ y1β−1,x),

(x2 ∨ y11,x ∨ y12,x . . . ∨ y1β−1,x),
...

(xα ∨ y11,x ∨ y12,x . . . ∨ y1β−1,x).

Therefore, if ℓ is a 2-IN-β truth assignment for T , then ℓ(x1) = ℓ(x2) = · · · = ℓ(xα) (Fact 2).

Consider α copies of Ψ = (X,C), and for each x ∈ X and i, 1 ≤ i ≤ α, in copy i, replace

all the x variables with xi. Call the resultant formula Ψ′. Next, consider the union of Ψ′ and the

set of clauses T , and call it φ. In T , xi appears α− 3 times and in Ψ′, it appears 3 times. Thus,

in total (in φ), Variable xi appears α times.

Now, we show that Ψ has a 2–IN–β truth assignment if and only if φ has a 2–IN–β truth

assignment. Let ℓ be a 2–IN–β truth assignment for φ. Define the assignment f for Ψ such

that f(x) = T or F if ℓ(x1) = T or F , respectively. It is easy to see that f is a 2–IN–β truth

assignment for Ψ. Now, assume that f is 2–IN–β truth assignment for Ψ. Define the assignment

ℓ for φ as following:

ℓ(v) =



















































f(x), if v = xi, x ∈ X, 1 ≤ i ≤ α

T, if v = yj1,x, 1 ≤ j ≤ α− 3, x ∈ X

T, if v = yj2,x, f(x) = F, 1 ≤ j ≤ α− 3, x ∈ X

F, if v = yj2,x, f(x) = T, 1 ≤ j ≤ α− 3, x ∈ X

F, Otherwise.

By Fact 2, it is easy to check that ℓ is a 2–IN–β truth assignment for φ.

Step 4. (Reduction of α–Monotone 2–IN–β SAT to Min-b-LETS) Let φ be an instance of

α–Monotone 2–IN–β SAT Problem. We first construct a bipartite graph G = (U ∪W,E) from

φ: For each variable x and each clause c in φ, we create a variable node x in U , and a check

node c in W , respectively. Next, if Variable x appears in Clause c of φ, we connect the variable

node x to the check node c in G. Clearly, the resultant graph is an (α, β)-regular Tanner graph.
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We use G as an input instance of Min-b-LETS Problem and select a =
2|W |

α
as the input size

of the LETS. Now, in what follows, we first show that if there is a (
2|W |

α
, b) LETS in G, then

we must have b = 0. Next, we show that there is a (
2|W |

α
, 0) LETS in G if and only if φ has

a 2–IN–β truth assignment. (We note that the existence of any polynomial-time algorithm that

provides an approximate solution to Min-b-LETS within any approximation factor can be used to

solve the problem exactly for the input a =
2|W |

α
, and thus, unless P = NP, such an algorithm

does not exist.)

In the following, we show that if G has a LETS S of size a =
2|W |

α
, then in the induced

subgraph G(S) of S in G, we have |Ne(S)| = |W | and |No(S)| = b = 0 (Fact 3). Let S be a

LETS of size a =
2|W |

α
in G. If we count the number of edges in G(S) from the U side of the

graph, we have

|E(G(S))| = a× dv =
2|W |

α
× α = 2|W | . (1)

On the other hand, by counting the number of edges in G(S) from the W side, we have

|E(G(S))| ≤ 2|N(S)| ≤ 2W , (2)

where the first inequality is due to the fact that in a LETS, check degrees are either one or two.

From (1) and (2), we obtain |N(S)| = |Ne(S)| = |W |, and |No(S)| = 0.

Now, we prove the “only if” part of the main claim. Assume that G has a (
2|W |

α
, 0) LETS

S. Define the truth assignment ℓ : X → {T, F}, such that ℓ(x) = T if x ∈ S, and ℓ(x) = F ,

otherwise. By Fact 3, every check node in G is connected to exactly two variable nodes in S

and thus every clause in φ has exactly two true literals. Assignment ℓ is thus a 2–IN–β truth

assignment for φ.

