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The Subfield Codes of Ovoid Codes

Cunsheng Ding, Ziling Heng

Abstract

Ovoids in PG(3,GF(q)) have been an interesting topic in coding theory, combinatorics, and finite geometry

for a long time. So far only two families of ovoids are known. The first is the elliptic quadratics and the second is

the Tits ovoids. It is known that an ovoid in PG(3,GF(q)) corresponds to a [q2 + 1, 4, q2 − q] code over GF(q),
which is called an ovoid code. The objectives of this paper is to study the subfield codes of the two families of

ovoid codes. The dimensions, minimum weights, and the weight distributions of the subfield codes of the elliptic

quadric codes and Tits ovoid codes are settled. The parameters of the duals of these subfield codes are also studied.

Some of the codes presented in this paper are optimal, and some are distance-optimal. The parameters of the

subfield codes are new.

Index Terms

Elliptic quadric, linear code, weight distribution, ovoid

I. INTRODUCTION

Let q be a prime power. Let n, k, d be positive integers. An [n, k, d] code C over GF(q) is a k-

dimensional subspace of GF(q)n with minimum (Hamming) distance d. Let Ai denote the number of

codewords with Hamming weight i in a code C of length n. The weight enumerator of C is defined by

1+A1z+A2z
2+· · ·+Anz

n. The sequence (1, A1, A2, · · · , An) is called the weight distribution of the code

C. A code C is said to be a t-weight code if the number of nonzero Ai in the sequence (A1, A2, · · · , An)
is equal to t. An [n, k, d] code over GF(q) is called distance-optimal if there is no [n, k, d + 1] code

over GF(q), and dimension-optimal if there is no [n, k + 1, d] code over GF(q). A code is said to be

optimal if it is both distance-optimal and dimension-optimal.

A cap in the projective space PG(3,GF(q)) is a set of points in PG(3,GF(q)) such that no three of

them are collinear. Let q > 2. For any cap V in PG(3,GF(q)), we have |V| ≤ q2 + 1 (see [4], [16] and

[15] for details). In the projective space PG(3,GF(q)) with q > 2, an ovoid V is a set of q2 + 1 points

such that no three of them are collinear (i.e., on the same line). In other words, an ovoid is a (q2+1)-cap

(a cap with q2 + 1 points) in PG(3,GF(q)), and thus a maximum cap.

A classical ovoid V can be defined as the following set of points:

V = {(0, 0, 1, 0)} ∪ {(x, y, x2 + xy + ay2, 1) : x, y ∈ GF(q)}, (1)

where a ∈ GF(q) is such that the polynomial x2 + x+ a has no root in GF(q). Such ovoid is called an

elliptic quadric, as the points come from a non-degenerate elliptic quadratic form.

For q = 22e+1 with e ≥ 1, there is an ovoid which is not an elliptic quadric, and is called the Tits oviod

[17]. It is defined by

T = {(0, 0, 1, 0)} ∪ {(x, y, xσ + xy + yσ+2, 1) : x, y ∈ GF(q)}, (2)

where σ = 2e+1.

For odd q, any ovoid is an elliptic quadric (see [1] and [13]). For even q, Tits ovoids are the only

known ones which are not elliptic quadratics. In the case that q is even, the elliptic quadrics and the Tits

ovoid are not equivalent [18]. For further information about ovoids, the reader is referred to [14].
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Let S be a subset of PG(3,GF(q)) with q2 + 1 elements, where q > 2. Denote by

S = {s1, s2, · · · , sq2+1}
where each si is a column vector in GF(q)4. Let CS be the linear code over GF(q) with generator matrix

GS = [s1s2 · · · sq2+1] . (3)

The following result is known (see [2, p. 192] or [9]).

Theorem 1.1: The set S is an ovoid if and only if CS has parameters [q2 + 1, 4, q2 − q].
Due to Theorem 1.1, any [q2 + 1, 4, q2 − q] code over GF(q) is called an ovoid code. Ovoid codes are

optimal, as they meet the Griesmer bound. It is also known that any [q2 + 1, 4, q2 − q] code over GF(q)
must have the following weight enumerator [2, p. 192]:

1 + (q2 − q)(q2 + 1)zq
2−q + (q − 1)(q2 + 1)zq

2

. (4)

It then follows that a linear code over GF(q) has parameters [q2 + 1, 4, q2 − q] if and only if its dual has

parameters [q2 + 1, q2 − 3, 4]. Ovoid codes and their duals are interesting due to the following:

• Ovoid codes meet the Griesmer bound and are thus optimal.

• The duals of ovoid codes are almost-MDS.

• Ovoid codes and their duals can be employed to construct 3-designs and inversive planes [9].

• Ovoid codes are also the maximum minimum distance (MMD) codes [10].

Let q = pm, where p is a prime. Any linear code of length n over GF(q) gives a subfield code of

length n over GF(p) (see Section II). The objective of this paper is to determine the parameters of the

subfield codes of the elliptic quadric codes and Tits ovoid codes and their duals. In particular, the weight

distributions of the subfield codes of the elliptic quadric codes and Tits ovoid codes are determined. As

will be seen later, some of these codes are optimal. In particular, the duals of the subfield codes of these

ovoid codes are distance-optimal. The parameters of the subfield codes presented in this paper are new.

The optimality and distance optimality of these codes are the motivation of this paper.

II. SUBFIELD CODES AND THEIR PROPERTIES

A. Definition and basic properties

Let GF(qm) be a finite field with qm elements, where q is a power of a prime and m is a positive integer.

In this section, we introduce subfield codes of linear codes and prove some basic results of subfield codes.

Given an [n, k] code C over GF(qm), we construct a new [n, k′] code C(q) over GF(q) as follows. Let G
be a generator matrix of C. Take a basis of GF(qm) over GF(q). Represent each entry of G as an m× 1
column vector of GF(q)m with respect to this basis, and replace each entry of G with the corresponding

m × 1 column vector of GF(q)m. In this way, G is modified into a km × n matrix over GF(q), which

generates the new subfield code C(q) over GF(q) with length n. By definition, the dimension k′ of C(q)

satisfies k′ ≤ mk. We will prove that the subfield code C(q) of C is independent of the choices of both G
and the basis of GF(qm) over GF(q). We first prove the following.

Theorem 2.1: For any linear code C over GF(qm), the subfield code C(q) is independent of the choice

of the basis of GF(qm) over GF(q) for any fixed generator matrix G.

Proof Let C be an [n, k] linear code over GF(qm). Let

G =









G1

G2
...

Gk
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be a generator matrix of C, where each Gi is a 1×n vector in GF(qm)n. Choose a basis of GF(qm) over

GF(q) and expand each element in Gi, 1 ≤ i ≤ k, under this basis as a column vector over GF(q). Then

each Gi is expanded as an m× n matrix G
(q)
i over GF(q). Put

G(q) =











G
(q)
1

G
(q)
2
...

G
(q)
k











.

Then G(q) is a generator matrix of the subfield code C(q) of C. Let α = {α1, α2, · · · , αm} and β =
{β1, β2, · · · , βm} be any two bases of GF(qm) over GF(q). Suppose that

(α1, α2, · · · , αm) = (β1, β2, · · · , βm)T
where T is an m×m invertible matrix over GF(q). Denote the corresponding subfield codes of C under

the two bases α and β as C(q)
α and C(q)

β , respectively. The the generator matrix G
(q)
α of C(q)

α and the generator

matrix G
(q)
β of C(q)

β satisfy

G(q)
α =









T
T

. . .

T









G
(q)
β .

Hence, C(q)
α and C(q)

β are the same subspace as T is invertible. Then the desired conclusion follows.

We will prove that the subfield code C(q) is also independent of the choice of the generator matrix G.

To proceed in this direction, we give a trace representation of the subfield code. The following lemma is

well-known [12] and needed later.

Lemma 2.2: Let {α1, α2, · · · , αm} be a basis of GF(qm) over GF(q). Then there exists a unique basis

{β1, β2, · · · , βm} such that for 1 ≤ i, j ≤ m,

Trqm/q(αiβj) =

{

0 for i 6= j,
1 for i = j,

i.e. the dual basis.

Lemma 2.2 directly yields the following.

Lemma 2.3: Let {α1, α2, · · · , αm} be a basis and {β1, β2, · · · , βm} be its dual basis of GF(qm) over

GF(q). For any a =
∑m

i=1 aiαi ∈ GF(qm) where each ai ∈ Fq, we then have

ai = Trqm/q(aβi).

Theorem 2.4: Let C be an [n, k] linear code over GF(qm) with generator matrix

G =









g11 g12 · · · g1n
g21 g22 · · · g2n
...

...
. . .

...

gk1 gk2 · · · gkn









.

Let {α1, α2, · · · , αm} be a basis of GF(qm) over GF(q). Then the subfield code C(q) of C has a generator

matrix

G(q) =











G
(q)
1

G
(q)
2
...

