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Abstract—A framework of analogy between wiretap channels
(WTCs) and state-dependent point-to-point channels with non-
causal encoder channel state information (referred to as Gelfand-
Pinker channels (GPCs)) is proposed. A good (reliable and secure)
sequence of wiretap codes is shown to induce a good (reliable)
sequence of codes for a corresponding GPC. Consequently, the
framework enables exploiting existing results for GPCs to pro-
duce converse proofs for their wiretap analogs. The fundamental
limits of communication of two analogous wiretap and GP models
are characterized by the same rate bounds; the optimization
domains may differ. The analogy readily extends to multiuser
broadcasting scenarios, encompassing broadcast channels (BCs)
with deterministic components, degradation ordering between
users, and BCs with cooperative receivers. Given a wiretap BC
(WTBC) with two receivers and one eavesdropper, an analogous
Gelfand-Pinsker BC (GPBC) is constructed by converting the
eavesdropper’s observation sequence to a state sequence with
an appropriate product distribution, and non-causally revealing
the states to the encoder. The transition matrix of the (state-
dependent) GPBC is the appropriate conditional marginal of
the WTBC’s transition law, with the eavesdropper’s output
playing the role of the channel state. The analogy is exploited to
characterize the secrecy-capacity regions of the SD-WTBC, which
was an open problem until this work, based on the corresponding
solution of the SD-GPBC.

I. INTRODUCTION

Two fundamental, but seemingly unrelated, information-
theoretic models are that of the wiretap channel (WTC) and
the state-dependent point-to-point channel with non-causal
encoder channel state information (CSI). The discrete and
memoryless (DM) WTC (Fig. 1(a)) was introduced by Wyner
in his celebrated 1975 paper [1] that initiated the study of
physical layer security. Csiszár and Körner characterized the
secrecy-capacity of the WTC as

CWT(pY,Z|X) = max
pU,X

[
I(U ;Y ) − I(U ;Z)

]
, (1)

where pY,Z|X is the WTC’s transition matrix and the under-
lying distribution is pU,XpY,Z|X . The state-dependent channel
with non-causal encoder CSI is due to Gelfand and Pinsker
(GP) [2], and is henceforth referred to as the GP channel
(GPC). A single-letter capacity formula for any GPC qY |X,Z
with state distribution qZ was derived in [2]:

CGP(qZ , qY |X,Z) = max
qU,X|Z

[
I(U ;Y ) − I(U ;Z)

]
, (2)

where the joint distribution is qZqU,X|ZqY |X,Z . An interesting
question is whether the resemblance of (1) and (2) is coinci-
dental or is there an inherent relation between these problems.

This paper shows that an inherent relation is indeed the
case, by proposing a rigorous framework that links the WTC

M E X pnY,Z|X
Y D M̂

Z

(a)

M E X qnY |X,Z
Y D M̂

qnZ

Z

(b)

Fig. 1: (a) The WTC with transition probability pY,Z|X , where X is
the channel input and Y and Z are the channel outputs observed
by the legitimate receiver and the eavesdropper, respectively; (b)
The GPC with state distribution Z ∼ qZ , and channel transition
probability qY |X,Z , where X is the input and Y is the output.

and the GPC, establishing these two problems as analogous to
one another. Specifically, we prove that any good (reliable and
secure) sequence of codes for the WTC induces a good (reli-
able) sequence of codes of the same rate for a corresponding
GPC. This observation enables exploiting known outer bounds
on the GPC capacity to outer bound the secrecy-capacity of
an analogous WTC. While the solutions to the base cases
from Fig. 1 have been known for decades, many multiuser
extensions of these models remain open problems. Through the
analogy we derive a converse proof for the semi-deterministic
(SD) wiretap broadcast channel (WTBC), an open problem
until this work, thus characterizing its secrecy-capacity region.

To this end we extend the wiretap-GP analogy to multiuser
broadcasting scenarios. Given a WTBC pY1,Y2,Z|X (Fig. 2(a)),
with two legitimate receivers observing Y1 and Y2 and one
eavesdropper that intercepts Z, an analogous GP broadcast
channel (GPBC), shown in Fig. 2(b), is constructed as follows:

1) Converting the eavesdropper’s observation sequence Zn

to an independently and identically distributed (i.i.d.)
state sequence with some appropriate distribution;

2) Revealing the state sequence in a non-causal manner to
the encoder;

3) Setting the state-dependent BC pY1,Y2|X,Z (the condi-
tional marginal of the WTBC’s transition probability)
with Z in the role of the state.

