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Abstract

In 2007, Carlet and Ding introduced two parameters, denoted by NbF and NBF , quantifying re-
spectively the balancedness of general functions F between finite Abelian groups and the (global)
balancedness of their derivatives DaF (x) = F (x + a) − F (x), a ∈ G \ {0} (providing an indicator
of the nonlinearity of the functions). These authors studied the properties and cryptographic signifi-
cance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F )
to NBF , and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-
Chabaud-Vaudenay’s bound and the covering radius bound. At the Workshop WCC 2009 and in its
postproceedings in 2011, a further study of these parameters was made; in particular, the first param-
eter was applied to the functions F + L where L is affine, providing more nonlinearity parameters.

In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency
were introduced by Panario et al. for permutations over finite Abelian groups to measure the injec-
tivity and surjectivity of the derivatives respectively. These authors also studied some fundamental
properties and cryptographic significance of these two measures. Further studies followed without that
the second pair of parameters be compared to the first one.

In the present paper, we observe that ambiguity is the same parameter as NBF , up to additive
and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and
unification of the results on NBF , respectively on ambiguity, which have been obtained in the five
papers devoted to these parameters. We generalize some known results to any Abelian groups and we
more importantly derive many new results on these parameters.

Keywords: Derivative Imbalance, Ambiguity, Deficiency, Nonlinearity, Differential Uniformity
2010 MSC: 94A60, 20K01, 11T06

1. Introduction

Functions between two finite Abelian groups play a very important role due to their applications in
combinatorics, error correcting coding theory, and cryptography. In combinatorial design, the graph of
each perfect nonlinear function from a finite Abelian group to one of its normal subgroups can give rise
to a semiregular relative difference set [Pot04]. In error correcting coding theory, every binary linear
code of dimensionm and length 2n for some positive integers n andm, can be associated with an (n,m)-
function (the code being identified with the set of its component functions), and vice versa. More
generally, important linear or unrestricted codes (Reed-Muller, Kerdock codes [MS77]) are defined
as sets of Boolean functions. In modern cryptography, confusion and diffusion are two fundamental
properties of secure ciphers identified by Shannon. Confusion is reflected in the nonlinearity (with
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diverse meanings of this term, the parameter explicitly called nonlinearity being more related to the
linear attack - see below - and other nonlinearity parameters being related to other attacks) of the
primitives in the cryptosystem which are not linear, since linear systems are generally easy to break.
Currently, since vectorial Boolean functions can easily provide confusion, they are commonly used
to serve as cryptographic primitives, for instance, as Substitution boxes (S-boxes), to make a system
secure. AES is an example, which uses a function from F

8
2 to F

8
2 , parallelized 16 times and composed

with different linear permutations, to serve as its nonlinear part. Another well-known example is the
Data Encryption Standard (DES), which uses eight S-boxes and each is a map from F26 to F24 . While
most modern cryptosystems use S-boxes that are based on vectorial Boolean functions, there are
situations (encrypting credit card numbers or social security numbers, for example) where nonbinary
data is a natural part of the application and one might use nonbinary functions in the cryptosystem.
For example, the Exponential Welch Costas (EWC) functions from Z256 to itself, as well as their
inverses, the Logarithmic Welch Costas (LWC) functions are used as S-boxes in SAFER family of
cryptosystems, proposed by Massey [Mas93, Mas94]. All of these functions can be viewed as maps
between two finite Abelian groups with possible different orders. This is one of the motivations for
studying the maps between any two finite Abelian groups.

The differential attack, introduced by Biham and Shamir [BS91], successfully applies when any
two plaintexts with fixed difference lead after the last-but-one round to outputs whose difference takes
a certain value with a probability significantly larger than the uniform probability. The larger the
probability of the differential, the more efficient is the attack. The related criterion on a function F
from G1 to G2 used as an S-box in the round functions of the cipher is that the output of its derivative

DaF (x) = F (x+ a)− F (x)

at any nonzero a ∈ G1 must be as uniformly distributed as possible.
Another most prominent attack is the linear cryptanalysis introduced by Matsui [Mat93]. The

nonlinearity NL(F ) of a function F quantifies its resistance to this kind of attack. This parameter
is equal to the minimum distance from the function to all affine functions. In the case of functions
from F

n
2 to F

m
2 , those attaining the maximum nonlinearity are called bent. They have been extensively

studied for their applications in cryptography, but have also been applied to spread spectrum, coding
theory, and combinatorial design.

An indicator, denoted by NbF , of functions F from an Abelian group (say A) to an Abelian group
(say B) was introduced in 2007 by Carlet and Ding [CD07] as a multiple (to make it an integer) of
the variance of the random variable equal to the size of the preimage of a generic element of B. No
name was given in [CD07] for this parameter. We shall call it the imbalance of F ; by definition, it is
null for balanced functions (such that all pre-images have the same size) and maximal for constant
functions. A deduced parameter NBF was further introduced for quantifying a kind of nonlinearity
as well, but related to the resistance to the differential attack, equal to the sum of the values of
parameter Nb for the derivatives of the function in all nonzero directions. We shall call it the derivative
imbalance of F . These two parameters have been studied in [CD07] in relationship with the general
nonlinearity parameter PF introduced in [CD04]. Lower and upper bounds, and characterizations of
the cases of equality have been derived. In the case of functions from F

n
2 to F

m
2 (that are potentially

usable as S-boxes) were provided a characterization by means of the fourth moment of the Walsh
transform and derived several bounds relating NBF and the nonlinearity NL(F ); in particular, an
upper bound which unifies Sidelnikov-Chabaud-Vaudenay’s bound and the covering radius bound was
obtained. More results have been shown in [Car11], in particular on the invariance of these parameters
under EA equivalence and CCZ equivalence, and on the characterization of perfect nonlinear (PN)
and almost perfect nonlinear (APN) functions (which are important because they are resistant to
differential cryptanalysis and for some of them to linear cryptanalysis). Parameter Nb was also made
a nonlinearity parameter by considering all the values of NbF+L where L is any linear function and
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taking their maximum. Bounds were derived for this nonlinearity parameter. It was also shown that
the mean of L 7→ NbF+L is the same for all functions, but its variance is directly related to NBF and
depends then on F .

In a frequency-hopping radar or sonar system, the signal consists of one or more frequencies,
chosen from a set {f1, . . . , fn}, for transmission at each time interval in a set {t1, . . . , tn} of consecutive
intervals. Such a signal is conveniently represented by an n × n permutation matrix A, where the n
rows correspond to the n frequencies, the n columns correspond to the n time intervals, and the entry
a, equals 1 if and only if frequency fi is transmitted in time interval tj (otherwise, aij = 0.) The
two-dimensional autocorrelation function C(r, s), called the ambiguity function in the radar and sonar
literature, should be thought of as the global “coincidence” between the actual returning noisy signal
and the shift of the transmitted signal by r units in time and s units in frequency. Costas arrays were
first considered by Costas [Cos84] as n × n permutation matrices with ambiguity functions taking
only the values 0 and (possibly) 1, and were applied to the processing of radar and sonar signals.
A Costas array can also be viewed as a permutation, say F , such that each row of the difference
triangle (listing the output differences, given a nonzero input difference) contains distinct entries. The
injectivity of DaF reduces the ambiguity of locating a time and frequency shifted echo of the original
signal. Similarly for maps between Abelian groups of the same cardinality, a function F is perfect
nonlinear if DaF is injective and almost perfect nonlinear (APN) if DaF is at worst 2 to 1. Motivated
by the study of Costas arrays and these special functions, a parameter called ambiguity and denoted by
A(F ) of a given bijective mapping F on a finite Abelian group G was introduced in 2010 by Panario
et al. [PSW10, PSSW11, PSS+13] to measure the injectivity of the derivatives DaF : G → G for
all nonzero a ∈ G (for a general function, it measures the imbalance of the derivatives). A second
(less important) parameter called deficiency and denoted by D(F ) was also introduced to measure the
surjectivity of the derivatives. The lower the row-a ambiguity of F , the closer to be injective is the
derivative DaF . Similarly, the lower the row-a deficiency, the closer to be surjective is the derivative
DaF . Fundamental results on the ambiguity and deficiency of functions such as their optimality,
CCZ-equivalence, as well as the connection with nonlinearity were studied.