G
(q)
k
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where each

G
(q)
i =









Trqm/q(gi1α1) Trqm/q(gi2α1) · · · Trqm/q(ginα1)
Trqm/q(gi1α2) Trqm/q(gi2α2) · · · Trqm/q(ginα2)

...
...

. . .
...

Trqm/q(gi1αm) Trqm/q(gi2αm) · · · Trqm/q(ginαm)









.

Proof The desired conclusion follows from Lemma 2.3.

With the help of Theorem 2.4, the trace representation of subfield codes is given in the next theorem.

Theorem 2.5: Let C be an [n, k] linear code over GF(qm). Let G = [gij ]1≤i≤k,1≤j≤n be a generator

matrix of C. Then the trace representation of C(q) is given by

C(q) =

{(

Trqm/q

(

k
∑

i=1

aigi1

)

, · · · ,Trqm/q

(

k
∑

i=1

aigin

))

: a1, . . . , ak ∈ GF(qm)

}

.

Proof We denote c = (c1, c2, . . . , cn) = xG(q) ∈ C(q) for any

x = (x11, . . . , x1m, . . . , xk1, . . . , xkm) ∈ GF(q)km.

Then by Theorem 2.4,

ch =
k
∑

i=1

m
∑

j=1

Trqm/q(gihxijαj) =
k
∑

i=1

Trqm/q

(

gih

m
∑

j=1

xijαj

)

, 1 ≤ h ≤ n,

where {α1, α2, · · · , αm} is a basis of GF(qm) over GF(q). Note that

GF(qm) =

{

m
∑

j=1

xijαj : (xi1, xi2, . . . , xim) ∈ GF(q)m

}

with any fixed 1 ≤ i ≤ k. Then the desired conclusion follows.

We are now ready to prove the following conclusion.

Theorem 2.6: The subfield code C(q) of C over GF(qm) is also independent of the choice of the generator

matrix G.

Proof Let G and G′ be two generator matrices of an [n, k] code C over GF(qm). Then there exists a

k × k invertible matrix T over GF(qm) such that G′ = TG. Let C(q)
G and C(q)

G′ denote the subfield codes

with respect to the generator matrices G and G′, respectively. For any (a′1, a
′
2, · · · , a′k) ∈ GF(qm)k, define

(a1, a2, · · · , ak) = (a′1, a
′
2, · · · , a′k)T.

Note that T is invertible. When (a′1, a
′
2, · · · , a′k) runs over GF(qm)k, so does (a1, a2, · · · , ak). It then

follows from Theorem 2.5 that

C(q)
G′ =

{(

Trqm/q

(

k
∑

i=1

a′ig
′
i1

)

, · · · ,Trqm/q

(

k
∑

i=1

a′ig
′
in

))

: a′1, . . . , a
′
k ∈ GF(qm)

}

=

{(

Trqm/q

(

k
∑

i=1

aigi1

)

, · · · ,Trqm/q

(

k
∑

i=1

aigin

))

: a1, . . . , ak ∈ GF(qm)

}

= C(q)
G .

This completes the proof.

Summarizing Theorems 2.5 and 2.6, we conclude that the subfield code C(q) over GF(q) of a linear

code C over GF(qm) is independent of the choices of both G and the basis of GF(qm) over GF(q). So

is the dual code C(q)⊥.
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B. Relations among C, C⊥, C⊥(q) and C(q)⊥

Denote by C⊥ and C(q)⊥ the dual codes of C and its subfield code C(q), respectively. Let C⊥(q) denote

the subfield code of C⊥. Since the dimensions of C⊥(q) and C(q)⊥ vary from case to case, there may not

be a general relation between the two codes C⊥(q) and C(q)⊥.

A relationship between the minimal distance of C⊥ and that of C(q)⊥ is given as follows.

Theorem 2.7: Let C be an [n, k] linear code over GF(qm). Then the minimal distance d⊥ of C⊥ and

the minimal distance d(q)⊥ of C(q)⊥ satisfy

d(q)⊥ ≥ d⊥.

Proof Let G = [gij ]1≤i≤k,1≤j≤n be a generator matrix of C. Let G(q) be a generator matrix of C(q)

given in Theorem 2.4. Then G(q) is also a parity-check matrix of C(q)⊥. This implies that there exist

b1, b2, . . . , bd(q)⊥ ∈ GF(q)∗ and integers 1 ≤ j1 < j2 < · · · < jd(q)⊥ ≤ n such that

d(q)⊥
∑

h=1

bhTrqm/q(gijhαl) = Trqm/q





d(q)⊥
∑

h=1

bhgijhαl



 = 0

for all 1 ≤ i ≤ k and 1 ≤ l ≤ m, where {α1, α2, · · · , αm} is a basis of GF(qm) over GF(q). Hence

m
∑

l=1

Trqm/q





d(q)⊥
∑

h=1

bhgijh(ulαl)



 = Trqm/q









d(q)⊥
∑

h=1

bhgijh





m
∑

l=1

ulαl



 = 0

for all 1 ≤ i ≤ k and ul ∈ GF(q), 1 ≤ l ≤ m. Consequently,

d(q)⊥
∑

h=1

bhgijh = 0

for all 1 ≤ i ≤ k. Thus there exists a codeword with Hamming weight d(q)⊥ in C⊥. Then the desired

conclusion follows.

C. Equivalence of subfield codes

Two linear codes C1 and C2 are permutation equivalent if there is a permutation of coordinates which

sends C1 to C2. If C1 and C2 are permutation equivalent, so are C⊥
1 and C⊥

2 . Two permutation equivalent

linear codes have the same dimension and weight distribution.

A monomial matrix over a field F is a square matrix having exactly one nonzero element of F in each

row and column. A monomial matrix M can be written either in the form DP or the form PD1, where

D and D1 are diagonal matrices and P is a permutation matrix.

Let C1 and C2 be two linear codes of the same length over F. Then C1 and C2 are monomially equivalent

if there is a nomomial matrix over F such that C2 = C1M . Monomial equivalence and permutation

equivalence are precisely the same for binary codes. If C1 and C2 are monomially equivalent, then they

have the same weight distribution.

Let C and C′ be two monomially equivalent [n, k] code over GF(qm). Let G = [gij] and G = [g′ij]
be two generator matrices of C and C′, respectively. By definition, there exist a permutation σ of the set

{1, 2, · · · , n} and elements b1, b2, · · · , bn in GF(qm)∗ such that

gij = bjg
′
iσ(j)

for all 1 ≤ i ≤ k and 1 ≤ j ≤ n. It then follows that
(

Trqm/q

(

k
∑

i=1

aigi1

)

, · · · ,Trqm/q

(

k
∑

i=1

aigin

))
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=

(

Trqm/q

(

b1

(

k
∑

i=1

aig
′
iσ(1)

))

, · · · ,Trqm/q

(

bn

(

k
∑

i=1

aigin

)))

.

Then the following conclusions follow from Theorem 2.5:

• If C and C′ are permutation equivalent, so are C(q) and C′(q).
• If all bi ∈ GF(q)∗, then C(q) and C′(q) are monomially equivalent.

However, C(q) and C′(q) may not be monomially equivalent even if C and C′ are monomially equivalent.

D. Historical information and remarks

The subfield subcode C|GF(q) of an [n, k] code over GF(qm) is the set of codewords in C each of whose

components is in C. Hence, the dimension of the subfield subcode C|GF(q) is at most k. Thus, the subfield

code over GF(q) and subfield subcode over GF(q) of a linear code over GF(qm) are different codes in

general. Subfield codes were considered in [7] and [6] without using the name “subfield codes”. Subfield

codes were defined formally in [5, p. 5117] and a Magma function for subfield codes is implemented

in the Magma package. The reader is warned that the subfield codes referred in [2] and [3] are actually

subfied subcodes. These lead to a confusion. In view of the impact of the Magma computation system,

we wish to follow the Magma definition of subfield codes.

While subfield subcodes have been well studied due to the Delsarte theorem [8], little has been done

for subfield codes of linear codes over finite fields. The subfield codes of several families of linear codes

were considered and distance-optimal codes were constructed in [7] and [6]. In these two references, the

basic idea is to consider the subfield code of a linear code over GF(qm) with good parameters and expect

the subfield code over GF(q) to have also good parameters. In this paper, we follow the same idea, and

consider the subfield codes of ovoid codes which are optimal with respect to the Griesmer bound.

III. AUXILIARY RESULTS

In this section, we recall characters and some character sums over finite fields which will be needed

in later sections.

Let p be a prime and q = pm. Let GF(q) be the finite field with q elements and α a primitive element

of GF(q). Let Trq/p denote the trace function from GF(q) to GF(p) given by

Trq/p(x) =
m−1
∑

i=0

xp
i

, x ∈ GF(q).

Denote ζp as the primitive p-th root of complex unity.