The aforementioned relation between good sequences of codes
for analogous WTBCs and GPBCs remains valid, which
allows capitalizing on known GPBC capacity results to derive
converse proofs for their analogous WTBC.

The GPBC has been widely studied in the literature and
the capacity region is known for various cases [3]–[5]. Of
particular interest is the capacity derivation of the SD-GPBC
from [4]. WTBC also received considerable attention in the
literature [6]–[8]; however, solutions are known only for some
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Fig. 2: (a) The WTBC with transition probability pY1,Y2,Z|X , where
X is the channel input and Y1, Y2 and Z are the channel outputs
observed by the legitimate receivers and the eavesdropper, respec-
tively; (b) An analogous GPBC is obtained from the WTBC by
replacing the eavesdropper’s observation with a state random variable
Z ∼ qZ , revealing Z in a non-causal manner to the encoder and
setting the state-dependent BC pY1,Y2|X,Z as the conditional marginal
distribution of the WTBC’s transition probability pY1,Y2,Z|X .

special cases. To the best of our knowledge, the widest frame-
work of DM WTBCs for which tight secrecy-capacity results
are available is due to [8], where, in particular, the region for
the SD-WTBC was derived under a further assumption that
the eavesdropper is less noisy than the stochastic receiver. The
coding scheme therein remains feasible without this less-noisy
property; the converse proofs, however, relies on it. Since
no corresponding assumption was imposed while deriving the
SD-GPBC result from [4], our analogy-based proof method
characterizes the SD-WTBC secrecy-capacity regions without
assuming this ordering between the sub-channels. As a natural
extension to the analogy for the base case (WTCs versus
GPCs), the obtained secrecy-capacity regions are described by
the same rate bounds as their GPBC counterparts.

An important ingredient in proving the analogy is to adopt
the definition of WTC achievability from, e.g., [7], [9], [10],
that merges the reliability and security requirements into a
single demand on the joint distribution induced by a wiretap
code. Specifically, we require that a good sequence of wiretap
codes induces a sequence of joint distributions (on the mes-
sage, its estimate and the eavesdropper’s observation) that is
asymptotically indistinguishable in total variation from a target
measure under which:

1) The message M and its estimate M̂ are almost surely
equal (a reliability requirement);

2) The eavesdropper’s observation is independent of the
message and is distributed according to some product
measure, say qZ (a security requirement).

Denoting by P
(cn)

M,M̂,Z
the joint distribution of M , M̂ and Z

induced by a wiretap code cn, the above requirements mean
that for large block lengths P

(cn)

M,M̂,Z
≈ P

(cn)
M 1{M̂=M}q

n
Z ,

where the approximation is in total variation.
With that notion of achievability, we then use distribution

approximation arguments to show that such a sequence of
wiretap codes induces a sequence of reliable codes for the
analogous GPC. The GP encoder and decoder(s) are distilled
from the joint distribution induced by the wiretap code by
appropriately inverting it. Under this inversion, the asymp-
totic i.i.d. distribution of the eavesdropper’s observation Z

becomes the state distribution in the corresponding GPC. The
asymptotic independence of Z and the message(s) in the
WTC’s target distribution corresponds to the independence of
the message(s) and the state in a GP coding scenario. The
performance metric described above strongly related to the
more standard notion of achievability used in [11], where
performance of a wiretap code was measured via the error
probability and the effective secrecy metric. We show that
under mild conditions (namely, a super-linear decay of the
involved quantities), our definition of achievability and the one
from [11] are equivalent.

II. PRELIMINARY DEFINITIONS

We set up the problem of a WTBC, which is used in the next
section for developing the analogy paradigm. The notations
we use are from [12, Section II]. Let X , Y1, Y2 and Z be
finite sets (all alphabets throughout this work are assumed to
be finite) and let pY1,Y2,Z|X : X → P(Y1 × Y2 × Z) be a
transition probability distribution from X to Y1 × Y2 × Z .
The

(
X ,Y1,Y2,Z, pY1,Y2,Z|X

)
DM-WTBC is illustrated in

Fig. 2(a). The sender chooses a pair of messages (m1,m2)
uniformly at random from product set

[
1 : 2nR1

]
×

[
1 : 2nR2

]

and maps it onto a sequence x ∈ Xn (the mapping may be
random). The sequence x is transmitted over the DM-WTBC
with transition probability pY1,Y2,Z|X . The output sequences
y1 ∈ Yn

1 , y2 ∈ Yn
2 and z ∈ Zn are observed by Receiver

1, Receiver 2 and the eavesdropper, respectively. Based on
yj , j = 1, 2, Receiver j produces an estimate m̂j of mj .
The eavesdropper tries to glean whatever it can about the
transmitted messages (m1,m2) from z.