For the “if part” of the claim, assume that φ has a 2–IN–β truth assignment ℓ. Let S be a

subset of U containing all the variables nodes for which ℓ(x) = T . Since ℓ is a 2–IN–β truth

assignment for φ, we have N(S) = Ne(S) = W , and each check node in Ne(S) has degree

two. This means S is a LETS with b = 0. Now, by counting the number of edges form the two

sides of G(S), we have a =
2|W |

α
. Hence, G(S) is a (

2|W |

α
, 0) LETS in G.

Theorem 2. Min-a-LETS is NP-hard to approximate within any approximation factor.

Proof. To prove the result, we reduce Cubic Monotone 1–IN–3 SAT Problem to a decision

problem corresponding to Min-a-LETS Problem.
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Let Φ = (X,C) be an instance of Cubic Monotone 1–IN–3 SAT Problem. It is easy to see

that |X| = |C|. Throughout the proof, we use η to denote |X|. First, we construct a Tanner

graph G = (U ∪W,E) from the formula Φ: For each variable x ∈ X , we create two variable

nodes x1 and x2 in U . For each clause c ∈ C, we create a copy of the gadget Dc,2η+1 shown

in Fig. 2. (In Fig. 2, circles and squares represent variable and check nodes, respectively.) Next,

for each clause c ∈ C, if variable x appears in c, then we connect the variable nodes x1 and x2

to the check nodes w1
c and w2

c of the gadget Dc,2η+1, respectively. (See Fig. 3 for an example

of the Tanner graph G constructed from a cubic monotone formula with three variables in each

clause.)

c
1y

2
z

y
ycy

c
z-1

g

g

c

c

c

1

wwc
1

c
2

gc
2 3

Fig. 2. Gadget Dc,z .

Note that Tanner graph G has 5η variable nodes and η(2η + 3) check nodes. We use G as

the input instance of Min-a-LETS Problem and select b = η(2η + 1) as the input value of b.

Now, in the following, we first show that if G has an (a, η(2η + 1)) LETS, then, we must have

a = η+2η/3 (Fact 10). Next, we prove that G has a (η+2η/3, η(2η+1)) LETS if and only if

Φ has a 1–IN–3 truth assignment. (Any polynomial-time algorithm that can solve Min-a-LETS

approximately within any approximation factor, can also provide an exact solution to the problem

for the input b = η(2η + 1). Such an algorithm thus cannot exist, unless P = NP.)

The followings are some properties of LETSs in G:

• Fact 4 Consider a LETS S in G. Then, for each c ∈ C, since the neighbors of the nodes

y1c , y
2
c , . . . , y

2η+1
c are the same, we have {y1c , y

2
c , . . . , y

2η+1
c } ⊂ No(S) or {y1c , y

2
c , . . . , y

2η+1
c } ⊂

Ne(S) or none of the nodes y1c , y
2
c , . . . , y

2η+1
c is in N(S).
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x1

2

/

x1x1
//

x
//

2x
/

2x

Fig. 3. Tanner graph G corresponding to the formula (x ∨ x
′
∨ x

′′) ∧ (x ∨ x
′
∨ x

′′) ∧ (x ∨ x
′
∨ x

′′).

• Fact 5 For a LETS S in G, if {y1c , y
2
c , . . . , y

2η+1
c } ⊂ No(S), then g1c ∈ S, g2c /∈ S and

g3c /∈ S.

• Fact 6 Consider a LETS S in G with b = η(2η + 1) = 2η2 + η. Then, for every c ∈ C,

{y1c , y
2
c , . . . , y

2η+1
c } ⊂ No(S). (Otherwise, b is at most η(2η + 3)− (2η + 1) = 2η2 + η − 1,

which is a contradiction.)

• Fact 7 For a LETS S in G with b = η(2η + 1), for each c ∈ C, we have g1c ∈ S, g2c /∈ S

and g3c /∈ S. (Follows from Facts 5 and 6.)

• Fact 8 For a LETS S in G with b = η(2η+1), by Facts 6 and 7, for each c ∈ C, w1
c ∈ Ne(S)

and w2
c ∈ Ne(S). Thus, for each c ∈ C, the check node w1

c has exactly one neighbor in the

set {x1 : x ∈ X}.

• Fact 9 Similar to Fact 8, for a LETS S in G with b = η(2η+1), for each c ∈ C, the check

node w2
c has exactly one neighbor in the set {x2 : x ∈ X}.