An additive character of GF(q) is a function χ : (GF(q),+) → C∗ such that

χ(x+ y) = χ(x)χ(y), x, y ∈ GF(q),

where C
∗ denotes the set of all nonzero complex numbers. For any a ∈ GF(q), the function

χa(x) = ζ
Trq/p(ax)
p , x ∈ GF(q),

defines an additive character of GF(q). In addition, {χa : a ∈ GF(q)} is a group consisting of all the

additive characters of GF(q). If a = 0, we have χ0(x) = 1 for all x ∈ GF(q) and χ0 is referred to as

the trivial additive character of GF(q). If a = 1, we call χ1 the canonical additive character of GF(q).
Clearly, χa(x) = χ1(ax). The orthogonality relation of additive characters is given by

∑

x∈GF(q)

χ1(ax) =

{

q for a = 0,
0 for a ∈ GF(q)∗.

Let GF(q)∗ = GF(q) \ {0}. A character ψ of the multiplicative group GF(q)∗ is a function from

GF(q)∗ to C∗ such that ψ(xy) = ψ(x)ψ(y) for all (x, y) ∈ GF(q)×GF(q). Define the multiplication of
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two characters ψ, ψ′ by (ψψ′)(x) = ψ(x)ψ′(x) for x ∈ GF(q)∗. All the characters of GF(q)∗ are given

by

ψj(α
k) = ζjkq−1 for k = 0, 1, · · · , q − 1,

where 0 ≤ j ≤ q − 2. Then all these ψj , 0 ≤ j ≤ q − 2, form a group under the multiplication

of characters and are called multiplicative characters of GF(q). In particular, ψ0 is called the trivial

multiplicative character and η := ψ(q−1)/2 is referred to as the quadratic multiplicative character of

GF(q).The orthogonality relation of multiplicative characters is given by

∑

x∈GF(q)∗

ψj(x) =

{

q − 1 for j = 0,
0 for j 6= 0.

For an additive character χ and a multiplicative character ψ of GF(q), the Gauss sum G(ψ, χ) over

GF(q) is defined by

G(ψ, χ) =
∑

x∈GF(q)∗

ψ(x)χ(x).

We call G(η, χ) the quadratic Gauss sum over GF(q) for nontrivial χ. The value of the quadratic Gauss

sum is known as follows.

Lemma 3.1: [12, Th. 5.15] Let q = pm with p odd. Let χ be the canonical additive character of GF(q).
Then

G(η, χ) = (−1)m−1(
√
−1)(

p−1
2

)2m√q

=

{

(−1)m−1√q for p ≡ 1 (mod 4),
(−1)m−1(

√
−1)m

√
q for p ≡ 3 (mod 4).

Let χ be a nontrivial character of GF(q) and let f ∈ GF(q)[x] be a polynomial of positive degree. The

character sums of the form
∑

c∈GF(q)

χ(f(c))

are referred to as Weil sums. The problem of evaluating such character sums explicitly is very difficult in

general. In certain special cases, Weil sums can be treated (see [12, Section 4 in Chapter 5]). If f is a

quadratic polynomial, the Weil sum has an interesting relationship with quadratic Gauss sums, which is

described in the following lemma.

Lemma 3.2: [12, Th. 5.33] Let χ be a nontrivial additive character of GF(q) with q odd, and let

f(x) = a2x
2 + a1x+ a0 ∈ GF(q)[x] with a2 6= 0. Then

∑

c∈GF(q)

χ(f(c)) = χ(a0 − a21(4a2)
−1)η(a2)G(η, χ).

IV. THE SUBFIELD CODES OF THE ELLIPTIC QUADRIC CODES

Let q = pm > 2 with p a prime. Let V be the elliptic quadric defined by

V = {(0, 0, 1, 0)} ∪ {(x, y, x2 + xy + ay2, 1) : x, y ∈ GF(q)},
where a ∈ GF(q) is such that the polynomial x2 + x+ a has no root in GF(q). Our task in this section

is to study the subfield code C(p)
V of the elliptic quadric code CV .

Let α be a primitive element of GF(q). Denote

f1(x, y) = x, f2(x, y) = y, f3(x, y) = x2 + xy + ay2
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and

Gx,y =









f1(x, y)
f2(x, y)
f3(x, y)

1









(x,y)∈GF(q)2

which is a 4× q2 matrix over GF(q). Let CV be the linear code over GF(q) with generator matrix

GV =









Gx,y

0
0
1
0









.

Combining the definition of GV and Theorem 2.5 yields the following trace representation of C(p)
V :

C(p)
V =

{

(

(

Trq/p(uf1(x, y) + vf2(x, y) + wf3(x, y)) + h
)

(x,y)∈GF(q)2
,Trq/p(w)

)

:
u, v, w ∈ GF(q)

h ∈ GF(p)

}

=

{

(

(

Trq/p(g(x, y)) + h
)

(x,y)∈GF(q)2
,Trq/p(w)

)

:
u, v, w ∈ GF(q)

h ∈ GF(p)

}

where g(x, y) := uf1(x, y) + vf2(x, y) + wf3(x, y)) = ux+ vy + wx2 + wxy + way2.

The weight distribution of C(p)
V will be settled separately in the following two cases.

A. The case p = 2

In the case that p = 2 and q = 2m > 2, the weight distribution of C(p)
V is documented in the following

theorem.

Theorem 4.1: Let p = 2 and m > 1. Then C(p)
V is a six-weight binary linear code with parameters

[22m + 1, 3m + 1, 22m−1 − 2m−1] and the weight distribution in Table I. Its dual C(p)⊥
V has parameters

[22m + 1, 22m − 3m, 4].

TABLE I

THE WEIGHT DISTRIBUTION OF C(p)
V FOR p = 2

Weight Multiplicity

0 1
22m 1

22m−1 2(22m − 1)
22m−1 − 2m−1 22m(2m−1 − 1)
22m−1 + 2m−1 22m(2m−1 − 1)

22m−1 − 2m−1 + 1 23m−1

22m−1 + 2m−1 + 1 23m−1

Proof Firstly, assume that (u, v, w) 6= (0, 0, 0). Denote

N0(u, v, w) = ♯{(x, y) ∈ GF(q)2 : Trq/p(g(x, y)) = 0}
and

N1(u, v, w) = ♯{(x, y) ∈ GF(q)2 : Trq/p(g(x, y)) = 1}.
By the orthogonality relation of additive characters, we have

2N0(u, v, w) =
∑

(x,y)∈GF(q)2

∑

z∈GF(2)

(−1)zTr(g(x,y))
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= q2 +
∑

(x,y)∈GF(q)2

(−1)Tr(g(x,y)). (5)

We discuss the value of N0(u, v, w) in the following cases.

1) If w = 0, we have g(x, y) = ux+ vy. Since (u, v) 6= (0, 0), we deduce that N0(u, v, w) = q2/2 =
22m−1.

2) If w 6= 0, we denote

∆ =
∑

(x,y)∈GF(q)2

(−1)Tr(g(x,y)).

Then

∆2 =





∑

(x,y)∈GF(q)2

(−1)Tr2m/2(−g(x,y))









∑

(x1,y1)∈GF(q)2

(−1)Tr2m/2(g(x1,y1))





=
∑

(x,y)∈GF(q)2

∑

(x1,y1)∈GF(q)2

(−1)Tr2m/2(g(x1,y1)−g(x,y))

=
∑

(x,y)∈GF(q)2

∑

(A,B)∈GF(q)2

(−1)Tr2m/2(g(x+A,y+B)−g(x,y))

= q2 −
∑

(A,B)∈GF(q)2\{(0,0)}

∑

(x,y)∈GF(q)2

(−1)Tr2m/2(g(x+A,y+B)−g(x,y))

= q2 −
∑

(A,B)∈GF(q)2\{(0,0)}

∑

(x,y)∈GF(q)2

(−1)Tr2m/2(uA+vB+wA2+waB2+wBx+wAy)

= q2 −
∑

(A,B)∈GF(q)2\{(0,0)}
(−1)Tr2m/2(uA+vB+wA2+waB2)

∑

x∈GF(q)

(−1)Tr2m/2(wBx)

×
∑

y∈GF(q)

(−1)Tr2m/2(wAy)

= q2,

where we used the variable substitution x1 = x + A, y1 = y + B in the third equality and the last

equality holds due to the orthogonality relation of additive characters. By Equation (5), ∆ is an

integer. Hence ∆ = ±q and Equation (5) implies

N0(u, v, w) = 22m−1 ± 2m−1.

Combining the two cases above yields

N0(u, v, w) =

{

22m−1 for w = 0,
22m−1 ± 2m−1 for w 6= 0,

where (u, v, w) 6= (0, 0, 0) and N1(u, v, w) = 22m −N0(u, v, w).