Definition 1 (WTBC Code) An (n,R1, R2)-code cn for the
WTBC with a product message set M(n)

1 × M(n)
2 , where for

j = 1, 2 we set M(n)
1 , [1 : 2nRj ], is a triple of functions(

fn, φ
(n)
1 , φ

(n)
2

)
such that fn : M(n)

1 × M(n)
2 → P(Xn) is

a stochastic encoder, and φ(n)
j : Yn

j → M(n)
j is the decoding

function for Receiver j, for j = 1, 2.

For any (n,R1, R2)-code cn =
(
fn, φ

(n)
1 , φ

(n)
2

)
, the in-

duced joint distribution is:

P (cn)(m[1:2],x,y[1:2], z, m̂[1:2]) =
1∣∣M(n)

1

∣∣∣∣M(n)
2

∣∣fn(x|m[1:2])

× pnY1,Y2,Z|X(y1,y2, z|x)1 ⋂
j=1,2

{
m̂j=φ

(n)
j (yj)

}, (3)

where m[1:2] , (m1,m2) and similarly for y[1:2] and m̂[1:2].
Our analogy relies on developing a unified perspective on

two different problems. We arrive at the desired unification
by defining achievability in a manner that is slightly dif-
ferent from typical definitions. Adopting the definition of
achievability from [7], [9], [10], we merge the reliability and
security requirements into a single requirement on the induced
distribution from (3) phrased in terms of total variation.

Definition 2 (WTBC Achievability) A pair of non-negative
real numbers (R1, R2) ∈ R2

+ is called achievable if there
exists a γ > 0, a probability distribution qZ ∈ P(Z) and
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a sequence of (n,R1, R2)-codes {cn}n∈N such that for any
sufficiently large n
∣∣∣
∣∣∣P (cn)

M[1:2],M̂[1:2],Zn
−p(U)

M(n)
1 ×M(n)

2

1{
M̂[1:2]=M[1:2]

}qnZ
∣∣∣
∣∣∣
TV

≤ e−nγ,

(4)
where p(U)

A is the uniform distribution over a finite set A.

Remark 1 (Rate of Convergence) The exponential rate of
convergence in (4) is not necessary. Any super-linear con-
vergence rate is sufficient for the purposes of this work.

Remark 2 (Equivalence to Standard Definitions) The
achievability definition in this work is equivalent to the
more standard notion of achievability used in [11]. Therein,
achievability was defined in terms of a vanishing average
error probability and the effective secrecy metric that requires

D
(
P

(cn)
M1,M2,Zn

∣∣∣
∣∣∣p(U)

M(n)
1 ×M(n)

2

qnZ

)

= IP (cn)(M1,M2;Z
n)︸ ︷︷ ︸

Strong secrecy measure

+ D
(
P

(cn)
Zn

∣∣∣
∣∣∣qnZ

)

︸ ︷︷ ︸
Stealth measure

(5)

is made arbitrarily small. See [12, Section III-B] for details.

Remark 3 (Target i.i.d. Distribution) The exact identity
of target i.i.d. distribution qnZ that approximates the
P

(cn)

Zn|M[1:2],M̂[1:2]
in (4) and (5) cannot always be a priori

determined solely based on the WTBC’s transition kernel
pY1,Y2,Z|X . The structure of qZ depends on the sequence of
codes {cn}n∈N, and, typically, it can be understood from
the proof of achievability.1 Accordingly, the definition of
achievability (Definition 2) does not shoot for a specific qZ;
rather, it just requires the existence of any qZ satisfying (4).

As usual, the secrecy-capacity region CWT(pY1,Y2,Z|X) is
the convex closure of the set of achievable rate pairs.

III. WIRETAP AND GELFAND-PINSKER ANALOGY

We describe the analogy principle for the base case of the
classic wiretap and GP channels. As a first simple example,
the analogy is used to derive a converse proof for the WTC’s
secrecy-capacity theorem. Then, we outline extensions of this
idea to multiuser (namely, broadcasting) scenarios. These
extension are subsequently used to prove the main secrecy-
capacity results of this work that are stated in Section IV.

