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A Probabilistic Peeling Decoder to Efficiently
Analyze Generalized LDPC Codes Over the BEC

Yanfang Liu, Pablo M. Olmos, Tobias Koch, Senior Member, IEEE

Abstract—In this paper, we analyze the tradeoff between cod-
ing rate and asymptotic performance of a class of generalized low-
density parity-check (GLDPC) codes constructed by including
a certain fraction of generalized constraint (GC) nodes in the
graph. The rate of the GLDPC ensemble is bounded using
classical results on linear block codes, namely Hamming bound
and Varshamov bound. We also study the impact of the decoding
method used at GC nodes. To incorporate both bounded-distance
(BD) and Maximum Likelihood (ML) decoding at GC nodes
into our analysis without resorting on multi-edge type of degree
distributions (DDs), we propose the probabilistic peeling decoding
(P-PD) algorithm, which models the decoding step at every GC
node as an instance of a Bernoulli random variable with a
successful decoding probability that depends on both the GC
block code as well as its decoding algorithm. The P-PD asymptotic
performance over the BEC can be efficiently predicted using
standard techniques for LDPC codes such as density evolution
(DE) or the differential equation method. Furthermore, for a class
of GLDPC ensembles, we demonstrate that the simulated P-PD
performance accurately predicts the actual performance of the
GLPDC code under ML decoding at GC nodes. We illustrate our
analysis for GLDPC code ensembles with regular and irregular
DDs. In all cases, we show that a large fraction of GC nodes is
required to reduce the original gap to capacity, but the optimal
fraction is strictly smaller than one. We then consider techniques
to further reduce the gap to capacity by means of random
puncturing, and the inclusion of a certain fraction of generalized
variable nodes in the graph.

Index Terms—Generalized low-density parity-check codes,
codes on graphs, maximum-likelihood decoding
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I. INTRODUCTION

Generalized low-density parity-check (GLDPC) block codes
were first proposed by Tanner [1]. In contrast to standard
LDPC codes, which are represented by bipartite Tanner graphs
where variable nodes and single parity-check (SPC) nodes
are connected according to a given degree distribution (DD),
in GLDPC codes the SPC nodes in the graph are replaced
by generalized constraint (GC) nodes [1]. The sub-code as-
sociated to each GC node is referred to as the component
code. Examples of component codes used in the GLDPC
literature are Hamming codes [2], Hadamard codes [3] or
expurgated random codes [4], [5]. For powerful component
codes, GLDPC codes have many potential advantages, includ-
ing improved performance in noisy channels, fast convergence
speed [6], low error floors [4], [7], and robust performance in
the finite-length regime [8] compared to capacity-achieving
LDPC codes such as irregular LDPC codes [9], [10] and
spatially-coupled LDPC codes [11], [12].

For the BEC, iterative decoding of graph-based codes, such
as LDPC or GLDPC codes, can be performed by means
of peeling decoding (PD) algorithms [13], [14], [8], which
iteratively remove from the Tanner graph variable nodes whose
value is known. As a result, the decoding process yields a
sequence of graphs whose mean coincides with the asymptotic
(in the blocklength) evolution of the ensemble. Furthermore,
this evolution can be computed by solving a particular set of
differential equations [13]. In the case of GLDPC codes the
derivation of such differential equations requires to specify in
advance the DD of the graph, and a description of what kind of
erasure patterns are locally decodable at any GC node, which
depends on both the component codes and the corresponding
decoding algorithm. In fact, the resulting decoding threshold
of GLDPC codes heavily depends on this latter point [3], [5],
[8]. For instance, as we demonstrated in this paper, for a (2, 7)
base DD in which all check nodes are (7, 4)-Hamming GC
nodes, the asymptotic threshold over the BEC is ε∗ ≈ 0.7025 if
maximum likelihood (ML) decoding is performed at each GC
node. However, it drops to ε∗ ≈ 0.5135 if suboptimal bounded
distance (BD) decoding is used instead of ML. In both cases,
the coding rate is exactly the same. Note, however, that this
improvement of performance comes at the cost of higher
complexity. Let K denote the blocklength of the component
code. For the BEC, the ML-decoding complexity at GC nodes
is of order O(K3), since it is equivalent to solving a system
of binary linear equations [15].

While deriving the asymptotic differential equations to
analyze PD with BD decoding at GC nodes (BD-PD for
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short) follows a straightforward extension of the standard
PD differential equations for LDPC codes [13], the GLDPC
asymptotic analysis of PD under ML-decoded component
codes (ML-PD, for short) requires the use of multi-edge-type
(MET) DDs [16] to track down all possible decodable erasure
patterns at GC nodes [17], [8]. As a consequence, the list
of code parameters to jointly optimize becomes cumbersome.
Specifically, the parameters include the description of the
multi-edge DD, the position of GC nodes in the graph, the edge
labelling at every GC node used to determine positions in the
component block code, and the list of locally ML-decodable
erasure patterns. To overcome this issue, most works in the
GLDPC literature fix in advance one part of the GLDPC code
ensemble, typically how many generalized check nodes are
placed in the Tanner graph and what component codes are
used at each of them, enabling an asymptotic analysis via
EXIT charts or Density Evolution for MET DDs [18], [8],
[19], [20]. In [5], the authors were able to incorporate ML-
decoded GC nodes without resorting to multi-edge type DDs
by analyzing the GLDPC average performance using extrinsic
information (EXIT) charts when each GC node in the graph
is selected at random within the family of block component
codes with fixed block length and minimum distance larger
than 2. This approach has a design caveat though, as it does
neither allow the use of a single type of component codes, nor
to narrow down the family of component codes by fixing the
minimum distance.

In this paper, we analyze GLDPC code ensembles using
a different approach. Instead of selecting a particular class
of component codes and optimizing the graph DD, we are
interested in analyzing the tradeoff between coding rate and
iterative decoding threshold of GLDPC code ensembles with
fixed DD, referred to as the base DD, as we increase the
fraction ν ∈ [0, 1] of GC nodes in the graph. This approach
is novel in the literature and we believe it is appealing
from a design perspective, since one might be interested in
introducing a certain amount of GC nodes in the Tanner graph
of a given LDPC code, aiming at reducing the gap to channel
capacity at the resulting coding rate, and at the same time
improving the minimum distance of the code and thus the
error floor.

To this end, we propose an analysis methodology that allows
to easily incorporate into the PD algorithm ML-decoded GC
nodes with specific properties, such a particular value of the
minimum distance d or how many erasure patterns beyond
minimum distance it can decode. We develop a probabilistic
description of all components of the GLDPC code, namely
the base DD, the presence of GC nodes in the graph, and
the decoding method implemented at GC nodes. Regarding
the latter aspect, we parameterize the decoding capabilities
of at every node with a blocklength-K component code by a
vector (p1, p2, ..., pK), where pw ∈ [0, 1], w ∈ {1, . . . ,K},
is the probability that a weight-w erasure pattern chosen at
random is decodable. Thus, pw is the fraction of decodable
weight-w erasure patterns. Note that if we take pw = 1 for
w ≤ d− 1 and pw = 0 for w = {d, . . . ,K}, we recover BD-
PD. We show how to properly incorporate such a probabilistic
description of component codes into the PD algorithm, and

denote the resulting algorithm as probabilistic PD (P-PD).
Due to its probabilistic nature, the asymptotic analysis of P-PD
does not require the use of MET DDs. In addition, for degree-
K GC nodes, a family of ML-decoded component codes is
parameterized by a K-length real vector, in contrast to a list
of sizeO(2K) required to list all locally ML-decodable erasure
patterns when MET DD are used. Overall, the description
of the GLDPC code ensemble is greatly simplified (i.e. less
parameters to jointly optimize) and at the same time we make
less assumptions on the GLDPC generalized constraints. We
show by computer simulations that the P-PD performance
accurately predicts the actual GLDPC performance when ML
decoding is performed at GC nodes. We note that the proposed
techniques are valid for binary GLDPC codes and that we do
not consider non-binary LDPC codes [21], which can also be
considered a special class of GLDPC codes.

The performance predicted using P-PD is valid for any
linear component code of blocklength-K and decoding profile
(p1, p2, ..., pK). To analyze a family of linear component codes
of blocklength-K and minimum distance d, we employ two
bounds to compute the GLDPC coding rate. The Hamming
or sphere-packing bound [22] is used to determine a converse
bound on the rate of the GLDPC code ensemble as a function
of a triplet of (ν, d,K). The Varshamov bound is considered
to determine an achievable rate of the GLDPC code ensemble
[23]. In many scenarios of interest, we show that these bounds
are sufficiently tight and thus relevant for the code designer.

By employing a probabilistic description of the decoding
capabilities at GC nodes, we are able to analyze a large
class of GLDPC code ensembles and beyond-BD decoding
methods with a fairly small set of parameters. We illustrate
our analysis for both regular GLDPC code ensembles us-
ing (2, 6), (2, 7), (2, 8) and (2, 15) base DDs and irregular
GLDPC code ensembles with similar graph densities [19],
[20]. To obtain realistic values for the coding capabilities
of the component codes, we consider linear block codes of
lengths r ∈ [6, 7, 8, 15], including Hamming codes, Cyclic
codes, Quasi Cyclic codes and Cordaro-Wagner Codes, and
tabulated their corresponding description in terms of minimum
distance d and (p1, p2, ..., pK). In all cases, we show that a
large fraction of GC nodes is required in the GLDPC graph to
reduce the original gap to capacity. However, the closest gap
to capacity is not achieved at ν = 1, but a smaller value
must be used. Namely, there exists a critical ν∗ value for
which the gap to capacity is minimum. Furthermore, the best
results are obtained for high-rate component codes, suggesting
that the use of very powerful component codes does not
pay off, since the gain in threshold does not compensate for
the severe decrease of the GLDPC code rate. Furthermore,
we include into our analysis the weight spectral analysis of
GLDPC ensembles in [18] to explore the range of ν values
for which the GLDPC ensembles reduce the original gap to
capacity and at the same time maintain a linear growth of the
minimum distance with the block length. Despite its regularity
and structural simplicity, the regular GLDPC code ensembles
analyzed in this paper have demonstrated remarkable perfor-
mance in certain practically-relevant scenarios. In particular,
in [24] we have recently shown that regular GLDPC codes
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with the appropriate fraction of GC nodes to minimize the
gap to capacity followed by a rate-matching outer code are
able to improve state-of-the-art coding techniques (including
Polar Codes, Turbo Codes and Convolutional Codes) for ultra-
reliable low-latency communications in 5G.

Finally, we illustrate how to incorporate further design
techniques that can help to reduce the gap to capacity of the
code ensembles. Specifically, we discuss both random punc-
turing [25] and a simple class of doubly generalized LDPC
(DG-LDPC) codes [26], [27]. In general, the methodology
presented in this paper is flexible and decouples the problems
of bounding the GLDPC coding rate and the asymptotic
analysis of the ensemble. In this regard, broader classes of
component codes at variable nodes and GC nodes could also
be incorporated in a systematic way.

The paper is organized as follows. In Section II, we in-
troduce GLDPC code ensembles and the notation used to
characterize the DDs. Sections III and IV present the decoding
algorithm and its asymptotic analysis. In Section VI we bound
the GLDPC code rate and analyze the rate-threshold tradeoff
as a function of the fraction ν of GC nodes in the graph.
The behavior of the GLDPC code ensembles with specific
component codes is analyzed in Section VII. Finally, Sections
VIII and IX consider further techniques to improve the asymp-
totic behavior of the code ensemble, by means of random
puncturing and generalized variable nodes. We conclude the
paper in Section X with a discussion of our results.