For any codeword c(u, v, w, h) :=
(

(

Tr2m/2(g(x, y)) + h
)

(x,y)∈GF(2m)2
,Tr2m/2(w)

)

∈ C(2)
V , by the

foregoing discussions we deduce that

wt(c(u, v, w, h)) =











































0 for (u, v, w, h) = (0, 0, 0, 0)
22m for (u, v, w, h) = (0, 0, 0, 1)
N1(u, v, w) for w = h = 0, (u, v) 6= (0, 0)
N0(u, v, w) for w = 0, h = 1, (u, v) 6= (0, 0)
N1(u, v, w) for h = 0, w 6= 0,Tr2m/2(w) = 0, (u, v) ∈ GF(q)2

N0(u, v, w) for h = 1, w 6= 0,Tr2m/2(w) = 0, (u, v) ∈ GF(q)2

N1(u, v, w) + 1 for h = 0, Tr2m/2(w) 6= 0, (u, v) ∈ GF(q)2

N0(u, v, w) + 1 for h = 1, Tr2m/2(w) 6= 0, (u, v) ∈ GF(q)2
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=



































0 with 1 time,
22m with 1 time,
22m−1 with 2(22m − 1) times,
22m−1 + 2m−1 with 22m(2m−1 − 1) times,
22m−1 − 2m−1 with 22m(2m−1 − 1) times,
22m−1 + 2m−1 + 1 with 23m−1 times,
22m−1 − 2m−1 + 1 with 23m−1 times,

where the frequency of each weight is very easy to derive. Since A0 = 1, the dimension of C(2)
V is 3m+1.

Note that C(2)⊥
V has length 22m + 1 and dimension 22m − 3m. It follows from Theorems 2.7 and 1.1

that the minimal distance d(2)⊥ of C(2)⊥
V satisfies d(2)⊥ ≥ 4. By the sphere-packing bound, we have

22
2m+1 ≥ 22

2m−3m











⌊

d(2)⊥−1
2

⌋

∑

i=0

(

22m + 1

i

)











,

which implies that d(2)⊥ ≤ 4, where ⌊x⌋ is the floor function. Thus d(2)⊥ = 4. Then the desired conclusions

follow.

By the proof of Theorem 4.1, the weight distribution of C(2)
V is independent of a. However, this will

not be true for C(p)
V for odd p.

B. The case p > 2

In the following, we investigate the weight distributions of C(p)
V for p > 2. We first present some lemmas

below.

Lemma 4.2: Let q be odd and η the quadratic multiplicative character of GF(q). Let x2 + x + a be

irreducible over GF(q). Then η(a− 4−1) = (−1)(q+1)/2.

Proof Let α be a primitive element of GF(q). It is easily seen that

η(−1) =

{

−1 for q ≡ 3 (mod 4),
1 for q ≡ 1 (mod 4).

For q ≡ 3 (mod 4), suppose that η(a − 4−1) = −1. Then a − 4−1 = α2j+1 for some 0 ≤ j ≤ q−3
2

.

The discriminant of x2 + x + a = 0 equals −α2j+1 which is a square in GF(q) as η(−1) = −1. This

contradicts with the fact that x2 + x+ a is irreducible. Hence, η(a− 4−1) = 1.

For q ≡ 1 (mod 4), suppose that η(a − 4−1) = 1. Then a − 4−1 = α2j for some 0 ≤ j ≤ q−3
2

. The

discriminant of x2 + x+ a = 0 equals −α2j which is a square in GF(q) as η(−1) = 1. This contradicts

with the fact that x2+x+a is irreducible. Hence, η(a−4−1) = −1. Then the desired conclusions follow.

Lemma 4.3: Let q be odd and η the quadratic multiplicative character of GF(q). Let x2 + x + a be

reducible over GF(q) and a 6= 4−1. Then η(a− 4−1) = (−1)(q−1)/2.

Proof Since x2+x+a is reducible over GF(q) and a 6= 4−1, we have a = 4−1−b2 for some b ∈ GF(q)∗.
Hence, η(a− 4−1) = η(−b2) = η(−1). Recall that

η(−1) =

{

−1 for q ≡ 3 (mod 4),
1 for q ≡ 1 (mod 4).

Then the desired conclusion follows.

Lemma 4.4: Let q = pm with p odd. Then (p−1
2
)2m+ q+1

2
is an odd integer.
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Proof Note that (p−1
2
)2m+ q+1

2
= p2m−2pm+2q+m+2

4
. Denote s = p2m − 2pm+ 2q +m+ 2. We discuss

the value of s in two cases.

1) Let p ≡ 1 (mod 4). Assume that p = 4t+ 1 for some positive integer t. Then

s = (4t + 1)2m− 2(4t+ 1)m+ 2(4t+ 1)m +m+ 2

= 16t2m+ 2(4t+ 1)m + 2

≡ 4 (mod 8).

2) Let p ≡ 3 (mod 4). Assume that p = 4t+ 3 for some nonnegative integer t. Then

s = (4t + 3)2m− 2(4t+ 3)m+ 2(4t+ 3)m +m+ 2

= 16t2m+ 16tm+ 2(4t+ 3)m + 4m+ 2

≡ 4 (mod 8).

Then the desired conclusion follows.

Lemma 4.5: Let q = pm with p odd. Then (p−1
2
)2m+ q−1

2
is an even integer.

Proof The proof is similar to that of Lemma 4.4 and is omitted.

The weight distributions of C(p)
V are given in three cases according to different choices of a as follows.

Theorem 4.6: Let p > 2, m > 1 and a ∈ GF(q) such that x2 + x+ a has no root in GF(q). Then C(p)
V

is a six-weight p-ary linear code with parameters [p2m + 1, 3m+ 1, p2m−1(p− 1)− pm−1] and the weight

distribution in Table II. Its dual C(p)⊥
V has parameters [p2m + 1, p2m − 3m, 4].

TABLE II

THE WEIGHT DISTRIBUTION OF C(p)
V FOR p > 2 AND IRREDUCIBLE x

2 + x+ a

Weight Multiplicity

0 1
p
2m

p− 1
p
2m−1(p− 1) p(p2m − 1)

(p2m−1 + p
m−1)(p− 1) p

2m(pm−1 − 1)
p
2m−1(p− 1)− p

m−1
p
2m(pm−1 − 1)(p− 1)

(p2m−1 + p
m−1)(p− 1) + 1 p

3m−1(p− 1)
p
2m−1(p− 1) − p

m−1 + 1 p
3m−1(p− 1)2

Proof Let χ be the canonical additive character of GF(q). Denote

N(u, v, w, h) = ♯{(x, y) ∈ GF(q)2 : Trq/p(g(x, y)) + h = 0}.
By the orthogonality relation of additive characters, we have

pN(u, v, w, h) =
∑

(x,y)∈GF(q)2

∑

z∈GF(p)

ζ
z(Trq/p(g(x,y))+h)
p

= q2 +
∑

z∈GF(p)∗

ζzhp
∑

(x,y)∈GF(q)2

χ(zg(x, y))

= q2 + Ω, (6)

where

Ω :=
∑

z∈GF(p)∗

ζzhp
∑

(x,y)∈GF(q)2

χ(zg(x, y)).
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Recall that g(x, y) = uf1(x, y) + vf2(x, y) + wf3(x, y)) = ux+ vy + wx2 + wxy + way2. Then we have

Ω =
∑

z∈GF(p)∗

ζzhp
∑

(x,y)∈GF(q)2

χ(z(ux+ vy + wx2 + wxy + way2))

=
∑

z∈GF(p)∗

ζzhp
∑

y∈GF(q)

χ(zway2 + zvy)
∑

x∈GF(q)

χ
(

zwx2 + (zu+ zwy)x
)

. (7)

If (u, v, w) 6= (0, 0, 0), we discuss the value of Ω in the following cases.

1) Assume that w 6= 0. Using Lemma 3.2, we get that
∑

x∈GF(q)

χ
(

zwx2 + (zu+ zwy)x
)

= χ
(

−(zu + zwy)2(4zw)−1
)

η(zw)G(η, χ)

= χ(−4−1zwy2 − 2−1uzy − z(4w)−1u2)η(zw)G(η, χ). (8)

Note that a − 4−1 6= 0 as x2 + x + a is irreducible over GF(q). Combining Equations (7) and (8)

yields that

Ω = G(η, χ)
∑

z∈GF(p)∗

ζzhp η(zw)
∑

y∈GF(q)

χ
(

(zwa− 4−1zw)y2 + (zv − 2−1uz)y − z(4w)−1u2
)

= G(η, χ)2
∑

z∈GF(p)∗

ζzhp η(zw)χ
(

−z(4w)−1u2 − (zv − 2−1uz)2(4zwa− zw)−1
)

×η(zwa− 4−1zw)

= G(η, χ)2
∑

z∈GF(p)∗

ζzhp η(zw)2χ
(

−z(4w)−1u2 − (zv − 2−1uz)2(4zwa− zw)−1
)

η(a− 4−1)

= G(η, χ)2η(a− 4−1)
∑

z∈GF(p)∗

ζzhp χ
(

−zw−1(4−1u2 + (v − 2−1u)2(4a− 1)−1)
)