Although the motivations of the two indicators NBF and ambiguity A(F ) are different, we shall
see that ambiguity introduced by Panario et al. in 2010 is in fact equivalent to NBF introduced in
2007 by Carlet and Ding, up to additive and multiplicative constants, that is, up to a rescaling. It
is then necessary to make a comparison between the results of [CD07, Car11] and those of [PSW10,
PSSW11, PSS+13], to see which ones are equivalent and which ones are not, and to state the unified
versions of these results. We also generalize to any map between any two finite Abelian groups G1

and G2 with possible different orders some results obtained in [CD07, Car11] for vectorial Boolean
functions and in [PSW10, PSSW11, PSS+13] for permutations. We systematically investigate these
two parameters for general maps between any two finite Abelian groups G1 and G2, including their
lower bounds and connections with nonlinearity, Fourier transforms, second order derivatives, among
others. Several new results are obtained.

The rest of this paper is organized as follows. In the next section, we recall the definitions and some
known results of these two parameters and explain why the parameter ambiguity is equivalent to the
indicator NBF . In Section 3, we compare the results on derivative imbalance and those on ambiguity
and we generalize several of them to functions between any two finite Abelian groups with possible
different orders. A generalization of the characterization of these parameters obtained in [Car11] in
terms of the fourth moment of their Fourier transform is also given. Then we further discuss some
connections between these parameters, the second-order derivative (which was also investigated in
[Car11]) and the autocorrelation of a function. In Section 4, we give lower bounds of these parameters
for arbitrary map F , as well as for the functions with differential uniformity k. Then we consider
maps over the finite fields with characteristic 2, and further results are presented. We also obtain
some explicit relations between deficiency and ambiguity for functions with at most 3 values in their
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differential spectrum. Conclusions and some open problems are given in Section 5.

2. Derivative Imbalabnce and Ambiguity of Mappings Between Abelian Groups

Let G1 and G2 be two finite Abelian groups (written additively) with orders |G1| and |G2|, respec-
tively. We denote by 0 the identity (neutral) element of an Abelian group. Let G∗

1 = G1 \ {0}, and
G∗

2 = G1 \ {0}. For a function F : G1 → G2, the (first-order) derivative of F with respect to a ∈ G1

is defined as
DaF : x ∈ G1 7→ F (x+ a)− F (x).

The second-order derivative of F with respect to a ∈ G1, b ∈ G1 is defined as

DaDbF : x ∈ G1 7→ F (x+ a+ b)− F (x+ a)− F (x+ b) + F (x).

One can readily see that DbDaF (x) = DaDbF (x) for all x ∈ G1.
For any a ∈ G1 and b ∈ G2, we define

δF (a, b) = |{x ∈ G1 : DaF (x) = b}| .

The maximum
∆F = max

a∈G∗
1,b∈G2

δF (a, b)

is called the differential uniformity of F . The function F is said to be almost perfect nonlinear (APN)
if ∆F ≤ 2.

We denote by Ni the number of pairs of nonzero input difference a and output difference b that
occur i times

Ni = |{(a, b) ∈ G∗
1 ×G2 : δF (a, b) = i}| .

The differential spectrum of F is the set:

DF = {N0, N1, . . . , N∆F
}.

Obviously, the differential spectrum of F satisfies

∆F∑

i=0

Ni = (|G1| − 1) |G2| (1)

and

∆F∑

i=0

i×Ni = (|G1| − 1) |G1| . (2)

2.1. Derivative Imbalance and Ambiguity

When two finite Abelian groups G1 and G2 have different orders, bijections between them of course
do not exist and the proper concept generalizing the notion of bijectivity is balancedness. A function
is balanced if, for each b ∈ G2, it holds that

|{x ∈ G1 : F (x) = b}| = |G1|
|G2|

.

By definition, a necessary condition for the existence of balanced functions from G1 to G2 is that |G2|
be a factor of |G1|. A function F from G1 to G2 is perfect nonlinear if and only if all of its nonzero
derivatives are balanced in G1.
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Next we give the definitions of imbalance and derivative imbalance of a function, which were
introduced in 2007 by Carlet and Ding [CD07] (without that names be given) for quantifying the
balancedness of a function, respectively, of its derivatives. The imbalance is the variance of the
random variable b 7→

∣∣F−1(b)
∣∣ (where b ranges uniformly over G2), multiplied by the factor |G2|, so

that it be an integer when |G2| divides |G1|:
Definition 1 (See [CD07]). Let F be a function from G1 to G2. Then the imbalance of F is defined
as

NbF =
∑

b∈G2

(∣∣F−1(b)
∣∣ − |G1|

|G2|

)2

=
∑

b∈G2

∣∣F−1(b)
∣∣2 − |G1|2

|G2|
,

and the derivative imbalance of F is defined as

NBF =
∑

a∈G∗
1

NbDaF .

Note that

NBF =
∑

a∈G∗
1

∑

b∈G2

∣∣(DaF )
−1(b)

∣∣2 − (|G1| − 1)
|G1|2
|G2|

.

Independently, motivated by the study of Costas arrays, ambiguity and deficiency of a bijective
mapping are introduced in [PSW10]:

Definition 2 (See [PSW10]). Let F be a function from G1 to G2. Then the ambiguity of F is
defined as

A(F ) =

∆F∑

i=0

Ni

(
i

2

)
,

and the deficiency of F is defined as
D(F ) = N0.

By definition, it is easy to see that the ambiguity is equal to the total replication number of pairs
of x and y such that DaF (x) = DaF (y) for all a ∈ G∗

1. The deficiency is equal to the number of pairs
(a, b) ∈ G∗

1 × G2 such that DaF (x) = b has no solution. These parameters are closely related to the
balancedness of the derivatives, since it is easy to see that if a function has its output distributions of
all derivatives close to the uniform distribution, then ambiguity and deficiency are as low as possible.

2.2. Ambiguity as a Rescaling of Derivative Imbalance

In fact, ambiguity can be determined completely from NBF . We have:

A(F ) =

∆F∑

i=0

Ni

(
i

2

)
=
∑

a∈G∗
1

∑

b∈G2

(∣∣(DaF )
−1(b)

∣∣
2

)

=
1

2

∑

a∈G∗
1

∑

b∈G2

∣∣(DaF )
−1(b)

∣∣2 − 1

2

∑

a∈G∗
1

∑

b∈G2

∣∣(DaF )
−1(b)

∣∣

=
1

2

(
NBF + (|G1| − 1)

|G1|2
|G2|

)
− 1

2
(|G1| − 1) |G1| .

=
1

2
NBF +

1

2
(|G1| − 1)

(
|G1|2
|G2|

− |G1|
)
. (3)

Therefore, the two indicators are equivalent up to additive and multiplicative constants. One can
obtain the indicator A(F ) from the indicator NBF , and vice versa. In particular, if |G1| = |G2| then
A(F ) = 1

2NBF .
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2.3. Linearity and Nonlinearity

Given a complex number z ∈ C, |z| and z denote the absolute value and the conjugate of z,
respectively. Let G be a finite Abelian group. The Fourier transform of any complex-value function
Φ on G is defined by

Φ̂(χ) =
∑

x∈G
Φ(x)χ(x),

where χ is a character of G. It is well known that the characters of G form a group Gˆ isomorphic to
G. Denoting by χα the image of α ∈ G under an arbitrary but fixed isomorphism from G to Gˆ, then
we can write this as

Φ̂(α) =
∑

x∈G
Φ(x)χα(x).

As a result, we can consider Φ̂ to be defined on the group G.
Now we consider the function F between two finite Abelian groups G1 and G2. Again identifying

ψβ as the image of β under an arbitrary but fixed isomorphism from G2 to G2ˆ, then we define the
Fourier transform of F at α ∈ G1 and β ∈ G2 by

F̂ (α, β) =
∑

x∈G1

ψβ(F (x))χα(x).

