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Abstract

We study a distributed estimation problem in which two remotely

located parties, Alice and Bob, observe an unlimited number of i.i.d.

samples corresponding to two different parts of a random vector. Al-

ice can send k bits on average to Bob, who in turn wants to estimate the

cross-correlation matrix between the two parts of the vector. In the case

where the parties observe jointly Gaussian scalar random variables with

an unknown correlation ρ, we obtain two constructive and simple unbi-

ased estimators attaining a variance of (1− ρ2)/(2k ln 2), which coincides

with a known but non-constructive random coding result of Zhang and

Berger. We extend our approach to the vector Gaussian case, which has

not been treated before, and construct an estimator that is uniformly bet-

ter than the scalar estimator applied separately to each of the correlations.

We then show that the Gaussian performance can essentially be attained

even when the distribution is completely unknown. This in particular

implies that in the general problem of distributed correlation estimation,

the variance can decay at least as O(1/k) with the number of transmitted

bits. This behavior, however, is not tight: we give an example of a rich

family of distributions for which local samples reveal essentially nothing

about the correlations, and where a slightly modified estimator attains a

variance of 2−Ω(k).

1 Introduction and Main Results

Estimating the parameters of an unknown distribution from its samples is a basic
task in many scientific problems. The vast majority of research in this field has
been dedicated to the centralized setup, where a number of independent samples
are being observed by the estimating entity [1]. However, in many cases the data
for the estimation task might be collected by remote terminals, who then need
to communicate information regarding their observations in order to perform (or
improve) estimation. When the budget for communication is limited, the parties
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must judiciously encode their observations and send a compressed version that is
as useful as possible, creating a tension between communication and estimation.

In this paper, we study the following distributed estimation setup. Let X

and Y be a pair of jointly distributed random vectors taking values in Euclidean
spaces of dimensions dX and dY respectively. Assume the distribution of the
pair is only known to belong to a given family of distributions, but is otherwise
arbitrary. Two remotely located parties, Alice and Bob, draw i.i.d. samples
{(Xi,Yi)} from this distribution, where the X component is observed only by
Alice and the Y component is observed only by Bob. The parties are interested
in estimating the set of correlations between the entries of X and Y using
their local samples and limited communication. Specifically, we focus on the
regime where the number of samples locally available to each party is essentially
unlimited, but only a fixed number of k bits can be transmitted on average
from (say) Alice to Bob. In this extremal regime there is no coupling between
data collection and communication (typically captured by the notion of rate,
of communication bits per data sample), and the only constraint in the system
stems from its distributive nature. Moreover, we restrict attention to cases
where the correlations cannot be estimated locally (e.g. Gaussian marginals
do not depend on the cross-correlation parameters), which further distills the
distributive aspect of the problem.

In what follows we focus mainly on the Gaussian case, i.e., where X and Y

are jointly Gaussian random vectors. We begin our discussion with the scalar
dX = dY = 1 case, where our goal is to estimate the correlation coefficient ρ.
The only work we are aware of that deals with distributed estimation of the
bivariate normal correlation under communication constraints is by Zhang and
Berger [2], who studied the problem as an application of a more general result.
Using random coding techniques, they proved the existence of an asymptotically
unbiased estimator whose variance they provided as a function of the number of
samples and the rate R of communication bits per sample. Specializing to our
setup by plugging in k/R as the number of samples, the Zhang-Berger variance
is given by

Var ρ̂ZB =
R

k

(
1 + ρ2 +

1− ρ2

22R − 1
+ o(1)

)
. (1)

Since we do not impose a rate constraint in our setup, we can minimize the
variance over R to obtain

inf
R>0

Var ρ̂ZB =
1

k

(
1− ρ2

2 ln 2
+ o(1)

)
, (2)

which is attained (not surprisingly) in the zero-rate limit as R → 0. It should
be noted that this estimator was not claimed to be optimal in any sense. Fur-
thermore, as the authors themselves indicate, the results in [2] apply only to the
single scalar parameter case, and it is not clear how to extend this approach to
the vector case.

In this Gaussian scalar setup, addressed in Section 2, we introduce the fol-
lowing constructive scheme: Alice sends to Bob the index J of the largest sample
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among her first 2k samples, and Bob computes the unbiased estimator

ρ̂max =
YJ

EXJ
≈ YJ√

2k ln 2
. (3)

In Theorem 1, we show that this simple estimator attains the same variance as
the non-constructive Zhang-Berger estimator (2), i.e.,

Var ρ̂max =
1

k

(
1− ρ2

2 ln 2
+ o(1)

)
. (4)

Then, in preparations for the vector case, we describe a simple variation of this
estimator: Alice scans her samples sequentially and finds the index J of the first
sample to pass a suitably chosen threshold. She then compresses this index using
an optimal lossless variable-length code and sends the encoded version to Bob,
who computes an estimator using his corresponding Y sample, in a way similar
to the maximum estimator above. This threshold estimator is unbiased, and
also attains the Zhang-Berger variance. We note that the maximal/threshold-
passing value of a scalar i.i.d. Gaussian sequence has been employed before in
problems of writing on dirty paper [3], [4], and Gaussian lossy source coding [5].

We proceed to consider the vector Gaussian setup (Section 3). Without
loss of generality, we assume that both parties know the distribution of Alice’s
vector, since she can estimate it arbitrarily well from her local samples and send
a sufficiently accurate quantization to Bob with what can be shown to be a
negligible cost in communication. In the case where dX = 1 and dY > 1 we can
trivially extend the scalar estimator by having Alice perform the same encoding
(maximal or threshold) and have Bob apply the same type of estimation to each
of the entries of Y using the single index obtained from Alice. The case of
dX > 1 and dY = 1 is more interesting. Of course, one could simply estimate
each one of the correlations ρℓ between (X)ℓ and Y separately by repeating the
scalar method. A worthy goal is therefore to find an estimator that dominates
the scalar approach, uniformly for all correlation values. In Proposition 3, we
show that performing general linear operations (e.g., whitening the signal) before
applying the scalar estimator, does not dominate the scalar approach. We then
describe a multidimensional estimator that does dominate the scalar approach,
by generalizing the scalar threshold to an appropriately chosen dX -dimensional
stopping set. We show that the resulting (constructive) estimator ρ̂ attains a
total mean squared error that is a function of the highest correlation only, and
is given by

E ‖ρ̂− ρ ‖2 ≤ 1

k

(
d2X
2 ln 2

min
ℓ∈[d]

{1− ρ2ℓ}+ o(1)

)
. (5)

This is proved Theorem 4. We note that the case of dX , dY > 1 is again a trivial
extension of the dX > 1, dY = 1 case.

Returning to the general non-Gaussian setup (Section 4), we provide two ad-
ditional results. In Section 4.1 we show how our estimators above can essentially
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be used to obtain the same variance guarantees when (X,Y) are arbitrarily dis-
tributed, subject only to uniform integrability fourth moment conditions. This
in particular means that one can always get a O(1/k) variance in distributed
correlation estimation with k transmitted bits on average. Recall that in cen-
tralized estimation problems, when the family of distributions is sufficiently
smooth in the parameter of interest, the Cramér–Rao lower bound implies that
the optimal estimation variance is Θ(1/n), where n is the number of samples.
Thus, the centralized number of samples required to achieve the same variance
as in the distributed case is at least linear in the number of communication bits,
i.e., each communication bit is worth at least a constant number of samples. It
is perhaps tempting to guess that this relation is fundamental, i.e., that a bit
is equivalent to a constant number of samples, hence that the variance cannot
decrease faster than Ω(1/k), assuming that the family of distributions is such
that Bob cannot estimate the correlations from his local samples. While we
conjecture this is true in the Gaussian case, it does not hold in general: In
Subsection 4.2 we give an example of a rich family of distributions for which
local samples reveal essentially nothing about the correlations, and where the
variance of our (slightly modified) estimator is 2−Ω(k).

1.1 Related Work

The problem of distributed estimation under communication constraints has
been studied in the last couple of decades by several authors. Zhang and
Berger [2] used random coding techniques to establish the existence of an asymp-
totically unbiased estimator whose variance is upper bounded by a single-letter
expression. Their results are limited to a certain family of joint distributions
(that must satisfy an additivity condition) that depend on a one-dimensional
parameter. Ahlswede and Burnashev [6] gave a multi-letter lower bound on the
minimax estimation variance in the one-dimensional case. Han and Amari [7]
(see also the survey paper [8]) suggested a rate constrained encoding scheme,
and obtained the likelihood equation based on the decoded statistic. They also
showed that the estimation variance asymptotically achieves the inverse of the
Fisher information of that statistic. Their results only apply to finite alphabets.
Amari [9] discussed optimal compression in the specific setting of estimating the
correlation between two binary sources. He showed that under linear-threshold
encoding, there does not exist a single scheme that is uniformly optimal for all
correlation values. A similar setup was discussed by Haim and Kochman [10] in
the context of hypothesis testing between two correlation values. Zhang et al [11]
provided minimax lower bounds for a distributed estimation setting in which all
terminals observe samples from the same distribution. El Gamal and Lai [12]
showed that Slepian-Wolf rates are not necessary for distributed estimation over
finite alphabets.

There is a rich literature addressing other aspects of the distributed estima-
tion problem. Xiao et al [13] and Lou [14] considered distributed estimation
of a location parameter under energy and bandwidth constraints. Gubner [15]
considered a Bayesian distributed estimation setting and suggested a local quan-
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tization algorithm. Xu and Raginsky [16] provided lower bounds on the risk in
a distributed Bayesian estimation setting with noisy channels between the data
collection terminals and the estimation entity. Braverman et al [17] provided
lower bounds for some high dimensional distributed estimation problems, again
when the samples of all terminals are from the same distribution, e.g. for dis-
tributed estimation of the multivariate Guassian mean when it is known to be
sparse. The authors of [18], [19], [20] and [21] addressed various distributed
estimation setups where the measurements across the sensors are assumed to be
independent.