=

{

G(η, χ)2η(a− 4−1)
∑

z∈GF(p)∗ ζ
zh
p for (u, v) = (0, 0)

G(η, χ)2η(a− 4−1)
∑

z∈GF(p)∗ ζ
zh
p χ(cz) for (u, v) 6= (0, 0)

=

{

(−1)(
p−1
2

)2m+ q+1
2 q
∑

z∈GF(p)∗ ζ
zh
p for (u, v) = (0, 0)

(−1)(
p−1
2

)2m+ q+1
2 q
∑

z∈GF(p)∗ ζ
zh
p χ(cz) for (u, v) 6= (0, 0)

=

{ −q
∑

z∈GF(p)∗ ζ
zh
p for (u, v) = (0, 0),

−q
∑

z∈GF(p)∗ ζ
zh
p χ(cz) for (u, v) 6= (0, 0),

where c := −w−1(4−1u2+(v−2−1u)2(4a−1)−1) for (u, v) 6= (0, 0), the second equality holds due

to Lemma 3.2 and the last two equalities hold by Lemmas 3.1, 4.2 and 4.4. Then we further have

Ω =



















−q(p− 1) for (u, v) = (0, 0), h = 0
q for (u, v) = (0, 0), h 6= 0

−q
∑

z∈GF(p)∗ ζ
Trq/p(c)z
p for (u, v) 6= (0, 0), h = 0

−q
∑

z∈GF(p)∗ ζ
(h+Trq/p(c))z
p for (u, v) 6= (0, 0), h 6= 0

=



























−q(p− 1) for (u, v) = (0, 0), h = 0
q for (u, v) = (0, 0), h 6= 0
−q(p− 1) for (u, v) 6= (0, 0), h = 0, Trq/p(c) = 0
q for (u, v) 6= (0, 0), h = 0, Trq/p(c) 6= 0
−q(p− 1) for (u, v) 6= (0, 0), h 6= 0, h+ Trq/p(c) = 0
q for (u, v) 6= (0, 0), h 6= 0, h+ Trq/p(c) 6= 0
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=











−q(p− 1)
for (u, v) = (0, 0), h = 0 or

(u, v) 6= (0, 0), h+ Trq/p(c) = 0,

q
for (u, v) = (0, 0), h 6= 0 or

(u, v) 6= (0, 0), h+ Trq/p(c) 6= 0,

when (u, v, w, h) runs through GF(q)×GF(q)×GF(q)∗ ×GF(p).
2) Assume that w = 0 and (u, v) 6= (0, 0). Then Equation (7) implies

Ω =
∑

z∈GF(p)∗

ζzhp
∑

(x,y)∈GF(q)2

χ(z(ux+ vy))

=
∑

z∈GF(p)∗

ζzhp
∑

x∈GF(q)2

χ(zux)
∑

x∈GF(q)2

χ(zvy)

= 0

as (u, v) 6= (0, 0).

By Equation (6) and the discussions above, we deduce that

N(u, v, w, h) =



































p2m for (u, v, w, h) = (0, 0, 0, 0),
0 for (u, v, w) = (0, 0, 0, 0), h 6= 0,
p2m−1 for (u, v) 6= (0, 0) and w = 0,

p2m−1 − pm−1(p− 1)
for (u, v) = (0, 0), h = 0, w 6= 0 or

(u, v) 6= (0, 0), h+ Trq/p(c) = 0, w 6= 0,

p2m−1 + pm−1 for (u, v) = (0, 0), h 6= 0, w 6= 0 or
(u, v) 6= (0, 0), h+ Trq/p(c) 6= 0, w 6= 0,

where c ∈ GF(q)∗ is defined as above.

For any codeword

c(u, v, w, h) :=
(

(

Trpm/p(g(x, y)) + h
)

(x,y)∈GF(pm)2
,Trpm/p(w)

)

∈ C(p)
V ,

by the discussions above we deduce that

wt(c(u, v, w, h))

=



































































0 for (u, v, w, h) = (0, 0, 0, 0)
p2m for (u, v, w) = (0, 0, 0, 0), h 6= 0
p2m−1(p− 1) for (u, v) 6= (0, 0) and w = 0

(p2m−1 + pm−1)(p− 1)
for (u, v) = (0, 0), h = 0, w 6= 0, Trpm/p(w) = 0 or

(u, v) 6= (0, 0), h+ Trq/p(c) = 0, w 6= 0, Trpm/p(w) = 0

p2m−1(p− 1)− pm−1 for (u, v) = (0, 0), h 6= 0, w 6= 0, Trpm/p(w) = 0 or

(u, v) 6= (0, 0), h+ Trq/p(c) 6= 0, w 6= 0, Trpm/p(w) = 0

(p2m−1 + pm−1)(p− 1) + 1
for (u, v) = (0, 0), h = 0, Trpm/p(w) 6= 0 or

(u, v) 6= (0, 0), h+ Trq/p(c) = 0, Trpm/p(w) 6= 0

p2m−1(p− 1)− pm−1 + 1
for (u, v) = (0, 0), h 6= 0, Trpm/p(w) 6= 0 or

(u, v) 6= (0, 0), h+ Trq/p(c) 6= 0, Trpm/p(w) 6= 0

=



































0 with 1 time,
p2m with p− 1 times,
p2m−1(p− 1) with p(p2m − 1) times,
(p2m−1 + pm−1)(p− 1) with p2m(pm−1 − 1) times,

p2m−1(p− 1)− pm−1 with p2m(pm−1 − 1)(p− 1) times,

(p2m−1 + pm−1)(p− 1) + 1 with p3m−1(p− 1) times,

p2m−1(p− 1)− pm−1 + 1 with p3m−1(p− 1)2 times,

when (u, v, w, h) runs through GF(q) × GF(q) × GF(q) × GF(p). Note that the dimension of C(p)
V is

3m+ 1 as A0 = 1.
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Note that C(p)⊥
V is of length p2m + 1 and dimension p2m − 3m. It follows from Theorems 2.7 and 1.1

that the minimal distance d(p)⊥ of C(p)⊥
V satisfies d(p)⊥ ≥ 4. By the sphere-packing bound, we have

pp
2m+1 ≥ pp

2m−3m











⌊

d(p)⊥−1
2

⌋

∑

i=0

(p− 1)i
(

p2m + 1

i

)











,

which implies that d(p)⊥ ≤ 4, where ⌊x⌋ is the floor function. Thus d(p)⊥ = 4. The proof is now completed.

Theorem 4.7: Let p > 2, m > 1 and a ∈ GF(q) such that x2+x+a is reducible over GF(q) and a 6= 4−1.

Then C(p)
V is a six-weight p-ary linear code with parameters [p2m +1, 3m+1, (p2m−1 − pm−1)(p− 1)] and

the weight distribution in Table III.

TABLE III

THE WEIGHT DISTRIBUTION OF C(p)
V FOR p > 2 AND REDUCIBLE x

2 + x+ a

Weight Multiplicity

0 1
p
2m

p− 1
p
2m−1(p− 1) p(p2m − 1)

(p2m−1 − p
m−1)(p− 1) p

2m(pm−1 − 1)
p
2m−1(p− 1) + p

m−1
p
2m(pm−1 − 1)(p− 1)

(p2m−1 − p
m−1)(p− 1) + 1 p

3m−1(p− 1)
p
2m−1(p− 1) + p

m−1 + 1 p
3m−1(p− 1)2

Proof The proof of this theorem and that of Theorem 4.6 are almost exactly the same except for using

Lemmas 4.3 and 4.5 instead of Lemmas 4.2 and 4.4. We omit the details of the proof here.

Lemma 4.8: Let q = pm with p an odd prime. Then the following statements hold.

1)

♯{w ∈ GF(q)∗ : η(w) = 1 and Trq/p(w) = 0}

=

{

pm−1−1−(p−1)p
m−2

2 (
√
−1)

(p−1)m
2

2
for even m,

pm−1−1
2

for odd m.

2)

♯{w ∈ GF(q)∗ : η(w) = 1 and Trq/p(w) 6= 0}

=

{

(p−1)(pm−1+p
m−2

2 (
√
−1)

(p−1)m
2 )

2
for even m,

pm−1(p−1)
2

for odd m.

3)

♯{w ∈ GF(q)∗ : η(w) = −1 and Trq/p(w) = 0}

=

{

pm−1−1+(p−1)p
m−2

2 (
√
−1)

(p−1)m
2

2
for even m,

pm−1−1
2

for odd m.

4)

♯{w ∈ GF(q)∗ : η(w) = −1 and Trq/p(w) 6= 0}
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=

{

(p−1)(pm−1−p
m−2

2 (
√
−1)

(p−1)m
2 )

2
for even m,

pm−1(p−1)
2

for odd m.