• Fact 10 For an (a, b) LETS S in G with b = η(2η+1), we must have a = η+2η/3. (This

follows from Facts 7–9 and that the degree of each variable node in {x1, x2 : x ∈ X} is
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three.)

Now, we prove that G has an (η+2η/3, η(2η+1)) LETS if and only if Φ has a 1–IN–3 truth

assignment. Assume that G has an (η + 2η/3, η(2η + 1)) LETS S. Define the truth assignment

ℓ : X → {T, F}, such that for each x ∈ X , ℓ(x) = T , if x1 ∈ S, and ℓ(x) = F , otherwise. By

Fact 8, ℓ is a 1–IN–3 truth assignment for Φ. Next, assume that the formula Φ has a 1–IN–3 truth

assignment ℓ. Consider variables x ∈ X with truth value T , and include their corresponding x1

and x2 variable nodes in S. Also, for each c ∈ C, include g1c in S. It is then easy to see that S

is an (η + 2η/3, η(2η + 1)) LETS in G.

IV. COMPUTATIONAL COMPLEXITY OF FINDING EABSS

Theorem 3. For any integers α and β satisfying 3 ≤ α ≤ β, Min-b-EABS is NP-hard to

approximate within any approximation factor.

Proof. Similar to Step 4 of the proof of Theorem 1, we reduce α–Monotone 2–IN–β SAT Problem

to Min-b-EABS Problem. The construction of the Tanner graph G is identical. In Step 4 of the

proof of Theorem 1, we proved that if there is a (
2|W |

α
, b) LETS in G, then b = 0, and also that

there is a (
2|W |

α
, 0) LETS in G if and only if the formula φ has a 2–IN–β truth assignment.

Similarly, it can be proved that if there is a (
2|W |

α
, b) EABS in G, then b = 0. Moreover,

considering that in a variable-regular Tanner graph, LETSs with b = 0 are identical to EABSs

with b = 0, we conclude that the necessary and sufficient condition for G to have a (
2|W |

α
, 0)

EABS is that the formula φ has a 2–IN–β truth assignment.

Theorem 4. Min-a-EABS is NP-hard to approximate within any approximation factor.

Proof. We reduce Cubic Monotone 1–IN–3 SAT Problem to a decision problem corresponding

to Min-a-EABS Problem.

Let Φ = (X,C) be an instance of Cubic Monotone 1–IN–3 SAT Problem, where η = |X| =

|C|. In the following, we construct a Tanner graph G = (U ∪W,E) from Φ. For each variable

x ∈ X , we create two variable nodes x1 and x2 in U . For each clause c ∈ C, we create a copy

Fc,2η+1 of the gadget shown in Fig. 4. For every clause c ∈ C, and for every variable x ∈ X that

appears in c, we connect variable nodes x1 and x2 to the check nodes w1
c and w2

c , respectively.

Note that Tanner graph G has 7η variable nodes and η(4η + 4) check nodes. We use G as

the input instance of Min-a-EABS Problem and select b = η(2η + 1) as the input value of b.
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Fig. 4. Gadget Fc,z.

Now, in what follows, we first show that if G has an (a, η(2η + 1)) EABS, then we must have

a = 2η + 2η/3 (Fact 18). Next, we prove that G has a (2η + 2η/3, η(2η + 1)) EABS if and

only if Φ has a 1–IN–3 truth assignment. (Again, the fact that any approximate polynomial-time

algorithm can find the exact solution to Min-a-EABS for G and the input b = η(2η+1) implies

that the problem is NP-hard to approximate.)

In the following, we study some properties of EABSs in G:

• Fact 11 Consider an EABS S in G. For each c ∈ C, we have either {y1c , y
2
c , . . . , y

2η+1
c } ⊂

No(S) or {y1c , y
2
c , . . . , y

2η+1
c } ⊂ Ne(S) or none of the nodes y1c , y

2
c , . . . , y

2η+1
c is in N(S).

Similarly, for each c ∈ C, we have {s1c , s
2
c , . . . , s

2η+1
c } ⊂ No(S) or {s1c , s

2
c , . . . , s

2η+1
c } ⊂

Ne(S) or none of the nodes s1c , s
2
c , . . . , s

2η+1
c is in N(S).