1.2 Notations and preliminaries

The standard normal density is denoted by φ(x) = e−x2/2/
√
2π, and the tail

probability by Q(x) ,
∫∞
x φ(t)dt. For Z ∼ N (0, 1) the inverse Mills ratio is

denoted by

s(x) , E(Z | Z > x) =
φ(x)

Q(x)
. (6)

We write log and ln for the base 2 and natural logarithm, respectively. The
entropy of the geometric distribution with parameter p is given by hg(p) ,

h(p)/p, where h(p) = −p log p− (1−p) log(1−p) is the binary entropy function.
Note that hg(p) = − log(p)(1 + o(1)) as p → 0. Recall also that any discrete
random variable (e.g. in our case, a geometric r.v.) can be losslessly encoded
using a prefix-free code with expected length exceeding its entropy by at most
one bit [22]. Since in the setups we consider the entropy grows large, this excess
one bit has vanishing effect on our results, hence for the sake of readability we
disregard it throughout.

For any natural n we denote [n] , {1, . . . , n}. For a vector v, the i-th
coordinate is denoted by (v)i. Similarly, (M)ij denotes the ij-th entry of the
matrix M . The d × d identity matrix is denoted by Id. We use the standard
order notation; in the following, f and g are positive functions with discrete
or continuous domain. We write f = o(g) to indicate that lim f/g = 0, and
f = O(g) to indicate that lim sup f/g < ∞, where the arguments and implied
limits should be clear from the context. Writing f = Ω(g) means that g = O(f),
and f = Θ(g) means that both f = O(g) and f = Ω(g).

Given a statistic T , and a scalar parameter θ we wish to estimate, The Fisher
information of estimating θ from T (see e.g. [1]) is given by

IT (θ) , E

[(
∂ log f(T | θ)

∂θ

)2
]
, (7)

where f(t | θ) is the p.d.f. of T for the given value of θ. The Cramér–Rao
lower bound (CRLB) states that, under some regularity conditions (see e.g. [1])

that are trivially satisfied in our setups, any unbiased estimator θ̂ = θ̂(T ) of θ
satisfies

Var θ̂ ≥ 1/IT (θ). (8)
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An estimator θ̂ that satisfies (8) with equality is said to be efficient. We empha-
size that the efficiency is with respect to the statistic T by saying it is efficient
given T . The estimators and statistics in this paper depend on the number of
communicated bits, k. We call an estimator θ̂ asymptotically efficient given T
if E θ̂ → θ, and IT (θ) · Var θ̂ → 1 as k → ∞. The estimated parameter may be
vector valued, in which case IT (θ) is a matrix given by

IT (θ) , E

[(
∂ log f(T | θ)

∂ θ

)T

·
(
log f(T | θ)

∂ θ

)]
, (9)

and the CRLB reads Cov θ̂ ≥ I−1
T where the inequality is in the positive semidef-

inite sense. In the vector case we say that an estimator θ̂(T ) is asymptoti-

cally efficient if the estimator vT θ̂(T ) of vT θ is asymptotically efficient for any
v ∈ R

dim(θ). We note that since the aforementioned regularity conditions are
satisfied in our Gaussian setups, then (asymptotic) efficiency of an estimator
implies that it is (asymptotically) minimum variance unbiased.

The Fisher information matrix of a Gaussian vector with mean µ and co-
variance matrix Σ, where both are functions of a parameter vector θ, is given
by (see e.g. [23])

(I)ij=
∂µT

∂(θ)i
Σ−1 ∂µ

∂(θ)j
+
1

2
tr

(
Σ−1 ∂Σ

∂(θ)i
Σ−1 ∂Σ

∂(θ)j

)
. (10)

A common setup throughout is where a parameter is estimated from (X,Y)
where Y|X is Gaussian, and the distribution of X does not depend on the
parameter. In this case we have

IX,Y = EX IY|X (11)

where IY|X is obtained via (10).

2 Estimating a single correlation

In this section, we consider the case where X and Y are both scalar, jointly
Gaussian r.v.s, with unknown parameters satisfying only EX2,EY 2 < u for
some known u. Since the number of local samples available to Alice and Bob
is unlimited, they can both estimate their own mean and variance arbitrarily
well (taking u into account) and normalize their samples accordingly. Hence,
without loss of generality we can assume that X,Y ∼ N (0, 1), and that the only
unknown parameter is their correlation coefficient ρ. This model can be written
as

Y = ρX +
√
1− ρ2Z (12)

where Z ∼ N (0, 1) is statistically independent of X .
Alice, who observes the i.i.d. samples {Xi}, can transmit k bits on average

to Bob, who observes the corresponding {Yi} samples and would like to obtain a
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good estimate of ρ in the mean squared error sense. We note that the conditional
Fisher information of ρ from Y , given that X = x, is

IY |X=x(ρ) =
(1− ρ2)x2 + 2ρ2

(1 − ρ2)2
, (13)

which is linear in x2. This motivates using an estimator based on a measurement
for which |x| is as large as possible. The same can also be intuitively deduced
from (12), since if one controls X , then picking it as large as possible would
“maximize the SNR”. For simplicity, we look at large positive values of x rather
than large value of |x|. Our derivations can be easily modified to hold in the
latter case (with one extra bit describing the sign) without affecting the results.

2.1 Max estimator

Following the heuristic discussion above, consider the following scheme. Given
the constraint k on the expected number of communication bits, Alice looks at
her first 2k samples, finds the maximal one, and sends its index

J = argmax
i∈[2k]

Xi (14)

to Bob, using exactly k bits. Bob now looks at YJ , his sample that corresponds
to the same index, which we refer to as the co-max1. If Bob were in possession
of XJ as well, and observing the model (12) again, a natural estimator for ρ
he could have used is YJ/XJ . In fact, it can be shown that this estimator is
an approximated solution to the maximum likelihood equation, which is third
a degree polynomial in this case (see appendix A.7). However, since XJ is not
available, Bob uses the estimator

ρ̂max =
YJ

EXJ
(15)

that depends only on J (communicated by Alice) and on his own samples. The
following Theorem shows that this simple estimator attains the same variance
as the non-constructive Zhang-Berger estimator (2), and also that knowing the
value of XJ does not help.

Theorem 1. The estimator ρ̂max is unbiased with

Var ρ̂max =
1

k

(
1− ρ2

2 ln 2
+ o(1)

)
(16)

where k is the number of transmitted bits. Furthermore, ρ̂max is asymptotically
efficient given (XJ , YJ).

1This is also known in the literature as the max concomitant, see e.g. [24]
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Proof. It is easy to check that ρ̂max is unbiased. In order to compute its variance,
we need to compute the mean and variance of XJ , which is the maximum of 2k

i.i.d. standard normal r.v.s. From extreme value theory (see e.g. [24]) applied
to the normal distribution case, we obtain:

EXJ =
√
2 ln(2k)(1 + o(1)) (17)

EX2
J = 2 ln (2k)(1 + o(1)) (18)

VarXJ = O

(
1

ln(2k)

)
. (19)

Therefore, we have that

Var ρ̂max =
1

(EXJ)2
Var(ρXJ +

√
1− ρ2Z) (20)

=
1

(EXJ)2
(ρ2 VarXJ + 1− ρ2) (21)

=
1

2k ln 2
(1− ρ2 + o(1)). (22)

Now, recalling (13), the Fisher Information of ρ from (XJ , YJ) is given by

IXJYJ
(ρ) =

(1− ρ2)EX2
J + 2ρ2

(1− ρ2)2
(23)

= 2k ln 2

(
1

1− ρ2
+ o(1)

)
, (24)

and hence ρ̂max is asymptotically efficient given (XJ , YJ).

Theorem 1 suggests that using a better estimator of XJ in lieu of its expec-
tation (by having Alice send some quantization of X̂J and having Bob compute
ρ̂ = YJ/X̂J) would not improve the performance asymptotically, as ρ̂max is op-
timal among all unbiased estimators that use both the max and co-max. In
Section 4.2, we will see that this observation does not extend to some other
additive models.

We note that the random coding Zhang-Berger estimator only deals with
the scalar case, and as the authors themselves indicate [2], it remains unclear
whether it could be extended to the the case of multiple correlations. In contrast,
our constructive approach can also be naturally extended to the multidimen-
sional case. To that end, it is instructive to first describe a simple variation of
our scalar estimator.

2.2 Threshold estimator

We now introduce a simple modification to max estimator that will be useful in
the sequel. Instead of taking the maximum of a fixed number of measurements,
Alice sequentially scans her samples until she finds a sample that exceeds some
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fixed threshold, to be determined later. She then sends the index of this sample
to Bob, who proceeds similarly to the max method. The main difference is
that using the max method Alice sends a fixed number of bits, whereas using
the threshold method she sends a random number of bits. In this subsection,
we introduce and analyze the threshold estimator and demonstrate that it is
asymptotically equivalent to the max estimator, in terms of how the estimation
variance is related to the expected number of bits transmitted. As mentioned
above, the main motivation for studying the threshold estimator is that in con-
trast to the max estimator, it can be naturally extended to the multidimensional
case.