Proof We only prove the first equality as the others follow directly. Let χ be the canonical additive

character and α a primitive element of GF(q). Let C0 be the cyclic group generated by α2. Denote

N(w) = ♯{w ∈ GF(q)∗ : η(w) = 1 and Trq/p(w) = 0}. By the orthogonality relation of additive

characters and Lemmas 3.1 and 3.2, we obtain that

N(w) =
1

p

∑

z∈GF(p)

∑

w∈C0

χ(zw)

=
1

2p

∑

z∈GF(p)

∑

w∈GF(q)∗

χ(zw2)

=
q − p

2p
+

1

2p

∑

z∈GF(p)∗

∑

w∈GF(q)

χ(zw2)

=
q − p

2p
+

1

2p
G(η, χ)

∑

z∈GF(p)∗

η(z)

=

{ q−p
2p

+ p−1
2p
G(η, χ) for even m

q−p
2p

for odd m

=

{

pm−1−1−(p−1)p
m−2

2 (
√
−1)

(p−1)m
2

2
for even m,

pm−1−1
2

for odd m,

where the fifth equality comes from the orthogonality of the multiplicative characters.

Theorem 4.9: Let p > 2, m > 1 and a = 4−1. Then C(p)
V is a p-ary [p2m + 1, 3m+ 1] linear code with

weight distributions in Tables IV and V for even m and odd m, respectively.

TABLE IV

THE WEIGHT DISTRIBUTION OF C(p)
V FOR p > 2, EVEN m AND a = 4−1

Weight Multiplicity

0 1

p
2m

p− 1
p
2m−1(p− 1) (pm − 1)(p2m + p)

p
2m−1(p− 1) + 1 p

2m(pm − 1)(p− 1)

p
m−1(p− 1)

(

p
m + p

m

2 (
√
−1)

p−1
2

m
)

p2m−1−pm−(p−1)p
3m−2

2 (
√

−1)
(p−1)m

2

2

p
m−1(p− 1)

(

p
m + p

m

2 (
√
−1)

p−1
2

m
)

+ 1 (p−1)(p2m−1+p
3m−2

2 (
√

−1)
(p−1)m

2 )
2

p
m−1

(

p
m(p− 1)− p

m

2 (
√
−1)

p−1
2

m
)

(p−1)(p2m−1−pm−(p−1)p
3m−2

2 (
√

−1)
(p−1)m

2 )
2

p
m−1

(

p
m(p− 1) − p

m

2 (
√
−1)

p−1
2

m
)

+ 1 (p−1)2(p2m−1+p
3m−2

2 (
√

−1)
(p−1)m

2 )
2

p
m−1(p− 1)

(

p
m − p

m

2 (
√
−1)

p−1
2

m
)

p2m−1−pm+(p−1)p
3m−2

2 (
√

−1)
(p−1)m

2

2

p
m−1(p− 1)

(

p
m − p

m

2 (
√
−1)

p−1
2

m
)

+ 1 (p−1)(p2m−1−p
3m−2

2 (
√

−1)
(p−1)m

2 )
2

p
m−1

(

p
m(p− 1) + p

m

2 (
√
−1)

p−1
2

m
)

(p−1)(p2m−1−pm+(p−1)p
3m−2

2 (
√

−1)
(p−1)m

2 )
2

p
m−1

(

p
m(p− 1) + p

m

2 (
√
−1)

p−1
2

m
)

+ 1 (p−1)2(p2m−1−p
3m−2

2 (
√
−1)

(p−1)m
2 )

2

Proof We follow the notation in the proof of Theorem 4.6, where

N(u, v, w, h) = ♯{(x, y) ∈ GF(q)2 : Trq/p(g(x, y)) + h = 0}.
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TABLE V

THE WEIGHT DISTRIBUTION OF C(p)
V FOR p > 2, ODD m AND a = 4−1

Weight Multiplicity

0 1

p
2m

p− 1
p
2m−1(p− 1) p

m(pm−1 − 1)(pm+1 − p+ 1) + p(p2m − 1)
p
2m−1(p− 1) + 1 p

2m−1(p− 1)(pm+1 − p+ 1)

p
3m−1

2

(

p
m−1

2 (p− 1)− (
√
−1)

(p−1)(m+1)
2

)

pm(pm−1−1)(p−1)
2

p
3m−1

2

(

p
m−1

2 (p− 1)− (
√
−1)

(p−1)(m+1)
2

)

+ 1 p2m−1(p−1)2

2

p
3m−1

2

(

p
m−1

2 (p− 1) + (
√
−1)

(p−1)(m+1)
2

)

pm(pm−1−1)(p−1)
2

p
3m−1

2

(

p
m−1

2 (p− 1) + (
√
−1)

(p−1)(m+1)
2

)

+ 1 p2m−1(p−1)2

2

Let a = 4−1.

If w 6= 0, by Equations (6), (7) and (8) and Lemma 3.2 we have

pN(u, v, w, h) = q2 + Ω,

where

Ω = G(η, χ)
∑

z∈GF(p)∗

ζzhp η(zw)
∑

y∈GF(q)

χ
(

(zwa− 4−1zw)y2 + (zv − 2−1uz)y − z(4w)−1u2
)

= G(η, χ)
∑

z∈GF(p)∗

ζzhp η(zw)χ(−z(4w)−1u2)
∑

y∈GF(q)

χ
(

(zv − 2−1uz)y
)

=

{

0 for v 6= 2−1u
G(η, χ)q

∑

z∈GF(p)∗
ζzhp η(zw)χ(−z(4w)−1u2) for v = 2−1u

=







0 for v 6= 2−1u,

G(η, χ)qη(w)
∑

z∈GF(p)∗
ζ
(h−Trq/p(w

−1v2))z
p η(z) for v = 2−1u.

When m is even, we have η(z) = 1 for z ∈ GF(p)∗. When m is odd, η(z) = η′(z) for z ∈ GF(p)∗, where

η′ denotes the quadratic multiplicative character of GF(p). Let χ′ denote the canonical additive character

of GF(p). Then we have the following.

1) When m is even, we deduce that

Ω =



















0 for v 6= 2−1u,
G(η, χ)q(p− 1) for v = 2−1u, h = Trq/p(w

−1v2), η(w) = 1,
−G(η, χ)q for v = 2−1u, h 6= Trq/p(w

−1v2), η(w) = 1,
−G(η, χ)q(p− 1) for v = 2−1u, h = Trq/p(w

−1v2), η(w) = −1,
G(η, χ)q for v = 2−1u, h 6= Trq/p(w

−1v2), η(w) = −1.

2) When m is odd, we deduce that

Ω =

{

0 for v 6= 2−1u
G(η, χ)qη(w)

∑

z∈GF(p)∗
χ′((h− Trq/p(w

−1v2))z)η′(z) for v = 2−1u

=







0 for v 6= 2−1u
0 for v = 2−1u, h = Trq/p(w

−1v2)
G(η, χ)G(η′, χ′)qη(w)η′(h− Trq/p(w

−1v2) for v = 2−1u, h 6= Trq/p(w
−1v2)
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=



























0
for v = 2−1u, h = Trq/p(w

−1v2),
or v 6= 2−1u,

G(η, χ)G(η′, χ′)q
for v = 2−1u, h 6= Trq/p(w

−1v2),
η(w)η′(h− Trq/p(w

−1v2)) = 1,

−G(η, χ)G(η′, χ′)q
for v = 2−1u, h 6= Trq/p(w

−1v2),
η(w)η′(h− Trq/p(w

−1v2)) = −1.

When w = 0 and (u, v) 6= (0, 0), it is easy to deduce that Ω = 0.

From the discussions above and Lemma 3.1, we have

N(u, v, w, h) =























































p2m−1 for v 6= 2−1u, w 6= 0,
or w = 0, (u, v) 6= (0, 0),

pm−1
(

pm − (p− 1)p
m
2 (
√
−1)

p−1
2

m
)

for v = 2−1u, h = Trq/p(w
−1v2),

η(w) = 1,

pm−1
(

pm + p
m
2 (
√
−1)

p−1
2

m
)

for v = 2−1u, h 6= Trq/p(w
−1v2),

η(w) = 1,

pm−1
(

pm + (p− 1)p
m
2 (
√
−1)

p−1
2

m
)

for v = 2−1u, h = Trq/p(w
−1v2),

η(w) = −1,

pm−1
(

pm − p
m
2 (
√
−1)

p−1
2

m
)

for v = 2−1u, h 6= Trq/p(w
−1v2),

η(w) = −1

for even m, and

N(u, v, w, h) =



























p2m−1,
for v = 2−1u, h = Trq/p(w

−1v2), w 6= 0 or

v 6= 2−1u, w 6= 0 or w = 0, (u, v) 6= (0, 0),

pm−1
(

pm + p
m+1

2 (
√
−1)

(p−1)(m+1)
2

) for v = 2−1u, h 6= Trq/p(w
−1v2), w 6= 0,

η(w)η′(h− Trq/p(w
−1v2)) = 1,

pm−1
(

pm − p
m+1

2 (
√
−1)