II. GLDPC ENSEMBLES

In this section, we introduce the GLDPC code ensembles
that will be analyzed in the rest of the paper and the notation
used to define their DD.

A. Degree distribution

As illustrated in Fig. 1, the Tanner graph of every member
in the ensemble contains n variable nodes (coded bits) and c

parity-check nodes, among which a fraction ν corresponds to
GC nodes while the rest corresponds to SPC nodes. We denote
by E the number of edges in the Tanner graph and we define
the degree of a node as the number of edges connected to it.

The DD of the ensemble is characterized as follows. The
vector λ = (λ1, λ2, ..., λJ) is the left DD, where λi represents
the fraction of edges (w.r.t. E) connected to a variable node of
degree i. Given λ, n and E are related by [16]

n = E

J∑
i=1

λi/i. (1)

The right DD is defined by two vectors ρp =
(ρp1, ρp2, ..., ρpK) and ρc = (ρc1, ρc2, ..., ρcK), where ρpj
denotes the fraction of edges (w.r.t. E) connected to a SPC node
that has degree j and ρcj denotes the fraction of edges (w.r.t.
E) connected to a GC node that has degree j. Throughout the
paper, we use the subscript p for any DD component related
to standard parity check nodes and the subscript c for any DD
component related to generalized component codes. The DD is
then characterized by the tuple (λ, ρp, ρc, ν) and the ensemble
of codes generated by this DD is denoted by Cλ,ρp,ρc,ν . Since

+

+

+

...

+
...

...
n

variable nodes

(1−ν)c
SPC nodes

νc
GC nodes

Fig. 1. Tanner graph of a GLDPC code.

the fraction of GC nodes in the graph is ν, the following must
hold:

ν =

∑K
j=1 ρcj/j∑K

u=1(ρcu + ρpu)/u
. (2)

For simplicity, we restrict the most of our analysis to the
class of GLDPC ensembles characterized by variable nodes
with constant degree J and SPC and GC nodes with constant
degree and K. The Tanner graph of any code in this ensemble
contains n variable nodes, E = Jn edges, ν JK n GC nodes,
and (1 − ν) JK n SPC nodes. The DD of the GLDPC codes
is characterized by the triple (J,K, ν), and the ensemble of
codes generated by this DD is denoted by CJ,K,ν . The DD of
the LDPC ensemble obtained by taking ν = 0 is defined as
the base DD, and the corresponding LDPC code ensemble is
referred to as the base ensemble. The coding rate of the base
ensemble is denoted by R0 and can be computed as:

R0 = 1− J

K
. (3)

Finally, we assume that the incoming edges to every degree-
K GC node are assigned uniformly at random to each position
of the component code.

B. The coding rate of the CJ,K,ν ensemble

As discussed in the introduction of the paper, we propose
tools to analyze the decoding performance of GLDPC under
ML-decoded GC nodes that do not require to set in advance a
specific component code to be used as the GC nodes. Instead,
we consider the family of linear block codes with blocklength
K and minimum distance d, and we use the classical results
on linear block codes to bound the coding rate of the GLDPC
code ensembles.

Let k(`) ∈ N+, ` = 1, . . . , νE/K, be the number of rows in
the parity-check matrix associated with the component code
of the `-th GC node.

Lemma 1: The design rate R(ν) of the CJ,K,ν ensemble is

R(ν) = R0 − ν(1− R0)(kavg − 1), (4)

where kavg , (ν E
K )−1

∑ν E
K

`=1 k
(`) is the average number of

rows in the parity-check matrix of the component codes.
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Proof: Any SPC node in the Tanner graph accounts for
a single row in the parity-check matrix of the GLDPC code,
and any GC node accounts for k(`) rows. Thus, the design rate
R(ν) is given by

R(ν) = 1−
(1− ν) E

K +
∑ν E

K

`=1 k
(`)

n

= 1−
(1− ν) E

K + ν E
K kavg

E/J

= R0 − ν(1− R0)(kavg − 1). (5)

Note that the second term in (4) accounts for the rate loss at
GC nodes. When the component codes are linear block codes
with minimum distance d, we obtain the following bounds on
R(ν):

Lemma 2: If all component codes in the CJ,K,ν ensemble
are linear block codes with minimum distance d > 2, then

R(ν) ≤ R0 − ν(1− R0) log2

1

2

b d−1
2 c∑

q=0

(
K

q

) . (6)

Furthermore, there exists a set of linear block codes to be used
as component codes such that

R(ν) ≥ R0 − ν(1− R0)

⌈
log2

(
1

2
+

1

2

d−2∑
q=0

(
K − 1

q

))⌉
.

(7)

Here, we use d·e and b·c to denote the ceiling and floor
functions, respectively. The two bounds coincide, for example,
when d = 3 and K = 2z − 1, where z ∈ Z+.

Proof: First, the condition d > 2 is required to differ-
entiate between the rate loss at SPC nodes, which are block
codes with minimum distance 2, and at GC nodes. We start
by proving the converse bound in (6). By the sphere-packing
bound [15, Theorem 12, p.531], any component code with
blocklength K and minimum distance d must satisfy

2K−k ≤ 2K∑b d−1
2 c

q=0

(
K
q

) , (8)

where k is the number of rows in the parity-check matrix.
Here we consider non redundant parity check matrices (i.e.
K−k is exactly the information dimension of the code). This
implies that the term (kavg − 1) in (4) is bounded by

kavg − 1 ≥ log2

1

2

b d−1
2 c∑

q=0

(
K

q

) , (9)

which proves (6). Regarding the achievable bound in (7),
the Varshamov Bound [23, Theorem 2.9.3] guarantees the
existence of a linear component code with blocklength K and
minimum distance at least d if

2K−k ≥ 2K−dlog2(1+
∑d−2
q=0 (K−1

q ))e. (10)

If the above condition is satisfied, then there exists a set
of linear block codes to be used as component codes with
blocklength K and minimum distance at least d such that

kavg − 1 ≤

⌈
log2

(
1

2
+

1

2

d−2∑
q=0

(
K − 1

q

))⌉
, (11)

which proves (7).
Finally, if we substitute d = 3 and K = 2z − 1 for some

z ∈ Z+ into (6) and (7), a straightforward computation shows
that the converse bound in (6) can be simplified to

R(ν) ≤ R0 − ν(1− R0)(z − 1), (12)

and, likewise, the achievable bound in (7) simplifies to

R(ν) ≥ R0 − ν(1− R0)(z − 1). (13)

C. Growth rate of the weight distribution of the CJ,K,ν en-
semble

A useful tool for analysis and design of LDPC codes
and their generalizations is the asymptotic exponent of the
weight distribution. The growth rate of the weight distribution
was introduced in [28] to show that the minimum distance
of a randomly-generated regular LDPC code with variable
nodes of degree of at least three is a linear function of the
codeword length with high probability. The growth rate of the
weight distribution for a class of doubly generalized LDPC (D-
GLDPC) codes was introduced in [18]. The CJ,K,ν GLDPC
code ensemble can be seen as a particular instance of the codes
analyzed in that work. The weight spectral shape of the CJ,K,ν
ensemble captures the behavior of codewords whose weight is
linear in the block length n and is defined by

G(α) , lim
n→∞

1

n
logECJ,K,ν [Xαn] (14)

for α > 0, where Xw denotes the number of codewords of
weight-w of a randomly chosen code in the CJ,K,ν code en-
semble. This limit assumes the inclusion of only those positive
integers for which αn ∈ Z. We define the critical exponent
codeword weight ratio as α̂ , inf{α ≥ 0|G(α) ≥ 0}. If
α̂ > 0, then the code’s minimum distance asymptotically
grows as O(α̂n) and the ensemble is said to have good growth
rate behavior. If α̂ = 0, then the minimum distance of the code
may still grow with the block length n but at a slower rate,
e.g., as O(log(n)).

Lemma 3: The CJ,K,ν ensemble has good growth rate
behavior, i.e. α̂ > 0, for J > 2. For J = 2, and assuming all
generalized component codes have minimum distance larger
than two, α̂ > 0 if, and only if,

ν >
K − 2

K − 1
, ν̂. (15)

Proof: The lemma follows directly by particularizing the
results in [18] for DG-LDPC code ensembles to the CJ,K,ν
ensemble. First, as stated in [18, Section III], a DG-LDPC
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code ensemble has a good growth rate behavior if, and only
if, CV < 1, where (using the notation in [18])

C = 2
∑
t:rt=2

ρtA
(t)
2

st
, V = 2

∑
t:pt=2

λtB
(t)
2

qt
(16)

and

• st, rt and A
(t)
2 are the length, minimum distance, and

number of weight-2 codewords of the local code Ct,
respectively, at check nodes of type t;

• pt, qt and B
(t)
2 are the length, minimum distance, and

number of weight-2 codewords of the local code Ct,
respectively, at variable nodes of type t;

• ρt is the fraction of edges connected to check nodes of
type t;

• λt is the fraction of edges connected to variable nodes of
type t.

According to (16), a DG-LDPC code ensemble always has
good growth rate behavior if there exist no CNs or VNs with
minimum distance 2. Particularizing this result to the CJ,K,ν
ensemble, note that all VNs correspond to length-J repetition
codes with minimum distance J . Therefore, for J > 2 we get
V = 0 and the ensemble has a good growth rate regardless
the properties and fraction of generalized component codes at
the check node side.

Consider now the CJ,K,ν ensemble with J = 2. If all
variable nodes have degree 2, then pt = qt = 2, λt = 1,
and B

(t)
2 = 1, so V = 1. As for CNs, a fraction of (1 − ν)

CNs corresponds to length-K parity-check nodes, and the rest
are length-K generalized component codes. If we assume that
the generalized component codes are linear block codes with
minimum distance d > 2, then these type of CNs do not
contribute to C in (16). In contrast, for standard length-K
parity check nodes we have rt = 2, st = K, ρt = (1 − ν),
and A(t)

2 = K(K−1)
2 . Consequently,

C = 2
(1− ν)K(K − 1)

2K
= (1− ν)(K − 1). (17)

It follows that CV < 1 is equivalent to ν > K−2
K−1 .

Algorithm 1 BD-PD

Remove from the Tanner graph of the GLDPC code all
variable nodes with indexes in Γy .
Construct Ψ, the index set of check nodes that correspond
to either degree-one SPC nodes or GC nodes of degree less
or equal to d− 1.
repeat

1) Select at random a member of Ψ.
2) Remove from the Tanner graph the check node with
the index drawn in Step 1). Further, remove all connected
variable nodes, and all attached edges.
3) Update Ψ.

until All variable nodes have been removed (successful
decoding) or Ψ = ∅ (decoding failure).

+

+

+

+

(a) (b)
Fig. 2. We illustrate one iteration of the P-PD algorithm. Assuming GC
nodes with d = 3, in (a) right after dashed edges are removed, the remaining
GC node (gray shadowed) becomes degree-2 and thus it will be considered
decodable in future iterations. In (b), after the GC node becomes degree-3,
a sample from Bernoulli Random Variable with success probability equal to
p3 is drawn. If the sample is a success, we tagged the GC node as decodable
for future iterations. Otherwise, it is tagged as non-decodable and only after
the node looses any additional edge the tag can be reverted to decodable.