Precisely, let

J = min{i : Xi > t}, (25)

and consider the estimator

ρ̂th =
YJ

EXJ
. (26)

Note that the index J is distributed geometrically with parameter p = Pr(X >
t) = Q(t). Alice can therefore represent J using a prefix-free code (e.g., Huff-
man) with at most hg(p) + 1 bits on average, where hg(p) is the entropy of
this geometric distribution [22]. For brevity of exposition, we assume that the
expected number of bits is exactly k = hg(p), as this does not affect the asymp-
totic behavior. Therefore, to satisfy the communication constraint the threshold
must be set to

t = Q−1(h−1
g (k)). (27)

We later show that t =
√
2k ln 2(1 + o(1)) as k grows large. The following

Theorem shows that as the max estimator, the threshold estimator also attains
the same variance as the non-constructive Zhang-Berger estimator (2), and also
that knowing the value of XJ again does not help.

Theorem 2. The estimator ρ̂th is unbiased with

Var ρ̂th =
1

k

(
1− ρ2

2 ln 2
+ o(1)

)
(28)

where k is the expected number of transmitted bits. Furthermore, ρ̂th is asymp-
totically efficient given (XJ , YJ).

Proof. It is immediate to verify that ρ̂th is unbiased. We have from (6) that
EXJ = s(t), and straightforward calculations give EX2

J = 1 + ts(t). Also it is
known that t ≤ s(t) ≤ t+ t−1, and that (see e.g. [25])

1

s(t)
=

1

t
− 1

t3
+

3

t5
+O

(
1

t7

)
. (29)
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Combining the above yields

EX2
J = t2(1 + o(1)), VarXJ = 1/t2 +O(1/t4). (30)

Let us now express the threshold t in terms of k. We have hg(p) = − log(p)(1+

o(1)) as p → 0, and also that − lnQ(t) = t2

2 (1 + o(1)). Therefore the expected
number of bits sent by Alice is

k = hg(Q(t)) (31)

= − log(Q(t))(1 + o(1)) (32)

= t2
(

1

2 ln 2
+ o(1)

)
, (33)

which yield t =
√
2k ln 2/(1+ o(1)). Combining this with (30) and recalling the

model (12), we obtain

Var ρ̂th =
1

s2
(
ρ2 VarXJ + 1− ρ2

)
(34)

=
1− ρ2

t2
(1 + o(1)) (35)

=
1

k

(
1− ρ2

2 ln 2
+ o(1)

)
. (36)

Recalling (13), the Fisher information is given by

IXJYJ
=

t2

1− ρ2
(1 + o(1)) =

2k ln 2

1− ρ2
(1 + o(1)), (37)

concluding the proof.

Note that unlike the maximum estimator, the threshold estimator’s variance
admits an exact non-asymptotic expression:

Var ρ̂th =
1

s2(t)
(1− ρ2(s(t)− t) · s(t)), (38)

where t = Q−1(h−1
g (k)).

3 Estimating multiple correlations

We proceed to address the more challenging multidimensional case where X,Y
are jointly Gaussian random vectors with unknown parameters. As in the scalar
case, we only assume that the variances of all the entries of both X and Y are
bounded by some known constant, hence Alice and Bob can compute the means
and variances of their samples, and normalize them accordingly. Thus, without
loss of generality we can assume that all the entries of X and Y have zero mean
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and unit variance. In fact, for the same reasons we can assume that Alice knows
CovX and Bob knows CovY.

As before, Alice observes the i.i.d. samples {Xi} and can transmit k bits on
average to Bob, who observes the corresponding {Yi} samples and would like to
obtain a good estimate of EYX

T , the collection of all the correlations between
the different entries of X and Y. For simplicity, our performance measure will
be the expected sum of squared estimation errors across all such correlations.

Below we discuss the two extremal setups: The case where X is a scalar and
Y is a vector, and the opposite case where X is a vector and Y is a scalar. This
is sufficient since estimators for the general setup where both X,Y are vectors
are straightforward to construct by combining the two extremal setups, hence
discussing this more general setup adds no useful insight. Clearly, the scalar
methods suggested in Section 2 can be directly applied to the multidimensional
case, by allocating the bits between the tasks of estimating each correlation
separately. It is therefore interesting to try and find a truly multidimensional
scheme that dominates the scalar method, i.e., performs at least as good uni-
formly for all possible values of the correlations.

3.1 X is a scalar, Y is a vector

Suppose (X,Y) are jointly Gaussian, where X ∼ N (0, 1), Y ∼ N (0,ΣY) is a
d-dimensional (column) vector, and ΣY has an all-ones diagonal and is known
to Bob, who is interested in estimating the column correlation vector

ρ = EYX = [ρ1, . . . , ρd]
T . (39)

The natural extension of the two scalar methods of Section 2 to this case is
obvious. Here we analyze the threshold method, yet the max method is as
simple and would yield the same results. Alice waits until Xi passes a threshold
t > 0 and transmits the resulting index

J = min{i : Xi > t} (40)

to Bob, where t = Q−1(h−1
g (k)). The estimator is then

ρ̂ =
1

EXJ
YJ =

1

s(t)
YJ , (41)

which is an unbiased approximation of the maximum likelihood estimator (see
Appendix A.7).

Theorem 3. The estimator ρ̂ in (41) is unbiased with

trCov ρ̂ =
1

k

(
1

2 ln 2

d∑

ℓ=1

(1− ρ2ℓ) + o(1)

)
(42)

where k is the expected number of transmitted bits. Furthermore, ρ̂ is asymp-
totically efficient given (XJ ,YJ).
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Proof. This is simple consequence of Theorem 2, except for asymptotic efficiency
which we prove in Appendix A.1.

This method (trivially) dominates the scalar method applied separately to

each of the correlations, as the latter would yield
∑

Var ρ̂i =
1
k

(
d

2 ln 2

∑d
ℓ=1(1 − ρ2ℓ) + o(1)

)
.

3.2 X is a vector, Y is a scalar

Consider the setup where (X, Y ) are jointly Gaussian where Y ∼ N (0, 1) and
X is a d-dimensional (column) vector ∼ N (0,ΣX) where ΣX is known to Alice
and has an all-ones diagonal. Alice observes {Xi} and transmits k bits to Bob
on average, who observes {Yi} and wishes to estimate the row vector

ρ = E YX
T = [ρ1, . . . , ρd]. (43)

The model can be written as (see e.g. [26])

Y = ρΣ−1
X

X+ σZ (44)

where Z ∼ N (0, 1) is independent of X, and σ2 = 1− ρΣ−1
X

ρT .
A naive extension of the scalar method to this setup would be to allocate the

bits between the correlations and apply the scalar (max or threshold) scheme d
times, using the fact that the model can also be written as

Y = ρℓ(X)ℓ +
√
1− ρ2ℓZ (45)

for any ℓ ∈ [d]. One could suggest to improve performance by having Alice
locally perform some general linear operation on X before applying the scalar
method, then having Bob perform the inverse operation. While this can indeed
help for certain correlation values, it cannot improve the performance uniformly,
even if the linear operation can depend on ΣX (hence can e.g. whiten X). See
Appendix A.2 for details.

We now introduce an estimator that does dominate the scalar method. In
fact, the mean squared error attained by this estimator is dictated by the sin-
gle “best” entry of ρ, namely by the highest correlation only. Our method
is based on replacing the scalar one-dimensional threshold by d-dimensional
stopping sets A1, . . . , Ad ⊂ R

d. Similarly to the scalar case, Alice waits un-
til Xi ∈ A1 for the first time, then again until Xi ∈ A2, and so on2 until
Xi ∈ Ad. Alice then describes the resulting indices J1, . . . Jd to Bob using an
optimal variable-rate prefix-free code of expected length equal to the entropy
of the associated geometric distribution (again, we neglect the excess one bit).
Defining Alice’s corresponding sample matrix XJ = [XJ1

, . . . ,XJd
] ∈ R

d×d, Al-

ice creates some quantization X̂J of XJ, as further discussed below. Writing

2The communication cost can be slightly improved if Alice first seeks Xi that lies in the
union of all sets, then Xi that lies in the union of the remaining sets, and so on. The difference
is negligible for small Pr(A1), . . . ,Pr(Ad).
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YJ = [YJ1
, . . . , YJd

] ∈ R
d for the corresponding sample vector on Bob’s side, we

consider the estimator

ρ̂ = YJX̂
−1
J

ΣX (46)

Note that in order to compute this estimator, Bob needs to know Alice’s covari-
ance matrix ΣX. Recall however that we have assumed without loss of generality
that this is in fact a correlation matrix, hence all its entries have absolute value
at most 1. Using a uniform quantizer of [−1, 1] with (say)

√
k bits, each entry

of this matrix can be described to Bob with a resolution of roughly 2−
√
k, using

only d2
√
k bits overall. It is simple to check that this results in a negligible cost

both in communication and in the mean squared error, and hence we disregard
this issue below.

The general task is the following. Given a specified average number of bits
k, find some quantization scheme XJ → X̂J using kq bits per entry, and sets
A1, . . . , Ad ∈ R

d, that

minimize E ‖YJX̂
−1
J

ΣX − ρ ‖2 (47)

subject to
d∑

ℓ=1

hg(Pr(X ∈ Aℓ)) + d2 · kq = k (48)

Since the model (44) is linear with d parameters, it is clear that we need at
least d different samples in order to obtain an estimator with a vanishing mean
squared error. Furthermore, since Alice is given some control over the choice
of X via her ability to pick samples from a large random set, it makes sense to
try and make the problem as “well-posed” as possible, e.g., by striving to make
the matrix XJ have the smallest possible condition number while satisfying
the communication constraints, which essentially dictate the number of samples
we can choose from. A reasonable choice is therefore to try and make XJ as
diagonal as possible, by waiting each time for one coordinate to be strong and
the others weak.