• Fact 12 For an EABS S in G, if {y1c , y
2
c , . . . , y

2η+1
c } ⊂ No(S), then g1c ∈ S, g2c /∈ S and

g3c /∈ S. Similarly, if {s1c , s
2
c , . . . , s

2η+1
c } ⊂ No(S), then g1c ∈ S, g4c /∈ S and g5c /∈ S.

• Fact 13 For an EABS S in G, if {y1c , y
2
c , . . . , y

2η+1
c } ⊂ No(S), then {s1c , s

2
c , . . . , s

2η+1
c } ⊂

Ne(S). (Otherwise variable node g1c is connected to more nodes in No(S) than in Ne(S),

which is in contradiction with the definition of absorbing sets.) Similarly, if {s1c , s
2
c , . . . , s

2η+1
c } ⊂

No(S), then {y1c , y
2
c , . . . , y

2η+1
c } ⊂ Ne(S).

• Fact 14 Consider an EABS S in G with b = η(2η + 1) = 2η2 + η. For each c ∈ C,

{y1c , y
2
c , . . . , y

2η+1
c } ⊂ No(S) or {s1c , s

2
c , . . . , s

2η+1
c } ⊂ No(S). (Otherwise, by Fact 13, b can

be at most 2η2 + η − 1.)

• Fact 15 Consider an EABS S in G with b = η(2η + 1). For each c ∈ C, g1c ∈ S, and
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exactly one of the variable nodes g2c , g3c , g4c , or g5c is also in S. (Follows from Facts 13 and

14.)

• Fact 16 For an EABS S in G with b = η(2η + 1), for each c ∈ C, w1
c , w

2
c ∈ Ne(S). (By

Facts 14 and 15, and the definition of absorbing sets.)

• Fact 17 For an EABS S in G with b = η(2η + 1), for each c ∈ C, the check node w1
c has

exactly one neighbor in the set {x1 : x ∈ X}. Similarly, for each c ∈ C, the check node

w2
c has exactly one neighbor in the set {x2 : x ∈ X}.

• Fact 18 For an (a, b) EABS S in G with b = η(2η+ 1), we have a = 2η + 2η/3. (Follows

from Facts 15–17, and that the degree of each variable node in {x1, x2 : x ∈ X} is three.)

Now, we prove that G has an (η+2η/3, η(2η+1)) EABS if and only if Φ has a 1–IN–3 truth

assignment. Assume that G has a (2η + 2η/3, η(2η+ 1)) EABS S. Define the truth assignment

ℓ such that for each x ∈ X , ℓ(x) = T if x1 ∈ S, and ℓ(x) = F , otherwise. By Fact 17, ℓ is

a 1–IN–3 truth assignment for Φ. Conversely, assume that Φ has a 1–IN–3 truth assignment ℓ.

Let S be a subset of U such that for each x ∈ X , we have x1, x2 ∈ S if and only if ℓ(x) = T .

Also, for each c ∈ C, add g1c and g2c to S. It is easy to see that S is a (2η + 2η/3, η(2η + 1))

EABS in G.

V. CONCLUSION

In this paper, we discussed the computational complexity of finding leafless elementary trap-

ping sets (LETSs) and elementary absorbing sets (EABSs) of LDPC codes, and proved that

such problems are NP-hard to even approximate within any approximation factor. This, under

the assumption of P 6= NP, implies that there does not exist any polynomial-time algorithm

to find such structures (of even the smallest size). The hardness results proved in this paper

for LETSs and EABSs are stronger than similar results proved in [21] for trapping sets and

ETSs, in the sense that, while the results of [21] indicate that there is no polynomial-time ǫ-

approximation algorithm, for any constant ǫ, to solve the TS and ETS problems, our results

imply that no polynomial-time approximation algorithm exists to solve the LETS and EABS

problems no matter how fast the approximation factor of the algorithms scales with the size of

the problem.

We also note that the intermediate results obtained in this work on NP-hardness of Monotone

2–IN–β SAT, Cubic Monotone 2-IN-β SAT, and α–Monotone 2–IN–β SAT Problems may be
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useful in the study of the hardness of other problems which are of interest in Computer Science

or Coding.
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