The linearity of F is studied through the Fourier transform and is then given by the following
definition.

Definition 3 (See [Pot04, DRM10]). Let F be a function from G1 to G2, the linearity of F is
defined by

L(F ) = max
α∈G1,β∈G∗

2

|F̂ (α, β)|.

The corresponding nonlinearity is given by the following normalized measure.

NL(F ) = |G1| − L(F )
|G2|

.

It is noticed that the definition 3 of nonlinearity is normalized, which is different from the classical
definition of nonlinearity for a function from F2n to F2m when m > 1. For the sake of comparison with
known results, when considering the nonlinearity of a function between finite fields with characteristic
2, we always refer to the classic definition NL(F ) = 2n−1 − 1

2L(F ).
The following orthogonality relations for characters are well known:

Lemma 1 (See [LN97]). Let G be a finite Abelian group with identity 0, then the following two
identities hold:

∑

x∈G
χ(x) =

{
0, if χ 6= χ0

|G| , otherwise,

and
∑

χ∈Gˆ

χ(x) =

{
0, if x 6= 0

|G| , otherwise.

Assume that F is a function from G1 to G2, then we have that for any α ∈ G1 and β ∈ G∗
2,

|F̂ (α, β)|2 =


∑

x∈G1

ψβ(F (x))χα(x)




∑

y∈G1

ψβ(F (y))χα(y)




=
∑

x∈G1

∑

y∈G1

ψβ(F (x)− F (y))χα(y − x)

=
∑

x∈G1

∑

a∈G1

ψβ(−DaF (x))χα(a).

(4)

6



We still have the following Parseval’s relation
∑

α∈G1

|F̂ (α, β)|2 =
∑

α∈G1

∑

x∈G1

∑

a∈G1

ψβ(−DaF (x))χα(a)

=
∑

x∈G1

∑

a∈G1

ψβ(−DaF (x))


∑

α∈G1

χα(a)




= |G1|
∑

x∈G1

ψβ(−D0F (x))

= |G1|2 .

Hence, maxα∈G1,β∈G∗
2
|F̂ (α, β)| ≥

√
|G1|. It is trivial that |F̂ (α, β)| ≤ |G1|. So we have obtained

that √
|G1| ≤ L(F ) ≤ |G1| .

Functions with L(F ) =
√

|G1| are called perfect nonlinear.
Autocorrelation is a measure of the proximity between a function and its shift. It is a useful tool

to characterize the differential uniformity of a function. In the following we introduce the definition
of autocorrelation functions between any two finite Abelian groups.

Definition 4. Let F be a function from G1 to G2, then the autocorrelation function of F at α ∈ G1

and β ∈ G2 is defined as

CF (α, β) =
∑

x∈G1

ψβ(F (x+ α))ψβ(F (x)).

2.4. EA-equivalence and CCZ-equivalence

In the classical case of S-boxes, EA-equivalence and CCZ-equivalence are two relevant notions of
equivalence with respect to the differential and linearity properties of a function since they preserve
both the differential and the Fourier spectra. Next we give the general definitions of these two kinds
of equivalence, which were introduced in [PSS+13].

A function L : G1 7→ G2 is linear if L(x + y) = L(x) + L(y) for all x, y ∈ G1. A function
A : G1 7→ G2 is affine if A(x+ y) = A(x) +A(y) + c for a fixed constant c ∈ G2 and all x, y ∈ G1.

Let G1 and G2 be arbitrary groups. Two functions F1 and F2 : G1 7→ G2 are called extended affine
equivalent (EA-equivalent), if there exist affine permutations A1 : G1 7→ G1, A2 : G2 7→ G2 and an
affine function A3 : G1 7→ G2 such that F2 = A2 ◦ F1 ◦A1 +A3. In particular, if A3 = 0, then F1 and
F2 are called affine equivalent.

Two functions F1 and F2 : G1 7→ G2 are called Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent),
if there exists an affine permutation A : G1 × G2 7→ G1 × G2 that maps GF1 to GF2 , where GF1 =
{(x, F1(x)) ∈ G1 ×G2 : x ∈ G1} is the graph of F1, and GF2 = {(x, F2(x)) ∈ G1 ×G2 : x ∈ G1} is the
graph of F2.

Similarly as the S-boxes, we still have that EA-equivalence implies CCZ-equivalence. It was also
shown that the indicators NBF , ambiguity, deficiency, linearity and nonlinearity are invariant under
EA-equivalence and CCZ-equivalence [CCZ98, CD04, PSS+13].

3. Known Results and Their Generalizations

In this section, we recall the main known results on the two indicators, NBF and A(F ). Thanks to
the equivalence relation (3), some bounds on one indicator can be obtained or improved from the other
indicator. Then we further generalize the characterizations of these parameters obtained in [Car11]
in terms of the fourth moment of their Fourier transform and the second-order derivative to functions
between any two finite Abelian groups with different orders. We also discuss the connection between
these parameters and the autocorrelation function.
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3.1. Known Results

Firstly, the followings are some basic facts from [CD07].

Proposition 1 (See [CD07]). Let F be a function from G1 to G2. Then the following statements
hold:

1. NBF ≥ 0 with equality if and only if F is perfect nonlinear.

2. If G differs from F by an affine function, then NBF = NBG.

3. NBF ≤ (|G1| − 1)
(
|G1|2 − |G1|2

|G2|

)
with equality if and only if F is affine.

4. For any affine function A : G1 7→ G2, we have

NBF ≥ |G2|
(|G1| − 1)(|G2| − 1)

(
NbF+A −

(
|G1| −

|G1|
|G2|

))2

.

5. If we denote TF = max06=a∈G1 |Im(DaF )|, then

NBF ≥ |G1|2 (|G1| − 1)

(
1

TF
− 1

|G2|

)
. (5)

If the characteristic of G1 is 2, then the lower bound (5) becomes

NBF ≥ max

{
0, (|G1| − 1)

(
2 |G1| −

|G1|2
|G2|

)}
. (6)

For |G1| ≤ 2 |G2|, this bound is achieved by APN functions. In terms of ambiguity, we can restate the
above bounds as follows:

1. A(F ) ≥ |G1|−1
2

(
|G1|2
|G2| − |G1|

)
with equality if and only if F is perfect nonlinear.

2. A(F ) ≤ |G1|−1
2

(
|G1|2 − |G1|

)
with equality if and only if F is affine.

3. A(F ) ≥ |G1|(|G1|−1)
2

(
|G1|
TF

− 1
)
.

In particular, if the characteristic ofG1 is 2, thenA(F ) ≥ max
{

|G1|−1
2

(
|G1|2
|G2| − |G1|

)
,
|G1|(|G1|−1)

2

}
.

Furthermore, the case of S-boxes, namely G1 = F2n and G2 = F2m, are intensively studied. Some
bounds on the nonlinearity are deduced respectively from the indicator NBF and coding theory
[Car11].

Proposition 2 (See [Car11]). For any function F from F2n to F2m , the following statements hold:

1.

NL(F ) ≤ 2n−1 − 1

2

√
2n +

2m−n

2m − 1
NBF . (7)

2.

NL(F ) ≤ 2n−1 − 1

2

√
(2n − 1)2n+m−min{m,n−1} + 2n+m − 22n

2m − 1
. (8)
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3. When m < 2n − 2,

NL(F ) ≤ 2n−1 − m

2
× 2n−1

2n−1 − 1
.

4. When m < 2n − n,
NL(F ) ≤ 2n−1 − n−m.

5.
⌊

NL(F )−1
2

⌋

∑

i=0

(
2n

i

)
≤ 22

n−n−m−1.

The bound (7) can be restated as

NL(F ) ≤ 2n−1 − 1

2

√
2n +

2m−n+1

2m − 1
A(F )− 2n − 1

2m − 1
(2n − 2m).