To make the problem tractable we apply the rationale above to a whitened
version of X, which allows us to directly compute the stopping probability. Let

W = Σ
− 1

2

X
X ∼ N (0, Id) (49)

be the whitened version of X, and {Wi = Σ
− 1

2

X
Xi}i the associated whitened

samples. We define the stopping sets

Aw
ℓ =

{
w ∈ R

d : |wℓ| > a, |wj | < b ∀ j 6= ℓ
}
, (50)

and the corresponding time indices

Jw
ℓ = min{i > Jw

ℓ−1 : Wi ∈ Aw
ℓ } (51)

for ℓ ∈ [d], with Jw
0 = 0 by definition.

13



Note that by construction, Pr(W ∈ Aw
ℓ ) = 2Q(a)(1 − 2Q(b))d−1 for any ℓ.

Alice then creates the matrix

WJ = [WJw
1
, . . . ,WJw

d
] ∈ R

d×d, (52)

and transmits to Bob the indices Jw
1 , . . . , Jw

d using

kl = hg

(
2Q(a)(1− 2Q(b))d−1

)
(53)

bits per index on average, and ŴJ, which is a quantized version of WJ.
Note that in this method, in contrast to the ones considered thus far, Alice

transmits to Bob some information regarding the actual values of her obser-
vations, rather than their locations alone. The reason is that the variance of
the off-diagonal entries of WJ do not vanish as k gets large. Nevertheless, we
will show that a very simple quantizer using only a negligible number of bits
is enough to represent WJ with sufficient accuracy for our purposes. Precisely,
Alice quantizes WJ using exactly kq bits per entry, as follows: The diagonal
entries are truncated to a maximal absolute value of c =

√
3a, and the dou-

ble segment [−c,−a]∪ [a, c] is uniformly quantized into 2kq levels. Off-diagonal
entries, that all lie in the segment [−b, b], are uniformly quantized into 2kq levels.

Given a communication constraint of k bits on average, we need to choose
kl, kq that satisfy

d · kl + d2 · kq = k, (54)

and thresholds a, b that satisfy (53). Furthermore, for reasons explained in the
proof of Theorem 4, we need both a2 and (a− b)2 to increase with kl, and kq, kl
to satisfy kl = k(1/d− o(1)) and kl2

−kq → 0. One such choice is

kl =
1

d

(√
k + 1− 1

)2
, kq =

√
4kl
d3

, (55)

and

a = Q−1

(
h−1
g (kl)

2(1− 2Q(b0))d−1

)
, b = b0, (56)

for some small fixed b0.
After receiving Jw

1 , . . . , Jw
d and ŴJ, Bob creates the vector

YJ = [YJw
1
, . . . , YJw

d
] (57)

and performs estimation. The model (44) can be written as

Y = ρΣ
− 1

2

X
W + σZ, (58)

and thus the estimator is

ρ̂ = YJŴ
−1
J

Σ
1

2

X
. (59)
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Theorem 4. The estimator ρ̂ in (59) satisfies

E ‖ρ̂− ρ ‖2 ≤ 1

k

(
d2

2 ln 2
min
ℓ∈[d]

{1− ρ2ℓ}+ o(1)

)
, (60)

where k is the expected number of transmitted bits. Furthermore, ρ̂ is asymp-
totically efficient given (WJ, YJ).

We prove this theorem in the next subsection.

Corollary 1. ρ̂ in (59) dominates the scalar estimator.

Proof. Allocating k/d bits per correlation and using the scalar estimator (max
or threshold), results in a sum of variances

1

k



 d2

2 ln 2

1

d

∑

ℓ∈[d]

(1− ρ2ℓ) + o(1)



 (61)

which is greater than (60) for all values of ρ1, . . . , ρd (except when they are all
equal). One could also use a nonuniform bit allocation for the scalar estimation,
in which case the average in (61) would be replaced by a weighted average, which
also is always greater than the minimum.

Remark 1. Theorem 4 implies in particular that when (say) |ρ1| = 1, then
the variance of our estimator decays faster than Ω(1/k). This is intuitively
reasonable, since in this case Y is equal to ±X1, hence ΣX itself provides all the
information about ρ, which can be locally computed by Alice and communicated
to Bob with variance of 2−Ω(k). Note however that Alice cannot know that
|ρ1| = 1, and neither can Bob (though he may have good reason to suspect
so), hence it is still a bit surprising that our estimator allows this situation to
nevertheless be exploited.

Remark 2. It is interesting to compare the performance of the estimator dis-
cussed in this subsection, to the performance of the estimator in the other
extremal setup of Subsection 3.1, where X is a scalar and Y is a vector. While
both dominate the naive scheme of applying the scalar method d times, neither
dominates the other. The difference between them, essentially, is the difference
between

∑
(1− ρ2ℓ)/d and dmin{1− ρ2ℓ}. For example, the former outperforms

the latter if all correlations are equal, whereas the latter outperforms the former
if any of the correlations is ±1.

3.3 Proof of Theorem 4

Consider the estimator

ρ̂0 = YJW
−1
J

Σ
1

2

X
. (62)

Note that this estimator uses the non-quantized WJ which cannot be described
to Bob with a finite number of bits, and hence is unrealizable. Nevertheless,
as the following lemma shows, the loss incurred by employing ρ̂ instead, which
uses the quantized WJ, is small.
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Lemma 1. For any a, b such that a > d(b + 1),

E ‖ρ̂− ρ ‖2 ≤ E ‖ρ̂0 − ρ ‖2 + (2d)6
(
e−

a2

2 + 2−kq

)
(63)

where kq bits are used to represent each entry in ŴJ.

Proof. See Appendix A.3.

The estimator (62) can be written as

ρ̂0 = ρ+σZJW
−1
J

Σ
1

2

X
. (64)

where ZJ = [ZJw
1
, . . . , ZJw

d
] ∼ N (0, Id) is independent of WJ. It follows that

ρ̂0 is unbiased with

Cov ρ̂0 = σ2Σ
1

2

X
E
(
(WJW

T
J
)−1
)
Σ

1

2

X
. (65)

In view of Lemma 1, it is sufficient to analyze the performance of the unrealizable
estimator ρ̂0. For the purpose of analyzing ρ̂0 only, we can assume that Bob is
given the value of WJ for free, and the only cost is in transmitting the indices
Jw
1 , . . . , Jw

d . Given kl bits for the representation of each of the locations, our
general goal is to find a, b that

minimize trCov ρ̂0 (66)

subject to hg(2Q(a)(1− 2Q(b))d−1) = kl. (67)

Before proceeding to the analysis of ρ̂0, we need the following two technical
lemmas.

Lemma 2. Let M be a square random matrix with independent entries, where
the diagonal entries are i.i.d. with one distribution, and the off-diagonal en-
tries are i.i.d. with another, symmetric distribution. Then EM, EMM

T and
E
(
(MM

T )−1
)

are scalar multiples of the identity matrix.

Proof. The claim for EM and EMM
T is trivial. For E

(
(MM

T )−1
)

see Ap-
pendix A.4.

Lemma 3 (Johnson [27]). For any n-by-m matrix B = (bij), n ≤ m, the
smallest singular value is bounded below by

min
i∈[n]



|bii| −

1

2




∑

j∈[n]\i
|bij |+

∑

j∈[n]\i
|bji|







 (68)

The following lemma provides a simplified expression and bounds for E
(
(WJW

T
J
)−1
)
,

that will aid in proving Proposition 1 below.

Lemma 4. The following claims hold for

α = d−1 trEWJW
T
J
, β = d−1 trE

(
(WJW

T
J
)−1
)
. (69)
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(i) EWJW
T
J
= αId

(ii) E
(
(WJW

T
J
)−1
)
= βId

(iii) For any a, b such that a > (d− 1)b,

(a2 + d+ 1)−1 ≤ α−1 ≤ β ≤ (a− (d− 1)b)−2. (70)

Proof. Recall that the vectors Wi are i.i.d. across the time index i, and that
the entries of each one are i.i.d. with a symmetric distribution. Taking into
account the rectangular structure of the stopping sets Aw

ℓ we see that WJ has
independent entries where diagonal elements have one distribution, and off-
diagonal elements follow another, symmetric distribution. Thus, the matrix
WJ satisfies the conditions of Lemma 2. This proves claim (i) (which also holds
trivially by construction) and claim (ii).

We proceed to prove claim (iii). Denoting the singular values of WJ by√
λ1 ≥ . . . ≥ √

λd, we have that

tr(WJW
T
J )

−1 =
∑

ℓ∈[d]

λ−1
ℓ ≤ dλ−1

d . (71)

By construction, the diagonal entries of WJ are larger than a in absolute value,
and the off-diagonal entries are smaller than b in absolute value. Therefore
Lemma 3 yields

√
λd ≥ a− (d− 1)b. (72)

We thus have

βd = trβId = trE(WJW
T
J )

−1 ≤ d(a− (d− 1)b)−2, (73)

which establishes the rightmost inequality in claim (iii). The middle inequality
holds since

βd =
∑

ℓ∈[d]

E
1

λℓ
≥
∑

ℓ∈[d]

1

Eλℓ
≥ d2∑

ℓ∈[d] Eλℓ
(74)

=
d2

trEWJW
T
J

=
d2

dα
, (75)

where the two inequalities follow from Jensen’s inequality applied to the func-
tion 1/x. Note that the rows and columns of WJ have the same distribution.
Therefore

α = E ‖WI1‖2 (76)

= E
(
(W)21

∣∣ |(W)1| > a
)
+ (d− 1)E

(
(W)22

∣∣ |(W)2| < b
)

(77)

= 1 + as(a) + (d− 1)E
(
(W)22

∣∣ |(W)2| < b
)

(78)

≤ 1 + a(a+ a−1) + (d− 1)1 (79)

= a2 + 1 + d (80)

which completes the proof.
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Lemma 4 and (65) implies that the optimization problem (66)-(67) can be
written as

minimize β (81)

subject to hg(2Q(a)(1− 2Q(b))d−1) = kl. (82)

Note that both Q(·) and hg(·) are monotonically decreasing. Therefore from
(82) it is clear that increasing kl means increasing a and/or decreasing b. From
(70) we get that β decreases as a increases and gets farther away from b. We
conclude therefore that a reasonable approximation to the solution of the opti-
mization problem above, for large kl, ia as given in (56). Note that the proposed
approximated solution satisfies the constraint exactly.