III. PROBABILISTIC PEELING DECODING OVER THE BEC

Suppose we use a random sample of the CJ,K,ν ensemble to
transmit over a BEC(ε). For this channel, each of the n coded
bits is erased with probability ε. Without loss of generality,
we assume that the all-zero codeword is transmitted, hence
the received vector y belongs to the set {0, ?}n, where ?
denotes an erasure. Let Γy ⊆ {1, . . . , n} be the index set
of the bits correctly received, namely yi = 0 for all i ∈ Γy .
Decoding will be performed using a generalization of the PD
algorithm [13] similar to that proposed for GLDPC codes in
[8]. The final formulation of the decoding algorithm depends
on the decoding capabilities we assume at GC nodes. For
instance, if we assume BD decoding at component codes, then
the generalized PD algorithm, denoted as BD-PD, proceeds as
described in Algorithm 1.

BD-PD is a suboptimal decoding method that considers
decodable all GC nodes up to degree d−1 [29], [30]. However,
it ignores the fact that any component code will be able to
decode a certain fraction of erasure patterns of weight equal
to or greater than d. As already reported in various works,
e.g., [17], [8], the GLPDC code performance dramatically
improves if we consider ML decoding at GC nodes. In
principle, to consider ML decoding at GC nodes, we have
to specify a full list of decodable erasure patterns and, label
each of the incoming edges at every GC node to differentiate
between decodable and non-decodable GC nodes. As shown
in [8], incorporating this labelling into the asymptotic analysis
requires the use of multi-edge type DDs.

In order to incorporate beyond-BD decoding at GC nodes
into our analysis, and at the same time maintain a formulation
compatible with the random definition of the CJ,K,ν ensemble,
we will further constrain the family of component codes to
be used at degree-K GC nodes. More specifically, we assume
that the fraction of ML-decodable weight-w erasure patterns at
every GC node is given by some pw ∈ [0, 1], w = 1, . . . ,K.
Thus, the family of component codes under analysis is the
family of blocklength-K linear block codes with minimum
distance d and with decoding profile described by the vector
p = (p1, . . . , pK). Note that if the minimum distance of the
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Algorithm 2 P-PD

Remove from the Tanner graph of the GLDPC code all
variable nodes with indexes in Γy .
for all GC nodes do

If the GC has degree w, tag the check node as decodable
with probability pw.

end for
Construct Ψ, the index set of check nodes corresponding
to either degree-one SPC nodes or GC nodes tagged as
decodable.
repeat

1) Select at random a member of Ψ.
2) Remove from the Tanner graph the check node with
the index drawn in Step 1). Further remove all connected
variable nodes and all attached edges.
3)
for every non-decodable GC node that has lost one or
more edges in the current iteration do

If the GC has degree w, draw a sample of a Bernoulli
distribution with success probability pw. If the sample
is a success, tag the check node as decodable.

end for
4) Update Ψ.

until All variable nodes have been removed (successful
decoding) or Ψ = ∅ (decoding failure).

component code is d, then pw = 1 for w ≤ d−1. The bounds
on R(ν), predicted in Lemma 2, could in principle be refined
according to p. While this is an interesting open question, we
will later show that the bounds are tight in certain scenarios
and there is little room for refinement.

By exploiting the fact that incoming edges at every GC node
are assigned to each position of the component code uniformly
at random, we can incorporate ML-decoded GC nodes into the
PD as shown in Algorithm 2, denoted as probabilistic PD (P-
PD). Observe that the key P-PD feature is to tag GC check
nodes as decodable with probabilities given by p only when
they lose one or more edges, which may happen either at the
initialization or after a connected variable is removed. If only
one decodable check node is removed per iteration, after every
P-PD iteration only a few GC nodes can change its state (from
non-decodable to decodable). See Fig. 2 for an explanatory
diagram. Thus, at every iteration, P-PD emulates the ML
decoding operation of a degree-w GC node by drawing the
decoding capability according to a Bernoulli distribution with
parameter pw, w ∈ {1, . . . ,K}. Note that P-PD is a procedure
that allows for simpler analysis rather than a practical decoding
algorithm. Further, note that we recover the bounded distance
PD (BD-PD) algorithm from P-PD if we set pw = 0 for w ≥ d

and pw = 1 otherwise.
If we select a specific component code, we can compare

the simulation performance of the CJ,K,ν ensemble for the
corresponding parameters under P-PD with that of the practical
GLDPC codes with GC nodes that are decoded via ML, using
the actual parity-check matrix of the component codes. We
refer to this latter case as ML-PD.
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Fig. 3. In Fig. 3 (a), we plot the BER as a function of the channel erasure
probability for a (2, 6) base DD and a rate-1/2 Hamming (6, 3) linear block
code as component code. In Fig. 3 (b), we plot the BER as a function of
the channel erasure probability for a (2, 8) base DD and a rate-1/2 (8, 4)
Hamming component code. Results have been averaged over 10 generated
samples from the CJ,K,ν ensemble with a blocklength of n = 10000 bits.

More precisely, for a given finite blocklength n, fixed
ν ∈ [0, 1], and base DD, we generate a member of the CJ,K,ν
ensemble as follows:
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1) Generate at random a Tanner graph according to the
(J,K) base DD. Then, select at random a fraction ν
of check nodes to be used as GC nodes. Overall, the
graph contains n variable nodes, νE/K GC nodes and
(1− ν)E/K SPC nodes.

2) For each of the νE/K GC nodes, we generate uniformly
at random a permutation of the set {1, 2, . . . ,K}, which
is used to associate each of the incoming edges to the
GC node to a position in the component code.

We estimate by Monte Carlo simulation the bit error rate
(BER) over the BEC achieved by both P-PD, which follows
Algorithm 2, and ML-PD, which uses a look-up table of
decodable erasure patterns. In Fig. 3 (a), we plot the BER
as a function of the channel erasure probability of P-PD and
ML-PD for a (2, 6)-regular base DD with a rate-1/2 Hamming
(6, 3) linear block code as component code. In Fig. 3 (b), we
plot the same quantities for a (2, 8)-regular base DD using a
rate-1/2 (8, 4) Hamming component code. Results have been
averaged over 10 generated samples from the CJ,K,ν ensemble.
Observe the perfect match between the BERs for P-PD and
ML-PD in all cases. This illustrates that we are not sacrificing
accuracy with the probabilistic description of the decoder, as
long as GLDPC codes are generated as described above.

IV. ASYMPTOTIC ANALYSIS

The P-PD decoder yields a sequence of residual graphs by
sequentially removing degree-one SPC nodes and decodable
GC nodes from the GLDPC Tanner graph. Our next goal is
to predict the asymptotic behaviour of the CJ,K,ν ensemble
under P-PD by extending the methodology proposed in [13]
to analyze the asymptotic behavior of LDPC ensembles under
PD. In [13], it is shown that if we apply the PD to elements
of an LDPC ensemble, then the expected DD of the sequence
of residual graphs can be described as the solution of a set
of differential equations. Furthermore, the deviation of the
process w.r.t. the expected evolution decreases exponentially
fast with the LDPC blocklength. This analysis is based on a
result on the evolution of Markov processes due to Wormald
[31]. The proof that the GLDPC asymptotic graph evolution
under P-PD can be predicted using the same result is given in
Appendix A. In this section, we introduce the notation used to
characterize the DDs of the residual Tanner graphs of GLDPC
ensembles with P-PD decoding and then present the system
of differential equations that describes the asymptotic GLDPC
graph evolution. In order to characterize the DDs of the
residual Tanner graphs of GLDPC ensembles is to augment the
DD notation introduced in Section II to differentiate between
GC nodes that have been tagged as decodable and those
tagged as non-decodable. In order to simplify the formulation,
we restrict ourselves to the case pw = 0 for w ≥ d + 2,
i.e., we consider component codes can only decode a certain
fraction of erasure patterns of degrees d and d + 1 and all
erasure patterns of degree below d. This may not be an
strong assumption. A search of the database [32], [33], which
implements MAGMA [34], confirms that all linear block codes
with largest minimum distance of blocklengths up to 15 bits
satisfy k ≤ d + 2. Since any linear block code can correct

some erasure patterns up to k erasures, it follows that these
codes have pw > 0 for w ≥ d + 2.

As introduced in Section II, any edge adjacent to a degree
i variable node is said to have left degree i, i = 1, . . . , J .
Similarly, any edge adjacent to a degree j SPC (GC) node is
said to have right SPC (GC) degree j, j = 1, . . . ,K. Given the
residual graph at the `-th iteration of the P-PD algorithm, let
L
(`)
i denote the number of edges with left degree i at iteration

`. Similarly, let R(`)
pj denote the number of edges with right

SPC degree j and R(`)
cj denote the number of edges with right

GC degree j at iteration `. For j ∈ {d, d+1}, we split R(`)
cj into

two terms, R̂(`)
cj and R̄(`)

cj , where R̂(`)
cj , j ∈ {d, d+ 1} denotes

the number of edges with right GC degree j connected to GC
nodes tagged as decodable, and R̄

(`)
cj denotes the number of

edges with right GC degree j connected to GC nodes tagged
as not-decodable. Clearly, we have R(`)

cj = R̂
(`)
cj + R̄

(`)
cj , j =

d, d + 1. Recall that E denotes the number of edges in the
original GLPDC graph.

In the following theorem, we make use of Wormald’s
theorem [31] to show that the DD of the sequence of residual
graphs during P-PD of a specific instance of the CJ,K,ν
ensemble converges to a function that can be computed by
solving a set of deterministic differential equations. More
specifically, for any element Z(`) ∈ {L(`)

i , R
(`)
pj , R

(`)
cj } i=1,...,J

j=1,...,K
there exists a constant ξ such that

P
(∣∣∣Z(`)/E− z(`/E)

∣∣∣ > ξE−
1
6

)
= O

(
e−
√
E
)
, (18)

where z(`/E) is the solution of a set of differential equations for
that element of the DD, and O

(
e−
√
E
)

summarizes terms of

order e−
√
E. See Appendix A for more details. In the following,

we use the notation Z(`)/E→ z(`/E) to describe convergence
in the sense of (18).

Theorem 4: Consider a BEC with erasure probability ε and
assume we use elements of the Cλ,ρp,ρc,ν code ensemble for
transmission. If we use P-PD with parameters (d, pd, pd+1),
then the DD of the residual graph at iteration ` converges to

L
(`)
i /E→ l

(τ)
i , i ∈ {1, . . . , J} (19)

R
(`)
pj /E→ r

(τ)
pj , j ∈ {1, . . . ,K} (20)

R
(`)
cj /E→ r

(τ)
cj , j ∈ {1, . . . ,K} and j /∈ {d, d + 1} (21)

R̂
(`)
cj /E→ r̂

(τ)
cj , j ∈ {d, d + 1} (22)

R̄
(`)
cj /E→ r̄

(τ)
cj , j ∈ {d, d + 1} (23)

where l(τ)i , r(τ)pj , r(τ)cj , r̂(τ)cj , r̄(τ)cj , and τ = `
E
∈ [0,

∑J
i=1 l

(τ)
i /i]

are the solutions to the following system of differential equa-
tions:
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dl(τ)i

dτ
= − il

(τ)
i

e(τ)

(
P

(τ)
p1 +

d+1∑
w=1

wP (τ)
cw

)
, (24)

dr(τ)pj

dτ
= P

(τ)
p1

(
(r

(τ)
p(j+1) − r

(τ)
pj )

j(a(τ) − 1)

e(τ)
− I[j = 1]

)
+

d+1∑
w=1

P (τ)
cw (r

(τ)
p(j+1) − r

(τ)
pj )

jw(a(τ) − 1)

e(τ)
, (25)

dr(τ)cj

dτ
= P

(τ)
p1

(
(r

(τ)
c(j+1) − r

(τ)
cj )

j(a(τ) − 1)

e(τ)

)
+

d+1∑
w=1

P (τ)
cw (r

(τ)
c(j+1) − r

(τ)
cj )

jw(a(τ) − 1)

e(τ)

−
d+1∑
w=1

P (τ)
cw wI[j = w], j /∈ {d, d + 1} (26)

dr̂(τ)cj

dτ
= P

(τ)
p1

(
(pj r̄

(τ)
c(j+1) + r̂

(τ)
c(j+1) − r̂

(τ)
cj )

j(a(τ) − 1)

e(τ)

)
+

j+1∑
w=1

P (τ)
cw Ţ, j ∈ {d, d + 1} (27)

dr̄(τ)cj

dτ
= P

(τ)
p1

(
((1− pj)r̄(τ)c(j+1) − r̄

(τ)
cj )

j(a(τ) − 1)

e(τ)

)
+

j+1∑
w=1

P (τ)
cw Ŗ, j ∈ {d, d + 1} (28)

where

Ţ = (pj r̄
(τ)
c(j+1) + r̂

(τ)
c(j+1) − r̂

(τ)
cj )

jw(a(τ) − 1)

e(τ)
− wI[w = j],

(29)

Ŗ = ((1− pj)r̄(τ)c(j+1) − r̄
(τ)
cj )

jw(a(τ) − 1)

e(τ)
− wI[w = j].