(p−1)(m+1)
2

) for v = 2−1u, h 6= Trq/p(w
−1v2), w 6= 0,

η(w)η′(h− Trq/p(w
−1v2)) = −1

for odd m. The Hamming weight of any codeword

c(u, v, w, h) :=
(

(

Trpm/p(g(x, y)) + h
)

(x,y)∈GF(pm)2
,Trpm/p(w)

)

∈ C(p)
V

is then given by

wt(c(u, v, w, h))
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=















































































































































0 for (u, v, w, h) = (0, 0, 0, 0)
p2m for (u, v, w) = (0, 0, 0), h 6= 0

p2m−1(p− 1)
for v 6= 2−1u, w 6= 0, Trpm/p(w) = 0,

or w = 0, (u, v) 6= (0, 0)
p2m−1(p− 1) + 1 for v 6= 2−1u, w 6= 0, Trpm/p(w) 6= 0

pm−1(p− 1)
(

pm + p
m
2 (
√
−1)

p−1
2

m
)

for v = 2−1u, h = Trq/p(w
−1v2),

η(w) = 1, Trpm/p(w) = 0

pm−1(p− 1)
(

pm + p
m
2 (
√
−1)

p−1
2

m
)

+ 1
for v = 2−1u, h = Trq/p(w

−1v2),
η(w) = 1, Trpm/p(w) 6= 0

pm−1
(

pm(p− 1)− p
m
2 (
√
−1)

p−1
2

m
)

for v = 2−1u, h 6= Trq/p(w
−1v2),

η(w) = 1, Trpm/p(w) = 0

pm−1
(

pm(p− 1)− p
m
2 (
√
−1)

p−1
2

m
)

+ 1
for v = 2−1u, h 6= Trq/p(w

−1v2),
η(w) = 1, Trpm/p(w) 6= 0

pm−1(p− 1)
(

pm − p
m
2 (
√
−1)

p−1
2

m
)

for v = 2−1u, h = Trq/p(w
−1v2),

η(w) = −1, Trpm/p(w) = 0

pm−1(p− 1)
(

pm − p
m
2 (
√
−1)

p−1
2

m
)

+ 1
for v = 2−1u, h = Trq/p(w

−1v2),
η(w) = −1, Trpm/p(w) 6= 0

pm−1
(

pm(p− 1) + p
m
2 (
√
−1)

p−1
2

m
)

for v = 2−1u, h 6= Trq/p(w
−1v2),

η(w) = −1, Trpm/p(w) = 0

pm−1
(

pm(p− 1) + p
m
2 (
√
−1)

p−1
2

m
)

+ 1
for v = 2−1u, h 6= Trq/p(w

−1v2),
η(w) = −1, Trpm/p(w) 6= 0

=



























































































































0 with 1 time,

p2m with p− 1 times,

p2m−1(p− 1) with (pm − 1)(p2m + p) times,

p2m−1(p− 1) + 1 with p2m(pm − 1)(p− 1) times,

pm−1(p− 1)
(

pm + p
m
2 (
√
−1)

p−1
2

m
)

with
p2m−1−pm−(p−1)p

3m−2
2 (

√
−1)

(p−1)m
2

2
times,

pm−1(p− 1)
(

pm + p
m
2 (
√
−1)

p−1
2

m
)

+ 1 with
(p−1)(p2m−1+p

3m−2
2 (

√
−1)

(p−1)m
2 )

2
times,

pm−1
(

pm(p− 1)− p
m
2 (
√
−1)

p−1
2

m
)

with
(p−1)(p2m−1−pm−(p−1)p

3m−2
2 (

√
−1)

(p−1)m
2 )

2
times,

pm−1
(

pm(p− 1)− p
m
2 (
√
−1)

p−1
2

m
)

+ 1 with
(p−1)2(p2m−1+p

3m−2
2 (

√
−1)

(p−1)m
2 )

2
times,

pm−1(p− 1)
(

pm − p
m
2 (
√
−1)

p−1
2

m
)

with
p2m−1−pm+(p−1)p

3m−2
2 (

√
−1)

(p−1)m
2

2
times,

pm−1(p− 1)
(

pm − p
m
2 (
√
−1)

p−1
2

m
)

+ 1 with
(p−1)(p2m−1−p

3m−2
2 (

√
−1)

(p−1)m
2 )

2
times,

pm−1
(

pm(p− 1) + p
m
2 (
√
−1)

p−1
2

m
)

with
(p−1)(p2m−1−pm+(p−1)p

3m−2
2 (

√
−1)

(p−1)m
2 )

2
times,

pm−1
(

pm(p− 1) + p
m
2 (
√
−1)

p−1
2

m
)

+ 1 with
(p−1)2(p2m−1−p

3m−2
2 (

√
−1)

(p−1)m
2 )

2
times

for even m, where the frequency of each weight can be easily derived with Lemma 4.8, and the Hamming

weight

wt(c(u, v, w, h))
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=



















































































































































0 for (u, v, w, h) = (0, 0, 0, 0)
p2m for (u, v, w) = (0, 0, 0), h 6= 0

p2m−1(p− 1)

for v = 2−1u, h = Trq/p(w
−1v2),

w 6= 0, Trpm/p(w) = 0 or

v 6= 2−1u, w 6= 0, Trpm/p(w) = 0
or w = 0, (u, v) 6= (0, 0)

p2m−1(p− 1) + 1

for v = 2−1u, h = Trq/p(w
−1v2),

Trpm/p(w) 6= 0 or

v 6= 2−1u, Trpm/p(w) 6= 0

p
3m−1

2

(

p
m−1

2 (p− 1)− (
√
−1)

(p−1)(m+1)
2

) for v = 2−1u, h 6= Trq/p(w
−1v2), w 6= 0,

η(w)η′(h− Trq/p(w
−1v2)) = 1,

Trpm/p(w) = 0

p
3m−1

2

(

p
m−1

2 (p− 1)− (
√
−1)

(p−1)(m+1)
2

)

+ 1
for v = 2−1u, h 6= Trq/p(w

−1v2),
η(w)η′(h− Trq/p(w

−1v2)) = 1,
Trpm/p(w) 6= 0

p
3m−1

2

(

p
m−1

2 (p− 1) + (
√
−1)

(p−1)(m+1)
2

) for v = 2−1u, h 6= Trq/p(w
−1v2), w 6= 0,

η(w)η′(h− Trq/p(w
−1v2)) = −1,

Trpm/p(w) = 0

p
3m−1

2

(

p
m−1

2 (p− 1) + (
√
−1)

(p−1)(m+1)
2

)

+ 1
for v = 2−1u, h 6= Trq/p(w

−1v2),
η(w)η′(h− Trq/p(w

−1v2)) = −1,
Trpm/p(w) 6= 0

=



































































0 with 1 time,

p2m with p− 1 times,

p2m−1(p− 1)
with pm(pm−1 − 1)(pm+1 − p+ 1)

+p(p2m − 1) times,
p2m−1(p− 1) + 1 with p2m−1(p− 1)(pm+1 − p + 1) times,

p
3m−1

2

(

p
m−1

2 (p− 1)− (
√
−1)

(p−1)(m+1)
2

)

with
pm(pm−1−1)(p−1)

2
times,

p
3m−1

2

(

p
m−1

2 (p− 1)− (
√
−1)

(p−1)(m+1)
2

)

+ 1 with
p2m−1(p−1)2

2
times,

p
3m−1

2

(

p
m−1

2 (p− 1) + (
√
−1)

(p−1)(m+1)
2

)

with
pm(pm−1−1)(p−1)

2
times,

p
3m−1

2

(

p
m−1

2 (p− 1) + (
√
−1)

(p−1)(m+1)
2

)

+ 1 with
p2m−1(p−1)2

2
times

for odd m, where the frequency of each weight can be easily determined.

Note that the dimension is 3m+ 1 as A0 = 1 whether m is even or odd. Then the desired conclusions

follow.

Example 1: Let V be the elliptic quadric.

1) Let m = 2 and w be a generator of GF(23) with w2 + w + 1 = 0, and a = w3. Then C(2)
V has

parameters [17, 7, 6] and its dual has parameters [17, 10, 4].

2) Let m = 3 and w be a generator of GF(23) with w3 + w + 1 = 0, and a = w3. Then C(2)
V has

parameters [65, 10, 28] and its dual has parameters [65, 55, 4].

3) Let m = 2 and w be a generator of GF(32) with w2 + 2w + 2 = 0, and a = w3. Then C(3)
V has

parameters [82, 7, 51] and its dual has parameters [82, 75, 4].

All of these codes and their duals are optimal according to the tables of best codes known maintained at

http://www.codetables.de.

At the end of this section, we explain why the subfield codes of ovoid codes are interesting. It is known

that the set V of (1) is an ovoid if and only if x2+x+a is irreducible over GF(q). The parameters of the

subfield code C(p)
V of the code CV were determined for all a. In all cases, the code C(p)

V has length p2m+1

http://www.codetables.de
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and dimension 3m+ 1. However, its minimum distance d(p) and weight distribution vary according to a
for odd p. Specifically, we have the following for odd p.