Proposition 1. The estimator (62) is unbiased and, for the choice of a, b given
in (56), it satisfies

trCov ρ̂0 ≤ 1

kl

(
d

2 ln 2
min
ℓ∈[d]

{1− ρ2ℓ}+ o(1)

)
(83)

where kl is the expected number of bits used to describe each of the locations
Jw
1 , . . . , Jw

d . Furthermore, ρ̂0 is asymptotically efficient given (WJ, YJ).

Proof. In light of Lemma 4, (65) can be written as

Cov ρ̂0 = βσ2ΣX. (84)

Using (10)-(11) with µ = ρΣ
− 1

2

X
WJ and Σ = σ2

Id, we get that the Fisher
information matrix of (WJ, YJ) is

IWJYJ
=

1

σ2
Σ

− 1

2

X
EWJW

T
JΣ

− 1

2

X
+

2d

σ4
Σ−1

X
ρT ρΣ−1

X
(85)

=
α

σ2
Σ−1

X
+

2d

σ4
Σ−1

X
ρT ρΣ−1

X
, (86)

and using the Sherman–Morrison formula (e.g. [28]) we get

I−1
WJYJ

=
σ2

α

(
ΣX − 2d

ασ2 + 2d(1− σ2)
ρT ρ

)
. (87)

We take a, b of (56). Note that b is fixed and that a increases with kl. From
Lemma 4 we have that

α−1 = a−2(1 + o(1)), β = a−2(1 + o(1)), (88)

which implies

Cov ρ̂0 =
σ2

a2
(1 + o(1))ΣX (89)

I−1
WJYJ

=
σ2

a2
(1 + o(1))ΣX (90)
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and thus ρ̂0 is asymptotically efficient. For large kl we have

kl = hg(Q(a)2(1− 2Q(b))d−1) (91)

= − log(Q(a)2(1− 2Q(b))d−1)(1 + o(1)) (92)

= − log(Q(a))(1 + o(1)) (93)

=
a2

2 ln 2
(1 + o(1)) (94)

(95)

and thus

trCov ρ̂0 = dβσ2 =
dσ2

a2
(1 + o(1)) (96)

=
1

kl

(
dσ2

2 ln 2
+ o(1)

)
. (97)

It remains to show that

σ2 ≤ min{1− ρ2ℓ}. (98)

Note that σ2 = Var(Y |X) is the MMSE of estimating Y from X (see e.g. [23]).
Therefore it is not greater than 1 − ρ2ℓ = Var(Y |(X)ℓ), which is the MMSE of
estimating Y from the ℓ-th coordinate only.

Theorem 4 now follows from Lemma 1 and Proposition 1.

4 Non-Gaussian Families

In this section, we move beyond the Gaussian setup and consider the problem
of distributed correlation estimation in more general families of distributions,
based on our Gaussian constructions. For brevity of exposition, we limit our
discussion to the scalar case; the results can be extended in an obvious way to
the vector case. We note that in contrast to the Gaussian setting, the marginal
distribution of X or Y in other families of distributions may depend on the
correlation, in which case Alice or Bob could use their (unlimited) local mea-
surements to improve their inference (and in some cases to even learn ρ exactly
without any communication). For example, if X is uniformly distributed over

the interval [−
√
3,
√
3], and Y = ρX +

√
1− ρ2Z where Z is uniformly dis-

tributed over the discrete set {−1, 1}, then it is clear that the distribution of Y ,
which can be determined with arbitrary accuracy by Bob, determines ρ up to its
sign, reducing our problem to a binary hypothesis testing one. Such scenarios
render our method useless, or, at the very least, degenerate.

Our interest, therefore, is in families of distributions where the marginals
reveal little or nothing about the correlation. Specifically, we say that a family
F of distributions on (X,Y ) is correlation-hiding if each pair of marginals can
be associated with an infinite number of possible correlations; namely, for any
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two marginals pX and pY that are possible for some member of F , there exists
a countably infinite set F ′ ⊆ F of joint distributions with marginals pX and
pY , and with correlation coefficients that are all distinct.

Below, we discuss two types of correlation-hiding families. The first is the
family of all possible distributions (subject only to mild moment constraints),
which is obviously correlation-hiding. We show that for this family, the Gaussian
performance can be uniformly attained. The idea is very simple: we perform
“Gaussianization” of the samples using the Central Limit Theorem (CLT), and
then apply the Gaussian estimators; showing that this indeed works, however, is
somewhat technically involved. The second type of families that we consider are
ones where pX is known, and where Y = αX+Z for some unknown coefficient α
and unknown independent noise Z. We show that such families are correlation-
hiding, and that we can sometimes (depending on pX) obtain a variance that
decays much faster with k than the Gaussian one.

4.1 Unknown Distributions

In this subsection, we consider the case where the joint distribution of X and Y
is completely unknown, subject only to mild moment conditions. We show how
the threshold method of Subsection 2.2 can be extended to this setup, using the
CLT, to yield the same performance guarantees. The basic idea is to use the
unlimited number of samples in order to create Gaussian r.v.s with the same
correlation, by averaging over blocks of samples. Due to the CLT, it is intuitively
clear that this approach works if Alice and Bob use infinite sized blocks. This
is however impractical, and the main technical challenge is to show that using
finite large enough blocks, i.e., changing the order of limits, still works.

Let (X,Y ) be drawn from the family

F = {pXY : EX2,EY 2 < u,EY 4 < ∞}. (99)

where u is some known constant. Again, since we assume that local measure-
ments are essentially unlimited, and the second moments have known upper
bounds, we can assume without loss of generality that EX = EY = 0, and
EX2 = E Y 2 = 1. The following claim is immediate from the fact that F

contains in particular the Gaussian distributions.

Corollary 2. The family F in (99) is correlation-hiding.

Let us now proceed to describe our estimator. Alice and Bob first locally
sum over their measurements to create the new i.i.d. sequences {X̄i}i, {Ȳi}i,
given by

X̄i =
1√
m

∑

j∈Si

Xj, Ȳi =
1√
m

∑

j∈Si

Yj (100)

where the Si’s are disjoint index sets of size m. For brevity, we suppress the
dependence of these new r.v.s on m. The sequence of pairs {(X̄i, Ȳi)}i is clearly
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i.i.d. Denoting by (X̄, Ȳ ) a generic pair in this sequence, the correlation between
X̄ and Ȳ is clearly the same as the correlation between X and Y . Alice and Bob
can therefore apply the threshold method to the sequence {(X̄i, Ȳi)}i in order
to estimate the original ρ. We now show that the performance of this estimator
approaches the Gaussian performance as m → ∞. Given a communication
constraint of k bits, the threshold t is chosen (as in the Gaussian case) such
that hg(Q(t)) = k. We denote

J̄ = min{i : X̄i > t} (101)

and the estimator

ρ̂
(m)
th =

ȲJ̄

s(t)
, (102)

where s(t) is given in (6). Note we cannot normalize by E X̄J̄ to get a strictly
unbiased estimator since we assume unknown distributions and thus E X̄J̄ is not
known for finite m. The expected number of bits needed to describe J̄ is

k(m) = hg(Pr(X̄ > t)). (103)

Remark 3. Note that practical scenarios would require the choice of some
fixed m. Therefore, in cases where the support of X is finite, we might get that
Pr(X̄ > t) = 0 which means Alice waits forever and the estimator is undefined.
Therefore, while the distribution of (X,Y ) need not be known in general, such
a practical scenario requires some knowledge regarding the support of X in the
form of a number x such that Pr(Xi > x) > 0 (which must exist since EX = 0).
Then we can take m > t2/x2 to assure Pr(X̄ > t) > 0.

Theorem 5. Let t = Q−1(h−1
g (k)). Then for the family F in (99) it holds that

limm→∞ k(m) = k and

lim
m→∞

E(ρ̂
(m)
th − ρ)2 =

1

k

(
1− ρ2

2 ln 2
+ o(1)

)
(104)

Proof. Due to the CLT we have for any fixed t > 0 that

lim
m→∞

Pr(X̄ > t) = Q(t) (105)

and thus, since hg is smooth, the communication constraint is asymptotically
satisfied. We have

E(ρ̂
(m)
th − ρ)2 =

E Ȳ 2
J̄

s2(t)
− 2ρ

E ȲJ̄

s(t)
+ ρ2 (106)

and thus it suffices to show that the first two moments of ȲJ̄ converge to their
values under the Gaussian distribution. Denoting by (XN , Y N ) and Y N

J the
associated r.v.s under a Gaussian distribution, it is enough to show that ȲJ̄
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converges in distribution to Y N
J as m → ∞, and that Ȳ 2

J̄
is uniformly integrable

[29]. To show convergence in distribution, observe that

lim
m→∞

Pr(ȲJ̄ > y) = lim
m→∞

Pr(Ȳ > y|X̄ > t) (107)

= lim
m→∞

Pr(Ȳ > y, X̄ > t)

Pr(X̄ > t)
(108)

=
lim

m→∞
Pr(Ȳ > y, X̄ > t)

lim
m→∞

Pr(X̄ > t)
(109)

=
Pr(Y N > y,XN > t)

Pr(XN > t)
(110)

= Pr(Y N > y|XN > t) (111)

= Pr(Y N
J > y) (112)

where (109) holds since the denominator is not zero, and (110) holds by virtue
of the CLT.