A. The Base Case - A Unified Perspective

For simplicity of presentation consider the classic wiretap
and GPCs. These problems are related through the fact that
their target joint distributions share the same structure. To
see this, consider the pY,Z|X WTC, for which achievability is
defined similarly to Definition 2, and the point-to-point GPC

1For instance, for the degraded binary symmetric WTBC with crossover
probabilities pL and pE for the legitimate and eavesdropper channels, respec-
tively, where pL < pB , one may verify that qZ may be chosen as a product
Ber

(
1
2

)
measure. This is a consequence of the optimal input distribution that

attains that secrecy-capacity h(pE) − h(pL) being
(
Ber

(
1
2

))n.

with state distribution qZ and channel transition probability
qY |X,Z .2 The joint distribution induced by an (n,R)-code
cn = (fn, φn) for the wiretap channel is (see (3))

P̃ (cn)(m,x,y,z,m̂)=
1

|Mn|
fn(x|m)pnY,Z|X(y,z|x)1{

m̂=φn(y)
}

(6)
while the induced distribution for the GPC with respect to an
(n,R)-code bn = (gn, ψn), where gn : Mn × Z → P(X ) is
a stochastic encoder and φn : Yn → Mn is the decoder, is

Q̃(bn)(z,m,x,y, m̂) = qnZ(z)
1

|Mn|
gn(x|z,m)qnY |X,Z(y|x, z)

× 1{
m̂=ψn(y)

}. (7)

With respect to Definition 2, a non-negative real number R
is achievable for the WTC if there exist a distribution qZ ∈
P(Z) and a sequence of (n,R)-codes {cn}n∈N, such that

∣∣∣
∣∣∣P̃ (cn)

M,M̂,Zn
− p

(U)
Mn

1{M̂=M}q
n
Z

∣∣∣
∣∣∣
TV

−−−−→
n→∞

0. (8)

For the GPC, it can be shown that under mild conditions,3 a
vanishing error probability is equivalent to

∣∣∣
∣∣∣Q̃(cn)

M,M̂,Zn
− p

(U)
Mn

1{M̂=M}q
n
Z

∣∣∣
∣∣∣
TV

−−−−→
n→∞

0. (9)

For details, see [12, Section IV-A-1].
Having (8) and (9), it is evident that while each problem

has its own induced joint distribution, their target measures
share the same structure. In both problems, a “good” sequence
of codes induces a sequence of distributions (

{
P̃ (cn)

}
n∈N

or
{
Q̃(bn)

}
n∈N for the WTC or the GPC, respectively) that

approximates a target distribution where: (i) M = M̂ almost
surely; (ii) Z is independent of M . The first item is a
consequence of the reliability requirement in both problems.
For the second item, note that, while the independence of Z
and M is the security requirement in the WTC scenario, it
is actually part of the problem definition for the GPC. The
above described correspondence between the WTC and the
GPC stands at the heart of the analogy between them.

B. Analogy Between Multiuser Setups

As a natural extension to the ideas from Section III-A,
we now describe the analogy between WTBCs and GPBCs.
Consider a WTBC

(
X ,Y1,Y2,Z, pY1,Y2,Z|X

)
as defined in

Section II. An analogous GPBC is constructed in three steps
(see Fig. 2):

1) Replace the eavesdropper of the WTBC with a state
sequence Z ∼ qnZ , where qnZ is the target product
measure from the definition of WTBC achievability (see
Definition 2);

2) Non-causally reveal Z to the encoder;
3) Set the GPBC’s transition probability as the conditional

marginal distribution pY1,Y2|X,Z .
The produced analogous

(
Z,X ,Y1,Y2, qZ , pY1,Y2|X,Z

)

GPBC inherits the properties the WTBC possesses (e.g.,

2We adhere to the standard definitions for GPCs, see, e.g., [13, Setion 7.6].
3namely, a super-linear decay of the error probability
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deterministic components, order of degradeness, etc). For ex-
ample, if the WTBC is SD pY1,Y2,Z|X = 1{Y1=y1(X)}pY2,Z|X ,
then so is the GPBC since pY1,Y2|X,Z = 1{Y1=y1(X)}pY2|X,Z .
If one of the observed signals of the legitimate receivers is a
degraded version of the other, then the same ordering applies
for the signal intercepted by the receivers of the GPBC. The
analogy also accounts for WTBC settings with cooperative
components. Namely, if the receivers of the WTBC are
connected by, e.g., a finite-capacity bit-pipe, then the same
applies for the receivers of the analogous GPBC.