When 1 ≤ m ≤ n− 1, the bound of (8) becomes the covering radius bound. When m ≥ n, it becomes
Sidelnikov-Chabaud-Vaudenay’s bound. Thus the bound of (8) is an unification of the two bounds.

When G1 and G2 have the same size, the bijections from G1 to G2 are studied frequently for their
practical application in encryption and decryption. However, perfect nonlinear functions cannot exist
in this case, and the lower bound, NBF ≥ 0, in Proposition 1 can never be achieved. In [PSSW11],
Panario et al. investigated the optimum lower bounds of the parameters ambiguity and deficiency in
this case, which says,

Proposition 3 (See [PSSW11]). Let G1 and G2 be two Abelian groups of order n with ι1 and ι2
elements of order 2, respectively. Let F : G1 → G2 be a bijection. Then

A(F ) ≥





2(n− 1), if n ≡ 1 (mod 2)

2(n− 2), if n ≡ 0 (mod 2) and ι1ι2 = 1

2(n− 1)− 3min{ι1,ι2}
2 + ι1ι2

2 , if n ≡ 0 (mod 2) and ι1ι2 > 1.

Therefore, the previous proposition gives a nontrivial improvement on the lower bound of indicator
NBF in this case, namely

NBF ≥





4(n− 1), if n ≡ 1 (mod 2)

4(n− 2), if n ≡ 0 (mod 2) and ι1ι2 = 1

4(n− 1)− 3min{ι1, ι2}+ ι1ι2, if n ≡ 0 (mod 2) and ι1ι2 > 1.

In general, this lower bound is sharp. A bijection from G1 to G2 whose ambiguity achieves this
lower bound is said to have optimum ambiguity. In [PSSW11], Panario et al. also obtained several
constructions which have optimum ambiguity or nearly optimum ambiguity in the cyclic group Zn

where n = pm− 1 and p is a prime number. Furthermore, in [PSS+13], Panario et al. investigated the
lower bound on the nonlinearity of permutations which achieve optimum ambiguity.

For the special case G1 = G2 = G, the lower and upper bounds on the ambiguity of differentially
k-uniform functions are also provided in [PSS+13].

Proposition 4 (See [PSS+13]). Let F : G→ G be a function with differential uniformity k. Suppose
further that |G| = n = rk+s, for some integers r, s with 0 ≤ s < k. Then the ambiguity of F satisfies

(
k

2

)
≤ A(F ) ≤ (n− 1)

(
r

(
k

2

)
+

(
s

2

))
.
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In terms of derivative imbalance NBF and with the same notation, Proposition 4 says that,

k(k − 1) ≤ NBF ≤ (n− 1)
(
rk2 + s2 − n

)
.

Note that when k 6= n (in other words, F is not an affine function), we always have that

rk2 + s2 < n2 = (rk + s)2 = r2k2 + s2 + 2rks.

Hence, Proposition 4 derives a nontrivial refinement on the upper bound NBF ≤ (n− 1)(n2 −n) that
presented in Proposition 1.

3.2. The Generalizations of Some Known Results

In the sequel we aim to systematically investigate these two parameters and their connections with
nonlinearity, Fourier transforms, second order derivatives, among others. Since most functions consid-
ered previously for these results are vectorial Boolean functions in [CD07, Car11] and permutations
in [PSW10, PSSW11, PSS+13], our study deals with the more general situation where F is any map
between any two finite Abelian groups G1 and G2 with possible different orders.

In the case of G1 = F2n , G2 = F2m , it is shown in [Car11] that

NBF =
∑

a∈F∗
2n

|{(x, y) ∈ F2n × F2n : DaF (x) = DaF (y)}| − (2n − 1)22n−m

=

∣∣∣∣∣

{
(x, x′, y, y′) ∈ (F2n)

4 :

{
x+ x′ = y + y′ 6= 0

F (x) + F (x′) = F (y) + F (y′)

}∣∣∣∣∣− (2n − 1)22n−m.

The following corollary is an analogue of the above result, which comes directly from the observation
below the definition of ambiguity. We shall use it frequently later.

Corollary 5. Let F be a function from G1 to G2. Then

NBF =
∑

a∈G1

|{(x, y) ∈ G1 ×G1 : DaF (x) = DaF (y)}| − |G1|2 − (|G1| − 1)
|G1|2
|G2|

,

or equivalently,

A(F ) =
1

2

∑

a∈G1

|{(x, y) ∈ G1 ×G1 : DaF (x) = DaF (y)}| − |G1|2 +
|G1|
2
.

In [CD07], when G1 = F2n and G2 = F2m , Carlet and Ding showed that

∑

u∈F2n

∑

v∈F∗
2m

|F̂ (u, v)|4 = 23n(2m − 1) + 2n+mNBF .

It is easy to generalize this equality to functions defined over any two finite Abelian groups. Next we
derive a characterization on these parameters by means of the fourth moment of its Fourier transform.
Then by (4), we have

∑

α∈G1

∑

β∈G2

|F̂ (α, β)|4 =
∑

α∈G1

∑

β∈G2


∑

x∈G1

∑

a∈G1

ψβ(−DaF (x))χα(a)




·


∑

y∈G1

∑

b∈G1

ψβ(−DbF (y))χα(b)



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=
∑

α∈G1

∑

β∈G2

∑

x,y,a,b∈G1

ψβ(DbF (y)−DaF (x))χα(a− b)

=
∑

x,y∈G1

∑

a,b∈G1


∑

β∈G2

ψβ(DbF (y)−DaF (x))




∑

α∈G1

χα(a− b)




= |G1|
∑

x,y∈G1

∑

a∈G1



∑

β∈G2

ψβ(DaF (y)−DaF (x))




= |G1| |G2|
∑

a∈G1

|{(x, y) ∈ G1 ×G1 : DaF (x) = DaF (y)}| .

By Corollary 5, we deduce that

Proposition 6. Assume that G1 and G2 are two finite Abelian groups. Let F be a function from G1

to G2. Then

NBF =
1

|G1| |G2|
∑

α∈G1

∑

β∈G2

|F̂ (α, β)|4 − |G1|2 − (|G1| − 1)
|G1|2
|G2|

,

or equivalently,

A(F ) =
1

2 |G1| |G2|
∑

α∈G1

∑

β∈G2

|F̂ (α, β)|4 − |G1|2 +
|G1|
2
.

By the Cauchy-Schwartz inequality and Parseval’s relation:

∑

β∈G2

∑

α∈G1

|F̂ (α, β)|4 =
∑

α∈G1

|F̂ (α, 0)|4 +
∑

β∈G∗
2

∑

α∈G1

|F̂ (α, β)|4

≥ |G1|4 +
∑

β∈G∗
2

(∑
α∈G1

|F̂ (α, β)|2
)2

|G1|

= |G1|4 + (|G2| − 1) |G1|3

(9)

and then by Propposition 6, we have NBF ≥ 0, which gives another proof of the bound given in
Proposition 1.

The characterization in Proposition 6 gives a nontrivial upper bound on the nonlinearity of a
function by its derivative imbalance or ambiguity. This is an analogue of bound (7) from Proposition
2.

Corollary 7. Assume that G1 and G2 are two finite Abelian groups. Let F be a function from G1 to
G2. Then

NL(F ) ≤ |G1|
|G2|

− 1

|G2|

√
|G1|+

|G2|
|G1| (|G2| − 1)

NBF ,

or equivalently,

NL(F ) ≤ |G1|
|G2|

− 1

|G2|

√
|G1|+

2 |G2|
|G1| (|G2| − 1)

A(F )− |G1| − 1

|G2| − 1
(|G1| − |G2|)

Remark 1. If F is the Gold function x2
i+1 over F22k , where k is odd and gcd(i, 2k) = 1, it is well

known that all the nonzero derivatives DaF are 4-to-1. Hence, we have A(F ) = 3 · 22k−1(22k − 1).
The bound in Corollary 7 is thus achieved because the Gold function has the best known nonlinearity
22k−1 − 2k. Note here we refer to the definition NL(F ) = 2n−1 − 1

2L(F ) over finite fields F2n .
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With respect to the autocorrelation function, By definition, we have

CF (α, β) =
∑

x∈G1

ψβ(DαF (x)).