It follows from (105) that there exist some m0 and c > 0 (e.g., c = Q(t)/2)
such that

Pr(X̄ > t) > c ∀ m ≥ m0, (113)

and therefore we assume without loss of generality that m ≥ m0. To prove
uniform integrability of Ȳ 2

J̄
it suffices to show that supm E |ȲJ̄ |γ < ∞ for some

γ > 2 [29]. For simplicity, we set γ = 4:

E |ȲJ̄ |4 = E(|Ȳ |4 | X̄ > t) (114)

≤ E |Ȳ |4
Pr(X̄ > t)

(115)

=
E( 1√

m

∑
j Yj)

4

Pr(X̄ > t)
(116)

=
1
m EY 4 + 3m−1

m (EY 2)2

Pr(X̄ > t)
(117)

<
1

c

(
E Y 4

m
+ 3

)
, (118)

which is finite since EY 4 < ∞.

Example 1 (Doubly symmetric binary r.v.s). Consider the family of distri-
butions where X ∼ Bernoulli(1/2) and Y = X ⊕ Z where Z ∼ Bernoulli(p)
is independent of X , p ∈ [0, 1] is unknown, and ⊕ is the binary XOR op-
eration. The associated Gaussian version of these r.v.s (after removing the
mean) are the jointly normal, zero mean unit norm r.v.s X̄ and Ȳ , with corre-
lation ρ = 1 − 2p. Our unbiased estimator can therefore obtain a variance of
1−(1−2p)2

2k ln 2 = 2p(1−p)
k ln 2 for the estimation of ρ, which corresponds to a variance of
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p(1−p)
2k ln 2 for the estimation of p. This can be juxtaposed with the straightforward
approach of simply sending X1, . . . , Xk to Bob and applying the (efficient) es-

timator p̂ = 1
k

∑k
j=1 Xj ⊕ Yj . This unbiased estimator has a variance of p(1−p)

k ,
which is interestingly slightly worse than what we got using the Gaussian ap-
proach. It may be possible to improve the former by using lossy compression,
but we do not explore this direction here.

Remark 4. Estimating the joint probability mass function of general discrete
distributions on X,Y can be similarly cast as a correlation estimation problem.
However, the gain observed in the binary case above does not carry over to
the general case. This is however not unexpected, since our estimator does not
assume any bound on the cardinality of X and Y .

4.2 Additive Noise Families

In this subsection, we consider a more restricted model where the distribution
pX of X is fixed (but not necessarily Gaussian) and has bounded variance, and
where

Y = αX + Z (119)

for some unknown bounded constant α, where Z is an arbitrary r.v. with
bounded variance that is independent3 of X . Let us denote this family of dis-
tributions by F (pX). First, we note:

Corollary 3. F (pX) is correlation-hiding for any pX .

Proof. See Appendix A.6.

We now show that the threshold estimator proposed for the Gaussian case
applies to F (pX) as well, and that its performance can be better or worse,
depending on pX . Specifically, we show that the O(1/k) decay of the variance
with the number of bits is not fundamental, as for some (heavier tailed) choices
of pX we obtain a behavior of O(1/k2) using the same threshold estimator,
and 2−Ω(k) using a slightly modified estimator. The latter is essentially the
best possible using our approach, since we utilize O(2k) samples (with high
probability), which corresponds to a variance of Ω(2−k) even in the centralized
case.

As in the previous sections, Alice and Bob can normalize their measurements
locally. Therefore, we can assume without loss of generality that (119) can be
written as

Y = ρX +
√
1− ρ2Z (120)

where X and Z are independent, zero mean unit variance r.v.s, and the corre-
lation is ρ = EXY . We assume that pZ is arbitrary and unknown, and that

3It is in fact sufficient for our purposes to assume only that E(Z|X) and Var(Z|X) do not
depend on X
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pX is arbitrary but known. Applying the threshold method of Subsection 2.2
to this non-Gaussian setup, we denote as usual J = min{i : Xi > t} the first
index to pass the threshold t, where t is chosen such that hg(Pr(X > t)) = k.
Our estimator is

ρ̂th =
YJ

EXJ
. (121)

The following claim is immediate.

Corollary 4. ρ̂th is unbiased, and

Var ρ̂th =
ρ2 Var(X | X > t) + 1− ρ2

(E(X | X > t))2
. (122)

Let us compute (122) for some specific choices of pX .

Example 2 (Laplace Distribution). Let pX be a zero-mean, unit-variance

Laplace distribution, hence Pr(X > x) = 1
2e

−
√
2x for x > 0. Thus,

E(X | X > t) = t+
1√
2
, Var(X | X > t) =

1

2
, (123)

and

k = hg

(
1

2
e−

√
2t

)
(124)

= − log

(
1

2
e−

√
2t

)
(1 + o(1)) (125)

=
√
2t log(e)(1 + o(1)). (126)

Therefore (122) becomes

Var ρ̂th =
1

k2

(
2− ρ2

(ln 2)2
+ o(1)

)
, (127)

which yields a variance of O(1/k2), in contrast to the slower O(1/k) attained in
the Gaussian case.

Example 3 (Pareto Distribution). Motivated by the Laplace example which
indicates that a heavier tail of X may yield a faster decay of Var ρ̂th, we in-
vestigate the heaviest tail possible with finite variance. Suppose that pX is the
(double-sided, zero mean) Pareto distribution, i.e.,

Pr(X > x) = Pr(X < −x) =
1

2

(x0

x

)α
(128)

for any x > x0, where α > 2 and x0 > 0 is set such that VarX = 1. Then for
any t > x0

E(X | X > t)=
αt

α− 1
, Var(X | X > t)=

αt2

(α− 1)2(α − 2)
(129)
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and (122) becomes

Var ρ̂th =
ρ2

α(α − 2)
+O(1/t2). (130)

Thus, the variance of our threshold estimator does not vanish with the number
of bits. This flaw can nevertheless be fixed in a very strong way, as we show
next. Before we proceed, we note that for pX with a tail of the form Pr(X >

x) ∝ e−x
1

m , i.e. in between Pareto and Laplace, the threshold estimator yields
Var ρ̂th = O(1/k2) for any natural m. Also, tails that decay faster than Gaussian

may yield worse performance, e.g. the tail e−x4

yields Var ρ̂th = O(1/
√
k).

Getting back to the double-sided Pareto distribution, recall that in the Gaus-
sian case it was shown that describing the value of XJ does not improve esti-
mation performance. This was due to the fact that for the Gaussian family,
VarXJ = Var(X | X > t) → 0. This is however not true in general; in fact, the
Pareto distribution is an extreme case in which Var(X | X > t) → ∞. There-
fore, providing some information regarding the value of XJ at the expense of
the number of bits used to describe the index J , might improve performance.
With that in mind, we consider the estimator

ρ̂th-q =
YJ

X̂J

(131)

that allocates kl bits to describe J , and kq bits to describe the value of X̂J ,
where kl + kq = k. We apply the following simple quantizer. For some u > t
we divide the region [t, u] to 2kq equal segments of length ∆ = 2−kq (u− t). For
x > u we set x̂ = u. In the following, we show that this estimator attains a
variance that decays exponentially fast with k.

Proposition 2. Consider the family F (pX) where pX be the double-sided Pareto
distribution. Then the estimator ρ̂th-q in (131) satisfies

E(ρ̂th-q − ρ)2 ≤ (1 + ρ2) · 2− 2

α
α−2

α−1
k(1−o(1)), (132)

where k is the average number of transmitted bits.

Proof. See Appendix A.5.

5 Conclusions

We have discussed the problem of estimating the correlations between remotely
observed random vectors with unlimited local samples, under one-way commu-
nication constraints. For the case where the vectors are jointly Gaussian, we
provided simple constructive unbiased estimators for the correlations; our esti-
mators attain the best known non-constructive Zhang-Berger upper bound on
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the variance in the scalar case, and use the local correlations to uniformly im-
prove performance in the vector case, where the Zhang-Berger approach seems
inapplicable. Loosely speaking, our approach is based on Alice scanning her the
local observations and sending the index of suitably “large” samples that induce
good signal-to-noise ratio for the estimation for Bob, who uses the correspond-
ing samples on his end. We then showed that using the CLT, this approach can
be applied to the case of estimating correlations for completely unknown distri-
butions, with the exact same variance guarantees. While the Gaussian approach
yields a variance that is inversely proportional to the expected number of trans-
mitted bits, we show that for joint distributions generated via unknown fading
channels with unknown additive noise, whose correlations cannot be estimated
locally, a slightly modified estimator attains a variance decaying exponentially
fast with the expected number of transmitted bits. It remains interesting to try
and obtain lower bounds on the variance as a function of the number of bits and
the richness of the family of distributions under consideration. We conjecture
that the inversely proportional behavior of our Gaussian estimator is order-wise
optimal in the Gaussian case, hence also for the case of unknown distributions.