As for the base case, the capacity regions of two analogous
wiretap and GP BCs are described by rate bounds of the same
structure. The underlying distribution and the part thereof over
which we take the union is, however, different. This relation
between the regions is emphasized in Section IV.

Since GPBCs have been extensively treated in the literature
and capacity results are available for numerous cases [3]–[5],
the analogy allows leveraging these results to study corre-
sponding WTBCs. This is done by relating the performance
of two analogous models as follows. Due to lack of space, the
proof of the proposition is omitted; the reader is referred to
[12] for details.
Proposition 1 (Good Wiretap Codes and Good GP Codes)
Consider a

(
X ,Y1,Y2,Z, pY1,Y2,Z|X

)
WTBC. Let

(R1, R2) ∈ R2
+ be an achievable rate pair for the WTBC,

with a corresponding sequence of (n,R1, R2)-codes {cn}n∈N,
where cn =

(
fn, φ

(n)
1 , φ

(n)
2

)
, for each n ∈ N. For every

n ∈ N, define gn , P
(cn)
X|Z,M[1:2]

and ψ(n)
j , φ

(n)
j , for j = 1, 2,

where P (cn)
X|Z,M[1:2]

is the conditional marginal distribution of
X given (Z,M1,M2) with respect to P (cn) from (3) induced
by the n-th wiretap code cn. Then:

1) bn ,
(
gn, ψ

(n)
1 , ψ

(n)
2

)
is an (n,R1, R2)-code for the(

Z,X ,Y1,Y2, qZ , pY1,Y2|X,Z
)

GPBC.

2) The distribution Q
(bn)

Z,M[1:2],X,Y[1:2],M̂[1:2]
induced by bn

(analogous to Q̃(bn) from (7) with M[1:2], Y[1:2] and M̂[1:2]

in the roles of M , Y and M̂ therein, respectively) satisfies∣∣∣∣P (cn) −Q(bn)
∣∣∣∣
TV

≤ e−nγ , for any n large enough.

3) The sequence of codes {bn}n∈N attains Pe(bn) −−−−→
n→∞

0,
and consequently, (R1, R2) is an achievable rate pair for the
aforementioned GPBC.

Proof: For simplicity of notation, throughout the proof
we denote M12 , M[1:2], m12 , m[1:2], M̂12 , M̂[1:2],
m̂12 , m̂[1:2] and M12 , M(n)

1 × M(n)
2 . The first claim

is straightforward as for each n ∈ N, P (cn)
X|Z,M12

and ψ(n)
j , for

j = 1, 2, are valid (stochastic) encoder and decoders for the
GPBC. For (2), fix n ∈ N, and first observe

P
(cn)

M12,X,Y[1:2],Z,M̂12

(a)
= P

(cn)
M12,Z

· gn · pnY1,Y2|X,Z · 1⋂
j=1,2

{
M̂j=ψ

(n)
j (Yj)

}

(b)
= P

(cn)
M12,Z

·Q(bn)

X,Y[1:2],M̂12|M12,Z
(10)

where (a) follows by the factorization of P (cn) from (3), while
(b) is because bn =

(
gn, ψ

(n)
1 , ψ

(n)
2

)
and due to the structure

of Q(bn). Recalling that Q(cn)
Z,M12

= qnZ · p(U)
M12

, we have
∣∣∣∣P (cn) −Q(bn)

∣∣∣∣
TV

=
∣∣∣
∣∣∣P (cn)
M12,Z

− p
(U)
M12

· qnZ
∣∣∣
∣∣∣
TV

−−−−→
n→∞

0.