Then,

∑

α∈G1

∑

β∈G2

|CF (α, β)|2 =
∑

α∈G1

∑

β∈G2

∑

x∈G1

ψβ(DαF (x))
∑

y∈G1

ψβ(DαF (y))

=
∑

α∈G1

∑

x∈G1

∑

y∈G1


∑

β∈G2

ψβ(DαF (x)−DαF (y))




= |G2|
∑

α∈G1

|{(x, y) ∈ G1 ×G1 : DαF (x) = DαF (y)}| .

Combining with Corollary 5, we give another characterization by the autocorrelation functions.

Proposition 8. Assume that G1 and G2 are two finite Abelian groups. Let F be a function from G1

to G2. Then

NBF =
1

|G2|
∑

α∈G1

∑

β∈G2

|CF (α, β)|2 − |G1|2 − (|G1| − 1)
|G1|2
|G2|

,

or equivalently,

A(F ) =
1

2 |G2|
∑

α∈G1

∑

β∈G2

|CF (α, β)|2 − |G1|2 +
|G1|
2
.

Let us now study the connection between these two parameters and its second-order derivative
of a function. Firstly, we recall the following result given by Carlet [Car11] for the case of vectorial
Boolean functions, namely for any function from F2n to F2m :

NBF =
∑

a,a′∈F2n

linearly indept

∣∣(DaDa′)
−1(0)

∣∣ − (2n − 1)(22n−m − 2n+1).

Similarly, for any function from G1 to G2,

∑

β∈G2

∑

a,b,x∈G1

ψβ(DaDbF (x)) =
∑

a,b,x∈G1



∑

β∈G2

ψβ(DaDbF (x))




= |G2|
∑

a∈G1

|{(b, x) ∈ G1 ×G1 : DaDbF (x) = 0}|

= |G2|
∑

a∈G1

|{(b, x) ∈ G1 ×G1 : DaF (x+ b) = DaF (x)}|

= |G2|
∑

a∈G1

|{(y, x) ∈ G1 ×G1 : DaF (y) = DaF (x)}| .

Therefore this derives another characterization by the second-derivative, and we state it in the following
proposition.

Proposition 9. Assume that G1 and G2 are two finite Abelian groups. Let F be a function from G1

to G2. Then

NBF =
1

|G2|
∑

β∈G2

∑

a,b,x∈G1

ψβ(DaDbF (x))− |G1|2 − (|G1| − 1)
|G1|2
|G2|

,
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or equivalently,

A(F ) =
1

2 |G2|
∑

β∈G2

∑

a,b,x∈G1

ψβ(DaDbF (x))− |G1|2 +
|G1|
2
.

For example, let us consider the monomial xp
i+pj over Fpn where p is odd (see Example 1 for even

p) and i ≥ j. For any a, b ∈ Fpn , the second-derivative is DaDbF (x) = (x+a+ b)p
i+pj − (x+a)p

i+pj −
(x + b)p

i+pj + xp
i+pj = ap

i

bp
j

+ ap
j

bp
i

= DaDbF (0), which is bilinear with respect to a and b. Then
we have

NBF =
1

pn

∑

β∈Fpn

∑

a,b,x∈Fpn

ψβ(DaDbF (0)) − p2n − pn(pn − 1)

=
∑

a,b∈Fpn

∑

β∈Fpn

ψβ(DaDbF (0)) − 2p2n + pn

= pn
∣∣∣{(a, b) ∈ Fpn × Fpn : ap

i

bp
j

+ ap
j

bp
i

= 0}
∣∣∣ − 2p2n + pn

= pn
∑

a∈F∗
pn

∣∣∣{b ∈ Fpn : ap
i

bp
j

+ ap
j

bp
i

= 0}
∣∣∣ − p2n + pn.

Let γ be a primitive element of Fpn and s = gcd(i − j, n). If a 6= 0, then the equation ap
i

xp
j

+

ap
j

xp
i

= 0 is equivalent to that
((

x
a

)pi−j

+ x
a

)pj
= 0. It is easy to see that the nonzero solutions satisfy

(
x
a

)pi−j−1
= −1. Note that p is odd, thus x

a ∈ 〈γ
pn−1

gcd(2(pi−j−1),pn−1) 〉 \ 〈γ
pn−1

gcd(pi−j−1,pn−1) 〉. The number of

solutions of equation ap
i

xp
j

+ap
j

xp
i

= 0 in Fpn is equal to gcd(2(pi−j − 1), pn− 1)− gcd(pi−j − 1, pn−
1) + 1. This is equal to ps if n

s is even, and equal to 1 otherwise. Therefore,

NBF =

{
pn(pn − 1)(ps − 1), if n

s is even

0, otherwise.

Actually, when n
gcd(i−j,n) is odd, the monomial xp

i+pj is perfect nonlinear (or planar) [DO68]. More-
over, for any DO polynomial over Fpn , we have

NBF =
∑

β∈Fpn

∑

a,b∈Fpn

ψβ(DaDbF (0)) − 2p2n + pn

= pn |{(a, b) ∈ Fpn × Fpn : DaDbF (0) = 0}| − 2p2n + pn.

Notice that by the definition of NBF , we have

NBF =
∑

a∈G∗
1

∑

b∈G2

∣∣(DaF )
−1(b)

∣∣2 − (|G1| − 1)
|G1|2
|G2|

=
∑

a∈G∗
1

∑

b∈G2

δ2F (a, b) − (|G1| − 1)
|G1|2
|G2|

=
∑

a∈G1

∑

b∈G2

δ2F (a, b)− |G1|2 − (|G1| − 1)
|G1|2
|G2|

. (10)

Combining Propositions 6, 8 and 9, we have the following generalized formula, which is firstly given
over finite fields with characteristic 2 by Nyberg in [Nyb94]. It provides a link between differential
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and linear cryptanalysis.

∑

a∈G1

∑

b∈G2

δ2F (a, b) =
1

|G1| |G2|
∑

α∈G1

∑

β∈G2

|F̂ (α, β)|4

=
1

|G2|
∑

α∈G1

∑

β∈G2

|CF (α, β)|2

=
1

|G2|
∑

β∈G2

∑

a,b,x∈G1

ψβ(DaDbF (x)).

(11)

For the rest of this section, we consider two special kinds of the finite Abelian groups. Firstly,
we consider the case where G1 = G2 = (Fq,+) with odd q. Let F be a permutation over Fq,
then we have NL(F ) ≥ 2(q − 1) by Proposition 3. Furthermore, if the permutation F has the
optimum derivative imbalance or ambiguity, it was shown [PSS+13, Theorem 4] that the nonlinearity

of F satisfies NL(F ) ≥ q−√
5q−4
q . Additionally, by Corollary 7, we can give an upper bound of the

nonlinearity of a permutation over Fq with the optimum derivative imbalance or ambiguity.

Corollary 10. Let G = (Fq,+) with q odd and let F be a permutation over G with optimum derivative
imbalance or ambiguity. Then the nonlinearity of F satisfies

q −√
5q − 4

q
≤ NL(F ) ≤ q −√

q + 4

q
.

When the G is a finite cyclic group of order n, we have the following similar results (the lower
bound was given in [PSS+13, Theorem 5]).

Corollary 11. Let G be a finite cyclic group of order n and let F be a permutation over G with
optimum derivative imbalance or ambiguity. Then the nonlinearity of F satisfies

1. when n is odd,
n−

√
5n− 4

n
≤ NL(F ) ≤ n−

√
n+ 4

n
;

2. when n is even,

n−
√
5n − 6

n
≤ NL(F ) ≤

n−
√
n+ 4− 4

n−1

n
.