A Appendix

A.1 Proof of Theorem 3

The model can be written as (see e.g. [26])

Y = ρX +Σ
1

2Z (133)

where Z ∼ N (0, Id) is independent of X , and Σ = ΣY − ρρT . We have

ρ̂ = (ρXJ +Σ
1

2ZJ )/EXJ . Therefore E ρ̂ = ρ and

Cov ρ̂ =
1

(EXJ)2
(
Σ+ Var(XJ )ρρT

)
. (134)

Using (10)-(11) with µ = ρXJ ,Σ = ΣY − ρρT we get that the Fisher informa-
tion matrix pertaining to (XJ ,YJ ) is

IXJYJ
= Σ−1(EX2

J + ρT Σ−1 ρ) + Σ−1 ρρT Σ−1, (135)

and applying the Sherman–Morrison formula (e.g. [28]) yields

I−1
XJYJ

=
1

EX2
J + ρT Σ−1 ρ

(
Σ− ρρT

EX2
J + 2ρT Σ−1 ρ

)
. (136)

Using the arguments of Theorem 2 yields that both Cov ρ̂ and I−1
XJYJ

are 1
t2 (1+

o(1))Σ and thus ρ̂ is asymptotically efficient. Theorem 2 also implies that
k = t2(2 ln 2+o(1)), and noting that tr Σ = tr(ΣY−ρρT ) = d−‖ρ‖2 concludes
the proof.
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A.2 The scalar method with linear transformations

In this subsection we show that any method based on d scalar transmissions
cannot uniformly beat the scheme of applying the basic scalar method d times.
In this sense, the joint method proposed in Theorem 4 is superior because it does
uniformly beat the simple scalar scheme. Specifically, let M be some invertible
d × d matrix known to both Alice and Bob, and let X̃ = MX. Suppose Alice
and Bob apply the scalar method separately to obtain an estimator ρ̂M for

the correlation vector ρM = EY X̃
T , and then use the estimator M−1ρ̂M to

estimate ρ. As it turns out, this family of estimators does not dominate the
naive approach of estimating each correlation separately (i.e., M = Id).

Proposition 3. For any two invertible d × d matrices M1,M2 (that can arbi-
trarily depend on ΣX, and are known to both Alice and Bob), M−1

1 ρ̂M1
does not

dominate M−1
2 ρ̂M2

.

Proof. We need to show that any linear transformation applied to X, followed
by the scalar method, cannot be uniformly better than the scalar method itself.
It suffices to show that for the two-dimensional case.

Alice creates the following two scalar sequences.

Ui = [a1, b1]Xi, for i = 1, . . . , n1 and (137)

Vi = [b2, a2]Xi, for i = n1 + 1, . . . , n1 + n2 (138)

and allocates k1 bits for U , and k2 bits for V (Note we can use either max or
threshold method, and that n1, n2 can be arbitrarily large). One special case of
the above is the “successive refinement” approach described in the introduction
(for b1 = 0), and another special case is the naive scalar method (for a1 = a2 = 1,
b1 = b2 = 0 and k1 = k2 = k/2). Without loss of generality we assume a1, b1
are such that EU2 = 1, and a2, b2 are such that EV 2 = 1. We denote

α1 = EYiUi = a1ρ1 + b1ρ2 (139)

α2 = EYiVi = b2ρ1 + a2ρ2, (140)

and α = [α1, α2]
T . We also denote ρ = [ρ1, ρ2]

T and

M =

[
a1 b1
b2 a2

]
, (141)

and therefore we have α = M ρ. The best Bob can do (recall U, V are indepen-
dent) is to estimate α1 using U and α2 using V to obtain

Var α̂1 =
1

k1

(
1− α2

1

2 ln 2
+ o(1)

)
(142)

Var α̂2 =
1

k2

(
1− α2

2

2 ln 2
+ o(1)

)
(143)
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and then take ρ̂trn = M−1α̂. The resulting sum of variances (note Cov(α̂1, α̂2) =
0) is

trCov ρ̂trn = trM−1
Cov(α̂)M−T (144)

= trM−1

[
Var α̂1 0

0 Var α̂2

]
M−T (145)

=
(a22 + b22)Var α̂1 + (a21 + b21)Var α̂2

(a1a2 − b1b2)2
(146)

Applying the simple scalar method twice yields

trCov ρ̂scl =
1

k

(
k

k′1

1− ρ21
2 ln 2

+
k

k′2

1− ρ22
2 ln 2

+ o(1)

)
. (147)

with k′1+k′2 = k1+k2 = k. We want to show that trCov ρ̂trn cannot be uniformly
better than trCov ρ̂

scl
, namely, show that for any choice of a1, b1, a2, b2, k1, k2

(that do not depend on ρ1, ρ2) we can find ρ1, ρ2 such that trCov ρ̂scl < trCov ρ̂trn.
This is easy because we can always take ρ1, ρ2 ∈ {−1, 1} (or arbitrarily close
to ±1) which makes trCov ρ̂scl ≈ 0 and trCov ρ̂trn 6= 0. If trCov ρ̂trn = 0 (i.e.
α2
1 = α2

2 = 1), we can flip the sign of ρ2 to obtain either α2
1 6= 1 or α2

2 6= 1.

A.3 Proof of Lemma 1

Writing W = WJ and Ŵ = ŴJ, we have

ρ̂0 = YJW
−1Σ

1

2

X
= ρ+σZJW

−1Σ
1

2

X
(148)

ρ̂ = YJŴ
−1Σ

1

2

X
=ρΣ

− 1

2

X
WŴ

−1Σ
1

2

X
+σZJŴ

−1Σ
1

2

X
(149)

ρ̂0 − ρ = σZJW
−1Σ

1

2

X
(150)

ρ̂− ρ̂0 = ρΣ
− 1

2

X
(WŴ

−1 − I)Σ
1

2

X
+ σZJ(Ŵ

−1 −W
−1)Σ

1

2

X
. (151)

Recall ZJ is a row vector ∼ N (0, Id) independent of W. It follows that

E ‖ρ̂− ρ̂0‖2 = E ‖ρΣ
− 1

2

X
(WŴ

−1 − I)Σ
1

2

X
‖2 (152)

+ σ2
E tr(Ŵ−1 −W

−1)ΣX(Ŵ−T −W
−T ), (153)

and

E(ρ̂− ρ̂0)(ρ̂0 − ρ)T = σ2
E tr(Ŵ−1 −W

−1)ΣXW
−T . (154)

Therefore

E ‖ρ̂− ρ ‖2 = E ‖(ρ̂− ρ̂0) + (ρ̂0 − ρ)‖2 (155)

= E ‖ρ̂0 − ρ ‖2 + E ‖ρ̂− ρ̂0‖2 + 2E(ρ̂− ρ̂0)(ρ̂0 − ρ)T (156)

= E ‖ρ̂0 − ρ ‖2 + E ‖ρΣ
− 1

2

X
(WŴ

−1 − I)Σ
1

2

X
‖2 (157)
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+ σ2
E tr(Ŵ−1 −W

−1)ΣX(Ŵ−T +W
−T ), (158)

and thus

E ‖ρ̂− ρ ‖2 − E ‖ρ̂0 − ρ ‖2 (159)

= E ‖ρΣ
− 1

2

X
(W − Ŵ)Ŵ−1Σ

1

2

X
‖2 (160)

+ σ2
E tr(W − Ŵ)Ŵ−1ΣX(Ŵ−T +W

−T )W−1. (161)

Let us upper bound the two terms separately. Recall that by (73) we have
‖W−1‖2F ≤ d/(a − (d − 1)b)2, which also holds for Ŵ

−1. Furthermore, the
assumption that a > d(b + 1) implies that a − (d − 1)b is lower bounded by
either a/d or d.

First term (160): The Frobenius norm is sub-multiplicative (see e.g. [30]),
and therefore

E ‖ρΣ
− 1

2

X
(W − Ŵ)Ŵ−1Σ

1

2

X
‖2F (162)

≤ ‖ρΣ
− 1

2

X
‖2F‖Σ

1

2

X
‖2F E ‖W − Ŵ‖2F ‖Ŵ−1‖2F (163)

≤ d‖ρΣ
− 1

2

X
‖2F‖Σ

1

2

X
‖2F

(a− (d− 1)b)2
E ‖W − Ŵ‖2F (164)

≤ d‖ρΣ
− 1

2

X
‖2F‖Σ

1

2

X
‖2F

(a/d)2
E ‖W − Ŵ‖2F (165)

=
d4(1− σ2)

a2
E ‖W − Ŵ‖2F (166)

where for (166) we used the fact that ‖ρΣ
− 1

2

X
‖2 = ρΣ−1

X
ρT = 1 − σ2, and

‖Σ
1

2

X
‖2F = trΣX = d.

Second term (161): For any two d× d matrices A,B, it can be easily shown
that trABT ≤ d2‖A‖F ‖B‖F . Therefore,

σ2
E tr(W − Ŵ)Ŵ−1ΣX(Ŵ−T +W

−T )W−1 (167)

≤ σ2d2 E ‖W− Ŵ‖F‖Ŵ−1ΣX(Ŵ−T +W
−T )W−1‖F (168)

≤σ2d2
√
E ‖W−Ŵ‖2F

√
E ‖Ŵ−1ΣX(Ŵ−T +W−T )W−1‖2F (169)

≤ σ2d2
√
2d

3

2 ‖ΣX‖F
(a− (d− 1)b)3

√
E ‖W − Ŵ‖2F (170)

≤
√
2d4.5σ2

(a/d)d2

√
E ‖W − Ŵ‖2F (171)

where (169) is due to the Cauchy–Schwarz inequality. For (171) note that
‖ΣX‖2F ≤ d2 because all the entries of ΣX are less than or equal to one.