(11)
Claim (3) follows because Pe(bn) is upper bounded as

Pe(bn) =
∑

m12,m̂12:
m12 6=m̂12

[
Q(cn)(m12, m̂12)−p(U)

M12
(m12)1{

m̂12=m12

}
]

(a)
=

∣∣∣
∣∣∣Q(cn)

M12,M̂12
− p

(U)

M(n)
1 ×M(n)

2

1{
M̂12=M12

}
∣∣∣
∣∣∣
TV

(b)

≤
∣∣∣
∣∣∣Q(bn)

M12,M̂12
− P

(cn)

M12,M̂12

∣∣∣
∣∣∣
TV

+
∣∣∣
∣∣∣P (cn)

M12,M̂12
− p

(U)
M12

1{M̂12=M12}

∣∣∣
∣∣∣
TV

(c)

≤
∣∣∣
∣∣∣Q(bn)−P (cn)

∣∣∣
∣∣∣
TV

+
∣∣∣
∣∣∣P (cn)

M12,M̂12,Z
−p(U)

M12
1{M̂12=M12}q

n
Z

∣∣∣
∣∣∣
TV

where (a) is because ||p−q||TV =
∑
x: p(x)>q(x)

[
p(x)−q(x)

]

and since m12 6= m̂12 if and only if Q(cn)(m12, m̂12) ≥
p
(U)
M12

(m12)1{
m̂12=m12

}; (b) is the triangle inequality; (c)

uses Property (3-a) from [12, Lemma 1]. Finally, the RHS
above vanishes to 0 as n → ∞ by (11) and our hypothesis.

IV. THE SECRECY-CAPACITY REGION OF THE SD-WTBC

We give a single-letter characterization of the secrecy-
capacity region of the SD-WTBC. A WTBC is SD if
pY1,Y2,Z|X = 1{Y1=y1(X)}pY2,Z|X , where y1 : X × Z → Y1

and pY2,Z|X : X → P(Y2 × Z). Until now, the secrecy-
capacity region of this setup was known only under the
assumption that the stochastic channel is less noisy than the
channel to the eavesdropper [8, Theorem 5]. Our analogy-
based converse proof makes this assumption unnecessary.

Theorem 1 (Secrecy-Capacity) The secrecy-capacity region
of the

(
X ,Y1,Y2,Z,1{Y1=y1(X)}pY2,Z|X

)
SD-WTBC is given

by the union of rate pairs (R1, R2) ∈ R2
+ satisfying:

R1 ≤ H(Y1|Z), (12a)
R2 ≤ I(U ;Y2) − I(U ;Z), (12b)

R1 +R2 ≤ H(Y1|Z) + I(U ;Y2) − I(U ;Y1, Z) (12c)
where the union is over all pU,X ∈ P(U×X ), each inducing a
joint distribution pU,X1{Y1=y1(X)}pY2,Z|X . Furthermore, one
may restrict the auxiliary random variable U to take values
in a set U whose cardinality is bounded by |U| ≤ |X | + 1.

The direct part of Theorem 1 relies on a specialization of
the inner bound on the secrecy-capacity region of the WTBC
derived in [7, Theorem 3]. As the performance criterion in that
work corresponds to the definition of achievability used herein
(Definition 2), the result from [7] applies for our setup. Setting
Q = U0 = 0, U1 = Y1 and recasting U2 as U reduces the rate
bounds from [7, Theorem 3] to those from (12). Since Y1 =
y1(X), this choice of the auxiliaries

(
Q,U[0:2]

)
is feasible.

The analogy-based converse proof is given next.
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Converse Proof: Let (R1, R2) ∈ R2
+ be an achievable rate

pair for the SD-WTBC and {cn}n∈N be the corresponding
sequence of (n,R1, R2)-codes satisfying (4) for some γ > 0
and qZ ∈ P(Z), and any n large enough. By Proposi-
tion 1, {cn}n∈N gives rise to a sequence of (n,R1, R2)-codes
{bn}n∈N for the

(
Z,X ,Y1,Y2, qZ , pY1,Y2|X,Z

)
GPBC, each

inducing a joint distribution Q(bn), such that:
1)

∣∣∣∣P (cn) − Q(bn)
∣∣∣∣
TV

≤ e−nγ , for any large enough n,
where P (cn) is the distribution from (3) induced by cn.

2) Pe(bn) −−−−→
n→∞

0.

Furthermore, note that since the WTBC is SD, i.e., its transi-
tion probability factors as pY1,Y2,Z|X = 1{Y1=y1(X)}pY2,Z|X ,
the obtained GPBC is also SD. Namely, the GPBC’s transition
probability decomposes as pY1,Y2|X,Z = 1{Y1=y1(X)}pY2|X,Z ,
which falls under the framework of [4, Theorem 1].