• If x2 + x+ a is irreducible, then V is an ovoid and

d(p) = p2m−1(p− 1)− pm−1.

Further, the dual code C(p)⊥
V has minimum distance d(p)⊥ = 4.

• If x2 + x+ a is reducible and a 6= 1/4, then V is not an ovoid and

d(p) = p2m−1(p− 1)− pm−1(p− 1).

Further, the dual code C(p)⊥
V has minimum distance 3 according to our experimental data.

• If m is even and a = 1/4, then x2 + x+ a is reducible, V is not an ovoid and

d(p) = p2m−1(p− 1)− pm−1(p− 1)pm/2.

Further, the dual code C(p)⊥
V has minimum distance 3 according to our experimental data.

• If m is odd and a = 1/4, then x2 + x+ a is reducible, V is not an ovoid and

d(p) = p2m−1(p− 1)− pm−1p(m+1)/2.

Further, the dual code C(p)⊥
V has minimum distance 3 according to our experimental data.

Therefore, both C(p)
V and C(p)⊥

V have the best minimum distance when V is an ovoid. The comparison

above shows that the subfield codes of ovoid codes are indeed interesting.

V. SUBFIELD CODES OF THE TITS OVOID CODES

Let q = 22e+1 with e ≥ 1. Recall that the Tits ovoids are defined by

T = {(0, 0, 1, 0)} ∪ {(x, y, xσ + xy + yσ+2, 1) : x, y ∈ GF(q)},
where σ = 2e+1. Denote

t1(x, y) = x, t2(x, y) = y, t3(x, y) = xσ + xy + yσ+2

and

Gx,y =









t1(x, y)
t2(x, y)
t3(x, y)

1









(x,y)∈GF(q)2

which is a 4× q2 matrix over GF(q). The Tits ovoid code CT over GF(q) has the generator matrix

GT =









Gx,y

0
0
1
0









.

Our task in this section is to investigate the subfield code C(2)
T of the Tits ovoid code CT .

Using the definition of GT and Theorem 2.5, we have the following trace representation of C(2)
T :

C(2)
T =

{

(

(

Trq/2(ut1(x, y) + vt2(x, y) + wt3(x, y)) + h
)

(x,y)∈GF(q)2
,Trq/2(w)

)

:
u, v, w ∈ GF(q)

h ∈ GF(2)

}

=

{

(

(

Trq/2(t(x, y)) + h
)

(x,y)∈GF(q)2
,Trq/2(w)

)

:
u, v, w ∈ GF(q)

h ∈ GF(2)

}

where t(x, y) := ut1(x, y) + vt2(x, y) + wt3(x, y)) = ux+ vy + wxσ + wxy + wyσ+2.
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TABLE VI

THE WEIGHT DISTRIBUTION OF C(2)
T

Weight Multiplicity

0 1

24e+2 1

24e+1 2(24e+2 − 1)
24e+1 + 22e 24e+2(22e − 1)
24e+1 − 22e 24e+2(22e − 1)

24e+1 + 22e + 1 26e+2

24e+1 − 22e + 1 26e+2

Theorem 5.1: Let q = 22e+1 with e ≥ 1. Then C(2)
T is a linear code with parameters [24e+2 + 1, 6e+ 4]

and the weight distribution in Table VI. Its dual C(2)⊥
T has parameters [24e+2 + 1, 24e+2 − 6e− 3, 4].

Proof Let χ be the canonical additive character of GF(q). Firstly, assume that (u, v, w) 6= (0, 0, 0). Denote

N0(u, v, w) = ♯{(x, y) ∈ GF(q)2 : Trq/2(t(x, y)) = 0}
and

N1(u, v, w) = ♯{(x, y) ∈ GF(q)2 : Trq/2(t(x, y)) = 1}.
By the orthogonality relation of additive characters, we have

2N0(u, v, w) =
∑

(x,y)∈GF(q)2

∑

z∈GF(2)

(−1)zTrq/2(t(x,y))

= q2 +
∑

(x,y)∈GF(q)2

(−1)Trq/2(t(x,y)). (9)

We discuss the value of N0(u, v, w) in the following cases.

1) If w = 0, we have t(x, y) = ux+ vy. Since (u, v) 6= (0, 0), we deduce that N0(u, v, w) = q2/2 =
24e+1.

2) If w 6= 0, we denote

∆ =
∑

(x,y)∈GF(q)2

(−1)Trq/2(t(x,y)).

Then

∆2 =





∑

(x,y)∈GF(q)2

(−1)Trq/2(−t(x,y))









∑

(x1,y1)∈GF(q)2

(−1)Trq/2(t(x1,y1))





=
∑

(x,y)∈GF(q)2

∑

(x1,y1)∈GF(q)2

(−1)Trq/2(t(x1,y1)−t(x,y))

=
∑

(x,y)∈GF(q)2

∑

(A,B)∈GF(q)2

(−1)Trq/2(t(x+A,y+B)−t(x,y))

= q2 −
∑

(A,B)∈GF(q)2\{(0,0)}

∑

(x,y)∈GF(q)2

(−1)Trq/2(t(x+A,y+B)−t(x,y))

= q2 −
∑

(A,B)∈GF(q)2\{(0,0)}
χ(uA+ vB + wAB + wA2e+1

+ wB2e+1+2)

×
∑

y∈GF(q)

χ(wB2y2
e+1

+ wB2e+1

y2 + wAy)
∑

x∈GF(q)

χ(wBx)
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= q2 − q
∑

A∈GF(q)∗

χ(uA+ wA2e+1

)
∑

y∈GF(q)

χ(wAy)

= q2,

where we used the variable substitution x1 = x + A, y1 = y + B in the third equality and the last

two equalities hold due to the orthogonality relation of additive characters. Hence ∆ = ±q and

Equation (9) implies

N0(u, v, w) = 24e+1 ± 22e.

Combining the two cases above yields

N0(u, v, w) =

{

24e+1 for w = 0,
24e+1 ± 22e for w 6= 0,

where (u, v, w) 6= (0, 0, 0) and N1(u, v, w) = 24e+2 −N0(u, v, w).

For any codeword c(u, v, w, h) :=
(

(

Trq/2(t(x, y)) + h
)

(x,y)∈GF(q)2
,Tr2m/2(w)

)

∈ C(2)
T , by the discus-

sions above we deduce that

wt(c(u, v, w, h)) =











































0 for (u, v, w, h) = (0, 0, 0, 0)
24e+2 for (u, v, w, h) = (0, 0, 0, 1)
N1(u, v, w) for w = h = 0, (u, v) 6= (0, 0)
N0(u, v, w) for w = 0, h = 1, (u, v) 6= (0, 0)
N1(u, v, w) for h = 0, w 6= 0,Trq/2(w) = 0, (u, v) ∈ GF(q)2

N0(u, v, w) for h = 1, w 6= 0,Trq/2(w) = 0, (u, v) ∈ GF(q)2

N1(u, v, w) + 1 for h = 0, Trq/2(w) 6= 0, (u, v) ∈ GF(q)2

N0(u, v, w) + 1 for h = 1, Trq/2(w) 6= 0, (u, v) ∈ GF(q)2

=



































0 with 1 time,
24e+2 with 1 time,
24e+1 with 2(24e+2 − 1) times,
24e+1 + 22e with 24e+2(22e − 1) times,
24e+1 − 22e with 24e+2(22e − 1) times,
24e+1 + 22e + 1 with 26e+2 times,
24e+1 − 22e + 1 with 26e+2 times,

where the frequency of each weight is easy to derive. The dimension is 3m+ 1 as A0 = 1.

The parameters of its dual follow from Theorem 1.1 and the sphere-packing bound.

VI. CONCLUDING REMARKS

Example 1 demonstrates that the subfield code C(p)
O of some ovoid code CO is optimal. When O is an

elliptic quadric or the Tits ovoid, the dual code C(p)⊥
O is distance-optimal according to the sphere-packing

bound.

Let q = 2m. Note that every ovoid code C over GF(q) must have parameters [q2 + 1, 4, q2 − q] and the

weight enumerator

1 + (q2 − q)(q2 + 1)zq
2−q + (q − 1)(q2 + 1)zq

2

.

However, the subfield code C(2) may have different parameters and weight distributions. In the case of

the elliptic quadric and Tits ovoid, the subfield code C(2) has the same parameters and weight distribution

(only six nonzero weights). However, the subfield code C(2) of another family of ovoid codes documented

in [9] has 2m nonzero weights and very different parameters according to our Magma experimental data.

It seems very difficult to settle the parameters of the subfield codes of the ovoid codes presented in [9].

Finally, we point out that m-ovoids are related to ovoids and give two-weight codes [11]. It would be

interesting to study the subfield codes of the two-weight codes from m-ovoids.
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