4. New Results on These Indicators

In this section, we present some further results about the two indicators, NBF and A(F ), for any
map F from a finite Abelian group G1 to another finite Abelian group G2. First, we give lower bounds
of these parameters for arbitrary map F , as well as the functions with differential uniformity k. We
compare our results with what are previously known and comment on one case when our bounds
improves the previous results slightly. As an example, we consider the functions from F2n to F2m

when n is odd and m < n or n is even and n
2 < m < n, and give a lower bound on the fourth moment

of Fourier transform. We also obtain some explicit relations between deficiency and ambiguity for
functions with at most 3 values in differential spectrum. Finally, some further results are presented
in the particular case of S-boxes.
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4.1. General Groups

By Proposition 1 and Equation (3), we know that when |G2| divides |G1|,

NBF ≥ 0 or A(F ) ≥ (|G1| − 1) |G1|
|G1| − |G2|

2 |G2|
, (12)

with equality if and only if F is perfect nonlinear. However, when |G2| does not divide |G1|, there
does not exist perfect nonlinear functions between them. Next we give a general lower bound which
covers the case where |G2| does not divide |G1|.

Proposition 12. Assume that G1 and G2 are two finite Abelian groups. Let F be a function from G1

to G2. Then

NBF ≥ (|G1| − 1)

(⌈
|G1|2
|G2|

⌉
− |G1|2

|G2|

)
,

or equivalently,

A(F ) ≥ |G1| − 1

2

(⌈
|G1|2
|G2|

⌉
− |G1|

)
.

Proof. Let m = |G2|. We write G2 = {b1, b2, . . . , bm}. For any fixed a ∈ G∗
1, we denote

Ai = {x ∈ G1 : DaF (x) = bi}, 1 ≤ i ≤ m.

Then it is obvious that
m∑

i=1

|Ai| = |G1| .

By the Cauchy-Schwartz inequality, we have

|{(x, y) ∈ G1 ×G1 : DaF (x) = DaF (y)}| =
∣∣∣∣∣

m⋃

i=1

{(x, y) ∈ G1 ×G1 : x, y ∈ Ai}
∣∣∣∣∣

=

m∑

i=1

|{(x, y) ∈ G1 ×G1 : x, y ∈ Ai}|

=

m∑

i=1

|Ai|2 ≥
⌈
|G1|2
m

⌉
(13)

and when |G2| divides |G1|, the equality holds if and only if |A1| = |A2| · · · = |Am|, which means that
the derivative DaF is balanced. Hence,

∑

a∈G1

|{(x, y) ∈ G1 ×G1 : DaF (x) = DaF (y)}| =
∑

a∈G∗
1

|{(x, y) ∈ G1 ×G1 : DaF (x) = DaF (y)}| + |G1|2

≥
∑

a∈G∗
1

⌈
|G1|2
m

⌉
+ |G1|2

= (|G1| − 1)

⌈
|G1|2
m

⌉
+ |G1|2

and in the case where |G2| divides |G1|, the equality holds if and only if all of the nonzero derivatives
of F are balanced, this is to say that F is perfect nonlinear.

The conclusion then follows by Corollary 5. �
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When |G2| divides |G1|, if a function F from G1 to G2 achieves the lower bound of ambiguity, then
its deficiency also achieves the minimum 0. When |G2| does not divide |G1|, we obtain a nontrivial
lower bound for NBF or A(F ).

Note that if the group G1 has characteristic 2, then in the case of |G1| > 2 |G2|, the bound of

(6) just restates the fact that NBF ≥ 0 since (|G1| − 1)
(
2 |G1| − |G1|2

|G2|

)
is always negative. For the

particular case of vectorial Boolean functions, when n is odd and m < n or n is even and n
2 < m < n,

we have NBF ≥ 2. Indeed, for such values of n and m, no perfect nonlinear function exists and NBF

is even. Comparing to the lower bound of (6), the lower bound in Proposition 12 does not require the
knowledge of TF and characteristic of G1 can be both even or odd.

Next we give another general lower bound for the indicators of differentially k-uniform functions,
which is able to improve upon the bound in these cases. Recall that for a function F from finite
Abelian group G1 to finite Abelian group G2, by the Pigeon-Hole Principle, it is known that the
differential uniformity ∆F ≥ |G1|

|G2| .

Proposition 13. Assume that G1 and G2 are two finite Abelian groups. Let F be a function from G1

to G2 with differential uniformity k. Then

NBF ≥ (|G1| − 2)

⌈
|G1|2
|G2|

⌉
+

⌈
(|G1| − k)2

|G2| − 1

⌉
+ k2 − (|G1| − 1)

|G1|2
|G2|

,

or equivalently,

A(F ) ≥ |G1| − 2

2

⌈
|G1|2
|G2|

⌉
+

1

2

⌈
(|G1| − k)2

|G2| − 1

⌉
+
k2

2
−
(|G1|

2

)
.

Proof. Let a0 ∈ G∗
1 be such that there exists b ∈ G2 with δF (a0, b) = k. Without loss of generality,

we may assume that x1, x2, . . . , xk are the k different solutions in G1 of equation Da0F (x) = b. Denote

G1 = G1 \ {x1, x2, . . . , xk},
G2 = G2 \ {b}.

Then by (13), we have

∣∣{(x, y) ∈ G1 ×G1 : Da0F (x) = Da0F (y)}
∣∣ ≥

⌈∣∣G1

∣∣2
∣∣G2

∣∣

⌉
.

Thus,

|{(x, y) ∈ G1 ×G1 : Da0F (x) = Da0F (y)}| = |{(x, y) ∈ G1 ×G1 : Da0F (x) = b = Da0F (y)}|
+
∣∣{(x, y) ∈ G1 ×G1 : Da0F (x) = Da0F (y)}

∣∣

≥ k2 +

⌈∣∣G1

∣∣2
∣∣G2

∣∣

⌉

= k2 +

⌈
(|G1| − k)2

|G2| − 1

⌉
.

Finally, by (13) again, we obtain

∑

a∈G1

|{(x, y) ∈ G1 ×G1 : DaF (x) = DaF (y)}| =
∑

a∈G1\{0,a0}
|{(x, y) ∈ G1 ×G1 : DaF (x) = DaF (y)}|

+ |{(x, y) ∈ G1 ×G1 : D0F (x) = D0F (y)}|
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+ |{(x, y) ∈ G1 ×G1 : Da0F (x) = Da0F (y)}|

≥ (|G1| − 2)

⌈
|G1|2
|G2|

⌉
+ |G1|2 + k2 +

⌈
(|G1| − k)2

|G2| − 1

⌉
.

The lower bounds are then derived directly by Corollary 5. �

By Proposition 13, we have

NBF ≥ (|G1| − 2)

⌈
|G1|2
|G2|

⌉
+

⌈
(|G1| − k)2

|G2| − 1

⌉
+ k2 − (|G1| − 1)

|G1|2
|G2|

≥ (|G1| − 2)
|G1|2
|G2|

+
(|G1| − k)2

|G2| − 1
+ k2 − (|G1| − 1)

|G1|2
|G2|

=
(|G1| − k)2 + (|G2| − 1)k2

|G2| − 1
− |G1|2

|G2|

=
|G2|

(
k − |G1|

|G2|

)2
+ |G1|2 − |G1|2

|G2|

|G2| − 1
− |G1|2

|G2|

=
|G2|

|G2| − 1

(
k − |G1|

|G2|

)2

. (14)

Note that this bound is always non-negative. Furthermore, when k = |G1|
|G2| , namely that F is perfect

nonlinear, it is easy to check that the equality holds. We remark that the bound of (14) is better than
the bound of (6) for some particular cases of S-boxes. For example, when n is odd and m < n or n is
even and n

2 < m < n, we have k ≥ 2n−m + 2. Therefore,

NBF ≥ 2m

2m − 1
(k − 2n−m)2 ≥ 4 +

1

2m − 1
.

Note that NBF is even, we have NBF ≥ 6, which slightly improves the earlier result that NBF ≥ 2.
It is clear from definitions that ambiguity and deficiency are strongly correlated although they are

not exactly expressed by each other in general. However, for the special case when the δF (a, b) of a
function from G1 to G2 belongs to the set {0, i, j} for any a ∈ G∗

1 and b ∈ G2, where 1 ≤ i < j = ∆F ,
there does exist an explicit relationship between them.