(30)

In (24)-(30), I[·] denotes the indicator function, and

e(τ) =
J∑
i=1

l
(τ)
i =

K∑
j=1

[r
(τ)
pj + r

(τ)
cj ], (31)

a(τ) =
∑
i

il
(τ)
i /e(τ), (32)

P
(τ)
p1 =

r
(τ)
p1

s(τ)
, (33)

Pcj(τ) =


r
(τ)
cj /j

s(τ)
j < d

r̂
(τ)
cj /j

s(τ)
j ∈ {d, d + 1}

(34)

s(τ) = r
(τ)
p1 +

d−1∑
w=1

r
(τ)
cw

w
+
r̂
(τ)
cd

d
+
r̂
(τ)
c(d+1)

d + 1
. (35)

The initial conditions of the system of differential equations
(24)-(28) are given by

l
(0)
i = ελi, (36)

r
(0)
pj =

∑
α≥j

ρpα

(
α− 1

j − 1

)
εj(1− ε)α−j , (37)

r
(0)
cj =

∑
α≥j

ρcα

(
α− 1

j − 1

)
εj(1− ε)α−j , (38)

r̂(0)cν = pνr
(0)
cν , (39)

r̄(0)cν = (1− pν)r(0)cν (40)

for i = 1, . . . J , j = 1, . . . ,K, and ν = d, d + 1.
Proof: See Appendix A.

Using Theorem 4, we can predict the P-PD threshold for
the CJ,K,ν code ensemble by setting λi = I[i = J ] in (36),
ρpα = (1−ν)I[α = K] in (37), and ρcα = νI[α = K] in (38).
We then numerically search for the highest ε value for which
the function r(τ)p1 +

∑d−1
w=1 r

(τ)
cw /w + r̂

(τ)
cd /d + r̂

(τ)
c(d+1)/(d + 1)

remains strictly positive for any τ ∈ [0,
∑J
i=1 l

(τ)
i /i] such that

e(τ) > 0.

V. AN UPPER BOUND ON THE ITERATIVE-DECODING
THRESHOLD

For standard LDPC code ensembles, it is known that the BP
iterative decoding threshold is upper bounded by the so-called
stability condition (SC) [35]:

ε∗ ≤ [λ2 ρ
′(1)]

−1
, (41)

where ρ(x) is the right degree polynomial, ρ′(1) its derivative
at x = 1 and λ2 is the fraction of edges in the graph with
left degree equal to 2. In [36], Paolini, Fossorier, and Chiani
extended the bound for GLDPC code ensembles by performing
a Taylor expansion of the asymptotic GLDPC EXIT function.
In particular, they proved that if the GLDPC code ensemble
only contains generalized component codes with d ≥ 3, then
the iterative decoding threshold is upper bounded by

ε∗ ≤
[
λ2 ρ

′
p(1)

]−1
, (42)

where

ρp(x) =
∑
j≥2

ρpjx
j−1, (43)

and ρpj , as defined in Section II, is the fraction of edges in
the GLDPC Tanner graph connected to degree-j SPC nodes.
For the CJ,K,ν ensemble with J = 2, this bound simplifies to

ε∗ ≤ 1

(K − 1)(1− ν)
, (44)

while for J > 2 this bound is non-informative (it is infinite)
since λ2 = 0.
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TABLE I
BASE DDS, THEIR DESIGN RATES AND ITERATIVE DECODING

THRESHOLDS UNDER PD

Base DD K R0 ε0 Gap to capacity (1− R0 − ε0)
(2, 6)-regular 6 2/3 0.206 0.127
(2, 7)-regular 7 5/7 0.167 0.119
(2, 8)-regular 8 3/4 0.147 0.103
(2, 15)-regular 15 13/15 0.071 0.062

VI. ANALYSIS OF THE CJ,K,ν ENSEMBLE UNDER P-PD

In this section, we study the asymptotic performance of
the CJ,K,ν ensemble for different base DDs as we vary the
fraction ν of GC nodes in the graph. We use high rate base
DDs that correspond to regular LDPC code ensembles with
variable degree equal to J = 2. Further examples with J > 2
are discussed in Sections VII-B and IX. We summarize the
parameter of the base DD considered here in Table I. We
denote by ε0 the PD threshold of the base LDPC ensemble.
Recall that pw = 1 for w ≤ d − 1 and pw = 0 for
w ≥ d+2. In order to determine pd, pd+1, we use the database
[32], [33] to design block codes with the largest minimum
distance. For every K, we search for the code with the largest
minimum distance d, and we use the corresponding pd and
pd+1 parameters. Like this, we ensure that there exists at least
one linear block code that satisfies these requirements. We
use this specific block code as the reference of a family of
linear block codes with the same decoding capabilities. The
values found are listed in Table II and used as a reference
for a whole family of linear block codes. The corresponding
reference block codes are listed in Appendix C. Note that
despite having different blocklength and rate, many reference
block codes share the same pd, pd+1 parameters.

We construct CJ,K,ν ensembles by combining various base
DDs with the component code families summarized in Table
II. For each code ensemble, we compute the P-PD threshold
ε∗ as a function of ν.

TABLE II
FAMILIES OF COMPONENT LINEAR BLOCK CODES.

Code Family Index blocklength K d pd pd+1

I 6 3 0.8 0
II 6 4 0.8 0
III 7 3 0.8 0
IV 7 4 0.8 0
V 8 4 0.8 0
VI 8 4 0.9143 0.5714
VII 8 5 0.9643 0.75
VIII 15 3 0.9231 0.6154
IX 15 4 0.9231 0.6154

A. Results for (2, 6) and (2, 7) base DDs

Fig. 4 shows the computed P-PD threshold ε∗ of the CJ,K,ν
ensemble for a base DD (2, 6)-regular as a function of ν. We
consider GC nodes with minimum distance d equal to 3 and
4 and parameters given by Families I and II in Table II. We
also include the BD-PD threshold, which only depends on
the minimum distance d of the component codes and can be
computed by solving the system of differential equations in
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Fig. 4. P-PD and BD-PD thresholds as a function of ν for the (2, 6) base
DD.

Theorem 4 by setting pd = pd+1 = 0. First of all, observe that
the P-PD gains in threshold w.r.t. BD-PD are only significant
for large values of ν. Furthermore, for both P-PD and BD-PD,
using component codes with larger minimum distance (d = 4
instead of d = 3) pays off only for very large values of ν.

Since increasing ν also modifies the code rate R(ν) in (4),
the comparison in Fig. 4 can be misleading, as we cannot
directly evaluate the distance to the channel capacity. In fact,
not all values of ν are achievable, since they would give
rise to a negative rate R(ν). We overcome this issue by
directly comparing the asymptotic threshold and code rate,
both defined as parametric curves w.r.t. ν. Denote by ε∗(ν)
the threshold ε∗ as a function of ν ∈ [0, 1]. From Fig. 4 we
see that ε∗(ν) is a continuous, strictly increasing function of
ν and that for ν = 0 its value is equal to ε0, the threshold of
the base LDPC ensemble. The inverse of this function, which
can be obtained numerically, is denoted by ν(ε∗) and provides
the minimum fraction of GC nodes in the graph required to
achieve an ensemble threshold at least ε∗. Given the function
ν(ε∗) described above, we use Lemma 2 to determine bounds
on R(ν) for a given targeted decoding threshold ε∗. More
precisely, by using ν(ε∗) in (6), we obtain a converse bound on
the coding rate required to achieve a P-PD decoding threshold
equal to ε∗ using component codes with minimum distance
d. Similarly, using ν(ε∗) in (7), we obtain an achievable
bound on the coding rate required to achieve a P-PD decoding
threshold equal to ε∗ using linear component codes with
minimum distance d. We proceed along the same lines to
obtain bounds on the CJ,K,ν rate for the BD-PD thresholds.

In Fig. 5 (a) we plot these bounds as a function of ε∗,
both for P-PD and BD-PD, using Code Family I component
codes with minimum distance d = 3. We further include the
SC upper bound in (44). Observe that (44) coincides with the
rate-threshold converse bound in (6) up to ν ≈ 0.75.
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Fig. 5. In Fig. 5 (a), we plot the bounds on the CJ,K,ν coding rate in (6)
and (7) for the base DD (2, 6) and component codes of minimum distance
d = 3 as a function of the P-PD and BD-PD thresholds. In Fig. 5 (b), we
show their gap to channel capacity. We also indicate the P-PD threshold for
ν = ν̂.

In Fig. 5 (b), we show the gap to channel capacity computed
for each case, and indicate the threshold ε∗(ν̂) with ν̂ given
in (15). Since ε∗(ν) is monotonically increasing in ν, any
configuration with threshold larger than ε∗(ν̂) has a minimum
distance that grows linearly with the block length n. Observe
that the performance of both BD-PD and P-PD overlaps
for coding rates close to the original rate of the base DD,
i.e., for small values of ν. However, as ε∗(ν) increases, P-
PD significantly outperforms BD-PD. Furthermore, there are
values of ν for which the gap to capacity of P-PD is smaller
than that for the base LDPC ensemble under PD. For the (2, 6)
base DD, the minimum gap to capacity of P-PD, measured
using the achievable rate bound, is 0.0823 for a coding rate
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Fig. 6. Bounds on the CJ,K,ν coding rate in (6) and (7) for a base DD (2, 6)
and d = 4 component codes as a function of the P-PD and BD-PD thresholds.

of 0.1667. For ν = ν̂, the gap to capacity grows to 0.0987
but it is still below the base LDPC gap to capacity, which is
0.1273 according to Table I. Thus, for ν slightly above ν̂ we
are able to reduce the original gap to capacity and at the same
time obtain a good ensemble from minimum distance point of
view. Observe also that the region where the CJ,K,ν ensemble
outperforms the base LDPC ensemble is very narrow, and
it does not include the case where all check nodes are GC
nodes (ν = 1). In general, the minimum gap to capacity (even
considering the converse bound) is still substantial. This will
impact the finite-length performance of codes in the GLDPC
code ensemble, as can also be observed in Fig. 3. Nevertheless,
despite their regularity and structural simplicity, very-short
regular GLDPC code ensembles show remarkable performance
when combined with appropriate rate-matching outer codes for
ultra-reliable low-latency communications [24]. In addition, in
Section VII-B we extend our analysis to irregular GLDPC
code ensembles with optimized thresholds, which promise
improved finite-length scaling properties.