We now proceed to upper bound E ‖W − Ŵ‖2F . Consider the following
uniform quantizer: The diagonal entries are truncated at some c > a. The
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double segment ±[a, c] is divided into l1 regions of width ǫ1 = 2(c− a)/l1 each.
For |w| > c we take ŵ = sign(w)c. Therefore

E(W11 − Ŵ11)
2 (172)

=
Q(c)

Q(a)
E

(
(W11 − Ŵ11)

2
∣∣∣ |W11| > c

)
(173)

+

(
1− Q(c)

Q(a)

)
E

(
(W11 − Ŵ11)

2
∣∣∣ |W11| < c

)
(174)

≤ Q(c)

Q(a)
E
(
(W11 − c)2

∣∣ |W11| > c
)
+ ǫ21 (175)

=
Q(c)

Q(a)
(1 + cs(c) + c2) + ǫ21 (176)

≤ a+ a−1

c
e−

c2−a2

2 2(1 + c2) + ǫ21 (177)

≤ 8c2e−
c2−a2

2 + ǫ21 (178)

where (177) is obtained with some manipulations on t ≤ s(t) ≤ t + t−1. For
the off-diagonal entries, the segment [−b, b] is divided into l2 regions of width
ǫ2 = 2b/l2 each. Therefore

E(W12 − Ŵ12)
2 ≤ ǫ22. (179)

It follows that

E ‖W − Ŵ‖2F (180)

= dE(W11 − Ŵ11)
2 + (d2 − d)E(W12 − Ŵ12)

2 (181)

≤ 8dc2e−
c2−a2

2 + dǫ21 + d(d− 1)ǫ22 (182)

≤ 8dc2e−
c2−a2

2 + d2(ǫ1 + ǫ2)
2. (183)

We take c =
√
3a and l1 = l2 and thus ǫ1 + ǫ2 = 2(c− a + b)/l1 ≤ 4a/l1. The

number of bits used for quantization is kq = log l1 and therefore ǫ1+ǫ2 ≤ 4a2−kq .
Now,

√
E ‖W − Ŵ‖2F (184)

≤
√
24da2e−a2 + 16d2a22−2kq (185)

≤
√
(5ad)2(e−a2 + 2−2kq ) (186)

≤ 5ad(e−
a2

2 + 2−kq ), (187)

and finally, combining (187) with (166) and (171) yields

E ‖ρ̂− ρ ‖2 − E ‖ρ̂0 − ρ ‖2 (188)
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≤ 25d6(1 − σ2)(e−
a2

2 + 2−kq)2 + 5
√
2d4.5σ2(e−

a2

2 + 2−kq ) (189)

≤ 25d6(e−
a2

2 + 2−kq ) (190)

which completes the proof.

A.4 Proof of Lemma 2

Denote by P the set of all d× d signed permutation matrices, i.e. matrices with
exactly one nonzero entry in every row and every column, that takes values in
{−1, 1}. For any d× d matrix B and any P ∈ P , the matrix PBPT is obtained
from B by performing the same permutation on the rows and columns of B,
with possible sign changes. Specifically, the diagonal of PBPT is a permutation
of the diagonal of B, and the off-diagonal of PBPT is a permutation of the
off-diagonal entries of B with possible sign changes.

Suppose that the random matrix N has the same distribution as PNPT for
any P ∈ P . It follows that EN must be a scalar multiple of the identity matrix
since for any i 6= j there exist two matrices P1, P2 ∈ P such that

1. for some i′ 6= j′,

(P1NPT
1 )i′j′ = (N)ij (191)

(P2NPT
2 )i′j′ = −(N)ij (192)

and thus (EN)ij = −(EN)ij .

2. for some i′,

(P1NPT
1 )i′i′ = (N)ii (193)

(P2NPT
2 )i′i′ = (N)jj (194)

and thus (EN)ii = (EN)jj .

The assumptions in the lemma imply that M and PMPT have the same
distribution for any P ∈ P , thus MM

T and (PMPT )(PMPT )T have the same
distribution. Hence

(PMPT )(PMPT )T = PMM
TPT (195)

and thus PMM
TPT has the same distribution as MM

T . This implies that
(PMM

TPT )−1 has the same distribution as (MM
T )−1, and since

(PMM
TPT )−1 = P (MM

T )−1PT (196)

we have that P (MM
T )−1PT has the same distribution as (MM

T )−1. Therefore
E(MM

T )−1 is a scalar multiple of the identity matrix.
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A.5 Proof of Proposition 2

For any distribution on X , and for any u,∆,

E(ρ̂th-q − ρ)2=ρ2 E

(
XJ − X̂J

X̂J

)2

+(1− ρ2)E
1

X̂2
J

(197)

≤ ρ2

t2
E

(
XJ − X̂J

)2
+

1− ρ2

t2
(198)

=
ρ2

t2
Pr(XJ < u)E

((
XJ − X̂J

)2∣∣∣∣XJ < u

)
(199)

+
ρ2

t2
Pr(XJ > u)E

(
(XJ − u)2

∣∣∣XJ > u
)
+

1− ρ2

t2

≤ ρ2

t2
∆2 +

ρ2

t2
Pr(X > u)

Pr(X > t)
E

(
(X − u)2

∣∣∣X > u
)
+

1− ρ2

t2
. (200)

In this Pareto example we have

E

(
(X − u)2

∣∣∣X > u
)
= cu2 (201)

where c = 2/((α− 1)2(α− 2)), and thus

E(ρ̂th-q − ρ)2 ≤ 1− ρ2 + ρ2∆2

t2
+ cρ2

(
t

u

)α−2

. (202)

We take u = t
α

α−2 , and thus (202) becomes

E(ρ̂th-q − ρ)2 ≤ 1− ρ2 + ρ2∆2 + cρ2

t2
. (203)

The bits are allocated by

kq =
1

α− 1
k, kl =

α− 2

α− 1
k, (204)

and the threshold t is determined by kl from the solution of kl = hg(Pr(X > t)),

which yields t = 2
kl
α
(1−o(1)). We have ∆ ≤ 1 since

∆ = 2−kq (u− t) = 2−kq (t
α

α−2 − t) = 2−kq t
α

α−2 (1− t
−2

α−2 )

= 2−
k

α−1 2
k

α−1
(1−o(1))(1− t

−2

α−2 ) = 2−o(k)(1 − t
−2

α−2 ).

Note that for α > 3 we have c < 1 and thus

E(ρ̂th-q − ρ)2 ≤ 1 + ρ2

t2
≤ 1 + ρ2

2
2

α
α−2

α−1
k(1−o(1))

. (205)
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A.6 Proof of Corollary 3

Set any real-valued sequence {αk}∞k=1 such that all the elements are distinct,
and

∑
α2
k = 1. Pick Z =

∑
k αkZk, where Zk ∼ pX are i.i.d and mutually

independent of X . Then Y = αX +
∑

k αkZk is a weighted sum of i.i.d. r.v.s,
hence knowing pX and pY , or even knowing all the weights α, {αk}, there is
no way to distinguish between the case where X has coefficient α and where
X has coefficient αk for some k. Thus, there is an infinite number of possible
correlations.

A.7 Maximum likelihood approximation

In this section we provide further justification for the estimator ρ̂ = YJ/EXJ

(or YJ/EXJ in the scalar setup which is a special case), by showing that YJ/XJ

is an approximation of the maximum likelihood estimator. The model is

YJ = ρXJ +Σ
1

2ZJ (206)

where either J = argmaxi{Xi} if we use the max method, or, if we use the
threshold method, J = min{i : Xi > t}. We wish to maximize fXJYJ

which is
equivalent to maximizing fYJ |XJ

, since fXJ
does not depend on ρ. It follows

that the actual distribution of XJ is irrelevant. We have YJ |XJ ∼ N (ρXJ ,Σ)
with Σ = ΣY − ρρT and thus

∂

∂ ρ
ln fXJYJ

(207)

= −1

2

∂

∂ ρ

(
ln detΣ + (YJ − ρXJ )

TΣ−1(YJ − ρXJ)
)

= Σ−1
(
ρ−(YJ − ρXJ)

(
(YJ − ρXJ)

TΣ−1 ρ−XJ

))

meaning we want to solve

ρ = (YJ − ρXJ)
(
(YJ − ρXJ)

TΣ−1 ρ−XJ

)
. (208)

Note that the rightmost term is a scalar and thus the solution must be of the
form ρ̂

ML
= CYJ where C is a scalar that depends on XJ and YJ . Plugging

it yields that C is obtained as the solution of the third degree polynomial

Y
T
J Σ

−1
Y

YJC
2(XJ − C)−(X2

J−1+Y
T
JΣ

−1
Y

YJ )C+XJ =0.

In our setups XJ takes large values. This implies in general that the entries of
YJ are also large, and thus C should be small as we expect ρ̂ML = CYJ to
produce moderate values. Therefore we can assume that XJ −C ≈ XJ and that
X2

J − 1 ≈ X2
J , which results in a quadratic equation in C whose solutions are

XJ/(Y
T
J Σ

−1
Y

YJ) and 1/XJ . Note that (with either max or threshold) VarXJ

approaches zero as the number of bits increases, and therefore the loss in re-
placing XJ with EXJ is negligible (it is also evident in the optimality claims
throughout where it is shown that the estimators, which do not use the actual
value of XJ , achieve the CRLB that assumes XJ is known).
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