Proposition 14. Assume that G1 and G2 are two finite Abelian groups. Let F be a function from G1

to G2, and 1 ≤ i < j = ∆F . Then the following statements hold.

1. If DF = {N0, Ni}, then NBF = i(i− 1) + (|G1| − 1)
(
|G1| − |G1|2

|G2|

)
or A(F ) =

(i
2

)
, and

D(F ) = max

{
0, (|G1| − 1)

(
|G2| −

|G1|
i

)}
.

2. If DF = {N0, Ni, Nj}, then 2A(F ) = i · j ·D(F )+ (i+ j− 1) |G1| (|G1| − 1)− i · j · |G2| (|G1|− 1).

Proof. By the relations (1) and (2), these results are immediate from the definitions of ambiguity
and deficiency. �
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4.2. The Particular Case of S-boxes

In this section, we consider the functions between finite fields with characteristic 2. Some further
results on these indicators are presented. Given two positive integers n and m, when m divides n, the
trace function from F2n onto its subfield F2m is defined as

Trnm(x) = x+ x2
m

+ x2
2m

+ · · ·+ x2
n−m

.

The following result is a refinement of Proposition 13 for functions between finite fields with
characteristic 2.

Corollary 15. Let F be a function from F2n to F2m with differential uniformity k. Then

NBF ≥ (k2 − 2k)Nk + (2n − 1)(2n+1 − 22n−m),

or equivalently,

A(F ) ≥ 1

2
(k2 − 2k)Nk + (2n − 1)2n−1

with equality if and only if for any a ∈ F
∗
2n and b ∈ F2m , δF (a, b) ∈ {0, 2, k}.

Proof. It is noticed that for any a ∈ F
∗
2n and b ∈ F2m , we have DaF (x) = DaF (x + a), therefore,

Nk = 0 for odd k. Then by the definition of ambiguity and equality (2),

A(F ) =
1

2

k∑

i=0

i2 ×Ni −
1

2

k∑

i=0

i×Ni

=
1

2
k2 ×Nk +

1

2

k−2∑

i=0

i2 ×Ni − (2n − 1)2n−1

≥ 1

2
k2 ×Nk +

k−2∑

i=0

i×Ni − (2n − 1)2n−1

=
1

2
k2 ×Nk + (2n − 1)2n − k ×Nk − (2n − 1)2n−1

=
1

2
(k2 − 2k)Nk + (2n − 1)2n−1.

The equality then comes from the simple fact that i2 = 2i if and only if i = 0 or 2. �

When n = m, the inequality (6) gives that

NBF ≥ (2n − 1)2n, (15)

and this inequality is an equality if and only if F is APN. This allows us to prove directly that APN
functions have the optimum ambiguity.

Corollary 16. Let F be a function over F2n. Then

A(F ) ≥ (2n − 1)2n−1

and
D(F ) ≥ (2n − 1)2n−1.

Each of the equalities holds if and only if F is APN.
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Proof. For ambiguity, it is a direct consequence of (15). Now we consider the deficiency, for any
a ∈ F

∗
2n ,

|{b ∈ F2n : δF (a, b) = 0}| ≥ 2n−1

and the equality holds if and only if DaF (x) is 2-to-1. Thus

D(F ) = |{(a, b) ∈ F
∗
2n × F2n : δF (a, b) = 0}| =

∑

a∈F∗
2n

|{b ∈ F2n : δF (a, b) = 0}| ≥ (2n − 1)2n−1

and the equality holds if and only if DaF (x) is 2-to-1 for any nonzero a ∈ F2n . �

For a function from F2n to F2m , when n is odd and m < n or n is even and n
2 < m < n, by (9), we

have ∑

α∈F2n

∑

β∈F2m

|F̂ (α, β)|4 ≥ 24n + 23n(2m − 1).

This is the only inequality we known on the fourth moment of the Fourier transform [Car17]. However,
from the lower bound NBF ≥ 6 and Proposition 6, we can derive an improved bound.

Corollary 17. Assume that n > 2. When n is odd and m < n or n is even and n
2 < m < n, let F be

a function from F2n to F2m , then

∑

α∈F2n

∑

β∈F2m

|F̂ (α, β)|4 ≥ 24n + 23n(2m − 1) + 3 · 2n+m+1. (16)

Remark 2. In fact, the lower bound in Corollary 17 is also valid for the functions from F2n to F2n .
Indeed, whenm = n > 2, it is easy to check that 3·24n−23n+1 > 24n+23n(2n−1)+3·22n+1. Then by the
inequality (15) and Proposition 6, it holds that

∑
α∈F2n

∑
β∈F2n

|F̂ (α, β)|4 ≥ 24n+23n(2n−1)+3·22n+1 .

For the two special cases where m = n − 1 or m = n − 2, we can give a slightly improved lower
bound than that in Corollary 17. Firstly, we consider the case m = n−1. If n ≥ 3 then the differential
uniformity k ≥ 4. By Corollary 15, NBF ≥ 8. The following result is immediate from Proposition 6.

Corollary 18. Assume that n ≥ 3. Let F be a function from F2n to F2n−1 . Then

∑

α∈F2n

∑

β∈F2n−1

F̂ (α, β)4 ≥ 3 · 24n−1 − 23n + 22n+2.

Similarly, in the special case m = n − 2, we can also give the following result, which further
improves upon the lower bound in Proposition 13.

Proposition 19. Let F be a function from F2n to F2n−2 with differential uniformity k. Then

NBF ≥ k(k − 4)− 2δk,

or equivalently,

A(F ) ≥ 3 · 2n−1(2n − 1) +
k

2
(k − 4)− δk,

where δk = 0 if k ≡ 0 (mod 4) and δk = 2 otherwise.

Proof. Denote Aa(F ) = |{(x, y) ∈ F2n × F2n : DaF (x) = DaF (y) and x 6= y}|. Let a0 ∈ F
∗
2n be such

that there exists b ∈ F2n−2 with δF (a0, b) = k. Note that it always holds that 2n−k
4 ≤ 2n−2 − 1. Thus

with the same notions as in Proposition 13, and similarly to the proof of Proposition 13, we have

Aa0(F ) = |{(x, y) ∈ G1 ×G1 : Da0F (x) = b = Da0F (y) and x 6= y}|
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+
∣∣{(x, y) ∈ G1 ×G1 : Da0F (x) = Da0F (y) and x 6= y}

∣∣

≥
(
k

2

)
+

2n − (k + δk)

4

(
4

2

)
+
δk

2

(
2

2

)
= 3 · 2n−1 +

k

2
(k − 4)− δk.

When a 6= 0, a0, we have Aa(F ) ≥ 2n−2
(4
2

)
. The conclusion is immediate from the fact that A(F ) =∑

a∈F∗
2n

Aa(F ). �

Assume that n ≥ 5, then the differential uniformity of a function from F2n to F2n−2 is at least
equal to 6. By Proposition 19, we have NBF ≥ 8. By Proposition 6, we have the following better
bound on the fourth moment of Fourier transform for an (n, n− 2)-function.

Corollary 20. Assume that n ≥ 5. Let F be a function from F2n to F2n−2 . Then

∑

α∈F2n

∑

β∈F2n−2

F̂ (α, β)4 ≥ 5 · 24n−2 − 23n + 22n+1,

Remark 3. The previous two corollaries lead to the following bound for the nonlinearity of a function
from F2n to F2n−1 or F2n−2 ,

1. n ≥ 3, for F : F2n → F2n−1 , NL(F ) ≤ 2n−1 − 1
2

√
2n + 4

2n−1−1
,

2. n ≥ 5, for F : F2n → F2n−2 , NL(F ) ≤ 2n−1 − 1
2

√
2n + 1

2n−2−1 ,

which means the well-known fact that the covering radius bound is not tight. Some recent results
on the nonlinearity of APN functions and some characterizations of the differential uniformity of
vectorial functions by the Walsh transform are given in [Car17], and results on the covering radius
bound for those (n,m)-functions that are sufficiently unbalanced or satisfy some conditions are given
in [XCMW18].