Fig. 6 reproduces the results for the Code Family II with
minimum distance d = 4. However, in this case the two
bounds are loose and it is uncertain whether we can find an
specific block component code in the family that is able to
operate close to the converse bound. The P-PD converse bound
now overlaps with the SC bound in the whole regime and, for
large ε∗(ν), it coincides with the capacity. Furthermore, the
bounds for P-PD and BD-PD overlap in a large region despite
the fact that P-PD using component codes from Family II
resolves degree-d erasure patterns with high probability (0.8).

In Fig. 7 we show the asymptotic behaviour of the CJ,K,ν
ensemble constructed using a (2, 7) base DD with d = 3
component codes. As predicted by Lemma 2, when using
component codes of blocklength K = 7 with minimum
distance d = 3, the converse and achievable bound on the
CJ,K,ν coding rate coincide. Thus, the existence of a linear
block component code that satisfies the properties of Code
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Fig. 7. In (a), we plot the bounds on the CJ,K,ν coding rate in (6) and (7) for
a base DD (2, 7) as a function of the P-PD and BD-PD thresholds. Note that
the bounds overlap in this case. In (b), we show the gap to channel capacity
for each case. We also indicate the P-PD threshold for ν = ν̂.

Family III and for which the CJ,K,ν ensemble asymptotically
achieves the results in Fig. 7 is guaranteed. Again, there is a
region where the gap to capacity of P-PD can be reduced with
respect to that of the base LDPC ensemble, which is roughly
aligned with the point where the P-PD threshold separates
from the SC upper bound in (44).

B. Results for higher-density base DDs

We finish this section by extending the above results to
base DDs with higher check degree and, thus higher ensemble
density. In Fig. 8(a), we show the asymptotic behavior of
the CJ,K,ν ensemble constructed using a (2, 8) base DD with
component codes in Code Families V, VI and VII (See Table

II). Observe first that the rate bounds for Code Families V and
VI coincide, even though Code Family VI has better decoding
capabilities. In both cases the bounds are loose, but we can
still observe a significant improvement w.r.t. the Code Family
VII, which has but very large (d = 5) minimum distance and,
hence, and small coding rate. This again illustrates the trade-
off between the threshold performance and the rate penalty
induced by considering lower rate GC nodes. In Fig. 8(b), we
consider a (2, 15) base DDs with a component code of Code
Family VIII (d = 3). In this case, as predicted by lemma 2,
the bounds coincide and the gap to capacity is minimized at
a coding rate R ≈ 0.54 and threshold ε∗ ≈ 0.379, resulting in
a gap capacity equal to 0.074. This is slightly above the gap
to capacity for the base LDPC ensemble (0.062). Also, at this
point the GLDPC ensemble does not have linear growth of the
minimum distance, since for this ensemble, ε∗(ν̂) = 0.493.

VII. SELECTING SPECIFIC COMPONENT CODES

By using the bounds on the CJ,K,ν code rate, we have
been able to assess the performance of CJ,K,ν ensembles for
a family of linear component codes. In certain scenarios the
proposed bounds on the CJ,K,ν code rate provide meaningful
design information about the asymptotic behavior of the en-
semble. The natural question that arises at this point is whether
we can find specific component codes within the family that
outperform the achievable bound in (7), reducing the gap to
the rate converse bound in (6). In this section, we analyze the
asymptotic performance of CJ,K,ν when component codes are
chosen from the the list of reference linear block component
codes summarized in Table III. The construction of these linear
block codes is detailed in [32], and their generator matrix is
given in Appendix C. We use the notation R-I to denote the
reference linear block code of Code Family I.

TABLE III
REFERENCE COMPONENT CODES. THE PARAMETER k DESCRIBES THE

NUMBER OF ROWS IN THE PARITY-CHECK MATRIX.

Code index Blocklength K k Rate Code family in Table II
R-I 6 3 1/2 I
R-II 6 4 1/3 II
R-III 7 3 4/7 III
R-IV 7 4 3/7 IV
R-V 8 4 1/2 V
R-VI 8 5 3/8 VI
R-VII 8 6 1/4 VII
R-VIII 15 4 11/15 VIII
R-IX 15 5 2/3 IX

Once we fix a particular class of component codes to be
used at GC nodes, we can replace the CJ,K,ν code bounds
by the actual code rate in (4). In Fig. 9 we plot the CJ,K,ν
coding rate (using markers), and the SC upper bound and and
the achievable bound of the corresponding family of codes
for (2, 6) and (2, 7) base DDs. Results for (2, 8) and (2, 15)
base DDs can be found in Fig. 10. Observe that, with the
proposed component codes, we are able to perform at least
as good as the achievable bound of the corresponding family
of block component codes. In some cases, e.g. the (2, 8) base
DD, the achievable bound is significantly outperformed. Recall
that for the (2, 8) base DD the rate bounds in Fig. 8(a) are
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Fig. 8. We plot the bounds on the CJ,K,ν coding rate in (6) and (7) for a
base DD (2, 8) (Fig. 8 (a)) and (2, 15) (Fig. 8 (b)) as a function of the P-PD
threshold.

loose. While for the (2, 7) and (2, 15) codes the SC bound is
attained except for large values of ν, for the (2, 6) and (2, 8)
ensembles results suggest that there is still room for improving
the component code design.

Finally, in the same figures, we highlight those points for
which, asymptotically, the CJ,K,ν ensemble with the proposed
linear component codes under P-PD operates closer to channel
capacity than the base LDPC code ensemble under PD. For
both the (2, 6), (2, 7), and the (2, 8) base DDs we were able to
find such points. For the (2, 15) ensemble, the minimum gap to
capacity obtained is slightly above the one of the base LDPC
code ensemble under PD (0.0743 and 0.0623 respectively).

A. Growth Rate of the Weight Distribution

Upon selecting a specific block code, we can compute the
weight spectral shape G(α) in (14) using the tools proposed
in [18]. In Fig. 11, we plot G(α) for different values of ν,
computed for the (2, 6) base DD with Code R-I as component
code (Fig. 11 (a)) and the (2, 7)-regular base DD with Code
R-III as component code (Fig. 11 (b)). Recall that the critical
exponent codeword weight ratio is defined as α̂ , inf{α ≥
0|G(α) ≥ 0}. In the plots, we highlight α̂ with a star. By
Lemma 3, we have α̂ = 0 at ν = ν̂. As ν grows, α̂ grows,
too, and it achieves its maximum at ν = 1. These results
indicate that there is a trade-off between the gap to capacity
and α̂(ν), the critical exponent codeword weight ratio. As an
example, we include values of both quantities in Table IV for
the (2, 6)-regular base DD with Code R-I as component code.

TABLE IV
α̂, ε∗ AND GAP TO CAPACITY FOR DIFFERENT VALUES OF ν , COMPUTED

FOR THE (2, 6)-BASE DD WITH CODE R-I COMPONENT CODES

ν α ε∗ Gap to capacity
80% 0 0.768 0.0987
87.5% 0.2049 0.788 0.1287
90% 0.2556 0.792 0.1413
92.5% 0.3038 0.797 0.1530
95% 0.3526 0.801 0.1657
97.5% 0.4056 0.806 0.1773
100% 0.6078 0.809 0.1910

B. Extension to irregular GDLPC code ensembles

To finish this section, we present some further examples
using GLDPC code ensembles with irregular DD. Note that
the initial conditions in (36)-(40) of the P-PD asymptotic
analysis presented in Section IV already consider an arbitrarily
irregular DD, and hence the methodology presented is directly
applicable to irregular GLDPC code ensembles. As an exam-
ple, here we discuss two irregular GLDPC code ensembles:
• Ensemble I [19]. Rate 1/3, λ(x) = 0.2x + 0.7118x2 +

0.0882x4, ν∗ = 0.6719 and Hamming (7, 4) component
codes. Using ML decoding at GC nodes, the reported
threshold is 0.540.

• Ensemble II [20]. Rate 1/2, λ(x) = 0.80x2 + 0.01x5 +
0.01x7 + 0.18x9, ν∗ = 0.40 and Hamming (15, 11)
component codes. Using ML decoding at GC nodes, the
reported threshold is 0.466.

These ensembles have been constructed using numerical-
constrained optimization methods. In Fig. 12 we show the
results of the P-PD asymptotic analysis when we vary ν
around the fraction ν∗ defined above for each case. Observe
first that in both cases our results are consistent with the
thresholds computed in [19], [20]. In addition, they show that
the gap to capacity for Ensemble II can be reduced if we
slightly reduce the ensemble rate, i.e. by reducing ν to roughly
35% instead of 40%. For Ensemble I, the gap to capacity
is indeed minimized at exactly the point predicted in [19].
For comparison, we have included (2, X)-regular GLDPC
code ensembles with the same check node degrees (and thus
same graph density) as Ensembles I and II. Observe that
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Fig. 9. CJ,K,ν coding rate and achievable bound in (7) for (2, 6) and (2, 7) base DDs and component codes from Table II and III as a function of the P-PD
decoding threshold.
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Fig. 10. CJ,K,ν coding rate and achievable bound in (7) for (2, 8) and (2, 15) base DDs and component codes from Tables II and III as a function of the
P-PD decoding threshold.

while Ensemble II significantly outperforms the rate-threshold
tradeoff of the (2, 15)-GLDPC code ensemble with Code R-
VIII as component code, the (2, 7)-regular GLDPC code with
Code R-III as component code approximately attains threshold
0.540 at rate R = 1/3, but can reduce the gap to capacity as
we decrease the coding rate.

VIII. RANDOM PUNCTURING

We have proposed the P-PD algorithm as a flexible model to
analyze beyond-BD decoding algorithm at GC nodes. Observe
that for the P-PD algorithm, the evaluation of the coding rate
and the iterative decoding threshold are decoupled problems.
This provides a flexible analysis framework that allows the
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Fig. 11. In Fig. 11 (a), we plot the weight spectral shape G(α) in (14) of
the CJ,K,ν ensemble for a (2, 6) base DD and with Code R-I as component
code. In Fig. 11 (b), we plot the same quantity for the CJ,K,ν ensemble for
a (2, 7) base DD and with Code R-II as component code (b).

exploration of additional techniques to modify the designs
presented above and further reduce the gap to capacity. In
this section and the following one, we consider two relevant
examples. Specifically, in this section we consider the use
of random puncturing to accommodate the coding rate by
dropping the transmission of a fraction of coded bits [25]. In
the next section, a simple model of doubly-generalized LDPC
(DG-LDPC) code ensembles is analyzed [26], [27], [5].