The converse proof of [4, Theorem 1] for the SD-GPBC
shows that if {bn}n∈N is a sequence of (n,R1, R2)-codes with
a vanishing error probability, then

R1 ≤ 1

n

n∑

i=1

HQ(Y1,i|Zi) + ǫn (13a)

R2 ≤ 1

n

n∑

i=1

[
IQ

(
M2, Y

i−1
2 , Zni+1;Y2,i

)

− IQ
(
M2, Y

i−1
2 , Zni+1;Zi

)]
+ ǫn (13b)

R1 +R2 ≤ 1

n

n∑

i=1

[
IQ

(
M2, Y

i−1
2 , Zni+1, Y

n
1,i+1;Y2,i

)

+HQ(Y1,i|Zi)−IQ
(
M2, Y

i−1
2 , Zni+1, Y

n
1,i+1;Zi, Y2,i

)]
+ǫn,

(13c)
where the subscript Q indicates that the underlying distribution
is Q(bn) and ǫn , 2

n + Pe(bn)
∑
j=1,2Rj . Since the total

variation of two distribution upper bounds the total variation
between their marginals [12, Property (3-a), Lemma 1]),

∣∣∣
∣∣∣P (cn)
M2,Y i,Zn

i
−Q

(bn)
M2,Y i,Zn

i

∣∣∣
∣∣∣
TV

≤ e−nγ (14)

for large n, uniformly in i ∈ [1 : n]. Recall that over finite
probability spaces an exponentially decaying total variation
dominates the difference between two corresponding mutual
information terms (see [12, Lemma 3]). Combining this ob-
servation with (14), we may replace the information measures
from the RHS of (13) that are taken with respect to Q(bn)

with the same terms, but with an underlying distribution P (cn)

(which we denote by a subscript P ) plus a vanishing term.
Namely, there exists a δ > 0, such that for n large enough

R1 ≤ 1

n

n∑

i=1

HP (Y1,i|Zi) + ǫn + e−nδ (15a)

R2 ≤ 1

n

n∑

i=1

[
IP (Vi;Y2,i)−IP (Vi;Zi)

]
+ ǫn + 2e−nδ (15b)

R1 +R2 ≤ 1

n

n∑

i=1

[
HP (Y1,i|Zi) + IP (Vi, Ti;Y2,i)

− IP (Vi, Ti;Y1,i, Zi)
]

+ ǫn + 3e−nδ (15c)

where, for every i ∈ [1 : n], we have defined Vi ,(
M2, Y

i−1
2 , Zni+1

)
P

and Ti ,
(
Y n1,i+1

)
P

, with the subscript
P indicating that the underlying distribution is P (cn).

Letting n tend to infinity in (15), we see that any achievable
rate pair (R1, R2) must be contained in the convex closure of
the union of rate pairs satisfying:

R1 ≤ Hp(Y1|Z) (16a)
R2 ≤ Ip(V ;Y2) − Ip(V ;Z) (16b)
R1 +R2 ≤ Hp(Y1|Z)+Ip(V, T ;Y2)−Ip(V, T ;Y1, Z) (16c)

where the union is over all pV,T,X ∈ P(V × T × X ),
each inducing a joint distribution p , pV,T,XpY1,Y2,Z|X ,
i.e., (Y1, Y2, Z)−
−X−
− (V, T ) forms a Markov chain. This
Markov relation follows because (Y1,i, Y2,i, Zi) −
−Xi −
−(
M2, Y

n
1,i+1, Y

i−1
2 , Zni+1

)
, for all i ∈ [1 : n], under P (cn).

To conclude the proof it remains to show that there exists
an auxiliary random variable U , such that for any (V, T ):

Ip(V ;Y2) − Ip(V ;Z) ≤ Ip(U ;Y2) − Ip(U ;Z) (17a)
Hp(Y1|Z) + Ip(V, T ;Y2) − Ip(V, T ;Y1, Z)

≤ Hp(Y1|Z) + Ip(U ;Y2) − Ip(U ;Y1, Z). (17b)

This is established by closely following the arguments from
the end of the converse proof of the analogous SD-GPBC [4,
Section III], as outlined next. Setting U = V if p is such
that Ip(T ;Y2|V ) − Ip(T ;Y1, Z|V ) ≤ 0, and U = (V, T )
if Ip(T ;Y2|V ) − Ip(T ;Z|V ) ≥ 0 suffices. Finally, noting
that every distribution p must satisfy at least one of these
information inequalities concludes the converse.
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