For the rest of this section, we consider two kinds of special functions, power functions and
plateaued functions, for their important applications in sequence and cryptography. The plateaued
functions are those Boolean functions whose squared Fourier transform takes one single nonzero value.
Vectorial plateaued Functions are functions whose component functions are plateaued.

For the inverse function F (x) = x−1 over F2n , when n is odd, it is well known that the function
is an APN permutation, and it has the optimum derivative imbalance or ambiguity. When n is even,
it was proved in [CD07] that NBF = (2n − 1)(2n + 8) (note there is a typo in Example 1 [CD07]).
Indeed, the inverse function has the lowest derivative imbalance or ambiguity among all the power
permutations (see Remark 4 below).

Let F (x) = xd be a power function from F2n to F2m , we can deduce that

∑

a∈F∗
2n

∑

b∈F2m

δ2F (a, b) =
∑

a∈F∗
2n

∑

b∈F2m

δ2F

(
1,

b

ad

)
=
∑

a∈F∗
2n

∑

b∈F2m

δ2F (1, b) = (2n − 1)
∑

b∈F2m

δ2F (1, b).

Then by (10), it is easy to see the following corollary.

Corollary 21. Let F (x) = xd be a power function from F2n to F2m. Then

NBF = (2n − 1)
∑

b∈F2m

|(D1F )
−1(b)|2 − 22n−m(2n − 1),

or equivalently,

A(F ) =
2n − 1

2

∑

b∈F2m

|(D1F )
−1(b)|2 − (2n − 1)2n−1.
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An immediate result from Corollary 15 is given.

Corollary 22. Let F (x) = xd be a power function from F2n to F2m with differential uniformity k.
Then

NBF ≥ (k2 − 2k)(2n − 1)N ′
k + (2n − 1)(2n+1 − 22n−m),

or equivalently,

A(F ) ≥ 1

2
(k2 − 2k)(2n − 1)N ′

k + (2n − 1)2n−1

where N ′
k = |{b ∈ F2m : δF (1, b) = k}|. And the equality holds if and only if for any b ∈ F2m, δF (1, b) ∈

{0, 2, k}.
Remark 4. It is well known that for any power permutation F over F2n with even n, the differential
uniformity is at least 4 [Hou06]. Thus we have NBF ≥ (42− 2× 4)(2n− 1)+ (2n− 1)(2n+1− 22n−n) =
(2n − 1)(2n + 8).

For plateaued functions, we have the following results.

Corollary 23. Let F be an n variables Boolean function, which is plateaued of amplitude µ. Then

NBF = 2n−1(µ2 − 2n),

or equivalently,
A(F ) = 2n−2(µ2 − 2n) + 2n−2(2n − 1)(2n − 2).

Corollary 24. Let F be a function from F2n to F2m such that all component functions fβ : x ∈ F2n 7→
Trm1 (βF (x)), β ∈ F

∗
2m are plateaued of amplitude µβ. Then

NBF = 2n−m
∑

β∈F∗
2m

µ2β − 22n−m(2m − 1),

or equivalently,

A(F ) = 2n−m−1
∑

β∈F∗
2m

µ2β + 23n−m−1 − 2n−1(2n+1 − 1).

For a power function F (x) = xd, Carlet proved the following results which can make the charac-
terization of these two parameters easier.

Lemma 2 (See [Car15]). Let F (x) = xd be any power function over F2n. Then for every v ∈ F2n,
every x ∈ F2n, and every λ ∈ F

∗
2n we have

|{(a, b) ∈ F2n × F2n : DaF (b) +DaF (x) = v}| =
∣∣∣{(a, b) ∈ F2n × F2n : DaF (b) +DaF

(x
λ

)
=

v

λd
}
∣∣∣ .

Moreover, F is plateaued if and only if, for every v ∈ F2n:

|{(a, b) ∈ F2n × F2n : DaF (b) +DaF (1) = v}| = |{(a, b) ∈ F2n × F2n : DaF (b) +DaF (0) = v}| .

Note that the previous lemma is proved for (n, n)-functions which are power and plateaued, we
remark that the result is also valid for (n,m)-functions which are power and plateaued.

Corollary 25. Let F (x) = xd be any power function from F2n to F2m . If F is also plateaued, then

NBF = 2n(2n − 1)
(∣∣(D1F )

−1(1)
∣∣− 1

)
− 22n−m(2n − 1) = 2n(2n − 1)(δF (1, 1) − 1)− 22n−m(2n − 1),

or equivalently,

A(F ) = 2n−1(2n − 1)
(∣∣(D1F )

−1(1)
∣∣ − 1

)
= 2n−1(2n − 1)(δF (1, 1) − 1).
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Proof. By Corollary 5 and Lemma 2, we have

NBF =
∑

a∈F2n

|{(b, x) ∈ F2n × F2n : DaF (b) = DaF (x)}| − 22n − 22n−m(2n − 1)

=
∑

x∈F2n

|{(a, b) ∈ F2n × F2n : DaF (b) = DaF (x)}| − 22n − 22n−m(2n − 1)

=
∑

x∈F∗
2n

|{(a, b) ∈ F2n × F2n : DaF (b) = DaF (x)}|

+ |{(a, b) ∈ F2n × F2n : DaF (b) = DaF (0)}| − 22n − 22n−m(2n − 1)

=
∑

x∈F∗
2n

|{(a, b) ∈ F2n × F2n : DaF (b) = DaF (1)}|

+ |{(a, b) ∈ F2n × F2n : DaF (b) = DaF (0)}| − 22n − 22n−m(2n − 1)

= 2n |{(a, b) ∈ F2n × F2n : DaF (b) = DaF (0)}| − 22n − 22n−m(2n − 1)

= 2n |{(a, b) ∈ F
∗
2n × F2n : DaF (b) = DaF (0)}| − 22n−m(2n − 1)

= 2n |{(a, b) ∈ F
∗
2n × F2n : D1F (b) = D1F (0)}| − 22n−m(2n − 1)

= 2n(2n − 1) |{b ∈ F2n : D1F (b) = 1}| − 22n−m(2n − 1).

The proof is completed. �

Example 1. When F is a quadratic power function x 7→ x2
i+2j over F2n where i > j. Then D1F (x) =

(x + 1)2
i+2j + x2

i+2j = x2
i

+ x2
j

+ 1 = 1 if and only if x2
i−j

= x, which is equivalent to x ∈ F2s ,
where s = gcd(i − j, n). We have NBF = 2n(2n − 1)(2s − 1). The deficiency can be easily to obtain,
D(F ) = (2n − 1)(2n − 2n−s).

5. Conclusions and Some Open Problems

In this paper, we studied the non-balancedness of the derivatives of functions between any two
finite Abelian groups with possible different orders. We systematically compared two parameters
appeared in the literature and observed that the parameter called ambiguity is equivalent to an
indicator (that we called derivative imbalance) introduced earlier by Carlet and Ding in the study
of the nonlinearity of S-boxes. We gave lower bounds on these parameters for these general maps,
and in the particular case of differentially k-uniform functions. We generalized a characterization of
these parameters by the fourth moment of Fourier transform. We also investigated the connections
between these parameters and the behavior of derived functions such as second-order derivatives and
autocorrelation functions. Moreover, when the groups are the finite fields with characteristic 2, some
further results were presented.

We gave some new lower bounds on the fourth moment of Fourier transform by analyzing the
lower bounds of the ambiguity of a function from F2n to F2m when n is odd and m < n or n is even
and n

2 < m < n. As consequences. we obtained NBF ≥ 6 or 8 in some cases. This has improved the
previous lower bound NBF ≥ 2. However, in order to obtain an upper bound for nonlinearity that is
better than the covering radius bound, we need to show that NBF > 2n−m+2(2n/2 +1)(2m − 1). This
is a well-known open problem and worthy of further study [CD07, Car14].
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