As illustrated in [25], a linear code is punctured by re-
moving a set of columns from its generator matrix. After
puncturing at random a fraction ξ of the coded bits in the
CJ,K,ν ensemble, the resulting coding rate is

R(ν, ξ) =
R(ν)

1− ξ
, ξ ∈ [0, 1), (45)
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Fig. 12. P-PD asymptotic threshold and coding rates for different regular and
irregular GLDPC code ensembles with varying fraction ν of GC nodes in the
graph.

where we recall that R(ν) denotes the coding rate of the
original CJ,K,ν ensemble. In [25], the authors derive a simple
analytic expression for the iterative belief propagation (BP)
decoding threshold of a randomly punctured LDPC code
ensemble on the binary erasure channel (BEC). Following
their proof, it can be verified that the same results apply to a
randomly punctured GLDPC code ensemble. The result reads
as follows. Given a CJ,K,ν ensemble with iterative decoding
threshold ε∗(ν), the threshold ε∗(ν, ξ) of the GLDPC ensemble
that follows by randomly puncturing a fraction ξ of the coded
bits is related to the unpunctured case as follows:

ε∗(ν, ξ) = 1− 1− ε∗(ν)

1− ξ
. (46)

Observe that the larger the unpunctured threshold ε∗(ν) is,
the larger the threshold of the punctured ensemble will be.
In this regard, we can think of the design of a punctured
GLDPC ensemble as a two stage process: First, the GLDPC
code ensemble can be designed by choosing ν to minimize
the gap to capacity. Second, for a fixed ν, we can analyze
the overall gap to capacity as we increasing the code rate by
combining (45) and (46). We perform this experiment in Fig.
13 (a) for the (2, 6) and the (2, 7) base DDs and component
codes R-I and R-III, respectively. With markers we show the
CJ,K,ν threshold-rate curve as we increase the fraction of GC
nodes in the graph. Solid lines indicate the evolution of the
rate and threshold of the punctured ensemble for fixed ν
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as we increase the puncturing fraction ξ. Observe that with
puncturing it is possible to increase the coding rate and obtain
an iterative decoding threshold that is closer to capacity than
those obtained by the original CJ,K,ν ensemble. The accuracy
of the predicted threshold can be observed in Fig. 13 (b),
where we include both the threshold predicted by (46) (dashed
lines) and the simulated P-PD performance for the (2, 6) base
DD with component code R-I, n = 10000 bits, and different
values of the puncturing rate ξ (solid lines). We note that, once
we introduce puncturing, the SC upper bound in (44) is not
applicable anymore.

IX. DOUBLY-GENERALIZED LDPC CODES

A different technique that can potentially help to find a
better balance between coding rate and threshold is the inclu-
sion of generalized variable nodes, giving rise to a doubly-
generalized LDPC code ensemble [26]. In this section we
develop an example with a simple class of a DG-LDPC
ensemble. We modify the CJ,K,ν ensemble by replacing a cer-
tain fraction β of regular variable (RV) nodes by generalized
variable (GV) nodes, see Fig. 14. Degree-J RV nodes in the
CJ,K,ν graph can be seen as rate 1/J repetition code of block
length J , where the input to the repetition code represents one
bit of the DG-LDPC codeword. On the other hand, degree-
J GV nodes are characterized by a (J, m) linear block code,
where the input to the variable component code represents m

bits of the DG-LDPC codeword. Thus, the total block length
of the DG-LDPC code ensemble is n′ = (1 − β)n + βnm,
where n is the number of variable nodes (both RV and GV)
in the graph. In the following, we will assume J = 3, m = 2
and the following generator matrix for GV nodes:

G =

(
1 1 0
0 1 1

)
. (47)

Thus, each GV node encodes two bits of the DG-LDPC
codeword. Denote this ensemble by C3,K,ν,β . If the component
codes at GC nodes are linear block codes with a k-row parity
check matrix, an easy calculation shows that the coding rate
of the ensemble is

R(α, β) = 1− (1− R0)

(
1 + (k− 1)ν

1 + β

)
. (48)

As before, we characterize the component codes at GC nodes
by the triple (d, pd, pd+1). Furthermore, the code associated
with the generator matrix (47) has minimum distance 2 and
can only decode erasure patterns of weight one.

A. Decoding via P-PD

Suppose we use a random sample of the C3,K,ν,β code
ensemble to transmit over a BEC(ε). RV nodes are removed
from the graph with probability 1 − ε. Regarding GV nodes,
we have to consider the following three scenarios:
• With probability (1 − ε)2 the two DG-LDPC coded bits

are correctly received and the GV node can be removed
from the graph.

• With probability 2ε(1−ε), only one of the two coded bits
is received. Since the node is only encoding one unknown
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Fig. 13. In Fig. 13 (a), we show with markers the CJ,K,ν threshold-rate curve
for the (2, 6) and the (2, 7) base DDs and component codes R-1 and R-3,
respectively. Solid lines indicate the evolution of the rates and thresholds of
the punctured ensemble for a fixed ν as we increase the puncturing fraction
ξ. In Fig. 13 (b), we show the simulated P-PD performance for the (2, 6)
base DD with component codes R-1, n = 10000 bits, and different values of
the puncturing rate ξ. Vertical dashed lines indicate the thresholds predicted
by (46).

bit, note that we can replace the GV node in the graph
by a degree-2 RV node.

• With probability ε2 the GV node remains in the graph as
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Fig. 14. Tanner graph of the DG-LDPC code ensemble.

a degree-3 GV node.

Decoding will be performed via P-PD. Since the code spanned
by (47) can only decode one error, during the P-PD procedure
every GV node needs to lose at least two edges before it can
be removed from the graph. Further, once it loses one edge,
it can be replaced by a degree-2 RV node. Hence, a small
modification is required at step 2) in the P-PD Algorithm in
Section III. Now, it reads as follows:

2) Remove from the Tanner graph the check node with
the index drawn in Step 1). Further remove all connected
RV nodes, connected degree-2 GV nodes and all attached
edges.

B. Degree Distribution and Asymptotic Analysis

While no change is needed to describe the evolution of the
check nodes of the residual DG-LDPC code ensemble during
P-PD, additional definitions at the variable side are needed
to tackle both RV nodes and GV nodes. Let L(`)

r2 and L
(`)
r3

represent the total number of edges in the graph connected to
RV nodes of degree 2 and 3, respectively, after iteration ` of
the decoder. Further let L(`)

g3 be the total number of edges in
the graph connected to GV nodes of degree 3.

Theorem 5: Consider a BEC with erasure probability ε and
assume we use elements of the C3,K,ν,β code ensemble for
transmission. If we use P-PD with parameters (d, pd, pd+1),
then the DD of the residual graph at iteration ` converges in
the sense of (18) to

L
(`)
r2 /E→ l

(τ)
r2 , (49)

L
(`)
r3 /E→ l

(τ)
r3 , (50)

L
(`)
g3 /E→ l

(τ)
g3 , (51)

R
(`)
pj /E→ r

(τ)
pj , j ∈ {1, . . . ,K} (52)

R
(`)
cj /E→ r

(τ)
cj , j ∈ {1, . . . ,K} and j /∈ {d, d + 1} (53)

R̂
(`)
cj /E→ r̂

(τ)
cj , j ∈ {d, d + 1} (54)

R̄
(`)
cj /E→ r̄

(τ)
cj , j ∈ {d, d + 1} (55)

where l
(τ)
r2 , l

(τ)
r3 , l

(τ)
g3 r

(τ)
pj , r

(τ)
cj , r̂

(τ)
cj , r̄

(τ)
cj , τ = `

E
∈

[0,
∑J
i=1 l

(τ)
i /i] are the solutions to the system of differential

equations given by (24)-(28) using a(τ) = (3l
(τ)
r3 + 2l

(τ)
r2 +

l
(τ)
g3 )/e(τ) and

dl(τ)r2

dτ
= 2

(
l
(τ)
g3 − l

(τ)
r2

e(τ)

)(
P

(τ)
p1 +

d+1∑
w=1

wP (τ)
cw

)
(56)

dl(τ)r3

dτ
= −3l

(τ)
r3

e(τ)

(
P

(τ)
p1 +

d+1∑
w=1

wP (τ)
cw

)
(57)

dl(τ)g3

dτ
= −

3l
(τ)
g3

e(τ)

(
P

(τ)
p1 +

d+1∑
w=1

wP (τ)
cw

)
, (58)

Here, e(τ), P (τ)
p1 and P (τ)

cw are defined in (31), (33), and (34),
respectively. The initial conditions of the system of differential
equations in (24)-(28) and (101)-(103) are given by

l
(0)
g3 = ε2β, (59)

l
(0)
r3 = ε(1− β), (60)

l
(0)
r2 = 4βε(1− ε)/3 (61)

and by (37)-(40) evaluated at ε′ = ε(1 + β(1− ε)/3).
Proof: See Appendix B.

C. Results for the (3, 6) and (3, 7) base DDs

Fig. 15 shows the computed rate-threshold curve
parametrized by ν for both the C3,K,ν,β ensembles, both with
β = 0, i.e., when the code graph has no generalized variable
nodes, and with β = 0.3. We use a (3, 6) base DD with code
R-I (see Table III) as component code. While in the former
case the minimun gap to capacity is achieved for the base
LDPC code ensemble (with a gap to capacity of 0.0710), by
using a certain amount of generalized variable nodes we are
able to reduce this gap to 0.0592. Further, since all variable
nodes in the graph have degree 3, by Lemma 3, for any value
of ν the code ensemble has a minimum distance that grows
linearly with the block length. Fig. 16 shows similar results
for a (3, 7) base DD with Code R-III as component code.

X. CONCLUSIONS AND FUTURE WORK

We proposed the P-PD algorithm as a flexible and efficient
decoding algorithm that allows us to easily incorporate ML-
decoded GC nodes with specific properties into the asymptotic
analysis and still maintain a random definition of the graph
degree distribution. Using P-PD, asymptotic analysis of the
GLDPC ensemble is carried out by a simple generalization
of the original PD analysis by Luby et al. in [13]. The
only information required about the component code and its
decoding method is the fraction of decodable erasure patterns
of a certain weight. We consider a class of GLDPC code
ensembles characterized by a regular base DD where we
include a certain fraction of GC nodes, and we study the
tradeoff between iterative decoding threshold, coding rate
and minimum distance. We have shown that one can find
a fraction of GC nodes required that reduces the original
gap to capacity and yields a GLDPC ensemble with linear
growth of the minimum distance w.r.t. the block length.
Finally, we show how the P-PD analysis can be combined with
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Fig. 15. C3,K,ν,β coding rate for a (3,6) base DD with Code R-I as component code, GV nodes constructed using the generator matrix in (47), and β = 0.3.
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Fig. 16. C3,K,ν,β coding rate for (3,7) base DD, Code R-III component code, GV nodes constructed using the generator matrix in (47), and β = 0.3.

additional techniques to find a better balance between coding
rate and asymptotic gap to capacity. In particular, we consider
random puncturing and the use of generalized variable nodes.
We would like to emphasize that, in the proposed analysis
framework, the evaluation of both coding rate and of iterative
decoding threshold are decoupled problems. Consequently,
broader classes of component codes or improved decoding
methods at GC nodes can be incorporated in a systematic way.

Future lines of work include the analysis of GLDPC codes
with regular base DD and a certain fraction of GC nodes in
the finite-length regime. Due to their regularity of the DD, we
expect such codes to possess a robust finite-length behavior

compared to GLDPC code designs proposed in the literature,
characterized by capacity-achieving DDs.

APPENDIX A
WORMALD’S THEOREM AND THE PROOF OF THEOREM 4
Proving Theorem 4 is tantamount to showing that the

conditions of Wormald’s theorem are satisfied [31]. In this
case, Theorem 4 follows directly from (64) and (65) below.

A. Wormald’s theorem [31]
Let {Z(`)(a)}a≥1 be a d-dimensional discrete-time Markov

random process with state space {0, 1, . . . , baαc}d for α > 0
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and ` ∈ N+ denotes the time index. Further let Z(`)
i (a), i =

1, . . . , d denote the i-th component of Z(`)(a). Let D be some
open connected bounded set containing the closure of{

(z1, ..., zd) : P

(
Z

(0)
i (a)

a
= zi, 1 ≤ i ≤ d

)
> 0 for some a

}
.

(62)

We define the stopping time `D to be the smallest time index
` such that

(Z
(`D)
1 (a)/a, ..., Z

(`D)
d (a)/a) /∈ D (63)

Furthermore, let fi(·), i = 1, . . . , d, be functions from Rd+1

to R. Assume that the following conditions are satisfied:

1) (Boundedness) There exists a constant ν such that for
all i = 1, . . . d, ` = 0, . . . , `D − 1 and a ≥ 1,∣∣∣Z(`+1)

i (a)− Z(`)
i (a)

∣∣∣ ≤ ν.
2) (Trend functions) For all i = 1, . . . , d, ` = 0, . . . , `D−1

and a ≥ 1,

E
[
Z

(`+1)
i (a)/a− Z(`)

i (a)/a
∣∣∣Z(`)(a)/a

]
= fi

(
`/a, Z

(`)
1 (a)/a, ..., Z

(`)
d (a)/a

)
+O(1/a).

3) (Lipschitz continuity) Each function fi(· ), i = 1, . . . , d,
is Lipschitz continuous on D. Namely, for any pair
b, c ∈ D that belongs to such intersection, there exists a
constant κ such that

|fi(b)− fi(c)| ≤ κ
d+1∑
j=1

|bj − cj |.

Under these conditions, the following holds:

• The system of differential equations

∂zi
∂τ

= fi(τ, z1, ..., zd), i = 1, ..., d, (64)

has a unique solution for any initial condition
(b1, ..., bd) ∈ D.

• There exists a strictly positive constant ζ such that

P
(∣∣∣Z(`)

i (a)/a− zi(`/a)
∣∣∣ > ζa−

1
6

)
= O

(
e−
√
a
)

(65)

for i = 1, ..., d and 0 ≤ t ≤ tD, where zi(`/a) is the
solution to (64) for

bi = E[Z
(0)
i (a)]/a, i = 1, . . . , d. (66)

The result in (65) states that any realization of the process
Z

(t)
i (a) concentrates around the solution predicted by (64) in

the limit as a→∞. In the next subsection we show that this
theorem is suitable to describe the expected GLDPC graph
evolution of the P-PD.

B. Expected graph evolution under P-PD

To analyze the asymptotic behavior of the CJ,K,ν ensemble
under P-PD using Wormald’s theorem, we identify the Markov
random process Z(`)(a) in the previous section by the random
process G(`)(E), where

G(`)(E) =
{
L
(`)
i , R

(`)
pj , R

(`)
cj , R̂

(`)
cd , R̄

(`)
cd , R̂

(`)
c(d+1), R̄

(`)
c(d+1)

}
i=1,...,J

j=1,...,d−1,d+2,...,K

(67)

namely G(`)(E) is the random process that contains all terms
in the DD of the residual graph after `−1 iterations. Note that
any component in G(`)(E) belongs to the set {0, 1, . . . , E}, and
recall that E is the number of edges in the original GLPDC
graph. Thus, E will play the role of the parameter a. In this
subsection we prove that the evolution of G(`)(E) under P-PD
satisfies the three conditions of Wormald’s theorem stated in
the previous subsection. We start by computing the conditional
expected evolution of all elements in G(`)(E) after one P-PD
iteration. We define the following normalized quantities:

τ ,
`

E
, l

(`)
i ,

L
(`)
i

E
, r

(`)
pj ,

R
(`)
pj

E
,

r
(`)
cj ,

R
(`)
cj

E
, r̂(`)cν ,

R̂
(`)
cν

E
, r̄(`)cν ,

R̄
(`)
cν

E
, (68)

for i ∈ {1, . . . , J}, j ∈ {1, . . . , d− 1, d + 2, . . . ,K} and ν ∈
{d, d + 1}. We have that

r(`)cν = r̂(`)cν + r̄(`)cν , ν = d, d + 1, (69)

e(`) ,
J∑
i=1

l
(`)
i =

K∑
j=1

[r
(`)
pj + r

(`)
cj ], (70)

and e(τ) is the fraction of edges remaining in the residual
graph at time `. The P-PD process starts at ` = 0, after BEC
transmission and initialization. The following relation holds
between the quantities defined above at ` = 0 and the CJ,K,ν
DD described in Section II:

E[l
(0)
i ] = ελi, (71)

E[r
(0)
pj ] =

∑
α≥j

ρpα

(
α− 1

j − 1

)
εj(1− ε)α−j , (72)

E[r
(0)
cj ] =

∑
α≥j

ρcα

(
α− 1

j − 1

)
εj(1− ε)α−j , (73)

for i = 1, . . . J and j = 1, . . . ,K, where the expectation is
computed w.r.t. the CJ,K,ν ensemble and the channel output.
Upon initialization, every degree-d GC node is tagged as
decodable with probability pd, and every degree-(d + 1) GC
node is tagged as decodable with probability pd+1. Recall that
all GC nodes with degree less than d are decodable and, by
assumption, all GC nodes with degree more than d+1 are not
decodable. We thus have the following initial conditions

E[r̂
(0)
cj ] = pjE[r

(0)
cj ],

E[r̄
(0)
cj ] = (1− pj)E[r

(0)
cj ], j = d, d + 1. (74)

The equations (71)-(74) correspond to the initial conditions
in (66). Observe that since the largest GC degree is K and
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the largest variable node degree is J , the graph loses at
most JK edges per iteration. This is an upper bound on
the absolute variation of any component in G(`)(E) between
two consecutive iterations. Hence, Condition 1) of Wormald’s
theorem is satisfied.

Suppose we observe G(`)(E). To derive the conditional
expectations in Condition 2) of Wormald’s Theorem, the
so-called trend functions, we have to average among every
possible scenario that we can observe after a P-PD iteration.
According to Step 1) in Algorithm 2, we chose at random a
decodable check node. Let P (`)

p1 be the probability of selecting
a degree-one SPC node, and let P (`)

cj denote the probability of
selecting a decodable degree-j GC node, j = 1, . . . , d + 1.
By a simple counting argument, if the check node is selected
uniformly at random then

P
(`)
p1 =

r
(`)
p1

s(τ)
, (75)

P
(`)
cj =

r
(`)
cj /j

s(τ)
, j < d, (76)

P
(`)
cj =

r̂
(`)
cj /j

s(τ)
, j ∈ {d, d + 1}. (77)

In (75)-(77),

s(τ) = r
(`)
p1 +

d−1∑
w=1

r
(`)
cw

w
+
r̂
(`)
cd

d
+
r̂
(`)
c(d+1)

d + 1
(78)

is the normalized sum of decodable check nodes at the `-th
iteration.

1) Evolution of left edge degrees in the Tanner graph after
one P-PD iteration: Suppose we observe the residual graph
G(`) at iteration `. Our aim is to evaluate

E
[
L
(`+1)
i − L(`)

i

∣∣∣G(`)(E)
]
, (79)

for i = 1, 2, ..., J . Given the graph DD G(`), recall that P (`)
p1

denotes the probability of P-PD selecting a degree-one SPC
node in the current iteration, and P (`)

cj denotes the probability
of selecting a degree-j decodable GC node. We can decompose
the expectation in (79) according to each possible type of
check node to be removed, namely,

E
[
L
(`+1)
i − L(`)

i

∣∣∣G(`)(E)
]

= P
(`)
p1 E

[
L
(`+1)
i − L(`)

i

∣∣∣G(`)(E),Degp1
]

+
d+1∑
w=1

P (`)
cw E

[
L
(`+1)
i − L(`)

i

∣∣∣G(`)(E),Degcw
]
, (80)

where Degp1 indicates that the P-PD removes a degree-one
SPC node from the graph, and Degcw indicates that P-PD
removes a degree-w decodable GC node from the graph.
Computing the expectation in the first case is similar to the
derivation carried out in [13] for PD with LDPC ensembles.
Indeed probability that the edge adjacent to the removed
degree-one SPC node has left degree i is l(τ)i /e(τ). In such

a case, after deleting this variable node, the graph loses i− 1
additional edges adjacent to this variable node, so

E
[
L
(`+1)
i − L(`)

i

∣∣∣G(`)(E),Degp1
]

= − il
(`)
i

e(`)
. (81)

When the P-PD decoder removes a decodable degree-w GC
node, this node is connected to w variable nodes that are
also removed from the residual Tanner graph, along with their
connected edges (assuming the graph does not have double
edges). Note that left degrees of the w edges connected to
the removed GC node are, in general, not independent. Let
Xu ∈ {1, . . . , J} the RV that indicates the left degree of the
u-th edge, u = 1, . . . , w. Arbitrarily, we can decompose the
joint probability of X1, . . . , Xw as follows

P (X1, . . . , Xw)

= P (X1)P (X2|X1) · · ·P (Xw|X1, . . . , Xw−1). (82)

While P (X1 = x1) = l
(`)
x1 /e

(`), x1 = 1, . . . , J , the conditional
distribution of X2 given X1 is given by

P (X2 = x2|X1 = x1) =


l
(τ)
x2

e(`) − 1/E
x2 6= x1

l
(`)
x2 − 1/E

e(`) − 1/E
x2 = x1

, (83)

for x1, x2 ∈ {1, . . . , J}, where the 1/E terms appear due to the
fact that the DD has to be reparameterized after we condition
on X1 = x1. The above expression can be generalized to any
of the factors in (82) as follows:

P (Xu = xu|X1 = x1, . . . , Xu−1 = xu−1)

=
l(`)xu −

∑u
u′=1 I[xu′ = xu]

E

e(τ) − u− 1

E

=

(
l
(`)
xu

e(`)
−
∑u
u′=1 I[xu′ = xu]

e(`)E

)
e(`)E

e(`)E− (u− 1)
. (84)

Note that e(τ)E is the number of edges in the graph at time `.
Since u ≤ w < J and J is a constant independent of E, the
second factor in (84) is of order 1−O(1/E). Thus

P (X1 = x1, . . . , Xw = xw)

=
w∏
u=1

(
l
(`)
xu

e(`)
−
∑u
u′=1 I[xu′ = xu]

e(`)E

)
+O(1/E), (85)

using again that w ≤ d + 1 ≤ J where J is a constant
independent of E, and that l(`)xu /e(`) is independent of E, we
can write (82) as follows

P (X1 = x1, . . . , Xw = xw) =
w∏
u=1

l
(`)
xu

e(`)
+O(1/E). (86)

Thus, the joint probability distribution of the left degrees of
w edges connected to a degree-w GC node asymptotically
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factorizes as E→∞ and the number of edges with left degree-
i connected to the removed GC node can be roughly described
by a binomial RV with parameter l(`)i /e(`). Hence, we obtain

E
[
L
(`+1)
i − L(`)

i

∣∣∣G(`)(E),Degcw
]

= − iwl
(`)
i

e(τ)
+O(1/E).

(87)

Combining (87) and (81) with (80), we obtain

E
[
L
(`+1)
i − L(`)

i

∣∣∣G(`)(E)
]

= − il
(`)
i

e(τ)

(
P

(`)
p1 +

d+1∑
w=1

wP (`)
cw

)
+O(1/E)

, fi(G(`)(E)/E) +O(1/E). (88)

Note that fi(G(`)(E)/E) depends on every component in G(`),
normalized by E. Observe that fi(G(`)(E)/E) in (88) is of the
form required by Condition 2) of Wormald’s theorem.

2) Evolution of right edge degrees in the Tanner graph after
one P-PD iteration: Our goal now is to evaluate

E
[
R

(`+1)
pj −R(`)

pj

∣∣∣G(`)(E)
]
, j = 1, . . . ,K,

E
[
R

(`+1)
cj −R(`)

cj

∣∣∣G(`)(E)
]
, j ∈ {1, . . . ,K} \ {d, d + 1}

E
[
R̂

(`+1)
cj − R̂(`)

cj

∣∣∣G(`)(E)
]
, j ∈ {d, d + 1}

E
[
R̄

(`+1)
cj − R̄(`)

cj

∣∣∣G(`)(E)
]
, j ∈ {d, d + 1}

As before, we evaluated these terms by conditioning on
the type of check node to be removed at the current P-PD
iteration. Using (86), the average number of edges removed
from the graph after a degree-w GC node is removed is given
by ∆

(τ)
w , wa(`)+O(1/E), where a(`) =

∑
il
(`)
i /e(`). Among

those, w are connected to the same degree-w GC node, i.e.
they have right degree w. Consider the remaining ∆w − w
edges. Following a similar argument as in (86), it can be shown
that the joint probability distribution of their right degree
asymptotically factorizes as E → ∞ and that the deviation
in the finite case is dominated by O(1/E) terms. By taking
w = 1, the same arguments hold for the case where decoder
removes a degree-1 SPC node. In addition to this results, in
order to evaluate the expected variation in the number of edges
of certain right degree we also have to take into account that,
when we remove one edge from the graph, we modify the right
degree of the rest of edges still connected to the same SPC/GC
node. For example, if one of the edges that are removed from
the graph has right SPC degree j, after deleting such edge the
graph loses j edges with right SPC degree j and gains j − 1
edges with right SPC degree j − 1.

Following the above arguments, conditioned on G(`)(E), the
expected change in the number of edges with right SPC degree

j is given by the following expression

E
[
R

(`+1)
pj −R(`)

pj

∣∣∣G(`)(E)
]

= P
(`)
p1

(
(r

(`)
p(j+1) − r

(`)
pj )

j(a(`)− 1)

e(`)
− I[j = 1]

)
+

d+1∑
w=1

P (`)
cw (r

(`)
p(j+1) − r

(`)
pj )

j(wa(`)− w)

e(`)
+O(1/E)

, gpj(G(`)/E) +O(1/E). (89)

It can be further shown that the expected variation in the
number of edges of right GC degree j with j 6= d, d + 1
satisfies

E
[
R

(`+1)
cj −R(`)

cj

∣∣∣G(`)(E)
]

= P
(`)
p1

(
(r

(`)
c(j+1) − r

(`)
cj )

j(a(`)− 1)

e(`)

)
+

d+1∑
w=1

P (`)
cw

(
(r

(`)
c(j+1) − r

(`)
cj )

j(wa(`)− w)

e(`)
− wI[j = w]

)
+O(1/E)

, gcj(G(`)/E) +O(1/E). (90)

To analyze the expected change in the number of edges
connected to decodable and not decodable GC nodes of degree
d and d + 1, we have to take into account that if a non-
decodable degree-(d+2) GC node loses one edge, it becomes
decodable with probability pd+1. Similarly, if a non-decodable
degree-(d+1) GC node loses one edge, it becomes decodable
with probability pd. Also note that if a decodable GC node of
degree d+1 loses one edge, it becomes a decodable GC node
of degree d with probability 1. It follows that the expected
change in the fraction of edges connected to decodable and
not decodable GC nodes of degree j = d, d+ 1, are given by

E
[
R̂

(`+1)
cj − R̂(`)

cj

∣∣∣G(`)(E)
]

= P
(`)
p1

(
(pj r̄

(`)
c(j+1) + r̂

(`)
c(j+1) − r̂

(`)
cj )

j(a(`)− 1)

e(`)

)
(91)

+

j+1∑
w=1

P (`)
cw Ţ +O(1/E) , ĝcj(G(`)/E) +O(1/E),

E
[
R̄

(`+1)
cj − R̄(`)

cj

∣∣∣G(`)(E)
]

= P
(`)
p1

(
((1− pj)r̄(`)c(j+1) − r̄

(`)
cj )

j(a(`)− 1)

e(`)

)
+

j+1∑
w=1

P (`)
cw Ŗ +O(1/E) , ḡcj(G(`)/E) +O(1/E), (92)

where

Ţ = (pj r̄
(`)
c(j+1) + r̂

(`)
c(j+1) − r̂

(`)
cj )

j(wa(`)− w)

e(`)
− wI[w = j]

(93)

Ŗ = ((1− pj)r̄(`)c(j+1) − r̄
(`)
cj )

j(wa(`)− w)

e(`)
− wI[w = j].

(94)

Note that R̄(`)
c(d+2) = R

(`)
c(d+2) and R̂

(`)
c(d+2) = 0. Further,

observe that (88)-(94) are of the form required by Condition
2) of Wormald’s theorem.
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3) On the Lipschitz continuity of the trend functions in (88)-
(94): Condition 3) of Wormald’s theorem requires that the
trend functions in (88)-(94) are Lipschitz in the set of all
possible DDs. First, we note that if we would restrict the P-PD
to remove only decodable check nodes (either degree-1 SPC
nodes or GC nodes of one particular degree), then (88)-(94)
are still valid by simply setting the corresponding probabilities
P

(`)
p1 and P (`)

cj , j = 1, . . . , d+ 1 to either zero or one. In such
a case, (88)-(94) are equal up to a multiplicative constant to
the PD trend functions for LDPC codes in [13], hence they
are Lipschitz continuous. When we drop the restriction to
remove one particular type of decodable check node, then the
trend functions in (88)-(94) are convex the combinations of
Lipschitz continuous functions, with the coefficients given by
the functions P (`)

p1 and P
(`)
cj , j = 1, . . . , d + 1 in (75)-(77),

which are also Lipschitz continuous (note their similarity in
form with (81), which is Lipschitz continuous [13]). Since
they are all bounded functions, we conclude that Condition 3)
of Wormald’s theorem is also satisfied.

APPENDIX B
PROOF OF THEOREM 5

The proof of Theorem 5 closely follows that of Theorem 4
given in Appendix A. As before, it is sufficient to show that
the conditions of Wormald’s theorem are satisfied. Following
the definitions given in Section IX-B, the left DD of the
residual graph of the C3,K,ν,β code ensemble during P-PD has
three components: the number of edges connected to degree-2
or degree-3 RV nodes (L(`)

r2 and L
(`)
r3 respectively), and the

number of edges connected to degree-3 GV nodes (L(`)
g3 ). The

right DD of the residual graph has the same elements as those
defined for the CJ,K,ν ensemble in Appendix A-B. Thus, the
DD of the residual graph is defined by the random process

G(`)(E)

=
{
L
(`)
r2 , L

(`)
r3 , L

(`)
3g , R

(`)
pj , R

(`)
cj , R̂

(`)
cd , R̄

(`)
cd , R̂

(`)
c(d+1), R̄

(`)
c(d+1)

}
j=1,...,d−1,d+2,...,K . (95)

We define

l
(`)
r2 ,

L
(`)
r2

E
, l

(`)
r3 ,

L
(`)
r3

E
, l

(`)
g3 ,

L
(`)
g3

E
. (96)

After P-PD initialization, i.e. ` = 0, it can be shown that

E
[
l
(0)
g3

]
= ε2β, (97)

E
[
l
(0)
r3

]
= ε(1− β), (98)

E
[
l
(0)
r2

]
= 4βε(1− ε)/3. (99)

To evaluate (99), we compute the average number of GV nodes
for which one of the two DG-LDPC coded bits is received.
According to the generator matrix in (47), GV nodes can be
viewed as degree-2 variable nodes. Based on (97)-(99), the
average fraction of edges remaining in the graph after P-PD
initialization is

ε′ = ε(1− β) + 4βε(1− ε)/3 + ε2β = ε

(
1 +

β(1− ε)
3

)
.

(100)

We can further determine expected initial conditions of the
right DD of the residual graph after P-PD initialization by
using (37) and (39) and replacing ε by ε′.

By following a similar procedure as in Appendix A-B, it can
be shown that conditioned, on G(`)(E), the expected variation
in L(`)

r2 , L
(`)
r3 , and L(`)

3g after one P-PD iteration is given by

E
[
L
(`+1)
r3 − L(`)

r3

∣∣∣G(`)]
= −3l

(`)
r3

e(`)

(
P

(`)
p1 +

d+1∑
w=1

wP (`)
cw

)
+O(1/E), (101)

E
[
L
(`+1)
r2 − L(`)

r2

∣∣∣G(`)]
=

(
2l

(`)
g3

e(`)
− 2l

(`)
r2

e(`)

)(
P

(`)
p1 +

d+1∑
w=1

wP (`)
cw

)
+O(1/E), (102)

E
[
L
(`+1)
g3 − L(`)

g3

∣∣∣G(`)]
= −

3l
(`)
g3

e(`)

(
P

(`)
p1 +

d+1∑
w=1

wP (`)
cw

)
+O(1/E), (103)

where e(`) = l
(`)
r3 + l

(`)
g3 + l

(`)
g3 and P

(`)
p1 and P

(`)
cw are given

in (33) and (34) respectively. In (102), we have used that that
if a degree-3 GV node loses one edge, then the graph loses
3 edges with left GV degree 3 and gains 2 edges with left
RV degree 2. The conditional expected variation of the right
DD of the residual graph can be computed using (89)-(94) by
taking a(`) = (3l

(`)
r3 +2l

(`)
r2 +l

(`)
g3 )/e(`). Finally, proving that the

conditions in Wormald’s Theorem hold follows by the same
arguments as in the proof of Theorem 4 in Appendix A.

APPENDIX C
GENERATOR MATRICES OF REFERENCE CODES

Reference codes have been taken from the database [32],
[33], which implements MAGMA [34] to design block codes
with the largest minimum distance.

Code R-I: Rate-1/2 Hamming (6, 3) linear block code with
generator matrix

GR-I =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 (104)

Code R-II: Rate-1/3 Cordaro-Wagner 2-dimensional repe-
tition code of length 6 with generator matrix

GR-II =

(
1 1 1 1 0 0
0 0 1 1 1 1

)
(105)

Code R-III: Rate-4/7 Hamming (7,4) code with generator
matrix

GR-III =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 (106)
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Code R-IV: Rate-3/7 linear block code with generator
matrix

GR-IV =

0 1 1 1 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 (107)

Code R-V: Rate-1/2 extended (7, 4)-Hamming code with
extra parity bit, i.e., (8, 4) Hamming code. Another example
is a Quasi-Cyclic (8, 4, 4) code with generator matrix

GR-V =


1 0 0 1 0 1 0 1
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 0

 (108)

Code R-VI: Rate-3/8 cyclic linear block code with generator
matrix

GR-VI =

1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

 (109)

Code R-VII: Rate-1/4 Cordaro-Wagner 2-dimensional rep-
etition code of length 8 with generator matrix

GR-VII =

(
1 0 1 1 0 1 1 1
0 1 0 0 1 1 1 1

)
(110)

Code R-VIII: Rate-11/15 linear block code with generator
matrix

GR-VIII =

0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 1 1 0 0 0 0 0 0 0 1


(111)

Code R-IX: Rate-2/3 linear block code with generator
matrix

GR-IX =

0 1 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1 0 0 0 0 0 1 1
0 0 1 1 0 1 0 1 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 1 1


(112)
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University, École Polytechnique Fédérale de Lausanne (EPFL), Notre Dame
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